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Zusammenfassung

Obwohl die Existenz der Dunklen Materie (DM) durch zahlreiche unabhängige Beob-
achtungen auf verschiedenen Skalen bestätigt worden ist, bleibt ihre Natur ein Rätsel. Die
aussichtsreichsten Kandidaten für die kalte nichtbaryonische DM sind die schwach wech-
selwirkenden massiven Teilchen (Weakly Interacting Massive Particles - WIMPs), die durch
Ergebnisse aus der Teilchenphysik wohlmotiviert sind und für die es mit dem thermischen
Produktionsmechanismus eine natürliche Art und Weise gibt, die beobachtete Reliktdichte
zu erklären.

In dieser Arbeit betrachten wir insbesondere diejenige Klasse von WIMP-Modellen, für
die es notwendig ist, den Sommerfeld-Effekt miteinzubeziehen. Dabei handelt es sich um
ein quantenmechanisches Phänomen welches den Wirkungsquerschnitt der Paarvernichtung
im nichtrelativistischen Grenzfall signifikant erhöhen kann. Dieser nichtperturbative Effekt
kann im Rahmen einer nichtrelativistischen effektiven Feldtheorie beschrieben werden, die
aus der vollständigen Quantenfeldtheorie abgeleitet werden kann. Wir diskutieren ausführ-
lich die Berechnungen für das rechtshändige Sneutrino, welches der Superpartner des Neu-
trinos und zudem ein plausibler Kandidat für DM ist.

Wie wir zeigen werden, kann die Sommerfeld-Verstärkung einen tiefgreifenden Einfluss
auf die thermische Entwicklung der DM haben, welche nicht länger durch ein herkömmli-
ches Szenario beschrieben werden kann. Wir stellen ein Konzept vor, welches diesen Effekt
korrekt berücksichtigt und wenden es auf ein einfaches leptophiles DM-Modell an. Ein neu-
es Zeitalter der Paarvernichtung kann die Dichte der Dunklen Materie sogar noch nach dem
herkömmlichen Ausfrieren senken und, für den Fall, dass die Sommerfeld-Verstärkung be-
sonders groß ist, selbst bis nach dem Zeitpunkt des Gleichgewichts zwischen Materie und
Strahlung andauern. Der Einfluss auf die asymptotische WIMP-Temperatur, welche direkt
zu dem bei kleinen Skalen eingeführten Cutoff der Fluktuationen der Materiedichte in Be-
ziehung gesetzt werden kann, bewirkt, dass die Masse der kleinsten gravitativ gebundenen
Objekte größer ist als die, die aus herkömmlichen Berechnungen zu erwarten wäre.

Weiterhin untersuchen wir den Effekt der geschwindigkeitsabhängigen DM-Selbststreu-
ung in Bezug auf die Strukturbildung auf kleinen Skalen. Numerische Simulationen der
ΛCDM zeigen eine bemerkenswerte Übereinstimmung mit der Struktur des Universums
auf großen Skalen. Allerdings sind die Simulationen nicht vollständig im Einklang mit den
beobachteten Häufigkeiten, inneren Dichten und Geschwindigkeitsprofilen von Zwerggala-
xien. Wir führen ein einfaches phänomenologisches Modell ein, welches in der Lage ist,
sämtliche Probleme auf kleinen Skalen gleichzeitig zu lösen. Wichtige Bestandteile sind
hierbei eine durch einen leichten Vektorboson vermittelte Sommerfeld-Verstärkung und ei-
ne viel später als im Normalfall stattfindende kinetische Entkopplung.
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Abstract

Although the existence of Dark Matter (DM) has been confirmed by many independent
obervations on various scales, its nature still remains a mystery. Leading candidates for the
cold, non-baryonic DM are Weakly Interacting Massive Particles (WIMPs), that are well
motivated from particle physics and naturally explain the observed relic density by their
thermal production mechanism.

In this thesis we focus on a particular class of WIMP models in which the Sommerfeld
effect has to be taken into account. This is a quantum mechanical phenomenon that can
significantly enhance the annihilation cross section in the non-relativistic limit. To describe
the non-perturbative effect, we use a non-relativistic effective field theory derived from the
full quantum field theory. We include a detailed discussion of the calculation for the right-
handed sneutrino, which is the superpartner of the neutrino and a viable DM candidate.

As we will show, the Sommerfeld enhancement can have a profound influence on the
thermal evolution of the DM, which can no longer be described by the standard scenario.
We introduce a framework to correctly take this effect into account and apply it to a simple
leptophilic DM model. A new era of annihilations can decrease the DM density even after
usual freeze-out, and in some cases where the Sommerfeld enhancement is especially large,
even continue until after matter-radiation equality. The effect on the asymptotic WIMP
temperature, which can be directly related to a small scale cutoff in the matter density
fluctuations, causes the mass of the smallest gravitationally bound objects to be larger than
expected from standard calculations.

Furthermore we study the effect of velocity dependent DM self-scattering in relation to
the small scale structure formation. Numerical simulations of ΛCDM have shown a remark-
able agreement with the large scale structure of the Universe. However, the simulations are
in tension with observed abundances, inner densities and velocity profiles of dwarf galaxies.
We introduce a simple phenomenological model that is able to solve all small scale prob-
lems simultaneously. The important ingredients are a Sommerfeld enhancement mediated
by a light vector boson, and much later kinetic decoupling than in the standard case.
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1 Introduction

Probably one of the most interesting puzzles of modern science is the existence of Dark Matter
(DM) in our Universe. Since the DM is non-luminous – hence the name dark – its presence
is only revealed by the gravitational interaction it exerts. There is an overwhelming amount of
observational evidence taken over a wide range of distance scales (to be discussed in chapter 2)
that have confirmed ∼ 23% of the Universe to be in the form of this cold, non-baryonic DM.
Although we quite accurately know the present abundance of DM, we hardly know anything
about its Nature. One of the most attractive theories is to assume the DM consists of Weakly
Interacting Massive Particles (WIMPs) that are very heavy and barely interact with ordinary
matter.

Interestingly, WIMPs quite naturally explain the observed DM abundance by their thermal
production mechanism. Shortly after the Big Bang, WIMPs are in chemical equilibrium with the
Universe and their density decreases as the DM is annihilated into other particles. At some point,
however, the annihilation rate falls behind the Hubble expansion rate and the abundance ‘freezes
out’, i.e., it remains fixed for the rest of time. After this chemical decoupling, the DM still
frequently scatters off heat bath particles, which keeps them in local thermal equilibrium. Only
after a very long time these reactions also fail to be effective and the DM kinetically decouples
from the heat bath. The temperature at which this happens is directly related to a small scale
cutoff in the matter density fluctuations, from which the mass of the first gravitationally bound
objects can be determined. In chapter 3, we will make the reader familiar with WIMPs and their
standard, thermal evolution.

Since the amount of DM is so large compared to the ordinary matter, it plays an important
role in the formation of structure. Numerical simulations that include the observed amount of
DM and a cosmological constant Λ have shown to be very successful: besides recreating the
large scale structure, they can explain many other important cosmological observations, such as
the existence and structure of the cosmic microwave background, the abundance of light ele-
ments, and the accelerating expansion of the Universe. This so-called ΛCDM or ‘cosmological
concordance’ model is therefore viewed as a cornerstone of modern science.

Lately, however, it has been shown that the ΛCDM is in tension with observations on smaller
scales. Simulations predict a larger abundance of DM satellites than the observed dwarf galaxies
to which they should correspond. In addition, the inner density of these small satellites follow a
cuspy profile, which seems to be in tension with observed density cores in dwarfs. Recently it
was realized that the most massive satellites in the simulations are far too dense to correspond to
the brightest dwarf galaxies in our Milky Way, i.e., their velocity profiles do not match. These
small scale problems pose a serious threat to the otherwise so successful ΛCDM model. We will
discuss the formation of structure and the small scales problems in chapter 4.

In this thesis, we focus on a particular class of WIMP models that feature a quantum mechan-
ical effect named after its discoverer Arnold Sommerfeld, and study its influence on the above
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mentioned cosmological processes. In these models, the DM is able to interact through a light
force carrier, which increases the probability for the WIMPs to undergo a short range interac-
tion. This non-relativistic effect causes the DM annihilation rate to be increased by a velocity
dependent enhancement factor, which can become incredibly large in the special case that the
two DM particles form a quasi bound state. Since the DM annihilation rate is important for
the calculation of the relic abundance and indirect detection of DM, the Sommerfeld effect can
thus have a profound effect on the phenomenology of the DM model. We will therefore spend
chapter 5 on explaining this effect in detail.

The Sommerfeld effect is caused by the multiple exchange of mediator particles between the
DM and is often visualized in so-called ladder diagrams. Since this is a non-perturbative effect,
one has to perform a resummation over all possible ladder diagrams in order to correctly describe
the effect. We will show it is equivalent to use a renormalized non-relativistic effective theory
derived from the full quantum field theory. In chapter 6 we will perform this calculation for
a particular WIMP, namely the right-handed sneutrino, the superpartner of the neutrino, which
arises in certain supersymmetric theories.

Since the thermal history of the DM depends greatly on the particle physics details, it is
expected that the Sommerfeld effect can influence the relic DM density and the formation of the
smallest DM objects. When the DM annihilation rate depends on the velocity of the WIMPs, it
generates a complicated feedback between the DM abundance and its temperature. In chapter
7 we discuss the non-standard thermal decoupling in Sommerfeld enhanced DM models and
introduce a new set of equations that takes the interplay between chemical and kinetic decoupling
correctly into account. To illustrate our treatment, we use it on a simple Sommerfeld enhanced
DM model and show that the thermal evolution is very different from the standard scenario.
We find that in models with a velocity enhanced annihilation rate, a new era of annihilations
occurs after regular freeze-out that can decrease the relic density by a significant amount. This
correspondingly influences the asymptotic WIMP temperature in such a way, that the mass of
the first DM halos can be larger than expected.

Furthermore, the Sommerfeld effect induces velocity dependent DM self-scattering that alters
small scale structure formation in numerical simulations of ΛCDM . As a result, the velocity
and inner density profiles of small subhalos are in better agreement the observed dwarf proper-
ties. In chapter 8 we will investigate the particle physics parameter space for which Sommerfeld
enhanced DM can solve these two internal density problems effectively. Moreover, we present a
simple, phenomenological model that is able to additionally solve the satellite abundance prob-
lem. We find that the key ingredients are velocity dependent self-interactions mediated by a light
vector boson and very late kinetic decoupling. The latter is needed to suppress the formation of
small subhalos such that they do not exceed the observed abundance of dwarf galaxies. In this
way, we are able to solve all small scale problems for the first time by a single model, which
might help to save the ΛCDM from its downfall.

Finally, we summarize our findings and give an outlook in chapter 9. Detailed calculations
of the Sommerfeld enhancement for various models discussed in this work can be found in
Appendix A. Note that in this study we work in units where c = h̄ = kB = 1. The results presented
in this thesis are based on two papers, which I co-authored and have been published in refereed
journals [1, 2].
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2 Dark Matter

By now, the existence of Dark Matter (DM) has been established on many different scales in
our Universe. After giving a short introduction to cosmology, we will briefly review the most
important evidence, and discuss the DM properties we can infer from them in this chapter. An
excellent book on cosmology is, e.g., [14]. For more information on the current status of DM
evidence, candidates and constraints see [15, 16], and [17] for observational constraints and
detection methods.

2.1 Introduction to Cosmology

Our picture of the Universe is based on the cosmological principle, which states that it is homo-
geneous and isotropic on large scales. The isotropy can be inferred from various observations of
e.g. large scale structure [18] and the cosmic microwave background (CMB) radiation [19]. The
latter consists of photons that last scattered off electrons some 380.000 years ago, and traveled
through space ever since. Measurements show that the CMB has an (almost) perfect thermal
black body spectrum with a temperature of 2.75K. The high degree of isotropy of the CMB
reflects the homogeneity and isotropy of the Universe at the time of last scattering (see also sec-
tion 2.2)). Homogeneity follows from the assumption that the earth is not in a particular special
place, such that the Universe is the same from whatever place you look at it.

The geometry of spacetime in such a Universe is well described by the Friedmann-Robertson-
Walker (FRW) metric

ds2 = gµνdxµdxν =−dt2 +a2(t)
[

dr2

1− kr2 + r2dΩ
2
]

, (2.1)

with dΩ2 ≡ dθ 2 + sin2
θdφ 2. The coordinates t,r,θ ,φ are co-moving, which means they do

not change during the evolution of the Universe. The scale factor a(t) is a measurement of the
size of the Universe at t, and the curvature constant k reflects the geometry of the Universe, i.e.,
k =−1,0,1 for an open, flat and closed Universe.

The physical distance between an observer at the origin and an object at a distance r is then
given by

dphys(r, t) = a(t)
∫ r

0

dr√
1− kr2

. (2.2)

Since the origin is no special place, all physical distances between co-moving objects are pro-
portional to a(t), and their rate of change is given by ḋphys = dphysȧ/a, where a dot denotes the
derivative d/dt.

The evolution of the of the scale factor can be derived by assuming the Universe consists of
a perfect fluid. The energy momentum tensor T µν is then completely determined by the energy
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density ρ and pressure p of the fluid. Imposing energy conservation, we obtain

ρ̇ +3
ȧ
a

(p+ρ) = 0 , (2.3)

where the equation of state has to obey

p = wρ . (2.4)

With these two equations one can derive that the density evolves as

ρ ∝ a−3(1+w) . (2.5)

In our Universe we distinguish between three different components that each evolves in its
own way. Cold matter (e.g., dust) has zero pressure, pm = wm = 0, and therefore evolves like
ρm ∝ a−3. Radiation is a form of hot matter, defined by the equation of state pr = ρr/3, and cor-
respondingly evolves as ρr ∝ a−4. Furthermore, there exists a component for which wΛ = −1,
such that ρΛ is constant. This is referred to as vacuum energy.

Whether the scale factor increases, decreases, or stays constant with t, can be inferred from
observations of the light from distant galaxies. The frequency ν1 of this light emitted at time
t1 will be affected by the change in the scale factor, such that the frequency ν0 at which it is
observed at t0 is given by

ν0

ν1
=

a(t1)
a(t0)

≡ 1+ z . (2.6)

If a(t) increases (decreases) with time, this quantity is positive (negative) and the the frequency
is redshifted (blueshifted). Since we observe the light at present, the scale factor today is usually
denoted by a(t0) = a0 ≡ 1.

For nearby sources we can Taylor expand the scale factor, such that we obtain the relation

z = H0dphys + . . . , (2.7)

where H0 is the Hubble parameter today

H0 ≡ ȧ(t0)
a(t0)

= 100 h km s−1 Mpc−1 . (2.8)

Observations show that spectral lines of galaxies are redshifted; the quantity z is thus positive
[20, 21]. Objects in space are receding from us and from each other, which means that our
Universe is actually expanding, i.e. ȧ > 0.

If we reverse this argument, it would suggest that our Universe started out in a much denser
state with a→ 0, more generally known as the Big Bang. Light that has propagated towards us
since the Big Bang characterizes the maximal length that any information in the Universe could
have traveled. This is also known as the particle horizon

dH(t) = a(t)
∫ t

0

dt ′

a(t ′)
= dphys(r(t), t) , (2.9)
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where dphys(r1,t) is given by Eq. (2.2), and the light was emitted at a distance r(t).
In order to determine the dynamics of the expansion of the Universe, we need to include

Einstein’s theory of gravity, which is described by

Rµν − 1
2

Rgµν +Λgµν = 8πGNTµν , (2.10)

where Rµν (R) is the Ricci tensor (scalar) and GN is the gravitational constant. The cosmolog-
ical constant Λ was first introduced in 1917 by Einstein in order to obtain a static solution for
the Universe. The observation of the Hubble redshift of galaxies few years later led Einstein to
abandon his idea of a static Universe and famously call the cosmological constant the “biggest
blunder” of his life. It was only after measuring the distance-redshift relation of Type Ia super-
novae that it became clear that the expansion of our Universe is actually accelerating [22, 23],
implying a non-zero cosmological constant after all.

After substituting Eq. (2.1) into Eq. (2.10), we arrive at the Friedmann equations [24](
ȧ
a

)2

= H2(t) =
8πGN

3
ρ(t)+

Λ

3
− k

a2 , (2.11)

ä
a

=−4πGN

3
(ρ +3p)+

Λ

3
, (2.12)

which describe the evolution of the scale factor. The cosmological constant is usually expressed
in terms of the vacuum energy with ρΛ =−pΛ = Λ/(8πGN) as discussed above. It is useful to
define the critical density today as ρc ≡ 3H2

0 /(8πGN) such that Eq. (2.11) transforms into

Ω+ΩΛ = 1+
k
ȧ2 , (2.13)

where all energy densities are expressed in terms of the critical density, i.e. Ω ≡ ρ/ρc and
ΩΛ = ρΛ/ρc. Measurements show that the density of our Universe is actually very close to
the critical density such that all contributions add up to one: ΩM + Ωr + ΩΛ = 1 [19]. This
means the Universe is very close to being spatially flat, i.e. k = 0. Moreover, it is comprised of
roughly ∼ 25% matter and ∼ 75% vacuum density at present. Cosmological models with this
set of parameters have shown to give results that in very good agreement with the Universe as
we observe it. The ΛCDM model of cosmology is therefore viewed as the standard model of the
Universe.

Looking at the different scaling with a of the various components of the Universe, we can infer
that the curvature and vacuum density can be neglected for small enough a. From Eq. (2.11) we
thus infer that at early times the density was very close to the critical density. The fact that this
has not changed in the course of the history of the Universe until today is puzzling, and also
referred to as the flatness problem [25]. Inserting then the scaling behavior from Eq. (2.5) into
the first Friedmann equation, we find that

a(t) ∝ t
2

3(1+w) , (2.14)

for a matter or radiation dominated era. In this case, Eq. (2.9) can be approximated by the
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Hubble radius dH ≈ H−1, since the scale factor follows a power law. Assuming a vacuum
energy dominated era, however, the scaling factor is given by a(t) ∝ expHt with H a constant,
such that it corresponds to an accelerated expansion of the Universe.

A period of accelerated expansion before the Big Bang, also known as inflation, could explain
why the Universe is so flat and isotropic today [25]. It also predicts that quantum fluctuations that
were present before inflation are the origin of tiny temperature anisotropies (δT/T ∼ 10−5) in
the CMB. These correspond to density fluctuations in the cosmic fluid at the time of recombina-
tion, and serve as initial conditions for the evolution of structure and anisotropy in the Universe.
The formation of structure will be further discussed in chapter 4.

Right after the Big Bang, radiation dominated the energy budget, and the entropy density was
given by

s(T ) =
2π2

45
g∗S(T )T 3 . (2.15)

where g∗S are the entropy degrees of freedom. Using the fact that in thermal equilibrium the
entropy in a co-moving volume is conserved, i.e. ∂t(sa3) = 0, we can derive that

T ∝ g−1/3
∗S a−1 . (2.16)

Thus, the temperature of the Universe increases for earlier times, which corresponds to the
picture of a hot Big Bang. Together with entropy conservation, the first Friedmann equation can
be integrated to give

t =−
∫ s′(T )dT

s(T )
√

24πGNρrT
, (2.17)

where the radiation energy density is given by

ρr =
π2

30
geffT 4 . (2.18)

The effective degrees of freedom geff(T ) are calculated from all particle species that contribute
to the radiation density at T . Assuming it to be constant, which is a reasonable approximation as
long as no radiative particle species become non-relativistic, one can start to unravel the thermal
history of the Universe.

A very important result is Big Bang Nucleosynthesis (BBN), which correctly predicts the
abundance of light elements [26]. In the beginning the Universe was so hot and dense, that
neutral atoms or bound states would immediately be destroyed by the radiation. As the Universe
expanded and cooled down below the binding energy of nuclei, light elements such as Deuterium
(D or 2H), Helium (3He and 4He) and Lithium (7Li) started to form. The predictions from BBN,
which strongly depend on the baryon-to-photon ratio η ≡ nB/nγ , are in very good agreement
with the observed elements in the Universe. In addition, it gives a very accurate prediction for
the baryon density.

In the rest of this chapter we will focus on the matter component on the Universe. In section
2.2 we will see that there is overwhelming evidence for a large invisible matter component,
which will be quantified in section 2.3.
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Fig. 1.— Shown above in the top panel is a color image from the Magellan images of the merging cluster 1E0657−558, with the white
bar indicating 200 kpc at the distance of the cluster. In the bottom panel is a 500 ks Chandra image of the cluster. Shown in green contours
in both panels are the weak lensing κ reconstruction with the outer contour level at κ = 0.16 and increasing in steps of 0.07. The white
contours show the errors on the positions of the κ peaks and correspond to 68.3%, 95.5%, and 99.7% confidence levels. The blue +s show
the location of the centers used to measure the masses of the plasma clouds in Table 2.

nated by collisionless dark matter, the potential will trace
the distribution of that component, which is expected
to be spatially coincident with the collisionless galax-
ies. Thus, by deriving a map of the gravitational po-
tential, one can discriminate between these possibilities.
We published an initial attempt at this using an archival
VLT image (Clowe et al. 2004); here we add three addi-
tional optical image sets which allows us to increase the
significance of the weak lensing results by more than a
factor of 3.

In this paper, we measure distances at the redshift of
the cluster, z = 0.296, by assuming an Ωm = 0.3, λ =
0.7, H0 = 70km/s/Mpc cosmology which results in 4.413
kpc/′′ plate-scale. None of the results of this paper are
dependent on this assumption; changing the assumed
cosmology will result in a change of the distances and
absolute masses measured, but the relative masses of
the various structures in each measurement remain un-
changed.

2. METHODOLOGY AND DATA

We construct a map of the gravitational poten-
tial using weak gravitational lensing (Mellier 1999;
Bartelmann & Schneider 2001), which measures the dis-
tortions of images of background galaxies caused by the
gravitational deflection of light by the cluster’s mass.
This deflection stretches the image of the galaxy pref-
erentially in the direction perpendicular to that of the
cluster’s center of mass. The imparted ellipticity is typi-
cally comparable to or smaller than that intrinsic to the
galaxy, and thus the distortion is only measurable statis-
tically with large numbers of background galaxies. To do
this measurement, we detect faint galaxies on deep op-
tical images and calculate an ellipticity from the second
moment of their surface brightness distribution, correct-
ing the ellipticity for smearing by the point spread func-
tion (corrections for both anisotropies and smearing are
obtained using an implementation of the KSB technique
(Kaiser et al. 1995) discussed in Clowe et al. (2006)).
The corrected ellipticities are a direct, but noisy, mea-
surement of the reduced shear "g = "γ/(1− κ). The shear
"γ is the amount of anisotropic stretching of the galaxy
image. The convergence κ is the shape-independent in-
crease in the size of the galaxy image. In Newtonian

gravity, κ is equal to the surface mass density of the lens
divided by a scaling constant. In non-standard gravity
models, κ is no longer linearly related to the surface den-
sity but is instead a non-local function that scales as the
mass raised to a power less than one for a planar lens,
reaching the limit of one half for constant acceleration
(Mortlock & Turner 2001; Zhao et al. 2006). While one
can no longer directly obtain a map of the surface mass
density using the distribution of κ in non-standard grav-
ity models, the locations of the κ peaks, after adjusting
for the extended wings, correspond to the locations of
the surface mass density peaks.

Our goal is thus to obtain a map of κ. One can combine
derivatives of "g to obtain (Schneider 1995; Kaiser 1995)

∇ ln(1−κ) =
1

1− g2
1 − g2

2

(
1 + g1 g2

g2 1− g1

) (
g1,1 + g2,2

g2,1 − g1,2

)
,

which is integrated over the data field and converted into
a two-dimensional map of κ. The observationally un-
constrained constant of integration, typically referred to
as the “mass-sheet degeneracy,” is effectively the true
mean of ln(1−κ) at the edge of the reconstruction. This
method does, however, systematically underestimate κ
in the cores of massive clusters. This results in a slight
increase to the centroiding errors of the peaks, and our
measurements of κ in the peaks of the components are
only lower bounds.

For 1E0657−558, we have accumulated an exception-
ally rich optical dataset, which we will use here to mea-
sure "g. It consists of the four sets of optical images shown
in Table 1 and the VLT image set used in Clowe et al.
(2004); the additional images significantly increase the
maximum resolution obtainable in the κ reconstructions
due to the increased number of background galaxies,
particularly in the area covered by the ACS images,
with which we measure the reduced shear. We reduce
each image set independently and create galaxy cata-
logs with 3 passband photometry. The one exception
is the single passband HST pointing of main cluster,
for which we measure colors from the Magellan images.
Because it is not feasible to measure redshifts for all
galaxies in the field, we select likely background galax-
ies using magnitude and color cuts (m814 > 22 and not
in the rhombus defined by 0.5 < m606 − m814 < 1.5,

Figure 2.1: Left: the circular velocities of the spiral galaxy Ngc-3198 flatten out at larger radii instead of decreasing
like expected from the visible disk, implying the presence of an invisible halo component (taken from [3]). Right:
this image of the Bullet cluster shows the hot baryonic gas (color) that got dragged behind in the collision of the
two clusters, which is displaced with respect to the peaks in the mass distribution (green lines), indicating that the
majority of the mass is collisionless. [4]

2.2 Evidence for Dark Matter

Perhaps the most compelling evidence for DM, at least on galactic scales, can be found in ob-
servations of galaxy rotation curves. Newtonian dynamics predicts that the circular velocity of
stars in a galaxy behave like

vc =

√
GNM(r)

r
, (2.19)

as a function of their distance r to the galactic center and M(r)≡ 4π
∫ r

0 dr̃ ρ(r̃)r̃2 is the total mass
of the system inside the radius r. Assuming that the the visible matter comprises all of the matter
in the galaxy, the circular velocity should scale like vc ∝ 1/

√
r beyond the visible disc. However,

as it was first observed by Vera Rubin and coworkers [27] in 1980, the circular velocity profiles of
many galaxies instead show a different behavior. At larger radial distances the circular velocities
become independent of r instead of decreasing with it (see Fig. 2.1), implying the presence of
more matter than what is optically observed. This much larger, invisible halo must have a mass
that scales like M(r) ∝ r (or a density profile ρ ∝ r−2) 1.

Although the DM density profiles on large distances from the center are quite well known,
the inner density profile is prone to larger uncertainties. In this region, the density is often
dominated by baryons, making it more difficult to extract information on the behavior of DM.
Even for Low Surface Brightness (LSB) galaxies that are among the most DM dominated objects
in the Universe, it is still not possible to resolve the inner DM structure. In subsection 4.3.2 this
issue will be discussed in more detail.

The first evidence of DM, however, was obtained on scales of galaxy clusters. In 1933, Frits
Zwicky estimated the mass of the Coma cluster by making use of the virial theorem [28]. The

1At even larger distances the profile should be steeper than ρ ∝ r−3 in order to prevent a divergent total halo mass.
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average kinetic energy of the galaxies in the cluster

〈T 〉 ≈ 3
2

mσ
2, (2.20)

can be obtained by observing the radial velocity distribution vobs = v0±σ of individual galaxies
with an average mass m. From the virial theorem, 〈T 〉 = −〈V 〉/2, one can then infer the total
mass of the galaxy cluster M, since the average gravitational potential is well approximated by

〈V 〉 ≈ −GmM
R/2

, (2.21)

where R is the radius of the cluster. The resulting estimation for the cluster mass is then inde-
pendent of the average mass of the member galaxies,

M ≈ 3Rσ2

2G
. (2.22)

Using this method, Zwicky derived a mass-to-light ratio for the Coma cluster that was two orders
of magnitude larger than that of the solar neighborhood: M/L∼ 400M�/L�. Even though more
recent analyses are consistent with values of M/L∼ 200−300M�/L�, this still hints towards the
presence of a large quantity of invisible matter in the Coma cluster (see e.g. [15] and references
therein).

Another way to estimate the mass of a galaxy cluster is to study the X-ray emission of the hot
gas in the system. Considering an ideal gas with pressure p = nT and density ρ(r), it should
obey

p′ =−ρ(r)Φ′ =−ρ(r)
GMb(r)

r2 , (2.23)

in hydrostatic equilibrium, where Mb(r) is the mass of the (baryonic) gas in the cluster. We can
express the density of the gas (which we assume to be fully ionized) in terms of the average
molecular weight µ ≡ ρ/(mpn), where mp is the proton mass and n is the number density of all
charged particles in the gas. Eq. (2.23) then becomes:

T ′

T
+

ρ ′

ρ
=−µmp

T
GMb(r)

r2 . (2.24)

Observations show that the gas-density scales like ρ ∝ r−n, with n ≈ 1.5−2 at large radii, and
that the temperature becomes independent of r outside the core. Assuming that the gas consists
of 25% helium and 75% hydrogen, we can use µ ≈ 0.6. Inserting these numbers in the above
equation, one obtains

T ≈ (1.3−1.8) keV
(

Mb(r)
1014M�

)(
Mpc

r

)
, (2.25)

which we can compare to temperature measurements of clusters. These are however much
larger, and typically of the order T ≈ 10 keV. Again, the only explanation for this temperature
difference is that a considerable amount of mass must be present in addition to the baryonic gas,
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2.2 Evidence for Dark Matter

in order to keep it contained in the cluster.
The two methods described above are complemented by weak gravitational lensing measure-

ments, where the mass is inferred from distortions of background images that are caused by the
gravitational potential of the cluster. Unsurprisingly, these results also show a large discrepancy
between the total and visible mass on cluster scales.

The cluster merging system 1E0657-558 – more commonly known as the ‘Bullet Cluster’ –
is a very striking evidence of DM and its collisionless property [29, 4]. It consists of 2 gravita-
tionally bound clusters, of which the smaller one fell into the larger one some ∼ 108 years ago
and subsequently passed through it. Optical and X-ray images of the system tracing the gas in
the two clusters indeed show deformations of the plasma that were created by the collision. The
characteristic cone-like shape of the hot gas from the smaller cluster – reminiscent of the shock
wave created by bullet – gave the system its popular name. Measurements of the mass peaks
of the merger system, however, reveal a totally different behavior. Gravitational lensing images
show that the center of mass of the two clusters are significantly displaced with respect to the
hot gas (Fig. 2.1), indicating that the dominant component of the mass is not made up by the
baryonic plasma and has only very weak interactions with it.

Although all observations described above strongly support the existence of DM, they cannot
quantify the total amount of DM in our Universe. Fortunately, this information can be inferred
from the analysis of the CMB. Discovered by Arno Penzias and Robert Wilson in 1965 [30], the
background radiation originates from the time shortly after recombination (zr = 1090), when the
Universe became transparent for the first time. Before recombination, the photons and baryons
were tightly coupled such that temperature fluctuations in the plasma oscillated with the speed of
sound. At recombination, the photons decoupled from the baryons and the acoustic oscillations
left their imprint on both the the CMB and the structure of the Universe.

The latter appears as Baryon Acoustic Oscillations (BAO) in the matter power spectrum,
which is derived from the distribution of galaxies across the Universe and provides insight on the
cosmic structure [31]. An initial spherical density perturbation in the cosmic fluid is subject to
acoustic oscillations generated by the interplay of gravity and radiative pressure. Before recom-
bination, the latter causes the baryon-photon density fluctuation to move outwards in a spherical
shell, leaving the DM perturbation mostly intact. This movement continues until recombination
removes the driving force behind the baryons, leaving a shell of baryons at a characteristic ra-
dius. The result is a slight increase of structure at a distance scale of∼ 150 Mpc, which is visible
in the matter power spectrum [32].

In 1992 the Cosmic Background Explorer (COBE) measured temperature fluctuations of order
δT/T ∼ 10−5 in the CMB[33, 34]. The observed anisotropies can be expanded in spherical
harmonics

δT (θ ,φ)
T

= ∑
l,m

almYlm(θ ,φ), (2.26)

where the coefficients alm seem to follow a Gaussian distribution, and the variance Cl is given
by

〈alma∗l′m′〉= Clδll′δmm′ . (2.27)

All the information that the CMB contains can then be expressed by the power spectrum of the
temperature fluctuations, i.e., Cl as a function of the multipole number l, as shown in Fig. 2.2 on

9



2 Dark Matter

Multipole moment  l

Angular Size

10

90° 2° 0.5° 0.2°

100 500 1000

Te
m

pe
ra

tu
re

 F
lu

ct
ua

tio
ns

 [µ
K

2 ]

0

1000

2000

3000

4000

5000

6000

Figure 2.2: On the right-hand side the power spectrum of the anisotropies in the CMB is shown, which has a peak
around l ≈ 200, corresponding to angular scales of ∼ 1◦ in the all-sky map (left) (source: NASA / WMAP)

the right.
The details of our cosmology can be inferred from the shape and height of the peaks in the

power spectrum. Baryons have the effect of increasing the odd peaks with respect to the even
ones, whereas the total amount of matter (mainly consisting of DM) determines the overall
amplitude of the peaks. This is explained by the fact that density fluctuations can only start to
grow during the matter dominated epoch, the beginning of which is determined by the matter
to radiation density ratio. Nowadays, the best fit to the CMB power spectrum is obtained with
the ΛCDM model (see also 4.2), which yields very accurate estimations on e.g. the total matter
density Ωm, the baryonic matter density Ωb, and the dark energy density ΩΛ. Again, the results
show that the DM component is about 5 times as abundant as baryonic matter.

2.3 Dark Matter properties and candidates

As already discussed at the end of section 2.2, the CMB tells us exactly how much DM there is
in our Universe. Combining the 7-year data from the Wilkinson Microwave Anisotropy Probe
(WMAP), with data from BAO, and Hubble parameter measurements, the most recent estimation
for the DM and baryon density (as of this writing) is [19]

ΩDMh2 = 0.1126±0.0036, 100Ωbh2 = 2.255±0.0054, (2.28)

where h = 0.702± 0.014 gives the Hubble rate today that was introduced in Eq. (2.8). This
gives a DM-to-baryon-ratio of ∼ 5 on average cosmological scales; note that locally this value
can differ significantly.

That we know ΩDM with high precision is quite remarkable, especially since we hardly know
anything about the nature of DM. From indirect observations we can, however, derive a few
properties of DM that we will shortly list here below (for a good review on the properties of DM
see [35]):

• Electrically neutral: Since the DM is invisible to us, we know that the DM does not
interact electromagnetically. Otherwise, the DM would emit or absorb some form of
radiation that would be detectable and it would not categorize as ‘dark’ matter.

10



2.3 Dark Matter properties and candidates

• Non-baryonic: As already mentioned, the CMB is consistent with a ∼ 5% and ∼ 23%
cosmological abundance of baryonic and dark matter, respectively. A deviation from these
ratios would give a worse fit to the peaks in the power spectrum. Furthermore, BBN
correctly predicts the abundances of light elements that are observed today. A too large
fraction of DM in the form of baryonic objects such as Massive Compact Halo Objects
(MACHOs) would spoil this prediction. Analyses of microlensing observations, which
can identify both baryonic and non-baryonic small objects in the Milky Way, rule out a
large MACHOs fraction of our halo[36].

• Color neutral: If the DM would be charged under SU(3), these ‘heavy partons’ would be
confined in color neutral hadrons, which in turn would interact too strongly with baryons.
This would consequently affect BBN by dissociating light elements, distort the tempera-
ture fluctuations in the CMB, and cause disruptions in disks of spiral galaxies. Further-
more, the self-interactions induced by the color charge would be in conflict with the Bullet
cluster (see also the last point).

• Stable on cosmological timescales: Another piece of information that can be derived from
the CMB (complemented with data from type Ia supernovae, Lyman-α forest, large scale
structure and weak lensing), are lower limits on the decay rate of DM. In order for the DM
abundance to be significant today, the particle needs to be stable on longer timescales. One
can assume that the lifetime of DM must exceed the Hubble time H−1

0 .

• Non-relativistic: To be consistent with the observed large scale structure in the Universe,
the DM must be non-relativistic. Relativistic or hot DM has a large free streaming length,
which would wash out structure such that, for instance, our galaxy would not have been
able to form. For instance, if all the DM would be in the form of neutrinos2, the structure
formation would have occurred top-down, meaning that larger structures form first, which
is in contradiction with what is observed. In this way, the observed structure places a
limit on the ‘temperature’ of the DM; candidates are typically cold, although warm DM is
also allowed. The formation of structure and the role of DM in it, will be discussed more
detailed in chapter 4.

• Collisionless: As we have learned from the bullet cluster, the DM is also collisionless.
This means it does not (or only very weakly) interact with baryonic matter; it also sets
constraints on the magnitude of DM self-interactions, albeit not very strongly.

In order to explain the observations of DM one can adopt two scenarios: 1) the DM consists of
an unknown particle that fulfills the properties mentioned above, or 2) gravity behaves differently
on larger scales. The latter explanation was initially proposed to explain DM without the need
of introducing a new particle. Although these Modified Newtonian Dynamics (MOND) theories
[38] can explain individual observations in a satisfactory way, they are not able to describe the
phenomena on all scales at the same time. Furthermore they can only describe the Bullet Cluster
successfully by invoking the existence of a non-baryonic, invisible type of matter component

2Neutrinos do make up a small amount of the DM. Their abundance is estimated to be 0.0009 < Ων < 0.048 [37]
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2 Dark Matter

that is at least as large as the baryonic component [39], thereby removing the original motivation
for these kind of models.

Thus, it seems that a DM explanation in the form of some new particle is more likely. Since
the Standard Model (SM) does not contain a satisfying DM candidate, the explanation for DM
must be found in a theory that goes beyond. A good DM candidate does therefore not only have
to fulfill the above properties, it also must be well-motivated from a particle physics point of
view.

In the next chapter we will discuss the most popular class of DM candidates, the Weakly
Interacting Massive Particle (WIMP), since the focus of this thesis is on this type of DM. For
other DM candidates, such as gravitinos [40], axions [41], axinos [42], sterile neutrinos [43],
superWIMPs [44], etc., we refer the reader to the relevant literature (see e.g. [16] for a discussion
on non-WIMP candidates).
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3 Weakly Interacting Massive Particles

The need for a theory beyond the Standard Model (SM) is not only motivated by the existence
of DM; other observations – such as the hierarchy problem, the discrepancy of the muon anoma-
lous magnetic moment, etc. – are all examples of phenomena that cannot be explained by the
SM. One possible realization of a beyond the SM model (BSM) is in the form of Weakly Inter-
acting Particles (WIMPs). In this chapter we will explain why WIMPs are such interesting DM
candidates, how they are thermally produced in the early Universe, and how one might be able
to detect them. In section 3.2 we furthermore briefly introduce the most popular WIMP model
the Minimal Super Symmetric Model and its DM candidate the neutralino.

3.1 Motivation and Dark Matter candidates

Many extensions have been proposed as a solution to the shortcomings of the SM around the
electroweak scale (∼ 100 GeV). They usually involve new, weakly interacting particles that – if
stable on longer timescales – can provide us with good DM candidates. Such WIMPs, denoted
with χ , are assumed to have been thermally produced in the early Universe, and could therefore
have a significant cosmological abundance today.

In the hot, early Universe (T � mχ ), WIMPs are in local chemical equilibrium with the heat
bath. Number changing interactions, like annihilation of DM particles into SM particles1, occur
equally frequently in both directions, i.e., detailed balance is maintained. During this time, ther-
mal equilibrium is ensured by elastic scattering processes. However, as the Universe expands,
the temperature decreases; around T ∼ mχ the energy of the SM particles is too low to produce
the heavier WIMPs and detailed balance is destroyed. The interaction in the other direction,
however, can still take place, such that the (co-moving) number density of the WIMPs starts to
decrease. At some point, this Boltzmann suppression of the number density causes the WIMP
annihilation rate nχ〈σvrel〉 to drop below the expansion rate Γ. From this moment onwards, the
annihilations can no longer take place and at T = Tcd the WIMPs chemically decouple from the
heath bath; typically for WIMPs this occurs at temperatures of Tcd ∼ mχ/25 (see also Fig. 3.2).
The number density is forced to deviate from its equilibrium value and starts to decrease less
rapidly until eventually the WIMP number density stays fixed and freezes out to the relic DM
abundance.

The chemical decoupling of WIMPs will be discussed in great detail in 3.3. Here, however,
we present a simple estimate for the order of magnitude of the WIMP relic abundance. As
explained, the relic abundance depends greatly on the annihilation rate at chemical decoupling,

1Here, only 2-body processes are considered.
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3 Weakly Interacting Massive Particles

and can roughly be estimated by [45]

Ωχh2 ' 3×10−27cm3s−1

〈σvrel〉|Tcd

, (3.1)

where 〈σvrel〉|Tcd
is the thermally averaged annihilation rate of χ into SM particles at chemical

decoupling. If we insert the annihilation rate for a new particle at the electroweak scale, σ ∼
α2

ewc/m2
χ ∼ 10−4(108m s−1)/(100GeV)2 ∼ O(10−25)cm3s−1, we obtain a cosmological abun-

dance Ωχh2 ∼ O(0.1). This is remarkably close to the measured DM abundance in Eq. (2.28),
especially if one considers the fact that nχ scales exponentially with temperature around Tcd.
Therefore this is also referred to as the WIMP miracle.

Besides this promising feature, WIMPs are interesting because they are detectable by other
means than their gravitational interaction. Since the WIMPs weakly couple to SM particles, it
is possible to observe the DM through their interactions. For example there is the possibility
to produce WIMPs at colliders, directly detect them by their elastic recoil off heavy nuclei,
or observe their annihilation products in the (extra)galactic cosmic-ray spectrum. For more
information about the various detection methods see section 3.5.

Now that we have seen the advantages of a WIMP as DM, we would like to know what kind
of theories naturally predict these kind of particles. A good model does not only provide us with
a DM candidate, but is also well motivated from particle physics. Thus it should at least solve
some of the problems that the SM fails to explain.

One of them is the so-called hierarchy problem, which deals with the enormous difference
between the electroweak and the Planck energy scale (≈ 1.22× 1019 GeV). This has serious
consequences for the mass of scalar particles (in particular the Higgs), which receive radiative
corrections that scale quadratically with the cutoff energy, δm2

s ∝ Λ2 (this is in contrary to the
mass corrections of fermionic particles that only increase logarithmically with Λ). The stability
of the electroweak scale is correspondingly affected if Λ is close to the Planck scale.

Supersymmetry (SUSY) provides a very elegant solution to this problem, by introducing a
symmetry between bosons and fermions. Imagine that each particle has a superpartner with a
similar mass, but a spin different by 1/2. The radiative corrections to the scalar mass are then
doubled, but the corrections coming from the new particles have the opposite sign w.r.t. their
partners. This means that they cancel each other out, and as a result the quadratical divergence
disappears in all orders of perturbation theory, guaranteeing a stable scalar mass. Furthermore,
SUSY predicts a unification of the gauge couplings at MU ∼ 2×1016 GeV, which is interpreted
as a strong hint for Grand Unified Theories (GUT). There are various implementations of SUSY,
but the most studied one is probably the Minimal Supersymmetric Standard Model (MSSM),
which we will discuss briefly in section 3.2.

Another possible good WIMP DM candidate can be found in Universal Extra Dimension
(UED) theories (for a review, see [46]). One extra spatial dimension could exist if it were to be
compactified on a scale R that is too small for us to resolve. The result of a field moving along
the compactified direction would be a tower of Kaluza-Klein (KK) states with masses m2

(n) ≡
m2 +n2/R2. Imposing symmetry arguments on the compactification results in the conservation
of KK-parity (−1)n, such that the lightest KK-odd particle (or LKP) cannot decay and is a viable
DM candidate. In the same way, T-parity gives rise to the lightest T-odd particle (LTP) in Little
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8

Particle Content of the MSSM

Superfield Bosons Fermions SU(3)SU(2 UY (1)
Gauge
Ga gluon ga gluino g̃a 8 0 0
Vk Weak W k (W±, Z) wino, zino w̃k (w̃±, z̃) 1 3 0
V′ Hypercharge B (γ) bino b̃(γ̃) 1 1 0
Matter
Li

Ei
sleptons

{
L̃i = (ν̃, ẽ)L

Ẽi = ẽR
leptons

{
Li = (ν, e)L

Ei = ec
R

1
1

2
1

−1
2

Qi

Ui

Di

squarks


Q̃i = (ũ, d̃)L

Ũi = ũR

D̃i = d̃R

quarks

 Qi = (u, d)L

Ui = uc
R

Di = dc
R

3
3∗

3∗

2
1
1

1/3
−4/3

2/3

Higgs
H1

H2
Higgses

{
H1

H2
higgsinos

{
H̃1

H̃2

1
1

2
2

−1
1

tum numbers (1,2,-1) and (1,2,1), respectively:

H1 =
(

H0
1

H−
1

)
=
(

v1 + S1+iP1√
2

H−
1

)
,

H2 =
(

H+
2

H0
2

)
=
(

H+
2

v2 + S2+iP2√
2

)
,

where vi are the vacuum expectation values of the
neutral components.

Hence, one has 8=4+4=5+3 degrees of free-
dom. As in the case of the SM, 3 degrees of free-
dom can be gauged away, and one is left with 5
physical states compared to 1 in the SM. Thus, in
the MSSM, as actually in any of two Higgs dou-
blet models, one has five physical Higgs bosons:
two CP-even neutral, one CP-odd neutral and
two charged. We consider the mass eigenstates
below.

4.2. Lagrangian of the MSSM
To construct a SUSY Lagrangian one has to

follow the following three steps:

• 1st step: Take your favorite Lagrangian
written in terms of fields

• 2nd step: Replace the fields (φ,ψ, Aµ) by
superfields Φ, V

• 3rd step: Replace the Action by superAc-
tion

A =
∫

d4xL(x) ⇒ A =
∫

d4x d4θL(x, θ, θ̄)

At the last step one has to perform the integration
over the Grassmannian variables. The rules of
integration are very easy [18]:∫

dθα = 0,

∫
θαdθβ = δα,β .

Now we can construct the Lagrangian of the
MSSM. It consists of two parts; the first part is
the SUSY generalization of the Standard Model,
while the second one represents the SUSY break-
ing as mentioned above.

L = LSUSY + LBreaking , (4.1)

where

LSUSY = LGauge + LY ukawa. (4.2)

We will not describe the gauge part since it
is essentially the gauge invariant kinetic terms
but rather concentrate on Yukawa terms. They
are given by the so-called superpotential which is

Figure 3.1: Field content of the MSSM: for each SM particle there is a superpartner, plus an additional Higgs
doublet and its superpartner. Table taken from [5].

Higgs models [47], and, as we will see in the next section, the conservation of R-parity provides
us with a stable DM particle in SUSY models.

In this thesis, we will focus on WIMP models with Sommerfeld enhancements (see chapter
5 for an explanation of this effect). This includes sneutrino DM, which we will discuss in see
chapter 6, and models where ∼TeV DM particles couple exclusively to some ‘dark’ force (see,
e.g.,[48, 49]). The latter kind of models will be discussed extensively here in chapters 5, 7, and
8. In the following, when talking about a DM particle, we therefore tacitly assume it to be a
WIMP.

3.2 Basics of the Minimal Super Symmetric Model

As briefly explained in section 3.1, SUSY theories extend the SM by introducing a symmetry
between bosons and fermions. In this way, each SM particle obtains a superpartner with a spin
that differs by 1/2. In this section we will introduce the basics of the Minimal Super Symmetric
Model (MSSM), which is the minimal SUSY extension of the SM and will be of use in chapter
6 where we discuss sneutrino DM. To write this short overview we used information given in
[5]: a full review of SUSY and MSSM is unfortunately beyond the scope of this section (see e.g.
[50, 5] for a clear review on these topics).

In Fig. 3.1 the particle content for the MSSM is summarized: for each gauge boson, there
is an additional gaugino with spin 1/2, and in the same way, each fermion helicity state has a
corresponding scalar sfermion superpartner. On top of that there are two Higgs doublets H1,H2
(often also denoted as Hd ,Hu, respectively) instead of only one like in the SM, which is necessary
to cancel gauge anomalies. From the 8 degrees of freedom that these Higgs doublets and their
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3 Weakly Interacting Massive Particles

superpartners contribute, 3 are Goldstone modes that give the gauge bosons their masses (like in
the SM), and 5 of them are physical states: the standard Higgs boson h, an extra heavy version
of the Higgs H, a neutral CP odd Higgs A, and two charged fields H±.

Since we have not observed any super-particles with the same masses as their SM partners,
it is obvious that SUSY must be broken. In order to preserve the natural hierarchy between
the electroweak and Planck scale, soft SUSY breaking (SSB) terms are added to the SUSY
Lagrangian. These contain only mass terms or couplings with positive mass dimension as not
to spoil the relationships between the dimensionless couplings that guarantee the cancellation
of the quadratic divergences in the scalar masses. Since the soft breaking can be done in many
different ways, the theory is defined by its SSB terms.

In principle one can write down also terms that violate baryon and lepton number, but unfortu-
nately, this would lead to interactions that would cause the proton to decay very fast2. In order to
prevent that from happening, the conservation of R-parity is often postulated, R≡ (−1)3B+L+2s,
which is positive for SM particles and negative for all SUSY particles. As a result, the lightest
SUSY particle (LSP) cannot decay and provides a stable DM candidate.

The SSB terms that conserve R-parity add a large number of free parameters to the theory that
spoil the predictability of the model. Therefore one often adopts the GUT condition

M1

g2
1

=
M2

g2
2

=
M3

g2
3

, (3.2)

where the subscripts denote the respective gauge groups U(1), SU(2) and SU(3), such that all
gauge couplings and gaugino masses are unified at the GUT scale. In the constrained MSSM
one further assumes universality of the soft parameters at some high energy scale, such that all
scalars with spin 0 have a mass m0 and gauginos have a common mass m1/2. The SSB terms are
then given by

Lsoft =−m2
0 ∑

i
ϕiϕ

∗
i −

1
2

m1/2 ∑
a

λ̃aλ̃a + εi jBµH i
dH j

u

− εi jA
(

yu
abQ̃ j

aŨc
b H i

u + yd
abQ̃ j

aD̃c
bH i

d + yL
abL̃ j

aẼc
bH i

d

)
, (3.3)

where ϕi are all scalar fields, λ̃a the gaugino fields, Q̃,Ũ , D̃ the squarks, and L̃, Ẽ the leptons.
The indices i, j = 1,2 correspond to the SU(2), a,b = 1,2,3 describe the generations, and the
color indices are not shown. The first term describes the slepton and squark masses, the second
the gaugino masses, and the third describes a Higgs mass term that is absent in the SM. The
remaining terms are the trilinear terms, which couple a right- and a left-handed sfermion to the
Higgs field with the trilinear coupling A and Yukawa couplings yab.

These SSB terms define the Higgs potential, from which the vacuum expectation values for
the Higgs fields can be derived: 〈H1〉 ≡ v1, 〈H2〉 ≡ v2, where tanβ ≡ v2/v1. The Higgs mass

2This is in contradiction with the lower limit on the mean proton lifetime that was measured to be τp > 2.1×1029

years [37].
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eigenstates are defined by this angle β and the mixing angle α:

tan2α ≡ tan2β

(
m2

A +m2
Z

m2
A−m2

Z

)
, (3.4)

where mA is the mass of the neutral CP odd Higgs, and mZ the mass of the Z-boson. The
constrained MSSM thus only contains 5 free parameters: µ,m0,m1/2,A,B, where the latter pa-
rameter can also be exchanged for tanβ .

As mentioned, the LSP in the MSSM naturally provides us with an interesting DM candidate.
The mass matrix for the gauginos and Higgsinos is non-diagonal, leading to a mixing between
the states. The following mass terms are of particular interest to us:

Lχ,ψ =−1
2

χ̄M(0)
χ−

(
ψ̄M(c)

ψ +h.c.
)

, (3.5)

where

χ =


B̃0

W̃ 3

H̃0
1

H̃0
2

 , ψ =
(
W̃+H̃+

)
, (3.6)

are the Majorana neutralino and Dirac chargino fields, respectively. The neutralino mass matrix
is given by

M(0) =


M1 0 −mZcβ sW mZcβ sW

0 M2 mZcβ sW −mZcβ sW

−mZcβ sW mZcβ sW 0 −µ

mZcβ sW −mZcβ sW −µ 0

 , (3.7)

where cβ = cosβ and sW = sinθW with θW the weak mixing angle. The mass matrix of the
chargino is correspondingly given by

M(c) =
(

M2
√

2mW sinβ√
2mW cosβ µ

)
. (3.8)

The mass eigenstates of the neutralinos χ̃0 and charginos χ̃± are obtained by a diagonalization
of these matrices. The lightest neutralino χ̃0

1 is an excellent DM candidate for reasons explained
in the previous section, and is usually written as

χ̃
0
1 = N11B̃+N21W̃ 3 +N31H̃0

1 +N41H̃0
2 , (3.9)

where ∑
4
j=1 |N1 j|2 = 1. If the gaugino fraction fg = |N11|2 + |N21|2 > 0.5, it is said that the

lightest neutralino is gaugino-like, whereas if fg < 0.5, it is more related to the Higgsino. We
will not consider neutralino DM in this thesis specifically; for an extensive review see e.g. [45].
Another viable SUSY DM candidate is the right-handed sneutrino, which will be discussed in
chapter 6.
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3.3 Chemical decoupling
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Figure 3.2: The DM number density closely follows the equilibrium distribution until the annihilation rate can no
longer compete with the expansion of the Universe. The value of < σvrel > around chemical decoupling determines
the final relic abundance.

In this section we will discuss in detail the process of chemical decoupling of WIMP DM,
which is described by the Boltzmann equation (see, e.g., [51, 52])

E (∂t −Hp ·∇p) f = C[ f ] , (3.10)

where f (p) is the WIMP phase-space density, pµ = (E,p) are the co-moving WIMP momenta,
H = ȧ/a is the Hubble parameter, and we assumed a Friedmann-Robertson-Walker metric. The
expression for the collision term on the right-hand side, which includes all number changing
interactions, is rather lengthy:

Cann =
1

2gχ
∑
X

∫ d3k
(2π)32ω

∫ d3k̃
(2π)32ω̃

∫ d3 p̃
(2π)32Ẽ

× (2π)4
δ

(4)(p̃+ p− k̃− k)

×
[
|M |2

χ̄χ←X̄X g(ω)g(ω̃)−|M |2
χ̄χ→X̄X f (E) f (Ẽ)

]
= gχE ∑

X

∫ d3 p̃
(2π)3 vrelσχ̄χ→X̄X ×

[
feq(E) feq(Ẽ)− f (E) f (Ẽ)

]
. (3.11)

Here, kµ = (ω,k) and k̃µ = (ω̃, k̃) denote the 4-momenta of the SM particles X , and g=geq =(
eω/T ±1

)−1
their distribution functions with a minus(plus)-sign for bosons (fermions)3.

3Pauli blocking or Bose enhancement factors are negligible here since for non-relativistic DM E ≈ mχ +
p2/(2mχ ) > T and thus f � 1. On the other hand, energy-momentum conservation implies ω, ω̃ > mχ such
that g� 1.
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3.3 Chemical decoupling

In Eq. (3.11) the matrix elements squared |M |2 are summed over both SM and DM internal
(spin) degrees of freedom gX ,χ . To arrive at the final expression in Eq. (3.11) we have used
that |M |2

χ̄χ→X̄X = |M |2
χ̄χ←X̄X because of CP invariance, and furthermore we have replaced

g(ω)g(ω̃) with feq(E) feq(Ẽ). This last step is allowed because of thermal equilibrium, which
causes annihilation and creation processes to happen with the same frequency. The relative
velocity vrel here is the Møller velocity: vrel =vMøl≡ (EẼ)−1

√
(p · p̃)2−m4

χ .

The first moment of the Boltzmann equation is obtained by integrating Eq. (3.10) over∫
d3 p gχ/[(2π)3E], which results in the more familiar expression4

dnχ

dt
+3Hnχ =−〈σvrel〉

[
(nχ)2− (neq

χ )2] . (3.12)

where nχ is defined as

nχ ≡ gχ

∫ d3 p
(2π)3 f (p), (3.13)

and neq
χ is the number density in equilibrium, which in the non-relativistic regime is given by

neq
χ =

m3
χgχT K2(mχ/T )

2π2mχ

, (3.14)

where K2 is the second order modified Bessel function. The thermally averaged equilibrium
annihilation rate is defined as

〈σvrel〉eq ≡
g2

χ

(neq
χ )2

∫ d3 p
(2π)3

∫ d3 p̃
(2π)3 vrelσχ̄χ→X̄X feq(E) feq(Ẽ) , (3.15)

which is well approximated by [1].

〈σvrel〉eq ' 4√
π

(mχ

T

)3/2 ∫ 1

0
dv(σvrel)v2e−v2mχ/T , (3.16)

for T . mχ/10.

We can transform the Boltzmann equation from Eq. (3.12) into a more convenient form, by
introducing the dimensionless variables

x≡ mχ

T
, (3.17)

Y ≡ nχ

s
, (3.18)

where T is the temperature of the heat bath, and the entropy density during radiation domination
was given in Eq. (2.15). Using the fact that entropy is conserved in a co-moving volume, we

4Some (SUSY) theories include other, heavier new particles that eventually decay to the DM particle. The correct
relic density is then obtained by including these coannihilations into the Boltzmann equation [53].
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arrive at
Y ′

Y
=−

(
1− x

3
g′∗S
g∗S

)
nχ〈σvrel〉eq

Hx

(
1− Y 2

eq

Y 2

)
, (3.19)

where the derivatives are with respect to the new variable x: ′ ≡ d/dx. Note that this equation is
only valid if the WIMPs have a thermal-like distribution, i.e. f (E) ∝ feq(E).

Eq. (3.19) can be solved numerically to obtain the evolution of the number density as a func-
tion of temperature. Integrating Eq. (3.19) up to x0 = mχ/T0, where T0 = 2.348×10−4 eV is the
photon temperature today, we obtain the final relic DM abundance

Ωχ = mχs0Y0/ρc = 2.742×1011h−2
( mχ

TeV

)
Y0 , (3.20)

where s0 is the entropy density today, and ρc is the critical density [37]. For a viable DM model
this should be comparable to the measured value quoted in Eq. (2.28). Note that in models where
the DM is not its own antiparticle, i.e. χ 6= χ , Eq. (3.20) should be compared to ΩDM/2.

3.4 Kinetic decoupling

After the WIMPs have chemically decoupled from the heat bath, they are still kept in local
thermal equilibrium by elastic scatterings off SM particles. This is possible simply because
the SM particles are much more abundant in the early Universe than WIMPs, i.e. nX � nχ .
Of course, long after Tcd also these scattering processes cannot compete with the Hubble rate
anymore, and the WIMPs kinetically decouple from the heat bath.

To describe this process we again need to consider the Boltzmann equation from Eq. (3.10),
but now the collision term only includes processes that conserve the number of particles:

Cel =
1

2gχ
∑
X

∫ d3k
(2π)32ω

∫ d3k̃
(2π)32ω̃

∫ d3 p̃
(2π)32Ẽ

(2π)4
δ

(4)(p̃+ k̃− p− k)

×|M |2
χX↔χX

[(
1∓g±(ω)

)
g±(ω̃) f (p̃)− (1∓g±(ω̃)

)
g±(ω) f (p)

]
, (3.21)

where ingoing 4-momenta have a tilde, and the matrix element squared is summed over all spin
states like before.

This time, we are not interested in the first moment of the Boltzmann equation like in the case
of chemical decoupling, but rather in its second moment [54, 55]. For this reason, it is very
useful to define the WIMP temperature as

Tχ ≡ gχ

3mχnχ

∫ d3 p
(2π)3 p2 f (p) , (3.22)

such that Tχ = T as long as the WIMPs have not thermally decoupled from the heat bath. Note
that no assumptions on the form of f (p) are required; the difference between Tχ and T simply
indicates the deviation from thermal equilibrium.

In order to obtain an expression analogous to Eq. (3.19), we introduce here the dimensionless
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3.4 Kinetic decoupling

variable
y≡ mχTχ

s2/3 . (3.23)

After integrating Eq. (3.10) with the collision term of Eq. (3.21) over
∫

d3 p gχp2/[(2π)3E] and
keeping only the leading order terms in p2/mχ , we arrive at [1]

y′

y
=−Y ′

Y

(
1− 〈σvrel〉2
〈σvrel〉

)
−
(

1− x
3

g′∗S
g∗S

)
2mχc(T )

Hx

(
1− yeq

y

)
, (3.24)

with

〈σvrel〉2 ≡
g2

χx
3m2

χn2
χ

∫ d3 p
(2π)3

∫ d3 p̃
(2π)3 p2 (vrelσχ̄χ→X̄X

)
f (E) f (Ẽ) (3.25)

' 2x3/2
√

π

∫ 1

0
dv(σvrel)v2

(
1+

2
3

xv2
)

e−v2x , (3.26)

and [55]
c(T ) =

x
12(2π)3m5

χ

∑
X

∫
dk k5

ω
−1 g±

(
1∓g±

) |M |2t=0
s=m2

χ+2mχ ω+m2
X

. (3.27)

In deriving Eq. (3.24) it was assumed that Yeq�Y , and Eq. (3.26) is only valid for f (E) ∝ e−E/T .
The second term on the right-hand side in Eq. (3.24) describes the effect of scattering processes
on y and looks very similar to the term in Eq. (3.19). The first term in Eq. (3.24) describes
changes to the WIMP temperature caused by a change in the relic density.

To calculate the evolution of the WIMP temperature one usually sets Y ′= 0 in Eq. (3.24), since
it is assumed that the relic density does not change anymore after chemical decoupling. In this
case the qualitative behavior of y can easily be understood: as long as there are enough scattering
processes, i.e., c(T ) is large compared to H, Tχ closely follows the heat bath temperature T . At
very late times, however, c(T ) becomes vanishingly small and y stays constant, i.e., the WIMP
momenta are redshifted due to the expansion of the Universe, Tχ ∝ s2/3 ∝ a−2. This process is
nicely visualized for a typical DM particle in Fig. 3.3.

Since kinetic decoupling happens on a rather short timescale [54, 55], the kinetic decoupling
temperature can be defined by equating the two different regimes (see also Fig. 3.3)

xkd =
mχ

Tkd
≡ y|Y ′

!=0
x→∞
× s2/3

T 2

∣∣∣∣∣
T=Tkd

. (3.28)

It has been shown that, as expected, kinetic decoupling happens much later than chemical decou-
pling. For example, in the case of neutralino DM, xkd/xcd∼ 10−4000 (or Tkd∼ 5MeV−5GeV)
[55].

An important part of this thesis is actually devoted to showing that there are cases in which Y ′

cannot be neglected after chemical decoupling. Here, the validity of Eq. (3.28) is not affected,
since Tkd still marks the point at which scattering processes with the heat bath cease to be effec-
tive. Therefore one should always make sure to set Y ′ = 0 by hand in Eq. (3.28), before using
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Figure 3.3: The standard evolution of Tχ as a function of x is shown for a typical DM particle with mχ = 1 TeV.
The WIMP temperature closely follows the heat bath temperature until kinetic decoupling, which happens long after
chemical decoupling (xkd � 25) and on a rather short timescale. Afterwards, the WIMP temperature expands with
the Universe, i.e., Tχ ∝ a−2.

it.
In the special case that the scattering partners are relativistic (m` → 0) and the amplitude

squared scales like a power of their energy ω , the integral in Eq. (3.27) can actually be solved
analytically [54]. The kinetic decoupling temperature is then given by

Tkd

mχ

=

((
a

n+2

)1/(n+2)

Γ

[
n+1
n+2

])−1

, (3.29)

where Γ is the Euler gamma function, and

a≡∑
X

(
10

(2π)9geff

)1/2

gX cnN±n+3
mPl

mχ

. (3.30)

Here, the sum runs over all relativistic scattering partners with internal d.o.f. gX . The effective
d.o.f. geff are evaluated at Tkd, cn denotes the amplitude squared at small momentum transfer,
|M |2t=0 ≡ cn(ω/mχ)n +O((ω/mχ)n+1), and

N+
j ≡ (1−2− j)( j +1)ζ ( j +1) , for bosonic X , (3.31)

N−j ≡ ( j +1)ζ ( j +1) , for fermionic X , (3.32)

where ζ is the Riemann zeta function. For more details, see [54].
Interestingly there is an observable connected to kinetic decoupling of WIMPs. In the same

way that chemical decoupling sets the relic density, free streaming of the WIMPs after decou-
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pling from the heat bath sets a scale Mcut for the smallest gravitationally bound objects (see 4.1).
The reason for this is, as we will see in chapter 4, that DM is the dominant factor in the structure
formation of the Universe.

3.5 Detectional prospects

A great virtue of WIMPs is that they are detectable by other means than their gravitational
interaction. Through a detection one hopes to learn more about the true nature of DM, such
as their mass and coupling strengths. Up till now there has not been a positive discovery yet,
although some claims of a detection have been made in the last few years. Only with continued
efforts to improve the experiments and gather more data we will know if these claims will hold.
In the rest of this section we will briefly discuss the three different kinds of WIMP detection,
which are nicely summarized in Fig. 3.4. For a good review on DM detection see e.g. [17, 56].

In experiments such as ATLAS [57] and CMS[58], particles are being collided with center-of-
mass energies as high as 8 TeV5. These energies are high enough to produce DM particles in the
collisions, which then would be invisible to the detector. One could recognize the WIMP by the
missing energy in the collision products; the difficulty, however, is to prove that it is stable with
a lifetime that is longer than the age of the Universe and that it gives the correct relic density.
Measurements of other particle species that are produced at colliders provide constraints on the
DM as well, albeit more indirectly. The long timescale of collider searches and the possibility
that DM production and detection will be extremely difficult, motivate other, complementary
DM searches.

For instance in direct detection experiments, one makes use of the fact that DM particles
are expected to travel through our solar system with a galactic velocity ∼ 200 km s−1 (v/c ∼
10−3), which amounts to a flux of DM particles at earth that is roughly estimated to be 109

m−2 s−1 for a WIMP with a 100 GeV mass[17]. The idea behind direct detection is to measure
the recoil energy of a nucleus after it has collided with a WIMP, which is quite a challenging
task in several ways, despite the seemingly large flux. The most important process for direct
detection is elastic DM scattering off nuclei, which unfortunately has an extremely small cross
section. One distinguishes between the spin-dependent, where the neutralino couples to the spin
of the nucleons, and spin-independent cross section. The latter usually gives the most important
contribution because the cross section for the total nucleus is coherently enhanced with respect
to the contributions of the single nucleons. The collision rate can be improved by increasing the
amount of target nuclei, but the recoil energy from the target is rather small (O(100) keV), such
that one has to make considerable efforts to suppress and understand the background signal. At
the moment, direct detection experiments are able to measure recoil energies as low as 1-10 keV.

Some claims of a direct detection have been made in the past. For example DAMA/LIBRA
[59] has measured a signal with an annual modulation. A DM explanation has been brought
forward, in which the motion of the earth around the sun is responsible for the oscillating signal
[60]. However, since results from other experiments are in tension with DAMA (see e.g. [61]
and references therein), it remains uncertain if this is actually a positive DM detection. Other

5This is the status at the beginning of 2012; in the coming years it will increase to the 14 TeV the Large Hadron
Collider was designed to handle.
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Figure 3.4: Schematic overview of the mechanism behind three different kinds of WIMP detection. Indirect detec-
tion (orange) depends on the DM annihilation cross section, which also governs the chemical decoupling. The reverse
process of WIMP production is considered in collider searches (green). WIMP scattering (blue) is the interaction
that is responsible for kinetic decoupling and provides the basis for direct detection experiments.

experiments, like CoGeNT [62] and CRESST [63], also claim to have observed DM. Unfortu-
nately, the detections are also in tension with many other experiments such as CDMS [64] and
XENON100 [65], which currently gives the most stringent bounds on the DM cross section.
Although several theoretical efforts have been made to reconcile the various observation with
each other, the direct detection results still remain an issue of debate.

In this thesis we are, however, mainly interested in the possibility to detect DM indirectly
by observing its annihilation products in the sky, which can consist of γ-rays, neutrinos, anti-
protons and positrons. Indirect DM searches with γ-rays have many advantages. For example,
since photons are hardly deflected during their propagation, they point back to their source. This
makes it possible to learn something about the DM distribution in our galaxy. Furthermore, the
expected signal is quite strong due to large annihilation rates, and spectral signatures make it
possible to distinguish a DM signal more easily from the background.

The flux of γ-rays,

Φ(ψ,Eγ) =
〈σvrel〉
8πm2

χ

dNγ

dE

∫
l.o.s.

ds ρ
2
χ(r(s,ψ)) , (3.33)

is obtained by integrating over the line of sight at a direction making an angle ψ with the Galactic
Center (GC). Here, the factor in front of the integral depends on the particle physics (note that
when the WIMP is not its own antiparticle, an additional factor of 1/2 should be included here),
whereas the astrophysics is included in the integral.

The energy dependence of the flux is solely determined by the annihilation rate. Various spec-
tral signatures are possible, depending on the photon production mechanism in the annihilation.
Secondary photons from fragmentation or decay all have very similar spectra that are featureless
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and have a power law behavior. Internal bremsstrahlung, either in the form of final state radia-
tion (model-independent) or virtual internal bremsstrahlung (highly model-dependent), involves
more pronounced features [66]. The latter has a very significant signature that is similar to a
line.

A monochromatic γ-ray line is due to a loop-induced annihilation into two photons and can
easily be distinguished from the background if the resolution is high enough. The fact that
astrophysics cannot account for such a feature makes it a ‘smoking gun’ signal for DM. On
the other hand the annihilation cross-section is loop-suppressed by O(α2

em), making it harder
to detect such a line. A recent discovery of a line-signal in the public γ-ray data from Fermi-
LAT has attracted a lot of interest [67, 68]; more data and statistics is needed to clarify if this
is positive evidence for DM or a just a statistical fluctuation. For a recent, clear review on the
status an prospects of gamma-ray signals from DM, see [69].

Obviously, to obtain an optimal signal one should look at regions where the DM annihilation
rate is the largest; since Γa ∝ ρ2

χ this corresponds to regions where the DM density is the highest.
In general, the DM distribution in our Milky Way is largely known from N-body simulations
(see also section 4.2), but large uncertainties on ρχ(r) at smaller scales affect the precision
of the calculated γ-ray flux. Probably the brightest γ-ray source is the dense GC; the large
astrophysical background and many unknown or badly understood processes, however, make it
a rather complicated region for detection. Another effect that should be taken into account is the
enhancement of the flux by a so-called ‘boost’-factor due to the presence of substructure in the
smooth DM halo [70–72].

Complementary to γ-ray searches for DM are the multi-wavelength searches (see [73] for
a detailed review). In addition to SM particles, highly energetic electrons and positrons are
also produced in DM annihilations, which correspondingly produce secondary radiation. The
produced spectrum, affected by synchotron radiation, bremsstrahlung, and inverse Compton
emission, extends all the way from radio to X-ray wavelengths. The advantage is that this
approach makes use of extra information and can therefore give more robust results.

Indirect detection through neutrinos from the galactic center is very similar to γ-ray searches,
although the resulting limits are typically worse by a factor of 102−103 since neutrinos are the
least detectable of all SM particles. Detecting DM by looking for neutrinos from the earth or
sun, where WIMPs are expected to accumulate in their center, is more promising. If a WIMP
moves close to a celestial body it is attracted by its gravitational potential and moves towards it.
However, if the velocity of the WIMP is smaller than the escape velocity, which is quite probable
for the non-relativistic WIMPs, it cannot escape from its center anymore. This results in a DM
density that is locally much higher, yielding an increased annihilation rate from the center of
this object [74, 75]. Of all the annihilation products, especially neutrinos are interesting since
they can escape from the inside and be detected on earth. High-energy neutrino telescopes like
IceCube [76, 77], AMANDA [78], and ANTARES [79], measuring the Cherenkov light that is
emitted by secondary muons in water or ice, are able to set constraints on the DM annihilation
cross section into neutrinos.

Another interesting option is to look for anti-matter from DM annihilations in the flux of
charged cosmic rays. Due to CP invariance, equal amounts of matter and anti-matter are to
be expected from annihilations, whereas astrophysics only produces a small amount of anti-
matter. This makes spectra of cosmic-ray antimatter a good place to look for signatures of DM.
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Numerical codes that simulate the propagation of cosmic rays and calculate the secondaries (that
are produced when primaries scatter off the interstellar medium (ISM)) are essential to model
the expected flux.

For anti-protons, which are purely secondary, the background is rather well understood, al-
though a lack of knowledge on the thickness of the diffusion halo can introduce large uncertain-
ties in the flux[80]. Up to now, data from experiments such as BESS [81], PAMELA [82] and
AMS [83], has not shown any evidence for primary anti-protons from DM annihilation.

More interesting results have been found for positrons, for which the main background con-
sists of primaries from SN remnants and secondaries from cosmic rays colliding with the ISM.
The propagation of positrons is dominated by energy losses, which means that the origin of
the positrons must be local. A lot of excitement was caused by the observation of an anoma-
lous positron excess between 10 and 100 GeV measured by PAMELA [84]. Other experiments
such as ATIC [85], Fermi-LAT [86] and H.E.S.S [87] observed a total electron and positron flux
between 100 and 1000 GeV that was also higher then expected from astrophysics.

Although a DM explanation seemed possible, the signal corresponds to an annihilation cross
section that is several orders of magnitude larger than what is necessary to produce the observed
relic density. For this reason, people introduced Sommerfeld enhanced DM models (see, e.g.,
[48, 88, 89, 49, 90]), which have a velocity-dependent annihilation cross section that is larger
today than it was at chemical decoupling. Later, however, it was found that an astrophysical
origin of the excess, such as nearby pulsars [91, 92], is more likely [93]. Nevertheless, the
positron excess has increased interest in Sommerfeld enhanced DM models. Since these models
are the main topic of this work, the positron excess as an original motivation for Sommerfeld
DM models will be discussed in more detail in section 5.1.
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In this chapter we will discuss the evolution of structure in the Universe. First, we will start with
an introduction to the theory that describes the evolution of small density fluctuations. Here,
we will focus on damping effects that suppress small scale perturbations in the power spectrum
and the size of the first gravitationally bound objects. Since the analytical calculations are not
sufficient to give a realistic picture of the observed structure, we discuss numerical simulations of
ΛCDM cosmology in section 4.2. Although very successful on large scales, the results of these
simulations are in tension with observations on smaller scales. In section 4.3 we will discuss the
three most important small scale problems of ΛCDM and the proposed solutions. The discussion
in this chapter is by no means exhaustive; we refer the reader to the supplied references for more
details. Books in which more detailed information about structure formation can be found are,
e.g., [94, 95, 14].

4.1 Theory of structure formation

Although the Universe is isotropic and homogeneous on larger scales, this is obviously not the
case on smaller scales, where the presence of galaxies, clusters of galaxies, etc., is evident. The
origin of this structure lies in tiny primordial density fluctuations of O(10−5) that were generated
during inflation, which subsequently evolved under the influence of gravity and the expansion
of the Universe. Understanding this evolution will tell us more about the initial conditions in the
early Universe and the physical processes that were responsible for creating structure on various
scales.

In order to say anything about the evolution of structure, we define the density contrast

δ (x)≡ ρ(x)−ρ

ρ
� 1 , (4.1)

as a deviation from the homogeneous background density ρ(t). In order to tell different scales
apart, it is convenient to consider also its Fourier transform

δk =
∫

d3x δ (x)eik·x . (4.2)

Furthermore we will use co-moving coordinates that stay constant with the expansion of the
Universe, such that xphys = a(t)x and kphys = k/a(t). The wavelength of a perturbation associated
with wavenumber k is given by λ ≡ 2π/k.

In fact there are two types of perturbations: adiabatic and isocurvature. The former affect the
energy densities of the radiation and matter components by the same factor, and since they evolve
in different ways, they are related by ρr = 4ρm/3 [95]. For isocurvature perturbations the entropy
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density of the various components changes, but the total energy density stays homogeneous,
ρrδr =−ρmδm.

Inflationary models predict that the initial density perturbations are the result of quantum
fluctuations. Because of the quantum commutation relation, modes with different scales k are
uncorrelated: the density perturbations follow this behavior and are therefore well described by
Gaussian statistics. Furthermore, since most models include one scalar field (the inflaton) that
is responsible for the inflation, it can only create the simple adiabatic fluctuations. Isocurvature
perturbations could only be produced by adding additional inflation fields to the theory [95]. We
therefore only consider adiabatic perturbations in the following.

A very important quantity in the theory of structure formation is the power spectrum Pδ (k)
that is defined by the two-point correlation function

〈δkδ
∗
k′〉 ≡

2π2

k3 Pδ (k)δ (k−k′) . (4.3)

Since the primordial density fluctuations follow a Gaussian distribution, different modes are thus
uncorrelated. The behavior of the power spectrum can be described by a simple power-law

Pδ (k) ∝ k3+n , (4.4)

where n is the spectral index. For n = 1 we obtain a scale-invariant spectrum, also known as
Harrison-Zel’dovich spectrum. The only length scale that exists in the inflationary model at a
given time is the horizon size H−1 (see 2.1), therefore fluctuations with this scale are bound to
exist at all times. This means that the Universe will look the same for every mode on the scale
of the horizon, k = H.

Since the perturbations are Gaussian, the probability that a spherical fluctuation with radius R
lies between δ and δ +dδ is

dpR(δ ) =
1

(2πσ2(R))1/2 e−δ 2/(2σ2(R))dδ , (4.5)

where σ2 = 〈δ 2(R)〉 is the variance of the density perturbation. It is convenient to smooth out
density perturbations in the power spectrum below some smoothing length L, which is done by
convolving the power spectrum with a window function WL(x), which is usually taken to be a
top-hat function,

WT H(R) =
{

(4
3 πL3)−1 R < L

0 R≥ L .
(4.6)

The variance is then given by

σ
2(R) =

∫
∞

0

dk′

k′
W 2

TH(k′R)Pδ (k′) , (4.7)

where W 2
TH(x) = 3x−3(sinx− xcosx) is the Fourier transform of the top-hat window function.

The normalization of the power spectrum has to be derived from measurements, since it cannot
be calculated theoretically. It is parameterized by σ8, the root-mean-square of a density perturba-
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tion that is filtered by a top-hat function (Eq. (4.6)) with smoothing length L = 11.4h−1 Mpc−1.
The value of L is chosen in such a way that σ8 ' 1 (current observations give σ8 = 0.816±0.024
[19]).

The primordial density fluctuations are modified by complicated effects that involve gravita-
tion, pressure, dissipation, etc. These highly non-linear processes which are responsible for the
formation of structure can only be solved numerically in N-body simulations (see section 4.2).
The overall effect of this is contained in the transfer function [95],

T (k) =
δk(z = 0)
δk(z)D(z)

(4.8)

which relates the initial density fluctuations at some redshift z to the final perturbations today,
as a function of the scale k. Here, z can be any redshift before scales that are important have
entered the horizon. The growth factor is given by

D(z) =
δk=0(z = 0)

δk=0(z)
(4.9)

such that by definition T (0) = 1. It gives the increase in the amplitude of a density perturbation
with mode k = 0 (i.e., in the limit of large scales) between redshifts 0 and z. The evolution
of large scales can be described by linear perturbation theory (which will be discussed below)
and thus can be calculated relatively easily. If linear perturbations would be valid until today,
we could obtain the current matter power spectrum by simply multiplying the primordial power
spectrum from inflation by the transfer function squared (Eq. (4.8)).

To get a feeling for the evolution of density perturbations, we consider a Newtonian analysis
here that is valid for sub-horizon perturbations in a non-relativistic fluid (for more information,
see e.g. [95, 52]). In the linear regime, δk < 1, perturbations grow like λphys = a(t)λ . The
fundamental hydrodynamic equations are as follows:

Euler : v̇+(v ·∇)v =−∇p
ρ
−∇Φ ,

continuity: ρ̇ +∇(ρv) = 0 , (4.10)

Poisson: ∇
2
Φ = 4πGNρ ,

where Φ is the Newtonian gravitational potential, the dot denotes a derivative w. r. t. time, and
the spatial derivatives are ∇xphys = a−1∇x. The velocity of the cosmic fluid can be written as
v = ẋphys = ȧ(t)x+a(t)u, where u is the co-moving peculiar velocity.

The next step is to substitute ρ = ρ(1 + δ ) (Eq. (4.1)) in Eq. (4.10) and expand around the
background density. Keeping only terms that are linear in δ , we arrive at

δ̈k +2Hδ̇k +
(

c2
s k2

a2 −4πGNρ

)
, (4.11)

where c2
s ≡ ∂ p/∂ρ is the sound speed. The critical length scale which follows from this equation
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is the Jeans length

λJ = cs

√
π

GNρ
, (4.12)

for which a sound wave takes the same amount of time to cross an object as for the gravitational
free fall collapse. Perturbations with a shorter wavelength than the Jeans length, λphys . λJ ,
show acoustic oscillations with a slowly decaying amplitude. For wavelengths that are larger,
λphys & λJ , Eq. (4.11) has both a growing (+) and decaying (−) solution:

δ
+
k ∝ t2/3, δ

−
k ∝ t−1 , (4.13)

where we assumed the Universe to be spatially flat (k = 0) and matter dominated, i.e., 4πGNρ =
3
2 H2 (see also Eq. (2.11)) with H = 2

3 t−1.
The above simplified description is of course not the whole story; the full relativistic analysis

involves the evolution of metric perturbations on the FRW background metric, gµν = gµν +hµν ,
in the Einstein equation Eq. (2.10). A problem that arises here is the freedom to choose a set of
coordinates that is related by the old coordinates by a gauge transformation, xµ → x′µ = xµ +
εµ(x). This does not only introduce a change in the metric perturbation, but also in the definition
of the density contrast, meaning that the latter is actually not a physical variable. It is therefore
very important to note which gauge is being used in an analysis; popular gauge choices include
the Newtonian gauge (for which sub-horizon perturbations follow the Newtonian approximation
sketched above), synchronous gauge, and co-moving gauge. Since the full treatment is beyond
the scope of this introduction we refer to the literature (e.g., [14]) for the details, and concentrate
on the most important results from the relativistic analysis in the rest of this section.

The size of the horizon w. r. t. the wavelength of the fluctuation is important for the evolution
of the density perturbations. Super-horizon modes for all components grow like

δk ∝
t2

a2(t)
∝

{
t RD
t2/3 MD ,

(4.14)

when co-moving gauge is assumed. Once a mode enters the horizon, the evolution evolves
differently for each component, depending on the era at that time.

During the epoch of radiation domination the density fluctuations in photons and baryons do
not grow once they enter the horizon. Instead, they oscillate

δγ ' δb ∝ coskrs , (4.15)

with a frequency that depends on the co-moving size of the sound horizon, rs ≡
∫ t

0 dt ′cs/a(t ′),
where the sound speed is cs ≈ 1/

√
3 during the radiation era. The density fluctuations in the

CDM fluid, however, grow logarithmically with time

δχ ∝ log t . (4.16)

Once we enter the regime of matter-domination, the DM fluctuations start to grow with an
increased rate, δχ ∝ t2/3, as was already foreseen in Eq. (4.13). Until recombination, the baryon
fluid stays tightly coupled to the radiation, i.e., δγ ' δb, but their amplitude starts to grow slightly
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4.1 Theory of structure formation

under the influence of the gravitational potential wells that are induced by the DM. At recombi-
nation, the baryons fall into the DM potential wells and δb increases sharply for a short amount
of time. Afterwards, the baryons now closely follow the density fluctuations of the DM

δb ' δχ ∝ a(t) ∝ t2/3 . (4.17)

The baryon perturbations thus grow faster than they would have without the presence of DM. In
fact, without DM they would not have had enough time to collapse to form the structure we see
today, making a large CDM component in cosmological models crucial. Finally, all fluctuations
essentially stop to grow during the vacuum dominated era, i.e., δb ' δχ stay constant.

Up until now we have only discussed a growth of perturbations in the cosmic fluid, but there
are also some damping effects that need to be taken into account. Density perturbations in the
photon-baryon plasma are diminished on small scales by Silk (or collisional) damping around
the time of recombination [96]. As photons start to decouple from the plasma, they erase pertur-
bations that are below the diffusion scale. At recombination, this effect is captured in the CMB
and shows up as a damping of the peaks in the CMB spectrum for modes beyond l ∼ 103.

In addition, the Universe contains also collisionless species (e.g., neutrinos, DM, axions) that
do not suffer from Silk damping. As the fluid decouples from the heat bath, it can move freely
from overdense regions into underdense regions, washing out perturbations in the process. The
effect of this free streaming causes damping of small scale density perturbations (also known
as collisionless damping). No clustering occurs for scales λphys < λfs, where the physical free
streaming scale is given by [14]

λfs(t) = a(t)
∫ t

0
dt ′

v(t ′)
a(t ′)

, (4.18)

and v is the velocity of the collisionless species. Since perturbations can only start to grow
significantly during the matter dominated epoch, the free streaming scale can be approximated
by λfs ∼ v(teq)/H(teq). The free streaming scale thus depends highly on the velocity of the
species under consideration.

Usually the DM particles have a very large mass (order GeV to TeV) and are assumed to be
non-relativistic around decoupling. As a result, they have almost negligible thermal velocities
at present, and are therefore denoted as cold dark matter (CDM). The free streaming of the
collisionless DM then only erases perturbations on the smallest scales. Structure formation
takes place in a hierarchical way: the smallest scales collapse and enter the non-linear regime
first, to merge only later and form larger structures.

Instead, hot or warm dark matter (HDM, WDM) is relativistic at kinetic decoupling, and thus
induces a larger amount of free streaming than CDM. It therefore erases much more small-scale
structure and correspondingly more modes are suppressed in the power spectrum. Whether we
are dealing with HDM or WDM depends on the thermal decoupling of the particle species.
Since decoupling happens when the DM is still relativistic, the final abundance is given by
the equilibrium distribution around freeze-out, which in turn depends inversely on the entropy
degrees of freedom g∗S. The earlier a species decouples, the larger g∗S is, the smaller the fi-
nal relic density. Assuming the species to be (almost) massless, their temperature is given by
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Trel.DM ' (4/g∗S(tkd))1/3T [52].
The standard HDM candidate is a neutrino with a mass of order eV, which still has large veloc-

ities at late times and a temperature that is comparable to the photon temperature (g∗S(tkd)' 11).
In this case, the free streaming length is large and structures such as galaxies are not able to form,
which rules out HDM as the main DM component. Usually a sterile neutrino with a mass of the
order of O(10) keV is taken as a WDM candidate, which decouples much earlier than ordinary
neutrinos. At decoupling it is still relativistic but since g∗S� 1, its temperature is much smaller
than the photons or neutrinos today. The free streaming wipes out density perturbations, but not
as much as in the case of HDM, such that it is not in contradiction with the present observed
structure. For more details on CDM and HDM see e.g. [52, 14].

We will see in the next subsection that free streaming of DM, among other effects, leaves
a characteristic imprint in the power spectrum, and is important for the discussion of the first
gravitationally bound objects in the Universe.

4.1.1 A cutoff in the power spectrum

As already mentioned, the DM fluid is tightly coupled to the radiation fluid (i.e., the heat bath)
before kinetic decoupling, and, since the DM is in local thermal equilibrium, it can be described
by a perfect fluid until Tkd. Correspondingly, perturbations in the DM density behave as sound
waves that are damped by dissipative effects [97]. These include bulk viscosity, which transfers
dissipation energy from the DM fluid to the radiation, and shear viscosity caused by the resis-
tance to fluid flow. In contrast, heat conduction is negligible due to the fact that the DM particles
are extremely slow. The viscosity coefficients, which have to be calculated from kinetic theory,
enter in the decay rate for the oscillating fluctuations. The result is an exponential cutoff kd in
the power spectrum.

After kinetic decoupling, the CDM is no longer in local thermal equilibrium, but scatterings
with the radiation fluid can still occur. These only cease after the time of last scattering, Tls <
Tkd, when collisions no longer take place. It is only for T < Tls that the DM obtains a fully
non-relativistic equation of state (p ≈ 0), and enters the free streaming regime: the viscosity
coefficients vanish and the particles become collisonless. Therefore they can move freely from
overdense to underdense regions, and wash out any density fluctuations that are present on small
scales. The co-moving damping scale is well approximated by [98–100]

kfs ≈
(

mχ

Tkd

)1/2 aeq/akd

ln(4aeq/akd)
aeq

a0
Heq , (4.19)

such that only modes with k . kfs escape being wiped out and can start to grow. The time
of equality is important, since DM fluctuations can start to grow significantly in the matter
dominated era. As can be seen, the free streaming scale depends on size of the horizon at kinetic
decoupling, since only sub-horizon scales can be washed out.

Another effect, which is physically independent from free streaming, is damping due to acous-
tic oscillations in the tightly coupled matter-radiation fluid. Usually density perturbations get a
growth spurt when their mode enters the horizon and grow logarithmically afterwards. If a mode
enters the horizon before the DM has decoupled from the heat bath, it oscillates together with
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the plasma instead. Due to the fact that kinetic decoupling does not happen instantaneous, there
is a period in which the scattering rate becomes comparable to the oscillation frequency of the
acoustic waves. In this way, the decreasing scattering rate forces the amplitude of the density
perturbations to zero. After kinetic decoupling the density perturbations start growing logarith-
mically, albeit with a fairly reduced amplitude in comparison to modes that became sub-horizon
after decoupling. Like free streaming, it creates an exponential cutoff in the power spectrum,
suppressing all perturbations with a mode k & kao. The characteristic damping scale that is re-
lated to this effect depends on the co-moving size of the horizon at kinetic decoupling [101, 102]

kao ≈ πa(tkd)
dH(tkd)

= πa(tkd)
(∫ tkd

0

dt ′

a(t ′)

)−1

. (4.20)

It turns out that k f s � kd for WIMPs, such that effectively the free-streaming determines
the damping scale and the collisional damping can be neglected. Since the free-streaming and
acoustic oscillation damping effects are of comparable size, yet independent, their cumulative
effect is given by multiplying the two exponential damping scales. Therefore it is the smallest
of Eq. (4.19) and Eq. (4.20) that ultimately determines the cutoff. Thus for CDM, the time of
kinetic decoupling sets the scale for the cutoff in the matter power spectrum, making the small
scale structure very sensitive to the details of the WIMP model.

Information about the matter power spectrum can be extracted from the (closely related) CMB
power spectrum, and can be further probed by galaxy redshift surveys and measurements of the
Lyman-α forest. Clouds of neutral hydrogen between the earth and very luminous, energetic
sources such as quasars absorb emitted ultraviolet light with a wavelength of 1216 Å. Since these
clouds appear at different redshifts, the observed spectrum shows a collection of absorption lines
at smaller wavelengths. Therefore Lyman-α measurements can trace the distribution of galaxies
even on the smallest scales, where the influence of the above described damping effects could
become visible. By combining the CMB, galaxy redshift and Lyman-α data, it is possible to
obtain limits on the cutoff scale.

Usually, numerical simulations are performed in order to replicate the structure formed by a
certain type of DM candidate. These N-body simulations (which we will come to in section
4.2), often work with WDM candidates to generate a cutoff in the simulated power spectrum.
The resulting cutoff or free-streaming scale is conventionally expressed in the mass of the WDM
candidate [103]:

kfs,WDM = 4.6
(

ΩMh2

0.13

)−1/3(mWDM

keV

)4/3
Mpc−1 , (4.21)

where mWDM denotes the mass of the WDM particle. The combination of observational data and
N-body simulations allows us to constrain DM models based on their structure formation and
damping properties. We will further explore this in chapter 8.

4.1.2 The first protohalos

Since the power spectrum contains all information about the density perturbations, it forms the
initial conditions for the structure evolution that follows. In hierarchical structure formation
small scales collapse first, which are actually the ones that appear close to the cutoff we spoke
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about in the previous section. Therefore the cutoff is directly related to the mass of the smallest
gravitational bound objects in the Universe.

For this reason it is useful to consider the DM mass that is contained in a sphere with radius
(π/kcut) [54, 55]

Mcut =
3
4

π

(
π

kcut

)3

ρχ , (4.22)

where kcut is either kfs or kao, and ρχ is the DM density today. The definition of the radius fol-
lows the convention for the Jeans mass, which is the mass within a radius λJ/2 (see Eq. (4.12)).
Since kinetic decoupling happens well before matter-radiation equality, we can assume the Uni-
verse to be radiation dominated, H2

r = 4π3

45m2
Pl

geffT 4, where geff(T ) denotes the effective degrees
of freedom of the radiative component.

The free streaming mass can be well approximated by

Mfs ≈ 2.9×10−6

1+ ln
(

g1/4
eff Tkd/50 MeV

)
/19.1( mχ

100 GeV

)1/2 g1/4
eff

( Tkd
50 MeV

)1/2

3

M� , (4.23)

where M� = 1.9885(2)×1030 kg is the mass of our sun [37], and geff = geff(Tkd) is evaluated at
decoupling. It can be seen from Eq. (4.23) that besides Tkd, the free streaming mass also depends
on the mass of the WIMP.

The characteristic cutoff mass determined by acoustic oscillations is correspondingly given
by

Mao ≈ 3.4×10−6

(
Tkdg1/4

eff
50MeV

)−3

M� , (4.24)

which basically only depends on Tkd.
The mass of the first protohalos is then given by the largest of Eq. (4.23) and Eq. (4.24)

[54, 55]
Mcut = Max [Mfs,Mao] . (4.25)

Objects with a mass corresponding to the smallest of the two cutoff scales will not be able to
form, because the damping effect that wipes out the largest scale dominates. The final cutoff
mass has been shown to be very model dependent since it highly depends on the kinetic decou-
pling temperature. For example in the case of neutralino DM, the cutoff mass spans a range from
10−11 to 10−3M� [55].

Depending on the WIMP candidate and the primordial power spectrum, the first gravitation-
ally bound objects start to form between redshift 40 and 80 [99]. Whether these first and smallest
halos survive until today is not clear. They can be destroyed in the process of merging or dis-
rupted by star formation. Assuming that the first density fluctuations to enter the non-linear
regime are rather rare, their density contrast can be larger by an order of magnitude compared
to the others, which increases their survival probability. Numerical simulations [104, 105] show
that while the first halos lose mass during structure formation, they survive until today with their
inner density still intact.

Through the detection of these smallest subhalos, we could learn a lot about the nature of the
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DM particle. Unfortunately, this is a rather challenging task. As a dense DM object, subhalos
would appear as a point-like γ-ray source through an increased annihilation rate in the center.
It turns out, however, that the expected fluxes are too small to be resolved [106]. Anisotropy
studies of the diffuse γ-ray background could prove to be more fruitful; the substructure in the
galactic halo could be inferred from the probability density function [107], or the angular power
spectrum could include a resolvable DM signal for Mcut�M� [108–110].

Another possibility to detect protohalos with a mass larger than a few solar masses, is through
microlensing; the position of background stars seem to change as a compact halo moves through
the sky [111]. Even a strong gravitational lensing effect could be observed for sub-solar ha-
los, when one combines multiple measurements of the gravitational potential perturbations.
Especially time-varying images are less affected by systematic uncertainties and degeneracies
[112, 113]. See also [114] for a review on detectional prospects of DM halos with sub-solar
masses.

Besides these direct detection methods, one can also probe the protohalos indirectly by sub-
structure enhancement of a DM annihilation signal [115, 116]. Results from numerical simu-
lations of structure formation have to be extrapolated to the DM cutoff masses, since they do
not reach an adequate resolution. Assuming that this gives a reliable prediction for the substruc-
ture, one can calculate the expected γ-ray flux from annihilations, which is boosted w. r. t. the
expected flux from a smooth halo. This can then be compared to γ-ray observations of galaxy
clusters to infer constraints on Mcut. For DM models where the annihilation cross section is
enhanced by the Sommerfeld effect (see chapter 5), the expected flux is even larger since the
subhalos are kinematically cold [117–119]: an additional boost is obtained when it is assumed
that the subhalos also contain substructure [120].

Recently, it was realized that Mcut strongly correlates with the spin-dependent scattering rate
for neutralino and Kaluza-Klein DM [121]. These rates are important for direct detection ex-
periments and indirect DM searches looking for neutrinos from the sun. If a signal would be
observed in these experiments, it would allow us to place limits on the cutoff mass. Even though
this is a very promising prospect, probing the mass of the smallest subhalos remains very chal-
lenging at present. To obtain more insight on the formation of structure on all scales, numerical
simulations are therefore of great importance.

4.2 Numerical simulations of ΛCDM

The theory of structure formation that we discussed in section 4.1 was only to linear order in
perturbation theory. In this regime, density perturbations may grow but their shape remains the
same, and since the perturbations are Gaussian, the shape of underdensities are indistinguish-
able from overdensities. Once we enter the non-linear regime, however, this is no longer true,
and the evolution of the density fluctuations can no longer be calculated analytically. Clusters,
galaxies and stars are all the result of highly non-linear processes; it is therefore necessary to
perform numerical simulations of structure formation in order to learn more about cosmology.
Comparing the results from simulations to the observations will give us insight on the validity
of the ΛCDM cosmology. More information about non-linear structure formation can be found
in e.g. Chapter 9.2 of [94]; here we summarize the main points of the discussion there. A clear,
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recent review on numerical simulations can also be found in [122].
An initial spherical underdense region will grow and become less dense as the Universe ex-

pands, since the gravitational pull is too small to slow the receding movements. It will form a
so-called void, which is separated from other voids by a higher density surface. After some time
the voids become so large that they collide: the matter that envelopes them is pressed into fila-
ments with a high density that attract even more matter from nearby. The gravitational attraction
causes the overdense regions to shrink in volume, in contrary to the voids. The structure in the
Universe begins to look like a cosmic web, as can be seen in Fig. 4.1.

At the intersection of filaments nodes will form, which are the origin of the first and oldest
objects such as clusters of galaxies. The subsequently cooling and condensation of gas is re-
sponsible for the formation of galaxies. DM halos of many different sizes are constantly being
evolved by collision and merger processes: a primary halo, characterized by the presence of
infalling matter around it, can host several, less massive subhalos. The formation of the cos-
mic structure thus takes place in a hierarchical or bottom-up way, meaning that the smallest
structures form first and merge only later into larger structures.

To get a feeling for non-linear structure evolution, let us consider the idealized spherical col-
lapse of a positive density perturbation. A few characteristic stages can be recognized in its evo-
lution: at turnaround, the gravitational force balances against the expansion; the radius reaches
is maximum value rmax and the collapse of the spherical overdensity starts. In an oversimplified
model, the density perturbation would collapse to a singularity. In practice, dissipative effects
will cause the DM to eventually settle into an equilibrium state. This process of relaxation and
phase mixing is called virialization, since at the end the halo should obey the virial equation (see
also section 2.2).

From the virial theorem, one can derive that the half-mass radius, i.e., the radius of a sphere
that contains half of the total halo mass, is rh ' 0.375rmax. Assuming that the time it takes for
the system to virialize is twice the time until turnaround, i.e., t = 2tmax, the mean density inside a
sphere with radius rh is about ∼ 200 times the background density. For this reason people often
define the virial radius r200 at which the density is a factor 200 larger than the critical density.
The mass contained in a sphere with r200 is then taken to be the total halo mass [94].

The evolution of the primordial density fluctuations is usually carried out by N-body simu-
lations. Here, the fluctuations are represented by discrete particles, each of which moves under
the influence of gravitational attraction of other nearby objects and expansion of the Universe.
In each step, the equations of motions have to be solved, yielding the change in position and
velocity for each particle, which correspondingly generates a whole new gravitational potential
that has to be taken into account in the next step. This process is then iterated until numerical
convergence is achieved.

The reliability of an N-body simulation depends on various aspects. First of all, one needs to
choose a finite box size that is large enough to represent a significant amount of the Universe;
a length of & 50 Mpc should suffice [95] (in comparison, the size of the visible Universe is
H−1

0 = 4.3h−1 Gpc). No structures are supposed to form at & 100 Mpc, since the Universe is
homogeneous and isotropic on large scales. Furthermore, one needs to specify a grid onto which
the density field is averaged. Needless to say that a finer grid produces better results but takes
more computing time.

In addition, one needs to specify the number of particles that are being used and the particle
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Figure 4.1: The evolution of a large halo in the Millennium-II simulation is shown at three different length scales
(indicated in top panels) at four different redshifts (indicated in first column) [6]. The cosmic structure on larger
scales looks like a web, consisting of voids, filaments, and nodes. The hierarchical formation of structure is obvious;
smaller structures form first and later collapse and merge into a larger halo.
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mass: each particle in the simulation actually represents a collection of objects in reality. Nu-
merical artifacts may arise when two or more of these massive particles encounter each other in
the simulation. The gravitational force between them (∝ r−2) creates a singularity as the relative
distance between the objects approaches zero, and as a result, the velocities of the bodies could
become arbitrarily high. Usually this effect is suppressed by defining a certain softening length,
below which the gravitational force is set to a constant to avoid collisions. This is equivalent
to replacing the bodies, which are described by delta-functions, by extended mass distributions
[123].

To give an idea of the dimensions of such a simulation: the largest N-body simulation that
has been performed up until now is the Millennium-XXL, which includes 303 billion particles,
a box length of 4.1 Gpc, and a softening length of 13.7 kpc [124]. Although this is an immense
project with very reliable results, the finite resolution of such simulations will always introduce
limitations, which are especially present on small scales.

The information that one can derive from these simulations is condensed in several functions.
The most important ones for our purpose will be discussed here. The mass function, which gives
the number density of halos as a function of their mass, can be calculated from Press-Schechter
theory [125]. Their idea is based on the fact that the density fluctuations are Gaussian and can
be described in a spherical collapse model. Smoothing the density fluctuations with a top hat
function as described in section 4.1, one can already identify protohalos before they collapse as a
region where the average density is larger than some critical density, which Press and Schechter
defined to be δc = 1.686. Instead of the mass, it is easier to work with the mass variance σ2(M,z)
extrapolated to the redshift z at which the halos are identified, which is obtained by multiplying
the usual variance (see Eq. (4.7)) by the growth factor squared D2(z) (see Eq. (4.9)). The mass
function is then defined as [126]

f (σ ,z) =
M
ρ

dn(M,z)
dlnσ−1(M,z)

, (4.26)

where n(M,z) is the number density of halos at z that have a mass below M, and ρ is the
mean density at that time. In Press-Schechter theory the mass function is given by the simple
expression [125, 94, 126]

f (σ) =

√
2
π

δc

σ(M,z)
exp
[
− δ 2

c

2σ2(M,z)

]
. (4.27)

Mass functions calculated from Press-Schechter theory are in reasonable agreement with those
derived from numerical simulations. For an overview about the halo mass function and other
analytical approximations see [126].

Simulations show that primary halos are accompanied by a large population of subhalos for
which one can derive an approximate expression for the subhalo mass function. It is easiest to
assume that the distribution of normalized subhalo masses, i.e., m/M, where m is the mass of a
subhalo and M that of the host halo, is the same for all primary halos. This distribution function
should drop quickly as m/M→ 1, and we can assume it to follow a power law for m/M� 1.
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The subhalo mass function should then obey [94]

dn = c
(m

M

)a
e−km/M dm

M
, (4.28)

where a,c,k are constants whose value can be derived from N-body simulations. This means
that the subhalo distribution for primary halos of different mass are approximate self-similar.
However, the satellite populations of galaxies with different luminosities do not appear to follow
this behavior (see subsection 4.3.1 for further details).

Finally, we discuss the radial density profile of DM halos in numerical simulations. For
a primary halo, the density scales like ρ ∝ r−3 for very large radii. Interestingly, numerical
simulations show that halos can be fitted by a universal density profile

ρ(r) =
ρ̃0

( r
rs
)α(1+ r

rs
)β−α

(4.29)

where the central density ρ̃0 and the scale radius rs are free parameters and vary for each halo.
A good fit to numerical simulations is obtained for the constants α = 1,β = 3, which is also
known as the Navarro-Frenk-White (NFW) profile [127]. The halo concentration c ≡ r200/rs,
was shown to decrease monotonically with increasing halo mass [128], meaning that smaller
objects are more concentrated. The innermost part of a (main) halo seems to follow a power law,
ρ ∝ r−α , with α ≈ 1.

More recently it was observed that the Einasto profile [129]

ρEin(r) = ρ−2 exp

[
−2n

[(
r

r−2

)1/n

−1

]]
, (4.30)

provides even a better fit to the ΛCDM halos from simulations [130]. Here, the subscript −2
denotes the value of the parameter at the point where the local slope is−2 and the Einasto index
n describes the shape of the density profile. Analysis of halos in the Aquarius simulation show
that the inner density profiles do not converge to a fixed asymptotic slope as in the NFW case
but are better fitted by the gently curving Einasto profile [131].

Although these profiles can fit the numerical simulations quite accurately, they are less suc-
cessful when applied to observations of dwarf galaxies and other DM dominated objects. An
often used model for this purpose is the isothermal profile [132], which has a finite central den-
sity. Observations thus seem to prefer a more core like inner structure, which is in tension with
the cuspy subhalo profiles obtained from N-body simulations. We will come back to this issue
in subsection 4.3.2.

Comparison of results from N-body simulations to observations show that the ΛCDM model
is very successful in explaining the large scale structure of the Universe. However, there is still
many to be done to improve the model, especially on small scales. In the next section, we will
therefore focus on the most important discrepancies between numerical simulations of ΛCDM
and observations.
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4.3 Small-scale problems

Although the ΛCDM paradigm has been proven to be very successful on larger scales, there
remain a number of puzzles on scales from a few kpc to tens of pc. Various observations of
the abundances and internal density profiles of (dwarf) galaxies and galactic satellites are in
tension with results from N-body simulations. In this section we will discuss the various small-
scale problems in detail, including the solutions that were proposed in terms of astrophysics and
modifications to the CDM paradigm.

4.3.1 Missing satellites problem

Observations show that the number of satellites around a galaxy system highly depends on the
luminosity or mass of the system. For instance thousands of satellites are observed around the
dominant galaxy in the brightest galaxy clusters, whereas the Milky Way (MW) or Andromeda
have only a dozen, and faint dwarf galaxies hardly have any luminous satellites at all. This is in
sharp contrast with the results from N-body simulations, where the subhalo distribution function
is more or less the same for the mass normalized to the host halo mass (see Eq. (4.28)). This
is more generally known as the substructure problem (for a good review, see [7]). Concerning
the luminous satellites of our MW and Andromeda as a function of the circular velocity (see be-
low), the discrepancy with the predicted number of small subhalos is referred to as the “missing
satellites” problem1 [133].

In order to connect the results from numerical calculations to the observations in a suitable
way, one needs to quantify the subhalo and satellite populations. For subhalos, this is done by
measuring the maximum circular velocity

Vmax = Max[
(

GNm(< r)
r

)1/2

] , (4.31)

which either refers to the velocity of stars around the center of the subhalo, or the subhalo
velocity around the center of the host halo. Here, m(< r) = 4π

∫ r
0 dr′ r′2ρ(r′) is mass within

a sphere of radius r. Since the potential energy of a self-gravitating system is proportional to
V ∝ V 2

max, Eq. (4.31) gives us information about the depth of the potential. The advantage of
this definition is that it is fairly easy to calculate, and it does not depend on the size or boundary
of the subhalo. The latter is actually difficult to determine, especially in the inner regions of
the host system where densities are higher and subhalos can hardly be distinguished from each
other, or from the host halo.

The few dozen satellite galaxies around the MW and Andromeda that we know of span a wide
range of luminosities. The brightest ones, like the Large and Small Magellanic Clouds (LMC
and SMC), have been known for many centuries, whereas the faintest only have been discovered
recently by the Sloan Digital Sky Survey (SDSS) [134]. The galaxies can therefore be divided
into ‘classical’ dwarfs, which have luminosities larger than ∼ 105L�, and ‘ultra-faint’ dwarfs,
which can have luminosities as low as ∼ 103L�.

1This is a rather confusing name for the problem: the satellites are too abundant in the simulations rather than
missing in the observations.
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3 Defining the substructure problem.
As I noted above, comparison of theory and ob-
servations in terms of the directly observable
quantities such as luminosities is possible only
using a galaxy formation model. These mod-
els, although actively explored ([76, 77, 78, 35,
79, 80, 81, 82], see also § 4.3) are considerably
more uncertain than the predictions of dissipa-
tionless simulations on the properties of dark
matter subhalos. Given that observed dwarf
satellites are very dark matter dominated, the
dissipative processes leading to formation of
their stellar component are expected to have a
limited e↵ect on the distribution of the dynam-
ically dominant dark matter. Fruitful compari-
son between simulation predictions and obser-
vations is therefore possible if a quantity related
to the total mass profile can be measured in the
latter.

The first attempts at such comparisons [7, 16]
assumed isotropy of the stellar orbits and con-
verted the line-of-sight velocity dispersion of
stars in dSph satellites, �r, to estimate their
maximum circular velocities as Vmax =

p
3�r.

The admittedly over-simplistic conversion was
adopted simply due to a lack of well measured
velocity profiles and corresponding constraints
on the mass distribution at the time. Figure 7
shows such a comparison for the classical satel-
lites1 of the Milky Way and subhalo popula-

1 I did not include the new ultra-faint satellites in the
comparison both because their Vmax values are much
more uncertain and because their total number within
the virial radius requires uncertain corrections from the
currently observed number that probes only the nearest
few dozen kpc. The velocity dispersions of the ultra-
faint dwarfs are very similar to each other (⇠ 5 km/s) and
they therefore formally have similar Vmax values accord-
ing to this simple conversion method (hence, they would
all be “bunched up” at about the same Vmax ⇠ 9 km/s
value). The maximum circular velocity of the halos of
these galaxies is expected to be reached at radii well
beyond the stellar extent and its estimate from the ob-
served velocity dispersions requires substantial extrapo-
lation and assumptions about the density profile outside
the radii probed by stars. The errors of the derived values
of Vmax can therefore be quite substantial [69, 83]. I will

Fig. 7— Comparison of the cumulative circular velocity
functions, N(> Vmax), of subhalos and dwarf satellites of
the Milky Way within the radius of 286 kpc (this radius
is chosen to match the maximum distance to observed
satellites in the sample and is smaller than the virial ra-
dius of the simulated halo, R337 = 326 kpc). The subhalo
VFs are plotted for the host halos with max. circular ve-
locities of 160 km/s and 208 km/s that should bracket the
Vmax of the actual Milky Way halo. The VF for the ob-
served satellites was constructed using circular velocities
estimated from the line-of-sight velocity dispersions as
Vmax =

p
3�r (see discussion in the text for the uncer-

tainties of this conversion).

tions in Milky Way-sized halos formed in the
concordance ⇤CDM cosmology.

The observed velocity function is compared
to the predicted VF of dark matter subhalos
within a 286 kpc radius of Milky Way-sized
host halos. In the literature, “Milky Way-sized”
is often used to imply a total virial mass of
Mvir ⇡ 1012 M� and maximum circular veloc-
ity of Vmax ⇡ 200 km/s. However, there is
some uncertainty in these numbers. Therefore
the figure shows the VFs for the host halos with
Vmax = 208 km/s and 160 km/s. The former is
measured directly in a simulation of the halo
of that circular velocity, while the latter VF

compare the predicted luminosity function of the lumi-
nous satellites using a simple galaxy formation model in
§ 4.3 (see Fig. 11).

9

Figure 4.2: Cumulative circular velocity function N(> Vmax) of subhalos for a host halo with Vmax = 160, and
208 km s−1 (solid, black). Circular velocities of MW satellites (pink stars) have been estimated from line-of-sight
velocity dispersions (see text). Predicted subhalos at small Vcirc are much more abundant than the observed MW
dwarfs. Taken from [7]

The former group of dwarf galaxies have been shown to exist within 300 kpc from the MW
center, and can be divided into several categories [135]. There are the dwarf irregular galaxies
(dIrrs), like the LMC and SMC, which have a low surface brightness, an irregular shape, and
continue to form stars. The dwarf spheroidal galaxies (dSphs), e.g., Draco and Fornax, also have
a low surface brightness but hardly form stars anymore. Finally, the dwarf elliptical galaxies
(dEs), such as M32, have a high surface brightness but a low luminosity, and no star formation
at present.

The ultra-faint dwarfs, like Segue 1, only host a very small population of stars. Since these are
highly DM dominated objects, their mass profiles cannot be determined by gas rotation curves;
instead, their total mass is derived by using kinematics of the stars. Because they are so faint, we
have only managed to get a good picture of them within ∼ 30−50 kpc from the galactic center
[136]. Extrapolating our knowledge of radial distribution of dwarfs, we expect to find at least a
hundred faint ones within 400 kpc with future experiments [137].

This last fact has been interpreted as a possible explanation for the missing satellite problem,
however, this is not the case. Even though still many satellites are undiscovered, it by no means
could account for the predicted number, which is ∼ 105 for subhalo masses above 105M�. It is
therefore much clearer to state the problem not in terms of number of satellites, but in the slope
of the cumulative circular velocity function.

This is what can be seen in Fig. 4.2, where the solid lines are the predicted velocity functions
from N-body simulations for host halos with Vmax = 160, and 208 km s−1. The maximum
circular velocity of our MW is assumed to lie somewhere in between these numbers, and usually
a total virial mass of Mvir ≈ 1012M� is assumed. The velocity function of the observed satellites
was derived from the line-of-sight velocity dispersions σr, using Vmax =

√
3σr. Although this
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conversion is too simplistic and probably not very accurate, it is sufficient to point out the main
problem, namely that there is a great disagreement between the slopes of the predicted and
measured velocity functions. A more accurate conversion factor would not help to overcome this
discrepancy, unless it strongly depends on Vmax, for which there is no observational evidence.

Of course many possible solutions to the substructure problem have been proposed. Astro-
physical solutions all boil down to suppressing galaxy and/or star formation in the simulations
by physical processes that have not been taken into account in the standard ΛCDM simulations.

For instance, the suppression of galaxy formation can be obtained by increasing the entropy
of the gas before it collapses onto the DM halo to such a degree that it will not be able to follow
the DM. Photoionization [138, 139] or an induced shock by the accretion of gas [140, 141] can
cause heating, which correspondingly suppresses the formation of dwarf galaxies. However,
results of numerical simulations that take these processes into account show that the amount
of subhalos is still larger than what is implied by observations [142]. Another way to increase
the entropy is to include heating by blazars, which are active galactic nuclei that expel highly
energetic material in relativistic jets [143].

Furthermore, since stars form by the radiative cooling of the ISM, one can suppress star forma-
tion by decreasing the cooling efficiency of the collapsing baryons. This depends greatly on the
chemical composition of the gas: metals, by which elements heavier than hydrogen and helium
are denoted, are very efficient in cooling by line emission due to recombination of the ionized
atoms. An intrinsic low metallicity of the gas will therefore suppress the cooling efficiency[144].
Cooling in gas with a low metallicity is mostly due to neutral hydrogen (HI). This can quickly
be dissociated by photoionization, which correspondingly also suppresses the formation of stars
[145].

Besides increasing the gas entropy or suppressing the cooling efficiency, the removal of gas
will also result in a suppressed star formation rate. Once dwarf galaxies have formed, their
gas can be removed by photo-evaporation [146, 147], or by feedback from supernovae, the
most violent explosions in the Universe [148–150]. Unfortunately, the stellar content and HI
mass distributions in simulations with this kind of feedback are in conflict with the most recent
observations [151].

Finally it is possible to adjust the DM model in the numerical simulations, assuming it is not
correct on smaller scales. One can either change the seed perturbation spectrum of the ΛCDM
itself, or consider modifications of the CDM paradigm, such as strongly self-interacting DM
(SIDM). In these kind of models the DM has a large, constant self-scattering cross-section,
which can result in a suppressed amplitude of density fluctuations at small scales [152]. How-
ever, it was later shown to be in conflict with various observations (see also the next subsection
4.3.2)

The abundances of subhalos do in fact depend on the amplitude of the power spectrum on
scales that correspond to the mass of the primary halo. If one can suppress the amplitude of
the density fluctuations on these scales, the population of subhalos will become smaller. Most
successful are WDM models that, as we have seen in subsection 4.1.1, suppress small scale
density fluctuations by free streaming effects [153–156]. Moreover, the WDM particles have
tiny primordial thermal velocities that cause the inner density of the halos to become less dense
(see e.g. [153]). They are therefore more easily disrupted by tidal forces as they fall into the
host halo.
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Although WDM models can suppress the subhalo population to the required amount, these
models are strongly constrained by Lyman-α bounds. Combining this data with CMB and ob-
servations of galaxy clusters, a lower limit of mWDM > 2 keV was inferred [157, 158]. However,
when less reliable data due to systematic errors is not taken into account, this bound weakens
to mWDM > 0.9 keV [159]. More details on the allowed parameter range will be discussed in
chapter 8. Here, we will also show that the formation of subhalos can be successfully suppressed
for DM models with velocity dependent self-interactions (vdSIDM). This is a model that will
come up in the discussion of the next two small scale problems, but has not been considered in
connection to the missing satellite problem before.

4.3.2 Cusps vs. Cores

Low mass galaxies are interesting subjects for testing the predictions of ΛCDM , since they have
a large DM component and effects induced by the baryonic component are less pronounced.
As we saw in section 4.2, numerical simulations predict a universal matter density profile for
subhalos with a sharp NFW cusp in the center (Eq. (4.29) with α = 1,β = 3). It was found in
observations of low mass spiral galaxies, however, that they have a flat, constant inner density
core, which is well fitted by a Burkert profile [160]

ρ(r) =
ρ̃0(

1+ r
rs

)(
1+ r2

r2
s

) , (4.32)

which for r� rs is similar to an isothermal profile, i.e., ρ ∝ r−α with α = 0. Later, other studies
obtained similar results for spiral galaxies [161, 8, 162, 163]. For example, Fig. 4.3 shows that
the data from various studies of low surface brightness galaxies prefer a constant density core
with α = 0 at small radii. For a review on attempts to determine the inner density of dwarf
galaxies, see [164].

Other studies have instead focused on dSphs, for which the density profile was constrained
by using Jeans modeling [165]. Although these galaxies all seem to prefer a cored inner density
profile, another study showed that the inner density profiles of four dwarf satellites could be de-
scribed by a moderate cusp [166]. It must be noted that this method requires certain assumptions
about the system, which is usually taken to be spherical symmetric and isotropic. It was noted
by [167], however, that the preference for a cored or cuspy inner density profile is highly depen-
dent on the assumptions made about the anisotropy. This was later confirmed by [168], which
showed that a cored isotropic velocity distribution is degenerate with a cuspy anisotropic one in
combination with a large inclination of the galactic disk (see also [169]). Therefore assuming a
large anisotropy could alleviate the tension between observations and simulations.

Other studies have used methods that are supposedly less affected by the anisotropy. Some
dSphs contain populations of tracer stars, which can be used to model the underlying DM profile
more accurately. For each population, which is subject to the same gravitational potential, one
can measure stellar velocities, positions and spectral indices. These can be used to infer the mass
enclosed within the half-light radius for each stellar subcomponent. The result is a measurement
of dynamical mass with a small uncertainty at least two locations in the galaxy. Combining these,
one can infer the slope in the DM profile of the dSph. The results of these methods applied to
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6 de Blok et al.

Fig. 2.— Histogram of the values of the inner power-law slope α of the mass density profiles presented in Fig. 1. We distinguish between
well-resolved (hatched histogram) and unresolved (blank histogram) galaxies. The unresolved galaxies generally have higher values of α.

Fig. 3.— Value of the inner slope α of the mass density profiles plotted against the radius of the innermost point. Black dots are from the
dBMR sample, stars are from the de Blok & Bosma (2001) sample, open circles represent the four LSB galaxies from the Verheijen (1997)
sample. Over-plotted are the theoretical slopes of a pseudo-isothermal halo model (dotted lines) with core radii of 0.5 (left-most), 1 (canter)
and 2 (right-most) kpc. The full line represents a NFW model (Navarro, Frenk & White 1996), the dashed line a CDM r−1.5 model (Moore
et al. 1999). Both of the latter models have parameters c = 8 and V200 = 100 km s−1, which were chosen to approximately fit the data points
in the lower part of the diagram.

Figure 4.3: Low surface brightness galaxies seem to agree better with pseudo-isothermal profiles (dotted lines) than
with a NFW profile (solid line) or with an even cuspier profile ρ−1.5 (dashed). The data-points are taken from various
studies. For more details, see [8], where this figure originates from.

Sculptor [170] and both Fornax and Sculptor [171], show that a cored profile is preferred over a
NFW cusp.

A completely different method is Schwarzschild modeling, which allows one to measure the
enclosed mass and anisotropy of a galaxy by using the line-of-sight velocity distributions. Ap-
plied to Fornax, the measurements again show that a steep slope with α = 1 is rejected with
high confidence, and a cored slope with α = 0 is preferred. More recent studies for the Sculptor
dSph galaxy have shown, however, that although steep cusps with α > 1.5 are ruled out, the
line-of-sight data is still to sparse to make a distinction between a flat core and a shallower cusp
with α ≤ 1 [172].

Alternatively, one could alleviate the tension by adding a mechanism that alters the inner den-
sity structure of the halo in the simulations. It has been shown that baryonic feedback processes,
like a supernova explosion, could reduce the central DM cusp [173]. The rapid oscillating gravi-
tational potential allows baryons to transfer energy to the DM, such that their velocity dispersion
increases. However, these kind of feedback processes result in a stellar content that was shown
to be in tension with observational constraints on Low Surface Brightness galaxies [174]. More-
over, earlier simulations that included baryonic feedback did not result in more core-like inner
structures for subhalos [175]. Another possibility would be to assume that the baryonic mass
in the form of stars and gas, which dominates over the DM mass in the center of a galaxy, is
distributed like a core.

Solutions in the form of alterations to the ΛCDM model are few. Although the WDM seems to
be very good in suppressing the formation of small subhalos as discussed in the last subsection,
it unfortunately is less successful in forming large cores. In order to form a core of ∼ 1 kpc, a
WDM candidate with such a small mass is needed that dwarf galaxies would not be able to form
in the first place; this is also known as the ‘catch 22’ problem [176].
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It has also been proposed that strongly self-interacting DM (SIDM) with a constant scattering
cross section would produce cored dwarf galaxies [152]. In SIDM the DM has a mean free
path between ∼ 1 kpc and ∼ 1 Mpc, that would affect the halo properties at the scale of dwarf
galaxies. The increased entropy of the SIDM in the center of a subhalo would cause infalling
matter to scatter more frequently and result in a more flattened distribution. Unfortunately, it
was shown that the SIDM is ruled out by various astrophysical constraints. The shallow and
spherical cores of SIDM are in contradiction with the dense and ellipsoidal cores of galaxy
clusters [177, 178]. In contrary to CDM subhalos, which after virialization essentially stay the
same, SIDM halos would undergo a process of thermal relaxation. In this process, mass and
energy is transferred from the core to the extended halo, which causes the core to shrink in size
and mass while the density and temperature increase. Eventually, the core would collapse to a
singular state, a so-called gravothermal catastrophe. Since this state is not observed, it places
limits on the relaxation time and thus on the self-scattering interactions [179]. Subhalos would
additionally be expected to be destroyed by collisions with high-velocity particles from their
host halo [180]. Finally, the implied self-interacting cross-section is difficult to reconcile with
popular WIMP models.

However, self-interacting DM with a velocity dependent cross section (vdSIDM) is much
more promising. These are theories in which the DM interacts only through a ‘dark force’ that
can greatly enhance the self-interaction cross-section, i.e., the Sommerfeld enhanced models
that are the subject of this work. Not only does vdSIDM evade all astrophysical bounds that
were mentioned above [181], it also has been shown to form cored density profiles on dwarf
galaxy scales [13]. As we will see in the next subsection, this model can also alleviate another
small-scale problem.

4.3.3 ‘Too big to fail’-problem

In 4.3.1 we saw that there is a discrepancy between the number of simulated subhalos and the
observed satellites of the MW. Since each subhalo is potentially capable of forming a galaxy, it
is therefore usually assumed that the brightest satellites correspond to the most massive subhalos
in simulations. However, the mass of a subhalo is subject to changes due to e.g. tidal stripping,
such that it is not entirely clear how to define the most massive subhalos. We can distinguish
between two broad classes of models: ones where the luminosity of the satellite is related to
the present halo mass, and ones where it is related to the mass of the halo before tidal stripping.
For both cases it has recently been shown that the most massive subhalos in ΛCDM simulations
are too dense to host any of the brightest observed dwarf galaxies of the MW [182, 9]. Since
these most massive subhalos are too big to fail in forming stars, we should have been able to
observe them. The fact that we do not, indicates that there is something seriously wrong with
the dynamics of the simulated subhalos, hence explaining the name of this problem.

The ΛCDM predictions were inferred from six DM halos taken from the Aquarius simula-
tion2, which are comparable in size to the MW (0.95− 2.19× 1012M�). In each halo, subha-
los were identified and characterized according to their maximum circular velocity Vmax (see
Eq. (4.31)), and rmax, the radius at which they obtained Vmax. Furthermore, the properties of

2In the earlier work [182] also one MW sized halo from Via Lactea-II was included. The conclusions reached for
this halo are the same as for the Aquarius halos.
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spherical Jeans equation, Thomas et al. (2011) have shown
that this mass estimator accurately reflects the mass as de-
rived from axisymmetric orbit superposition models as well.
This result suggests that Eqns. (1) and (2) are also applica-
ble in the absence of spherical symmetry, a conclusion that
is also supported by an analysis of Via Lactea II subhalos
(Rashkov et al. 2012).

We focus on the bright MW dSphs – those with LV >
105 L� – for several reasons. Primary among them is that
these systems have the highest quality kinematic data and
the largest samples of spectroscopically confirmed member
stars to resolve the dynamics at r1/2. The census of these
bright dwarfs is also likely complete to the virial radius of
the Milky Way (⇠ 300 kpc), with the possible exception of
yet-undiscovered systems in the plane of the Galactic disk;
the same can not be said for fainter systems (Koposov et al.
2008; Tollerud et al. 2008). Finally, these systems all have
half-light radii that can be accurately resolved with the high-
est resolution N -body simulations presently available.

The Milky Way contains 10 known dwarf spheroidals
satisfying our luminosity cut of LV > 105 L�: the 9 clas-
sical (pre-SDSS) dSphs plus Canes Venatici I, which has a
V -band luminosity comparable to Draco (though it is sig-
nificantly more spatially extended). As in BBK, we remove
the Sagittarius dwarf from our sample, as it is in the pro-
cess of interacting (strongly) with the Galactic disk and is
likely not an equilibrium system in the same sense as the
other dSphs. Our final sample therefore contains 9 dwarf
spheroidals: Fornax, Leo I, Sculptor, Leo II, Sextans, Ca-
rina, Ursa Minor, Canes Venatici I, and Draco. All of these
galaxies are known to be dark matter dominated at r1/2

(Mateo 1998): Wolf et al. (2010) find that their dynamical
mass-to-light ratios at r1/2 range from ⇠ 10� 300.

The Large and Small Magellanic Clouds are dwarf ir-
regular galaxies that are more than an order of magnitude
brighter than the dwarf spheroidals. The internal dynamics
of these galaxies indicate that they are also much more mas-
sive than the dwarf spheroidals: Vcirc(SMC) = 50�60 km s�1

(Stanimirović et al. 2004; Harris & Zaritsky 2006) and
Vcirc(LMC) = 87 ± 5 km s�1 (Olsen et al. 2011). Abun-
dance matching indicates that galaxies with luminosities
equal to those of the Magellanic Clouds should have Vinfall ⇡
80 � 100 km s�1 (BBK); this is strongly supported by the
analysis of Tollerud et al. (2011). A conservative estimate
of subhalos that could host Magellanic Cloud-like galaxies
is therefore Vinfall > 60 km s�1 and Vmax > 40 km s�1. As in
BBK, subhalos obeying these two criteria will be considered
Magellanic Cloud analogs for the rest of this work.

3 COMPARING ⇤CDM SUBHALOS TO
MILKY WAY SATELLITES

3.1 A preliminary comparison

Density and circular velocity profiles of isolated dark mat-
ter halos are well-described (on average) by Navarro et al.
(1997, hereafter, NFW) profiles, which are specified by two
parameters – i.e., virial mass and concentration, or Vmax

and rmax. Average dark matter subhalos are also well-fitted
by NFW profiles inside of their tidal radii, though recent
work has shown that the 3-parameter Einasto (1965) profile

Figure 1. Observed Vcirc values of the nine bright dSphs

(symbols, with sizes proportional to log LV ), along with ro-

tation curves corresponding to NFW subhalos with Vmax =
(12, 18, 24, 40) km s�1. The shading indicates the 1 � scatter in

rmax at fixed Vmax taken from the Aquarius simulations. All of
the bright dSphs are consistent with subhalos having Vmax 
24 km s�1, and most require Vmax . 18 km s�1. Only Draco, the

least luminous dSph in our sample, is consistent (within 2�) with
a massive CDM subhalo of ⇡ 40 km s�1 at z = 0.

provides a somewhat better match to the profiles of both
simulated halos (Navarro et al. 2004; Merritt et al. 2006;
Gao et al. 2008; Ludlow et al. 2011) and subhalos (Springel
et al. 2008) even when fixing the Einasto shape parameter
(thereby comparing models with two free parameters each).
To connect this work to the analysis of BBK, Figure 1 com-
pares the measured values of Vcirc(r1/2) for the nine bright
MW dSphs to a set of dark matter subhalo rotation curves
based on NFW fits to the Aquarius subhalos; the shaded
bands show the 1 � scatter from the simulations in rmax at
fixed Vmax. More detailed modeling of subhalos’ density pro-
files will be presented in subsequent sections.

It is immediately apparent that all of the bright dSphs
are consistent with NFW subhalos of Vmax = 12�24 km s�1,
and only one dwarf (Draco) is consistent with Vmax >
24 km s�1. Note that the size of the data points is pro-
portional to galaxy luminosity, and no obvious trend exists
between L and Vcirc(r1/2) or Vmax (see also Strigari et al.
2008). Two of the three least luminous dwarfs, Draco and
Ursa Minor, are consistent with the most massive hosts,
while the three most luminous dwarfs (Fornax, Leo I, and
Sculptor) are consistent with hosts of intermediate mass
(Vmax ⇡ 18 � 20 km s�1). Each of the Aquarius simulations
contains between 10 and 24 subhalos with Vmax > 25 km s�1,
almost all of which are insu�ciently massive to qualify as
Magellanic Cloud analogs, indicating that models populat-
ing the most massive redshift zero subhalos with the bright-
est MW dwarfs will fail.

c� 2012 RAS, MNRAS 000, 1–17

Figure 4.4: The brightest dSphs in the MW (squares) all have a maximal circular velocity that is less than 24 km
s−1. The shaded bands indicate the rotation curves for the subhalos (assuming a NFW profile) with a 1σ deviation.
Each of the simulated halos in the Aquarius simulation contains at least 10 subhalos that are much denser than the
MW satellites, i.e., Vmax > 24 km s−1 [9].

the subhalo, such as the maximum circular velocity Vinfall = Vmax(zinfall) and the virialized mass
Minfall = Mvir(zinfall), were computed at the time its mass was maximal, i.e., prior to infall on the
host halo.

To compare this with observations, one must look at kinematics of satellites in the MW. Often
used are the deprojected half-light radius r1/2, the radius of a sphere that contains half of the
luminosity of the total system, and the mass enclosed within this sphere, M1/2. The dynamical
masses of dSphs have shown to be well constrained by line-of-sight velocity measurements, e.g.,
the circular velocity at half-light radius is well approximated by Vcirc(r1/2) =

√
3σr. From the

dSphs, only the brightest were chosen with LV > 105L�, because they have the most reliable
kinematic data and were most suitable for the analysis. After removal of the Sagittarius dwarf,
which is not a good candidate since it most likely not in equilibrium like the others, a set of
nine dSphs remains which are all highly DM dominated at r1/2. Both the Magellanic clouds
were considered separately, since they are much brighter and more massive than the dSPhs, and
conservative limits indicate that Vmax > 40km s−1 and Vinfall > 60km s−1.

Subhalo masses are well described by a NFW profile, from which Vmax as a function of rmax
was inferred. These were then compared to the Vcirc(r1/2) of the nine brightest dwarfs, as can be
seen in Fig. 4.4. It shows that the MW satellites are consistent with DM subhalos of Vmax = 12−
24km s−1, and only Draco could be consistent with a larger Vmax. However, in each simulated
halo at least 10 to 24 subhalos with Vmax > 25km s−1 reside, which have no bright counterparts
in the MW. These subhalos are not massive enough to host any of the Magellanic clouds either.

To exclude the case that the mass profiles of some subhalos are not well described by a NFW
profile, another analysis was carried out using the raw particle data, thereby removing any un-
certainties regarding the DM density profile. Additionally, it was considered that the galaxy
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Figure 3. Rotation curves for all subhalos with Vinfall > 30 km s�1 and Vmax > 10 km s�1, after excluding Magellanic Cloud analogs, in

each of the six Aquarius simulations (top row, from left to right: A, B, C; bottom row: D, E, F). Subhalos that are at least 2 � denser
than every bright MW dwarf spheroidal are plotted with solid curves, while the remaining subhalos are plotted as dotted curves. Data

points with errors show measured Vcirc values for the bright MW dSphs. Not only does each halo have several subhalos that are too

dense to host any of the dSphs, each halo also has several massive subhalos (nominally capable of forming stars) with Vcirc comparable
to the MW dSphs that have no bright counterpart in the MW. In total, between 7 and 22 of these massive subhalos are unaccounted for

in each halo.

of Vcirc(r1/2) for the bright Milky Way dwarf spheroidals.
As in Fig. 2, we plot only halos with Vinfall > 30 km s�1

and Vmax(z = 0) > 10 km s�1. Subhalos that are at least 2�
more massive than every dwarf (at r1/2) are plotted as solid
curves; these are the “massive failures” discussed in BBK,
and each halo has at least four such subhalos. Fig. 3 shows
that each halo has several other subhalos with Vinfall > 30
that are unaccounted for as well: for example, halo B has
three subhalos that are not massive failures by our defini-
tion but that are inconsistent at 2 � with every dwarf except
Draco. Even ignoring the subhalos that are completely un-
accounted for (and are yet more massive than all of the MW
dSphs), the remaining massive subhalos do not resemble the
bright MW dSph population.

3.3 High redshift progenitors of massive subhalos

To investigate the possible impact of reionization on our re-
sults, we show the evolution of the progenitors of all subhalos
with Vinfall > 30 km s�1 in Figure 4. The solid curve show
the median M(z), while the shaded region contains 68% of
the distribution, centered on the median, at each redshift.

For comparison, we also show Tvir(z) = 104 K (the tempera-
ture at which primordial gas can cool via atomic transitions)
and 105 K (dashed lines), as well as the mass Mc(z) below
which at least half of a halo’s baryons have been removed
by photo-heating from the UV background (Okamoto et al.
2008). Subhalos with Vinfall > 30 km s�1 lie above Mc and
Tvir = 104 K at all redshifts plotted, indicating that they are
too massive for photo-ionization feedback to significantly al-
ter their gas content and thereby inhibit galaxy formation.

Figure 5 focuses on the z = 6 properties of these sub-
halos. It shows the distribution of halo masses at z = 6
for “massive failures” (open histogram) and the remaining
subhalos (filled histogram), which are possible hosts of the
MW dSphs. The massive failures are more massive at z = 6,
on average, than the potentially luminous subhalos. This
further emphasizes that reionization is not a plausible ex-
planation of why the massive failures do not have stars: the
typical massive failure is a factor of ten more massive than
the UV suppression threshold at z = 6. Implications of this
result will be discussed in Boylan-Kolchin et al. (in prepa-
ration).

In a series of recent papers, Broderick, Chang, and

c� 2012 RAS, MNRAS 000, 1–17

Figure 4.5: Each panel shows the subhalo rotation curves with Vinfall > 30 km s−1 and Vmax > 10 km s−1 for
one simulated MW halo (mass indicated in upper left corner) in comparison with the observed dSphs (squares). No
assumptions about the simulated DM density profiles were made, and subhalos comparable to the Magellanic clouds
were excluded. Subhalos denser than the dwarfs by more than 2 σ (solid lines) are much too dense to host any of the
bright satellites. Among the remaining subhalos (dotted lines) there are also subhalos that do not correspond to any
of the bright dwarfs. [9]

luminosity would correlate with Vinfall rather than with Vmax(z = 0). For this reason the circular
velocities of the most massive subhalos with Vinfall > 30 km s−1 and Vmax(z = 0) > 10 km s−1

were compared to Vcirc(r1/2) of the dwarfs. The results showed that in all cases there are always
subhalos present that are more massive than the dSphs, i.e., their velocity curves are inconsistent
with the dynamics of the most luminous MW satellites.

Shown in Fig. 4.5 are the rotation curves for all subhalos with Vinfall > 30 km s−1 and Vmax(z =
0) > 10 km s−1 for each of the six simulated MWs. The subhalos which are more massive than
every dwarfs by 2 σ are plotted in solid lines, whereas the remaining subhalos are plotted in
dotted lines. Squares with error bars correspond to Vmax(r1/2) of the brightest MW satellites.
It shows clearly that the most massive subhalos are far too dense to host any of the observed
brightest dwarf galaxies, i.e., for a given radius r, their maximum circular velocity (which is
related to the mass, see Eq. (4.31)) is too high to fit the data. Moreover there are also subhalos
that do have a rotation curve that is comparable to that of the dSphs, but they are not accounted
for in the observations. This indicates that the dynamics of the most massive subhalos do not
resemble the population of dSphs at all.
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Using abundance matching one can assign a stellar mass M∗ to a subhalo, which is done by re-
lating galaxy abundances to subhalo populations, e.g., n(> M∗) = n(>Vinfall). From this one can
derive a luminosity function for the simulated subhalos by extrapolating for small halo masses;
in the analysis discussed here it was used that M∗/LV = 2. Comparisons to luminosity functions
of the MW show that they are in good agreement both in amplitude and slope. However, it turns
out that the subhalos that would host the bright dwarfs have a much larger Vmax than the ones
that are calculated for the dSphs. This means that although some subhalos seem dynamically
consistent with the bright satellites, these are not the ones that are predicted to host these dwarfs.

A solution to this discrepancy could be found by assuming that the MW mass is smaller
than what was assumed in these simulated halos, i.e., . 8× 1011M� [183, 184]. The precise
mass of the MW is still uncertain, however, the consensus is that the MW mass lies in the
range 1−2×1012M�, which is in good agreement with the halo masses used in the simulations
discussed here. Moreover, numerical simulations show that a halo of 1012M� has less than
a 10 % chance to host two satellites that are as large as the Magellanic clouds [185, 186].
Observations carried out by SDSS of satellites hosted by systems that are similar to the MW
indicate that this probability only decreases for lower galaxy masses [187–189]. A lower limit
of 1.8×1012M� on the mass of the Local Group, a system which is dominated by the MW and
Andromeda, was inferred by studying orbiting times [190]. All the above arguments disfavor a
small MW mass solution.

Another possibility is to include baryonic feedback that would cause large outflows of bary-
onic matter from the galaxies. This might affect the dynamics of the system enough to reduce
the central DM densities. In [9] the effect of supernova explosions was taken into account to es-
timate the change in the subhalo rotation curves. It was shown that the circular velocities could
indeed be reduced, but not enough to accommodate all bright satellites. In fact the resulting
Vcirc profile was only consistent with two of the least luminous dwarfs that were considered. To
match their density would require the removal of at least two orders of magnitude more mass
than what was considered.

A last astrophysical explanation to the problem could be that galaxy formation is highly
stochastic for halos with Vinfall . 50 km s−1. This would mean that the stellar mass or lumi-
nosity does not correlate with the DM halo mass at the scales of dwarfs. However, this would
be in contradiction with results from abundance matching, which show that the stellar mass is
an increasing function of the maximum mass that a halo ever obtained. This is confirmed by
stacking analyses of gravitational lensing and studies of satellite dynamics of SDSS galaxies
[191].

Finally a solution might exist in terms of a DM candidate. A good option would be WDM,
which could reduce the amount of massive subhalos, and decrease the inner density of the sub-
halos that are formed [192]. In addition it was shown that the vdSIDM models, which were
briefly mentioned at the end of the previous subsection, produce cored dwarf-like subhalos that
in addition match the velocity profiles of the brightest MW satellites [13]. Encouraged by these
results, we will therefore further investigate the substructure formation of this interesting model
in chapter 8. First, it is necessary to give the reader a detailed introduction to the underlying
theory of these kind of models, in which the repeated exchange of a force carrier results in a
Sommerfeld enhanced cross section.
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5 Sommerfeld Enhancement

5.1 Introduction

The topic of this chapter is the non-relativistic quantum effect named after its discoverer Arnold
Sommerfeld, who first described it in 1931 when he calculated the scattering of a slowly mov-
ing electron-positron pair [193]. When their kinetic energy is low enough, the Coulomb force
between the electron and positron becomes important and distorts the wave-functions of the in-
coming particles, such that they have a larger probability to undergo a short-range interaction.
In this way, the Sommerfeld effect thus effectively enhances the e+e−→ γγ cross section.

In quantum field theory this process can be visualized by Feynman diagrams, which remind
of ladders with the exchanged mediator particles (here photons) as rungs (see Fig. 5.1). Due to
the fact that the electron and positron can interact through the photon, a threshold singularity is
generated in their annihilation process. Usually, each exchanged photon contributes a factor α to
the amplitude of the diagram, such that higher order diagrams are less important and perturbation
theory can be used to calculate the interaction. However, when the relative velocity v of the
e+e− pair is smaller than the photon coupling α , each exchanged photon contributes a factor
α/v to the amplitude of the diagram. This means that higher order diagrams become more and
more important as they exchange more photons, and a perturbative expansion in α fails. The
Sommerfeld effect is thus a non-perturbative effect, and in order to correctly calculate the cross
section, it is therefore necessary to perform a resummation over all diagrams as depicted in
Fig. 5.1.

After Sommerfeld developed the mechanism to take this effect into account, it since has been
applied to correctly predict the cross sections for many other non-relativistic particle systems.
In cases where the force carrier has a mass, the repeated exchange of the mediator creates an
attractive Yukawa potential instead. The Sommerfeld effect then arises when the mass of the
annihilating particles is much larger than the mediator mass. The finite range of the potential
can cause the particles to form a quasi bound state for which the annihilation cross section even
becomes resonant.

Since most popular DM candidates are WIMPs, i.e., heavy, non-relativistic particles, the Som-= + + + . . .

= + + + . . .

Figure 5.1: The white blob includes all short-range interactions, whereas the exchange of a mediator particle is a
long-range effect. The grey blob includes all interactions with the Sommerfeld effect taken into account, which is
obtained by performing a resummation over all possible ladder diagrams, where the mediator particles represent the
rungs on the ladder.
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5 Sommerfeld Enhancement

merfeld effect is also relevant in DM annihilation processes. This was first realized in 2003,
when the authors of [194] included the Sommerfeld effect in calculations of the annihilation
cross section of (wino- or Higgsino-like) neutralino DM into two photons. The incoming neu-
tralinos can form a two-body state that exchange Z and/or W bosons between them. Additionally,
the neutralino pair can be converted into a chargino pair, which correspondingly can exchange
virtual photons. The non-perturbative corrections to the neutralino annihilation cross section
were calculated in non-relativistic field theory, and were found to be non-negligible. The same
authors further worked out this theory in a collection of papers, discussing the relevance of Som-
merfeld enhancements on the expected cosmic ray spectrum [195, 196] and thermal relic DM
abundance [197]. Another group performed similar calculations for minimal DM, where the
DM consist of one multiplet added to the SM, which has only gauge interactions and mass term
that is invariant under SU(2)L [198].

It was not until an anomalous positron excess was measured by PAMELA in 2008 [84], that
Sommerfeld enhanced DM models started to attract a lot of attention. The cosmic positron
fraction e+/(e+ + e−) earlier measured by HEAT [199] showed a small rise in the spectrum
between 10 and 50 GeV, but was still consistent with the background within the errors. Similar
results were later obtained by AMS-01 [200]. PAMELA, however, was able to measure the
positron flux with much better precision and up to energies of 100 GeV in 2008. The results
showed a large excess between 10 and 100 GeV, which could not be explained by the secondary
production of positrons through cosmic ray interactions with the interstellar medium. The excess
therefore had to be of primary origin, either in the form of annihilating DM or some astrophysical
source (see discussion below).

Other experiments, not able to distinguish between electrons and positrons, measured the
combined e−e+ flux. ATIC first measured a peak in the spectrum between roughly 300 and 800
GeV [85]. Although their observations were consistent (within the statistical and systematic
errors) with later data from H. E. S. S., the latter excluded a peak as large as measured by ATIC
[201, 87]. The spectrum as measured by Fermi-LAT, also did not reveal such a large prominent
feature, although its spectrum was much harder as expected from conventional diffusion models
[86] (for an overview of different interpretations of the measured electron-positron spectrum,
see [202]).

These measurements of an increased leptonic flux led people to believe that this might well be
the first direct evidence of DM. However, a DM explanation for the PAMELA excess in terms
of annihilating WIMPs was not so obvious at first sight. In fact, the DM has to fulfill three
properties in order to do so: (1) In order to obtain a flux of electrons and positrons as large as
observed, the DM annihilation cross section must be much larger than the one that is inferred
from the thermal relic abundance (see Eq. (3.1)), (2) the DM should have a large annihilation
cross section into leptons to fit the hard positron spectrum, (3) in order to be consistent with
measurements of the antiproton flux by PAMELA, which did not show an excess [82], a sup-
pressed annihilation into hadrons is required. These restrictions to the model make a thermal
DM explanation for the lepton excess rather difficult, however, not impossible: its annihilation
cross section needs to be boosted somehow and the DM has to be leptophilic [203–208, 89].

In order to overcome these issues, a DM model was proposed that interacts only through
a dark force, i.e., a light boson which decays dominantly into leptons [48]. In these kind of
models the annihilation cross section for slowly moving DM particles is naturally enhanced by

50



5.1 Introduction

the Sommerfeld effect. In this way, the larger velocities around chemical decoupling (v/c∼ 0.3)
would have resulted in an annihilation rate that gives the observed relic density, whereas much
smaller WIMP velocities today (v/c ∼ 10−3) would give an enhanced annihilation rate into
electrons and positrons. These kind of leptophilic models thus could rather easily accommodate
the measured positron and antiproton fluxes and still be consistent with the relic abundance [209,
89], albeit that the motivation for such models remained rather weak. Various implementations
of these kind of models in relation to the positron excess have since been investigated by many
groups (e.g. [88, 49, 90]).

Alternatively, the positron excess could be explained in terms of astrophysical effects (for a
review, see [93]). For example, the DM annihilation cross section can be boosted by the sub-
structure that is present in our galaxy [205, 206] (see e.g. [117] for the effect of substructure
in combination with a Sommerfeld enhanced DM model). It was also noted that astrophysical
objects such as nearby pulsars, ejecting electron-positron pairs with high energies, could also
account for the observed excess [91]. Using standard assumptions, the signal is unlikely to be
explained by one pulsar alone, but two or more pulsars can easily produce a flux as observed
[210]. Therefore, in view of the rather contrived leptophilic models, it is more likely that the
source of the excess is of astrophysical origin. Moreover, the leptophilic models designed to
explain the PAMELA positron excess are severely constrained by many other observations, in-
cluding the anti-proton cosmic rays [211], gamma rays and radio observations from the Galactic
center [212], gamma rays in the Galactic halo from inverse Compton scattering [213], gamma
rays from galaxy clusters [115, 116], the CMB [214–217], and even by BBN [218] (see e.g.
[119] for an overview of the constraints).

Nevertheless, the positron excess has rekindled interest in the Sommerfeld effect that by it-
self is an interesting phenomenon. For instance, a full analysis of the Sommerfeld effect in the
MSSM has been worked out, and has shown to give some significant corrections for certain
regions in parameter space [219–221]. The Sommerfeld effect is a general mechanism that,
if present, cannot be neglected if one wants to obtain correct predictions for DM related ob-
servables. Therefore we will spend a chapter on explaining the theory behind the Sommerfeld
enhancement, before discussing its effect and applications to various DM related topics in the
rest of this thesis.

In the next section we will discuss the calculation of the Sommerfeld effect for the annihilation
of a non-relativistic electron and positron, for which a resummation over all ladder diagrams is
necessary. Fortunately, the different spatial ranges of the non-perturbative corrections and the
annihilation make it possible to calculate the interaction in a much simpler and equivalent way in
a non-relativistic field theoretical framework. The ladder diagrams, which represent the multiple
exchange of the force carriers, create a Coulomb potential that can be taken into account by
considering its effect on the wave-function of the metastable bound state of the electron-positron
pair known as positronium. We will see that, in the end, finding the Sommerfeld enhancement
factor boils down to solving the Schrödinger equation for the two-body wave-function of the
annihilating particles. With the distorted wave-functions one then calculates the short-range
interaction, i.e., the annihilation or scattering, in non-relativistic scattering theory which we will
discuss in section 5.3 and 5.4, respectively.
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5 Sommerfeld Enhancement

5.2 Resummation of ladder diagrams

As explained in the previous section, the Sommerfeld effect is a long-range effect caused by
the exchange of virtual photons between the annihilating particles, whereas the annihilation
itself is a highly relativistic process that occurs on a short range. The different scales of these
interactions make it possible to factorize the non-perturbative corrections from the annihilation
in a non-relativistic effective field theory (see e.g. [222, 194, 196]). The relativistic scales are
then integrated out, and in order to compensate for their removal, correction terms have to be
added to the theory. The long-range interaction is therefore replaced by a local one, such that the
non-perturbative effect can be taken into account by a renormalization of the coupling constants.
We can then use ordinary perturbation theory to expand in the new, renormalized coupling and
calculate the desired interactions. From this non-relativistic action a two-body effective action is
derived that now includes the Sommerfeld effect as a long range potential that affects the wave
function of the two-body system. Finally, the equations of motions for the two-body system are
derived, which take the form of the well-known Schrödinger equation.

The framework that we use here is the same as in [194, 196], and is very clearly worked
out and explained in [223]. To illustrate the technique, we will perform the calculation in non-
relativistic quantum electro dynamics (NRQED) to calculate the Sommerfeld enhancement for
an electron-positron pair annihilating into two photons. Based on [224], this derivation serves
as a simple example of the treatment, which can be applied and generalized to other theories in
a straightforward way. In this section, we will give a sketch of the complete calculation along
with the most important results; the details of the calculation can be found in Appendix section
A.1.

A different, but completely equivalent approach to derive the Sommerfeld effect is worked out
in [225, 226]. Here, the focus is on the relation between the bare amplitude of the diagram, i.e.,
without long-range effect, and the complete amplitude including the Sommerfeld effect. The
resummation of the ladder diagrams can be taken into account by writing the full annihilation
amplitude in a recursive form. The advantage of this method is that the bare amplitude can be
totally generic, and does not have to be an S-wave annihilation process. This treatment will not
be discussed here and we point the reader to the references for more details.

5.2.1 Preliminaries

The optical theorem

Since we will make good use it in the treatment given below, we will here briefly explain the
optical theorem. Basically, it is a method to relate the imaginary part of a forward scattering
amplitude to the sum of all possible intermediate states. For more details e.g. see [227].

The S-matrix, the quantity that relates initial to final states, can be written as

S = 1+ iT, (5.1)

where the T -matrix contains all information regarding interactions. The optical theorem is sim-
ply a consequence of the unitarity of the S-matrix, i.e., S†S = 1, such that one can derive that
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Figure 5.2: The optical theorem relates the imaginary part of the forward scattering matrix element to the squared
modulus of the matrix element that describes annihilation into all possible final states.

T †T = i
(
T †−T

)
. (5.2)

When we evaluate this expression between some particle states a and b, we get the following
expression:

i
(〈b|T †|a〉−〈b|T |a〉)= ∑

f
〈b|T †| f 〉〈 f |T |a〉 , (5.3)

where we have inserted a complete set of intermediate (multi-particle) states f on the right hand
side. We can express Eq. (5.3) in terms of the invariant matrix element M as

i(M ∗(k1k2→ p1 p2)−M (p1 p2→ k1k2)) = ∑
f

∫
dΠ f M

∗(k1k2→{qi} f )M (p1 p2→{qi} f ) .

(5.4)
where we have introduced a shorthand notation for∫

dΠ f =

(
f

∏
i=1

∫ d3qi

(2π)3
1

2Ei

)
(2π)4

δ
(4)(P−∑qi) , (5.5)

and P denotes the total incoming momentum. Obviously, since z−z∗ = 2iℑ[z], the left hand side
of Eq. (5.4) is equal to 2ℑ[M (p1 p2→ k1k2)], provided that M (k1k2 → p1 p2) = M (p1 p2 →
k1k2).

We are interested in the special case that the incoming states are the same as the outgoing, i.e.,
p1 = k1, p2 = k2, for which Eq. (5.4) takes the simple form;

2ℑ[M (p1 p2→ p1 p2)] = ∑
f

∫
dΠ f

∣∣M (p1 p2→{qi} f )
∣∣2 . (5.6)

As one can see in Fig. 5.2, this means that the imaginary part of a forward scattering amplitude is
equal to the squared modulus of the annihilation amplitude, summed over all possible final states.
It is then straightforward to derive the relation between the imaginary part of the scattering
amplitude and the annihilation cross section into f final states, which is given by

σ f =
1

4E1E2vrel

∫
dΠ f

∣∣M (p1, p2→{qi} f )
∣∣2 . (5.7)

Defining the total annihilation cross section in all possible final states as σtot = ∑ f σ f , we arrive
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at
σtotvrel =

1
2m2 ℑ[M (p1 p2→ p1 p2)] , (5.8)

where we have used that E1 = E2 in the center of mass frame, and the energy of the incoming
particle is approximately equal to the rest mass, E1 ' m, in the non-relativistic regime we are
interested in.

Non-relativistic expansion of Dirac spinors

Here we briefly review how one obtains two-component spinors from four-component spinors
in the non-relativistic limit. We start with the Dirac equation

(i6∂ −m)χ = 0 , (5.9)

where 6∂ = γν∂ ν and χ is a fermionic particle with spin 1
2 . The gamma matrices γν are in the

Dirac representation given by

γ
0 =

(
1 0
0 −1

)
, γ

i =
(

0 σ i

−σ i 0

)
(5.10)

where σ i are the Pauli sigma matrices. We can express the field χ as a superposition of the
positive and negative energy solutions in the following way

χ = u(p)e−ip·x + v(p)eip·x , (5.11)

where the four-component vectors u(p) and v(p) must obey

(6 p−m)u(p) = 0 (5.12)

(6 p+m)v(p) = 0 (5.13)

which follows from the Dirac equation.
Expressing u(p) and v(p) in two-component spinors,

u(p) =
(

η1
η2

)
, v(p) =

(
ξ1
ξ2

)
(5.14)

we find that they are related to each other, by inserting Eq. (5.14) into Eq. (5.12) and Eq. (5.13).
After diagonalizing the resulting matrix, the solutions are

u(p) =
(

η
p·σ

p0+m η

)
, v(p) =

( p·σ
p0+m ξ

ξ

)
. (5.15)

With this information we can construct a general form of χ that is expressed in two-component
spinors

χ =

(
ηe−ip·x + p·σ

p0+m ξ eip·x
p·σ

p0+m ηe−ip·x +ξ eip·x

)
. (5.16)
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Now we are ready to perform the non-relativistic expansion of this spinor. We first begin by
noting that p ·σ e±ip·x can be replaced by ∓i∇ ·σ e±ip·x, since the derivative works on the x in
the exponential. The final step is to use that p0 = m� p in the non-relativistic limit, such that
we can approximate e±ipx by e±imt . We thus obtain the following result for the non-relativistic
expansion of the spinor χ:

χ =
(

ηe−imt + i ∇·σ
2m ξ eimt

−i ∇·σ
2m ηe−imt +ξ eimt

)
. (5.17)

We note that, if χ is its own anti-particle, i.e., a Majorana fermion, the derivation above
changes slightly. In this case, u(p) and v(p) are related to each other by the charge conjuga-
tion matrix C = iγ2γ0, such that the spinor components are related through ζ c = −iσ2ζ ∗. The
Majorana equivalent to Eq. (5.17) then becomes (see e.g. [223] for a derivation):

χ =
(

ζ e−imt + i ∇·σ
2m ζ ceimt

−i ∇·σ
2m ζ e−imt +ζ ceimt

)
. (5.18)

Majorana fermions, however, will not be considered in this work.

5.2.2 Deriving the non-relativistic effective action

In this section we will discuss how one obtains a non-relativistic action from the action that
describes the full theory. In particular we consider quantum electrodynamics (QED), since we
want to evaluate the annihilation of an electron-positron pair into photons. The general QED
action is given by

SQED[ψ, ψ̄,Aµ ] =
∫

d4x
[

ψ̄(iDµ −m)ψ− 1
4

F2− 1
2ξg

(∂µAµ)2
]

, (5.19)

where m is the mass of the electron (positron), Fµν = ∂µAν −∂νAµ is the electromagnetic field
tensor, and Dµ = ∂µ − ieAµ is the covariant derivative. The gauge parameter ξg is equal to 1
in Feynman gauge, and 0 in Landau gauge. Explicitly working out all terms in Eq. (5.19) we
obtain

LQED = ψ̄(i6∂ −m)ψ− eψ̄γ
µ

ψAµ − 1
2

Aµ

[
(1− 1

ξ
)∂ 2gµν −∂

µ
∂

ν

]
Aν , (5.20)

where the first term is the kinetic term of the fermions, the second the interaction term, and the
last is the kinetic term of the photon.

In the following we will make use of the generating functional

Z[ψ, ψ̄,Aµ ] =
∫

DψDψ̄DAeiSQED , (5.21)

which is similar to the partition function known from statistical mechanics, and will be very
helpful in calculating the desired quantities (see e.g. [227] for more information on functional
integration).

In the following we will derive an effective non-relativistic field theory, which is defined
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by the energy scale of the annihilating particles, i.e., the electron (positron) mass m. We thus
exclude all particles from the theory that have a larger energy scale by integrating them out.
Discarding these states of course will affect the low-energy theory, but we take that into account
by adding correction terms to the effective Lagrangian. The long-range effect is replaced by
a local interaction that is identical in form, such that the net effect is a renormalization of the
coupling constants. In this way we are able to take into account the non-perturbative effect
without having to perform the resummation over all diagrams. For the details of the calculation
see Appendix subsection A.1.1.

Integrate out light fields

We start by integrating out the light fields, in this case the photon Aµ , in Eq. (5.21). For this
purpose we consider seperately

Z[Aµ ] =
∫

DA exp
{

i
∫

d4x
(
−eψ̄γ

µ
ψAµ − 1

2
Aµ

[
(1− 1

ξg
)∂ 2gµν −∂

µ
∂

ν

]
Aν

)}
, (5.22)

where we now only have included terms from the Lagrangian that include the photon field. In
order to solve this functional integral, we will need to complete the square in Aµ , which can be
done by shifting the A-field

A′µ(x) = Aµ(x)−
∫

d4yGµν(x− y)Jν(y) (5.23)

where Gµν(x− y) is a Green’s function that represents the photon propagator between points x
and y and Jν(y) = −eψ̄(y)γνψ(y) is the Dirac current. The functional derivative in Eq. (5.22)
then simply transforms to DA→DA′.

Substituting these definitions into the Lagrangian from Eq. (5.22), we get after a little algebra:

S[A′] =
∫

d4x
[

1
2

A′µ(x)Mµν(x)A′ν(x)+ i
1
2

∫
d4yJµ(x)Gµν(x− y)Jν(y)

]
, (5.24)

where we introduced Mµν =−
[
(1− 1

ξg
)∂ 2gµν −∂ µ∂ ν

]
. We can now simply perform the inte-

gration over the first term, which is the kinetic term for the gauge field A′µ . We can focus our
attention now on the second term, which now only depends on Jµ (and therefore only on ψ and
ψ̄).

Integrate out relativistic parts of fields

The next step is to integrate out the relativistic parts of the fermionic fields. We do this by
splitting the fields in a relativistic and non-relativistic part by going to Fourier space

ψ(x) =
∫

NR
d4 p

(2π)4 ψ̃(p)e−ipx +
∫

R
d4 p

(2π)4 ψ̃(p)e−ipx = ψNR(x)+ψR(x) ,

ψ(x) =
∫

NR
d4 p

(2π)4 ψ̃(p)eipx +
∫

R
d4 p

(2π)4 ψ̃(p)eipx = ψNR(x)+ψR(x) ,
(5.25)
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5.2 Resummation of ladder diagrams

where the non-relativistic momentum space is defined as

NR =
(

(p0,~p) | p0 =±m+δ p0, O(δ p0)∼O

(
~p2

2m

)
� m

)
, (5.26)

and relativistic momentum space is basically defined as everything that does not satisfy the
above.

We substitute Eq. (5.25) into the terms in the action that contain fermions fields, i.e., the
kinetic term and the source term derived in the previous subsection. We end up with many
terms, but fortunately we do not have to consider all of them. For example, we can neglect
any terms containing an odd number of ψNR (implying an odd number off ψNR), since they
are simply kinematically impossible due to momentum conservation. The action containing all
relevant non-relativistic interactions is then given by

S[ψNR,ψNR] = S0,NR +SR[ψNR,ψNR] ,

=
∫

d4x [ψNR(i6γ−m)ψNR]

+
ie2

2

∫
d4xd4y

[
ψNR(x)γα

ψNR(x)Gαβ (x− y)ψNR(y)γβ
ψNR(y)

]
− i log

(∫
DψRDψReiS0,R+iSint[ψNR,ψR,ψNR,ψR]

)
, (5.27)

where S0,NR is defined by the first two terms in Eq. (5.27); the second term containing four non-
relativistic fields represents the potential term, which describes the Sommerfeld effect. The last
term in Eq. (5.27) contains both relativistic and non-relativistic fields: S0,R takes the same form
as S0,NR except with all non-relativistic fields replaced by relativistic ones, and Sint is essentially
defined by everything that was not included in the previous terms. We will focus on integrating
out the relativistic fields in Sint to calculate the annihilation term.

The tree level e+e− → γγ annihilation diagram in which we are interested in, can in fact
not properly be described by our non-relativistic theory, since the resulting photon states are
relativistic. This is actually true for all interactions in Sint that have relativistic initial or final
states. We can, however, combine the tree level diagrams in such a way that a higher order
diagram is obtained in which the relativistic states are virtual and can be integrated out without
any problem. The kinematically allowed tree level diagrams are summarized in Fig. 5.3 on the
left, which we can combine to the higher order diagrams shown on the right. We, however,
will only consider the box diagram as depicted in the top right, since with the use of the optical
theorem we can relate the imaginary part of the box amplitude to the annihilation diagram by
putting the intermediate photon states on-shell. In this way we are able to correctly include the
annihilation into our non-relativistic description, even though relativistic end states are involved.
The other higher order diagrams shown in Fig. 5.3 on the right do not relate to interactions we
are interested in, and we will therefore not consider them any further.

There are in fact four terms in Sint that correspond to the diagram shown in the top left of
Fig. 5.3, each with a factor ie2/2. In order to obtain the interaction terms corresponding to
the box diagram (proportional to e4), we use perturbation theory to expand SR to second order
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Figure 5.3: Tree level diagrams on the left correspond to kinematically allowed terms in Sint in Eq. (5.27) and cannot
correctly be described by our non-relativistic theory due to their relativistic initial or final states. Combining them
as indicated, we obtain a higher order diagram (right) with only non-relativistic initial and final states and relativistic
virtual states that can be integrated out. The box diagram (top right) can be related to the annihilation diagram into
two photons by cutting the diagram in half over the dashed line by using the optical theorem. The other two diagrams
on the right correspond to interactions we are not interested in, and will therefore not be considered in our further
discussion.

in ie2/2. After the integration over the relativistic fields (see Appendix subsection A.1.1), the
renormalized four-point correlation function that describes the box diagram has the form∫

d4xd4yd4zd4w iβ4(x,y,z,w)ψNR(x)ψNR(y)ψNR(z)ψNR(w) , (5.28)

where β4 is given by

iβ4(x,y,z,w)ψ̄(x)ψ(y)ψ̄(z)ψ(w) =

e4

2
ψ̄(x)γβ S(x− y)ψ(y)γµGµν(y− z)ψ̄(z)γνS(z−w)γα

ψ(w)Gαβ (w− x)

+
e4

2
ψ̄(x)γβ S(x− y)ψ(y)γµGµν(y−w)ψ̄(z)γνS(z−w)γα

ψ(w)Gαβ (z− x) , (5.29)

where S(x− y) is the propagator of a relativistic field between x and y (see Eq. (A.15)), and
we have omitted the subscripts NR from the non-relativistic fields for simplicity. The first term
corresponds to the t-channel diagrams (Fig. 5.4, left), and the second term to the u-channel
diagrams (Fig. 5.4, right). In the following we will no longer explicitly denote that the fields are
non-relativistic, since there is no danger of confusion.
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Figure 5.4: The different box diagrams that are described by the four-point correlation function: the t-channel
diagrams (left) actually contribute the same amount to the four-point correlation function Eq. (5.29). The same is
true for the u-channel diagrams on the right. For more information, see Appendix section A.1.

Non-relativistic expansion of the action

Next, we will perform a non-relativistic expansion of the fields in the action that we just de-
rived. We start with the kinetic term to obtain the correct normalization of the fields. The
non-relativistic expression for ψ was already shown in Eq. (5.17), such that we can simply sub-
stitute it in the kinetic term and write everything in two-component form. This results in quite a
number of terms, most of which can be discarded due to the reasons we will discuss below.

First, we should understand the physical interpretation of the two-component spinors: η and
η† correspond to positive energy solutions, i.e., fermions, whereas anti-fermions are described
by ξ and ξ †. The spinor η(x) (η†(x)) describes an incoming (outgoing) electron that is annihi-
lated (created) at x, whereas ξ (x) (ξ †(x)) creates (annihilates) an outgoing (incoming) positron
at x. Therefore, in the context of a kinetic term, the only sensible combinations of the two-
component spinors are η†η and ξ †ξ , and all terms with other spinor combinations disappear.

Furthermore, we are in the non-relativistic regime where p� m, such that we can neglect
terms that are of order O( p2

m2 ) or higher. It is important to work out all time derivatives working
on the terms with e±imt that arise from the non-relativistic expansion of the spinor fields (see
Eq. (5.17)), since a few terms will cancel in this way. After some algebra we arrive at the
following simple expression for the non-relativistic kinetic term

Sk[η†,η ,ξ †,ξ ] =
∫

d4x η
†(x)

(
i∂t +

∇2

2m

)
η(x)+ξ

†(x)
(

i∂t − ∇2

2m

)
ξ (x) , (5.30)

where we used that (~∇ ·~σ)2 = ∇2.
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Next, we want to do the same for the potential term

Sp =
ie2

2

∫
d4xd4y

[
ψ(x)γα

ψ(x)Gαβ (x− y)ψ(y)γβ
ψ(y)

]
, (5.31)

which was introduced in Eq. (5.27). The potential term corresponds to a t-channel diagram with
the exchange of a photon. For this reason, we only consider the same combinations η†η and
ξ †ξ as explained above. In the non-relativistic expansion up to leading order in (p/m), only
the temporal part (i.e., α = β = 0) of the potential term gives a significant contribution (see
Appendix subsection A.1.1). Finally we end up with

−1
2

∫
d4xd4y

αδ (x0− y0)
|x−y|

[
η

†(x)η(x)+ξ
†(x)ξ (x)

][
η

†(y)η(y)+ξ
†(y)ξ (y)

]
, (5.32)

where α is the usual fine-structure constant.
Terms containing only η and only ξ represent e−e− and e+e+ scattering respectively, which

will give a repulsive contribution. We are only interested in the attractive configuration of e−e+

scattering, which is given by the two terms: η†(x)η(x)ξ †(y)ξ (y) and ξ †(x)ξ (x)η†(y)η(y).
However, in order for them to describe a 2-particle state we need to rearrange the spinors.

In fact there are two possible configurations, depending on the spins of each particle: a singlet
state 1S0 with antiparallel spins (para-positronium) and a triplet state 3S1 with parallel spins
(ortho-positronium). Since the interaction should be invariant under the interchange of particle
and antiparticle states, charge conjugation parity, given here by (−1)S, is conserved. For one
photon, the charge conjugation parity is given by (−1), since it reverses the polarization of
the electric field. Therefore, the singlet state with S = 0 can only decay in an even number
of photons, whereas the triplet state can decay in an odd number of photons (except into one
photon, which is forbidden by momentum conservation). Since we are interested in the decay in
two photons, we therefore only consider the singlet state. The expression for the potential term
then becomes

Sp =
1
2

∫
d4xd4yη

†(x)ξ (y)
αδ (x0− y0)
|x−y| ξ

†(y)η(x) , (5.33)

where the change in sign is due to the Fierz reshuffling of the spinors (see e.g. [227]). We clearly
recognize the attractive Coulomb potential in this expression, which arises from the multiple
photon exchange between the electron and positron.

Finally, we want to derive an expression for the annihilation term in terms of the two-compo-
nent spinors. For this, we use the optical theorem to obtain the annihilation of the electron-
positron pair into two photons, from the two box diagrams that we derived before. In the
next chapter we will consider a special case of sneutrino DM, where a full calculation of the
box diagram will be given. Here, however, we prefer a more simple approach by considering
quarkonium, a bound state of a quark and anti-quark, i.e., the equivalent of positronium in QCD.
Calculations were performed by using non-relativistic QCD [222], where the effect of annihi-
lation was included by introducing effective 4-fermion operators. Although the results apply to
the QCD case, they are easily adapted for our QED case at hands.

In analogy to our case, we consider here the two box diagrams that describe quarkonium
scattering with intermediate photon states (t- and u-channel). As before, we are only concerned
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5.2 Resummation of ladder diagrams

with spin singlet states, for which the corresponding term in the Lagrangian is

δLγγ(1S0) =
fγγ(1S0)

m2 O(1S0) , (5.34)

where the 4-fermion operator is given by O(1S0) = ψ
†
1 ψ2ψ

†
2 ψ1. Only the imaginary part of the

coefficient f1(1S0) is interesting to us, since this is the part that is related to the annihilation
rate by the optical theorem. This was in fact calculated in [222] by substituting two-component
spinors for the Dirac fields, similarly like we did in for the potential term, and comparing the
resulting expression to Eq. (5.34). Up to leading order in the quark velocity v� 1, the result is

ℑ
[

fγγ(1S0)
]
= πQ4

α , (5.35)

where Q is the electric charge of the quark. To adapt this result to the case of positronium, we
adjust the value of Q for electrons (positrons) accordingly, such that we obtain

Sa =
∫

d4x
[

(real part)+η
†(x)ξ (x)

(
i
πα2

m2

)
ξ

†(x)η(x)
]

, (5.36)

for the annihilation term.
In summary, we have now derived the following non-relativistic action

SNR ' Sk +Sa +Sp ,

=
∫

d4x
[

η
†(x)

(
i∂t +

∇2

2m

)
η(x)+ξ

†(x)
(

i∂t − ∇2

2m

)
ξ (x)

]
+

1
2

∫
d(xy)η

†(t,x)ξ (t,y)
[

α

|x−y| + i
2πα2

m2 δ
(3)(x−y)

]
ξ

†(t,y)η(t,x) , (5.37)

where
∫

d(xy) ≡ ∫dt d3xd3y, and we have evaluated the delta-function in the potential term. We
also introduced a 3-dimensional delta-function in the annihilation term, which reflects the fact
that this interaction takes places locally.

5.2.3 Two-body effective action

In order to calculate the effect of the Coulomb potential on the electron-positron pair, we want to
derive a two-body effective action and solve for the equations of motion. We start by describing
the fields in the non-relativistic action as a two-body wave-function that defines the positronium
state. For this purpose, we define the two-body action as follows

SII ≡−i log
[∫

DηDη
†DξDξ

†eiSNR

]
, (5.38)

where SNR is given by Eq. (5.37). In order to perform this functional integration over the one-
particle fields, we introduce auxiliary fields σ(t,x,y) and s(t,y,x) which allows us to replace
η†ξ with the two-body function s†, and ξ †η with s. In the end we arrive at an expression for
SII[σ ,σ†] in terms of the two-body wave-function σ and its Hermitian conjugate. For the details
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of this calculation we refer the reader to Appendix subsection A.1.2.
Then we introduce new coordinates that separate the motions of the center of mass from the

relative motions. We perform the following change of variables

R =
(

t
x+y

2

)
, r = x−y (5.39)

such that
σ(r,P) =

∫
d4Rσ(t,x,y)eiPR , (5.40)

where P is the momentum of the center of mass and furthermore we have
∫

d(xy) = d4Rd3r. The
final result for the two-body action in the new coordinates (see Appendix subsection A.1.2) is
given by

SII[σ ,σ†] =
1
2

∫ d4P
(2π)4 d3r

(
−σ

†(r,P)
r
α

[
1+ i

2πrα

m2 δ
(3)(r)

]−1

σ(r,P)

+
∫

d3r′σ†(r′,P)ζ (r′− r,E)σ(r,P)
)

, (5.41)

where E = P0−|P|2/4m is the internal energy of the two-body state and ζ is the function

ζ (r,E) =
∫ d3k

(2π)3
me−ik·x

|k|2−mE− iε
, (5.42)

which satisfies (
−∇2

m
−E

)
ζ (r,E) = δ

(3)(r) . (5.43)

Finally we want to obtain the Euler-Lagrange equations of motion for the auxiliary fields
σ ,σ†. For this, we demand that the variation of the two-body action w. r. .t the field is zero

δSII

δσ† =− r
α

[
1+ i

2πrα

m2 δ
(3)(r)

]−1

σ(r,P)+
∫

d3r′ ζ (r′− r,E)σ(r,P)≡ 0 . (5.44)

This expression can greatly be simplified by introducing the wave-function

ϕP(r)≡ mr
α

(
1+ i

2πrα

m2 δ
(3)
)−1

σ(r,P) , (5.45)

and the potential

V (r) =−α

r
− i

2πα2

m2 δ
(3)(r) . (5.46)

The variation of the action then yields the following expression(
−∇2

m
+V (r)

)
ϕP(r) = EϕP(r) , (5.47)
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which we recognize as the Schrödinger equation. As anticipated, the Sommerfeld effect is in-
corporated into the potential of the Schrödinger equation and we can calculate its effect on the
wave function of the positronium state by solving for ϕP. In the next section we will show how
to obtain the enhancement factor for the bare cross section from this expression and discuss its
general properties.

For completeness we note that the two-body effective action can then also be written as

SII =
∫

d4xd3rφ
†(x,r)

(
i∂x0 +

∇2
x

4m
+

∇2
r

m
−V (r)

)
φ(x,r) , (5.48)

where

φ(x,r)≡
∫ d4P

(2π)4 ϕP(r)e−iPx , (5.49)

since the variation of this action will yield the same equations of motion.

5.3 Annihilation and the enhancement factor

The possibility to exchange a light force carrier between annihilating particles results in a non-
perturbative correction to the annihilation diagram in the non-relativistic regime. As we saw
in the introduction, a resummation over the ladder diagrams is therefore necessary to to take
the Sommerfeld effect into account. In the last section we have shown how to perform the
resummation of ladder diagrams in the framework of a non-relativistic field theory. We have
factorized the long-range Sommerfeld effect from the short-range annihilation process, which
allowed us to take it into account by a renormalization of the theory. The non-relativistic action
was then derived by a perturbative expansion in the new couplings. In the end we arrived at the
Schödinger equation for the two-body system, where the potential V (r) actually consists of a
potential and an annihilation part (see Eq. (5.46)).

The former is generated by the multiple exchange of force carriers, and the latter is responsible
for the finite lifetime of the bound state due to the decay of the two-body system. The annihila-
tion part will only be important in the special case that such a quasi bound state is formed, and
will therefore not be included for the moment being. Instead we focus only on the potential part,
which can significantly alter the wave-function of the incoming particles. We thus want to solve
the Schrödinger equation and calculate how the Sommerfeld effect affects the annihilation cross
section. As already discussed briefly in the introduction of this chapter, modifications to the DM
annihilation cross section can have significant consequences for indirect detection of DM, but
are also important for the calculation of the relic density (see also chapter 7).

Since the annihilating particles have to be on-shell, the internal energy is given by the kinetic
energy of the two particles in the center-of-mass frame E = mv2. The Schrödinger equation from
Eq. (5.47) then reads

− 1
2µ

∇
2
ψk =

(
k2

2µ
−V (r)

)
ψk , (5.50)

where k = mv is the momentum of each particle, µ = m/2 is the reduced mass of the system,
and the potential V (r) depends on the relative distance between the two particles r.
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5 Sommerfeld Enhancement

Since the annihilation takes place locally at r = 0, we can include the Sommerfeld effect by
looking at how the wave-function has been changed at that position, and define

S(v) = |ψk(0)|2 , (5.51)

where ψk is the solution to Eq. (5.50) and is normalized as

ψ → expikz + f (θ)
expikr

r
for r→ ∞ . (5.52)

where f (θ) is the scattering amplitude. This normalization makes sure that we can simply
multiply the bare cross section with the Sommerfeld factor from Eq. (5.51), i.e., σ = S(v)σ0, in
order to obtain the full annihilation cross section including the enhancement. The fact that the
annihilation occurs on a short distance and the Sommerfeld effect works on much larger scales
ensures the validity of the factorization as presented here.

For the positronium state considered in section 5.2, the potential V (r) = −α/r is just the
Coulomb potential, and it is possible to solve for ψk analytically. Since V (r) is rotationally
symmetric, we can expand ψk(r,θ) into products of Legendre polynomials and radial functions
Rkl

ψk(r,θ) = ∑
l

AlPl (cosθ)Rkl(r) , (5.53)

where the coefficients Al

Al =
1
k

il (2l +1)eiδl , (5.54)

are chosen such that ψk obeys the boundary conditions in Eq. (5.52). The radial functions are
associated with angular momentum l, and can be written as

Rkl(r) =
ul(r)

r
, (5.55)

where the function ul(r) is a solution to the radial Schrödinger equation

1
m

d2ul

dr2 =
(

V (r)+
l(l +1)

mr2 −mv2
)

ul . (5.56)

and is normalized as

ul(r)→ sin
(

kr− lπ
2

+δl(r)
)

, for r→ ∞ , (5.57)

where the phaseshift δl(r)� kr for r→ ∞. Since the Coulomb potential does not diverge faster
than 1/r for r→ 0, we can ignore it with respect to the kinetic term such that the solution for
ul(r) is proportional to rl+1 around the origin. The only non-zero contribution from ul(r→ 0)
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thus comes from l = 0, and the Sommerfeld factor can then be written as

S(v) = |ψk0(0)|2 =
∣∣∣∣Rk0(0)

k

∣∣∣∣2 =

∣∣∣∣∣ du0
dr (0)

k

∣∣∣∣∣
2

, (5.58)

where in the last step we have used that u0(r)→ 0 for r→ 0 implies that u0(r)→ r du0
dr (0).

The analytical solution to Eq. (5.56) is given in terms of Bessel functions. We will not perform
the full calculation of S(v) here, which e.g. can be found in [215], but simply quote the final
result

S(v) =
π/εv

1− e−π/εv
, (5.59)

where we have introduced εv ≡ v/α . The characteristic behavior of the enhancement factor can
be understood as follows: for large velocities, εv� 1, there will be no enhancement, i.e., S≈ 1,
whereas for small velocities, εv� 1, the Sommerfeld enhancement is given by S' π/εv. In the
most common case for s-wave annihilation this will result in an annihilation rate of σannv ∝ 1/v,
which can be understood by looking at a classical analogy. The cross section for a point particle
colliding with a star of radius R is given by σ = πR2. However, when the gravitational pull of
the star is taken into account, the cross section is enhanced by a factor (1+ v2

esc/v2), where vesc
is the escape velocity from the surface of the star (see e.g. [48] for a clear explanation). If the
velocity of the particle is smaller than the escape velocity, the annihilation rate will thus have
the same σv ∝ 1/v scaling as for the Sommerfeld effect.

In most cases however, the exchanged particle is not massless as in the Coulomb case, and
the potential is a Yukawa one: V (r) =−(α/r)e−mφ r, with mφ �m the mass of the force carrier.
Unfortunately, for a Yukawa potential it is no longer possible to find an analytical solution to
Eq. (5.51). We do, however, find that in a certain regime, the Sommerfeld factor is given by
the Coulomb one from Eq. (5.59). To see this, we expand the Yukawa potential around mφ r,
which gives us V ∼−α/r+αmφ +O(r2), and substitute this in Eq. (5.50). When αmφ �mχv2

is satisfied, we recover the Coulomb potential in the Schrödinger equation. We can therefore
safely use Eq. (5.59) even for a massive mediator, as long as ε2

v � εφ ≡ mφ/(αmχ) is satisfied.
In order to find the solution for S(v) outside this range, we need to solve the Schödinger

equation numerically. We can rewrite Eq. (5.56) for l = 0 as

d2u0

dx2 =

(
−e−x

εφ x
+
(

εv

εφ

)2
)

u0 , (5.60)

with the following boundary conditions:

u0(0) = 0 , (5.61)

u0(r) = sin
(

εv

εφ

x+δ

)
for r→ ∞ , (5.62)

where we have introduced the dimensionless quantity x ≡ mφ r. However, to numerically solve
Eq. (5.60) it is not convenient to have a boundary condition at infinity. Instead, we can solve for
a function ũ, and setting dũ/dx = 1 at x = 0 as a boundary condition instead of Eq. (5.62) (see
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[215] for a clear treatment). The asymptotic waveform then has the form ũ→ Asin
(

εv
εφ

x+δ

)
with an amplitude A that is given by

A =

√
ũ2 +

(
εφ

εv

dũ
dx

)2

. (5.63)

The solution we are looking for is then just u0 = ũ/A, such that the Sommerfeld enhancement is
given by

S(v) =
∣∣∣∣ εφ

Aεv

∣∣∣∣2 . (5.64)

In order to get a correct value of S, it is important to evaluate the wave-function ũ far enough
from the origin such that A has converged.

The result of the numerical calculation of S as a function of εφ (left) and εv (right) is shown
in Fig. 5.5. Clearly, the enhancement factor grows with decreasing εφ and εv, but what is more
striking are the resonances visible in the lefthand panel. These are induced by the finite range
of the Yukawa potential for ε2

v . εφ , and correspond to quasi bound states of the incoming pair
of annihilating particles. We can get some more insight in the behavior of these resonances by
considering the Hulthén potential

VH(r) =
αm̃e−m̃r

1− e−m̃r , (5.65)

which for m̃ = π2mφ/6 resembles the Yukawa potential the most, and has the advantage to
be analytically solvable [228, 229]. In contrary to the Yukawa case, it is possible to exactly
predict where the resonances appear, i.e.,at values of m̃ = αm/n2, where n is a positive integer.
The Sommerfeld factor for the Hulthén potential at a resonance is given by S ' εφ/ε2

v , which
corresponds nicely to the 1/v2 behavior that is observed for Yukawa resonances [229, 230].
This scaling is also visible for the solutions that are nearly on resonance (magenta and green
lines) in the right plot in Fig. 5.5: for larger values of εφ the enhancement follows the 1/v
behavior and is well described by the Coulomb solution (black, dashed line), but for εv .√εφ

this approximation is no longer valid and the enhancement grows as 1/v2.

The 1/v2 scaling would suggest, however, that the annihilation cross section could become
infinite when precisely on resonance, which is unphysical and violates the unitarity bound

σannv <
4π

m2v
, (5.66)

which arises from the partial wave solutions to the Schrödinger equation. The total scattering
cross section is given by σtot = ∑

∞
l=0 σl , with the partial cross section given by

σl =
4π

m2v2 (2l +1)sin2
δl (5.67)

where δl is the phaseshift corresponding to angular momentum l. The partial cross section for
l = 0 thus results in the bound above.
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Figure 5.5: Left: Full numerical Sommerfeld factor as a function of εφ for different values εv. It can be seen
that the enhancement factor increases for smaller values of εv and εφ . Resonances appear for specific values of εφ

and sufficiently small values of εv. Right: Plotting the Sommerfeld factor as a function of εv one can clearly see
the saturation of the factor for small enough values of εv, in contrast to the analytical solution for the Coulomb
potential (black, dashed). For large enough values of εv the numerical solution is well approximated by the Coulomb
enhancement. Off resonance (blue, yellow) the enhancement factor grows like 1/v for v→ 0, whereas on a resonance
(green) it follows a 1/v2 behavior. When the configuration is near, but not precisely on resonance, there is a transition
from 1/v to 1/v2 behavior when εv decreases (red).

In reality, the finite lifetime of the bound state, i.e., the annihilation part of the potential
Eq. (5.46) that we did not consider in our discussion above, places a limit on the magnitude of
the Sommerfeld factor such that it does not diverge as v→ 0. Considering a potential well with
a depth equal to the range of the Yukawa potential, V ′ ∝ αmφ , the annihilation rate is saturated
for [196]

v . mV ′Γ∼ αmφ mΓ , (5.68)

For annihilation into photons, the absorptive part is given by Γ = πα2/m2, such that a saturation
occurs for [230]

v . α
3 mφ

m
=⇒ εv . ε

cut,on
v ≡ α

3
εφ . (5.69)

To take this saturation into account, it is therefore advisable to use S(εv < ε
cut,on
v ) = S(εcut,on

v ).
If we are not near or exactly on a resonance, it is clear that the full numerical solution to S

does not obtain such high values for v→ 0 as in the case of a resonance. The solution therefore
saturates already for much larger velocities, as can nicely be seen in the right hand plot in
Fig. 5.5, and stays constant for [117]

εv . ε
cut,off
v ≡ 0.5εφ , (5.70)

where the numerical factor 0.5 was obtained empirically. The reason for this can be understood
if we look again at the Taylor expansion of the Yukawa potential; the total effective energy
as seen by a Coulomb-like potential, Eeff ∼ αmφ + mv2, essentially no longer depends on the
velocity in this regime.

Finally, we consider for completeness the more general case, where the annihilating particles
can exchange more than one type of force carrier in the ladder. Each will result in its own
characteristic potential that has taken into account by summing over the various contributions
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in the potential part V . Furthermore, in some models (e.g., MSSM, sneutrino DM) the DM
particle is actually composed of the lightest mass state, which is given by a specific mixing of
interaction states. In this case, it is possible for the DM to interact with the heavier mass states,
which complicates the ladder diagrams describing the Sommerfeld effect. In order to describe
these additional mixings, it is necessary to adopt a matrix version of the Schrödinger equation
as derived in 5.2.3.

Imagine a pair of annihilating DM particles described by the mass state i that transforms into a
pair of states j after exchanging a mediator particle in the t-channel, we can denote the two-body
state with the wave-function Ψi j. Furthermore, we arrange the potentials in a matrix V, where
Vi j denotes the potential that is composed of all contributions of mediators that can change the
two-body state associated with i into a state j. The Schrödinger equation now becomes a matrix
equation [198] {(

1
mi

d2

dr2 +K
)

1−V(r)
}

Ψ(r) = 0 , (5.71)

where K = miv2 is the kinetic energy of the system with v the velocity of each particle in the
center of mass system. Here we have assumed that the mass splitting δm = m j−mi > K between
the two mass states is larger than the kinetic energy, such that in practice the only available on-
shell states are the lightest mass states, i.e., the DM particles; the heavier mass states will then
only be produced virtually. Note that although Ψ(r) is presented in matrix form, it still describes
a quantum-mechanical wave-function.

The Schrödinger matrix equation will form a system of coupled Schrödinger equations, which
can be numerically solved for the wave-functions in a similar way as described above, by adopt-
ing the following boundary conditions:

dΨi j(r)
dr

= imivΨi j(r) , for r→ ∞ (5.72)

Ψi j(0) = δi j . (5.73)

The total s-wave cross section including Sommerfeld effect is then defined as [196, 198]

σivrel = ci
(

Ψ|r→∞
·Γ · Ψ†∣∣

r→∞

)
ii , (5.74)

which in component form is written as

σivrel = ci ∑
a,b

(ΨiaΓabΨ
∗
ib)|r→∞

. (5.75)

Here, Ψ(r→∞) is the wave-function solution to the coupled Schrödinger equations in Eq. (5.71)
at infinity. The coefficient ci is for normalization purposes: ci = 2 if the initial states indistin-
guishable, ci = 1 if they are distinguishable. The matrix Γ is what encodes the annihilation terms
for the different incoming and outgoing states of the box diagrams. It is related to the imaginary
part, i.e., annihilation part, of the potential (see e.g. Eq. (5.46)) by

ℑ [Vi j(r)]≡−2Γi jδ
(3)(r) , (5.76)
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for i, j = 1,2 the different two-body states. We will make use of this more general treatment in
the next chapter, where we discuss the Sommerfeld effect for sneutrino DM.

5.4 Self-Scattering

Now that we considered annihilation, we continue with the case of self-scattering, which is
explicitly allowed in particle models that include a Sommerfeld enhancement. Self-scattering in
DM models is interesting for a number of reasons; mainly it has some important consequences
for structure formation. As discussed in 4.3, numerical simulations with self-scattering DM can
produce subhalos with an inner density core and velocity profiles that are in agreement with
observations. Furthermore, the momentum transfer between the DM particles can cause the
velocity distribution to keep a Maxwellian form, even after kinetic decoupling, such that we can
easily calculate the thermal averages in the Boltzmann equations that describe the evolution of
the relic density and the WIMP temperature. Unless otherwise specified, the information in this
section was taken from [231].

The two cases of annihilation and self-scattering are very similar to one another, except that
in the latter we do not include the annihilation part but only consider the potential part, such
that our problem is again described by Eq. (5.56) and Eq. (5.57). The repeated exchange of the
force carrier now not only affects the incoming, but also the final state wave-function, such that
in principle we need to take into account all angular momentum contributions l to the total cross
section (see Eq. (5.67)).

We are, however, interested in the rate at which energy is transferred between the particles
while they scatter. This information is contained in a quantity called the transfer cross section

σT ≡
∫

dΩ (1− cosθ)
dσtot

dΩ
(5.77)

=
4π

m2v2

∞

∑
l=0

[
(2l +1)sin2

δl (5.78)

−2(l +1)sinδl sinδl+1 cos(δl+1−δl)] ,

which is a weighted average over the differential scattering cross section.
The phaseshift δl can be determined from the proper normalized wave-function (Eq. (5.57))

that is a solution to Eq. (5.56). In most cases a numerical treatment is necessary, since the force
carrier is massive and we are dealing with a Yukawa potential. In principle one would have to
solve an infinite amount of Schrödinger equations, each one with a different value of l, which
is practically impossible. Moreover, the time that it takes to numerically solve the Schrödinger
equation increases with l, such that it is useful to define a maximum number L up to which the
contributions in the sum are relevant. All contributions l > L are then neglected in the sum.

To estimate the maximum relevant angular momentum, we follow [10], and consider the mo-
mentum k of the system and the maximal impact range of the particle bmax. The latter is the
range at which the Yukawa potential is equal to the kinetic energy of the system. We expect that
for r� bmax there is hardly any scattering and therefore the contributions l > L≡ kbmax should
be negligible. For example, one can approximate Eq. (5.78) by assuming the phase-shift to be
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maximal for l ≤ L, and minimal for l > L, i.e. sin2
δl = 1 and 0 respectively. With this simpli-

fication, the total cross section becomes σmax = 4π/(m2v2)(1+L)2, whereas the expression for
σT becomes

σmin =
4π

m2v2 (1+L) . (5.79)

Numerical calculations show that the full solution lies somewhere between σmin and σmax [10].
However, this approximation is not valid in the Born regime, where either the potential is neg-
ligible (εφ � 1/2) or the velocities are sufficiently large (εv� 1), since in this case L = 0 and
δ0 ∝ αmk/m2

φ
. We can therefore only safely use Eq. (5.79) in the regime where εφ . εv� 1.

For the models we will consider in chapter 7, we are particularly interested in very small
velocities (εv � εφ ) that correspond to times long after chemical decoupling. In this case the
above approximation fails (unless we are near a resonance, which we will discuss below) and the
cross section actually becomes velocity independent. When kR� 1 is satisfied, where R = m−1

φ

is the effective range of the Yukawa potential, the phase-shift is given by

δl ∝ k2l+1 , (5.80)

such that all phaseshifts with l 6= 0 are negligible compared to δ0. We can therefore approximate
the transfer cross section as σT 'σl=0. The velocity independent effective potential cross section
is given by [231]

σ
pot ≡ σl=0(kR� 1) = 4πa2 , (5.81)

where we used that sin2
δl ' δ 2

l ≡ a2k2, and the scattering length a ∝ αm/m2
φ

is independent of
velocity.

Since the case of self-scattering is very similar to that of annihilation, resonances will appear
at the same values of εφ for low-velocity scattering. Whenever the system is close enough to a
resonance, the phase-shift δ0' ak as given by Eq. (5.80) will receive a considerable contribution
from it:

δ
res
0 = δ0 + arctan

(
Γ

E0−E

)
, (5.82)

where E0 is the energy at which the resonance, a quasi-bound state with a width Γ, appears, and
E = mv2 is the kinetic energy of the system. When the system is close enough to the resonance,
i.e., |E−E0|�Γ, the second term on the right hand side of Eq. (5.82) can no longer be neglected
as in the off-resonance case, and gives rise to an extra term in the transfer cross section

σT ' σ = σ
pot +σ

res , (5.83)

where

σ
res =

4π

k2
Γ2−2akΓ(E−E0)

(E−E0)2 +Γ2 , (5.84)

is the resonance scattering cross section [231]. In fact, Eq. (5.84) scales like 1/k2 and it is safe
to neglect σpot near a resonance. Exactly on a resonance, we have

σT ' σ
res(E = E0) =

4π

m2
χv2 , (5.85)
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which is the same as Eq. (5.79) with L = 0.
If one takes a closer look at Eq. (5.84), one sees that the resonance contribution is actually

negative for Γ/(E −E0) < 2ak. The cross section even disappears when the full phase-shift
in Eq. (5.82) becomes zero for Γ/(E −E0) = tan(ak). These so-called ‘anti-resonances’ due
to the Ramsauer-Townsend effect [232] are the result of destructive interference between the
potential and resonance scattering amplitude, cf. Eq. (5.83). Like the resonances, they only
appear for special combinations of parameters, such that in order for this case to be applicable,
a certain amount of fine-tuning of the model will be necessary. Since we are only interested in
an enhancement of the transfer cross section and certainly not a reduction, we do not take into
account the Ramsauer-Townsend effect in this work, but only note its existence.

Now that we have discussed in detail the resonance case, we need to take a critical look at the
situation when we are off-resonance. As we have seen, σpot becomes velocity independent as
v→ 0, such that we cannot use Eq. (5.79) for σT in the full velocity regime: using Eq. (5.79) for
small velocities would result in an overestimation of σT . We would like to have a conservative
estimation of σT , which will be helpful in chapter 7, where we want to compare the scattering
rate with the Hubble rate to obtain a reliable prediction of the time until when we can assume
that the velocity distribution of the WIMPs is still Maxwellian. It is therefore advisable to only
use Eq. (5.79) down to the velocity at which σT reaches the value of the asymptotic numerical
solution for σl=0(v→ 0), and keep σT constant as in Eq. (5.81) for smaller velocities. In reality,
the full numerical solution for σT is larger than σl=0(v→ 0) around the transition point, because
of the behavior of σl=0 and higher angular momentum contributions that have been neglected
here, such that this approach is rather conservative and represents a lower limit on σT .

Finally, we discuss a completely different estimation of the transfer cross section in the off-
resonance case, which has been used e.g. in numerical simulations of structure formation with
self-scattering DM [13]. Interestingly, the origin of this approximation can be traced back to
the analysis of slowly moving, highly charged particles in a plasma [11, 12]. The interaction
between these particles is described by a screened Coulomb potential, which the authors of
[11, 12] approximated with a Yukawa potential. Their studies are therefore directly applicable
to our case here, in which they found that their numerical results are well approximated by the
following self-interaction transfer cross-section:

σtr ≈


4π

m2
φ

β 2 ln(1+β−1), β . 0.1
8π

m2
φ

β 2/
(
1+1.5β 1.65

)
, 0.1 . β . 1000

π

m2
φ

(
lnβ +1− 1

2 ln−1
β
)2

, β & 1000

(5.86)

where β = παmφ/(mv2) and v is the relative velocity between the DM particles. In the con-
text of structure formation, the velocity vmax at which σtrvrel is maximal, and the size of the
transfer-cross-section at vmax: σmax

tr = 22.7/m2
φ

, are most important. We note that all different
approximations to the transfer cross section that have been discussed here agree with each other
in the intermediate velocity regime, as can be seen from Fig. 5.6 for a specific example of a DM
model; note, however, that this does not apply to the case of resonances.
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Figure 5.6: An overview of different approximations to the transfer cross section as a function of v for a model
with DM mass mχ = 1 TeV, mediator mass mφ = 1 MeV, and coupling α = 0.028. The min (blue, dashed) and max
(red, dotted) approximations from [10] are in good agreement with the approximation σtr (black) from [11, 12] in
the intermediate regime 10−7 . v . 10−1. The full cross section becomes independent of v for values v . 10−6 and
approaches the asymptotic value of σpot (purple, dashed), such that the other approximations become invalid in this
region. The conservative approach described in the text corresponds to taking σpot(v→ 0) in the low velocity regime,
and σmin for higher velocities, where the transition is defined by the intersection point between these two curves. For
completeness the transfer cross section for a resonance is shown in green.
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In this chapter we will consider a model where the DM is made up by sneutrinos, the super-
partners of ordinary neutrinos. In particular we are interested in this model because there is the
possibility of a Sommerfeld enhancement in the sneutrino annihilation cross section. After first
giving a brief introduction to the model, we will calculate the Schrödinger equation from the full
action for a simple toy model. Afterwards we will consider the more complicated calculation
for the sneutrino model, that involves two sneutrino mass states and the Higgs and Z-boson as
mediators. We will derive the analytical expressions for the potential and annihilation matrix,
discuss the results, and give an outlook on how to solve the problem numerically.

6.1 Introduction

Considering the SUSY theories, it was soon realized that the scalar superpartner of the neutrino,
i.e., the left-handed sneutrino, could be a potential DM candidate [233, 234]. Annihilation oc-
curs mainly through Z-boson exchange in the s-channel, and the correct relic density is obtained
for 600 GeV . mν̃ . 700 GeV [235]. However, the relatively large coupling of the sneutrino
with the Z boson results in large interaction rates with nuclei that can be constrained by Direct
Detection (DD) experiments [236]. The spin-independent scattering cross section per nuclei ex-
ceeds current DD limits by more than four orders of magnitude, which rule out the left-handed
sneutrino as the (dominant contribution to the) observed DM.

In order to explain neutrino oscillations and obtain a non-zero neutrino mass [237, 238],
however, the SM needs to be extended (see e.g. [239] for an overview of models with a neutrino
mass). The simplest way is to add righthanded neutrinos to the theory and a Dirac mass term. It
has not been established yet whether the neutrino is a Majorana of a Dirac particle, such that in
principle both options are still open. The most often used scenario is to assume the neutrinos are
Majorana particles and the see-saw mechanism naturally explains the smallness of the neutrino
masses [240]. This mechanism relies on the fact that right-handed neutrinos are not charged
under any SM gauge symmetries, such that their mass term can be of arbitrary value. Choosing
their mass comparable to the GUT scale, and the Dirac mass – generated by a Yukawa interaction
with the Higgs field – comparable to the weak scale, the resulting neutrino mass eigenstates will
have a small mass of the order of eV.

The SUSY extension of this model naturally includes a right-handed sneutrino, which could
serve as a possible DM candidate. The authors of [241] showed that it is possible to generate
small Dirac neutrino masses by supersymmetry breaking in the hidden sector. Unlike the MSSM,
in these models it is possible to generate a trilinear term with coupling Aν̃ that is not proportional
to the tiny Yukawa couplings. This induces a large mixing between the right-handed and left-
handed sneutrinos, which causes the right-handed sneutrino to be able to interact with SM gauge
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and Higgs bosons. Imposing R-parity makes sure the lightest supersymmetric particle (assuming
the slepton masses are much heavier than the Dirac sneutrino masses, mL̃� mÑ) is a sneutrino.
For other type of models that include a right-handed sneutrino that mixes with the left-handed
sneutrino, see e.g., [242, 243].

The coupling with the Z is in this case suppressed by a factor of sinθν̃
2, where θν̃ is the

mixing angle between the right- and left-handed sneutrino fields and can be chosen freely. It is
therefore possible to evade the stringent bounds from DD and the invisible width of the Z, which
is given by [244]

∆ΓZ =
N f

∑
i=1

Γν

sinθν̃i
4

2

(
1−
(

2mν̃i

mZ

)2
)3/2

< 2MeV , (6.1)

where Γν = 166 MeV is the partial width into one neutrino flavor, and mν̃ is the sneutrino
mass. In fact, for mν̃ & 10 GeV and (usually) sinθν̃ ∼ 0.01, the sneutrino could be a viable DM
candidate.

In [244], this model was analyzed for light DM with a mass below mν̃ < 10 GeV, motivated
by the hints for a light DM particle from DD experiments such as DAMA [59], CoGeNT [62]
and CDMS [245]. In these models the mixing angle should be large enough in order to yield the
correct relic density, but not too large in order to evade bounds from the Z invisible decay width.
A scan over the sneutrino and gaugino parameters showed that viable models are obtained in the
range mν̃ = 1−8 GeV.

Here, however, we want to focus on an entirely different part of parameter space, considering
very heavy sneutrino DM, i.e., mν̃ ∼ O(TeV)� mZ,mh. We expect that the sneutrino anni-
hilation cross section will be enhanced by the Sommerfeld effect in this mass range, since the
exchanged bosons are massive but much lighter than the sneutrinos. To be precise, the model
we consider is the one in [241, 244], i.e., the MSSM with the ususal soft breaking terms as in
Eq. (3.3), extended with

∆Lsoft = m2
Ñi
|Ñi|2 +Aν̃i L̃iÑiHu +h.c. (6.2)

where the sneutrino mass term m2
Ñi

and the trilinear coupling Aν̃i are of the weak scale and
assumed to be flavor diagonal. The sneutrino mass matrix for one generation is given by

m2
ν̃ =

(
m2

L̃
+ 1

2 m2
Z cos2β

1√
2
Aν̃vsinβ

1√
2
Aν̃vsinβ m2

Ñ

)
, (6.3)

in the (ν̃L, ν̃R) basis, where the tiny Dirac masses have been neglected. Here, v =
√

v2
1 + v2

2 =
246 GeV, where v1,2 are the Higgs vacuum expectation values, and tanβ = v2/v1 as usual (see
3.2). Whenever Aν̃ is large, a large mixing between the interaction states is induced, and the
mass eigenstates are given by

ν̃1 =−ν̃L sinθν̃ + ν̃R cosθν̃ (light) , (6.4)

ν̃2 = ν̃L sinθν̃ + ν̃R cosθν̃ (heavy) , (6.5)
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where

θν̃ =
1
2

tan−1

[ √
2Aν̃vsinβ

m2
L̃
+ 1

2 m2
Z cos2β −m2

Ñ

]
. (6.6)

∼ Aν̃vsinβ/
√

2
m2

L̃

, (6.7)

and in the last step we have assumed that mL̃� mÑ ,Aν̃ ,mZ . It follows that we have 3 new free
parameters in addition to the ones from the MSSM: Aν̃ ,θν̃ ,mν̃1 , which can be chosen in such a
way that the ν̃1 is the LSP with its mass much smaller than all other masses involved.

We have not one, but four different mediators that interact with the sneutrinos: the Z-boson
(Z), and three Higgs bosons; the SM Higgs (h), the heavier Higgs (H), and the CP odd neutral
Higgs (A). Since the annihilation cross section is important to obtain the correct relic DM
abundance, we are interested in temperatures around chemical decoupling. These are low with
respect to the masses of both A and H (O(TeV ) or higher) such that their contributions will only
be significant in relativistic interactions, and we can neglect them here.

The lightest sneutrino, ν̃1, therefore has interactions with itself, ν̃2, Z and the SM Higgs h.
The Feynman rules for the sneutrino processes include:

Zµ
ν̃
∗
1 (p′)ν̃1(p) : − i

e
sin2θW

(p+ p′)µ sinθν̃
2 , (6.8)

Zµ
ν̃
∗
2 (p′)ν̃1(p) : − i

e
sin2θW

(p+ p′)µ sinθν̃ cosθν̃ , (6.9)

Zµ
ν̃
∗
2 (p′)ν̃2(p) : − i

e
sin2θW

(p+ p′)µ cosθν̃
2 , (6.10)

hν̃
∗
1 (p′)ν̃1(p) : − i

emZ sin(α +β )
sin2θW

sinθν̃
2 + i
√

2Aν̃ cosα cosθν̃ sinθν̃ , (6.11)

hν̃
∗
2 (p′)ν̃1(p) : − i

emZ sin(α +β )
sin2θW

sinθν̃ cosθν̃ − i
1√
2

Aν̃ cosα
(
cosθν̃

2− sinθν̃
2) ,

(6.12)

where the mixing angle α was defined in Eq. (3.4). In the following we will set mA = 1 TeV
and tanβ = 10, from which it follows that cosα ∼ sin(α + β ) ∼ 1. The interactions between
the sneutrinos and bosons are given in Fig. 6.1, where we have introduced a practical shorthand
notation, where Ai j (Bi j) couples a h (Z) to an i- and j-sneutrino. Since θν̃ � 1, and Aν̃ and mZ

are of the same order of magnitude, we can approximate Eq. (6.11) with ∼ i
√

2Aν̃ sinθν̃ , and
Eq. (6.12) with ∼ −iAν̃/

√
2, such that the shorthand couplings corresponding to Fig. 6.1 are
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Figure 6.1: All possible couplings between the two sneutrino species and the h and Z boson. For clarity shorthand
notations for the couplings c.f. Eq. (6.13) - (6.17) are included.

then given by

A11 =
√

2Aν̃ sinθν̃ , (6.13)

A12 =− Aν̃√
2

, (6.14)

B11 =
e

sin2θW
sinθν̃

2 , (6.15)

B12 =
e

sin2θW
sinθν̃ cosθν̃ , (6.16)

B22 =
e

sin2θW
cosθν̃

2 . (6.17)

In the next section we will consider a simple toy model to get a feeling for the calculation
of all interaction diagrams, before continuing on to the Sommerfeld enhancement in the more
involved sneutrino model.

6.2 A scalar toy model

We consider here a toy model with heavy H and light l scalar fields, which will play the role of
the sneutrino DM particle and the Higgs boson, respectively. The Lagrangian is given by

L =
1
2

∂
µ l∂µ l− ml

2
l2 +

1
2

∂
µH∂µH− mH

2
H2− A

2
lH2 , (6.18)

where A is the coupling constant between the two H and l. In this section we will derive the
Schrödinger equation that describes the non-relativistic two-body state of the HH pair to get a
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general idea of the problem for the sneutrino model. The derivation is similar to the one shown
for the positronium in chapter 5.2. The main difference with QED is that in the toy model the
fields are scalar, such that we do not have to worry about spin statistics. Here we only show
central results; the details of the calculation can be found in Appendix section A.2, both of
which are based on [246].

As usual, the starting point is the Lagrangian from Eq. (6.18), and the first step is to integrate
out the light fields l. We do this by shifting the light field

l′(x) = l(x)− i
∫

d4yDl(x− y) j(y) , (6.19)

where Dl(x−y) is the propagator of the light field and current is here defined as j(x)≡ A
2 H2(x).

Following the steps as in 5.2.2 is straightforward, and we find that the effective Lagrangian is
given by

Seff[H] =
∫

d4x
[

1
2

∂
µH∂µH +

m2
H

2
H2
]
+

i
2

∫
d4xd4y j(x)Dl(x− y) j(y) . (6.20)

Integrating out the relativistic parts of the heavy fields is very similar to what we have done
in 5.2.2. The non-relativistic regime is defined as in Eq. (5.26), and the fields are split up in
a non-relativistic and relativistic part in momentum space in the same fashion. Expanding all
terms in the effective action, we find that the interaction term with only non-relativistic fields
gives the potential term equivalent to Eq. (5.31):

Spot[HNR] = i
A2

8

∫
d4xd4yH2

NR(x)Dl(x− y)H2
NR(y) , (6.21)

which corresponds to the diagram on the left in Fig. 6.2.
Concentrating on the box diagram from which we will derive the heavy scalar annihilation

into light fields, we obtain the annihilation action

Sann[HNR] =−i
A4

8

∫
d4xd4yd4zd4w[

HNR(x)Dl(x− y)HNR(y)DR
H(y− z)HNR(z)Dl(z−w)HNR(w)DR

H(w− x)

+HNR(x)Dl(x− y)HNR(y)DR
H(y−w)HNR(w)Dl(w− z)HNR(z)DR

H(z− x)
]
,

(6.22)

where the two different terms again correspond to t-channel (shown in Fig. 6.2 on the right) and
u-channel box diagrams as for the positronium case (see Eq. (5.29)). The details of the derivation
are summarized in Appendix section A.2.

In order to perform the non-relativistic expansion of the action, we need to derive the correct
normalization of the heavy field, which is done by looking at the kinetic terms. We find that the
non-relativistic H-field should have the form

HNR(x) =
1√

2mH

[
φ(x)e−imH t +φ

†(x)eimH t] , (6.23)
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l

HNR
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HNR
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HNR

HNR

HNR

HNR

HRHR
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p1

p3

p4

k2

k1 k3

k4

p2

l

Figure 6.2: On the left, the potential diagram with light scalar (red) exchange between the heavy scalars (blue) in
the t-channel. On the right, the box diagram is shown that relates to the annihilation of two h into two l by cutting
the diagram along the black dashed line. The arrows denote the direction of momentum.

where the phases are just a convention and not physical. It must be understood that φ †(x) creates
a heavy field and φ(x) annihilates one at x.

For the potential term we need to consider the non-relativistic expansion of the product
H2

NR(x). Since we are interested in the t-channel diagram, we can ignore the terms proportional
to φ †

x φ †
x (two outgoing heavy fields created at x) and φxφx (two incoming heavy fields annihilated

at x). The contributions φxφ †
x and φ †

x φx are actually the same, since the fields are scalar and the
ordering is irrelevant. After some algebra we obtain

Spot =
A2

8m2
H

∫
d4xd4y

δ (x0− y0)e−ml(x−y)

4π|x−y|
(
φ

†
φ
)

x

(
φ

†
φ
)

y . (6.24)

As expected, the action now includes a Yukawa potential since the force carrier l is massive.
Furthermore we can see that the sign in front of the potential is positive and therefore attracting,
i.e., this will give an enhancement of the annihilation cross section. The fields should be reshuf-
fled as to correspond to a scalaronium state,

(
φ †

x φ †
y
)
(φxφy), where the right hand annihilates a

spin-0 scalaronium state and the left hand creates one.

Finally, we have to do the same for the annihilation term given in Eq. (6.22), which requires a
bit more work. In order to derive the annihilation term, we calculate the box diagram and apply
the optical theorem. Here, we quote the final result:

Sann = i
3A4

1024πm6
H

∫
d4x
(
φ(x)φ †(x)

)2

√
1− m2

l
m2

H

1− m4
l

4m4
H

, (6.25)

and point the reader to Appendix section A.2 for the full calculation.

The two-body action is obtained in the same way as for the positronium state by introducing
auxiliary fields and we can therefore closely follow the derivation as discussed in 5.2.3. After
carefully noting the subtleties, we end up with exactly the same expression as in Eq. (5.41), but
with a slightly different form of V . The equations of motion result in a Schrödinger equation
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exactly as in Eq. (5.47), but now with the potential given by

V (r) =− A2

16πm2
H

e−mlr

r
− i

3
512π

A4

m6
H

√
1− m2

l
m2

H

1− m4
l

4m4
H

δ
(3)(r) , (6.26)

where in the first term we recognize the Yukawa potential as a function of the light mass ml , and
the second term represents the annihilation.

6.3 Sommerfeld effect for right-handed sneutrino Dark Matter

Now that we have warmed up with the simple example of the toy model, it is time to consider the
more involved sneutrino model. Here, it is necessary to adopt the matrix approach as introduced
in section 5.3, since there is a mixing present between the two sneutrino mass states. Although
the DM is composed of the lightest sneutrino, ν̃1, there is also the slightly heavier sneutrino ν̃2
that plays a role in the ladders. For example, an incoming pair of light sneutrinos could change
into a pair of heavy sneutrinos after exchanging a Z or h, or vica versa. Denoting the pair of ν̃1ν̃∗1
with the index 1, and a pair of ν̃2ν̃∗2 with 2, we can denote the two-body state with an incoming
pair i and outgoing (i.e. before annihilating) pair j with the matrix element Ψi j. The wave-
function for the sneutrino annihilation is then described by a system of coupled Schrödinger
equations as introduced in Eq. (5.71), where the potential Vi j includes both the contributions of
h and Z exchange between states i and j. The annihilation matrix Γi j is related to the imaginary
part of the box diagrams with initial state i and final state j cf. Eq. (5.76), from which one can
calculate the annihilation cross section using Eq. (5.75). This section is therefore divided into
two parts: first we concentrate on the ladder diagrams that give the actual enhancement, second
we have a look at the annihilation of the sneutrinos.

6.3.1 Potential term

Here we calculate the potential term for the sneutrino model in a general way, which means that
we do not explicitly define the sneutrinos by its index 1 or 2. In this way, we can use the results
for all four possible interactions between the different two body states. In order to keep the
notation simple and clear, we also define new couplings A and B, which later can be exchanged
by the real couplings from the Lagrangian introduced in 6.1. Our Lagrangian then takes the
form:

Leff = (∂ µ
ν̃)
(
∂µ ν̃

∗)−m2
ν̃ ν̃ ν̃

∗+
1
2

(∂ µh)
(
∂µh
)− 1

2
m2

hh2

− 1
2

Zµ

(
∂

2gµν −∂
µ

∂
ν
)

Zν − 1
2

m2
ZZµZµ −Ahν̃ ν̃

∗−BZµ ν̃
∗←→
∂

µ
ν̃ , (6.27)

where the last two terms describe the interactions between the sneutrino and the h and Z, respec-
tively, and ν̃∗

←→
∂ µ ν̃ ≡ ν̃∗ (∂ µ ν̃)− (∂ µ ν̃∗) ν̃ . Note that the coupling A has mass dimension 1, and

B is dimensionless, which corresponds to the couplings as defined in Eqs. (6.13) – (6.17). We
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6 Right-handed sneutrino Dark Matter

adopt here the unitarity gauge (ξ → ∞) for simplicity, such that ghost particles disappear.

We proceed according to the method described in subsection 5.2.2 to obtain the non-relativi-
stic action. After integrating out the Higgs and Z-boson field, we are left with

Seff =
∫

d4x iν̃∗x D−1
ν̃

(x)ν̃x

+ i
A2

2

∫
d4xd4y (ν̃∗x ν̃x)Dh(x− y)

(
ν̃
∗
y ν̃y
)

− i
B2

2

∫
d4xd4y

(
ν̃
∗
x
←→
∂

µ
ν̃x

)
DZ,µν(x− y)

(
ν̃
∗
y
←→
∂

ν
ν̃y

)
, (6.28)

where we have defined the propagators and their inverse as

Di(x) =
∫ d4 p

(2π)4
ie−ipx

p2−m2
i + iε

, with i = ν̃ ,h , (6.29)

D−1
i (x) = i

(
∂

2
x +m2

i
)

, (6.30)

DZ,µν(x) =
∫ d4 p

(2π)4
−ie−ipx

p2−m2
i + iε

(
gµν − pµ pν

m2
Z

)
, (6.31)

D−1
Z,µν

(x) =−i
(
∂

2
x gµν −∂

µ
x ∂

ν
x +m2

Zgµν
)

. (6.32)

This means that the propagators obey D−1
i (x)Di(x− y) = δ (4)(x− y), and in the same way

D−1
Z,µν

(x)Dαβ

Z (x− y) = δ α
µ δ

β

ν δ (4)(x− y).

After integrating out the relativistic fields, the potential term takes a similar form as in (A.2),
except that now we have one term for each mediator:

iSh,pot =−A2

2

∫
d4xd4y (ν̃∗x ν̃x)Dh(x− y)

(
ν̃
∗
y ν̃y
)

, (6.33)

iSZ,pot =
B2

2

∫
d4xd4y

(
ν̃
∗
x
←→
∂

µ
ν̃x

)
DZ,µν(x− y)

(
ν̃
∗
y
←→
∂

ν
ν̃y

)
, (6.34)

where the NR-subscripts have been omitted for clarity, but it is understood that all fields are
non-relativistic (as defined in Eq. (5.26)). Their non-relativistic expansion results in

ν̃NR(x) =
1√
2mν̃

[
axe−imx0

+b∗xeimx0
]

, (6.35)

where now ax annihilates a sneutrino and b∗x creates an anti-sneutrino at x. After the non-
relativistic expansion of Eq. (6.33) and Eq. (6.34), we are only interested in terms that describe
t-channel ν̃ ν̃∗ scattering, i.e., combinations ax1a∗x1b∗x2bx2. We find that for the Higgs potential,
ν̃∗x ν̃xν̃∗y ν̃y gives two of such terms, which makes the total factor in front 1/(2m2

ν̃
). For the Z it is

slightly more complicated, since we are dealing with a derivative that works in two directions.
One can show that ν̃∗

←→
∂ µ ν̃ = i(bb∗−aa∗), such that in the end, we have two aa∗bb∗ terms in the

potential term.
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i = 1, 2; j = 1, 2i = 1; j = 1, 2
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Figure 6.3: Diagrams that contribute to the potential matrix for h (left) and Z (right). Note that the Higgs boson
does not mediate ν̃2ν̃∗2 → ν̃2ν̃∗2 scattering (see Eqs. (6.13) – (6.17)), such that the diagram corresponding to V h

22 does
not exist.

Following the same steps as described for the positronium, we finally arrive at

Spot =
1
2

∫
d(xy)(axb∗x)

[
A2

8πm2
ν̃

e−mh|x−y|

|x−y| +
B2

2π

e−mZ |x−y|

|x−y|

](
a∗yby

)
. (6.36)

Since we know that the term inside the square brackets is exactly the potential V (r) with r =
|x−y| for the scattering of ν̃∗ν̃ , it is now straightforward to derive all matrix elements in V(r)
for the various two-body states of the sneutrino model, by substituting A and B according to the
couplings as defined in Eqs. (6.13) – (6.17). Here we must be careful to include combinatorial
factors that arise from the two-body states. For each initial or final two-body state, a factor of

1√
2

should be included in the final potential when the two particles are indistinguishable. Since
the two-body states here consist of a sneutrino and anti-sneutrino that are Majorana particles,
the total factor for each t-channel diagram is 1

2 .

The possible diagrams for sneutrino scattering in the t-channel are depicted in Fig. 6.3, where
interactions with the Higgs and Z-boson are shown on the left and right, respectively. Note that
the Higgs does not mediate scattering between ν̃∗2 ν̃2→ ν̃∗2 ν̃2 because the coupling A22 describing
this process is zero (see also Eqs. (6.13) – (6.17)). Splitting up the contributions from h and Z,
the potential due to the former is given by

Vh(r)'−αν̃e−mhr

2r

(
sin2

θν̃
1
4

1
4 0

)
, (6.37)

where we have introduced the shorthand notation αν̃ ≡ A2
ν̃
/(4πm2

ν̃
). As expected, V h

22 = 0 and
the other diagonal term, corresponding to scattering of ν̃∗1 ν̃1→ ν̃∗1 ν̃1 through a Higgs, can only
occur when electroweak symmetry is broken, i.e. v 6= 0 or in other words θν̃ 6= 0. Even then,
this process is suppressed by sin2

θν̃ with respect to the sneutrino changing scatterings, meaning
that only the mixed terms give a significant contribution.
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For the Z-boson potential we derive

VZ(r) =− αe−mZr

sin2 2θW r

(
sin4

θν̃ cos2 θν̃ sin2
θν̃

cos2 θν̃ sin2
θν̃ cos4 θν̃

)
. (6.38)

Here, the dominant contribution comes from VZ
22. For all other processes to occur, again elec-

troweak symmetry breaking effects are necessary.

6.3.2 Annihilation term

In order to determine the annihilation matrix for the sneutrino DM, we have to calculate the box
diagrams for all possible incoming and outgoing two-body states. The diagonal elements are
given by the box diagrams which have the same incoming as outgoing two-body state; i.e., they
correspond to the annihilation diagram of the incoming particles to the intermediate states under
consideration. However, there exist also box diagrams that have the desired intermediate states,
but a different incoming as outgoing state, which we also have to take into account.

As for the potential matrix, we use the effective Lagrangian given in Eq. (6.27). First we
consider the box diagram with the intermediate states being two Higgs bosons. Since they are
scalar particles, like the light particles l considered in the toy model calculation of the box
diagram in Appendix section A.2, we can (almost) directly adopt the result for the toy model
annihilation action quoted in Eq. (A.82). We redefine the heavy and light masses to mh →
mν̃ and ml → mh, respectively, and we have to substitute the coupling A→ 2A because of the
different normalization factor in the Lagrangian. The product of (ν̃∗ν̃)2 is calculated according
to Eq. (6.3.1), and as mentioned before, this gives aa∗b∗b/(2m2

ν̃
).

Since in this model we are dealing with two different sneutrinos that have a slightly different
mass, it is convenient to keep track of all sneutrinos during the calculation of the box diagram.
We therefore denote the masses of the initial sneutrinos with subscript i and final state with
f , since we know that for the off-diagonal elements we have to include diagrams where these
are not the same states. The same holds for the virtual, relativistic sneutrinos, which we keep
track of with the indices R, i for the initial and R, f for the final one. This will be important for
diagrams where the initial two-body state interacts with a different sneutrino in the t-channel

(ν̃R,f)(ν̃R,i)

ν̃∗
i

ν̃f

ν̃fν̃i

h

hx1

x4x3

x2
p1

p2

p3

p4

k1

k2

k3

k4
(ν̃R,f)(ν̃R,i)

ν̃∗
i

ν̃f

ν̃fν̃i

Zαβ

Zµν
xµ

1

xβ
4xα

3

xν
2

p1

p2

p3

p4

k1

k2

k3

k4

Figure 6.4: Box diagram for higgs (left) and Z-boson (right) intermediate states. All initial, final and relativistic
states are indicated with corresponding subscripts, and the direction of the momenta are indicated with arrows. The
box diagrams are cut along the dashed line.
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(see also Fig. 6.4).
After carefully denoting the different states and implementing the substitutions for the sneu-

trino model we arrive at

Sh
ann = i

(A/mν̃ ,i)
4

2048πmν̃ ,imν̃ , f

∫
d4x
[
ai(x)a∗i (x)b

∗
f (x)b f (x)+a f (x)a∗f (x)b

∗
i (x)bi(x)

]×√
1− m2

h

m2
ν̃ ,i

(
1− m2

h

2m2
ν̃ ,i
− ∆i

2m2
ν̃ ,i

)−1(
1+

m2
h

2m2
ν̃ ,i

+
∆ f

2m2
ν̃ ,i

)−1

, (6.39)

where we have introduced ∆n = (m2
ν̃ ,n−m2

ν̃ ,R,n). It can be seen that this rather complicated
result simplifies to the toy model result – apart from the necessary substitutions for the involved
sneutrino and Z fields, masses and couplings – when one assumes that the initial and final states
are the same, and if the relativistic states are the same as the in- or outgoing ones, i.e. ∆i = ∆ f =
0. The imaginary part of the potential is correspondingly given by

ℑ

[
V h(r)

]
=−ci f (A/mν̃ ,i)

4
δ (3)(r)

1024πmν̃ ,imν̃ , f

√
1− m2

h

m2
ν̃ ,i
×(

1− m2
h

2m2
ν̃ ,i
− ∆i

2m2
ν̃ ,i

)−1(
1+

m2
h

2m2
ν̃ ,i

+
∆ f

2m2
ν̃ ,i

)−1

, (6.40)

where the coefficient ci f = 2 for equal initial and final states, and ci f = 1 for i 6= f .
The calculation of the box diagram of the Z-boson requires a little bit more work, and can be

found in Appendix subsection A.3.1. As can be seen from Eq. (A.99), the result resembles the
one obtained for the Higgs, except for an additional factor. The resulting imaginary part of the
potential due to annihilation into two Z-bosons is

ℑ
[
V Z(r)

]
=− ci f B4δ (3)(r)

64πmν̃ ,imν̃ , f

(
mν̃ ,i

mZ

)4

×(
1− m2

Z

m2
ν̃ ,i

)5/2(
1− m2

Z

2m2
ν̃ ,i
− ∆i

2m2
ν̃ ,i

)−1(
1+

m2
Z

2m2
ν̃ ,i

+
∆ f

2m2
ν̃ ,i

)−1

. (6.41)

Finally, we could also have a box diagram with one Higgs and one Z-boson. Here one should
be careful to consider the u- and t-channel box diagram separately, since it follows that they
differ by a factor −1 in the leading order approximation such that they cancel each other out.
In the t-channel diagram the Z couples to two (anti-)sneutrinos, but in the u-channel it couples
to one anti- and one sneutrino. Setting the momenta just as indicated in the right diagram in
Fig. 6.4, one finds that the derivative that comes from the Z-boson coupling, ν̃∗

←→
∂ µ ν̃ , will give

an extra minus sign in the u-channel case. One should keep in mind, though, that annihilation
into one h and one Z is merely suppressed; higher order terms will not exactly cancel each other
out. Here, however, the tree level approximation is sufficient and we can safely neglect the
annihilation into mixed states.

By using Eq. (5.76) we can now derive the annihilation matrix from the (imaginary) potentials
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Figure 6.5: All box diagrams that correspond to annihilation to hh, ordened according to the matrix element to
which they belong. The fact that A22 = 0 restricts the total number of box diagrams to nine.

that are shown above. As mentioned before, the diagonal elements of the annihilation matrix Γii

are given by box diagrams with the same incoming as outgoing states, that are simply related to
the annihilation of the particular sneutrino pair ν̃iν̃

∗
i into hh or ZZ. The off-diagonal terms Γi j,

however, correspond to box diagrams that have different in- and outgoing states ν̃iν̃
∗
i → ν̃ jν̃

∗
j .

For each matrix element (either diagonal or off-diagonal) Γi j, we must take into account all
possible diagrams that have the corresponding initial ν̃iν̃

∗
i and final ν̃ jν̃

∗
j states. Since the two

different sneutrino states can couple to each other, in some cases this gives rise to a number
of diagrams that only differ by the relativistic virtual sneutrino that is mediated by the in- and
outgoing sneutrinos. All possibilities should be taken into account by summing the different
diagrams for each matrix element.

We will clarify this procedure with an example. In the matrix for annihilation into two Higgs
bosons, the diagonal term Γh

11 contains all possible box diagrams with in- and outgoing ν̃1ν̃∗1
states and intermediate hh. As we can see from Fig. 6.5, there are four possibile diagrams that
need to be taken into account, since the initial and final sneutrino-pair can mediate either a ν̃1 or
ν̃2. If we consider Γh

22, which corresponds to ν̃2ν̃∗2 → ν̃2ν̃∗2 , we see from Fig. 6.5 that only one
diagram exists. The reason for this is that there is no hν̃∗2 ν̃2 coupling, and therefore the ν̃2ν̃∗2 pair
can only interact via ν̃1 exchange. All possible diagrams for sneutrino annihilation into hh are
given in Fig. 6.5, which amounts to a total of nine diagrams. For annihilation into Z-bosons the
allowed diagrams are much simpler determined because the Z mediates interactions between all
possible sneutrino states, as shown in Fig. 6.6.

The expression for one diagram is obtained by combining Eq. (5.76) with either Eq. (6.40) in
case of annihilation into two Higgs bosons, or Eq. (6.41) for annihilation into two Z-bosons. In
these equations we need to replace the couplings, which can be read off from the diagrams in
Fig. 6.5 and Fig. 6.6, with the correct ones given by Eqs. (6.13) – (6.17). Furthermore, we need
to make sure that we substitute the correct fields and masses for the different sneutrino states,
i.e. reinstate the subscripts 1 and 2. Finally, we should take into account the same combinatorial
factors arising from the initial and final two-body states as discussed for the potential matrix
elements, which amount to (1/

√
2)2 = 1/2 for each box diagram.

After having done this tedious task, we arrive at the full expressions for the annihilation
matrices. Since they are rather lengthy, they are summarized in Appendix subsection A.3.2.
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Figure 6.6: All sixteen box diagrams that correspond to annihilation to ZZ. Each matrix element ΓZ
i j contains the

sum of four possible diagrams which differ by the virtual sneutrino states l,k exchanged in the t-channel.

Here, to get a feeling for the full solutions, we consider the results in the case of electroweak
symmetry, i.e. θν̃ → 0, for which the expressions become considerably shorter. For annihilation
into hh, we obtain the following matrix elements:

Γ
h
11
∣∣
θν̃→0 =

A4
ν̃

2048πm2
ν̃ ,1

√
1− m2

h

m2
ν̃ ,1

× (−δm4−4mν̃ ,1
(
δm3 +δm2mν̃ ,1−m3

ν̃ ,1
)
+2δm(δm+2mν̃ ,1)m2

h−m4
h
)−1

,

(6.42)

Γ
h
12
∣∣
θν̃→0 =

A4
ν̃

4096πmν̃ ,1 (δm+mν̃ ,1)

√
1− m2

h

m2
ν̃ ,1

× ((δm2 +2mν̃ ,1 (δm+mν̃ ,1)
) 2−m4

h
)−1

, (6.43)

Γ
h
21
∣∣
θν̃→0 =

A4
ν̃

4096πmν̃ ,1 (δm+mν̃ ,1)

√
1− m2

h
(δm+mν̃ ,1) 2

× ((δm2 +2mν̃ ,1 (δm+mν̃ ,1)
) 2−m4

h
)−1

, (6.44)

Γ
h
22
∣∣
θν̃→0 =

A4
ν̃

2048π (δm+mν̃ ,1) 2

√
1− m2

h
(δm+mν̃ ,1) 2

× (δm2 +2mν̃ ,1 (δm+mν̃ ,1)−m2
h
)−1 (

3δm2 +2mν̃ ,1 (3δm+mν̃ ,1)+m2
h
)−1

.
(6.45)

Here, we have replaced the mass of the heavier sneutrino by mν̃ ,1 + δm, where δm is the mass
difference between the two sneutrinos. In the special case that the two sneutrinos are degenerate
in mass, i.e. δm = 0, all Higgs matrix elements reduce to

Γ
h
i j

∣∣
θν̃→0,δm=0 =

A4
ν̃

2048πm2
ν̃ ,1

√
1− m2

h

m2
ν̃ ,1

(
4m4

ν̃ ,1−m4
h
)−1

, (6.46)

except for an additional factor 1
2 for the off-diagonal elements. We would therefore expect that

for small δm, the full results for different Γh
i j are very similar to each other.
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Figure 6.7: Full solutions for the hh annihilation matrix elements as a function of the lightest sneutrino mass ν̃1
and the mass difference between the two sneutrino generations δm. Values of Aν̃ = 100 and mL̃ = 1 TeV were used
throughout the calculation. It can be seen that all box diagrams give rather similar contributions for small mass
differences.

Considering the results for ZZ in the same approximation, annihilation into two Z-bosons can
only occur through a ν̃2ν̃∗2 interaction:

Γ
Z
22
∣∣
θν̃→0 =

πα2 (δm+mν̃ ,1) 2

2sin4 2θW m4
Z

√
1− m2

Z
(δm+mν̃ ,1) 2

(
(δm+mν̃ ,1) 2−m2

Z
)

2(
4(δm+mν̃ ,1) 4−m4

Z

) , (6.47)

all other matrix elements, ΓZ
11 = ΓZ

12 = ΓZ
21 = 0, disappear. This would suggest that a ν̃2ν̃∗2 final

state in the ladder is most probable before annihilation into two Z-bosons.
In Fig. 6.7 and Fig. 6.8 we have plotted the full results for the annihilation matrices in a con-

tour plot as a function of the lightest sneutrino mass and the mass difference. For the sneutrino
mixing angle we used Eq. (6.7), where we set mL̃ = 1 TeV and Aν̃ = 100 GeV. In these graphs
we have excluded the region where δm > mν̃ ,1, because in general we assume that the mass
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Figure 6.8: Contour plots showing full solutions for the ZZ annihilation matrix elements as a function of the lightest
sneutrino mass ν̃1 and the mass difference between the two sneutrino generations δm. A mixing angle θν̃ was used
with mL̃ = 1 TeV and Aν̃ = 100. ΓZ

22 is dominant since no electroweak symmetry breaking effects are neccesary for
this process to occur.

difference is smaller than the lightest sneutrino mass.
For annihilation into hh, the results are almost identical to the ones for θν̃ = 0 (graphs not

included), which tells us that this approximation is quite reliable. It can be seen from Fig. 6.7
that for small δm all matrix elements are very similar, which we would have expected from the
electroweak symmetry approximation. The various matrix elements only start to differ from
each other for large δm. Furthermore we see that the closer the lightest sneutrino and the h are
in mass, the larger the probability for annihilation into Higgs bosons becomes.

For annihilation into two Z-bosons there is more difference between the various matrix ele-
ments. It can clearly be seen that the 22 element gives the largest contribution and the other
three elements are suppressed, as expected from the θν̃ = 0 approximation. All matrix elements
grow with increasing mν̃ ,1, in contrary to the Higgs results. As expected, the element 11 is the
most suppressed, and the two mixed elements are of the same order of magnitude.
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6.4 Conclusions and discussion

In this chapter we have considered sneutrino DM in the (multi-)TeV range, where the annihila-
tion cross section receives an enhancement due to the Sommerfeld effect. Dealing with scalar
DM particles simplified our calculation in the sense that we did not have to deal with spin
statistics. As a warming up exercise we showed how to derive the Schrödinger equation from
a simple toy model Lagrangian. The results proved useful in the derivation of the annihilation
cross section of sneutrinos.

Since there are two sneutrinos mass states which can interact with themselves and each other,
it is necessary to solve a matrix Schrödinger equation for the wave-function that includes all
possible in- and outgoing states. Similarly, the potential matrix encodes the possible t-channel
interactions between the various states. Here we took care to include all possible mediators,
which in this case consist of the SM Higgs and a Z-boson, by adding their contributions in
the potential matrix. In the ladder diagrams, we found that the most important contributions
come from sneutrino changing interactions mediated by a Higgs, and heavy sneutrino scattering
mediated by the Z. Since the mass of ν̃2 is larger than the kinetic energy of the bound state, the
latter interactions only take place with virtual heavy sneutrino states.

To obtain the annihilation cross section, we used the optical theorem to calculate the box di-
agram contributions. Here we adopted an effective Lagrangian with a general sneutrino field,
coupling and mass to simplify the calculation, such that we could obtain the desired results by
substituting the relevant sneutrino mass states in the final step. We then calculated the annihi-
lation matrix by adding all possible diagrams with same initial and final states for each matrix
element. Annihilation matrix elements that need electroweak symmetry breaking effects showed
a suppression with respect to the other elements. In the symmetric approximation, the results for
the annihilation into hh showed good agreeement with the full solutions. For annihilation into
ZZ, the matrix element corresponding to ν̃2ν̃∗2 → ν̃2ν̃∗2 gives the most important contribution.

We have shown here the full analytical treatment; the obvious continuation of this work is to
implement the expressions of this chapter into a program and solve them numerically. First, one
would need to find a solution for the wave-function elements by solving the system of coupled
Schrödinger equations with the given boundary conditions. For instance, it is possible to find
public algorithms to tackle these kind of differential equations in Fortran. Once the solutions for
the wave-functions have been obtained, they can be combined with the annihilation matrices as
described earlier in this chapter, to obtain the Sommerfeld enhanced annihilation cross section
for sneutrino DM. If there are resonances in the cross section due to the Sommerfeld effect,
including the annihilation part will cause these resonances to have a finite value.

Then, one can use the obtained annihilation cross sections in the Boltzmann equations to
calculate the relic abundance of DM. Since this has to agree with the value that is measured
today, we can eliminate one free parameter of the sneutrino model in this way. As we will learn
in the next chapter, standard calculations of the relic density can give very wrong results when
dealing with Sommerfeld enhanced DM. Therefore we advocate to only use the approach as
explained in detail in chapter 7 for sneutrino DM. Finally, one could use the enhanced cross
sections to obtain the expected flux of SM particles today from DM annihilations. Comparing
this to current observational limits, one could place constraints on the remaining free parameters
of the sneutrino model.
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6.4 Conclusions and discussion

In conclusion, heavy TeV right-handed sneutrinos are interesting DM candidates that annihi-
late through a Sommerfeld enhanced cross section. It would be interesting to see how large the
enhancement factor actually is, and to find out whether these heavy sneutrinos are viable DM
candidates. For this, however, additional numerical analyses are necessary.

89
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enhanced Dark Matter

In this chapter we will revisit the thermal evolution of WIMPs in the early universe, in particular
for models with a velocity dependent enhancement of the annihilation cross section, e.g., the
Sommerfeld effect. In these cases, chemical and kinetic decoupling are not separate processes
but can have a large influence on each other. We introduce a simple leptophilic model for il-
lustration purposes, and discuss in detail the differences between our approach and the standard
thermal decoupling scenario. We perform a full analysis over the parameter space of our model,
where we distinguish between the Sommerfeld enhancement being not near a resonance (off
resonance), and being exactly on a resonance. For more details see [1], in which the results
discussed in this chapter were published.

7.1 Interplay between chemical and kinetic decoupling

The standard calculation of thermal evolution of DM assumes chemical and kinetic decoupling
are two processes that can be viewed separately from each other. The reason for this is that they
happen on completely different timescales; Tcd ∼ mχ/25� Tkd. However, in the case that the
DM model allows the annihilation cross section to be enlarged by the Sommerfeld enhancement
this is no longer true.

As we have seen in Chapter 5, the Sommerfeld enhancement factor depends on the inverse
of the DM velocity (or squared inverse for resonances). At the time of chemical decoupling the
temperature of the WIMPs is still too high for this enhancement effect to make a difference.
However, as the Universe expands, the WIMPs cool down until at some point the enhancement
factor becomes non-negligible. This means it would be possible even after chemical decoupling
for the annihilation cross section to become large enough to restart the depletion of the DM
abundance.

Not only could this have a large impact on the final relic density (depending on how large the
enhancement factor can become), it can also affect the thermal distribution of the WIMPs after
kinetic decoupling. When annihilations take place because of the Sommerfeld effect, the DM
particles with the lowest velocity are likely to disappear first, which would cause an increase
of the average WIMP temperature. As a result, the velocity dispersion could be quite different
for Sommerfeld enhanced models than in the standard scenario, where the asymptotic WIMP
temperature is set by kinetic decoupling. As explained in subsection 4.1.2, this temperature can
be related to a cutoff in the power spectrum, such that we need to take this affect into account
when calculating the size of the first protohalos.

We can make this claim more qualitative by looking at the Boltzmann equation for the relic
density as derived in Eq. (3.19). In the standard case where xkd� xcd, the equilibrium solution
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for the relic density Yeq is negligible with respect to the relic density around kinetic decoupling,
such that righthand factor in Eq. (3.19) can be neglected. By multiplying both sides with −Y−1,
the solution can be written as

Y (x)−1 = Y (xi)−1 +
∫ x

xi

(
1− x

3
g′∗S
g∗S

)
s〈σvrel〉

Hx
dx . (7.1)

During radiation domination we can replace the Hubble parameter with

Hr =
2π2/3

mPl

√
geff

45
T 2 , (7.2)

and furthermore we use Eq. (2.15) for the entropy density. For the annihilation rate we assume a
simple power law σvrel = σ0v2n, such that when using Eq. (3.16) to calculate the thermal average,
we arrive at 〈σvrel〉 ' σ̃0x−n, where σ̃0 ≡ 2σ0√

π
Γ
(
n+ 3

2

)
. This allows us to write Eq. (7.1) as

Y (x)−1−Y (xi)−1 = λ

∫ x

xi

dxx−(n+2) , (7.3)

which can of course easily be solved. Here we introduced

λ ≡ g∗S√
geff

(
1− x

3
g′∗S
g∗S

)√
π

45
mPlmχ σ̃0 , (7.4)

which is assumed to be a constant1.

To be precise, we have to include the effect of kinetic decoupling on the velocity of the
WIMPs. As discussed in section 3.4, the WIMP temperature before and after kinetic decou-
pling can roughly be approximated by

Tχ =
{

T , for T > Tkd
T 2/Tkd , for T ≤ Tkd

, (7.5)

where T is the temperature of the heat bath. The velocity and temperature of the WIMPs are
related by v' p/mχ ∝

√
Tχ/mχ , such that we can estimate the velocity before and after kinetic

decoupling as v ∝ x−1/2 and v ∝ x−1, respectively. In this way we can express the effect of
kinetic decoupling on the annihilation rate as 〈σvrel〉 ∝ x−ñ, where

ñ =
{

n forx . xkd
2n forx & xkd

. (7.6)

1The effective degrees of freedom geff and entropy degrees of freedom g∗S depend on the number of relativistic
particle species in the Universe, which means that in principle they are functions of the temperature. It is safe
here, however, to assume they are constant, since chemical decoupling happens long before the QCD phase
transition at ∼ 170 MeV [247]
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We thus replace n→ ñ in Eq. (7.3) such that we get

Y (x)−1−Y (xi)−1 ' λ

{
1

1+ñ

(
1

x1+ñ
i
− 1

x1+ñ

)
for ñ 6=−1

ln(x/xi) for ñ =−1
. (7.7)

This approximation tells us that for x > xi, the relic density can only change by a large amount in
the case that ñ≤−1. In the standard WIMP scenario with s-wave annihilation one has n = ñ = 0,
such that there is no possibility for the relic abundance to change significantly after freeze out.
Annihilation with higher partial waves, like p-waves with n = 1, are even more suppressed. This
is in agreement with the standard calculation of the relic density where one assumes Y ′ = 0 after
chemical decoupling (see section 3.4 for more details).

However, in the case that we are dealing with Sommerfeld enhanced DM, the situation is
entirely different. Assuming s-wave annihilation with an enhancement factor S ∝ v−1, the anni-
hilation rate scales with n = −1/2, which implies ñ = −1 after kinetic decoupling. From this
it follows that there may exist a new era of annihilations that decreases the relic density after
the usual freeze-out [248]. In the case that the Sommerfeld enhancement is resonant, we would
even have 〈σvrel〉 ∝ v−2, such that the decrease in Y after kinetic decoupling would even be
larger with ñ =−2. This would also imply that the annihilation rate is important already before
kinetic decoupling when ñ =−1.

Now that we have sketched the intertwined nature of chemical and kinetic decoupling for
Sommerfeld enhanced DM models, the question is how to correctly take it into account when
calculating the thermal evolution. It was realized that the Boltzmann equations (3.19) and (3.24)
that we derived earlier are actually coupled as follows [1]

Y ′

Y
=−

1− x
3

g′∗S
g∗S

Hx
sY 〈σvrel〉|x=m2

χ/(s2/3y)

(
1− Y 2

eq

Y 2

)
(7.8)

y′

y
=−

1− x
3

g′∗S
g∗S

Hx

[
2mχc(T )

(
1− yeq

y

)
− sY

(
〈σvrel〉−〈σvrel〉2

)
x=m2

χ/(s2/3y)

]
. (7.9)

The WIMP temperature y is fed back into the equation for Y in the thermal averaged annihilation
rate, whereas y now also depends on changes in Y that occur after kinetic decoupling. These
expressions clearly show that the two equations in general cannot be considered separately.

In the limit that x� xkd, the scattering term in Eq. (7.9) proportional to c(T ) can be neglected,
which enables us to derive an simpler expression that gives us some insight about its asymptotic
behavior. The second moment of the annihilation rate was defined in Eq. (3.26). Assuming again
σvrel ∝ v2n, it simplifies to

〈σvrel〉2
〈σvrel〉 = 1+

n
3

. (7.10)

With these ingredients, we find that

y′

y
' n

3
Y ′

Y
=

ñ
6

Y ′

Y
. (7.11)
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From this we see that a change in relic density clearly causes a change in WIMP temperature. For
n < 0, a decrease in Y will thus result in an increase in y after kinetic decoupling. This is exactly
what we expected; when the DM phase-space density is depleted of low velocity particles, the
average velocity of the WIMPs increases.

We note that for the thermal averages that appear in Eqs. (7.8) – (7.9), we derived simple
approximations as given in Eq. (3.16) and Eq. (3.26). Here, however, it was assumed that the
velocity distribution of the WIMPs is proportional to a Maxwellian velocity distribution, i.e.,

f (v) ∝ fMax(v) =

√
2
π

(
mχ

Tχ

)3/2

v2e−
1
2 mχ v2/Tχ . (7.12)

If this is would not be the case, Eqs. (3.16) and (3.26) would have to be adjusted accordingly
and would become considerably more difficult to solve; for arbitrary f (v), assumptions would
have to be made about the velocity distribution in order to solve the integrals. As long as the
WIMPs are still coupled to the heat bath one can assume that f (E) ∝ feq(E) = e−E/T , ensuring
a correct usage of Eq. (7.8) and Eq. (7.9) at least until Tkd. Since the interesting effects of
the coupled equations are expected to happen after kinetic decoupling, one needs to make sure
that the velocity distribution is Maxwellian even in this range. It is therefore very important to
check for each model separately if this condition is satisfied when using Eqs. (7.8) – (7.9) in
combination with Eqs. (3.16) and (3.26).

The presence of a new era of annihilations can greatly affect the relic density, and therefore
we are interested in the mechanisms that cause the DM annihilations to finally come to an end.
The temperature at which this happens will determine the final relic density. The first and most
important effect is that the Sommerfeld enhancement does not continue to grow as v→ 0, but
saturates below some cutoff velocity (see section 5.3). From that moment on, DM annihilations
will no longer be able to keep up with the expansion of the universe.

Another relevant effect is the onset of matter domination, which we can see directly by using

H2(T ) =
4π3

45m2
Pl

geffT 4 +
8π

3m2
Pl

ρm,0 a−3(T ) (7.13)

≡ H2
r (x)+H2

m(x) (7.14)

in combination with Eq. (7.1). Here, ρm,0 = Ωmρc ≈ 1.10× 10−47GeV4 is the matter density
today [37]. Since Hr(x) ∝ x−2g1/2

eff and Hm(x) ∝ x−3/2g1/2
∗S , the difference between the two epochs

is given by a factor x1/2 (ignoring the dependence of the d. o. f.). This can be taken into account
into the evolution of the DM density by replacing ñ in 〈σvrel〉 ∝ x−ñ by n′ = ñ + 1/2. Now an
appreciable change in Y is only possible for n′ ≤ −1, which can no longer be achieved with a
1/v enhancement after kinetic decoupling (n′ =−1/2). Only in the special case that we are on a
resonance, we would have n′ =−3/2 after kinetic decoupling has taken place, and annihilations
could continue even beyond matter-radiation equality.

Finally, the onset of structure formation around zstruc ∼ O(100) will cause all DM annihila-
tions to come to an end. As significant gravitational potentials are formed, the DM will move
towards the potential wells and fall into them. During this process, their velocities increase such
that any Sommerfeld enhancement will be diminished, even on a resonance.
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Not only the relic density can be significantly altered by the effect of kinetic decoupling; the
new era of annihilations, in turn, will increase the WIMP temperature. This correspondingly
affects the DM velocity distribution at the onset of structure formation, which is translated to
a small-scale cutoff Mcut in the power spectrum of matter density fluctuations. As we saw in
section 4.1, this corresponds to the mass of the smallest gravitationally bound objects [100].

Since y can now still increase after kinetic decoupling, it is no longer correct to use this
quantity to calculate the cutoff mass. Instead, we define the asymptotic decoupling temperature

x∞
dec =

mχ

T ∞
dec
≡ y|x→∞

× s2/3

T 2

∣∣∣∣∣
T=T ∞

dec

, (7.15)

as the intersection of y(Tχ = T ) (i.e. the heat bath temperature) with the asymptotic value of
y when de DM annihilations and scatterings finally have ceased. In this way, we can simply
express the asymptotic DM temperature or velocity dispersion as Tχ = T 2/T ∞

dec, which allows
us to replace Tkd → T ∞

dec in any expression that relates the kinetic decoupling temperature to
the cutoff in the power spectrum of matter density fluctuations (see subsection 4.1.2). This
holds in particular for the expressions of the free streaming mass Eq. (4.23) and the acoustic
oscillation mass Eq. (4.24), of which the largest of both determines the final cutoff mass Mcut.
The temperature as defined in Eq. (7.15) does not have any intuitive interpretation, and can
actually be quite larger than the temperature at which the annihilations stop. An upper bound on
the asymptotic decoupling temperature is simply given by T ∞

dec = Tkd, which is the result when
there is no second era of annihilation.

7.2 Leptophilic Dark Matter

To demonstrate the treatment that was introduced in the previous section, we will look at a simple
class of leptophilic dark matter models like described in Chapter 5. Although these models have
been originally motivated by the observed positron excess as explained in section 5.1, here we
use them mostly for the purpose of illustration.

The toy model that we consider consists of a fermionic DM particle χ that only interacts with
a light scalar φs and a pseudo-scalar φp via

L ⊃ gs
χφsχ̄χ +gp

χφpχ̄γ
5
χ , (7.16)

The (pseudo-)scalar particles in turn couple to standard model leptons, through

L ⊃ gs
`φs ¯̀̀ +gp

` φp ¯̀γ5` , (7.17)

where the coupling strengths gs
` and gs

` can be thought of as effective couplings arising, e.g.,
from higher-dimension operators. An example of this kind of model can be found in [49],
where the new postulated particles (χ,φs,φp) are embedded in a full supersymmetric scenario.
Here we will assume for simplicity that the couplings to all lepton generations are equal, i.e.,
gs,p

e = gs,p
µ = gs,p

τ . Couplings to quarks are not taken into account here, since typically they do
not change the phenomenology of our model for the mass ranges considered here. Below we
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will discuss a few important aspects of the leptophilic model.

7.2.1 Annihilation and the Sommerfeld enhancement

We assume the DM mass lies in the 100 GeV to 5 TeV range, such that annihilation cross section
is enhanced by the Sommerfeld effect mediated by the scalar particle. We include a pseudo-
scalar particle nevertheless, since parity conservation causes the annihilation χχ → φsφs(φpφp)
to be a p-wave process which vanishes in the non-relativistic v→ 0 limit. Even with the Som-
merfeld factor included, the annihilation rate for this process would disappear in the low velocity
limit2, and it would not be possible to study the expected effect as explained in 7.1. This prob-
lem is solved by including pseudo-scalar particles, since the process χχ → φsφp does have an
s-wave contribution. This also makes sure that the cosmic ray lepton flux today is sizable and
observable by current (or future) indirect detection experiments.

The relic density therefore is to a large extent determined through this channel and thus mainly
depends on the parameter

α ≡ gs
χgp

χ

4π
. (7.18)

To keep the discussion simple, we will assume gs
χ = gp

χ in the following, noting that the relic
density is essentially only set by one effective coupling constant anyway. Annihilation directly
into SM particles through the s-channel could occur, but is strongly suppressed by the coupling
(gs,p

` )2 and therefore does not play a role.
The Sommerfeld enhancement is easily calculated for this type of models, and corresponds

exactly to the case discussed in Section 5.3. The Schrödinger equation contains a Yukawa po-
tential that depends on the mass of the scalar mediator ms. This is solved numerically to obtain
the Sommerfeld factor in terms of the velocity of the WIMPs v, the coupling α and the masses
of both χ and φs.

7.2.2 Dark Matter scattering off heat bath particles

The DM scattering at low-momentum transfer, i.e., t→ 0, is important for the kinetic decoupling
process. For scattering off leptons, only the scalar particle mediates DM scattering at t = 0, with
the matrix element squared given by

|M s|2t→0 =
16gs

`
2gs

χ
2m2

χm2
`

m4
s

. (7.19)

Including nonzero neutrino couplings in our model would thus not have a large impact on the
results, since the DM scattering cross section would be negligible due to the scaling with the
neutrino mass. The matrix element for scattering off leptons mediated by a pseudo-scalar is
proportional to t and thus disappears in the low-momentum transfer limit.

2In the special case of a resonant Sommerfeld effect (S ∝ v−2) the p-wave annihilation rate would actually become
constant for v→ 0. However, this would still not allow us to study the thermal evolution of DM with enhanced
annihilation rates for small velocities.
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Figure 7.1: The Hubble rate (black) is shown in comparison to the effective DM self-scattering rate from Eq. (7.20)
as a function of temperature. The minimal (red) and maximal (blue) possible self-scattering rates for the leptophilic
model are plotted for the on- and off-resonant case as dashed and dotted lines, respectively. Once the self-scat-tering
rate becomes comparable to the Hubble rate, i.e. Γs(Tnt)∼H(Tnt) the DM velocity distribution starts to deviate from
a Maxwellian form. For resonant Sommerfeld enhancements this occurs even after matter-radiation domination,
which is indicated by a dash-dotted line [1].

Actually, we will see that scattering off the light (pseudo-)scalar mediators can be much more
effective in the range where nφ is not yet Boltzmann suppressed. The scattering cross section
for χφs→ χφp is present, but in general suppressed with respect to the contributions from pure
(pseudo-)scalar scattering. In the work here we only have included scattering of scalar mediators
for simplicity; we will come back to this point later in the discussion. The relevant matrix
elements for all processes can be found in Appendix C of [1].

A requirement for these scatterings off light bosons to keep the DM in kinetic equilibrium is
that they are in thermal equilibrium with the heat bath. It turns out that annihilation rates for
the mediators are not sufficient enough to ensure a thermal equilibrium state. In fact, taking
only 2↔ 2 processes into account, the mediators would never have been in thermal equilibrium.
Fortunately, the mediators are quite unstable – unlike the DM – such that the decay process
φ ↔ l̄l occurs frequently enough in both directions to keep them thermal (for more details, see
also Appendix C of [1]).

7.2.3 Dark Matter self-scattering

An important requirement for our treatment described in section 7.1 is a Maxwellian shaped
velocity distribution of the DM until long after kinetic decoupling. Since our model features
the Sommerfeld effect, we expect the self-scattering cross section to be enhanced in a similar
fashion as the annihilation cross section (see also section 5.4). These self-scatterings can happen
so frequently that they are able to keep the WIMP velocity distribution Maxwellian even after
they have kinetically decoupled from the heat bath [249, 10, 230].
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7 Thermal decoupling of Sommerfeld enhanced Dark Matter

In order to check this statement, we have calculated the self-scattering rate by which the
velocities change by O(1) [230, 249]

Γs = nχ〈σT vrel
v2

rel

v2
0
〉 ,

=
g2

χ

nχ

∫ d3 p
2π3

d3 p̃
2π3 σT vrel

v2
rel

v2
0

f (E) f (Ẽ) ,

' 16nχ√
π

(
mχ

Tχ

)5/2 ∫ 1

0
σT

v5

(1+ v2)3 e
−v2 mχ

Tχ dv , (7.20)

where in the last step f ∝ e−E/Tχ was used, and the most probable velocity is given by v0 =√
2Tχ/mχ . We follow here a conservative approach for the numerical calculation of the transfer

cross section σT (described in more detail in 5.4), as to not overestimate the scattering rate.
To derive the temperature Tnt at which the DM velocity distribution becomes non-thermal, we
compare the scattering rate Γs to the Hubble expansion rate

Γs(Tnt)≡ H(Tnt). (7.21)

In Fig. 7.1 the evolution of Γs(T ) and H(T ) for two sets of parameters of the leptophilic model
that represent the most extreme cases is shown, in the case of a resonant and non-resonant
Sommerfeld enhancement. On resonance, the self-scattering rate is always able to keep the
DM velocity distribution thermal beyond matter-radiation equality at Teq ≈ 0.75eV [19]. If the
Sommerfeld effect is not resonant, Γs will drop below H for much larger temperatures, i.e.,
O(10) MeV . Tnt . O(100) eV. We find that Tnt < Tkd is satisfied in all cases relevant to our
discussion of the leptophilic toy model such that we can safely assume a Maxwellian WIMP
velocity distribution.

7.2.4 Model constraints

The most obvious constraint comes from the observed DM relic density (see Eq. (2.28)), which
we can use to constrain one free model parameter. The relic density is obtained from the value
of Y today (see Eq. (3.20)), and we demand that the leptophilic model reproduces the observed
value within 3σ . In the case discussed here, we assume the DM is not its own antiparticle,
such that we have Ωχ = ΩDM/2. In the numerical calculations, the coupling α that sets the
annihilation rate from Eq. (7.18) is adjusted accordingly to yield a relic density that is acceptable
according to our definition.

Apart from this constraint, there are various indirect and direct experimental limits on new
light bosons that couple to leptons. The strongest indirect constraint comes from measurements
of the anomalous magnetic moment of the muon, aµ ≡ (gµ − 2)/2, which would receive extra
loop-contributions due to new particles coupling to muons. The currently experimentally mea-
sured value of aµ deviates 3.6 times the estimated 1σ error from the theoretically expected value
[37]. If we demand that the existence of these new (pseudo-)scalars do not worsen this discrep-
ancy beyond the 5σ level, we obtain a limit on the coupling to muons of roughly gs,p

` . 10−3,
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7.2 Leptophilic Dark Matter

which weakens if we consider degenerate (pseudo)scalar masses and couplings.
Direct constraints are derived from e.g. beam dump experiments, where one looks for new

light bosons in the decay products behind the stopped electron beam. Unfortunately there are
not many beam dump experiments that probe scalar particles in the mass range we are interested
in (mφ =100 MeV – 5 GeV). The only constraint comes from E137 at Fermilab, which excludes
couplings to electrons in the small range gφ

` ∼ 10−7−10−6 for 100MeV. mφ .400MeV [250].
Another constraint for mφ > 2mµ ≈ 210MeV arises from the BaBar search for ϒ decays into
light (pseudo)scalar particles, which roughly constrains the coupling to be gφ

` . 10−3.
Here, our toy model is mostly motivated by pedagogical reasons and less by the cosmic ray

excess. However, if one were to take this connection serious, additional strong constraints would
arise due to the requirement to fit the cosmic ray lepton data. The large annihilation rates that
would be needed are potentially in conflict with various astrophysical observations. For more
details see Appendix B in [1] and references therein.

7.2.5 Thermal evolution on and off resonance

In order to show the difference of the thermal evolution of this leptophilic model with respect
to the standard scenario, we show here two special cases that are of particular interest. We have
chosen two parameter sets; one for which we have a more general enhancement, i.e., not near a
resonance (also denoted as off resonance), and one on resonance. It will be useful here (and in
the following subsections) to explain what we exactly mean by that. As mentioned in 5.3, the
Sommerfeld enhancement effectively only depends on two parameters such that the resonances
occur at fixed values of εφ = mφ/(αmχ). To be exactly on a resonance, however, requires a
great deal of fine-tuning: in practice, we only sampled the first 5 resonances, because higher
resonances are more and more densely distributed. In order to include them consistently, we
only considered values of εφ very close to these resonances for which we obtained a maximal
enhancement factor Smax = 1011,1012,1013,1014 in the limit that εv → 0. The bulk of Som-
merfeld factors in the (εφ ,εv) parameter space qualify as off resonance: by randomly sampling
the εφ range, chances are extremely low to hit a resonance exactly. Ideally, in the low velocity
regime these would all follow a S ∝ v−n behavior with n = 1, however, we see that in many cases
n > 1 in regions where the Coulomb approximation is no longer valid (see for example the small
‘bump’ in the full solution for v . 2×10−3 in Fig. 7.2).

In this section, we additionally consider two different approximations to the full numerical
solution for the Sommerfeld factor, as illustrated in Fig. 7.2. Approximation 1 (shown as a
dotted line) assumes S = 1, i.e., no enhancement, for v > πα . For the intermediate regime we
adopt a simple v−1 behavior given by S = πα/v, and finally we let the enhancement saturate
at the same magnitude as the full solution, S(v ≤ vmax) ≡ Smax. Approximation 2 (shown as a
dashed line) is slightly better, especially at larger velocities, where the analytical expression for
a Coulomb enhancement (Eq. (5.59)) is used down to vmax, and S = Smax for smaller velocities.
For the case of resonances, we adjusted these approximations correspondingly: in approximation
1 we used S ∝ v−2 instead of S ∝ v−1, and in approximation 2 we used the Coulomb expression
down to velocities where the enhancement follows the v−2 behavior.

We will refer to the full solution obtained by solving the coupled set of Eqs. (7.8, 7.9). Fur-
thermore we will consider an approximation to the full solution that is denoted with sudden
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Figure 7.2: The full numerical solution for the Sommerfeld factor (solid) and two analytic approximations (dotted,
dashed) are shown for mχ = 1 TeV, mφ = 5 GeV and α = 0.03 [1].

decoupling, where we assume that the WIMP temperature is given by Eq. (7.5), and substitute
it into the thermally averaged annihilation rate in the standard Boltzmann equation (Eq. (3.19)).
For kinetic decoupling we consider Eq. (3.24) and neglect the term proportional to Y ′ in as is
usually done. By the uncoupled solution we refer to the case where kinetic decoupling is as-
sumed to have no influence on the evolution of the WIMP number density and vice versa, i.e.,
the standard calculation.

In Fig. 7.3, the solutions for y and Y are shown for one particular parameter set for which the
Sommerfeld enhancement is not in the neighborhood of a resonance. The different approxima-
tions start to differ from one another after kinetic decoupling, which for this set of parameters
happens at xkd ∼ 2.92× 103. The relic density for the coupled solution is, as expected, lower
than the uncoupled solution: the difference amounts to ∼ 10%. For comparison we also show
the uncoupled solution without Sommerfeld enhancement, which is much larger than all other
solutions (at most a factor∼ 1.8 than the coupled solution). Sudden decoupling works very well
as an approximation to Y ; the lines are completely obscured by the full solution in the left-hand
plot in Fig. 7.3. Also visible is that approximation 2 reproduces the full numerical result much
better than approximation 1, for which the relic density is overestimated. The annihilations
cease around x ∼ 3×105 because of the saturation of the Sommerfeld factor, and both y and Y
stay constant afterwards. We find that sudden decoupling, shown in red in the right-hand plot of
Fig. 7.3, is a reasonable approximation to the full evolution of y 3.

The results for a resonant Sommerfeld enhancement, shown in Fig. 7.4 for a particular set of
parameters where S = 1014, are even more interesting. It is clearly visible that there is a striking
difference with respect to the uncoupled Boltzmann equations for x & 107. From that moment
on, a new era of annihilations begins that decreases the relic density by a factor of ∼ 400. Inter-
estingly, the annihilations continue even after matter-radiation equality T ≈ 0.75 eV (indicated
by the dash-dotted vertical line) an finally cease around x' 2×1013, when the Sommerfeld en-

3We have found a more delayed decoupling process than for standard WIMPs in cases where the lepton couplings
are very small and φ -scattering is negligible. To keep the DM in thermal equilibrium thus many scattering events
are necessary, and as a result the decoupling occurs more gradually. The validity of the sudden decoupling
approximation in this case will be worse than the example shown in Fig. 7.3.
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Figure 7.3: For a parameter set where the Sommerfeld enhancement is not near a resonance (mχ = 1 TeV, mφ = 5
GeV, α = 0.03, and g` = 10−7), we show the evolution of the relic density Y (as defined in Eq. (3.17)), and the
WIMP temperature y (as defined in Eq. (3.23)). The solution to the full set of coupled Boltzmann equations (black)
is shown in comparison to the solution to the standard, uncoupled equations (blue). As a further approximation we
show results for assuming sudden kinetic decoupling (red; not visible in left-hand plot). Different approximations
to the Sommerfeld enhancement are shown according to Fig. 7.2 by dotted, dashed, or solid lines. Additionally, the
solution without Sommerfeld enhancement is shown in the left-hand panel (green, dash-dotted) [1].
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Figure 7.4: We show the same results as in Fig. 7.3, but now for a parameter set where the Sommerfeld enhance-
ment is resonant (mχ = 1 TeV, mφ = 1 GeV, α = 0.00168 and g` = 4.6×10−5). The full solutions show a significant
difference with the standard calculation for x ≥ 107; after kinetic decoupling a new era of annihilations takes place
and simultaneously the WIMP temperature increases again. Annihilations even continue until after matter-radiation
equality (denoted as a gray, dash-dotted line). In the right-hand panel, the intersection of the asymptotic WIMP tem-
perature (green, dash-dotted) with the temperature of the heat bath (red, dotted) denotes T ∞

dec as defined in Eq. (7.15)
[1].

hancement saturates. As discussed in the beginning of this chapter, we would also have expected
a more efficient decrease in the relic density before and directly after kinetic decoupling (which
for this choice of parameters happens at xkd ' 2.35× 104). This is not observed, however, be-
cause at early times the velocities of the WIMPs are still large enough to be in the Coulomb
regime and, even though we are on a resonance, the Sommerfeld enhancement follows a S ∝ 1/v
rather than S ∝ 1/v2 behavior (see also 5.3).

On the right-hand side of Fig. 7.4, it is visible that sudden decoupling is a very bad approx-
imation to y, at least for x & 107. From this time on, y increases with respect to the sudden
decoupling solution (obscured by uncoupled solution in this range), because the restarted anni-
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7 Thermal decoupling of Sommerfeld enhanced Dark Matter

hilations deplete the WIMP distribution from particles with the lowest velocity. Surprisingly,
sudden decoupling does catch the overall behavior of a large decrease in Y rather well, although
it underestimates the final relic density by at least a factor of 2. However, the different approxi-
mations to the Sommerfeld enhancement give comparable results both for y and Y .

In the right-hand plot of Fig. 7.4 we show also an extrapolation of the asymptotic value of
y to smaller values of x as a green, dash-dotted line. Its intersection point with the heat bath
temperature – shown as a red, dotted line – gives the asymptotic decoupling temperature T ∞

dec
as defined in Eq. (7.15). One should use this temperature instead of the kinetic decoupling
temperature Tkd as an input to calculate the minimal mass of the first subhalos, since the WIMP
velocity distribution only reaches its asymptotic value at x∞

dec & xkd .

7.2.6 Off resonance analysis

Here we discuss a more general analysis for the full possible range of our off resonance model
parameters. This is interesting for two reasons: it more or less represents the generic behavior
of the model and the parameter dependence is quite straightforward to discuss. We specified a
grid in parameter space and solved the coupled equations with Mathematica for each point in
the grid. We considered four values for the masses each: mχ =0.1, 0.5, 1, 5 TeV, and mφ = 0.1,
0.5, 1, 5 GeV, whereas for the lepton coupling we scanned the range 10−7 ≤ g` ≤ 10−1. From
all solutions we rejected the ones which did not gave a final relic density within our specified
boundaries, i.e., 0.184≤ΩDM ≤ 0.274. This resulted in a coupling range 0.00335≤α ≤ 0.0985
for which correct relic densities were obtained.

Looking at the kinetic decoupling temperature in Fig. 7.5, we see that Tkd decreases for larger
g`, which is due to the fact that a strong lepton coupling will keep the WIMPs longer in local
thermal equilibrium. If the decoupling happens rather late, Tkd . 7 MeV, only DM scattering
with electrons is effective just before the DM particles completely leave thermal equilibrium.
At higher temperatures also muons start to contribute very efficiently to the scattering process,
resulting in a flattening of Tkd(g`) for smaller values of g`. Since the scattering rate in Eq. (7.19)
depends on m2

` , even highly non-relativistic muons give a contribution because of their relatively
large mass. At even higher decoupling temperatures scattering with mediator particles is dom-
inant. It ensures that the kinetic decoupling temperature does not increase arbitrarily high even
for negligible lepton couplings, which explains the plateau that appears at roughly g` . 10−5.

We have seen in Eq. (7.19) that the lepton scattering cross section decreases strongly with
increasing mφ , which is nicely reflected in Fig. 7.5 by the increasing decoupling temperature for
higher mediator masses. In the range where mediator scattering is dominant, the same depen-
dence on mediator mass is visible, which is explained by by the Boltzmann suppression of the
mediator number density, nφ/s ∼ (mφ/T )3/2 exp(−mφ/T ). The dependence of the decoupling
temperature on the DM mass mχ , on the other hand, is very weak. Also the spread in Tkd (for
given values of mφ ,mχ , and g`) due to the different values of the relic density that were obtained
by changing the coupling α accordingly, is essentially negligible.

From the discussion in section 7.2.5 we expect the coupled solution to result in a slightly
smaller relic density than the full solution, but not more than∼ 10%. The ratio of the uncoupled
solution with respect to the coupled is plotted in Fig. 7.6 as a function of xkd. We note that
the observed decrease in relic density due to the coupled Boltzmann equations is smaller than
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Figure 7.5: For models where the Sommerfeld enhancement is not on a resonance, the kinetic decoupling temper-
ature is shown as a function of the mediator particle coupling to leptons, for mφ = 100 MeV (black, full), 500 MeV
(blue, dashed), 1 GeV (red, dotted), and 5 GeV (green, dash-dotted). From bottom to top, the lines correspond in
each case to a DM mass of mχ = 100,500,1000,5000 GeV [1].
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Figure 7.6: For off resonance models, the ratio of the uncoupled solution for the relic DM abundance is shown
w. r. t. the coupled solution as a function of the kinetic decoupling temperature. Each panel shows the results for
one particular mediator mass mφ (indicated in panel, color coding matches that of Fig. 7.5). The ratio increases for
earlier kinetic decoupling, since the restarted annihilations can then continue for a longer time before the Sommerfeld
enhancement saturates. The maximal (minimal) ratio is obtained for the highest (lowest) DM mass mχ (see legend).
The dependence of the ratio on xkd, however, depends highly on the DM coupling and thus the magnitude of the
Sommerfeld enhancement; for a fixed mφ and mχ , each ‘chain’ of markers is defined by a particular value of α . See
text for more details.
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Figure 7.7: Same as Fig. 7.6, but here the saturation temperature as a function of kinetic decoupling is shown for the
off resonance models. As expected, the saturation happens later for earlier decoupling, since the era of annihilations
will be more pronounced. Since large Sommerfeld enhancements are obtained for small values of mφ /(αmχ ), the
saturation temperature increases for smaller mediator masses and large DM masses.

claimed in e.g., [248]. Although a new era of annihilations is barely visible for off resonance
models (see Fig. 7.3), its effect is still recognizable in Fig. 7.6 by an increase of the relic density
ratio for smaller xkd. As the kinetic decoupling takes place earlier, the annihilations can decrease
the DM relic density for a longer period of time, before the Sommerfeld enhancement saturates
and the relic density finally stays constant. This becomes also apparent from the saturation
temperature, which is plotted against the kinetic decoupling temperature in Fig. 7.7, where we
defined Tsat by Y (Tsat)/Y0 ≡ 0.99. We observe that for many models with large lepton couplings
we have Tsat > Tkd, indicating that the effect of reentering an era of annihilations is negligible,
whereas for small g` we find that Tkd/Tsat can reach values up to O(104). Annihilations off-
resonance finally come to an end here for temperatures ranging from Tsat ∼ 100 MeV to ∼ 1
keV.

Besides Tkd, the magnitude of the Sommerfeld determines how significant the effect of the new
era of annihilations is. The relic density is very roughly set by 〈σvrel〉 ∝ α2/m2

χ , such that for a
higher DM mass a larger DM coupling is necessary to obtain the correct order of magnitude of
the relic density. Since S grows with decreasing εφ = mφ/(αmχ) for off resonance models, larger
enhancements are expected for higher WIMP masses. This can be seen in Fig. 7.6 by a general
tendency for the ratio Ωχ,u/Ωχ,c to increase with larger WIMP masses. However, in some cases
the enhancement is unexpectedly larger because the value of εφ is close to a resonance but still
qualifies as off resonance4. Since the resonances occur more frequently with decreasing εφ ,

4Results for mφ = 5 GeV and mχ = 500 GeV have been left out in Fig. 7.6 and Fig. 7.7 because their behavior
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Figure 7.8: For models where the Sommerfeld enhancement is not on a resonance, the cutoff mass is shown as
a function of the lepton coupling, for mφ = 100 MeV (black, full), 500 MeV (blue, dashed), 1 GeV (red, dotted),
and 5 GeV (green, dash-dotted). From top to bottom, the lines correspond in each case to a DM mass of mχ =
100,500,1000,5000 GeV [1].

the probability to have a large enhancement grows. This is also reflected in Fig. 7.7, where
the minimal xsat is more or less independent of mφ , whereas the maximal xsat is significantly
larger for small mediator masses. In this way, a small change in the coupling can thus make a
visible difference in the relic density and saturation temperature, which explains the presence of
multiple ‘chains’ of the same markers in each panel, which share the same mediator and DM
mass, but have slightly different α . Unlike Tkd, the saturation temperature and the difference in
relic density thus depend a lot more on grid size of couplings in the scan and the definition that
one uses for off resonance.

Due to the mild effect of the new era of annihilations, the asymptotic decoupling temperature
T ∞

dec only differs at most 3% from Tkd. The corresponding mass of the smallest gravitationally
bound objects calculated from T ∞

dec are shown in Fig. 7.8, where it can be seen that the possible
cutoff mass spans a wide range of Mcut/M� ∼ O(10−10 – 103). Even when taking into account
existing constraints on the lepton coupling (see section 7.2.4), much larger cutoff masses than
in the standard WIMP case thus seem possible: imposing g` < 10−3, e.g. results in Mcut . M�
(whereas Mcut . 10−3M� for neutralino DM [55]). Compared to Tkd and T ∞

dec, Mcut can have a
stronger dependence on mχ , visible by the spread of the bands for g` . 10−4. This is due to
the fact that in this region of parameter space the free-streaming mass Mfs (that depends, among
other things, on mχ , see Eq. (4.23)), dominates over the acoustic oscillation cutoff mass Mao.
The impact of the different couplings and definition of what qualifies as off resonance on the
resulting Mcut is negligible.

did not match with the rest of our off resonance models: unfortunately, the range of α for which the correct relic
density is obtained is in the close vicinity of a resonance

105
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Figure 7.9: For models where the Sommerfeld enhancement is resonant, the kinetic decoupling temperature Tkd
(filled) in comparison to the effective asymptotic decoupling temperature T ∞

dec(empty) is shown. Again mφ = 100
MeV (black, squares), 500 MeV (blue, circles), 1 GeV (red, diamonds), and 5 GeV (green, triangles). Comparing
this figure to Fig. 7.5, we see that here Tkd is a little bit higher, however T ∞

dec, which determines the mass of the first
protohalos, is in general lower. For more details, see text.

7.2.7 Resonance analysis

Here we discuss a similar analysis as presented in the previous section, except now we consider
only models that are exactly on a resonance according to the definition in section 7.2.5. This
is interesting because we expect much stronger effects as compared to the standard scenario.
Numerically it is more challenging to perform this analysis than for the off resonance case, since
the resonances only appear for specific values of εφ , and the coupling cannot be adjusted easily
to obtain the correct relic density. As we have seen previously in the off resonance analysis, the
impact of the new era of annihilation depends highly on the decoupling temperature. For a fixed
mφ , mχ and α , we therefore scanned the whole range of lepton couplings, g` = 10−1 – 10−7, to
see whether the correct relic density could be obtained for some value of g`; the parameter sets
that were not able to satisfy the relic density constraint were excluded from the analysis.

In Fig. 7.9 we show the results for both the kinetic decoupling temperature (solid markers)
and the asymptotic decoupling temperature (empty markers). The overall behavior looks very
similar to the off resonance case in Fig. 7.5: Tkd rises with increasing mediator masses and
decreasing g`. The dependence on mχ is not explicitly shown due to lack of solutions with the
right relic density. This is also the reason for the gaps for particular g` and mφ ; no correct relic
density could be obtained for these combinations of parameters. This could, in principle, be
improved by increasing the amount of sampled DM and mediator masses, although we must
note that for some parameter sets it will be simply not possible to be on a resonance and obtain
the correct relic density at the same time.

We see that Tkd is a little bit higher for resonances compared to the off resonance case
(Fig. 7.5). This is due to the fact that the relic density constraint makes a smaller coupling
α necessary to compensate for the large Sommerfeld effect, which in turn decreases the amount
of DM scattering off φs so that WIMPs decouple slightly earlier than in the off resonance case.
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Figure 7.10: Same as Fig. 7.6, but now for models where the Sommerfeld enhancement is on a resonance and the
correct relic density is obtained. As expected, there is a vast difference between the coupled and uncoupled solutions
for the relic density, with ratios ranging from ∼ 2 up to almost ∼ 103. Again, smaller relic densities are obtained in
models where kinetic decoupling happens earlier.
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Figure 7.11: The cutoff mass Mcut as a function of the lepton coupling for models where the Sommerfeld enhance-
ment is resonant, for mφ = 100 MeV (black, squares), 500 MeV (blue, circles), 1 GeV (red, diamonds), and 5 GeV
(green, triangles). The values of Mcut are in general higher than in the off resonance case shown in Fig. 7.8 due to the
lower values of asymptotic decoupling temperatures.
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7 Thermal decoupling of Sommerfeld enhanced Dark Matter

Off-resonance On-resonance
xcd ∼ 24 – 27 ∼ 20 – 25
Tkd[MeV] ∼ 0.07 – 400 ∼ 0.09 – 450
T ∞

dec [MeV] ∼ 0.07 – 400 ∼ 0.06 – 170
Tsat [keV] ∼ 1 – 105 ∼ 10−6 – 10−2

Ωχ,u/Ωχ,c ∼ 1 – 1.1 ∼ 3.5 – 670
Mcut[M�] ∼ 3×10−10 – 600 ∼ 7×10−9 – 1100

Table 7.1: For the leptophilic model and parameter ranges considered here, we show an overview of the resulting
ranges of the decoupling temperatures, change in relic density with respect to the standard calculation, and the
smallest subhalo masses, where we considered non-resonant and resonant Sommerfeld enhancements separately [1].

The value of the kinetic temperature is not sensitive to the details of the new era of annihila-
tions, and thus to the definition of the resonance. It could, however, have a modest effect on the
asymptotic decoupling temperature T ∞

dec, which can be up to a factor of ∼ 5 smaller than Tkd in
our results. Furthermore, we find that T ∞

dec is always smaller than in the off-resonant case, the
difference more pronounced for small values of g`.

As expected, the change in Y by considering the coupled Boltzmann equations rather than
the uncoupled equation can be significant. As visible from Fig. 7.10 (which can be compared
to Fig. 7.7 for the off resonance case), our approach yields a relic density that can be a factor
∼ 3.5−670 smaller than the one obtained by the standard calculation. This is of course highly
dependent on our definition of resonance and the sampling of mχ and mφ , however, it is very
likely that the relic density could probably not continue to decrease a lot more. In most models,
the annihilations even continue after matter-radiation-equality, and decrease the relic density up
to a factor of 4 before reaching its final value: Ωχ(Teq) . 4Ωχ(T0). However, the onset of matter
domination and the increasing WIMP velocities due to the formation of gravitational potentials
at the onset of structure formation will make sure that there is an upper limit on the decrease in
relic density due to the new era of annihilations. We therefore expect that the largest difference
we see here due to the new era of annihilations represents (almost) the maximum effect. In all
cases we find that Ωχ,u/Ωχ,c is larger than any value that was obtained for off the resonances
(See also Table 7.1) and the relic density correspondingly saturates at very low temperatures,
O(10) eV & Tsat & O(10−3) eV.

Finally, we discuss briefly the resulting cutoff masses Mcut for resonances, which are shown
in Fig. 7.11. As expected from Fig. 7.9, the smallest subhalo masses are larger than in the off
resonance case. This effect is most pronounced for small values of g`, corresponding to large
values of T ∞

dec and thus smallest values of Mcut. As a result, the lowest possible cutoff mass is a
factor ∼ 20 larger than for off-resonance, while the largest possible value increases by a factor
∼ 2 (see also Table 7.1). The sampling of our model parameters and our definition of resonance
probably have only a modest influence on these numbers. Naively using Tkd instead of T ∞

dec to
calculate Mcut would result in values up to 2 orders of magnitude smaller in the resonance case.
For convenience, we have summarized the main results of the off- and on resonance analysis
that were discussed above in Table 7.1.
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7.3 Conclusions and discussion

In this chapter we have reviewed the standard calculation for the thermal decoupling of WIMPs.
We have shown that for a model where the annihilation cross section is enhanced at small ve-
locities, e.g. by the Sommerfeld effect, the WIMP temperature and density can have a profound
influence on each other. In this situation, the chemical and kinetic decoupling can no longer be
treated separately, and a new era of annihilations could take place. The only way to take this
effect correctly into account, is by solving the system of coupled Boltzmann equations that were
given in Eq. (7.8) and Eq. (7.9). For illustration, we have applied our treatment to a particular
leptophilic toy-model that was introduced in 7.2. We saw that the effect of the new era of anni-
hilations can be significant, especially in the case of resonant models, where annihilations can
continue even until after matter-radiation equality and decrease the relic density by more than
two orders of magnitude. The induced effect on the WIMP temperature can cause the cutoff
mass to be larger by almost two orders of magnitude than naively expected for these resonance
models.

As shortly mentioned in 7.2.2, we have assumed the mediator particles to be in thermal equi-
librium, which for T & Tkd is guaranteed because of the very efficient (inverse) decay processes
φ ↔ `+`−. As we have seen, DM scattering off the mediators is most effective for small lep-
ton couplings and high decoupling temperatures. If one were to neglect χφ ↔ χφ scatterings,
and only take into account DM scattering with standard model leptons, the kinetic decoupling
temperature would rise indefinitely for smaller values of gφ

` and it would seem that one could
even obtain Tkd > Tcd. However, this possibility is ruled out since the thermal production of χ

requires a thermal population of φ around chemical decoupling, which places a lower bound on
gφ

` in order to maintain the (inverse) decay processes.
Furthermore, we only took into account DM scattering with scalar particles and neglecting

the pseudo-scalars. Including them would only affect the kinetic decoupling directly by shifting
it to slightly lower values: Tkd decreases at most ∼ 20% for values of g` . 10−4 (here gs

` = gp
`

and ms = mp). The other observables, such as the relic density, are affected only indirectly by
the coupling between y and Y , and therefore change less than Tkd. For larger values of the lepton
coupling, g` > 10−4, the addition of pseudo-scalar scattering hardly makes a difference because
the lepton scattering determines the kinetic decoupling temperature. Assuming the mediators
not to couple to quarks, was justified by the fact that kinetic decoupling almost always happens
after the QCD phase transition at TQCD ∼ 170MeV [251, 252], when there are no free quarks
around anymore. A non-negligible coupling of the exchange particles to quarks, gs

q 6= 0, would
therefore not affect our determination of Tkd in a significant way.

Finally, we assumed that the DM particles couple with the same strength to both scalars
and pseudo-scalars, i.e. gs

χ = gp
χ . In principle, however, the coupling strength α (Eq. (7.18))

that roughly sets the relic density is not the same as the coupling strength αs ≡ gs
χ

2/4π that
determines the Sommerfeld enhancement. We chose not to consider the case gs

χ 6= gp
χ here, but

the difference with the results presented here are not expected to be large (see [1] for a more
detailed discussion).

Although we have chosen a simple, leptophilic toy-model here, it is important to stress that
our formalism can be applied to any model. In fact, it is necessary for all DM models with an
annihilation rate that is inversely proportional with the WIMP velocity, 〈σvrel〉 ∝ v−n, where
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7 Thermal decoupling of Sommerfeld enhanced Dark Matter

n > 1, since the standard calculation could predict a relic abundance and smallest subhalo mass
that differs a non-negligible amount from the correct result. Especially when the enhancement
is large, i.e. n & 2, the difference can be several orders of magnitude. Models to which our
treatment would apply include more realistic models motivated by the cosmic ray anomalies (see
e.g. [253, 119] for a recent discussion), the ‘standard’ heavy neutralino DM [197, 219, 220], or
models with an enhanced annihilation rate either through the formation of bound states [254] or
an s-channel resonance [255–258].

A condition for using the treatment as described here is the assumption that the WIMP velocity
distribution has a Maxwellian shape until the both the relic abundance and the WIMP tempera-
ture finally reaches its asymptotic value. This has to be carefully checked for any model before
applying the treatment described in this chapter. We showed that for the leptophilic model, self-
scattering is sufficiently strong after kinetic decoupling to meet this condition. However, in some
special regions of parameter space, where the annihilation cross section becomes negligible due
to the Ramsauer-Townsend effect, our results should be interpreted with care.

The same holds for the calculation of Mcut in resonant cases where the asymptotic behavior
of the WIMP temperature is reached only after matter-radiation equality. In the derivation of
the expressions Eq. (4.23) and Eq. (4.24) it was assumed that the velocity distribution f reaches
its asymptotic value in a highly radiation dominated Universe, and it is similar to one in the
standard WIMP case at that time (see [98–102]). When these conditions are not satisfied, the
results obtained for Mcut by the method described here can only give an indication of the real
value. Since we find quite a number of resonant models in which the asymptotic behavior
indeed only sets in around or after matter-radiation equality, it would be interesting to find an
exact relation between decoupling temperature and cutoff mass during this period.

A detection of Mcut would provide us with a very interesting new way to probe the parameter
space of the DM models (see the end of 4.1.2 for possible detection methods). Our results
show that the cutoff mass for the leptophilic model can be between O(10−10M�) and O(10M�)
depending on the chosen parameters and experimental bounds. Since these values are much
larger than for usual WIMPs such as neutralino or Kaluza-Klein DM (see [259, 55]), future
probes of the cutoff mass could prove to be useful in distinguishing between these different
classes of models. Observations of gamma-rays from galaxy clusters already place limits on
small values of Mcut [116], which are obtained for early kinetic decoupling thus small lepton
couplings. In this way, these measurements probe the parameter space from a different direction
than anomalous magnetic moment measurements or beam dump experiments.

Note that higher cutoff masses could easily be obtained for leptophilic models by choosing
ms� 100 MeV (in this case the decay into the heavier leptons π and µ could then only occur
through the pseudo-scalar φp, which is still heavy enough). The possibility of very large cutoff
masses will also be explored in the next chapter, where we focus on the small scale structure
problems of the Universe.
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8 Sommerfeld enhanced Dark Matter and the
small-scale problems of ΛCDM

In section 4.3 we saw that the ΛCDM model suffers from a range of problems on small scales.
Proposed astrophysical and DM solutions have shortcomings, or can explain at most two of
the three problems. In this chapter we will demonstrate that a particular class of Sommerfeld
enhanced DM models can simultaneously account for all three problems. We will discuss how
self-scattering can help to alleviate tension between observations and simulations regarding the
inner density and velocity profiles of satellites. Furthermore, we show that kinetic decoupling in
these models can happen sufficiently late to suppress the formation of small satellites. In section
8.3 we will address particle physics bounds and model building challenges for such models.
Finally, we conclude with a discussion. The results presented in this chapter were published in
[2].

8.1 Self-scattering Dark Matter with late kinetic decoupling

As discussed in section 4.3, simulations of ΛCDM seem to be in contradiction with observations
on the scales of dwarf galaxies. Astrophysical and DM solutions for the three problems are
abundant, and some suggestions even quite promising. Nevertheless, none of these solutions is
able to address all problems at once.

One of the more successful attempts to solve the ΛCDM issues involves the assumption that
DM has velocity dependent self-interactions (vdSIDM). These vdSIDM models are in fact ex-
actly equivalent to the Sommerfeld enhanced models that were introduced in chapter 5. It was
proposed in [181] that CDM interacting through a light mediator could explain the observed
cores in dwarf galaxies without affecting the dynamics of much larger systems. In contrast to
IDM models that were also proposed to solve the cusp/core problem, vdSIDM models are not
ruled out by astrophysical constraints (see also 4.3.2): the transfer cross-section is velocity-
dependent in such a way, that it affects the properties of dwarf galaxies, but is able to evade
bounds on larger scales where WIMP velocities are much larger.

To test this idea, detailed numerical simulations of vdSIDM were carried out by the authors
of [13]. For the DM self-scattering cross-section σT (v), simple analytical approximations were
used that were obtained in studies of screened Coulomb potentials in a plasma [11, 12, 249] (see
Eq. (5.86)). Although these parametrizations are given in terms of particle physics parameters,
it is the maximal transfer cross section σmax

T ≡ σT (vmax) and the velocity vmax that determine
the astrophysics. The value of σmax

T is constrained by the previously mentioned astrophysical
constraints, whereas vmax should be in the same range as typical velocity dispersions encountered
in dwarf galaxies σv ∼ O(10)km/s, in order to address problems with structure formation on
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8 Sommerfeld enhanced Dark Matter and the small-scale problems of ΛCDM

these scales. Simulations were therefore carried out for two benchmark models in the allowed
(σmax

T /mχ ,vmax) parameter range.
For these models it was shown that the main halo remains the same as in CDM simulations

outside a radius of ∼ 1 kpc, whereas inside a core develops. Furthermore, cored inner density
profiles are obtained on subhalo scales, and as a result, the inner circular velocity profiles are
altered in comparison with the CDM case. The inner density of the most massive subhalos
changes significantly because of the formation of cores in the center, and are consistent with
the observed brightest dSphs in the MW. No halos are present that are more dense than what is
observed in the MW, and therefore these simulated vdSIDM models also propose a solution to
the ‘too big to fail’-problem. However, the subhalo abundance and the radial number density
functions are not affected w. r. t. CDM, which means the missing satellites problem still exists
for vdSIDM.

We have seen in chapter 4 that a cutoff in the power spectrum on the scale of dwarf galax-
ies could solve this problem; cutoffs on this scale are however only obtained for WDM and in
general not for CDM. As we saw earlier, the cutoff mass depends greatly on the time of kinetic
decoupling: the size of the horizon at decoupling determines the scale at which density per-
turbations could have been wiped out, such that large Mcut is obtained for small values of Tkd
(see also 4.1.1 and 4.1.2). Therefore, the DM scatterings with the heat bath would have to be
very efficient and continue for as long as possible. Late kinetic decoupling (Tkd ∼ 0.1keV) was
considered before as potential solution to the missing satellites problem [260]. Here, the size of
the smallest primordial structures was translated into damping scales and correspondingly used
to set limits on the cross-section of DM at decoupling. However, in this analysis the kinetic
decoupling temperature of neutralino WIMPs was significantly underestimated [261].

The results from [1] that were discussed in chapter 7, however, showed that larger cutoff
masses than in the standard case are expected for Sommerfeld enhanced models with light me-
diators. Based on these results, even larger cutoff masses could be obtained for mediator masses
with a mass below mφ � 100 MeV 1. Decreasing the mass of the scalar mediator will, however,
not result in an arbitrary late kinetic decoupling: the number density of the scattering partners
becomes Boltzmann suppressed as temperature decreases, n` ∝ exp(−m`/T ). Therefore, in this
case, kinetic decoupling cannot occur much later than Tkd ∼ 0.1MeV, the temperature at which
there are hardly enough electrons around anymore for the DM to scatter with.

A solution to this problem is to consider neutrinos as scattering partners, which do not suffer
from this problem. The scattering cross section, however, scales with the mass of the lepton
squared, as is evident from the expression presented earlier in Eq. (7.19). Since neutrinos have
a tiny mass of the order of eV, non-zero neutrino couplings will therefore not result in efficient
DM-neutrino scatterings and their contribution will always be negligible. Scattering off photons
would also be very efficient in keeping the DM thermal, and in fact, the DM-photon coupling is
allowed via a lepton-loop. However, the scattering amplitude for this process becomes negligible
in the limit of small momentum transfer (t→ 0).

Instead, if we look at a model where the mediator is a vector boson V with non-zero mass, we

1In addition, the presence of a new era of annihilations could also increase the cutoff mass, although this would
only have a significant effect if the enhancement is resonant; this situation is not assumed in the vdSIDM models,
however, since the expression for the transfer cross-section that is used is only valid off resonance.
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Figure 8.1: Cutoff mass Mcut as a function of the lepton coupling g` for Sommerfeld enhanced models where the
mediator is a vector boson with a mass mV = 10 keV (green), 100 keV (blue), or 1 MeV (purple). When the DM
only couples to electrons, the cutoff mass reaches an asymptotic value of∼ 105M� due to the Boltzmann suppression
of the electron number density. However, when neutrino scatterings are taken into account, the cutoff scale grows
steadily with larger values of g` and can reach values up to order ∼ 1016M�. Different values of DM mass, mχ = 3
TeV (solid) and 10 TeV (dashed), hardly make any difference.

find that the scattering amplitude (at small momentum transfer) scales with the energy instead
of the mass of the leptonic scattering partner:

∑
all spins

|M |2
χν↔χν

= 64g2
χg2

ν

m2
χE2

ν

m4
V

. (8.1)

If the vector boson couples to neutrinos, the scattering amplitude would now not be negligible
since Eν �mν , and thus possibly result in a very late kinetic decoupling and high cutoff masses.

The results for the cutoff mass obtained for a Sommerfeld enhanced model with a vector me-
diator are shown in Fig. 8.1. We see that if the mediator only couples to electrons, the cutoff
mass cannot grow much larger than O(105M�) as expected from the Boltzmann suppression.
However, if we allow non-zero couplings to neutrinos, we see that the cutoff mass can grow
almost arbitrarily high with decreasing mediator mass and increasing lepton coupling. For me-
diator masses not larger than O(MeV), the cutoff scale can reach values that are in the range of
dwarf galaxies, and possibly make a connection to the missing satellites problem.

Encouraged by the successes of the vdSIDM simulations, in the next section we will investi-
gate the particle physics model that would correspond to the astrophysical parameters that were
used in the simulations. If vector mediator masses in the keV–MeV range are allowed, kinetic
decoupling could happen sufficiently late to suppress the formation of structures on dwarf galaxy
scales, and it might be possible to solve also the last problem of the missing satellites.
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Figure 8.2: The relic density is set by the Sommerfeld enhanced annihilation of DM into vector bosons, which
eventually decay into neutrinos (left). The properties of dwarf halos are affected by the induced DM self-scattering,
which changes inner velocity and density profiles (middle), and DM scattering off neutrinos, which suppresses the
formation of small subhalos (right). [2]

8.2 Model setup and results

We introduce a model here for phenomenological purposes only, where the DM is made up
by heavy Dirac fermions χ that only couple to light vector bosons V . As explained in the
previous section, we require the V to additionally couple to neutrinos in order to obtain late
kinetic decoupling:

Lint ⊃−gχ χ̄6V χ−gν ν̄6V ν . (8.2)

Here, we only specify couplings that explicitly enter our analysis and impose no restrictions on
the nature of the vector boson, e.g., V does not have to be a gauge boson, such that couplings
to other SM particles remain unspecified. Therefore gν is essentially a free parameter in our
approach while gχ is fixed by the requirement to obtain the correct relic density.

As discussed, the light vector messenger induces a long-range attractive Yukawa potential
between the DM particles. The DM is then thermally produced in the early universe via Som-
merfeld enhanced χ̄χ ↔ VV processes as shown in Fig. 8.2 on the left, where the annihilation
products VV will eventually decay into four neutrinos. The kinetic decoupling temperature, on
the other hand, will be set by χ-ν scattering, and is shown in the righthand diagram in Fig. 8.2.
The scattering amplitude obeys Eq. (8.1) with ` strictly replaced by neutrinos ν . Our model
also induces self-scatterings due to the (multiple) exchange of a vector boson (Fig. 8.2, middle
diagram), which changes the inner structure and velocity profiles of dwarf halos.

Assuming gν is small, but large enough to thermalize V at early times, the relic density is
roughly given by

Ωχh2 = Ωχ̄h2 ' 0.11
2

( gχ

0.683

)−4( mχ

TeV

)2
. (8.3)

The parameter scaling of this expression can be understood by looking at e.g. Eq. (3.1), where
we see that the relic density is inversely proportional to the annihilation cross section Ωχh2 ∝

〈σvrel〉−1 ∝ α−2m2
χ ∝ g−4

χ m2
χ . Eq. (8.3) additionally receives O(1) corrections due to the Som-

merfeld effect, which in our analysis was fully taken into account. Furthermore, we took into
account the intertwined nature of chemical and kinetic decoupling, which – as we have shown in
the previous chapter – can be important in models with Sommerfeld enhanced annihilation rates.
However, the kinetic decoupling happens so late in these models that the Sommerfeld enhance-
ment factor, which is of modest size with S ∼ O(100), is already saturated by that time. A new
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Figure 8.3: Models with DM and mediator masses that lie in the white area may be able to solve the ‘cusp vs. core’
problem without being ruled out by astrophysical bounds. The two crosses denote benchmark models from [13] for
which detailed simulations have shown that they additionally solve the ‘too big to fail’ problem. Dashed and solid
lines show contours of the astrophysical relevant quantities σT

max and vmax. Figure taken from [2].

era of annihilation does therefore not take place and we can safely use the standard, decoupled
Boltzmann equations for our model.

If we fix gχ by demanding the production of the observed relic density, there is a one-to-one
correspondence between the particle physics input (mχ ,mV ) and the astrophysical relevant pa-
rameters (vmax,σ

max
T ) given by Eq. (5.86). We show this in Fig. 8.3, where different values of

vmax and σmax
T are shown as dashed and solid contour lines, respectively. We also display the

strongest astrophysical bounds on large DM self-interaction rates taken from [181] that we dis-
cussed previously at the end of subsection 4.3.2. For mχ . 4TeV, they are due to DM scattering
with high-velocity particles from the host halo that would destroy the subhalos, while at larger
mχ the possibility of a gravothermal catastrophe constrains the relaxation time of the subhalo,
and thus the self-interaction strength. Models with high DM and mediator masses would pro-
duce too cuspy subhalos that are not able to solve the cusp vs. core problem. We can see that
a solution to the cusp/core and ‘too big to fail’ problem may then indeed be possible for DM
masses of mχ & 600GeV and a mediator mass in the (sub-) MeV range. The two benchmark
models from [13] for which we know the simulations give good results, are plotted as black
crosses.

Fortunately, the models that are capable of solving the two problems have vector boson masses
in the region where we expect large cutoff masses cf. Fig. 8.1. The kinetic decoupling temper-
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8 Sommerfeld enhanced Dark Matter and the small-scale problems of ΛCDM

ature in case of scattering with relativistic neutrinos, can actually be calculated analytically as
has been done in Ref. [54] (see also section 3.4). Extending the treatment given there to allow
for Tν 6= T , we find that the analytic expression for Tkd becomes:

Tkd

mχ

=

((
ã

n+2

)1/(n+2)

Γ

[
n+1
n+2

])−1
Tν

T
, (8.4)

which should be compared to Eq. (3.29). Here, we have rescaled the asymptotic behavior of
Tχ in the high-temperature limit to correspond to Tν instead of T , and ã is related to the old
definition a from Eq. (3.30) by a similar temperature rescaling

ã = a
(

Tν

T

)n+4

. (8.5)

Including the number of neutrino species Nν that couple to V , we then find that the kinetic
decoupling temperature is given by

Tkd =
0.062keV

N
1
4

ν

(
gχgν

) 1
2

(
T
Tν

) 1
2

kd

( mχ

TeV

) 1
4
( mV

MeV

)
. (8.6)

If we combine this with Eq. (8.3) we expect that Tkd, and thus Mcut, are essentially independent
of gχ and mχ , since the relic density constraint fixes the ratio of m1/4

χ g−1/2
χ .

For the small kinetic decoupling temperatures we are interested in here, acoustic oscillations
are more efficient than free streaming effects to suppress the power spectrum [55, 262] (see also
section 4.1.2). The resulting exponential cutoff can be translated into a smallest protohalo mass
of

Mcut ≈ 4π

3
ρχ

H3

∣∣∣
T=Tkd

= 1.7×108
(

Tkd

keV

)−3

M� , (8.7)

where H is the Hubble rate and we assumed late kinetic decoupling such that the effective
number of relativistic degrees of freedom are given by geff = 3.37.

We show in Fig. 8.4 contours of constant Mcut in the (gν ,mV ) plane for two different DM
masses, where we have specified Nν = 3 and Tν = (4/11)

1
3 Tγ . The result of the full numeri-

cal calculation is indeed extremely well described by Eqs. (8.7, 8.6) for gν & 10−7, assuming
mχ ∼ 1TeV and mV ∼ 1MeV. For larger DM masses mχ and smaller vector masses mV the
agreement between the numerical calculation and the analytical approximation even holds for
smaller values of gν . For gν . 10−7 the deviation is due to DM scattering off non-relativistic
mediator particles V that starts to dominate over scatterings with neutrinos, which is not taken
into account in Eq. (8.6). Because of this, Mcut eventually becomes independent of gν .

The question now is, which cutoff mass do we need in order to effectively suppress the forma-
tion of satellites on the right scale? The measured mass of a dwarf galaxy is based on its visible
content, and usually defined as the mass within a certain radius smaller than the virial radius, for
which reliable line-of-sight data is available. However, the (invisible) halo extends much further,
such that the total mass of the halo will be larger. Moreover, the mass of a satellite that is bound
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Figure 8.4: Contour lines of different values of Mcut are shown as a function of mediator mass mV and coupling
strength gν . Large values of gν and small values of mV lead to late kinetic decoupling and thus a large mass Mcut of
the smallest protohalos. Lyman-α data excludes Mcut & 5×1010M�, while Mcut & 109M� may solve the small-scale
abundance problems of ΛCDM cosmology [2].

to a larger system is a decreasing function of time, since tidal stripping can remove some of the
mass on the outer parts that is more loosely bound to the subhalo. The amount of mass that is
removed in this way depends on the time that a satellite spends in the vicinity of a host and the
pericenter of its orbit. A comparison between the cutoff mass and the observed mass of dwarf
galaxies is therefore not so meaningful.

Instead, it is better to take a look at measurements of the Lyman-α forest, which are able to
probe the matter power spectrum over a large range of redshifts down to the small scales we
are interested in. As discussed earlier in section 4.1, WDM suppresses density perturbations
on small scales due to free streaming effects. Although in our model the damping is set by
acoustic oscillations, we can still compare it to the cutoff scale from WDM simulations, since
both effects create an exponential cutoff in the power spectrum, which for WDM simulations
is conventionally expressed in the mass mWDM of a thermal WDM relic (see Eq. (4.21)). The
cutoff scale as given by Eq. (4.21) was defined as the characteristic wavenumber for which the
linear perturbation amplitude is suppressed by a factor of 2: kfs ≡ 0.46/Rfs [103]. Using this
definition, we can write the characteristic filtering mass analogous to Eq. (4.22)

Mfs ≡ 4π

3
ρm

(
π

kfs

)3

= 5.1×1010
(mWDM

keV

)−4
M� . (8.8)
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8 Sommerfeld enhanced Dark Matter and the small-scale problems of ΛCDM

Numerical simulations have shown that resulting halo statistics for cases where the initial den-
sity distribution has a sharp cutoff at kc = 2π/λfs, are very similar to those obtained from an
initial density field smoothed with a top-hat window function of radius λfs/2 [263]. Moreover,
numerical simulations of WDM show a deviation of the mass function from CDM simulations
on scales that correspond to Eq. (8.8) [264, 265]. These observations indicate that the choice of
Mfs as defined above is justified.

The cutoff scale in the power spectrum can be constrained by combining data of the Lyman-
α forest, the cosmic microwave background (CMB) and galaxy clustering. A 2σ -bound of
mWDM > 2keV has been claimed [157, 158], however this bound weakens to mWDM > 0.9keV
when one rejects data at z > 3.2 [157] that was affected by systematic errors and might be less
reliable [159]. Another bound of mWDM > 1.7keV was obtained by revisiting Lyman-α data,
which, however, is subject to systematic uncertainties at the∼30% level [266]. Moreover, in the
derivation of this constraint, it was not taken into account that emission from blazars can heat
the intergalactic medium, thereby affecting the Lyman-α forest [267].

We can conclude that Lyman-α data firmly excludes mWDM < 1keV or Mfs > 5.1×1010 M�.
For mWDM ' 1−2 keV, WDM models are able to alleviate the ‘missing satellite problem’ [268],
remove the excess of predicted faint galaxies to match the observed luminosity function[269],
and match flattening of the HI velocity function in the low velocity regime measured in the
ALFALFA survey [265]. For mWDM > 3 keV, the corresponding cutoff mass Mfs < 6×108 M�
is too small to have any impact on the faint-end of the galaxy luminosity function. We have
included these bounds in Fig. 8.4 to demonstrate that the model proposed in this section can
successfully address also the abundance problem of the smallest satellites in addition to the
other two small scale problems that we have discussed.

8.3 Model building and particle physics bounds

In the previous section we introduced a simple model that is able to successfully address all
three small-scale problems in ΛCDM structure formation. In the phenomenological approach
we took here, it was sufficient to postulate the existence of a light vector messenger V that
couples to both DM and neutrinos as defined in Eq. (8.2). If the vector boson does not couple to
quarks or other leptons, the coupling gν is essentially unconstrained. However, this setup is not
well motivated from a particle physics point of view, and other, better motivated models would
unavoidably introduce additional (loop-suppressed) couplings to other particles that might be
very constrained. Regarding the very elegant way that such a model could solve the small-scale
problems, it would certainly be worth to investigate concrete realizations of our model.

Probably the most straightforward way to embed a light vector boson in a theory is to assume
it is a U(1) gauge boson, also known as a hidden photon (see e.g. the leptophilic model proposed
in [90]). In this case, a kinetic mixing is generated between the hidden and the visible photon
through a lepton loop. These couplings are, however, severely constrained for sub-MeV vector
masses by various astrophysical and particle physics bounds [270, 271]. Evading these bounds
is probably the most difficult challenge in developing a realization of our model. Probably the
most severe bounds on the loop-induced couplings come from the solar lifetime and horizontal
branch stars. Kinetic mixing would cause photons in the star to change into U(1) bosons that
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can escape from the interior more easily, thereby inducing an energy loss that cannot exceed the
luminosity of the star.

The couplings of the V to charged leptons are additionally constrained by e.g. measurements
of the anomalous magnetic moment of the muon or electron, which receive extra contributions
from the new allowed couplings [272]. Furthermore, results from fixed target experiments,
where a beam of electrons is directed towards a dump and one looks for decay products behind
the target, will apply (see [271] for an overview), as will measurements from low energy ν-e
scattering [273]. However, these bounds are less stringent than the kinetic mixing bounds and
might be evaded by generation specific couplings. A model independent analysis overview of
the bounds that apply in the case that V couples to both neutrinos and electrons can be found in
[274].

Furthermore, in order for the theory to be renormalizable we require anomaly cancellation for
diagrams involving the hidden photon (see e.g. [227] for an explanation). The existence of this
new particle will induce unwanted loop diagrams coupling three U(1)’s, which scale as ∝ g3

` ,
where g` is the coupling between the lepton and hidden photon. In order for these contributions
to cancel each other out, one must, e.g, assume the hidden photon couples with opposite sign to
only two lepton species.

Instead of the vector boson coupling to ‘ordinary’ neutrinos, a further option would be to
consider it couples to sterile neutrinos νs. As long as the sterile neutrinos have a thermal ve-
locity distribution in the early universe and are relativistic up to Tkd, the results derived in the
previous chapter, in particular Eq. (8.6), would still hold. Interestingly, measurements of e.g.
the CMB seem to indicate that besides the three known neutrinos one other relativistic species
is preferred in our universe [275]. These kind of models with a new light force carrier coupling
to sterile neutrinos can even provide an explanation for existing signals in direct DM detection
experiments or probed in future experiments [276].

Finally, it is important to note that for typical galactic velocities v∼ 10−3, the DM candidate
we proposed in the previous section annihilates with a Sommerfeld-enhanced rate of 〈σv〉 ∼
3×10−24 (mχ/TeV)−2cm3s−1 into a VV pair, which then exclusively decays into neutrinos (for
mV ≤ 2me). This signal could be detected by neutrino observatories; an annihilation rate of this
magnitude will be in reach of future IceCube observations towards the Galactic Center [277].
Moreover, if the signal originates from a subhalo with substructure, this will produce a very
large boost of the annihilation rate in combination with the Sommerfeld effect [120] (see also
subsection 4.1.2). In this case, the signal may already be constrained by current observations
that set a limit on the DM annihilation rate of 〈σv〉 ∼ 10−22 cm3s−1 [278].

8.4 Conclusions and discussion

In this chapter we have presented a DM model that is capable of addressing all three small
scale problems discussed in section 4.3 simultaneously. The main ingredients for our model are:
velocity dependent self-interactions mediated by a light vector boson, and thermal production
with very late decoupling (O(keV)). The elastic scattering between the DM particles in the
innermost parts of the smallest subhalos causes them to become less dense, such that both the
velocity and density profiles are altered in such a way that they fit the observations. We have
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shown that a (sub)MeV vector mediator particle is needed for the self-scatterings to have effect
on the right scale, and that kinetic decoupling in these models can happen sufficiently late if
the mediator couples to neutrinos. The resulting cutoff in the power spectrum will suppress the
formation of small subhalos, thereby solving the missing satellite problem.

As shortly mentioned in subsection 4.3.2, one might expect there is a general problem with
using a cutoff in the power spectrum and the formation of sufficiently large cores. This so-
called ‘catch 22’ problem is observed for WDM, which removes density perturbations by free
streaming and afterwards behaves as collisionless fluid [176]. In our case, however, the DM is
not collisionless since it scatters with itself, and modifies only the densest parts of the halo, such
that the core size is determined by the magnitude of the transfer cross section.

Obviously, additional work is needed in order to find out if the model proposed here is capable
of adjusting the formation of small scale structure in the desired way. It is difficult to predict what
the combined effect of adding velocity-dependent DM self-scattering to the simulations and a
small scale cutoff in the power spectrum will be, since they could influence each other in some
non-linear way. The only way to find out, is to actually perform numerical simulations including
the indicated self-scattering and cutoff, and as a matter of fact, first groups are already running
simulations to test our model. We thus expect to find out how our model affects the properties
of the small subhalos in comparison to the usual ΛCDM simulations in the near future.

We not only expect that our model will be successful on small scales, there is also an indication
that it can help to bring simulations in better agreement with observations on larger scales: the
scattering cross section decreases for larger v such that for galaxy clusters only the very central
density profile at r . O(1− 10)kpc will be smoothed out. This would match observational
evidence from improved lensing and stellar kinematic data [279] for a density cusp in Abell 383
that is slightly shallower than expected for standard CDM.

Here, we have used the approach as presented in [54, 55] to calculate the kinetic decoupling
temperature, where only the leading order contribution of small momentum transfer is taken into
account, i.e., t = 0. In the case of DM-photon scattering mediated by the vector boson this re-
sulted in a negligible contribution since the scattering amplitude for this process is proportional
to t. However, it might be interesting to take into account even higher orders in the approxima-
tion, like e.g. in [262]; even though these contributions are expected to be small, they could turn
out be non-negligible because photons are very effective in keeping the DM in local thermal
equilibrium. If their contribution would turn out to be comparatively large, they could make
the V coupling to neutrinos superfluous, which could also be interesting in view of the model
building.

The model as presented in section 8.2 is only phenomenologically interesting and should
be adapted to or embedded in an existing particle physics framework. The model would be-
come more attractive if it additionally addresses some unexplained particle physics problems,
for example in the neutrino sector. However, as discussed in the previous section, with the very
constraining limits that apply to hidden massive photons and new particles coupling to leptons,
this will not be an easy task. Nevertheless, since this is the first time that a single solution for
all small scale problems was presented, it is certainly worth while to put effort into the model
building. Moreover, the fact that a very specific neutrino signal is predicted that can be probed
by IceCube, provides us with a very promising outlook to verify or invalidate the model in the
near future.
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9 Conclusions and outlook

Although the existence of DM on all possible scales in the Universe is now confirmed, its Nature
still remains a mystery to us. As we have seen, the thermally produced WIMPs are very promis-
ing candidates, not in the least because their annihilation rate naturally predicts the observed
DM density. In the standard scenario, the DM chemically decouples in the early Universe, after
which the relic abundance remains constant. Afterwards, the DM still collides with much hotter
particles such that local thermal equilibrium is maintained. Eventually, the DM will also kinet-
ically decouple after the Universe has further expanded and cooled down, which sets the size
of the first and smallest DM halos. Numerical simulations of ΛCDM that include the observed
amount of DM are extremely successful in recreating the Universe on large scales. Unfortu-
nately, however, the simulations seem to be in disagreement with observations of small scale
structure, and a satisfying solution to these problems has not yet been found.

In this thesis we have focused on a particular class of WIMP models where the Sommerfeld
effect needs to be taken into account. This non-relativistic quantum effect arises when two
particles collide with each other and are able to interact through a force that is represented by
a comparatively light mediator particle. The attractive Yukawa force that is generated by the
mediator exchange can affect the wave function of the incoming particles when their kinetic
energy is low enough. The result is an enhancement of the interaction cross section that is
inversely proportional with the WIMP velocity. An especially large interaction rate is obtained
when the two particles form a quasi bound state such that the enhancement factor is resonant.

The multiple exchange of the mediator particle between the colliding DM particles is a long
range effect that can be expressed in a ladder diagram, which can be calculated from the full
quantum theory. We have shown how this process works for the annihilation of right-handed
sneutrino DM, where the two sneutrino states can interact with each other and exchange Higgs
and Z-bosons. The result of this calculation can be expressed in a simple Schrödinger equa-
tion (which, in the case of the more complicated sneutrino model, is represented by a matrix
equation) with a Yukawa potential that depends on the mass of the mediator. In order to find
the enhancement factor, one needs solve for the distorted wave function of the interacting DM
numerically.

With the analytical equations presented in chapter 6, it is possible to find out how large the
Sommerfeld effect is for sneutrino annihilation. With this information, one could calculate the
flux of annihilation products that is expected from DM dominated regions, such as low surface
brightness galaxies or the center of our Galaxy. If this signal is in reach of current or future
indirect DM detection experiments, this would allow us to place constraints on the sneutrino
model or, in the most extreme case, rule it out or confirm it as the DM. In order to do this,
however, one must first take into account the only constraint that is available to us at present,
which is the DM abundance today.

However, in chapter 7 we have seen that for Sommerfeld enhanced models, the standard
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calculation of the thermal evolution can lead to very wrong estimations. In fact, chemical and
kinetic decoupling are not separate processes as is usually assumed, but can influence each other
when we are dealing with velocity enhanced annihilation rates. We introduced a system of
coupled Boltzmann equations that correctly takes this feedback into account, and as an example,
used it on a Sommerfeld toy-model. After kinetic decoupling has taken place, the WIMPs cool
down fast and their velocity decreases. The Sommerfeld effect causes the annihilation to restart,
such that the relic density decreases even after regular freeze-out. This new era of annihilations
can even continue until after matter-radiation for models where the Sommerfeld enhancement
is resonant. The WIMPs with the lowest velocity annihilate first, such that the average WIMP
temperature increases, which in turn affects the size of the smallest DM subhalos. It was shown
that much larger cutoff masses are possible for Sommerfeld enhanced models than for standard
neutralino DM.

Probing the scale of the smallest DM subhalos would be a new way to learn about the char-
acteristics of the DM. Especially since it has been shown that the cutoff mass is very model
dependent, it could help to distinguish between different DM candidates. There are quite a num-
ber of interesting DM models with velocity dependent annihilation rates for which the thermal
evolution has not been determined properly. In the special case of a resonance, the resulting relic
density could even be wrong by several orders of magnitude. It would therefore be interesting
to see the effect of the intertwined nature of chemical and kinetic decoupling for well motivated
model such as the Minimal Super Symmetric Model.

The large possible cutoff mass for Sommerfeld enhanced models in relation to the small scale
problems of ΛCDM was also studied in this work. Numerical simulations of structure formation
predict a much larger abundance of small subhalos than the observed satellites in our Milky
Way. Furthermore, the inner density of these subhalos seem to disagree with the observed cores
of dwarf galaxies. What is perhaps even worse, is that the simulated most massive subhalos are
far too dense, such that the rotation velocities do not match up with the observed brightest dwarf
galaxies.

It was already known from numerical simulations of structure formation that velocity depen-
dent self-scattering DM could help to solve at least the latter two problems. The self-scattering
causes the inner densities to become less dense, such that a core develops in the smallest subhalos
and the velocity profiles agree nicely with the brightest satellites. We translated the astrophys-
ical input of the simulations to particle physics parameters, and showed that it corresponds to
Sommerfeld enhanced model with a WIMP interacting through a light vector boson mediator.
We furthermore showed that very late kinetic decoupling is obtained for this model if the vector
mediator is able to interact with neutrinos. In that case, the resulting cutoff mass is large enough
to alleviate the subhalo abundance problem and at the same time evade bounds from Lyman-α
data. With this model it would thus be possible – for the first time – to solve all small scale
problems simultaneously.

Interestingly, the DM proposed here would annihilate into two vector bosons that exclusively
decay into neutrinos. This signal could be picked up by future (and possibly present) neutrino
detection experiments such as IceCube. Whether our proposed model is as successful in solving
the small scale problems as we expect, can only be found out by performing detailed numer-
ical simulations (which at the moment are already being prepared). Furthermore, the model
as proposed here is useful for phenomenological purposes but not very appealing from a par-
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ticle physics perspective. Additional model building, which will not be easy with the strong
constraints that exist for new particles, is therefore a necessity, but with a possibly rewarding
outcome.

In conclusion, we have shown that the Sommerfeld effect is an interesting phenomenon that
can have important consequences for our understanding of and search for DM. Exciting times are
ahead of us with the many different experiments that are looking for a possible hint of DM, and
there are even more to come. We have now reached an era where our technology and knowledge
has advanced so much, that we have great hopes for the near future to unveil at least some of the
secrets that our fascinating cosmos holds in store for us.
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A Calculation of Sommerfeld effect

A.1 Quantum electrodynamics

In this Appendix section we will present a more detailed calculation than given in section 5.2 for
the Sommerfeld enhanced electron-positron annihilation into 2 photons. We consider the theory
of Quantum electrodynamics, derive the non-relativistic action and subsequently calculate the
two-body action.

A.1.1 Derivation of the non-relativistic effective action

Here we will provide the details of the calculation of the non-relativistic action from the full
QED action (see Eq. (5.19)) that we have skipped in section 5.2.2.

Integrate out light fields

The first step is to integrate out the light fields, in this case Aµ from Eq. (5.22)

Z[Aµ ] =
∫

DA exp
{

i
∫

d4x
(
−eψ̄γ

µ
ψAµ − 1

2
Aµ

[
(1− 1

ξg
)∂ 2gµν −∂

µ
∂

ν

]
Aν

)}
, (A.1)

In order to do this, we shift the A-field

A′µ(x) = Aµ(x)−
∫

d4yGµν(x− y)Jν(y) , (A.2)

where Gµν(x− y) is a Green’s function such that

−
[
(1− 1

ξg
)∂ 2gαβ −∂

α
∂

β

]
Gµν(x− y) = Mµν(x)Gµν(x− y) = iδ β

ν δ
(4)(x− y) , (A.3)

and the current Jν(y) is defined as

Jν(y) =−eψ̄(y)γν
ψ(y) . (A.4)

A solution to Eq. (A.3) is

Gµν(x− y) =−i
∫ d4q

(2π)4

gµν − (1−ξg)
qµ qν

q2

q2 + iε
e−iq·(x−y) , (A.5)

which represents the photon propagator between points x and y. The functional derivative in
Eq. (5.22) simply transforms to DA→DA′.
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Substituting these definitions into the Lagrangian from Eq. (5.22), we get after a little algebra:

S[A′] =
∫

d4x
[

1
2

A′µ(x)Mµν(x)A′ν(x)− 1
2

∫
d4yd4zJα(y)Gµα(x− y)Mµν(x)Jβ (z)Gνβ (z− x)

+ i
1
2

∫
d4yJα(y)Gµα(x− y)Mµν(x)A′ν(x)+ i

1
2

∫
d4yA′µ(x)Mµν(x)Jβ (y)Gνβ (x− y)

+Jµ(x)A′µ(x)+ iJµ(x)
∫

d4yJν(y)Gµν(x− y)
]

, (A.6)

where we can use Eq. (A.3) to evaluate the integrals in the second, third and fourth term. The
second term transforms to the last term, except for a factor−1

2 . The third and fourth term end up
giving the same contribution, i.e. −1

2 Jµ(x)A′µ(x), that together cancel out the fifth term. Finally,
we are left with the simple expression as given in Eq. (5.24):

S[A′] =
∫

d4x
[

1
2

A′µ(x)Mµν(x)A′ν(x)+ i
1
2

∫
d4yJµ(x)Gµν(x− y)Jν(y)

]
, (A.7)

Integrate out relativistic parts of fields

Integrating out the relativistic parts of the fermion fields is done by splitting the fields in a
relativistic and non-relativistic part

ψ(x) =
∫

NR
d4 p

(2π)4 ψ̃(p)e−ipx +
∫

R
d4 p

(2π)4 ψ̃(p)e−ipx = ψNR(x)+ψR(x) ,

ψ(x) =
∫

NR
d4 p

(2π)4 ψ̃(p)eipx +
∫

R
d4 p

(2π)4 ψ̃(p)eipx = ψNR(x)+ψR(x) ,
(A.8)

where the non-relativistic momentum space is defined as

NR =
(

(p0,~p) | p0 =±m+δ p0, O(δ p0)∼ O

(
~p2

2m

)
� m

)
, (A.9)

The relevant terms in the action that are obtained by this are given by

S[ψNR,ψNR] = S0,NR +SR[ψNR,ψNR] ,

=
∫

d4x [ψNR(i6γ−m)ψNR]

+
ie2

2

∫
d4xd4y

[
ψNR(x)γα

ψNR(x)Gαβ (x− y)ψNR(y)γβ
ψNR(y)

]
− i log

(∫
DψRDψReiS0,R+iSint[ψNR,ψR,ψNR,ψR]

)
, (A.10)

which is the expression from Eq. (5.27). Here we concentrate in particular on integrating out the
relativistic fields from the term Sint[ψNR,ψR,ψNR,ψR]. For information about the other terms
see subsection 5.2.2.

Since we are interested in a box diagram that is related to the annihilation of an electron-
positron pair into photons, we will focus on terms that include two non-relativistic and two
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relativistic fields. There are in fact six of such terms:

Sint[ψNR,ψR,ψNR,ψR] =
ie2

2

∫
d4xd4y

[
ψNR(x)γα

ψR(x)Gαβ (x− y)ψR(y)γβ
ψNR(y)

]
+

ie2

2

∫
d4xd4y

[
ψR(x)γα

ψNR(x)Gαβ (x− y)ψNR(y)γβ
ψR(y)

]
+

ie2

2

∫
d4xd4y

[
ψNR(x)γα

ψR(x)Gαβ (x− y)ψNR(y)γβ
ψR(y)

]
+

ie2

2

∫
d4xd4y

[
ψR(x)γα

ψNR(x)Gαβ (x− y)ψR(y)γβ
ψNR(y)

]
+

ie2

2

∫
d4xd4y

[
ψR(x)γα

ψR(x)Gαβ (x− y)ψNR(y)γβ
ψNR(y)

]
+

ie2

2

∫
d4xd4y

[
ψNR(x)γα

ψNR(x)Gαβ (x− y)ψR(y)γβ
ψR(y)

]
.

(A.11)

The first four terms correspond to diagrams of the kind that is depicted in the top left of Fig. 5.3.
As one can see, these diagrams can build a box diagram (Fig. 5.3, top, right) like the one we are
looking for when two of them are combined. The remaining two terms are interactions like the
one in the bottom left corner of Fig. 5.3, which can build the other two higher order diagrams on
the right. Since we are not interested in them, we will therefore focus on the first four terms in
Eq. (A.11).

In order to perform the integration over the relativistic fields, we expand SR to second order
in ie2/2 such that we symbolically get

ei
[
ψ2

R+ ie2
2 (ψ4

R+ψ2
NRψ2

R)
]
≈ eiψ2

R

[
1− e2

2
(
ψ

4
R +ψ

2
NRψ

2
R
)

+
1
2!

e4

4
(
ψ

4
R +ψ

2
NRψ

2
R
)2

+O(e6)
]

, (A.12)

where the integration over position space has been left out for simplicity, and ψ2
NR denotes that

the corresponding term contains two ψNR fields, either with or without bar. Integrating this
expression over the relativistic fields, we will end up with something of the form∫

DψRDψRei(S0,R+Sint) ∼CR×
(

1+
∫

d4x d4y iβ2(x,y)ψNR(x)ψNR(y)

+
∫

d4xd4yd4zd4w iβ4(x,y,z,w)ψNR(x)ψNR(y)ψNR(z)ψNR(w)+ . . .

)
,

(A.13)

where CR represents the constant prefactor from integrating over the purely relativistic part,
and βi denotes the coefficient including all prefactors and coupling constants in front of the i-
point correlation function. As explained before, we want to concentrate on the terms containing
four non-relativistic fields, corresponding to the box diagrams from 5.3, thus we want to derive
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the form of β4. As can be seen from Eq. (A.12), this is given by the term proportional to e4

containing four relativistic and four non-relativistic fields, i.e., the square product of the first
four terms in Eq. (A.11). In total this will give us sixteen terms, many of which will fortunately
cancel out or simply disappear.

In order to integrate out the relativistic fields, we use that

ψR(x)ψR(y) =
∫

DψRDψReiψR(i6∂−m)ψRψR(x)ψR(y)∫
DψRDψReiψR(i6∂−m)ψR

= S(x− y) , (A.14)

which will make sure the factor CR in Eq. (A.13) can be divided out. The propagator of ψR is
defined as

S(x− y) =
∫

R

d4 p
(2π)4

i(6 p+m)
p2−m2 + iε

e−ip(x−y) , (A.15)

and satisfies
(i6∂x−m)S(x− y) = iδ 4(x− y) . (A.16)

Furthermore we have that

ψR(x)ψR(y) = ψR(x)ψR(y) = 0 , (A.17)

due to the anti-commutation relations for fermions, such that only terms including pairs of ψR
and ψR will survive.

Four of the remaining six terms are given by

ψNR(x)γµ
ψR(x)Gµν(x− y)ψR(y)γν

ψNR(y) ψNR(z)γα
ψR(z)Gαβ (z−w)ψR(w)γβ

ψNR(w)
(A.18)

ψNR(x)γµ
ψR(x)Gµν(x− y)ψR(y)γν

ψNR(y) ψR(z)γα
ψNR(z)Gαβ (z−w)ψNR(w)γβ

ψR(w)
(A.19)

ψR(x)γµ
ψNR(x)Gµν(x− y)ψNR(y)γν

ψR(y) ψNR(z)γα
ψR(z)Gαβ (z−w)ψR(w)γβ

ψNR(w)
(A.20)

ψR(x)γµ
ψNR(x)Gµν(x− y)ψNR(y)γν

ψR(y) ψR(z)γα
ψNR(z)Gαβ (z−w)ψNR(w)γβ

ψR(w) ,
(A.21)

where we have excluded the space integrals and the factor of e4/8 in front of the expressions for
the moment being. In fact, the top two and bottom two expressions are the same. For example
taking the righthand factor in Eq. (A.19), we can use that

ψR(z)γα
ψNR(z)Gαβ (z−w)ψNR(w)γβ

ψR(w) =

ψNR(w)γβ
ψR(w)Gβα(w− z)ψR(z)γα

ψNR(z) ,
(A.22)

which is equal to the righthand factor in Eq. (A.18) after a redefinition of α ↔ β and z↔ w
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(the only difference is a factor −1 in the momentum q of the virtual photon in the box diagram,
which is not important since it is integrated over). Similarly one can derive that Eq. (A.20) and
Eq. (A.21) are the same. Therefore these four terms reduce to 2 times Eq. (A.18), shown as the
top right diagram in Fig. 5.4, and 2 times Eq. (A.20) ( Fig. 5.4, bottom right).

The remaining two terms are given by

ψNR(x)γµ
ψR(x)Gµν(x− y)ψNR(y)γν

ψR(y) ψR(z)γα
ψNR(z)Gαβ (z−w)ψR(w)γβ

ψNR(w)

(A.23)

ψR(x)γµ
ψNR(x)Gµν(x− y)ψR(y)γν

ψNR(y) ψNR(z)γα
ψR(z)Gαβ (z−w)ψNR(w)γβ

ψR(w) ,

(A.24)

where each term can have two different contractions as indicated by the upper and lower lines.
As in the previous case, the different contractions actually give the the same contribution, such
that we can again take 2 times Eq. (A.23) (Fig. 5.4, bottom left) and Eq. (A.24) (Fig. 5.4, top
left).

The total therefore comes down to four different terms, each with a factor of e4/4 in front.
From Fig. 5.4 it is visible that there are in principle only two different kind of interactions,
corresponding to the t- and u-channel (left and right, respectively). The upper diagrams will
give the same contribution as the lower ones, such that we only need to consider two terms
in the end, with an additional factor of 2. This explains the factor of e2/2 in front of the two
terms in Eq. (5.29), where the first term corresponds to the t-channel, and the second term to the
u-channel

Non-relativistic expansion of the potential term

Here, we will provide some more details about the non-relativistic expansion of the potential
term given in Eq. (5.31):

Sp =
ie2

2

∫
d4xd4y

[
ψ(x)γα

ψ(x)Gαβ (x− y)ψ(y)γβ
ψ(y)

]
, (A.25)

Let us now first consider the spatial part of Eq. (A.25), for which α,β = i, j = 1,2,3. The
Lorentz vector ψγ iψ is then given by

ψγ
i
ψ = ψ

†
γ

0
γ

i
ψ = ψ

†
(

0 σ i

σ i 0

)
ψ = iη†

[
~∇ ·~σ
2m

,σ i

]
η + iξ †

[
σ

i,
~∇ ·~σ
2m

]
ξ , (A.26)

where each term is of order O( p
m). The spatial part of the potential term contains the product of

two of these Lorentz vectors and Gi j, such that the resulting terms will all be of order O( p2

m2 ) or
higher and we can neglect all of them.

We therefore focus on the temporal part of the potential term, for which the Lorentz vector
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ψγ0ψ takes the form

ψγ
0
ψ = ψ

†
γ

0
γ

0
ψ = ψ

†
ψ = η

†
η +ξ

†
ξ +O

(
p2

m2

)
, (A.27)

where we have only written the leading order terms explicitly. The temporal part of the photon
propagator is

G00(x− y) =−i
∫ d4q

(2π)4

1− (1−ξg)
q2

0
q2

q2 + iε
e−iq·(x−y) , (A.28)

where we have used g00 = 1. In order to evaluate the potential term, it is convenient to Fourier
transform the fields such that we obtain

ie2

2

∫
d4xd4y

[
η

†(x)η(x)+ξ
†(x)ξ (x)

]
G00(x− y)

[
η

†(y)η(y)+ξ
†(y)ξ (y)

]
=

ie2

2

∫ d4k1d4k2d4k3d4k4

(2π)16 (2π)4
δ

(4)(k1− k2 + k3− k4)×[
η̃

†(k2)η̃(k1)+ ξ̃
†(k2)ξ̃ (k1)

]
G̃00(k2− k1)

[
η̃

†(k4)η̃(k3)+ ξ̃
†(k4)ξ̃ (k3)

]
, (A.29)

where in the last step we have used that

G00(x− y) =
∫ d4k1

(2π)4
d4k2

(2π)4 G̃00(k2− k1)e−i(k2−k1)(x−y) . (A.30)

Comparing this equation to Eq. (A.28) we find that in the non-relativistic limit where ki = (m,ki)
and |ki| � m, the Fourier transform of the propagator is given by

G̃00(k2− k1) =−i

1− (1−ξg)
(k0

2−k0
1)

2

(k2−k1)2

(k2− k1)2

 ,

=
−i

(k0
2− k0

1)2−|k2−k1|2
+

i(1−ξg)(k0
2− k0

1)
2(

(k0
2− k0

1)2−|k2−k1|2
)2 ,

≈ i
|k2−k1|2 , (A.31)

where in the last step we have used that k0
2 ' k0

1. The gauge dependent term therefore disappears
since photons and scalars are the same in the non-relativistic limit. Inserting this in Eq. (A.29)
and Fourier transforming back, we obtain

−1
2

∫
d4xd4y

αδ (x0− y0)
|x−y|

[
η

†(x)η(x)+ξ
†(x)ξ (x)

][
η

†(y)η(y)+ξ
†(y)ξ (y)

]
, (A.32)

as given in Eq. (5.32).
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A.1.2 Two-body effective action

Here we will provide the details of the calculation of the two-body wave-function that describes
the positronium state. In order to perform the functional integration over the one-particle fields
in the two-body action (see Eq. (5.38)

SII ≡−i log
[∫

DηDη
†DξDξ

†eiSNR

]
, (A.33)

we introduce auxiliary fields σ(t,x,y) and s(t,y,x) that satisfy

1 =
∫

DσDs† exp
[

i
2

∫
d(xy) σ

(
s†−η

†
ξ
)]

(A.34)

1 =
∫

Dσ
†Ds exp

[
i
2

∫
d(xy) σ

† (s−ξ
†
η
)]

, (A.35)

which allows us to replace η†ξ with the two-body function s†, and ξ †η with s. The reason why
this is allowed becomes clear when we look at the simple integral∫

dx
∫

dyeiy(x−a) = 2π

∫
dxδ (x−a) = 2π . (A.36)

We therefore insert Eq. (A.34) and Eq. (A.35) into Eq. (5.38), and pull out the integration over
σ ,σ†∫

DσDσ
† eiSII[σ ,σ†] =

∫
DσDσ

†DsDs†DηDη
†DξDξ

†

exp
[

iSNR +
i
2

∫
d(xy)

[
σ
(
s†−η

†
ξ
)
+σ

† (s−ξ
†
η
)]]

, (A.37)

such that we know we can substitute the two-body wave-functions where necessary, and write
everything as

SII[σ ,σ†] =−i log
[∫

DsDs†DηDη
†DξDξ

†

exp
{

i
∫

d4xd4y
(
η

†(x)ξ †(x)
)

K(x,y)
(

η(y)
ξ (y)

)
− i

2

∫
d(xy)s†(t,y,x)V (x,y)s(t,y,x)

+
i
2

∫
d(xy)

(
σ

†(t,x,y)s(t,y,x)+σ(t,x,y)s†(t,y,x)
)}]

, (A.38)
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where the matrix K consists of two terms

K(x,y) = K0(x,y)+Kσ (x,y)

= δ
(4)(x− y)

(i∂y0 + ∇2
y

2m

)
0

0
(

i∂y0− ∇2
y

2m

)
 (A.39)

− 1
2

δ (x0− y0)
(

0 σ(y0,x,y)
σ†(y0,y,x) 0

)
, (A.40)

and

V (x,y) =− α

|x−y| − i
2πα2

m2 δ
(3)(x−y) . (A.41)

We can split the functional integration over the fields in Eq. (A.38), since the first term in the
exponential only depends on η ,η†,ξ and ξ †, and the second and third terms depend on s,s†.
The functional integration over the term in the exponential containing the matrix K(x,y) results
in det iK. The remaining terms in the exponential we integrate over s and s†, such that we obtain

SII[σ ,σ†] =−iTr [log iK]+
1
2

∫
d(xy)σ

†(t,y,x)V −1(x,y)σ(t,y,x) , (A.42)

where we have used that det iK = exp [Tr [log iK]], and V −1 is the inverse of Eq. (A.41).

Concentrating first on the trace part, we find

−iTrlog [iK(x,y)] =−iTrlog
[
iK0
(
1+K−1

0 Kσ

)]
=−iTrlog [iK0(x,y)]− iTr

[
K−1

0 (x,x2)Kσ (x2,y)
]

+
i
2

Tr
[
K−1

0 (x,x2)Kσ (x2,x3)K−1
0 (x3,x4)Kσ (x4,y)

]
, (A.43)

where in the last step we have Taylor expanded around K−1
0 Kσ � 1. The inverse of K0 is given

by

K−1
0 (x,y) =

(
SF(x,y) 0

0 SF(x,y)

)
, (A.44)

where

SF(x,y) =
∫ d4 p

(2π)4
e−ip(x−y)

p0− |p|22m + iε
(A.45)

SF(x,y) =
∫ d4 p

(2π)4
e−ip(x−y)

p0 + |p|2
2m − iε

, (A.46)

Since the first term in Eq. (A.43) does not depend on σ , and the second term is zero because of
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A.1 Quantum electrodynamics

TrKσ = 0, only the third term is interesting to us. Therefore we can write the trace part as

−iTr [log iK]≈ i
2

Tr
[
K−1

0 (x,x2)Kσ (x2,x3)K−1
0 (x3,x4)Kσ (x4,y)

]
=

i
2

∫
d4xd4x2 d4x3 d4x4×

SF(x,x2)δ (x0
2− x0

3)σ(x0
3,x2,x3)SF(x3,x4)δ (x0

4− x0)σ†(x0,x4,x) . (A.47)

Now that we have successfully written the action in two-body states, we introduce new coor-
dinates R and r according to Eq. (5.39)

R =
(

t
x+y

2

)
, r = x−y (A.48)

that separate the motions of the center of mass from the relative motions. In the new variables
the two-body state σ is given by

σ(r,P) =
∫

d4Rσ(t,x,y)eiPR , (A.49)

where P is the momentum of the center of mass and furthermore we have
∫

d(xy) = d4Rd3r.
We now consider the potential and annihilation term separately. Obtaining an expression for the
potential part (second term in Eq. (A.42)) in the new coordinates does not require much work,
and is simply given by

−1
2

∫ d4P
(2π)4 d3rσ(r,P)

r
α

(
1+ i

2πrα

m2 δ
(3)(r)

)−1

σ
†(r′,P) . (A.50)

Calculating the trace part, however, involves a little more work. We can express Eq. (A.47) in
the new coordinates as

i
2

∫
d4Rd4R′d4rd4r′δ (r0)δ (r′0)

∫ d4P
(2π)4 σ(r,P)e−iPR

∫ d4K
(2π)4 σ

†(r′,K)e−iKR′

∫ d4 p
(2π)4

e−ip(R′+ r′
2 −R− r

2 )

p0− |p|22m + iε

∫ d4k
(2π)4

e−ik(−R′+ r′
2 +R− r

2 )

k0 + |k|2
2m − iε

. (A.51)

After performing the integrals over R′, p,R,K, we obtain

i
2

∫
d4rd4r′δ (r0)δ (r′0)

∫ d4P
(2π)4 σ(r,P)σ†(r′,P)ei(r′−r)P/2

∫ d3k
(2π)4 ei(r′−r)k

∫
dk0 e−i(r′0−r0)k0

(k0 +P0−|k+P|2/2m+ iε)(k0 + |k|2/2m− iε)
, (A.52)

where the contour integral over k0 yields 2πi
(
P0−|k|2/m−|P|2/2m−|k||P|/m

)−1. Changing
variables in momentum space to q = P/2 + k and integrating over r0,r′0, we finally obtain the
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following expression for the trace part

1
2

∫
d3rd3r′

∫ d4P
(2π)4 σ(r,P)ζ (r− r′,E)σ†(r′,P) , (A.53)

where E = P0− |P|2/4m is the internal energy of the two-body state and ζ is the function as
given in Eq. (A.54):

ζ (r,E) =
∫ d3q

(2π)3
me−iq·x

|q|2−mE− iε
, (A.54)

which satisfies (
−∇2

m
−E

)
ζ (r,E) = δ

(3)(r) . (A.55)

Combining this result with the potential part, we obtain the two-body action cf. Eq. (5.41)

SII[σ ,σ†] =
1
2

∫ d4P
(2π)4 d3r

(
−σ

†(r,P)
r
α

[
1+ i

2πrα

m2 δ
(3)(r)

]−1

σ(r,P)

+
∫

d3r′σ†(r′,P)ζ (r′− r,E)σ(r,P)
)

, (A.56)

From this expression one can derive the Schrödinger equation as explained further in subsection
5.2.3.

A.2 Scalar toy model

Here we will follow the same approach as in the previous Appendix section to calculate the
Sommerfeld enhancement for a toy model as defined by Eq. (6.18). First we integrate out the
light fields l by shifting the light field

l′(x) = l(x)− i
∫

d4yDl(x− y) j(y) , (A.57)

where the propagator of the light field is given by

Dl(x− y) =
∫ d4 p

(2π)4
i

p2−m2
l

e−ip·(x−y) , (A.58)

such that it satisfies the Klein-Gordon equation(
∂

µ
∂µ +m2

l
)

Dl(x− y) =−iδ (4)(x− y) . (A.59)

The current is here defined as j(x)≡ A
2 H2(x). Following the steps as in A.1.1 is straightforward,

and we find that the effective Lagrangian is given by

Seff[H] =
∫

d4x
[

1
2

∂
µH∂µH +

m2
H

2
H2
]
+

i
2

∫
d4xd4y j(x)Dl(x− y) j(y) . (A.60)
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A.2 Scalar toy model

Integrating out the relativistic parts of the heavy fields is very similar to what we have done
in A.1.1. The non-relativistic regime is defined as in Eq. (5.26), and the fields are split up in a
non-relativistic and relativistic part in momentum space

H =
∫

NR

d4 p
(2π)4 H̃(p)e−ipx +

∫
R

d4 p
(2π)4 H̃(p)e−ipx = HNR(x)+HR(x) . (A.61)

Considering that Eq. (A.60) contains only an interaction term that is proportional to j(x) j(y),
we can expand it in the non-relativistic and relativistic parts. We find that the interaction term
with only non-relativistic fields gives the potential term:

Spot[HNR] = i
A2

8

∫
d4xd4yH2

NR(x)Dl(x− y)H2
NR(y) , (A.62)

which corresponds to the diagram on the left in Fig. 6.2.
From the other remaining terms that include both relativistic and non-relativistic fields, we

exclude terms that contain odd number of HNR (HR) due to kinematic reasons. In fact, only
terms that are proportional to HNR(x)HR(x)HNR(y)HR(y) interest us since they can build the box
diagrams for the annihilation part (see Fig. 6.2 on the right), such that we have

Sint = i
A2

2

∫
d4xd4y [HNR(x)HR(x)Dl(x− y)HNR(y)HR(y)] . (A.63)

The coefficient is explained by the fact that, since the ordering of the H-fields is unimportant,
there are four of such terms. Expanding exp iSint ∼ 1+ iSint +(iSint)2/2+ . . . to second order in
the squared coupling A2, we find that the relevant term (iSint)2/2 (without prefactors and space
integrals) is given by

HNR(x)HR(x)Dl(x− y)HNR(y)HR(y)HNR(z)HR(z)Dl(z−w)HNR(w)HR(w) , (A.64)

where the two possible contractions of the relativistic fields are indicated by the upper and lower
lines, and the pre-factor is given by A4/8. The contractions can be worked out in the same
manner as in Eq. (A.14), but now the result is a relativistic propagator of the heavy field DR

H .
Since it is a scalar propagator, it has the same form as Eq. (A.58), except the integration is only
over the relativistic part of momentum space and the mass in the denominator is exchanged for
mH . Having replaced the contractions by the heavy propagators we obtain

Sann[HNR] =−i
A4

8

∫
d4xd4yd4zd4w[

HNR(x)Dl(x− y)HNR(y)DR
H(y− z)HNR(z)Dl(z−w)HNR(w)DR

H(w− x)

+HNR(x)Dl(x− y)HNR(y)DR
H(y−w)HNR(w)Dl(w− z)HNR(z)DR

H(z− x)
]
,

(A.65)

where the two different contractions again correspond to t- and u-channel box diagrams.
In order to perform the non-relativistic expansion of the action, we need the correct normaliza-
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A Calculation of Sommerfeld effect

tion of the heavy fields, which is obtained from the kinetic term. The non-relativistic momentum
space is again defined as in Eq. (5.26), and if we replace it into the propagator of the heavy fields
DH (similar to Eq. (A.58)), we obtain

DNR
H (x) = 〈0|T HNR(x)HNR(0)|0〉 ' i

2mH

∫ d4k
(2π)4

[
e−imH t

k0− k2

2mH
+ iε
− eimH t

k0 + k2

2mH
− iε

]
e−ikx ,

(A.66)
where again kµ ≡ (δ p0,p

)
. From this we derive that the non-relativistic H-field should look

like
HNR(x) =

1√
2mH

[
φ(x)e−imH t +φ

†(x)eimH t] , (A.67)

where the phases are just a convention and not physical. It must be understood that φ †(x) creates
a heavy field and φ(x) annihilates one at x. Since the propagator in Eq. (A.66) is equivalent to
the time-ordered product of two h-fields, substituting Eq. (6.23) we find that

〈0|T HNR(x)HNR(0)|0〉= 1
2mH

e−imH t〈0|T φ(x)φ †(0)|0〉+ 1
2mH

eimH t〈0|T φ
†(x)φ(0)|0〉 . (A.68)

Matching this with Eq. (A.67), we find that the kinetic term is given by

Skin =
∫

d4xφ
†(x)

[
i∂t +

∇2

2mH

]
φ(x) . (A.69)

For the potential term we need to consider the non-relativistic expansion of the product
H2

NR(x). Since we are interested in the t-channel diagram, we can ignore the terms proportional
to φ †

x φ †
x (two outgoing heavy fields created at x) and φxφx (two incoming heavy fields annihilated

at x). The contributions φxφ †
x and φ †

x φx are actually the same, since the fields are scalar and the
ordering is irrelevant. We therefore obtain

Spot = i
A2

8m2
H

∫ d4k1d4k2d4k3d4k4

(2π)16

∫
d4xd4y(

φ̃
†(k2)φ̃(k1)

)(
φ̃

†(k4)φ̃(k3)
)

Dl(x− y)e−i(k1−k2)x−i(k3−k4)y , (A.70)

where we have Fourier transformed the fields. Introducing new coordinates that describe the
position of the center of mass R and the relative distance between the particles r like in Eq. (5.39),
and working out the integral over R, we obtain an expression that includes∫

d4rDl(r)ei(k2−k1)r = D̃l(k2− k1)' −i
|k1−k2|2 +m2

l
, (A.71)

such that we finally arrive at

Spot =
A2

8m2
H

∫
d4xd4y

δ (x0− y0)e−ml(x−y)

4π|x−y|
(
φ

†
φ
)

x

(
φ

†
φ
)

y . (A.72)

As expected, the action now includes a Yukawa potential since the force carrier l is massive.
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A.2 Scalar toy model

The fields should be reshuffled as to correspond to a scalaronium state,
(
φ †

x φ †
y
)
(φxφy), where

the right hand annihilates a spin-0 scalaronium state and the left hand creates one.

Finally, we have to do the same for the annihilation term given in Eq. (A.65). We will go
through the calculation of the box diagram as depicted in Fig. 6.2 on the right, using the optical
theorem to obtain the annihilation cross section of two heavy particles H into two light particles
l. The annihilation term in the action reads

Sann[HNR] =−i
A4

8

∫
d4x 1d4x2d4x3d4x4[

HNR(x1)Dl(x1− x4)HNR(x4)DR
H(x4− x3)HNR(x3)Dl(x3− x2)HNR(x2)DR

H(x2− x1)

+HNR(x1)Dl(x1− x3)HNR(x3)DR
H(x3− x4)HNR(x4)Dl(x4− x2)HNR(x2)DR

H(x2− x1)
]

(A.73)

where the first term is the ‘usual’ t-channel box diagram, and the second term with crossed l
lines (u-channel). Since both diagrams contribute the same amount, the action reduces to one
term with a factor 2 included. Going to Fourier space and integrating over position space we
obtain

Sann =−i
A4

4

∫ d4 p1d4 p2d4 p3d4 p4

(2π)16

∫
d4k1d4k2d4k3d4k4H̃(p1)H̃(p2)H̃(p3)H̃(p4)

δ (4)(k1− k2 + p1)
k2

1−m2
H

δ (4)(k2− k1 + p2)
k2

2−m2
l + iε

δ (4)(k3− k2 + p3)
k2

3−m2
H

δ (4)(k4− k3 + p4)
k2

4−m2
l + iε

, (A.74)

where we omitted the NR subscripts for simplicity. Now we evaluate the cut in the diagram,
meaning that the two light particles are put on-shell, and we have to use the iε-prescription to
perform the integrals over k2 and k4. Using that ((x−a)∓ iε)−1 = P

[
(x−a)−1

]
± iπδ (x−a),

we get

Sann =
iπ2A4

4

∫ d4 p1d4 p2d4 p3d4 p4

(2π)16

∫
d4k1d4k2d4k3d4k4H̃(p1)H̃(p2)H̃(p3)H̃(p4)

δ
(4)(k1− k2 + p1)δ (4)(k2− k1 + p2)δ (4)(k3− k2 + p3)δ (4)(k4− k3 + p4)

δ (k2
2−m2

l )
k2

1−m2
H

δ (k2
4−m2

l )
k2

3−m2
H

. (A.75)

Using the 4D delta-functions to write all loop momenta in the denominators in terms of k4,
and keeping the integration over k2 and k4, we get

Sann =
iπ2A4

4

∫ d4 p1d4 p2d4 p3d4 p4

(2π)16 δ
(4)(p1 + p2 + p3 + p4)H̃(p1)H̃(p2)H̃(p3)H̃(p4)∫

d4k2d4k4δ
(4)(k4− k2− p1− p2)

δ (k2
2−m2

l )
(k4− p1)2−m2

H

δ (k2
4−m2

l )
(k4 + p4)2−m2

H
. (A.76)
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Using d4kδ (k2−m2)θ(k0) = d3k/2Ek, where θ(k0) is the Heavyside step function, we have

Sann =
iπ2A4

4

∫ d4 p1d4 p2d4 p3d4 p4

(2π)16 δ
(4)(p1 + p2 + p3 + p4)H̃(p1)H̃(p2)H̃(p3)H̃(p4)∫ d3k′2

−2E ′2

d3k4

2E4
δ

(4)(k4 + k′2− p1− p2)
1

(k4− p1)2−m2
H

1
(k4 + p4)2−m2

H
. (A.77)

Here, we have reversed the momentum k′2 = −k2 to let the light particle with momentum k2
correspond to an outgoing momentum in the annihilation diagram.

After evaluating the integral over k′2, the delta function involving the momenta from the light
particles becomes δ (E4 +E ′2−Ein), where Ein ≡ p0

1 + p0
2. We now spend some time to simplify

this delta-function. For this we can use that

δ ( f (k)) =
δ (k− k0)∣∣∣d f (k0)

dk

∣∣∣ , (A.78)

where k0 is the root of the function f (k). In our case this function is given by f (|k4|) =

E4(|k4|)+E ′2(|k4|)−Ein, and one can calculate that the root is given by |k4|0 =
√

s
2

√
1−4m2

l /s,

where s = E2
in and we evaluated everything in the center of mass frame. The derivative of f (|k4|)

evaluated at the root can shown to be 2
√

1−4m2
l /s, such that the delta function can be substi-

tuted by

δ (E4(|k4|)+E ′2(|k4|)−Ein) =
δ

(
|k4|−

√
s

2

√
1−4m2

l /s
)

2
√

1−4m2
l /s

. (A.79)

With this, we can perform the remaining integral over k4, where we change to spherical coordi-
nates d3k4 = |k4|2 sinθdθdφd|k4| such that we obtain

Sann =−i
π3A4

8

∫ d4 p1d4 p2d4 p3d4 p4

(2π)16 δ
(4)(p1 + p2 + p3 + p4)H̃(p1)H̃(p2)H̃(p3)H̃(p4)√

1− 4m2
l

s
1

m2
l − s

2

1
m2

l + s
2

, (A.80)

where we have assumed that in the non-relativistic limit, the velocity of the heavy particles
disappears: βh = (2p1,cm)/

√
s = (2p2,cm)/

√
s→ 0. In fact, the center of mass energy squared

can be written in terms of the Møller velocity of the heavy particles

s≡ 4m2
H

(
1+

v2

4

)
. (A.81)
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Inserting this into Eq. (A.80) and only keeping the leading order terms in v, we get

Sann = i
π3A4

32m4
H

∫ d4 p1d4 p2d4 p3d4 p4

(2π)16 δ
(4)(p1 + p2 + p3 + p4)H̃(p1)H̃(p2)H̃(p3)H̃(p4)√

1− m2
l

m2
H

1− m4
l

4m4
H

. (A.82)

Finally, we Fourier transform back, which is easily done since there are no terms depending on
momentum any more. Expanding the term H(x)4, we see that there are in total six terms that
contain

(
φxφ †

x
)2, which gives in total 3/(2m2

H)
(
φxφ †

x
)2. The Fourier transform gives a factor of

(2π)−4 such that we get

Sann = i
3A4

1024πm6
H

∫
d4x
(
φ(x)φ †(x)

)2

√
1− m2

l
m2

H

1− m4
l

4m4
H

. (A.83)

To obtain the two-body action, we again introduce auxiliary fields s(t,x,y) and σ(t,x,y)
and their hermitian conjugates, where the former will replace φ(t,x)φ(t,y) (see for comparison
Eq. (A.34) and Eq. (A.35)). Integrating over the fields σ ,σ†,s,s†, we obtain the same equation
as in Eq. (A.42), except that K(x,y)→ 1

2 K′(x,y) with

K′(x,y) = K′0(x,y)+K′σ (x,y)

= δ
(4)(x− y)

(i∂y0 + ∇2
y

2mH

)
0

0
(
−i∂y0 + ∇2

y
2mH

)
 (A.84)

−δ (x0− y0)
(

0 σ(y0,x,y)
σ†(y0,y,x) 0

)
, (A.85)

and V is now given by

V (x,y) =− A2

16πm2
H

e−ml |x−y|

|x−y| − i
3

512π

A4

m6
H

√
1− m2

l
m2

H

1− m4
l

4m4
H

δ
(3)(x−y) . (A.86)

For the trace part from Eq. (A.42) we can closely follow the calculation as presented in section
A.1.2. Carefully noting the minus-signs, we end up with exactly the same expression as in
Eq. (A.43). This ensures us that we can directly use the final result from Eq. (5.41) for our
toy model here, except replacing V with the one we defined in Eq. (A.86). This results in a
Schrödinger equation exactly as discussed four the Coulomb case, but now with the potential
V (r) = V (r) as in Eq. (A.86), where we have replaced |x−y| with r.
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A.3 Right-handed sneutrino Dark Matter

A.3.1 Box diagram with Z-boson intermediate states

We start with the effective Lagrangian introduced in Eq. (6.27), and consider the box diagram
with two Z-boson intermediate states, which is described by

SZ
ann[ν̃ , ν̃∗] =−i

B4

4

∫
d4x 1d4x2d4x3d4x4[

ν̃(x1)
←→
∂

µ

1 Dν̃(x1− x2)DZ
µν(x2− x4)

←→
∂

ν
2 ν̃
∗(x2)×

ν̃(x3)
←→
∂

α
3 Dν̃(x4− x3)DZ

αβ
(x3− x1)

←→
∂

β

4 ν̃
∗(x4)

]
, (A.87)

where
←→
∂

µ

i is an antisymmetric derivative that works on xi in both directions. Transforming this
equation to Fourier space and working out the derivatives, we obtain

SZ
ann =−i

B4

4

∫ d4 p1d4 p2d4 p3d4 p4

(2π)16

∫
d4k1d4k2d4k3d4k4Ñ(p1)Ñ∗(p2)Ñ(p3)Ñ∗(p4)

(p1 + k1)µ(k3− p3)ν(k1− p2)α(p4 + k3)β

(
gµν − k2,µk2,ν

m2
Z

)(
gαβ −

k2,αk2,β

m2
Z

)
δ (4)(k1− k4− p1)

k2
1−m2

ν̃ ,R,i

δ (4)(k2− k1− p2)
k2

2−m2
Z + iε

δ (4)(k3− k2− p4)
k2

3−m2
ν̃ ,R, f

δ (4)(k4− k3− p3)
k2

4−m2
Z + iε

, (A.88)

where Ñ(p) =
∫
d4x ν̃(x)eipx is the Fourier transform of the sneutrino field. Throughout this cal-

culation we will keep track of the (relativistic (R)) initial (i) and final ( f ) states where necessary.
First, we focus on simplifying the product with Greek indices. Using the delta functions to

simplify the momenta we obtain

(p1 + k1)µ(k3− p3)ν(k1− p2)α(p4 + k3)β = (k4 +2p1)µ(k4−2p3)ν(k2−2p2)α(k2 +2p4)β .
(A.89)

The whole problem now splits into two separate factors which have a very similar structure:

(kn−2pl)λ (kn +2pm)ρ

(
gλρ −

kn,λ kn,ρ

m2
Z

)
, (A.90)

where

n =
{

2, l = 2, m = 4, λ = α, ρ = β

4, l = 3, m = 1, λ = µ, ρ = ν
. (A.91)

After some algebra, the expression in Eq. (A.90) simplifies to

−4
(

pl · pm− kn · plkn · pm

m2
Z

)
. (A.92)

Working out this expression in the center-of-mass frame where p0
l = p0

m =(
√

s/2) and pl =−pm,
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and using the fact that we are in the non-relativistic limit, p0 � p, we obtain the following
approximation

s
(

E2
n

m2
Z
−1
)

, (A.93)

where we have neglected all terms proportional to |pl|2 and adopted k0
n = En. The full prod-

uct in the action can thus be replaced by two of these factors with n = 2,4 in a later stage in
the calculation where we perform the non-relativistic expansion and evaluate everything in the
center-of-mass frame.

Now we turn back to our long expression for the action. We follow the treatment described in
appendix A.2 exactly, first evaluating the 4-dimensional delta functions, then using the optical
theorem to obtain

SZ
ann = i4B4

π
2
∫ d4 p1d4 p2d4 p3d4 p4

(2π)16 δ
(4)(p1 + p2− p3− p4)Ñ(p1)Ñ∗(p2)Ñ(p3)Ñ∗(p4)∫

d4k2d4k4
δ (k2

2−m2
Z)

(k2− p2)2−m2
ν̃ ,R,i

δ (k2
4−m2

Z)
(k2 + p4)2−m2

ν̃ ,R, f(
p2 · p4− k2 · p2k2 · p4

m2
Z

)(
p1 · p3− k4 · p1k4 · p3

m2
Z

)
(A.94)

Apart from the factor on the last line, the problem is exactly the same as described for the toy
model. We therefore proceed in the same fashion, substituting k4→−k′4 and integrating over k0

4
and k0

2 to get

SZ
ann = i4B4

π
2
∫ d4 p1d4 p2d4 p3d4 p4

(2π)16 δ
(4)(p1 + p2− p3− p4)Ñ(p1)Ñ∗(p2)Ñ(p3)Ñ∗(p4)∫ d3k2

2E2

d3k′4
−2E ′4

δ
(4)(p1 + p2− k2− k′4)

δ (k2
2−m2

Z)
(k2− p2)2−m2

ν̃ ,R,i

δ (k′24−m2
Z)

(k2 + p4)2−m2
ν̃ ,R, f(

p2 · p4− k2 · p2k2 · p4

m2
Z

)(
p1 · p3− k′4 · p1k′4 · p3

m2
Z

)
. (A.95)

As a next step, we want to evaluate the 3-dimensional integrals over the momenta of the Z-
bosons. Integrating over k′4 will turn the delta function involving k2,k′4 into δ (E2 +E ′4− p0

1−
p0

2), which we can rewrite in the same manner as described in appendix A.2. We can therefore
replace the one-dimensional delta function with

δ (E2(|k2|)+E ′4(|k2|)−Ein) =
δ

(
|k2|−

√
s

2

√
1−4m2

Z/s
)

2
√

1−4m2
Z/s

, (A.96)

which is equivalent to Eq. (A.79). Note that we evaluated this expression in the center-of-mass
frame.

We now implement this expression into Eq. (A.95), and perform the 3-dimensional integral
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over k2, where we replace d3k2 = |k2|2 sinθdθdφd|k2|. We only take into account the terms
leading order in pi such that we can use Eq. (A.93). The full expression becomes

SZ
ann =−i

B4π3

8

∫ d4 p1d4 p2d4 p3d4 p4

(2π)16 δ
(4)(p1 + p2− p3− p4)Ñ(p1)Ñ∗(p2)Ñ(p3)Ñ∗(p4)√

1−4m2
Z/s(

m2
Z− s/2+∆i

)(
m2

Z + s/2+∆ f
)s2
(

1− s
4m2

Z

)2

, (A.97)

where we have introduced ∆i = (m2
ν̃ ,i−m2

ν̃ ,R,i) (and equivalent for f ). In comparison with the
toy model, the only difference – apart from the mediator mass and the coefficient in front – is
the factor s2

(
1− s/(4m2

Z)
)2 due to the Z-boson propagators.

We use now substitution s = 4m2
ν̃ ,i(1+v2/4), and only keep the leading order terms in v, such

that we arrive at

SZ
ann = i

B4π3

2

∫ d4 p1d4 p2d4 p3d4 p4

(2π)16 δ
(4)(p1 + p2− p3− p4)Ñ(p1)Ñ∗(p2)Ñ(p3)Ñ∗(p4)√

1−m2
Z/m2

ν̃ ,i(
1−m2

Z/(2m2
ν̃ ,i)−∆i/(2m2

ν̃ ,i)
)(

1+m2
Z/(2m2

ν̃ ,i)+∆ f /(2m2
ν̃ ,i)
) (1− m2

ν̃ ,i

m2
Z

)2

.

(A.98)

Comparing this expression to Eq. (A.82), we see some resemblance; if the relativistic states are
the same as the in- or out-coming ones, i.e., ∆i = ∆ f = 0, the expression reduces to the toy model
result apart from the extra factor due to the Z-boson field.

We now Fourier transform back the sneutrino fields, which gives a factor of (2π)−4. The
non-relativistic expansion of (ν̃ ν̃∗)2 gives two possible states in the t-channel. Here, we need
to be extra careful with the normalization, which gives (2mν̃ ,i)−1/2 for an initial sneutrino and
(2mν̃ , f )−1/2 for a final sneutrino, which do not necessarily need to be the same states. Finally
we obtain

SZ
ann = i

B4

128πmν̃ ,imν̃ , f

∫
d4x
[
ai(x)a∗i (x)b

∗
f (x)b f (x)+a f (x)a∗f (x)b

∗
i (x)bi(x)

]×√
1−m2

Z/m2
ν̃ ,i(

1−m2
Z/(2m2

ν̃ ,i)−∆i/(2m2
ν̃ ,i)
)(

1+m2
Z/(2m2

ν̃ ,i)+∆ f /(2m2
ν̃ ,i)
) (1− m2

ν̃ ,i

m2
Z

)2

. (A.99)

A.3.2 Annihilation matrix

Here we present the full expressions for the annihilation matrix Γ of the sneutrino model. Due
to the lengthy expressions, the results are not given in matrix form but as individual matrix
elements.
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Annihilation of two sneutrinos into hh is given by the following matrix elements:

Γ
h
11 =

A4
ν̃

√
1− m2

h
m2

ν̃ ,1

2048πm2
ν̃ ,1

(
4m4

ν̃ ,1−m4
h

)×
(
2m2

ν̃ ,1 +m2
h +4Sin [θν̃ ] 2 (−δm2−2δmmν̃ ,1 +2m2

ν̃ ,1 +m2
h
))×(

2m2
ν̃ ,1−m2

h +4Sin [θν̃ ] 2
(

δm2 +2δmmν̃ ,1 +2m2
ν̃ ,1−m2

h

))
(
−δm4−4δm3mν̃ ,1−4δm2m2

ν̃ ,1 +4m4
ν̃ ,1 +2δm(δm+2mν̃ ,1)m2

h−m4
h

) , (A.100)

Γ
h
12 =

A4
ν̃

√
1− m2

h
m2

ν̃ ,1

4096πmν̃ ,1 (δm+mν̃ ,1)
×(

2m2
ν̃ ,1−m2

h +4Sin [θν̃ ] 2
(

δm2 +2δmmν̃ ,1 +2m2
ν̃ ,1−m2

h

))
(

2m2
ν̃ ,1−m2

h

)(
δm2 +2δmmν̃ ,1 +2m2

ν̃ ,1−m2
h

)(
δm2 +2δmmν̃ ,1 +2m2

ν̃ ,1 +m2
h

) ,

(A.101)

Γ
h
21 =

A4
ν̃

√
1− m2

h

(δm+mν̃ ,1)2

4096πmν̃ ,1 (δm+mν̃ ,1)
(
2(δm+mν̃ ,1) 2 +m2

h
)−1×(

2(δm+mν̃ ,1) 2 +m2
h +4Sin [θν̃ ] 2

(
δm2 +2δmmν̃ ,1 +2m2

ν̃ ,1 +m2
h
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(

δm2 +2δmmν̃ ,1 +2m2
ν̃ ,1−m2

h

)(
δm2 +2δmmν̃ ,1 +2m2

ν̃ ,1 +m2
h

) , (A.102)

Γ
h
22 =

A4
ν̃

√
1− m2

h

(δm+mν̃ ,1)2

2048π (δm+mν̃ ,1) 2×(
δm2 +2δmmν̃ ,1 +2m2

ν̃ ,1−m2
h
)−1 (

3δm2 +6δmmν̃ ,1 +2m2
ν̃ ,1 +m2

h
)−1

. (A.103)
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Sneutrinos annihilating into two Z-bosons gives rise to the following matrix elements:

Γ
Z
11 =

πα2Sin [θν̃ ] 4

16m4
ZSin [2θW ] 4

m2
ν̃ ,1 (mν̃ ,1−mZ) 2 (mν̃ ,1 +mZ) 2

√
1− m2

Z
m2
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−4m4
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Z
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Z +m4
Z
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Z
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Γ
Z
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Γ
Z
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πα2Sin [2θν̃ ] 2
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Z
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towards Yaşar Goedecke, for the many helpful and pleasant discussions. Not to forget Mitsuru
Kakizaki, for letting me use his helpful notes.

Furthermore I am thankful that I got to work in such a nice group, which I am proud to have
been a part of. A warm thanks to Masaki Asano, Enrico Borriello, Sovan Chakraborty, Carmelo
Evoli, Alessandro Mirizzi, Peter Schiffer, Günter Sigl, and former members and guests, for the
interesting, useful, and pleasant discussions.

I also want to express my gratitude towards the (former) PhD students of this group – Rafael
Alves Batista, Francesca Calore, Jörg Kulbartz, Ninetta Saviano, Andrey Saveliev, Arjen van
Vliet, Martin Vollmann, and Le Zhang – many of which became good friends to me. Their
support, companionship, help and friendship have been essential to me, and I have enjoyed our
conversations very much. I am also grateful for the Movie Club and its members for the many
nice relaxing evenings after a stressful day of work. I thank Andrey in particular, for helping me
with the German translation of the abstract of this thesis.

During my PhD I also obtained a lot of support from my friends and family in the Netherlands.
A big thanks to Marilyn, Babs, Sascha, Silvia, Carolien, Jan, Ina, Leo, Mark, Dennis, Marjolijn,
Isa, Lode, Lies and Geert, for taking the effort of visiting me here, and of course all others who
stayed in contact with me.

I would not have been able to finish my PhD without my wonderful parents Piet and Rina.
They have always been there for me with their advice, support and compassion when I needed
it the most. I am grateful for everything they have done for me, and I hope I have made them
proud of me.

Last but not least, I want to express my deepest gratitude towards my boyfriend Jeroen
Kurvink. I am very thankful that he has stood by me all this time, and I would not know what I
would have done without him.

167





Selbstständigkeitserklärung

Ich erkläre, dass ich die vorliegende Arbeit selbstständig und nur unter Verwendung der ange-
gebenen Literatur und Hilfsmittel angefertigt habe.

Hamburg, den 25. April 2013 Laura Gusta van den Aarssen

169


	List of Publications
	List of Figures
	List of Tables
	Introduction
	Dark Matter
	Introduction to Cosmology
	Evidence for Dark Matter
	Dark Matter properties and candidates

	Weakly Interacting Massive Particles
	Motivation and Dark Matter candidates
	Basics of the Minimal Super Symmetric Model
	Chemical decoupling
	Kinetic decoupling
	Detectional prospects

	Structure formation in the Universe
	Theory of structure formation
	A cutoff in the power spectrum
	The first protohalos

	Numerical simulations of CDM
	Small-scale problems
	Missing satellites problem
	Cusps vs. Cores
	`Too big to fail'-problem


	Sommerfeld Enhancement
	Introduction
	Resummation of ladder diagrams
	Preliminaries
	Deriving the non-relativistic effective action
	Two-body effective action

	Annihilation and the enhancement factor
	Self-Scattering

	Right-handed sneutrino Dark Matter
	Introduction
	A scalar toy model
	Sommerfeld effect for right-handed sneutrino Dark Matter
	Potential term
	Annihilation term

	Conclusions and discussion

	Thermal decoupling of Sommerfeld enhanced Dark Matter
	Interplay between chemical and kinetic decoupling
	Leptophilic Dark Matter
	Annihilation and the Sommerfeld enhancement
	Dark Matter scattering off heat bath particles
	Dark Matter self-scattering
	Model constraints
	Thermal evolution on and off resonance
	Off resonance analysis
	Resonance analysis

	Conclusions and discussion

	Sommerfeld enhanced Dark Matter and the small-scale problems of CDM 
	Self-scattering Dark Matter with late kinetic decoupling
	Model setup and results
	Model building and particle physics bounds
	Conclusions and discussion

	Conclusions and outlook
	Calculation of Sommerfeld effect
	Quantum electrodynamics
	Derivation of the non-relativistic effective action
	Two-body effective action

	Scalar toy model
	Right-handed sneutrino Dark Matter
	Box diagram with Z-boson intermediate states
	Annihilation matrix


	Bibliography
	Acknowledgements
	Selbstständigkeitserklärung

