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Abstract

Interferenzeffekte gehören zu den faszinierendsten optischen Phänomenen. Als Beispiel,
verdanken Schmetterlinge und Seifenblasen ihre Farbenpracht der Interferenz von Licht.
Diese Erscheinung ist eine Folge des Superpositionsprinzips, das seine Gültigkeit von
der Linearität der Wellengleichung der Elektrodynamik bezieht. Wenn zwei elektromag-
netische Wellen interferieren, wird das Gesamtfeld zur Summe dieser beiden Felder und
wird maßgeblich durch die relativen Phasen bestimmt. Die Schwingungsfrequenz vom
optischen oder gar von Röntgenstrahlen ist zu groß, daher können die Felder mit dem
menschlichen Auge oder einem anderen Detektor nicht direkt beobachtet werden. Die
Phasendifferenzen dieser interferierenden Felder können allerdings deutlich langsamer
oszillieren und sind als Variation der Feldstärke messbar. Daher stellt Interferenz eine
hervorragende Messmöglichkeit der Phasendifferenzen von Licht dar, welche detaillierte
Informationen über die Lichtquelle oder ein Streuobjekt tragen können.

Ob zwei Wellen imstande sind zu interferieren, hängt stark vom Grad der Korrela-
tion zwischen diesen beiden Wellen ab, d.h. ihrer Kohärenz. Bis zur Mitte des 20.
Jahrhunderts war die Kohärenz aller bekannten Quellen niedrig. Es musste ein erhe-
blicher Aufwand betrieben werden, um den Grad der Kohärenz zu steigern, und das
Interferenzprinzip zur direkten Phasenmessung zu instrumentalisieren. Erst durch die
revolutionäre Entdeckung des Lasers, welcher höchst kohärent ist, wurden Methoden
wie Holographie, welche eine direkte Messung vom elektromagnetischen Feld ist, möglich
gemacht. Wichtige Beiträge zur Entwicklung der Interferenzmethoden lieferten auch As-
tronomen, da das Licht von den Sternen aufgrund von sehr großen Abständen zur Erde
große transversale Kohärenz aufweist.

Der Bau neuartiger Synchrotronquellen eröffnete Zugang zu partiell kohärenten Strahlen
im Röntgenbereich. Neue Forschungsmöglichkeiten mit diesen Strahlen sind entstanden,
einschließlich X-ray Photon Correlation Spectroscopy (XPSC), Röntgen Holographie,
und Coherent X-Ray Diffractive Imaging (CXDI). In der ersten Methode wird die Dy-
namik eines Systems erforscht während die zweite und dritte Bildgebungsverfahren von
vorwiegend statischen Objekten sind. Die höchst brillianten, kohärenten und ultrakurzen
Röntgenpulse an den sogenannten Freie-Elektronen Röntgenlaser versprechen durch Aus-
nutzung genannter Techniken bahnbrechende Einblicke in Biologie, Festkörperphysik,
Magnetismus und andere korrelierte Systeme zu liefern.

Die Interferenz der Felder, die am Objekt gestreut wurden, bildet die Grundlage vieler
dieser Methoden. Als solches, ist das Verständnis der Kohärenz neuartiger Röntgenquellen
von entscheidender Bedeutung. Dieses Verständnis kann sogar genutzt werden, um die
Methoden zu verfeinern. In dieser Arbeit untersuchen wir Kohärenzeigenschaften der
Röntgenstrahlen an neuartigen Röntgenquellen. Bestehende theoretische und experi-
mentelle Methoden werden beschrieben und durch neu entwickelte Methoden ergänzt.
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Abstract

Interference effects are among the most fascinating optical phenomena. For instance,
the butterflies and soap bubbles owe their beautiful colors to interference effects. They
appear as a result of the superposition principle, valid in electrodynamics due to the
linearity of the wave equation. If two waves interfere, the total radiation field is a sum of
these two fields and depends strongly on the relative phases between these fields. While
the oscillation frequency of individual fields is typically too large to be observed by a
human eye or other detection systems, the phase differences between these fields manifest
themselves as relatively slowly varying field strength modulations. These modulations
can be detected, provided the oscillating frequencies of the superposed fields are similar.
As such, the interference provides a superb measure of the phase differences of optical
light, which may carry detailed information about a source or a scattering object.

The ability of waves to interfere depends strongly on the degree of correlation between
these waves, i.e. their mutual coherence. Until the middle of the 20th century, the co-
herence of light available to experimentalists was poor. A significant effort had to be
made to extend the degree of coherence, which made the electromagnetic field deter-
mination using of the interference principle very challenging. Coherence is the defining
feature of a laser, whose invention [1] initiated a revolutionary development of experi-
mental techniques based on interference, such as holography. Important contributions to
this development were also provided by astronomists, as due to enormous intergalactic
distances the radiation from stars has a high transverse coherence length at earth [2].

With the construction of third generation synchrotron sources (see for example [3]),
partially coherent x-ray sources have become feasible. New areas of research utilizing
highly coherent x-ray beams have emerged, including x-ray photon correlation spec-
troscopy (XPCS) [4], x-ray holography [5], and coherent x-ray diffractive imaging (CXDI)
[6]. In the former, the dynamics of a system are explored whereas in the latter two
predominantly static real space images of the sample are obtained by phase retrieval
techniques [7]. Using the intense, coherent, and ultrashort x-ray pulses produced by
so-called x-ray free-electron lasers [8] and energy recovery linacs [9] these techniques
promise new insights in structural biology, condensed matter physics, magnetism and
other correlated systems [6].

The key feature of all these methods is the interference between the field scattered
by different parts of the sample under study. As such, spatial coherence across the
sample is essential and understanding the coherence properties of the beams generated
at new generation x-ray sources is of vital importance for the scientific community. This
understanding can even be used to improve the applied methods [10].

In this thesis we aim to describe existing and develop new techniques to study trans-
verse coherence properties of x-ray beams at third and fourth generation sources.
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1 High brilliance x-ray sources

Since their discovery by Wilhelm Conrad Röntgen in 1895 [11] x-rays have been used
to determine the structure of matter1. Exploiting the weak interaction of x-rays with
matter Röntgen, for the first time, visualized the structure of bones in a living human.
Due to the higher density bones absorb a higher fraction of the radiation than the soft
tissue surrounding them and a shadow of the bones is visible on the photograph.

According to Max von Laue [12] “Die Röntgenstrahlen sind elektromagnetische Wellen
gleich dem Licht, nur von weit kürzerer Wellenlänge λ und entsprechend grösserer
Schwingungszahl ν. Man kann ihren spektralen Bereich etwa abgrenzen durch die
Angaben 5 · 10−7 cm < λ < 1 · 10−11 cm oder wegen ν = c/λ durch 6 · 1016s−1 < ν <
3 · 1021s−1”2. The wavelength of x-ray radiation is comparable with the size of inter
atomic distances in a crystal. Due to interference of the light scattered from a large
number of identical scatterers in a crystal the scattered signal is significantly enhanced
in certain directions and investigations of the atomic structure of crystals are possible.
This last property was discovered by M. von Laue [13, 14]. Shortly after Laue’s discov-
ery, W. H. Bragg and W. L. Bragg were able to find the structure of several salts and
molecules on atomic level [15, 16, 17, 18]. These pioneering experiments have initiated
a remarkably successful field, called x-ray crystallography, which has been extensively
utilized during the last century up to now. In cristallography the resolution is com-
parable to the wavelength of the radiation and can even be smaller than the size of a
single atom. Being used to solve small structures consisting of a few atoms in the early
stage, recently crystallographers were able to map the ribosome - one of the cell’s most
complex machineries - at atomic level [19]. Twenty six nobel prizes, including four nobel
prizes in chemistry in the last ten years, were awarded to scientists for their scientific
achievements directly related to, or involving the use of, crystallographic methods and
techniques.

Another striking feature of x-rays has been discovered by C. G. Barkla. If the inner
shell electrons are liberated from an atom, element specific characteristic x-ray radiation
–fluorescence– is emitted by the atom. It happens while electrons from the outer shells
refill the vacancies in the inner shell. By analyzing the wavelength of the fluorescent
radiation emitted by a specimen under study it is possible to determine the type of
the elements present in the sample. These and other properties of x-ray radiation have
stimulated a continuous development of x-ray sources.

1 Röntgen called this new type of radiation x-rays: “Der Kürze halber möchte ich den Ausdruck
“Strahlen” und zwar zur Unterscheidung von anderen den Namen “X-Strahlen” gebrauchen.“[11]

2X-rays are electromagnetic waves, like the visible light, but with a much shorter wavelength λ or
equivalently a higher frequency ν. The spectral width might be limited by the values 5 · 10−7 cm <
λ < 1 · 10−11 cm or due to ν = c/λ by 6 · 1016 s−1 < ν < 3 · 1021 s−1.

1



1 High brilliance x-ray sources

Figure 1.1: Average brilliance of available and planned x-ray radiation radiation sources
as a function of photon energy. Third and fourth generation sources situated
at DESY (PETRA III, FLASH and European XFEL), the first operating
hard x-ray FEL LCLS in Stanford and the planned ERL in Cornell are shown.
For comparison the brilliance from the first and second generation sources
is also shown. All plots were taken from [3], except for the planned linear
undulator source at an ERL [9].

First x-ray experiments were performed with x-ray tubes, where free-electrons are
produced through heating of a negatively charged metal wire (cathode) and accelerated
by a static electromagnetic field towards a positively charged metal plate (anode). If the
electrons are accelerated to an energy of a few tens of keV x-ray radiation is emitted at
the anode. The radiation spectrum consists of two components (see Figure 1.1).

• Due to the deceleration in the anode the electrons loose their energy and are
eventually stopped. This gives rise to the continuous bremsstrahlung spectrum
with its maximum energy being the energy of the electrons.

2



1 High brilliance x-ray sources

• During a collision with an atom in the anode the electron may also remove an
electron from an inner shell of the atom. The refilling of these vacancies with outer
shell electrons gives rise to characteristic sharp lines, which are superimposed on
the bremsstrahlung spectrum. The characteristic lines are orders of magnitude
stronger than the bremsstrahlung spectrum (see Figure 1.1) and are typically used
in experiments.

Due to the weak interaction of x-rays with matter the amount of the photon flux
available to the experimentalist is crucial for most applications. It can be characterized
by the spectral photon flux [20]

F (λ) =
number of photons

(s)(0.1%bandwidth)
,

which is the number of photons per second within a bandwidth (typically 0.1%). A more
convenient measure of the source brightness is, however, the brilliance

B(λ) =
F (λ)

(2π)2εxεy
, (1.1)

where εx,y = σx,yσ
′
x,y is the emittance, and σx,y and σ′

x,y are the size and divergence of
the x-ray source, respectively. The brilliance is defined as the number of photons per
( s ·mm2 ·mrad2 · 0, 1%bandwidth). It is well known that the brilliance can be used to
calculate the transverse coherent flux

Fcoh = B(λ)

(

λ

2

)2

, (1.2)

which is the number coherent photons in the beam. The coherent fraction is often
introduced as

ζ = Fcoh(λ)/F (λ) =

(

λ

4π

)2 1

εxεy
. (1.3)

Since x-ray tubes are totally incoherent sources and radiate in all directions, they have
a comparably low brilliance and low coherent flux. The brilliance is significantly larger
at synchrotron sources, which due to relativistic effects radiate into a narrow cone of
angles. As a matter of fact, due to invention of synchrotron sources and their further
development the brilliance could be increased by about 10 orders of magnitude. The
average brilliance at the so called fourth generation x-ray sources like free-electron lasers
is another few orders of magnitude higher (see Figure 1.1).

The experimentalists benefit to a great extend from the high brilliance of these sources,
which assures that a large number of photons are within the transverse coherence area.
In structure determination using crystallography this area determines how many unit
cells scatter coherently and give rise to Bragg peaks. At low brilliance sources the signal
from the coherently illuminated area (or volume) is rather poor, since the number of
coherent photons is small. Comparably large crystals are used to utilize as much flux
as possible. Because the scattered intensity from different coherently illuminated parts

3



1 High brilliance x-ray sources
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Figure 1.2: Crystallography using low (a) and high (b) coherent flux. The unit cell of the
crystal is shown by the blue circle. The coherence area is indicated by the
red color. With low coherent flux (a) large crystal is used and the scattered
intensity from different regions from the sample sum up in the total signal.
With high coherent flux (b) similarly strong signal can be measured with the
same total photon flux but with a smaller crystal.

of a large perfect crystal are identical, the intensity in the Bragg peaks grows linearly
with the volume of the crystal (see Figure 1.2 (a)). The lack of coherent flux, that is
able to interfere, is compensated by the periodicity of the crystal. If the structure is
to obtain from a smaller crystal, more photons per coherence area are required. First
the beam has to be focused to a smaller size, to utilize the full photon flux and second
the coherence area of the focused beam has to be large enough to create interference.
As will be shown later, this only can be achieved if the beam has a high coherent flux
Fcoh(λ). This means that if the coherent flux is large, the structure of the unit cell can
be determined from a much smaller crystal (see Figure 1.2 (b)).

As a consequence a larger flux per unit cell volume, stronger radiation damage occurs,
in particular for biological samples. However, simulations using a single molecule [21]
and experiments using small crystals [22] at x-FELs indicate, that the radiation damage
due to a large flux per unit cell can be mitigated using pulses briefer than the timescale
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1 High brilliance x-ray sources

of relevant damage processes. At x-ray free-electron lasers the structure determination
from the so called nano crystals, consisting of about ten to hundred single constituents
in each dimension has been achieved [22].

With the advent of highly brilliant x-ray sources new type of experiments became
available, which utilize the high degree of coherence of x-ray beams. One of these new
techniques is coherent x-ray diffraction imaging (CXDI) (for a review see [6]), where
coherent radiation illuminates the sample and a far-field diffraction pattern is recorded.
Because only intensities are measured on the detector, phase retrieval techniques [7, 23]
are required to recover the missing phase and at the same time the structure of the
object. Since its first experimental demonstration [24], this method has been successfully
used to determine the structure of small crystals [25, 26, 27, 28] and biological samples
[29, 30]. However, contrary to crystallography, a periodic structure is not mandatory
for the CXDI technique. Therefore this method has the potential to image non-periodic
sample. First successful experimental steps towards single molecule imaging [21] were
reported [31].

Another technique, which uses coherent x-rays is x-ray photon correlation spectroscopy
(XPCS) [4]. It is based on the analysis of ’speckle’ patterns, which appear in the scat-
tering of transversely coherent light from an non-translation periodic object. The time
correlation of consecutively measured diffraction patterns reveals the time dynamics of
the sample under study. This method has been applied using optical light, however, with
x-rays the analysis of dynamics on a much smaller length scale is possible. Recently, this
experimental technique has been extended to analyze the angular correlations [32, 33, 34]
within the measured speckle pattern. This technique has the potential to recover the
local structure of individual constituents in disordered matter.

1.1 Synchrotron sources

Storage rings are nowadays the principle sources of high-brilliance x-ray beams. Here
we shortly outline the development of these sources. In particular, we point out the
main features of the radiation generated at third generation synchrotron sources, which
combine many attractive techniques. They provide high brilliance x-ray beams, which
are highly stable in photon energy, beam intensity, size and position. The photon energy
is easily tunable over a wide spectrum ranging from infrared to hard x-ray and beams
at storage ring sources are typically linearly polarized in the plane of the ring. Finally,
storage rings serve many experiments simultaneously and are comparably cost effective.

First synchrotron radiation was observed in the storage rings build to conceive particle
physics experiments and was classified as parasitic radiation. To hold the particles in
the ring bending magnets are necessary, which change the trajectory of the particles.
Due to this sideway acceleration the particles loose energy and emit electromagnetic
radiation [35]. Because the relativistic particles move with a speed close to the speed
of light, in the laboratory frame the wavelength of the emitted radiation is significantly
reduced due to the Lorentz contraction and lies within x-ray range. Additionally, the
radiation is confined to a narrow cone of angles θ = 1/2γ, where γ = 1/

√

1 + (v/c)2 is

5



1 High brilliance x-ray sources

(b)

(a)

(c)

Undulator

Linear accelerator

Electron injector

Electron dump

Electron beam

X-ray beam

Figure 1.3: A schematic view of a synchrotron radiation source (a), an ERL (b, adapted
from [9]), and a FEL (c).

the Lorentz factor, v is the speed of the particles and c is the speed of light in vacuum3.
The angle θ is often referred to as the natural opening angle of synchrotron radiation.

To enhance the amount of emitted radiation an arrangement of several alternating
bending magnets, called wiggler, was developed. In a wiggler the particles are forced
to oscillate or wiggle many times while propagation through the magnetic structure.
Compared with a single bending magnet the brilliance is enhanced by a factor of N ,
which is the number of the bending magnets in the wiggler. It was realized then that if
the angular excursions of the particle are much smaller than the natural opening angle
θ, the electromagnetic wave emitted by a single particle in one turn of the magnetic
structure interferes constructively for a given photon energy and its harmonics n with
the field of the same particle emitted in another turn. As a consequence, the radiation
has an even smaller angular divergence and a smaller bandwidth. The opening angle
in this case may be approximated by θ/

√
N and the brilliance roughly scales with N2.

An insertion device operated with this scheme is called the undulator. Provided the
electromagnetic field generated in the undulator is weak and does not influence the
motion of the electron, the wavelength of the emitted radiation can be expressed as [36]

λ =
λu

2γ2

(

1 +
K2

2
+ γ2θ2

)

, (1.4)

where λu is the undulator period, K = eB0λu/2πmec is the undulator parameter, θ is
the off axis angle, B0 is the magnetic field of the undulator, e is the elementary charge,
and me is the rest mass of the electron. Due to the Doppler shift the wavelength depends
on the off axis angle θ and the shortest wavelength is observed on axis.

3For example, at the third generation synchrotron source PETRA III electrons have an energy of 6 GeV.
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1 High brilliance x-ray sources

(b)
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x'(a) x
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(d) x
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Frame moving 

with the electron

Lorentz 

transformation

Lorentz 
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Figure 1.4: Generation of even and odd harmonics in an undulator. (a) The electron
(or positron) lateral position x as function of propagation distance z in the
lab frame. (b) Lorentz transformation yields the same movement in the
frame moving with the electron. Positions with maximum deviation from the
center of origin in z (green) and x (red) direction, respectively, are shown.
Same positions are indicated in (a). During one oscillation in x the electron
oscillates twice in z. (c) The radiation intensity as a function of radiation
angle in the frame moving with the electron. Both are represented by dipole
radiation. (d) After a Lorentz transformation to the lab frame odd harmonics
are observed on axis (red solid line) and even harmonics off axis (greed dashed
line). (Figure reproduced from [36])

The spectrum of the radiation generated in a linear undulator consists not only of the
wavelength described by equation (1.4) but also contains harmonics with wavelengths
λn = λ/n, where n = 1, 2, 3, 4, . . . . The origin of the harmonics is the sine like trajectory
of the electron through the undulator and its approximately constant total velocity v =
√

v2
x + v2

z , with vz being the velocity in the propagation direction and vx perpendicular
to vz. Figure 1.4 (a) shows schematically the lateral position x of the electron as a
function of propagation distance z in the lab frame. The electron propagates from left
to right. In figure 1.4 (b) the same movement is shown in the frame moving with the
electron. During one oscillation period in x the electron executes two oscillations in
z. These oscillations give rise to dipole radiation intensity characteristics (see Figure
1.4 (c)). The frequency of emitted radiation in the frame moving with the electron is
given by the frequency of oscillation. The radiation distribution in the lab frame can be

This yields γ ≈ 104 and θ ≈ 50 µrad.

7



1 High brilliance x-ray sources

Table 1.1: Overview of the typical electron beam emittance εex,ey, photon source size
σx,y, and divergence σ′

x,y at different operating third generation synchrotron
sources [3] and at the proposed ERL source in Cornell [9]. The photon beam
parameters for the third generation sources were calculated for a photon en-
ergy of 12 keV [3] and the same parameters for the ERL source are given for
an energy of 8 keV [9].

PETRA III ESRF SPring-8 APS ERL ERL
high -β high -β high flux high coherence

εex [nmrad] 1 3.9 3.4 3 0.03 0.008
εey [nmrad] 0.005 0.03 0.007 0.03 0.03 0.008
σx [µm] 141 402 277 217 13.0 9.0
σy [µm] 5.5 7.9 6.4 12.6 13.0 9.0
σ′

x [µrad] 7.7 10.7 13 15.3 3.3 2.3
σ′

y [µrad] 3.8 3.2 5 5.7 3.3 2.3

ζ [%] 0.3 0.06 0.06 0.03 8.5 36

obtained through a Lorentz transformation (see Figure 1.4 (d)). Apparently, only odd
harmonics are present on axis and even harmonics are observed off axis.

The transition from the undulator radiation to the wiggler radiation can be described
by the undulator parameter K in equation (1.4). If K ≤ 1, undulator radiation with
distinct harmonics is generated. In a magnetic structure with larger values of K wiggler
radiation is produces. The harmonics spectrum merges into a continuum in the wiggler
limit K ≫ 1. It extends to higher photon energies, therefore wigglers are used to generate
x-ray photons in the range of a few tens of keV to hundreds of keV at synchrotron
sources. At PETRA III the undulator parameter is K ≈ 2.2 for undulator radiation and
K ≈ 7 for wiggler radiation [3].

To generate a beam which can be effectively used in experiments a large number of
radiating particles is required. Most of the synchrotron sources are storage rings, where
the particles circulate repetitively and generate x-rays each time they pass the straight
sections with the undulators (see Figure 1.3 (a)). Several different experimental stations
are positioned along the synchrotron ring and utilize the same electron bunches. The
separation between consecutive electron bunches is set by the radio frequency (RF),
used in the accelerators, which restores the power of the electrons lost to synchrotron
radiation. The radio frequency is typically given by about 1 GHz, hence, the separation
between consecutive x-ray pulses can be as short as 1 ns and up to 109 x-ray pulses per
second at each experimental station can be made available.

A complicated magnetic structure is required to hold the electron bunches in the
storage ring and to refocus these bunches, which tend to blow up due to Coulomb
forces. A short time after the electron bunches are filled into the ring they reach an
equilibrium state with its characteristics being determined by the ring characteristics.
Typically, the radiation properties, including the brilliance and the degree of transverse

8



1 High brilliance x-ray sources

coherence, are determined by the electron bunch properties and are thus limited by the
ring characteristics. These are characterized by the electron beam emittance εe = σeσ

′
e,

where σe and σ′
e is the size of the electron bunch and its divergence, respectively. A

low emittance εe of the electron bunch implies a low emittance ε of the photon beam
and therefore a higher brilliance (1.1) and a higher coherent photon flux (1.2) of the
source. A common feature of all storage ring sources is the comparably poor emittance
in the horizontal direction. As a consequence the photon beam has a small degree of
transverse coherence in the same direction. Typical electron bunch characteristics and
photon beam properties of third generation photon sources are summarized in Table 1.1.
The pulse duration is also influenced by the ring and is typically about 100 ps FWHM
at third generation x-ray sources.

1.2 Next generation synchrotron sources

The electron and consecutively the photon beam properties could be significantly better,
if the electrons with an extremely small beam emittance would pass the ring and its RF
system just once or a few times. It is anticipated [37, 9] that the energy of the electron
bunch can be recovered and used for the acceleration of the next bunches. Sources based
on this principle are called Energy Recovery Linacs (ERL) and have the potential to be
superb coherent x-ray sources. The main component of an ERL is a linac (see Figure 1.3
(b)). It accelerates electrons and generates bunches with extremely low emittance and
a high total charge. These bunches travel along the ring equipped with undulators and
produce highly brilliant x-ray beams. Importantly, since the electron bunches propagate
just a few times through the ring, the emittance is not deteriorated significantly. Finally,
the electrons enter the linac, which transforms the energy of the electrons into radio
frequency energy. This energy is used to accelerate the next electron bunch. Clearly,
not all the energy of the electrons can be recovered and an electron beam dump is
required to stop the remaining low energy electrons (see Figure 1.3 (b)).

The radiation generated by ERLs is spontaneous undulator radiation, similar to that
generated by synchrotron sources. However, due to the fact that the electrons are not
forced to circulate for a long time, the electron bunch emittance in horizontal direction
can be as small as the emittance in vertical direction [9]. Theoretically the electron
bunch emittance can be about 10 pmrad in both directions (see Table 1.1). Due to this
lower total emittance of the electron bunches a higher brilliance and a higher degree of
coherence are expected at these sources. The parameters of the proposed ERL source at
Cornell University are presented in Table 1.1. Other important properties of ERLs are
the short x-ray pulses – on the order of 1 ps – and a higher repetition rate of the x-ray
pulses, as compared with third generation sources. Due to the higher repetition rate the
average brilliance at an ERL source can be significantly larger than at third generation
x-ray sources (see Figure 1.1).

9



1 High brilliance x-ray sources

1.3 Free-electron lasers

The next milestone in producing x-ray radiation was proposed by A. Kondratenko and
E. Saldin [38] and independently by R. Bonifacio, C. Pellegrini and L. M. Narducci
[39]. It was realized that if the electromagnetic field produced in the undulator has a
significant impact on the properties of the electron bunch an exponential growth of the
energy emitted by the particles is possible. That process was called Self Amplification
of Spontaneous Emission (SASE). A free-electron laser (FEL) based on SASE principle
consists of an injector, a linear accelerator and an undulator (see Figure 1.3 (c)). The
FEL requirements on the electron beam quality in terms of small emittance, low energy
spread, and a large critical current are quite demanding, therefore, linear accelerators
are used to generate the electron beam [40]. Additionally, comparably long undulators
– on the order of 100 m – are necessary to generate SASE radiation in the x-ray range.

Several SASE FELs are operating, being constructed or planned [8]. The parameters
of the first extreme ultraviolet (XUV) FEL FLASH at DESY, of the first hard x-ray FEL
LCLS at SLAC and of the European XFEL, presently under construction at DESY, are
presented in Table 1.2 (see also Figure 1.1 for a comparison of the average brilliance
of XFELs with other x-ray sources). Most important features of a SASE FEL is the
extremely short pulse duration – on the order of 100 fs and below –, the high energy
per pulse – on the order of mJ – and its high coherent fraction of the radiation – on
the order of 1. Due to these characteristics the peak brilliance at FELs (see Table 1.2)
exceeds the peak brilliance at synchrotron sources by several orders of magnitude.

The SASE process is a result of the interaction between the electrons and the radiation
field generated by the electrons. To describe quantitatively the radiation of a FEL one
has to solve self consistently a set of coupled differential equations. These equations
describe the emitted radiation, the motion of the electrons and the coupling between
the electromagnetic field and the electrons [44, 40]. Although analytical solution of
these equations may be found in some simplified cases, such as the one dimensional high
gain-FEL, generally these equations have to be solved numerically. Here we restrict our
attention to the physical processes [45] behind the SASE generation.

Table 1.2: Typical parameters of FLASH [41], LCLS [42], and European XFEL [43]. The
fundamental wavelength, λ, the average energy per photon pulse, E, the pulse
duration T , the bandwidth, bw, and the peak brilliance are shown. ∗The peak
brilliance is given in photons/s ·mm2 ·mrad2 · 0 1%bandwidth.

FLASH LCLS LCLS European XFEL
(soft x-rays) (hard x-rays) SASE 1

λ [nm] 4.1-45 0.6-2.2 0.15 0.1
E [mJ] 0.01-0.1 1-2.5 1.5-3.0 2.0

T (FWHM) [fs] 50-200 70-500 70-100 100
bw (FWHM) [%] 1.0 0.2-1.0 0.2-0.5 0.08
peak brilliance∗ 1029 − 1031 3 · 1031 2 · 1033 5 · 1033
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1 High brilliance x-ray sources

Figure 1.5: A schematic view of the generation of light in a SASE FEL. The average
pulse energy as a function of the active undulator length at the TTF FEL,
Phase 1 is shown (reproduced from [43]). The behaviour of the electron
bunch for different regimes of operation is schematically shown by the red
cloud.

The starting point of the SASE process is the spontaneous undulator radiation de-
scribed in the previous chapter. As this radiation and the electron beam co-propagate
along the undulator, the electromagnetic field produced by the electrons gets intense
enough and is able to modulate the electron distribution in the electron bunch. Mi-
crobunches separated by a single radiation wavelength appear (see Figure 1.5) and the
radiation power increases exponentially, because the electrons in the microbunch radiate
almost coherently. According to electrodynamics all electrons confined within a space
with its extend being smaller than the wavelength can be considered as a single macro-
particle with the corresponding charge ne. The radiated energy is proportional to n2

e,
where ne is the number of the electrons in a single micro-bunch. The amplification of the
radiation field enhances the microbunching process even further. Therefore, the radia-
tion power increases exponentially with the undulator length. This regime of operation
is referred to as linear regime. In the linear regime the amplified electromagnetic field
is proportional to the stimulation i.e. spontaneous undulator radiation. Therefore, the
statistical properties of a SASE FEL in the linear regime are similar to the properties
of the spontaneous undulator radiation and obey Gaussian statistics [44, 46].

When all electrons are distributed in microbunches, with their extend being much
smaller than the radiation wavelength, no significant amplification can be obtained.

11
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The radiated power saturates and the FEL is said to operate in the saturation regime.
Above saturation an FEL operates in the deep nonlinear regime. The latter conditions of
operation belong to the nonlinear regime, where the statistical properties of the radiation
differ from the spontaneous undulator radiation.

The key quantity in the realization of a SASE FEL is the gain length Lg, which
describes how fast the pulse energy is growing with the propagation distance in the un-
dulator. In particular, in the linear regime the radiation power P increases exponentially
according to [40, 44]

P (z) ∼ exp

(

z

Lg

)

.

The gain length can also be used to estimate the degree of correlation between individual
micro-bunches, described by the cooperation length Lc. It is estimated as [47] Lc = λNg,
where Ng = Lg/λu is the number of undulator periods within a gain length. The light is
faster than the relativistic electrons on a sinusoidal trajectory and passes them by one
radiation wavelength each period of the undulator. As a consequence, after propagating
the distance Lg through the undulator the electrons within the corresponding slippage
Lc get correlated. The micro-bunches within the cooperation length interfere with each
other and as a result a smaller angular divergence is observed.

A rough estimate of the coherence properties of an FEL can be readily obtained.
The coherence time can be estimated from the cooperation length τc = Lc/c [47]. The
degree of transverse coherence can be estimated from the ratio between the gain length
Lg and the Rayleigh length of emitted radiation [48]. The latter describes how fast
the generated wave fields expand in space due to diffraction. If the Rayleigh length is
much smaller than the gain length a fully transversely coherent beam is expected. In
the opposite limit many transverse modes within the beam can coexist and the degree
of coherence is lowered. However, this estimate of the degree of transverse coherence is
rather qualitative.

Although SASE FELs are called lasers, there is a significant difference between optical
lasers and SASE FELs. Contrary to the optical laser, where a resonator typically permits
the growth of a single mode, in a SASE FEL a variety of modes can be amplified. The
SASE process starts from shot noise in the electron bunch, which means that the signal
at the end of the undulator depends on the instabilities in the electron bunch entering
the undulator. Therefore, the radiation properties, including the mean frequency of
radiation, bandwidth, and total pulse energy, change from shot to shot. For instance,
the intensity as a function of time consists of spikes with the width being the coherence
time τc. The positions of the spikes and their relative phases change from pulse to pulse.
The small coherence time limits the resolution in single particle diffraction imaging
experiments at FELs [49]. These and other experiments require a higher stability of the
FEL pulses.

Using a comparably weak temporally coherent and stable seed radiation, the tempo-
ral coherence and the reproducibility of the FEL pulses can be significantly improved.
Different techniques for seeding are considered. In soft x-ray regime high harmonic gen-
eration [50], which is a technique to generate soft x-ray light with optical lasers, can
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be used. This design is planned for FLASH2 at DESY, which is currently under con-
struction. For hard x-ray FELs a self seeding technique has been proposed [51, 52]. A
monochromator on the early stage of the SASE amplification process is used to generate
monochromatic light. This monochromatic light is then further amplified. The first
experimental realization has been achieved recently at LCLS [53]. In these experiments
the coherence time increased by a factor of about 50, whereas the total pulse energy has
not been reduced significantly. Ultimately, these seed techniques will possibly provide
transverse and temporally fully coherent x-ray pulses, very similar to the light pulses
generated by optical lasers.
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2 Theory of optical coherence

2.1 Propagation of electromagnetic waves

In our discussion of the statistical characteristics of light we will require elements of the
electromagnetic theory. In particular, the propagation of light waves in vacuum will be
used in the discussion of coherence properties of the radiation. A rigorous description
of the electromagnetic theory can be found in [35, 54]. Here we restrict our attention
to the scalar theory of light waves, which considers only one polarization component of
the radiation field. A brief summary of the formulas utilized throughout the thesis is
presented in this chapter.

The propagation of the electromagnetic field E(r, t)1 in vacuum is governed by the
wave equation

∇2E(r, t) +
1

c2

∂2

∂t2
E(r, t) = 0, (2.1)

where c ≈ 3 · 108 m/s is the velocity of light in vacuum. The wave equation is a partial
differential equation, which has to be solved subject to the initial and boundary condi-
tions [56]. A boundary condition might be, for example, the known field at the source
of the radiation. Fourier transformation of (2.1) yields the Helmholtz equation

∇2E(r, ω) + k2E(r, ω) = 0, (2.2)

for each frequency component E(r, ω) =
∫

E(r, t)e−iωtdt. Here ω is the frequency of the
radiation and k = ω/c is the modulus of the wave vector k.

Often the solution of the Helmholtz equation is simpler than the solution of the wave
equation, since the derivative of E(r, t) with respect to t is replaced by a multiplication
with k. After the propagation of each frequency component, the electromagnetic field
as a function of position and time can be readily determined from the inverse Fourier
transform E(r′, t) =

∫

E(r′, ω)eiωtdω/(2π).
For us it will be particularly important to propagate the field in free space from one

plane positioned at z0 over a distance z to another plane at z1 (see Figure 2.1). The
transverse coordinates in the plane at z0 are denoted by s = (sx, sy), in the plane at
z1 by u = (ux, uy) and z is the coordinate along the optical axis. Here we assume that
the propagation distance z is much larger than the wavelength λ of the radiation. In
this geometry the solution of the Helmholtz equation can be found in the form of the

1We will use the complex analytic signal representation of the wave-fields [55] throughout the thesis.
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2 Theory of optical coherence

Figure 2.1: A sketch to illustrate the Fresnel approximation. The propagation of the
field from a plane at z0 to a plane at z1 is considered. Optical axis is joining
the origins of the two planes and is indicated by the dashed black line. The
field is confined within small angles θ.

Huygens-Fresnel principle [54]

E(u, z1; ω) =

∫

E(s, z0; ω)Pz(u, s; ω)ds, (2.3)

where E(s, z0; ω) is the field in the plane at z0, E(u, z1; ω) is the field in the plane at z1

and the integration is made over all s in the plane at z0. The propagator is given by

Pz(u, s; ω) =
k

2πi

eikr

r
χ(θ), (2.4)

where r is the distance between the points (s, z0) and (u, z1), and θ is the angle between
the line joining (s, z0) to (u, z1) and the optical axis. The angle θ is defined through
tan θ = |u − s|/z and χ(θ) is the obliquity factor with χ(0) = 1 and 0 ≤ χ(θ) ≤ 1.

When only small angles θ are of importance in equation (2.3), it is sufficient to work
in the frame of the Fresnel approximation. In this case we expand the term kr in the
propagator (2.4) into a Taylor series

kr ≈ kz

(

1 +
|u − s|2

2z2
− |u − s|4

8z4
+ · · ·

)

, (2.5)

and take only the first two terms in (2.5) into account. The Fresnel propagator can be
written as

Pz(u, s; ω) =
k

2πi

eikz

z
exp

(

ik
|u − s|2

2z

)

=
k

2πi

eikz

z
exp

(

ik
|u|2 + |s|2 − 2u · s

2z

)

. (2.6)

where r ≈ z is used in the denominator. A more accurate approximation of r is used in
the phase since there the sensitivity to errors is greater than in the denominator. The
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Fresnel approximation is valid if the third and all higher terms in (2.5) vanish, i.e. if
[57]

kz

8

( |u − s|
z

)4

≪ π. (2.7)

Since the Huygens-Fresnel principle is valid for kz ≫ 1 and we want to neglect terms
of order higher than kz tan4 θ, only small angles with tan4 θ ≪ 1 are considered. In
this limit the approximation tan θ ≈ θ can be used and the obliquity factor is well
approximated by χ(θ) ≈ 1 due to small angles θ. The Fresnel approximation condition
for all angles θ for the radiation to propagate is given by

θ ≪ 4

√

8π

kz
. (2.8)

Let us shortly discuss the applicability of the Fresnel approximation to the case of
coherent x-ray diffraction. As an example we consider a typical x-ray diffractive imaging
experiment [28]. The wavelength of the radiation is 1.5 Å and the propagation distance
is 5 m. The Fresnel approximation is then valid for angles θ smaller than approximately
10 mrad or for transverse dimensions smaller than 50 mm. These conditions were easily
satisfied in such experiments.

In the Fraunhofer (or far-field) approximation the propagator is further simplified

Pz(u, s; ω) =
k

2πi

eikz

z
exp

(

ik
|u|2 − 2u · s

2z

)

. (2.9)

The Fraunhofer propagator can be applied if the Fresnel number NF = d2/(λz) satisfies
NF ≪ 1, where d is the spatial extend of the field in the plane at z0

2. The propagation
of wave fields through free space is considered frequently throughout the thesis. The
numerical implementation of propagation laws in Fresnel and Fraunhofer approximation
is presented in Appendix A.1.

When propagation of radiation fields is considered, thin optical elements are often
involved, such as apertures or thin lenses. The transmission through a thin optical
element can be performed by multiplication with a transmission function T (u, ω)

Eout(u, z1; ω) = T (u; ω) ·Ein(u, z1; ω), (2.10)

where Ein(u, z1; ω) is the field incident on and Eout(u, z1; ω) is the field behind the
aperture. The transmission function of a circular aperture, for example, can be written
as

T (u, ω) =

{

1 for |u| < D/2

0 elsewhere
(2.11)

2The extend of the field in the source plane can be defined through the condition |E(s, z0)| = 0 for all
|s| > d.
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where D is the diameter of the aperture. The transmission function of a slit is given by

T (u, ω) =

{

1 for |ux| < ax/2 and |uy| < ay/2

0 elsewhere
, (2.12)

where ux, uy are the horizontal and vertical components of u and ax and ay are the slit
width and height, respectively. A thin lens with an infinite aperture may be described
by [57]

T (u, ω) = exp

(

− ik|u|2
2f(ω)

)

, (2.13)

where f(ω) is the focal distance of the lens.

2.2 Coherence: Basic Equations

The description of radiation properties within the classical electromagnetic theory, out-
lined in the previous chapter, may fail in many realistic cases due to the statistical nature
of light. To illustrate this fact we consider a source that consists of a number of indepen-
dent point sources distributed over the source volume (see Figure 2.2). Let us assume
that each point source radiates for some period of time but it cannot be precisely known
for each point source, when it radiates and when it does not. The latter condition is the
Heisenberg’s uncertainty principle in the quantum mechanics [58]. As a consequence,
the total radiation field, which due to the superposition principle is the sum of all fields
from individual point sources, fluctuates as a function of time. These fluctuations are
extremely fast3 and can not be detected, therefore only statistical properties of these
fluctuations can be determined. In the beginning of the 20th century it was recognized
(see [59] for a historical introduction) that the radiation field from such a source can be
treated with a correlation function of the complex wave fields. These developments led
to the theory of statistical optics and optical coherence. For a rigorous description of
optical coherence see references [46, 60].

The concept of optical coherence has long been associated with interference phenom-
ena, where the Mutual Coherence Function (MCF)

Γ(r1, r2; t1, t2) = 〈E∗(r1, t1)E(r2, t2)〉 , (2.14)

plays the main role. It describes the correlations between two complex values of the
electric field E∗(r1, t1) and E(r2, t2) a different points r1 and r2 and different times t1
and t2. The brackets denote the ensemble average [46]

〈f(r, t)〉 = lim
N→∞

1

N

N
∑

r=1

f (r)(r, t), (2.15)

3The fluctuation time coincides with the coherence time τc, which can be estimated from τc = 1/Ω,
where Ω is the bandwidth of the radiation. For example, using approximate bandwidth of the
radiation from the sun (λ ≈ 250 − 1000 nm) we estimate τc < 1 fs.
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Figure 2.2: Illustration of a fluctuating source of light. The source consists of a number
of radiators. At a certain time t1 (left side) some sources (red circles) radi-
ate and others (grey circles) do not. At another time t2 (right side) other
radiators radiate. The source undergoes fluctuations.

where f (r)(r, t) is one possible realization from the ensemble of all possible realizations
of the statistical function f(r, t).

From the definition (2.14) it follows that when two points and times coincide the MCF
yields the average intensity

〈I(r, t)〉 = Γ(r, r; t, t) =
〈

|E(r, t)|2
〉

. (2.16)

It is convenient to normalize the MCF as

γ(r1, r2; t1, t2) =
Γ(r1, r2; t1, t2)

√

〈I(r1, t1)〉
√

〈I(r2, t2)〉
, (2.17)

which is known as the complex degree of coherence (CDC). For all values of r1, r2

and t1, t2 the CDC satisfies |γ(r1, r2; t1, t2)| ≤ 1. The modulus of the CDC is often
measured in interference experiments as the contrast of the interference fringes. If
|γ(r1, r2; t1, t2)| = 1 the field is said to be coherent, if |γ(r1, r2; t1, t2)| = 0 it is com-
pletely incoherent and if 0 < |γ(r1, r2; t1, t2)| < 1 it is partially coherent.

Substituting r1 = r2 and t1 = t2 in the definition of the CDC (2.17) one finds
γ(r, r; t, t) = 1. This means that the field is always coherent with itself in a single
point. In the most cases the CDC drops to lower values as the separation between the
points in space r2 − r1 and time t2 − t1 increases. A characteristic width4 of the CDC
|γ(r1, r2; t1, t2)| in the spatial domain and in the temporal domain is often called the
transverse and the temporal coherence length. The product of these values, called co-
herence volume, can be considered as the region throughout the space within which the
electromagnetic field is highly correlated.

After the invention of the maser [61, 62], laser [1] and the experiments of Hanbury
Brown and Twiss [63], the concept of the MCF, which is a first order correlation func-
tion, was found to be inadequate for the interpretation of the experimental results. To

4In this thesis the coherence length is the separation r2 − r2 or time difference t2 − t1 at which the
modulus of the CDC drops to a value of 0.6. For a Gaussian function this value corresponds to the
rms width.
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provide a more rigorous description of coherence, higher order correlation functions were
introduced. The n−th order correlation function expresses the correlation of values of
the fields at 2n different points of space and time [46]

Γ(n)(r1, . . . , r2n; t1, . . . , t2n)

= 〈E∗(r1, t1) · · ·E∗(rn, tn)E(rn+1, tn+1) · · ·E(r2n, t2n)〉 .
(2.18)

A fully coherent field was defined by Glauber [64] “as one whose correlation functions
satisfy an infinite succession of stated conditions”5. In particular, the electromagnetic
field possesses n−th order coherence, if the normalized coherence function

γ(m)(r1, . . . , r2m; t1, . . . , t2m) = Γ(m)(r1, . . . , r2m; t1, . . . , t2m)
/

2m
∏

j=1

√

Γ(1)(rj , tj , rj , tj)

(2.19)
is equal to 1 for all m ≤ n. Such coherent fields can be generated by a maser and a laser.
Higher order coherence of matter waves has recently been observed in a Bose-Einstein
condensate [65].

In the measurements of the higher order correlation functions, as for example in the
photon correlation experiments of Hanbury Brown and Twiss [63], the degeneracy pa-
rameter δ plays an important role [66]. According to Heisenberg’s uncertainty relation
for the conjugate pairs ∆px∆x, ∆py∆y and ∆E∆t the phase space volume V satisfies
[46]

V = ∆px∆x∆py∆y∆E∆t ≥
(

h̄

2

)3

. (2.20)

It is therefore natural to consider the phase space to be divided in to cells of phase space
volume Vc = (h̄/2)3. The degeneracy parameter is defined as [46]

δ =
NphVc

V
, (2.21)

where Nph is the total number of photons in the beam. The degeneracy parameter δ
is the average number of photons in the same cell of phase space or the same quantum
mechanical state. The degeneracy parameter differs drastically for thermal and laser
light. In the former case it is typically δ ≪ 1, whereas for laser light it can be several
orders of magnitude higher δ ≈ 109 [46]. Clearly, fully coherent beam can be described
by the relation Nph = δ.

In x-ray physics, no fully coherent sources have been available up to now and the first-
order correlation function was sufficient to predict the outcome of most experiments.
However, it has to be investigated whether x-ray FELs generate beams with higher
order coherence in the x-ray regime. If this would be the case, techniques utilizing the
higher order coherence may either be adapted from the optical wavelength range or

5 Glauber developed a quantum mechanical treatment of the correlation functions and introduced fully
coherent photon states, which today are known as Glauber states.
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completely new approaches could be proposed at FELs. We will address this question
later in the thesis (see chapter 5.5) and will for the moment restrict ourselves to the
first-order correlation function, i.e. the MCF.

It is worth noting that the theory of optical coherence is not limited to photon beams.
Electron beams with a comparably high first order coherence can also be produced and
be used in imaging experiments such as coherent diffractive imaging [67]. The theory of
first order correlation functions can be applied to describe these beams.

2.3 Correlation functions of stationary wave-fields

For stationary and ergodic wave-fields [46] the MCF is invariant under time translation
and can be written as

Γ(r1, r2; τ) = 〈E∗(r1, t)E(r2, t + τ)〉T , (2.22)

where τ = t2 − t1 is the time difference and the ensemble average (2.15) is replaced by
the time average

〈f(r, t)〉T = lim
T→∞

∫ T/2

−T/2
f(r, t)dt. (2.23)

This average is often observed in a real measurement, where typically a detector accumu-
lates the signal over time. At most x-ray sources, including x-ray tubes and synchrotron
sources, the radiation is stationary and ergodic in good approximation.

Another simplification in the theory of coherence can be used if the radiation has a
narrow bandwidth, i.e. Ω/ω0 ≪ 1, where Ω is the bandwidth of radiation and ω0 is the
mean frequency. As most of the x-ray sources have a narrow bandwidth, we will use the
narrow bandwidth approximation throughout this thesis.

2.3.1 Propagation of the wave-field correlation functions

In general, the propagation of the MCF in free space is governed by two wave equations
[46]

∇2
i Γ(r1, r2; t1, t2) +

1

c2

∂2

∂t2i
Γ(r1, r2; t1, t2) = 0, (2.24)

for i = 1, 2. For stationary conditions these wave equations simplify to

∇2
i Γ(r1, r2; τ) ± 1

c2

∂2

∂τ2
Γ(r1, r2; τ) = 0, (2.25)

where + is used for i = 1 and − for i = 2.
When we consider the propagation of the correlation function of the field in free space,

it is convenient to introduce the cross-spectral density function (CSD), W (r1, r2; ω),
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Figure 2.3: The propagation geometry considered here: The source is positioned in
the plane at z0 and is described by the CSD W (s1, s2, z0; ω). The CSD,
W (u1,u2, z1; ω) of the radiation field in the observation plane positioned at
a distance z from the source is calculated.

which is defined as the Fourier transform of the MCF [46]

W (r1, r2; ω) =

∫

Γ(r1, r2; τ)e−iωτdτ, (2.26)

where ω is the angular frequency of the radiation. The wave-equations (2.25) for the
MCF simplify to a set of two Helmholtz equations for the CSD [46]

∇2
i W (r1, r2; ω) ± k2W (r1, r2; ω) = 0. (2.27)

Before we proceed, let us summarize some basic properties of the CSD function
W (r1, r2; ω). Equation (2.26) together with its Fourier inverse

Γ(r1, r2; τ) =
1

2π

∫

W (r1, r2; ω)eiωτdω, (2.28)

are known as the generalized Wiener-Khintchine theorem [46]. By definition, when the
two points r1 and r2 coincide, the CSD represents the spectral density of the radiation
field,

S(r; ω) = W (r, r; ω) (2.29)

and (2.28) simplifies to

Γ(r, r; τ) =
1

2π

∫

S(r; ω)eiωτdω,

which is the original Wiener-Khintchine theorem. The normalized CSD is known as the
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spectral degree of coherence (SDC)

µ(r1, r2; ω) =
W (r1, r2; ω)

√

S(r1; ω)S(r2; ω)
, |µ12(ω)| ≤ 1. (2.30)

To characterize the transverse coherence properties of a wave field by a single number,
the degree of transverse coherence can be introduced as [68, 69]

ζ(ω) =

∫

|W (r1, r2; ω)|2 dr1dr2
(∫

S(r; ω)dr
)2 . (2.31)

According to its definition the values of the parameter ζ(ω) lie in the range 0≤ ζ(ω) ≤ 1,
where ζ(ω) = 1 and ζ(ω) = 0 characterizes fully coherent and incoherent radiation,
respectively. It will be shown later (Equation (2.64)) that the degree of transverse
coherence, ζ(ω), in many cases has the same meaning as the coherent fraction of the
beam in Equation (1.3).

In the following we will apply the concept of correlation functions to planar secondary
sources [46], where the CSD of the radiation field is given in the source plane at z0

with the transverse coordinates s, W (r1, r2; ω) = W (s1, s2, z0; ω) (see Figure 2.3). The
propagation of the CSD from the source plane at z0 to the plane at a distance z from
the source is governed by the following expression [46]

W (u1,u2, z1; ω) =

∫∫

W (s1, s2, z0; ω)P ∗

z (u1, s1; ω)Pz(u2, s2; ω)ds1ds2, (2.32)

where W (s1, s2, z0; ω) is the CSD in the source plane z0, Pz(u, s; ω) is the propagator.
The integration is performed in the source plane. Formula (2.32) is a solution of the set
of Helmholtz equations (2.27). Depending on the propagation geometry the Huygens-
Fresnel (2.4), Fresnel (2.6) or Fraunhofer (2.9) propagator can be used. The propagation
of the CSD through a thin optical element can be described by a transmission function
T (u, ω) (2.10) [70]

W (u1,u2, z, ω) = W (u1,u2, z, ω)T ∗(u1, ω)T (u2, ω). (2.33)

2.3.2 Coherent mode representation of correlation functions

Due to the fact that second order correlation functions (2.14,2.26) are defined at two
positions r1 and r2, it is clear that a numerical implementation of these functions may
be difficult due to the high dimensionality of the problem. For fully coherent radiation,
however, an analysis in the frame of statistical optics is not required. The correlation
functions may be replaced by the product of the electromagnetic field at positions r1

and r2 [46]. This field depends on one spatial component r only and the dimensionality
is reduced in this case. One might ask the question, whether a similar treatment can be
applied to partially coherent fields. An affirmative answer to this question was given by
Wolf [71].
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It has been shown, that under very general conditions, one can represent the CSD of
a partially coherent, statistically stationary field of any state of coherence as a sum of
independent coherent modes6

W (r1, r2; ω) =
∑

j

βj(ω)E∗

j (r1, ω)Ej(r2, ω), (2.34)

where βj(ω) and Ej(r, ω) are the eigenvalues and eigenfunctions from the Fredholm
integral equation of the second kind

∫

W (r1, r2; ω)Ej(r1, ω)dr1 = βj(ω)Ej(r2, ω). (2.35)

According to Equation (2.29) we find the spectral density

S(r, ω) =
∑

j

βj(ω)|Ej(r, ω)|2. (2.36)

and the degree of transverse coherence (2.31)

ζ(ω) =

∑

β2
j (ω)

(
∑

βj(ω))2
.

The so-called modes7, Ej(r, ω), can be chosen to be statistically independent and to
form an orthonormal set

∫

E∗

i (r, ω)Ej(r, ω)dr = δij , where δij is the Kronecker delta.
Importantly, the mode decomposition of the CSD describing a fully coherent field consists
of a single mode [46]

W (r1, r2; ω) = E∗(r1, ω)E(r2, ω). (2.37)

The mode decomposition can be used to propagate partially coherent radiation from
the plane at z0 to a plane at z1. Substituting Equation (2.34) in the propagation formula
(2.32) yields

W (u1,u2, z; ω) =

∫∫

∑

j

βj(ω)E∗

j (s1, z0; ω)Ej(s2, z0; ω)

P ∗

z (u1, s1; ω)Pz(u2, s2; ω)ds1ds2

(2.38)

We interchange the order of summation and integration and find

W (u1,u2, z1; ω) =
∑

j

βj(ω)E∗

j (u1, z1; ω)Ej(u2, z1; ω), (2.39)

where Ej(u, z1; ω) =
∫

Ej(s, z0; ω)Pz(u, s; ω)ds according to (2.3) describes the propa-

6The mode decomposition is very similar to the diagonalization of a matrix in the linear algebra.
7The term mode is also used for Wj(r1, r2; ω) = βjE

∗

j (r1, ω)Ej(r2, ω) [46].
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gation of a single mode from the plane at z0 to the observation plane at z1. This means
that each mode can be treated as a classical electromagnetic field and can be propagated
using Equation (2.3). According to Equation (2.38) the weights of the modes βj(ω) re-
main constant during propagation in free space. The mode decomposition is especially
convenient when we propagate highly coherent beams with a small number of modes.

2.3.3 Gaussian Schell-model sources

A useful model to describe the radiation properties of partially coherent sources is the
Gaussian Schell-model (GSM) [46]. This model has been applied for the analysis of
the radiation field generated by optical lasers [72], third generation synchrotron sources
[73, 74, 75, 76, 69] and x-ray free-electron lasers [77, 78, 79].

The CSD of a GSM source positioned in the plane at z0 is expressed as [46]8

W (s1, s2; z0) =
√

S(s1)
√

S(s2)µ(s2 − s1), (2.40)

where the spectral density and the SDC in the source plane are Gaussian functions

S(s) = S0 exp

(

− s2
x

2σ2
x

−
s2
y

2σ2
y

)

µ(s2 − s1) = exp

(

−(s2x − s1x)2

2ξ2
x

− (s2y − s1y)
2

2ξ2
y

)

.

(2.41)

Here S0 is a normalization constant, and the parameters σx,y and ξx,y define the rms
source size and transverse coherence length in the source plane in x- and y- directions,
respectively.

The expression of the CSD function in the form of (2.40), is based on the definition
of the SDC (2.30). In the GSM the main approximations are

• the source is modeled as a plane two-dimensional source

• the source is spatially uniform, i.e. the SDC µ(s1, s2) = µ(s2 − s1) depends on s1

and s2 only through the difference s2 − s1. Sources characterized by this property
are known as Schell-model sources.

• the spectral density, S(s), and the SDC, µ(s2 − s1), are Gaussian functions.

It is readily seen from (2.40,2.41) that the CSD of a GSM source can be factorized
into two transverse components

W (s1, s2) = W (s1x, s2x)W (s1y, s2y), (2.42)

8In this equation and below we omit the frequency dependence ω for brevity. The GSM will be applied
to narrowband radiation, where ω will be the average frequency ω0.
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where

W (s1x, s2x) =
√

S0 exp

(

−s2
1x + s2

2x

4σ2
x

− (s2x − s1x)2

2ξ2
x

)

(2.43)

and a similar expression for W (s1y, s2y).
In the frame of the GSM, the degree of transverse coherence (2.31), also factorizes into

x and y components ζ = ζxζy. For each transverse direction an analytical expression for
ζx can be found (see Appendix A.2)

ζx =

∫∫

|W (s1x, s2x)|2 ds1xd2x
(∫

W (sx, sx)dsx

)2 =
qx

√

q2
x + 4

, (2.44)

where the ratio of the coherence length to the source size

qx =
ξx

σx
(2.45)

is introduced. The value of qx is also considered as a measure of the degree of transverse
coherence of the source [46].

We will see later (2.48,2.50) that other important quantities of a GSM source are the
effective distance [69]

zeff,x,y = kσx,yδx = 2kσ2
x,yζx,y. (2.46)

and the parameter δ defined through [46]

1

δ2
x,y

=
1

4σ2
x,y

+
1

ξ2
x,y

. (2.47)

2.3.4 Propagation of Gaussian Schell-model beams in free space

Here we will use the propagation formula (2.32) in Fresnel approximation and calculate
the CSD at a distance z from the GSM source described by Equations (2.40,2.41).
According to Equation (2.42) the integration in Equation (2.32) can be done for each
dimension independently. We will present calculations for one transverse direction, say
x, and will drop the subscript x for brevity.

Let us first consider the validity of the Fresnel approximation for GSM sources. The
radiation generated by the GSM source should irradiate into a cone of narrow angles. The
Fresnel approximation can be applied if these angles satisfy Equation (2.8). We will see
later that the angular divergence of a GSM source is given by θ = 1/(δk). Substituting
this angle into the Fresnel approximation condition (2.8) we find lower limits for the
parameter δ

δ ≫ 1

k
. (2.48)

Equation (2.48) may be referred to as the beam condition [46]. Substituting Equation
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(2.48) in (2.46) a similar condition for the degree of transverse coherence ζ can be found

ζ ≫ 1

kσ
.

The last expression shows that only partially coherent source can generate a beam.
There are two important limits of an incoherent and a coherent source. The source is

called incoherent if its coherence length ξ is much smaller than the source size ξ ≪ σ.
From the beam condition (2.48) we find for such a source

δ ≈ ξ ≫ λ

2π

To satisfy the beam conditions for a spatially incoherent source, the coherence length
has to be much larger than the wavelength, i.e. σ ≫ ξ ≫ λ/2π. Otherwise the coherence
is too poor to generate beams with small divergence.

In the opposite limit of a spatially coherent source ξ ≫ σ we find from the beam
condition (2.48)

δ ≈ 2σ ≫ λ

2π
.

To satisfy the beam condition for a spatially coherent source, the source size should be
larger than the wavelength, i.e. ξ ≫ σ ≫ λ/2π. Otherwise the divergence is too large
due to the diffraction limit.

Assuming the GSM source parameters satisfy the Fresnel conditions, the integration
in Equation (2.32) yields the CSD W (u1, u2; z) at distance z from the source [80, 81, 46])

W (u1, u2, z) =

√
S0

∆(z)
exp

(

−u2
1 + u2

2

4Σ2(z)
− (u2 − u1)

2

2Ξ2(z)
+

ik(u2
2 − u2

1)

2R(z)

)

, (2.49)

where Σ(z) = σ∆(z), Ξ(z) = ξ∆(z),

∆(z) =

√

1 +

(

z

zeff

)2

(2.50)

is called the expansion coefficient and

R(z) = z

[

1 +
(zeff

z

)2
]

(2.51)

is the radius of the curvature of the GSM beam. In Equations (2.50, 2.51) the effective
distance zeff defined in Equation (2.46) was used. At that distance the expansion coeffi-
cient gives ∆(zeff) =

√
2. In the limit of a spatially coherent source, ζ = 1, the effective

distance zeff coincides with the Rayleigh length zR = 2kσ2, which is often introduced
in the theory of optical Gaussian beams [57]. According to (2.50) the effective distance
zeff is a measure of the distance, where near field or Fresnel effects in the propagation
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of the radiation are still strong. Distances, which satisfy the condition z ≫ zeff, can be
considered as the far-field limit9, where the expansion parameter ∆(z) → z/zeff and the
radius R(z) → z change linearly with the distance z.

Substituting u1 = u2 = u in Equation (2.49) we find the spectral density at the
distance z

S(u, z) =

√
S0

∆(z)
exp

(

− u2

2Σ2(z)

)

, (2.52)

where

Σ(z) = σ∆(z) =
(

σ2 + θ2
Σz2

)1/2
(2.53)

is the size (rms) of the x-ray beam at a distance z from the source. In Equation (2.53)
θΣ is the angular divergence of the beam, which can be written as

θΣ =
σ

zeff
=

1

kξ
(1 + q2/4)1/2. (2.54)

According to its definition (2.30) and (2.49, 2.52), the SDC at a distance z from the
source is given by

µ(u1, u2, z) = exp

(

−(u2 − u1)
2

2Ξ(z)2
+

ik(u2
2 − u2

1)

2R(z)

)

, (2.55)

where

Ξ(z) = ξ∆(z) =
(

ξ2 + θ2
Ξz2

)1/2
(2.56)

is the coherence length of the beam at the same distance. In Equation (2.56) θΞ is the
angular width of the coherent part of the beam and can be written as

θΞ =
ξ

zeff
=

1

kσ
(1 + q2/4)1/2. (2.57)

The transverse coherence length Ξ(z) and the beam size Σ(z) for different propagation
distances z are shown in Figure 2.4. A radiation wavelength of 1 Å and a source size
of 50 µm were simulated. Calculations for different values of the degree of transverse
coherence between a coherent source ζ = 1 and a rather incoherent source ζ = 0.1 are
presented. It is well seen that for a larger degree of transverse coherence ζ the beam is
more collimated and the transverse coherence length is larger. The effective distance zeff

is smaller for less coherent beams with the same source size, which means that for less
coherent beams the linear z dependence of the parameters starts earlier (compare with
numerical results in [82]).

One important property of the beams generated by the GSM sources is that at any

9The term zeff/z is similar to the Fresnel number introduced in chapter 2.1.
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Figure 2.4: The transverse coherence length, Ξ(z), (top) and the beam size, Σ(z) (bot-
tom) of the radiation generated by a Gaussian Schell-model source at dif-
ferent distances downstream of the source. A source size of 50 µm and a
wavelength of 1 Å were assumed for all curves. The degree of coherence was
varied between ζ = 1 and ζ = 0.1. The transverse coherence length for ζ = 1
is Ξ(z) = ∞ and is not visible on the plot. The effective distance zeff for
different cases is indicated by the vertical lines on the bottom.

distance from the source, the ratio of the coherence length Ξ(z) to the beam size Σ(z)
has a constant value and is equal to its value at the source

q =
ξ

σ
=

Ξ(z)

Σ(z)
. (2.58)

As a consequence, the degree of transverse coherence ζ is also constant along the optical
axis.

In the limit of a coherent source (q ≫ 1 or ζ ≈ 1), we find from Equations (2.54, 2.57)

θΣ =
1

2kσ
, θΞ =

1

2kσ
q.

In this coherent limit the angular width of the coherent part of the beam exceeds the
angular divergence of the beam, which is determined now only by the size of the source,
and we are approaching here the limit of a so-called diffraction limited source.

For an incoherent source (q ≪ 1 or ζ ≪ 1) we find from Equations (2.54,2.57)

θΣ =
1

kξ
, θΞ =

1

kσ
. (2.59)
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Figure 2.5: The relative error Err(ζ) = [Ξ(z) − Ξinc(z)] /Ξ(z) between the transverse
coherence length determined by the van Cittert- Zernike theorem Ξinc(z)
and within the GSM Ξ(z) as a function of the degree of transverse coherence
ζ.

In this limit Equation (2.56) predicts the same values for the coherence length Ξ(z) at
large distances z from the source as the van Cittert-Zernike theorem [83, 84, 46]

Ξinc(z) =
z

kσ
. (2.60)

In the same limit the expression (2.59) gives an estimate for the divergence of an in-
coherent source, which is determined by the coherence length ξ of the source. So, the
coherence length of the source is readily estimated from Equation (2.59)

ξ =
λ

2πθΣ
.

The van Cittert-Zernike theorem is, in principle, valid only for incoherent sources.
However, it gives a reasonable estimate of the transverse coherence length also for par-
tially coherent sources. The relative error Err = (Ξ(z)−Ξinc(z))/Ξ(z) between the value
of the transverse coherence length estimated by the van Cittert-Zernike theorem Ξinc(z)
(2.60) and by the GSM Ξ(z) (2.56) is less than 1 %, unless the degree of transverse
coherence is higher than ζ = 0.1 (see Figure 2.5). Even at a value of ζ = 0.4, which can
be considered as quite coherent, the van Cittert-Zernike estimation (2.60) concords with
the full expression (2.54) within an error of 10 %. A comparison between Equations
(2.60) and (2.56) also shows, that the van Cittert-Zernike gives a lower limit for the
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transverse coherence length
Ξ(z) ≥ Ξinc(z).

In the frame of the GSM, the coherence length of a source of any state of coherence
can be expressed conveniently through its emittance

ε = σθΣ. (2.61)

It can be determined by inverting the full expression of the angular divergence of the
beam (2.54)

ξ =
2σ√

4k2ε2 − 1
. (2.62)

The emittance of a GSM source ε can be expressed as well through the degree of the
transverse coherence ζ. From Equations (2.54,2.46) we find the emittance of a GSM
source in the form

ε =
1

2kζ
. (2.63)

Taking into account that for a source of any degree of transverse coherence the values of
ζ lie in the range 0 < ζ ≤ 1 the values of the emittance satisfy ε ≥ 1/2k = λ/4π. For a
fully coherent source ζ = 1 and the emittance εcoh = λ/4π. This value is the emittance
of the diffraction limited Gaussian beam. For an incoherent source ζ → 0 we find from
(2.63) ε ≫ λ/4π. Eventually, writing

εcoh = ε · ζ (2.64)

we note, that in the GSM the degree of transverse coherence, ζ, defined as a normalized
integral over |W (u1, u2)|2 (2.31) is identical to the coherent fraction of the beam noted
in Equation (1.3) [69].

2.3.5 Coherent mode representation of a Gaussian Schell-model source

Coherent modes of a GSM source are well known [46]. Due to the fact that the CSD
of the source factorizes into two transverse components (2.42), the coherent modes can
be determined separately for each direction. The modes Ej and the corresponding
occupancies βj can be found for each direction separately

W (s1x, s2x, z0) =
∑

j

βx
j E∗

j (s1x, z0)Ej(s2x, z0) (2.65)

by solving the Fredholm integral equation of the second kind

∫

W (s1x, s2x, z0)Ej(s2x, z0)dx2 = βx
j Ej(s1x, z0). (2.66)
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Similar expressions are valid for the y direction. The total CSD is expressed as [85]

W (s1, s2, z0) =
∑

j,j′

βjj′E
∗

jj′(s1, z0)Ejj′(s2, z0), (2.67)

where Ejj′(s, z0) = Ej(sx, z0) ·Ej′(sy, z0) and βjj′ = βx
j βy

j′ .
Below we again consider one transverse direction and drop the subscript. The solution

of the Fredholm integral Equation (2.66) for a GSM source (2.43) can be obtained
analytically in the form of the Gaussian Hermite-modes [72, 86]

Ej(s) = A0j ·Hj

(

s

σ
√

2ζ

)

exp

(

− s2

4σ2ζ

)

, (2.68)

where A0j = (πσ2ζ)−1/4(2jj!)−1/2 and Hj(x) are the Hermite polynomials of order j.
The intensity of each mode is normalized to unity, i.e.

∫

|Ej(s)|2ds = 1, for all j. Four
first modes in the source plane are shown in Figure 2.6 (a).

Within the GSM the eigenvalues are given by a power law

βj

β0
= κj , (2.69)

where κ = (1 − ζ)/(1 + ζ) and β0 =
√

2πσ2S0 · (2ζ)/(1 + ζ). The parameter S0 has the
same meaning as in (2.41). The eigenvalues (2.69) of the Fredholm integral equation
are, in fact, the relative weights with which different modes contribute to the CSD of
the GSM source. The normalized eigenvalues βj/β0 for different values of the degree
of coherence are shown in Figure 2.6 (b). A logarithmic scale is used to illustrate the
exponential decay of the eigenvalues. It is well seen in this figure that for a high degree
of coherence ζ = 0.7 a small number of modes contribute to the total radiation field.
For lower values of ζ more modes have to be included in the calculations to reproduce
correctly the coherence properties. For a fully coherent beam or ζ = 1 only one mode
contributes to radiation field (κ = 0 in Equation (2.69)).

Correlation properties of the radiation field at any distance z from the source can be
calculated with the help of expression (2.3) by propagating individual modes Ej(x, z).
In case of a GSM source the propagated modes Ej(x, z) at a distance z from the source
are described by the following expression [85]

Ej(x, z) =Aj ·Hj

(

x

Σ(z)
√

2ζ

)

exp

(

− x2

4Σ(z)2ζ

)

×

× exp

{

i[kz − (j + 1)φx(z)] +
ikx2

2R(z)

} (2.70)

where Aj = (πΣ(z)2ζ)−1/4(2jj!)−1/2, Σ(z) = σ∆(z) is the beam size at the distance z
from the source and φx(z) = arctan (z/zeff) is the so called Gouy phase [57]. Parameters
∆(z) and R(z) have the same meaning as in Equations (2.50, 2.51). For j = 0 these
modes coincide with the expression for a monochromatic Gaussian beam propagating
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Figure 2.6: (a) First four modes Ej(s) shown as function of the position s/(σ
√

2ζ) nor-
malized to the rms width σ

√
2ζ of |E0(s)|2. (b) The ratio of the eigenvalue

βj to the lowest order eigenvalue β0 as a function of mode number j. Calcu-
lations for different values of the degree of coherence ζ are shown.

from a Gaussian source.
As mentioned in the introduction to this chapter the mode decomposition approach

becomes most powerful if the number of contributing modes is small. To estimate the
number of significantly contributing modes for a spatially coherent source (ζ → 1) we
obtain from Equation (2.69)

βj

β0
≈

(

1 − ζ

2

)j

, β0 ≈
√

2πσ2S0

and βj ≪ β0 for all j 6= 0. In the fully coherent limit the source is well characterized by
its lowest mode, which is a fully coherent Gaussian beam.

In the opposite limit of an incoherent source (ζ → 0) we have from (2.69)

βj

β0
≈ (1 − ζ)2j ≈ e−2jζ (2.71)

and a large number of modes is required for a sufficient description of the source. All
modes with a number higher than

j =
ln(100)

2ζ
≈ 2.3

ζ
(2.72)

contribute by less than 1% of the fundamental mode.
Before we proceed we summarize a few important points about the coherent mode de-

composition. First of all, we show in Appendix A.6 that the mode decomposition can be
performed numerically for a properly sampled representation of a CSD function. In ap-
pendix the numerical mode decomposition of the CSD of a Gaussian Schell-model source
is compared with the analytical expressions (2.68). The modes determined numerically
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coincide with the analytical expressions.
It is also important to note that although the modes are statistically independent

upstream from the optical element, they can become statistically dependent behind the
optical element. For instance, this may occure when the optical element is a circu-
lar aperture. However, the statistical independence of the modes is not necessary for
separate propagation of individual modes. In general, one can write

W (s1, s2, z0; ω) =
∑

jl

βjl(ω)E∗

j (s1, ω)El(s2, ω), (2.73)

where the modes are statistically dependent and cross terms with contributions βjl ap-
pear. Substituting this expression in (2.32) we find through a calculation similar to
(2.38,2.39)

W (u1,u2, z1; ω) =
∑

jl

βjl(ω)E∗

j (u1; ω)El(u2; ω).

This means that any mode decomposition of the type of (2.73) can be utilized to prop-
agate the CSD in free space. However, the mode decomposition found by solving the
Fredholm integral equation has the convenient property that the spectral density has
the form of (2.36). Additionally, due to the work by Wolf [71] it is known that there is
at least one coherent mode representation of the CSD function.

It is further worth noticing that due to the degeneracy10 of some eigenvalues the
solution of the eigenvalue problem is not unique. Only the eigenvectors with different
eigenvalues are orthogonal. The modes corresponding to the same eigenvalue span a
subspace, which is orthogonal to every mode corresponding to a different eigenvalue,
and any orthonormal basis of this subspace can be used in the mode decomposition.
This degree of freedom is especially apparent in the rather incoherent case. There a
large number of modes contribute significantly to the CSD. In the limit of an incoherent
source the contribution of all modes is the same, which means that there is only one
eigenvalue, at least approximately. In this case any orthonormal basis of the whole
space can be used in the mode decomposition. For a discretized CSD the standard basis
~E0 = (1, 0, . . . , 0), ~E1 = (0, 1, 0, . . . , 0) . . . ~EN2 = (0, 0, . . . , 0, 1) leads us to the limit of
geometrical optics, where the source is decomposed into a set of incoherent point sources.

The degeneracy occurs also in the GSM if the source size and the transverse coherence
length have the same magnitudes in both directions. In this case β1 = β2, β3 = β4 = β5

etc. and different mode decompositions, including the Gaussian-Hermite modes (2.68)
and the Gaussian-Laguerre modes [87], are possible. If no precautions are made in the
mode decomposition, a mixture of these two sets appears in the result. In the Appendix
A.6 we choose different sampling in the x and y direction, to suppress the circular
symmetry, so that the Gaussian-Hermite modes appear in Figure A.1.

10If an eigenvalue appears more than once in the mode decomposition the modes corresponding to this
eigenvalue are said to be degenerate.
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Incident

radiation

Figure 2.7: A sketch of a double pinhole experiment. Partially coherent radiation is
incident on a double pinhole (or double slit). In the observation plane the
intensity distribution I(u) is recorded. Interference fringes are observed if
the radiation incident on the double pinhole has a non vanishing degree of
coherence at the pinhole separation.

2.3.6 Young’s double pinhole experiment

As mentioned earlier, the concept of first order correlation functions is associated with
interference phenomena. Young’s double pinhole experiment [60] is probably the most
prominent experiment demonstrating the interference effect and is well suited to illus-
trate the concept of partial coherence. It is also the most widely used method for
characterization of coherence and has been successfully employed with light beams [88],
pulsed sources in the XUV energy range [89, 90, 91, 77, 92, 93] and with soft x-rays at
synchrotron sources [94] and FELs [79].

In a Young’s double pinhole experiment a partially coherent wave-field is incident on
an opaque screen with two separated pinholes (see Figure 2.7). If the field transmitted
by different pinholes is correlated, then due to the superposition principle the total
radiation field in the observation plane will have interference fringes. If these fields are
uncorrelated, then the intensities from the individual pinholes sum up and no interference
is observed.

To calculate the intensity distribution measured in a double pinhole experiment we
start with the field incident on the aperture, which can be described by the CSD
W (s1, s2; ω). The CSD behind the double pinhole can be found by using Equation
(2.33) and the transmission function of a double pinhole11

T (s) = T1(s) + T2(s). (2.74)

11The aperture transmission function of a pinhole does not depend on the frequency ω, hence we omit
ω in T (s) for brevity.
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Here T1,2(s) = TD(s−d1,2) is the transmission function of a single pinhole of diameter D
(2.11), the pinholes are positioned at d1 and d2, and the pinhole separation d is assumed
to be larger than the diameter D of the pinholes. Typically, it can furter be assumed
that the pinholes are sufficiently small, so that the CSD is constant over their spatial
extend. Using this approximation we readily find the CSD behind the double pinhole
inserting Equation (2.74) in Equation (2.33)

Wout(s1, s2, ω) = T1(s1)T1(s2)W (d1,d1, ω) + T2(s1)T2(s2)W (d2,d2, ω)

+2Re (T1(s1)T2(s2)W (d1,d2, ω)) .

According to Equation (2.32) the spectral density in the observation plane is given by

S(u, ω) = |E1(u, ω)|2W (d1,d1; ω) + |E2(u, ω)|2W (d2,d2; ω)

+ 2Re [E∗

1(u, ω)E2(u, ω)W (d1,d2; ω)] ,
(2.75)

where Ej(u, ω) =
∫

Tj(s)Pz(u, s; ω)ds for j = 1, 2 can be considered as the scattered
field from an individual pinhole (see Equation (2.3)). For our purposes it is sufficient to
calculate these fields in Frauenhofer approximation (2.9), i.e. for pinhole sizes satisfying
D2/(λz) ≪ 1. Then the field from pinhole one (j = 1) and two (j = 2) can be expressed
as

Ej(u, ω) = exp

(

ikz + ik
|u − dj |2

2z

)

Aj(u, ω), (2.76)

where [54]

Aj(u, ω) =

(

kD2

2z

)

J1 (Dqj/2)

(Dqj/2)
, (2.77)

qj = k|u−dj |/z, and J1(u) is the Bessel function of the first kind. Substituting Equation
(2.76) in Equation (2.75) we find

S(u, ω) = |A1(u, ω)|2S(d1; ω) + |A2(u, ω)|2S(d2; ω)

+ 2A1(u, ω)A2(u, ω)Re
[

W (d1,d2; ω)eiωτ
]

,
(2.78)

where ωτ is the phase of E∗
1(u, ω)E2(u, ω) and

τ =
1

c

( |u − d2|2 − |u − d1|2
2z

)

(2.79)

is the time delay between the field to reach point u from pinhole one and two for small
angles θ. Equation (2.78) is valid if all angles within the propagation geometry satisfy
the Fresnel approximation condition (2.8).

For narrowband radiation considered throughout the thesis the average intensity
I(u) =

∫

S(u, ω)dω (see Equation (2.28)) measured during a double pinhole experiment
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can be expressed as

I(u) = I1|A1(u)|2 + I2|A2(u)|2

+ 2
√

I1I2A1(u)A2(u)Re [γ(d1,d2; τ)] ,
(2.80)

where Ij = I(dj) for j = 1, 2. Because the CSD was assumed to be constant across each
pinhole, the intensity is also constant across each pinhole. For narrowband radiation the
weak ω dependence of the fields A(u, ω) can be neglected. In this case it is convenient
to rewrite the complex valued CDC γ(d1,d2; τ) = |γ12(τ)|eiω0τ+α12(τ), where |γ12(τ)|
and α12(τ) vary slowly with τ and ω0 is the average frequency. Finally, the diffraction
pattern can be written as (compare with [60, 46])

I(u) = I1|A1(u)|2 + I2|A2(u)|2

+ 2A1(u)A2(u)
√

I1I2 {|γ12(τ)| cos [ω0τ + α(τ)]} .
(2.81)

The first and the second term in Equation (2.81) are the intensity distributions from
pinhole one and two, respectively. The interference phenomena arise from the last term:
they are strong if the magnitude of the third term is comparable with the first two terms
(see Figure 2.8 (b)). For larger pinhole separations interference is typically weaker (see
Figure 2.8 (c,d)) and no interference is observed if the third term vanishes. To determine
the functional form of the CDC completely it is necessary to perform double pinhole mea-
surements at different pinhole separations (see Figure 2.8 (a)). The transverse coherence
length of the radiation field is defined as a typical width of |γ12(τ)| as a function of the
pinhole separation d.

The periodicity of the fringes in the double pinhole experiment is determined by the
phase factor ω0τ of the cosine in the third term. In the Fresnel approximation this phase
factor is given by (see equation (2.79) and [60])

ω0τ =
k

(

|d2|2 − |d1|2
)

2z
− d ·q, (2.82)

where the momentum transfer q is defined as

q = k
u

z
.

It is important to note, that in Fresnel approximation the time delay τ is constant for
all q⊥ perpendicular to the pinhole separation d, q⊥ ·d = 0.

If the fields from individual pinholes overlap on the detector A1(u) = A2(u) =: A(u)
then

I(u) = (I1 + I2)ID(u)
(

1 + 2

√
I1I2

I1 + I2
|γ12(τ)| cos(ω0τ + α(τ)

)

.
(2.83)
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Figure 2.8: Simulated intensity distribution from a double slit experiment for transverse
partially coherent radiation. Following parameters were used λ = 1 nm,
slit width a = 1 µm, and double slit to detector distance z = 1 m. (a)
The simulated complex degree of coherence |γ12(0)|. (b-d) The intensity
distribution on the detector for a slit separation d of 5 µm (b), 10 µm (c),
and 15 µm (d). The transverse coherence length is defined by the rms width
of |γ12(0)| (red dashed line in (a)). Temporally coherent radiation has been
assumed in this simulation.

where ID(u) = |A(u)|2 is the Airy distribution due to diffraction through a round pinhole
of diameter D. In this case it is convenient to analyze the visibility [60]

V(τ) =
Imax − Imin

Imax + Imin
=

2
√

I1I2

I1 + I2
γ12(τ). (2.84)

A Young’s double pinhole experiment can also provide a measurement of the temporal
coherence [90, 92, 79]. The CDC |γ12(τ)| as a function of time delay τ (see Figure 2.7)
can be analyzed and the coherence time can be defined as a typical width of the CDC
|γ12(τ)|. According to the Wiener-Khintchine theorem (2.26) the coherence time is in-
versely proportional to the bandwidth. This is evident in the double pinhole experiment,
as the period of the interference fringes varies for different wavelengths present in the
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Figure 2.9: Simulated intensity distribution from a double slit experiment. (a) The mod-
ulus of the complex degree of coherence |γ12(τ)| as a function of the time
delay τ . The coherence time τc is shown by the blue dashed line. (b) The
intensity distribution in the observation plane calculated with a coherence
time of 15 as (blue line). The red line shows the same calculation with full
temporal coherence and is identical the plot (c) in Figure 2.8.

spectrum (see Equation (2.82)). In the center of the diffraction pattern fringes from all
spectral components are in phase, for large offsets from the optical axis they run out
of phase and the interference fringes are smeared at higher off axis angles ( blue line in
Figure 2.9).

We can estimate time delays, which can be observed in a double pinhole measurement.
We take into account interference fringes within the first Airy ring, which have the
strongest signal and can be easily analyzed. The maximum momentum transfer q within
this region is given by |qmax| = 2π/D, where D is the pinhole diameter. The maximum
time delay can be estimated by Equation (2.82) : τmax = qmax ·d/ω0. In the direction
perpendicular to interference fringes it is given by τmax = 2πd/(Dω0) and is proportional
to the ratio d/D between the pinhole separation and the pinhole size. Taking into
account that the coherence time is on the order of the inverse width of the spectrum
Ω we conclude, that in Young’s double pinhole experiments time delays larger than the
coherence time are accessible if the ratio d/D is larger than the inverse bandwidth ω0/Ω.

2.4 Correlation functions of non-stationary wave-fields

Up to now we have assumed stationary conditions, which is questionable in many real-
world situations. We might think of synchrotron, FEL, and ERL sources, which are
pulsed sources and are strictly speaking not stationary. However, at synchrotron sources
the pulse duration is much larger than the temporal coherence time of the source, i.e.
the source undergoes a large number of fluctuations during a single pulse of synchrotron
radiation and all possible realizations of the field are contained within each pulse. As
a consequence, the statistical properties of the synchrotron radiation are well described
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within the stationary theory. At FEL and ERL sources the pulses are significantly
shorter than at synchrotron sources, and a careful investigation is required whether the
stationarity condition can be applied also for these sources.

The theory of non-stationary statistical light sources has not found much attention
until recently [95]. The two extreme cases of fully coherent and stationary wave fields
proved to be sufficient in the description of the radiation up to now. The former ap-
proximation is widely used in the theory of optical pulses, where the temporal shape of
the pulses is exactly the same for each pulse and the spectral components are said to be
completely correlated. In the other extreme of stationary fields, the spectral components
are known to be completely uncorrelated [46]. The latter approximation is applied to
chaotic sources, including synchrotron sources in the x-ray range. In the intermediate
region one speaks of partially coherent pulses [95].

In a series of papers ([95] and references therein) H. Lajunen and colleagues investi-
gated non-stationary fields, in particular, the propagation of these fields in free space.
They apply the GSM in the spatial domain as well as in the spectral domain to describe
partial coherence between individual spectral components of the field. The propagation
of non-stationary fields in free space was also studied in refs. [96, 97]. The authors in
[95, 96, 97] considered optical light pulses. We will outline the formalism developed in
these works and apply these results to x-ray radiation sources.

2.4.1 Propagation of the wave-field correlation functions in free space

In the description of non-stationary statistical wave-fields the assumption, that the MCF
Γ(r1, r2, τ) depends only on the time difference τ has to be dropped and the full expres-
sion for the MCF (2.14) Γ(r1, r2, t1, t2) has to be considered. As a consequence the
ensemble average (2.15) cannot be replaced by the time average. Furthermore, the av-
erage intensity (2.16) becomes a function of time. The CDC (2.17) also depends on the
times t1 and t2, rather than on the time difference τ . As a consequence, the propagation
rules developed for stationary fields have to be revised with respect to non-stationary
statistics.

The propagation of the general MCF Γ(r1, r2; t1, t2) in free space is governed by the set
of wave equations (2.24). To solve this set of equations it is is convenient to introduce a
generalized CSD function [95] as a double Fourier transform (similar to Equation (2.26))

W (r1, r2; ω1, ω2) =

∫∫

Γ(r1, r2; t1, t2)e
iω1t1−ω2t2dt1dt2. (2.85)

Then the wave equations for Γ(r1, r2; t1, t2) simplify to a set of two Helmholtz equations
for W (r1, r2; ω1, ω2) [95]

∇2
i W (r1, r2; ω1, ω2) ± k2

i W (r1, r2; ω1, ω2) = 0, (2.86)

where ” + ” is used for i = 1 and ” − ” for i = 2.
Again we are interested in propagation of the correlation functions from a source

positioned at z0 to the observation plane at a distance z from the source (see Figure
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2.3). The propagation formula for the CSD function is expressed as

W (u1,u2, z1; ω1, ω2) =
∫∫

W (s1, s2, z0; ω1, ω2)P
∗

z (u1, s1; ω1)Pz(u2, s2; ω2)ds1ds2,
(2.87)

where the Huygens-Fresnel (2.4), the Fresnel (2.6) or the Fraunhofer (2.9) propagator
can be used depending on the geometry. This expression is similar to Equation (2.32),
however, here two frequencies ω1, ω2 are used in W (s1, s2, z0; ω1, ω2) and the propagators
Pz(u, s; ω).

The CSD forms a Fourier transform pair with the MCF

Γ(r1, r2; t1, t2) =
1

(2π)2

∫∫

W (r1, r2; ω1, ω2)e
−i(ω1t1−ω2t2)dω1dω2. (2.88)

The spectral density and the SDC are defined as

S(r, ω) = W (r, r; ω, ω)

and µ(r1, r2; ω1, ω2) =
W (r1, r2; ω1, ω2)

√

S(r1, ω1)S(r2, ω2)
.

Possibly the most remarkable difference between propagation of stationary and non-
stationary fields is the following. For stationary fields there are no correlations between
different frequency components and it is sufficient to consider them separately. In the
frame of non-stationary statistics different spectral components might be partially or
completely correlated, depending on positions and frequencies [95].

2.4.2 Statistical properties of pulsed sources

In this thesis we are especially interested in a certain type of non-stationary fields, which
appear when the source consecutively emits pulses with a finite pulse duration. In this
case the MCF can be described as an ensemble average (2.14) [95]

Γ(r1, r2; t1, t2) = lim
N→∞

1

N

N
∑

n=1

E∗

n(r1, t1 − t0n)En(r2, t2 − t0n), (2.89)

where En(r, t − t0n) is the field distribution of the nth pulse and t0n is the center of
the nth pulse. Each pulse is considered as a single realization of the radiation field and
the ensemble average is performed over different pulses. Importantly, different pulses
do not overlap in time [97]. Using the Fourier transform of the field12 En(r, ω) =

12Since the pulse duration is finite the field of each pulse as a function of time is integrable
R

|En(r, t)|dt <
∞, thus the Fourier transform of En(r, t) exists.
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∫

En(r, t)e−iωtdt we write

W (r1, r2; ω1, ω2) = lim
N→∞

1

N

N
∑

n=1

e−it0n(w2−w1)E∗

n(r1, ω1 − ω0)En(r2, ω2 − ω0), (2.90)

where ω0 is the average frequency of the radiation.
The average intensity can be expressed as

〈I(r, t)〉 = lim
N→∞

1

N

N
∑

n=1

|En(r, t − t0n)|2,

and describes the spatial and temporal distribution of an averaged pulse. The average
spectrum

S(r, ω) = lim
N→∞

1

N

N
∑

n=1

|En(r, ω − ω0)|2

is the spectrum of an averaged pulse.
Statistical properties of non-stationary fields may be quite complicated to characterize.

However, the analysis can be significantly simplified using the following approximation

γ(r1, r2; t, t + τ) = γ(r1, r2; τ). (2.91)

Note that this assumption is less restrictive than stationarity, described by

Γ(r1, r2; t, t + τ) = Γ(r1, r2; τ), (2.92)

because Equation (2.91) can be a good approximation for pulsed sources and Equation
(2.92) fails in this case due to the pulsed structure of the field intensity. We will use
Equation (2.91) in the next chapter to estimate the radiation characteristics of non-
stationary x-ray sources.

2.4.2.1 Spectrally Gaussian Schell-model pulses

Similar to the GSM sources described earlier, it is convenient to work with GSM pulsed
beams [95]. This model has to be used with caution, as it might be inappropriate to
describe in detail the radiation properties of x-ray sources considered in this thesis.
However, it can be used for order of magnitude estimations and for predictions whether
non-stationary effects play a role at pulsed x-ray sources.
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The MCF of a GSM pulsed beam in the source plane at z0 can be defined as [95, 96]13

Γ(s1, s2, z0; t1, t2) = exp

(

−s2
1 + s2

2

4σ2
− (s2 − s1)

2

2ξ2

)

exp

(

− t21 + t22
4T 2

− (t1 − t2)
2

2τ2
c

+ iω0[t2 − t1]

) (2.93)

where σ is the source size, ξ is the transverse coherence length at the source, T is
the pulse duration and τc is the coherence time. The expression (2.93) reduces to the
stationary case if the pulse duration is very large T → ∞.

The CSD at the source is the double Fourier transform (2.85) of the MCF at the
source. The CSD in the far field can be calculated using Equations (2.87,2.9) and the
substitution ∆ω = ω2 − ω1, ω̄ = (ω1 + ω2)/2

W (u1, u2, z1; ω1, ω2) = exp
(

i
z

c
∆ω + i

zc

2
(q2

2/ω2 − q2
1/ω1)

)

exp

(

− q̄2

2
δ2 − ∆q2

2
σ2 − (ω̄ − ω0)

2

2Ω2
− ∆ω2

2
T 2

)

,

where qj = ωjuj/(zc) for j = 1, 2 and q̄ = (q1 + q2)/2, ∆q = q2 − q1. Here δ is defined in
Equation (2.47) and Ω is the width of the spectrum, which can be defined through [95]

Ω2 =
1

4T 2
+

1

τ2
c

. (2.94)

For narrowband light we can approximate using ω1,2 = ω0 + (ω̄ − ω0) ∓ ∆ω/2

1

ω1,2
≈ 1

ω0
− ω̄ − ω0

ω2
0

± ∆ω

2ω2
0

. (2.95)

In this approximation ω0 is constant and both ω̄ − ω0 and ∆ω are very small compared
with ω0. This yields for the propagated CSD

W (u1, u2, z1; ω1, ω2) = exp

(

i
z

c
∆ω + i

zc

2ω0
(q2

2 − q2
1)

)

exp

(

−i
(ω̄ − ω0)zc

2ω2
0

(q2
2 − q2

1) − i
∆ωzc

4ω2
0

(q2
2 + q2

1)

)

exp

(

− q̄2

2
δ2 − ∆q2

2
σ2 − (ω̄ − ω0)

2

2Ω2
− ∆ω2

2
T 2

)

,

(2.96)

We do not expect coupling between the spectral and spatial components in the real
part of equation (2.96). The changes in the q vectors for different frequencies are small,
because we use narrowband light. Strong coupling between the spectral and spatial

13We define t0n = 0 for all pulses. Here, we again use one transverse direction because of the symmetry
of the problem.
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Ω/ω0 wavelength, nm source size, µm z, m

Opt. laser 0.13 500 100 0.05
FLASH 0.005 10 160 125
XFEL 10−3 0.1 70 16 · 103

PETRA III (V, Mono) 10−4 0.1 5 500

Table 2.1: For distances smaller than z no coupling between spectral and spatial part
of the correlation functions is expected.

components is expected in the frequency and spatially dependent phase factors. These
phase factors increase with propagation distance and are negligible if

(ω̄ − ω0)zc

2ω2
0

(q2
2 − q2

1) ≪ 1,
∆ωzc

4ω2
0

(q2
2 + q2

1) ≪ 1.

To estimate the distances for which this factor can be neglected we use the fact that
only the frequencies (ω̄ − ω0) ≤ Ω and ∆ω ≤ 1/T are important due to the real part
of W (u1, u2, z1; ω1, ω2). The maximum reasonable momentum transfer can be estimated
by q = 2π/d, where d is the source size. With these asumptions we obtain

z ≪ 2k0
ω0

Ω

(

d

2π

)2

, z ≪ 4k0ω0T

(

d

2π

)2

(2.97)

where k0 = ω0/c. According to equation (2.94) the following inequality is valid ΩT ≥
1/2, i.e. 2T ≥ 1/Ω. This means that the first condition in (2.97) is always stronger than
the second.

We have not considered the first two phase terms in equation (2.96). The first term is
not spatially dependent and can be neglected in the discussion of the coupling between
spatial and spectral components. The second term zc/(2ω0) · (q2

2−q2
1) can be quite large,

as it represents the quadratic curvature of the GSM beam. However, the frequency
dependent variation of this term is of the order of (Ω/ω0)

2 smaller than the term itself
and is in particular by a factor of Ω/ω0 smaller than the limit in equation (2.97). This
means this term can also be neglected.

We have evaluated Equation (2.97) for different x-ray sources and summarized the
results in table 2.1. It can be readily seen from this table that for present designs of
x-ray radiation sources no coupling between spatial and spectral components due to
propagation in free space can be expected. Our results also suggest strong coupling for
optical lasers, as demonstrated earlier [96].
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3 Coherence properties of third and fourth
generation x-ray sources the frame of
statistical optics

3.1 Synchrotron sources

Synchrotron sources are generally considered as incoherent sources, since different elec-
trons in the electron bunch radiate independently. In the laboratory frame the radiation
is confined to a narrow cone of angles θ ≤ 1/2γ due to the Lorentz transformation. This
confinement implies a finite degree of transverse coherence, as totally incoherent sources
radiate into all directions [60] (see also Figure 2.4).

The coherence area ∆x∆y of a synchrotron source can be estimated from Heisenberg’s
uncertainty principle (2.20) [46]

∆x∆y ≥ h̄2

4∆px∆py
. (3.1)

Due to the Einstein - de Broglie relation [54] p = h̄k the uncertainty in the momentum
∆px,y is associated with the source divergence θx,y (see Figure 3.1),

∆px,y = h̄kθx,y.

Figure 3.1: Coherence area of a synchrotron radiation source in the source plane. Due
to the Heisenberg’s uncertainty principle the finite beam divergence implies
a non-vanishing coherence area ∆x∆y in the source plane.
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According to Equation (3.1) the coherence area in the source plane is given by 1

∆x∆y =

(

λ

4π

)2 1

θxθy
. (3.2)

Substituting typical values of the divergence of the source at the third generation syn-
chrotron source PETRA III (see Table 1.1, high-β) in Equation (3.2) we find the mini-
mum transverse coherence length ∆y ≈ 2 µm in the vertical ∆x ≈ 1 µm in the horizontal
direction.

To get a more detailed description of the synchrotron radiation, correlation functions,
such as the CSD, have to be considered. Generally, the CSD of the undulator source
can be expressed as [82, 98]

W (u1,u2, z) = 〈E∗

η,s(u1, z)Eη,s(u2, z)〉, (3.3)

where Eη,s(u, z) is the field generated by an electron traversing the undulator with an off-
set s and a deflection angle η, and z is the distance from the center of the undulator to the
observation plane. The disregard of the cross terms of the type E∗

η1,s1(u1, z)Eη2,s2(u2, z)
reflects the fact that the fields generated by different electrons are completely uncorre-
lated. The brackets 〈· · · 〉 denote the average over the phase space, momentum η and
position s, of the electron bunch [98]

〈hη,s〉 =

∫

hη,sf(η, s)dηds,

where f(η, s) is the phase space distribution of the electron bunch in the center of the
undulator. It is usually considered to have a Gaussian form [98]

f(s, η) = exp

(

− s2
x

2σex
2
−

s2
y

2σey
2
− η2

x

2σ′
ex

2 −
η2

y

2σ′
ey

2

)

,

where σex,ey, σ
′
ex,ey is the electron bunch size and the electron bunch divergence in the

center of the undulator. The electron bunch size σex,ey and divergence σ′
ex,ey can be

calculated from the values of the electron bunch emittance εex,y and known β-function
of the synchrotron source according to [73]

σex,ey =
√

εex,yβx,y

σ′

ex,ey =
√

εex,y/βx,y.
(3.4)

Below we will consider the situation, when the resonance condition for the undulator
radiation (1.4) is satisfied. In this case the normalized electromagnetic field Eη,s(u, z)

1This formula depends on the definition of the widths and is correct if both uncertainties ∆x and θx

are given as rms widths.
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Figure 3.2: The intensity distribution of a single electron traversing the undulator (a) in
the far field and (b) in the source plane. The intensity determined through
expressions (3.5,3.6) (black lines) and the approximation with Gaussian func-
tions (red line) are shown.

far from the source can be expressed as [98]

Eη,s(u, z) = exp

(

ik
|u − s|2

2z

)

sinc

( |u − s − ηz|2kLu

4z2

)

, (3.5)

where Lu is the undulator length and sinc(x) = sin(πx)/(πx). This field can be consid-
ered to be generated at a planar source with the normalized field distribution [98]

Eη,s(u, 0) = − i

π
exp (iη · [u − s])

[

π − 2Si

(

k|u − s|2
Lu

)]

. (3.6)

The source in this case is positioned in the center of the undulator. In Figure 3.2 the
intensity distribution generated by a single electron without an angular and spatial offset
(η = 0, s = 0) in the far field |E0,0(u, z)|2 (a) and in the source plane |E0,0(u, 0)|2 (b)
is shown. Often, in describing synchrotron radiation it is sufficient to approximate the
intensity distribution with a Gaussian. Then the angular divergence σ′

r and the source
size σr of the single electron field are the same in the horizontal and vertical direction
and may be expressed as [73]

σr =
√

2λLu/4π, σ′

r =
√

λ/2Lu (3.7)

The Gaussian curves with the respective widths are shown in Figure 3.2 by red lines.
Equation (3.3) can be considered as the averaging of the radiation characteristics of

the single electron Eη,s(u, z) by the properties of the electron bunch f(η, s). At third
generation synchrotron sources typically the following parameter configurations occur

1. If σex,ey/σr ≈ 1 and σ′
ex,ey/σ′

r ≈ 1, the GSM can be used [69], and the photon source
size and divergence are determined from the convolution of the size and divergence
of the electron bunch (σe, σ′

e) with the intrinsic radiation characteristics of a single
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electron (σr, σ′
r)

σx,y =
√

σ2
ex,ey + σ2

r

σ′

x,y =
√

σ′
ex,ey

2 + σ′
r
2.

(3.8)

2. If the ratio σex,ey/σr ≫ 1 and σ′
ex,ey/σ′

r ≫ 1, the total beam source size and
divergence are Gaussian and the GSM can be applied [98]. The total photon
source size and divergence are determined by σ = σex,ey, σ′ = σ′

ex,ey and the
radiation is rather incoherent. This approximation may be utilized to describe
the transverse coherence properties of the synchrotron radiation in the horizontal
direction, especially for high x-ray energies , as σr, σ

′
r are proportional to

√
λ.

3. On the opposite, if the ratio σex,ey/σr ≪ 1 and σ′
ex,ey/σ′

r ≪ 1 the radiation char-
acteristics of the total photon beam are dominated by the radiation of a single
electron, σ = σr, σ′ = σ′

r and the radiation is coherent. As a consequence, the
GSM cannot be applied. This description is applicable for the vertical direction of
the synchrotron radiation, especially at low x-ray energies.

The GSM has been successfully used to describe the coherence properties of radiation
generated at storage rings. In an early paper [99] Kim proposed to describe the bright-
ness (or the Wigner function2) of the synchrotron beam as a convolution of the single
electron radiation characteristics with the electron bunch properties. He approximated
the radiation characteristics of the single electron radiation by Gaussian functions and
described the propagation of the brightness in free space. Howells and Kincaid [73] then
used the GSM to calculate the CSD of the undulator radiation at the source and at
a certain distance downstream of the source. Similar results were reported in [74, 75].
These authors also discussed the limits of the van Cittert-Zernike theorem, which is
typically utilized to estimate the transverse coherence properties of the synchrotron ra-
diation. The applicability of the GSM to synchrotron beams was investigated in [82]. It
was found that the GSM has its limitations in the description of the undulator radiation
in the XUV regime (the calculations were performed for a photon energy of 140 eV).

3.1.1 Transverse coherence properties of the PETRA III source [69]

Here we want to use the results presented in chapter 2.3.3 to estimate the coherence
properties of the hard x-ray radiation produced by 3-rd generation synchrotron sources,
provided the source parameters (source size and divergence) are known. As an example,
we made [69] this calculation for the high brilliance synchrotron source PETRA III,
which recently started user operation at DESY. The storage ring is operated at 6 GeV
with an emittance as small as εex = 1 nmrad [3] in the horizontal direction. Due to
1% coupling, the emittance in the vertical direction is two orders of magnitude lower,
εey = 10 pmrad.

2 The Wigner function B(u,k) is defined as B(u,k) =
R

W (u−∆u/2,u−∆u/2)eik∆ud∆u, where W
is the CSD.
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Before we proceed, let us verify that Fresnel approximation (2.8) used in chapter 2.3.3
is valid for the description of x-ray beams generated by third generation synchrotron
sources. The typical wavelength is 1 Å and the propagation distances are about 100 m.
The Fresnel approximation (2.8) is well satisfied if the angles θ are much smaller than
θmax = 1.5 mrad. Typically, the angular divergence of the x-ray beam is less than
50 µrad [3, 69]. From these estimates we conclude that the Fresnel approximation is
well satisfied for x-ray beams at third generation synchrotron sources. This gives us
confidence in using the results presented in chapter 2.3.3 to describe the properties of
x-ray radiation from these sources.

The parameters of a 5 m long undulator source at a photon energy of 12 keV are
summarized in Table 3.1. Two cases for high-β and low-β operation [3] are considered.
The values of the coherence length of the source calculated according to Equations
(2.62,3.4,3.7,3.8) vary from 0.6 µm to 2 µm in the horizontal direction and are about
5 µm in the vertical. We can estimate the values of the parameter q (2.45) and the
degree of transverse coherence ζ (2.44) of that source. Using tabulated values of the
source size we find for the horizontal direction qx ≈ 0.02 and for the vertical qy ≈ 0.8.
For the degree of transverse coherence ζ we obtain ζx ≈ 0.01 in horizontal and ζy ≈ 0.4
in vertical direction. These estimates immediately show that in horizontal direction the
PETRA III source is rather incoherent with a degree of transverse coherence of about
1 %. In vertical direction the transverse coherence length of the source is comparable
with the size of the source and the radiation is highly coherent with a degree of transverse
coherence of about 40%. Substituting these numbers into Equations (2.53, 2.56) we find
the values of the beam size and transverse coherence length at any distance downstream
of the source. These values are listed in Table 3.1 for a distance of z = 90 m, that is a

Table 3.1: Parameters of the high brilliance synchrotron radiation source PETRA III for
a 5 m undulator [3] (energy E=12 keV, distance from the source z = 90 m).
The values for the total photon source size and divergence were found using
Equation (3.8).

High-β Low-β
x y x y

Source size σ, [µm] 141 5.5 36 6
Source divergence σ′, [µrad] 7.7 3.8 28 3.7
Transverse coherence length
at the source ξ, [µm] 2.1 4.5 0.57 4.8
Degree of coherence q 0.015 0.82 0.016 0.77
Degree of transverse coherence ζ 0.008 0.38 0.008 0.36
Effective length zeff, [m] 18.3 1.5 1.3 1.6
Beam size at distance z, Σ(z), [mm] 0.71 0.34 2.5 0.33
Transverse coherence length
at distance z, Ξ(z), [µm] 10 280 40 260
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High-β Low-β
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Figure 3.3: The absolute value of the SDC |µ(∆x)| as a function of separation of two
points across the beam at a distance of 90 m downstream of the source for
high-β (a,c) and low-β (b,d) operation of PETRA III. The spectral density
S(x) as a function of the position across the beam calculated at the same
distance from the source is shown in the insets. The rms values of the beam
size Σx,y(z) and transverse coherence length Ξx,y(z) at that distance were
taken from Table 3.1.

typical distance from the undulator source to experimental stations. We see that at this
distance the coherence length varies from 10 µm to 40 µm in horizontal direction and
from 260 µm to 280 µm in vertical direction. The product of these values defines the
coherence area across the beam within which one can plan experiments with coherent
beams. The absolute value of the SDC, |µ(∆x)|, (2.55) and the spectral density, S(x),
(2.52) at a distance 90 m downstream of the source are presented in Figure 3.3 for high-β
and low-β sections of the PETRA III storage ring.

The beam size, Σx,y(z), and the transverse coherence length, Ξx,y(z), at different
distances z from the source were calculated according to Equations (2.53, 2.56) and are
presented in Figure 3.4 for high-β operation. These calculations show that in vertical
direction the rms values of the coherence length, Ξy(z), (black, solid line) are slightly
smaller than the rms values of the beam size, Σy(z), (red, dash line) along the beamline.
The effective distance is zy

eff = 1.5 m in vertical direction and for all practical cases all
parameters scale linearly with the distance z. As expected, in horizontal direction the
transverse coherence length is significantly smaller than the beam size. Due to a large
source size the linear z-dependence of the beam parameters in the horizontal direction
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Figure 3.4: The beam size Σx,y(z) (red dashed line) and the transverse coherence length
Ξx,y(z) (black solid line) at different distances z from the source for a high-
β section of the PETRA III storage ring. Parameters of the source are
taken from Table 3.1. Open circles correspond to calculations performed
by the ESRF simulation code SRW [100], open triangles are the beam size
and squares are the transverse coherence length obtained from the analytical
results of [98]. (a, c) Vertical direction of the beam. (b, d) Horizontal
direction of the beam. The vertical dashed line in (c) and (d) correspond
to an effective distance zeff. Note, different range for the coherence length
comparing to that of the beam size in (b,d).

starts from distances further away from the source. The effective distance zy
eff is about

20 m in this case. Similar results for the low-β operation of the PETRA III source were
determined using parameters listed in Table 3.1 and are shown in Figure 3.5.

3.1.1.1 Comparison of the Gaussian Schell-model with other models

We compared our results for the PETRA III five meter undulator source with the cal-
culations performed with the simulation code SRW3 [100]. The divergence of the beam
both in vertical and in horizontal directions is well described by the GSM as compared
with the SRW calculations (see Figures 3.4, 3.5).

3The SRW calculations were performed by M. Tischer. The code explicitly propagates the electrons
through the magnetic structure and calculates the final intensity distribution of the x-ray beam as a
sum of the intensities from different electrons.
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Figure 3.5: The same as in Figure 3.4 for low-β section of the PETRA III storage ring.

We have also compared our simulation results with the analytical formulas [98], where
the average 〈· · · 〉 in Equation (3.3) is explicitly calculated using the known expression for
the field (3.5) from a single electron in the undulator resonance condition (1.4). There
are two critical dimensionless parameters of the theory [98]

Dx,y = kσ′2
ex,eyLu and Nx,y =

kσ2
ex,ey

Lu
. (3.9)

For large parameters D, N the electron bunch dominates the radiation properties and
the GSM sufficiently reproduces the coherence properties of the x-ray beam. If D, N are
small, the effects of single electron radiation dominate and the GSM gives rather poor
estimates.

For the five meter undulator at PETRA III, a photon energy of E = 12 keV and
high-β operation4 we find Dx = 15, Dy = 1.3 and Nx = 243, Ny = 0.3. Because in the
horizontal direction these parameters are Dx ≫ 1, Nx ≫ 1 (see Table 3.2) we conclude,
that the GSM can be safely used in the horizontal direction. In this limit the analytical
results of [98] completely coincide with the description of the source in the frame of the
GSM. However, in the vertical direction we find for the same photon energy Dy ∼ 1,
Ny ∼ 1, and a more careful analysis has to be applied.

To perform a comparison between these two approaches we used the far-field expres-
sions for the CSD function W (ȳ, ∆y) (Equation (65) in [98]) and spectral density S(y)

4Similar values are found for the low-β operation.
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Table 3.2: Parameters of the synchrotron radiation source PETRA III for a 5 m undu-
lator, high-β operation, and different photon energies. Parameters Nx,y, Dx,y

are defined in (3.9), σTx,y and σ′

Tx,y are the total photon source sizes and
divergences, σr and σ′

r are the intrinsic radiation characteristics of a single
electron. The following electron beam sizes σx = 141 µm, σy = 4.9 µm and
divergences σ′

x = 7.1 µrad, σ′
y = 2.0 µrad were used in these calculations.

20 keV 12 keV 6 keV 3 keV

Nx 405 243 122 61
Dx 25 15 7.6 3.8
Ny 0.5 0.30 0.15 0.07
Dy 2.0 1.3 0.63 0.32
σTx, [µm] 141 141 141 142
σ′

Tx, [µrad] 7.5 7.7 8.4 9.6
σTy, [µm] 5.3 5.5 6.1 7.1
σ′

Ty, [µrad] 3.2 3.8 5.0 6.7

σr, [µm] 2.0 2.6 3.6 5.1
σ′

r, [µrad] 2.5 3.2 4.5 6.4

(Equation (71) in [98]) valid in the limit Dx ≫ 1 and Nx ≫ 1. We calculated the SDC
µ(ȳ, ∆y) according to Equation (2.30)

µ(ȳ, ∆y) =
W (ȳ, ∆y)

√

S(ȳ + ∆y/2)
√

S(ȳ − ∆y/2)
, (3.10)

where ȳ = (y1 +y2)/2, ∆y = y2−y1 and y1, y2 are two positions in the vertical direction.
Applying these equations to the parameters of the PETRA III source we determined the
rms values of the source size Σy(z) and the coherence length Ξy(z) at different distances
from the source and compared them with the results from the GSM presented above (see
Figures 3.4 (a,c)). This comparison shows very good agreement between two approaches
for these energies. As all three approaches (SRW, analytical results [98] and the GSM)
yield similar results, we conclude that the approach based on the GSM gives a sufficient
description of the PETRA III source at a photon energy of 12 keV.

To determine, for which photon energies the GSM can be applied at PETRA III we
compared results from the GSM with the results of [98] for different photon energies.
Both calculations were performed for a five meter undulator of the PETRA III source,
high-β operation, 90 m downstream of the source at the central position of the beam
(ȳ = 0). As a result the SDC and spectral density for the energy range from 3 keV
up to 24 keV are presented in Figure 3.6. As we can see from Figure 3.6, although
the parameters satisfy Dy ≤ 1, Ny ≤ 1 (see Table 3.2), the difference between two
approaches is negligible down to an energy of 6 keV. It becomes more pronounced only
at energies of about 3 keV for large separation distances ∆y. It is also interesting to note
that the transverse coherence length is the same in both approaches down to the lowest
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Figure 3.6: The absolute value of the SDC |µ(∆y)| in the vertical direction at the
distance 90 m downstream of the source for a high-β operation calculated
for different photon energies ((a) 24 keV, (b) 12 keV, (c) 6 keV, (d) 3 keV)
using results of [98] (dotted line). The spectral density S(y) (dotted line)
calculated in the same conditions is shown in the insets. For comparison,
calculations performed in the frame of the GSM are also shown in this figure
(solid lines).

energy of 3 keV. At the same time, for this very low energy the effects of the single
electron radiation (at photon energy E = 3 keV σr ≥ σy and σ′

r ≥ σ′
y) are becoming

more pronounced and reveal themselves in the form of oscillations at large separations
∆y. A close inspection of Figure 3.6 shows that the GSM slightly overestimates the
values of the SDC compared to the results of [98]. We relate this to the fact that at low
energies, at the source position, the intensity distribution obtained in the frame of the
model [98] contains long tails that effectively produce a larger source size in comparison
to a source size obtained by the GSM approach.

In conclusion, our analysis shows that for the high brilliance source PETRA III the
GSM can be safely used for the five meter undulator at x-ray energies higher than 6 keV.
It will also give a reasonable upper limit estimate of the coherence length for the energies
as low as 3 keV. Similar analysis for a shorter undulator of 2 m length, which is also used
at PETRA III, shows that both approaches give similar results even for lower energies.

We note here as well that according to the Table 3.2 the approximation Dx ≫ 1 and
Nx ≫ 1 is no longer valid at energies below 3 keV. Consequently, at these low energies
the Equations (65, 71) from [98] cannot be applied for the calculation of the coherence
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Figure 3.7: The degree of transverse coherence ζ as a function of the electron bunch emit-
tance εe in one direction. Calculations with the parameter a = Lu/2πβ = 1
(solid lines) and a = 0.33 (dashed lines), typical at PETRA III. The electron
bunch emittance at PETRA III in vertical (magenta dotted line), horizontal
(black dotted line) direction and (cyan dotted line) at Cornell ERL source
(see Table 1.1) are shown.

properties of the five meter undulator source at PETRA III. A more careful treatment
using general expressions for the correlation functions should be used in this case (see
Appendix A.4). Figure 3.6 (d) was calculated with the formulas derived in this appendix.

3.2 Next generation synchrotron sources

Currently proposed ERLs promise to be superb coherent light sources with a brilliance
or coherent flux, which is two orders of magnitude higher than at the state of the art
third generation source PETRA III (see Figure 1.1). In this chapter we will analyze
coherence properties of ERL sources and compare them with the radiation properties of
the existing third generation sources.

To estimate the degree of transverse coherence at ERL sources a similar analysis as
was performed for third generation sources can be applied. The main difference between
third generation synchrotron sources and ERLs is the electron beam emittance εe,x in the
horizontal direction. At third generation sources εe,x is about two orders of magnitude
smaller than the emittance εe,y in the vertical direction and at ERLs these quantities
are of the same order εe,x ≈ εe,y. The electron beam emittance on the order of 10 pm
in both directions is planned in the ERL design [9] being studied at Cornell University.
This value is similar to the vertical electron beam emittance at PETRA III (see Table
1.1). During the discussion of the coherence properties of the PETRA III source we have
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shown, that for such a small electron beam emittance the GSM adequately describes the
coherence properties of the undulator radiation for x-ray photon energies larger than
6 keV. For lower energies a more careful treatment is necessary.

We employed the GSM to estimate the degree of transverse coherence for an undulator
source as a function of the x-ray photon energy and electron beam emittance. In the
frame of this model the emittance of the total photon beam is expressed as (see Equation
(2.61))5

ε = σσ′,

where σ and σ′ are the photon source size and divergence. Substituting Equations
(3.4,3.7,3.8) in the last expression we find

ε = (εcoh + εe)

√

1 +
b

a
· (1 − a)2

(1 + b)2
, (3.11)

where

εcoh =
λ

4π
, a =

Lu

2πβ
, and b =

εcoh

εe
.

Substituting Equation (3.11) in Equation (2.64) the degree of transverse coherence can
be expressed as

ζ =
εcoh

ε
=

1

(1 + b)

(

1 +
b

a
· (1 − a)2

(1 + b)2

)−1/2

,

For fixed photon energy and emittance of the electron bunch the total photon beam
emittance has its minimum value

εmin = εcoh + εe, (3.12)

when a = 1. At these conditions the degree of transverse coherence takes its maximum
value at

ζmax =
1

1 + εe/εcoh
.

For εe ≪ εcoh the photon beam is fully coherent ζ → 1. On the opposite, the incoherent
limit is described by εe ≫ εcoh or equivalently by ζ ≪ 1. Importantly, the photon beam
is transversely not fully coherent even if the electron beam emittance is on the order of
the diffraction limit εcoh. For εe = εcoh the degree of transverse coherence is ζ = 0.5.

The degree of transverse coherence ζmax as a function of the electron beam emittance
εe for x-ray photon energies of 6 keV, 12 keV, and 24 keV is shown in Figure 3.7. In
Figure 3.7 we also present the values corresponding to a 5 m undulator source at PETRA
III (high-β, vertical). The latter values were calculated according to (3.11) with the
corresponding value of parameter a = Lu/2πβ = 0.33. We readily see in Figure 3.7,
that the transverse coherence for the ideal and realistic value of the parameter a is

5As the beam properties are the same in both the horizontal and vertical direction we calculate all
values only for one direction and drop the subscript for brevity.
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very similar. From our results we conclude, that with the anticipated electron beam
parameters x-ray beams with a high degree of coherence can be expected in the hard
x-ray regime in both directions. However, the beams at ERL sources will not be fully
coherent but will have a total degree of coherence of about 50% at 12 keV.

3.3 Free-electron lasers

Contrary to synchrotron sources the radiation at FELs is intrinsically highly coherent.
Different approaches may be used to analyse the coherence properties of FELs. One of
them is based on a detailed modelling of the SASE process by performing calculations of
non-linear electromagnetic equations at different conditions of operation (linear regime,
saturation, etc.) [68]. Another possible approach is based on the results of statistical
optics (see chapter 2), when the statistics of radiation fields is analysed with very gen-
eral assumptions about the origin of the radiators. We use the second approach and
substitute a real FEL source by an equivalent model planar source, in particular a GSM
source. In the same way as optical lasers, FELs based on the SASE principle can be de-
scribed as sources with a finite number of transverse and longitudinal modes [44, 40]. As
we are interested in the coherence properties of FEL beams in the transverse direction,
we use a decomposition of the statistical field into a sum of independently propagating
transverse modes and show that for a source as coherent as an FEL only a few modes
contribute substantially to the total radiation field.

3.3.1 Transverse coherence properties of the European XFEL source [69]

We used this approach to make a realistic and simple estimate of the coherence properties
of the radiation at the European XFEL. In particular we analyzed the SASE1 undulator
source [43, 68] with the parameters summarized in Table 3.3. We simulated a GSM source
using Equations (2.40, 2.41) with a source size of σ = 29.7 µm and a transverse coherence
length of ξ = 48.3 µm. The latter parameter was obtained from (2.62) using the values
of the source size and angular divergence listed in Table 3.3. With these parameters
the CSD, W (x1, x2; z), was calculated at a distance of 500 m from the source using
the coherent mode decomposition. The eigenvalues βj and eigenfunctions Ej(x, z) were
evaluated from Equations (2.68,2.69). The same CSD may be obtained using Equation
(2.49). A distance of 500 m was considered because at that distance first optical elements
of the European XFEL are planned [43]. In Figure 3.8 the results of these calculations
are presented. An analysis of these results shows that for the parameters of the SASE1
undulator at the European XFEL a small number of transverse modes contribute to
the total field (Figure 3.8 (c)). The parameter κ defined in Equation (2.69) has a value
of κ = 0.22 in these conditions, hence the contribution of the first mode is about 20%
of the fundamental and the contribution of the fourth mode is below one percent of
the fundamental β4/β0 = κ4 = 2.3 × 10−3. Five modes were used in Equation (2.65)
for calculations of the CSD W (x1, x2; z) (Figure 3.8 (a)). The modulus of the SDC,
|µ(x1, x2, z)|, and the spectral density, S(x), at that distance are shown in Figure 3.8
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Figure 3.8: Calculations of the coherence properties of the SASE1 undulator at the
European XFEL (see Table 3.3) 500 m downstream of the source in the
frame of a GSM source. (a) The absolute value of the CSD |W (x1, x2)|.
(b) The absolute value of the SDC |µ(x1, x2)|. (c) The ratio βj/β0 of the
eigenvalue βj to the lowest order eigenvalue β0 as a function of mode number
j. (d) The absolute value of the SDC |µ(∆x)| taken along the white line in
(b). In the inset the spectral density S(x) is shown that is taken along the
white line in (a).

(b,d). At a distance of z = 500 m downstream of the source we find a coherence length
of Ξ(z) = 348 µm and a beam size of Σ(z) = 214 µm.

An analysis of Figure 3.8 (d) shows that our model source, though being highly co-
herent, cannot be described as a fully coherent source due to contributions of higher
modes. This is illustrated in more detail in Figure 3.9, where the SDC, |µ(∆x)|, is cal-
culated with a different number of contributing modes. The separations ∆x higher than
1 mm were not considered, as the spectral density S(x) significantly reduces at higher
separations (see inset in Figure 3.8 (d)). It is readily seen from this figure that only in
the case of a single mode contribution will an XFEL beam be fully coherent (Figure 3.9
(a)). As soon as the first transverse mode contributes to the fundamental mode, the
SDC, |µ(∆x)|, drops to zero at a separation distance of ∆x ≈ 700 µm (Figure 3.9 (b)).
It again increases up for higher separation distances and reaches the value |µ(∆x)| = 0.3
at ∆x ≈ 1 mm. This increase in the correlation function is due to the fact that at these
distances the contribution of the lowest mode (fundamental in this particular case) is
negligible and the correlation properties are determined again by a single mode (the first
in this case) (see Figure 2.6 (a)). We note that the spectral density can be described
well by three modes (see Figure 3.9 (c)).

The values of the beam size Σ(z) and transverse coherence length Ξ(z) at different

57



3 Coherence properties of third and fourth generation x-ray sources in the frame of statistical optics

���

���

���

���

Figure 3.9: Contribution of the higher transverse modes to the radiation field. The
absolute value of the SDC |µ(∆x)| and the spectral density S(x) (insets)
calculated with one lowest mode (a), two lowest modes (b), three lowest
modes (c), and four lowest modes (d) are shown by dashed lines. Solid
lines correspond to a full calculation with five modes, which is equivalent to
(2.52,2.55) in this case. Calculations were made for the same parameters as
in Figure 3.8.
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Figure 3.10: The beam size Σ(z) (dashed line) and the transverse coherence length Ξ(z)
(solid line) at different distances z from the SASE1 undulator of the Euro-
pean XFEL source. Parameters of the source are the same as in Figure 3.8.
The vertical dashed line correspond to an effective distance zeff.

distances z from the simulated GSM source are presented in Figure 3.10. Calculations
were performed using a coherent mode decomposition (2.65) of the CSD W (x1, x2; z)
and mode propagation (2.70) at different distances from the GSM source. It can be seen
from Figure 3.10 that contrary to the analysis performed for a synchrotron source, here,
in the case of the European XFEL, the values of the transverse coherence length Ξ(z)
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Figure 3.11: The ratio βj/β0 of the eigenvalue βj to the lowest order eigenvalue β0 as a
function of mode number j. Results of the calculations for the parameters of
the SASE1 undulator of the European XFEL (open circles), high-β section
of the five meter undulator of the PETRA III source in the vertical direction
(triangles) and in the horizontal direction (squares) (see Table 3.1).

are higher than the values of the beam size Σ(z). The effective distance zeff (2.46) is
about 70 m in this case. In other words, for distances z ≫ 70 m all z-dependencies of
parameters, such as the coherence length and the beam size, are linear.

Using the parameter of the SASE1 undulator source (see Table 3.3) we find the degree
of transverse coherence (see Equation (2.44)) to be ζx = 0.63 in each direction. We
estimate a total degree of transverse coherence to be ζ = 0.41 at the European XFEL.
This number is smaller than the value ζ = 0.65 obtained by the ensemble average of the
wave-fields generated by the code FAST for the parameters of the SASE1 undulator of
the European XFEL [68]. We attribute this disagreement to the quality factor [57]. If
the beam intensity at the source or in the far field is not Gaussian our estimated value

Table 3.3: Parameters of the SASE1 undulator source at the European XFEL [43, 68]
and the FLASH source [47].

XFEL SASE1 FLASH

undulator

Wavelength, fundamental λ, [nm] 0.1 13.7
Source size σ, [µm] 30 68
Source divergence σ′, [µrad] 0.43 38
Transverse coherence length
at the source ξ, [µm] 48 62
Degree of coherence q 1.6 0.9
Degree of transverse coherence ζx,y 0.63 0.41
Total degree of transverse coherence ζ 0.41 0.18
Effective length zeff, [m] 70 1.8
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Figure 3.12: The same as in figure 3.8 for the FLASH parameters. Calculations are
made in the frame of a GSM source 20 m downstream of the source for a
wavelength of λ = 13.7 nm, when the FEL operates at its saturation.

gives a lower estimate of ζ than calculated with the correct CSD function.
Here, for the description of the transverse coherence properties of FELs, we used the

coherent mode decomposition approach. In principle, the same approach may be used
for the description of the third generation synchrotron sources. However, being mostly
incoherent sources, especially in the horizontal direction, they would require a large
number of modes for a sufficient description. This is illustrated in Figure 3.11 where the
ratio βj/β0 of the eigenvalue βj to the lowest order eigenvalue β0 as a function of a mode
number j for the PETRA III synchrotron source is presented. For comparison, results of
the calculations for the SASE1 undulator of the European XFEL are also shown in the
same figure. Our results demonstrate that in the vertical direction correlation functions
can be properly described by the contribution of eight modes and in the horizontal di-
rection a large number of modes (about 300, compare with Equation (2.72)) is necessary
to describe the coherence properties of the undulator source.

3.3.2 Transverse coherence properties of the FLASH source [77]

We used the same method to estimate coherence properties of the FLASH source. For
the calculations we took parameters of FLASH as reported in [47] at a fundamental
wavelength of 13.7 nm, which are summarized in Table 3.3. Simulations were made for
a GSM source with a source size of σ = 68 µm, which corresponds to the FWHM of
160 µm reported in [47]. The transverse coherence length ξ = 62 µm corresponding to
the FWHM angular divergence of 90 µm [47] was determined by Equation (2.62). The
CSD at a distance of 20 m downstream of the source was calculated using Equation
(2.65) and is presented in Figure 3.12. Similar to European XFEL, at FLASH a small
number of transverse modes is sufficient to describe the total field (Figure 3.12 (c)). As
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the parameter κ = 0.41 (see Equation (2.69)), the contribution of the second mode is
about 40% of the fundamental, and the contribution of the sixth mode is more than
two orders of magnitude smaller than the fundamental β6/β0 = κ6 ≈ 5 · 10−3. Using
the determined CSD we also calculated the values of the spectral density S(x) and the
modulus of the SDC |µ(∆x)| (Figure 3.12 (d)). A beam size of Σ(z) = 764 µm and a
transverse coherence length of Ξ(z) = 715 µm were found at a distance of z = 20 m
downstream of the source. The total degree of transverse coherence of the source was
determined to be ζ = 0.18.
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4 Thin optical elements at third and fourth
generation x-ray photon sources

As presented in the preceding chapters, third and fourth generation x-ray sources produce
highly brilliant and coherent beams. These sorces are large typically scale facilities with
source to experimental station distances of tens to hundreds of meters. Due to the large
propagation distances the size of the unfocused beam at the experimental station is in
the range of a millimeter. To effectively utilize these coherent beams a large fraction of
the photons have to be focused on the sample. Special optical elements are needed to
focus x-ray radiation.

Röntgen predicted, that x-rays could not be focused. However, in the end of the
last century different sophisticated focusing schemes for x-rays have been developed.
Nowadays typically four different techniques at third and fourth generation sources are
used.

1. Kirkpatrick-Baez (KB) mirrors utilize the total reflection of x-rays on surfaces.
Total reflection appears when the incident angle is below the critical angle, which
is in the range of a tenth of a degree for hard x-rays. Due to the curvature
of the mirror surface a focus can be achieved. This method has been used to
obtain an extremely tight focus 7 × 20 nm2 at SPring-8 [102]1. The KB mirrors
are achromatic and can be used for a wide spectrum of photon energies.

2. In the soft x-ray regime Fresnel zone plates [103] can be effectively used. Due to the
fact that the index of refraction approaches unity for hard x-rays it is challenging
to achieve small foci with Fresnel zone plates in the hard x-ray regime. However,
at PETRA III C. David and colleagues recently succeeded in generating a focus
with a FWHM of 21 nm in both directions at a photon energy of 10 keV [104].

3. For hard x-rays bent crystals in Bragg geometry can be used as focusing elements
as well as spectrometers [105].

4. Refractive lenses similar to conventional lenses for optical light can also be effec-
tively used to focus x-ray radiation, especially in the hard x-ray regime. Because
the real part of the refractive index n(ω) is smaller than unity for x-rays, these
lenses are produced by manufacturing holes in material (see Figure 4.1). Lenses of
this type are known as compound refractive lenses (CRL) [106, 107].

1In situ wavefront correction approach was used to take account of the imperfections of the mirror
surface, which is the main difficulty in achieving a small focus size.
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Figure 4.1: Schematic of a CRL. A single lens is marked by the red square. Typically
several identical lenses (four in this sketch) are stacked together to improve
the focusing properties of the lens. (Adapted [101]).

As an example we will consider here a parabolic CRL [106] in a somewhat greater detail.
The complex valued transmission function T (u, ω) of such a lens can be written in the
form [57, 101]

T (u, ω) = B(u, ω) exp

(

−i
ku2

2f(ω)

)

. (4.1)

The function B(u, ω) defines the opening aperture of the lens and f(ω) is the focal
distance. Lens imperfections or aberrations, if present, can be taken into account by
introducing additional phase factors in B(u, ω). We restrict ourselves to the aberration
free optics and assume that for a thin parabolic lens the opening aperture function can
be described by a Gaussian function

B(u, ω) = B0 exp

(

− u2

4Ω2
0(ω)

)

, (4.2)

where Ω0(ω) is the effective opening aperture of the lens and 0 < B0 ≤ 1. The parameter
B0 describes the transmission of the lens in its center. The focal distance and the opening
aperture of a parabolic lens in the x-ray regime can be estimated from the refractive index
[54] n(ω) = 1−δ(ω)+ iβ(ω). Because δ(ω) is positive for x-rays, the lenses are produced
by manufacturing holes in low absorbing material (see Figure 4.1). For a double concave
parabolic lens the propagation distance of the radiation through the lens is given by
z(u) = u2/R, where u is the distance from the center of the lens and R is the radius of
curvature of the lens. Comparing the phase accumulated during propagation through
the material of the lens with the phase of the exponential in Equations (4.1,4.2)

exp

(

−i
ku2

2f(ω)
− u2

4Ω2
0(ω)

)

= exp (ikn(ω)z(u))

we find [101]

f(ω) =
R

2δ(ω)
, Ω0(ω) =

√

R

4kβ(ω)
.

Low atomic-weight materials are used to reduce the absorption, as β(ω) is small for
these materials. Because δ(ω) is extremely small for x-ray energies (δ(ω) = 2.3 · 10−6 for
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Beryllium at a photon energy of 12 keV) the focal distance f(ω) of a single lens is quite
large. Typically several lenses are stacked together (see Figure 4.1) to reduce the focal
distance For N lenses stacked together the focal distance and the opening aperture are
given by [106]

f(ω) =
R

2Nδ(ω)
, Ω0(ω) =

√

R

4Nkβ(ω)
.

The above expressions hold if the total arrangement of lenses fulfils the thin lens ap-
proximation.

It is important to note that often the opening aperture of the lens is determined not
by Ω0(ω) but rather by the size of the aperture in front of the lens or the size of the lens
itself D (see Figure 4.1). As an approximation we introduce the opening aperture as

1

Ω2(ω)
=

1

Ω2
0(ω)

+
8 ln(2)

D2
,

where the slit transmission function has been approximated as a Gaussian with the
FWHM being the slit width D. This simplification is used to obtain analytic expressions
for the propagated coherence functions. Analytic solutions can then easily be used to
estimate the performance of optical systems.

4.1 Focusing of partially coherent Gaussian Schell-model
beams

The GSM beams have been extensively studied in the optics community. In particular,
the propagation of these beams through free space and thin optical elements has been
investigated in the Fresnel approximation. The ABCD matrix approach [108] widely used
to calculate the propagation of fully coherent Gaussian beams has been extended to the
case of the GSM beams [109]. Turunen and Friberg [109] did not consider finite apertures,
which are especially important for x-rays. Finite apertures have been introduced later
for Gaussian beams [110], however, the incorporation of finite apertures into the ABCD
matrix approach for partially coherent radiation has not yet been done yet and seems
to be difficult.

Here we will use general results from chapter 2.4.1 to calculate the coherence proper-
ties of partially coherent beams at different distances from the focusing lens including
the region near the focal plane. In particular, lenses with a finite aperture, which are
typically used in the x-ray range, are investigated. We will consider the simple geometry
(see Figure 4.2) with the source positioned at z0 and a single lens at z1. We aim for the
calculation of the transverse coherence properties of the focused beam in the plane at
z2. The focal plane is positioned at zf .

In general, the propagation of partially coherent radiation through a beamline with a
thin optical element can be performed in the following steps.

• The CSD W (s1, s2, z0) at the source is defined.
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Figure 4.2: The propagation geometry. The source is positioned at z0, the lens is at z1

and the observation plane is at z2.

• The propagation of the CSD W (s1, s2, z0) from the source to the lens can be
described by Equation (2.32).

• The propagation of the CSD W (u1, u2, z1) through the focusing element in the
thin lens approximation can be described by (2.33).

• The coherence properties at z2 are obtained using Equation (2.32).

In principle, this procedure can be applied to simulate the propagation of partially
coherent radiation through a beamline containing several optical elements, provided all
optical elements can be well described in the frame of the thin lens approximation.

We will describe the source at z0 in the frame of the Gaussian Schell-model with the
CSD W (s1, s2, z0) defined in Equations (2.40,2.41) 2 . The CSD function incident on
the lens at z1 is found from Equation (2.49). Substituting the lens transmission function
T (u) (4.1,4.2) in Equation (2.33) we find the CSD behind the lens3

Wout(u1, u2, z1) =

√
S0B0

∆1(z10)
exp

(

− u2
1 + u2

2

4Σ̃2
1(z10)

− (u2 − u1)
2

2Ξ̃2
1(z10)

+ ik
u2

2 − u2
1

2R̃1(z10)

)

, (4.3)

where

1

Σ̃2
1(z10)

=
1

Σ2
1(z10)

+
1

Ω2
, Ξ̃1(z10) = Ξ1(z10),

1

R̃1(z10)
=

1

R1(z10)
− 1

f
. (4.4)

The distance between the source and the lens is denoted by z10 = z1 − z0 and the
parameters Σ1(z10), Ξ1(z10), ∆1(z10) and R1(z10) are the beam size (2.53), transverse

2We consider only one transverse direction and drop the subscript for brevity. One transverse direction
is sufficient since both transmission function and the CSD are separable in our simulation.

3Here narrowband radiation is assumed and the calculations are performed for the average frequency
ω0.
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coherence length (2.56), expansion coefficient (2.50), and radius of curvature (2.51) inci-
dent on the lens, respectively. The quantities Σ̃1(z10), Ξ̃1(z10), and R̃1(z10) describe the
same parameters behind the lens. It is worth noting that a thin optical element reduces
the beam size Σ̃1 ≤ Σ, but it does not change the transverse coherence length Ξ̃1 = Ξ1.
However, the degree of transverse coherence behind the lens (and due to Equation (2.58)
in the focus)

ζf =
1

√

1 +
(

2Σ̃1/Ξ̃1

)2
(4.5)

increases due to a smaller beam size, as compared with ζ of the incident beam. In fact,
the lens cuts out the coherent part of the beam. Importantly, the change in the curvature
R̃1 6= R1 is responsible for the focusing.

By applying the general propagation formula (2.32) the CSD in the focus can be
obtained. However, it is more convenient to invert the problem and to use the reciprocity
relation in optics [54]. In particular, we think of the CSD behind the lens being generated
by a source positioned in the focus at a distance zf1 = zf − z1 from the lens. In
other words, we want to determine the parameters of the partially coherent GSM beam
knowing its size Σ̃1, transverse coherence length Ξ̃1 and curvature R̃1 at a given point,
which is the position behind the aperture in our case. Using the result stated in Equation
(2.49) we find the distance zf1 from the lens to the focus (see Appendix A.5)

zf1 = − R̃1

1 +
(

R̃1/Z1

)2 , (4.6)

where Z1 = 2kΣ̃2
1ζf is the parameter which determines the focusing properties of the

lens in a certain geometry. It depends on the degree of transverse coherence ζf and the
beam size Σ̃1 (4.4) behind the lens. From Equation (4.6) it is readily seen, that the
distance from the lens to the focus coincides with the focal distance f if a plane wave is
incident on the lens and the lens aperture is large.

The CSD in the focus is identical to the CSD of a Gaussian Schell-model source, with
the source size σ and transverse coherence length ξ are replaced with the values in the
focus, σf , ξf . These values can be expressed as (see Appendix A.5)

σf =
Σ̃1

√

1 + (Z1/R̃1)2
(4.7)

ξf =
Ξ̃1

√

1 + (Z1/R̃1)2
. (4.8)

It is possible to calculate the CSD at an arbitrary position z2 behind the lens, after
the position of the focus and the transverse coherence properties in the focus have been
obtained. Using the fact that the radiation in the focus can be considered as a planar
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GSM source, the CSD at z2 can be expressed as (see Equation (2.49))

W (u1, u2, z2) =

√
S0B0∆2(z2f )

∆1
exp

(

− u2
1 + u2

2

4Σ2
2(z2f )

− (u2 − u1)
2

2Ξ2
2(z2f )

+ ik
u2

2 − u2
1

2R2(z2f )

)

, (4.9)

where Σ2(z2f ) is the beam size, Ξ2(z2f ) is the transverse coherence length, R2(z2f ) is
the beam curvature and z2f = z2 − zf is the distance between the observation plane at
z2 and the focus at zf . Using the beam parameters in the focus (4.7,4.8) we find

Σ2(z2f ) =σf∆2(z2f ),

Ξ2(z2f ) =ξf∆2(z2f ),

R2 =z2f



1 +

(

2kσ2
fζf

z2f

)2


 ,

∆2(z2f ) =



1 +

(

z2f

2kσ2
fζf

)2




1/2

.

(4.10)

The spectral density and the SDC at any position behind the lens are expressed as

S(u) =

√
S0B0∆2(z2f )

∆1
exp

(

− u2

2Σ2
2

)

µ(u1, u2) = exp

(

−(u2 − u1)
2

2Ξ2
2(z2f )

+ ik
u2

2 − u2
1

2R2(z2f )

)

.

In particular setting z2f = 0 we obtain S(u) and µ(u1, u2) in the focus.
Below we discuss general features as well as limiting cases. It is important to note

that only for f > 0 is a lens able to focus the radiation. Depending on the geometry,
three different cases may occur

1. For f < R1 we find from Equations (4.4,4.6) zf1 > 0: The beam is focused
by the lens, which means that the focus lies behind the lens. It is readily seen
from Equations (4.7,4.8) that the focus is smaller for a higher degree of transverse
coherence ζf and for a smaller value of R̃1. The latter corresponds to a smaller
focal distance. In the fully coherent limit, ζf = 1 the results (4.6,4.7) are identical
to the formulas known for Gaussian beams [57].

2. For f = R1 we find zf1 = R̃1 = 0 : In this case the wavefront behind the lens
is flat and the radiation field behind the lens can be considered as a planar GSM
source with size Σ̃1 and transverse coherence length Ξ̃1.

3. For f > R1 we find zf1 < 0 : The divergence of the beam is decreased, however,
the beam is not focused. A virtual source is present at the distance |zf1| in front
of the lens.
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In the following we consider only the first case, as we are interested in the focusing
properties of the lens. We briefly outline the limits which may occur. In particular,
we analyze the beam size, the transverse coherence length, and the degree of transverse
coherence in the focus as a function of the opening aperture of the lens.

A lens with a large aperture

If the aperture of the lens is large compared with the beam size incident on the lens
Ω ≫ Σ1, the beam size behind the aperture is Σ̃1 ≈ Σ1 and we find in the focus (see
Appendix A.5 for a detailed derivation. This case was also analyzed in [109].)

σf = Mσ, ξf = Mξ, (4.11)

where

M =

∣

∣

∣

∣

f

z10 − f

∣

∣

∣

∣

(

1 +
z2
eff

(z10 − f)2

)−1/2

(4.12)

is the magnification factor. This means that the CSD in the focus is identical to the CSD
at the source scaled by the magnification factor M . The ratio qf = ξf/σf between the
transverse coherence length and the beam size is constant everywhere along the optical
axis and is determined by the source parameters q = ξ/σ. The same holds for the degree
of transverse coherence ζ. As an important result we note that in the frame of the GSM
the focus generated by a thin optical element of infinite aperture is just a magnified
M > 1 or demagnified M ≤ 1 image of the source.

If the distance from the source to the lens z10 is much larger than the focal distance
f and the effective distance zeff, the magnification factor simplifies to

M =

∣

∣

∣

∣

f

z10 − f

∣

∣

∣

∣

, (4.13)

which can be considered as the geometrical optics limit. The same expression for the
magnification factor M is found even for smaller distances z10 if the beam is incoherent,
ζ → 0.

A strongly focusing lens with a moderate aperture

Here we consider an especially interesting case for practical purposes : strongly focusing
lenses with the size of the focus being much smaller than the size of the beam behind
the aperture, σf ≪ Σ̃1. In this limit one may approximate

√

1 + (Z1/R̃1)2 ≫ 1 or equivalently Z1 = 2kΣ̃2
1ζf ≫ Rf ,
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Table 4.1: Propagation of partially coherent radiation through a thin lens.
The aperture is much larger than the beam size Ω ≫ Σ1

Focus size σf = Mσ
Transverse coherence length ξf = Mξ

Focus position zf1 = f + M2(z10 − f)

Depth of focus zf
eff = M2zeff

Magnification M =

∣

∣

∣

∣

f

f − z10

∣

∣

∣

∣

(

1 +
z2
eff

(f − z10)2

)−1/2

Effective distance zeff = 2kσ2ζ

The aperture is comparable with the beam size Ω ≤ Σ1 and σf ≪ Ω

Focus size σf = σdl

[

1 +
(

Ω
Σ1

)2
+ 4

(

Ω
Ξ1

)2
]1/2

Diffraction limit σdl =
zf1

2kΩ

Transverse coherence length ξf = σfq
[

1 +
(

Σ1
Ω

)2
]

and find the distance zf1 = −Rf from the lens to the focus. The focus size is given by
Equation (4.7)

σf =
zf1

2kΣ̃1ζf

= σdl

[

1 +

(

Ω

Σ1

)2

+ 4

(

Ω

Ξ1

)2
]1/2

, (4.14)

where we have introduced
σdl =

zf1

2kΩ

which is often referred to as the diffraction limited (rms) size of the focus. It can also
be written as λ/(4πNA), where NA is the numerical aperture of the lens.

The coherence length in the focus can be calculated using the ratio ξf/σf = Ξ̃f/Σ̃1

from Equations (4.7,4.8)

ξf = σfq

[

1 +

(

Σ1

Ω

)2
]

, (4.15)

where q = ξ/σ is the value at the source.
Typically at third generation x-ray sources the beam size of the radiation incident on

the lens is much larger than the opening aperture of the lens. This is especially valid for
the horizontal direction of synchrotron sources. Assuming Ω ≪ Σ1, three limits can be
considered.

1. The radiation incident on the lens is highly coherent Ξ1 ∼ Σ1 and consequently
Σ1 ≫ Ω, Ξ1 ≫ Ω. In this limit the focus size is diffraction limited σf = σdl, as
follows from Equation (4.14). From Ξ1 ≫ Σ̃1 ≈ Ω we conclude ξf ≫ σf . The
beam in the focus is fully coherent.
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2. The radiation incident on the lens is rather incoherent Ξ1 ≪ Σ1, but its transverse
coherence length is larger than the aperture Ξ1 ≫ Ω. In this case, a diffraction
limited focus is achieved σf = σdl. Here, however, the aperture is smaller than in
the first case and the amount of transmitted photon flux is reduced. Similar to the
first case Ξ1 ≫ Ω and ξf ≫ σf , meaning the beam is fully coherent in the focus.

3. The radiation is rather incoherent Ξ1 ≪ Σ1 and the coherence length of the in-
coming radiation is smaller than the aperture Ξ̃1 ≪ Ω. In this limit we find
σf = zf1/(kΞ̃1). The focus size is no longer determined by the aperture, neither
by the size of the beam incident on the lens, it is only determined by the transverse
coherence length of the beam incident on the lens. Rewriting Ξ̃1 = zf1/(kσf ) it
can readily be seen that this case is very similar to the van Cittert-Zernike theorem
(2.60). The focus can be considered as a planar incoherent GSM source and the
transverse coherence length at a distance zf1 from this source is given by Ξ̃1. In
fact, the coherence length is demagnified in the focus by the lens.

We summarize the main results discussed in this section in Table 4.1 (a similar table for
fully coherent light can be found in [57]).

4.2 Focusing of x-ray beams at PETRA III beamline P10

We applied the results of the previous section to calculate the coherence properties of
the focused beam at PETRA III. In particular the P10 beamline was considered. This
beamline is dedicated for coherence applications and a transfocator can be used with
different sets of CRLs [111], optimized to meet different user requirements. Additionally,
β-function parameters can be varied to even further optimize the beamline conditions.

The layout of the optical system is depicted in Figure 4.3. Three parabolic CRLs
manufactured from Beryllium were used. The first CRLs with a radius of 200 µm in
both directions was positioned 90 m downstream of the undulator source. Additional
two CRLs with a radius of 48 µm in both directions followed at a distance of 74 mm
further downstream. The distance between these two CRLs is on the order of a few
millimeters and can be neglected. A slit system with a width of 300 µm in vertical and

Figure 4.3: The schematic of the CRL arrangement used in the simulation.
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Figure 4.4: Focusing properties of the transfocator with three beryllium lenses at P10
beamline (PETRA III) at an energy of 7.9 keV. The beam size Σ(z) (red
dashed line) and the transverse coherence length Ξ(z) (black line) are pre-
sented. The focusing in the vertical direction (a) and in the horizontal direc-
tion (b) are shown. The magnified region near the focal position is presented
in (c) and (d). The results from the beam size measurements at the position
indicated by the blue dashed line are shown by red dots.

100 µm in horizontal direction was used to cut out the coherent part of the beam (see
Figure 4.3).

We described the source in the frame of the Gaussian Schell-model. The beam size
and the transverse coherence length in the source plane were obtained from Equations
(3.4,3.7,3.8,2.62) for a 5 m undulator and low-β operation of the machine [3]. The photon
energy was set to 7.9 keV. Equation (4.9) was used to propagate the radiation through
CRL1 and to determine the coherence properties at the position of CRL2/CRL3. The
same equation was applied to obtain coherence properties in the observation plane. The
beam size Σ(z) and the transverse coherence length Ξ(z) are presented in Figure 4.4 as a
function of the distance z from the last lens. A focus size of σy

f = 0.3 µm in the vertical
and σx

f = 1.0 µm in the horizontal direction were determined. The transverse coherence

length ξy
f = 1.0 µm in the vertical direction and ξx

f = 1.5 µm in the horizontal direction
were found. The transverse coherence length is larger in the horizontal direction, which is
a consequence of a smaller slit opening in the same direction. The degree of coherence in
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Figure 4.5: Intensity profile measurements using a micrometer size colloidal crystal. (a)
A diffraction pattern measured at the central position of the beam. (b) The
integrated signal of a Bragg peak (marked by a white box in the top right
corner) as a function of the position of the crystal in the beam. The projected
intensity profile in the vertical (c) and horizontal (d) direction is shown by
red dots. Gaussian fits with widths (rms) of 2.1 ± 0.4 µm (c) in the vertical
and 2.5 ± 0.3 µm (d) in horizontal direction are shown by black lines.

the focus was determined to be ζy
f = 0.88 in the vertical and ζx

f = 0.60 in the horizontal

direction. The total degree of coherence is ζx
f · ζy

f = 0.53. The transmission of this optical
system is about 0.5%, which means that the total intensity in the focus is about two
orders of magnitude smaller than the total intensity emitted from the source. However,
the flux density in the focus is increased by four orders of magnitude as compared with
the unfocused beam.

We compared our simulations with the beam profile measurements, which were per-
formed at P10 using the same optical system as shown in Figure 4.3. The intensity profile
was determined by scanning the beam in transverse direction with a colloidal crystal at
a distance of 2.09 m downstream of the last lens. For each position the scattered signal
was recorded (see Figure 4.5 (a)). The integrated signal of a single Bragg peak (the area
marked with a white box in the top right corner of Figure 4.5 (a)) was considered as
the beam intensity at the position of the crystal. The beam profile obtained by these
measurements is shown in Figure 4.5 (b). The projected beam profiles in the vertical
and horizontal directions are also shown in Figure 4.5 (c) and (d), respectively. The pro-
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jections are well reproduced by Gaussian functions with widths (rms) of 2.1 ± 0.4 µm
in the vertical and 2.5 ± 0.3 µm in horizontal direction. The size of the colloidal crystal
used in this measurement was estimated by optical microscopy to be 3 ± 2 µm in all
directions4. Assuming that the measured beam size is the convolution of the real beam
size and the particle size we estimate the real beam size to be Σy(z) = 1.7 ± 1.1 µm in
vertical and Σx(z) = 2.2 ± 0.9 µm in horizontal direction.

For comparison, the measured beam sizes in the vertical and horizontal directions are
shown by red circles in Figure 4.4 (c,d). Whereas the experimental and the theoretical
values concord well for the horizontal direction, they are different for the vertical direc-
tion. A possible explanation for this discrepancy is the fact that the radii of the CRLs
are not precisely known. Small deviations of these radii affect dramatically the focus
position and therefore the beam size in the sample plane. For instance, the radius of
the last two lenses expected from the manufacturing process is 50 µm. However, several
measurements have shown [111, 112] that this number has to be corrected to a value of
about 48 µm. This change in the curvature moves the focus position by about 80 mm.

4.3 Modelling of partially coherent radiation based on the
coherent mode decomposition [113]

Here, we present a general approach, which can be applied to partially coherent wave
fields, and which is capable of calculating both, the intensity (spectral density) profile of
the beam as well as the transverse coherence properties of the radiation at any position
in a beamline. It is based on the coherent mode decomposition of the CSD (see Equation
(2.34)) and can be effectively used to propagate partially coherent radiation. First appli-
cation of this approach to FEL radiation was performed in [77]. A similar technique was
used in the frame of geometrical optics [114] and for advanced phase retrieval methods
in coherent imaging [10].

In general, the propagation of the partially coherent radiation through an arbitrary
arrangement of the optical elements in a beamline can be performed in the following
steps

1. Decomposition of the CSD, W (u1,u2; z0), in the source plane into coherent modes
Ej(u, z0) according to Equation (2.34).

2. Propagation of all modes Ej(u, z0) from the source plane through the optical ele-
ments to the observation plane using a wave propagation technique. For example,
Equation (2.3) can be used to propagate all modes in vacuum between optical
elements. For thin optical elements the transmitted modes can be obtained by
Equation (2.10).

3. Finally, after performing the previous step for all optical elements present in the
beam line each mode is calculated in the plane of observation, and the CSD,

4The size of the crystal was characterized by Johannes Gulden at DESY. Here we assume, that this
size corresponds to the size of the crystal, which gives rise to Bragg peaks.
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W (u1,u2; z), is determined by Equation (2.34).

As the number of contributing modes at an FEL is small, this method may be more
effective than a straightforward propagation of the CSD (2.32), which deals with a four-
dimensional function W (x1, y1, x2, y2).

Often an analytical description of the propagation is not possible and numerical meth-
ods have to be applied to estimate, for example, the beam properties at different posi-
tions along the beamline. Although many computational methods have been developed
to calculate the beam profile at the sample position, most of them do not provide the
coherence properties of the beam in the plane of observation. In addition, the majority
of these calculations are either ray tracing, or wave propagation approaches. Strictly
saying, these methods are valid either in the limit of incoherent or fully coherent ra-
diation. The partially coherent beams generated at third and fourth generation x-ray
sources is not correctly covered by these methods.

As an example we applied the coherent mode decomposition method to propagate
partially coherent radiation generated by a GSM source (2.40,2.41) through a beamline
including a circular aperture (see Figure 4.6). As source parameters we used values
reported for FLASH operating at a wavelength of 13.7 nm (see section 3.3.2): a source
size of σx = σy = 68 µm and a transverse coherence length ξx = ξy = 62 µm. For these
parameters the contribution of each mode at the source position is given by Equation
(2.69) βnm = 0.41n+m. Modes with a contribution of less than 1 % were neglected in
our simulations. In total, 21 modes with n+m ≤ 5, where n = 0, 1, . . . 5, m = 0, 1, . . . 5,
were used in the calculations presented here. The spectral density distribution of the
total field and nine lowest modes at the source position are shown in Figure 4.7.

We considered the following geometry in our simulations: the pinhole is positioned
25 m downstream of the source and the radiation properties are analyzed 70 m down-
stream of the source (see Figure 4.6). Such an arrangement is typical for experiments
performed using the unfocused beam at FLASH. We applied the general scheme of prop-
agation of partially coherent radiation described earlier to this experimental geometry.
The propagation in free space was performed in Fresnel approximation. For numerical
implementation Equation (A.1) from Appendix A.1 was used. Different pinholes with
the diameter from 5 mm to 1 mm were analyzed. The pinhole transmission function,

Figure 4.6: Partially coherent radiation is generated at the source. The circular aperture
is positioned 25 m downstream of the source. The coherence properties of
the radiation are analyzed 45 m downstream of the aperture.
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Figure 4.7: (left) The total spectral density distribution at the source position. (right)
The spectral density distribution of the nine lowest modes at the source
position. The relative contribution of each mode is indicated (top right).
The length of the white scale bar is 150 µm.

T (u), was described by Equation (2.11). It was convolved with a 200 µm wide (FWHM)
Gaussian function to account for imperfections of the pinhole edges. The spectral density
distribution of the total beam and the lowest modes behind 3 mm and 1 mm pinholes
are presented in Figure 4.8. Figure 4.9 shows the same in the plane of observation.

One readily sees in Figure 4.8 (a) that in the case of the 3 mm pinhole the lowest
modes, which dominate the radiation field, are just slightly affected by the aperture.
The 1 mm pinhole, however, substantially cuts all modes, including the dominant ones
(see Figure 4.8 (b)). The spectral density distribution of each mode in the plane of
observation is similar to the spectral density distribution behind the pinhole. Additional
spectral density modulations due to the scattering from the edges of the aperture are
observed in Figure 4.9 (a). This can be attributed to the Fresnel diffraction effects,
which are stronger for sharper pinhole boundaries. The Fresnel number, d2/(λL), where
d is the diameter of the pinhole and L is the distance from the pinhole to the detector,
is 15 for the 3 mm pinhole and 1.6 for the 1 mm pinhole in this experimental geometry.
We want to note here that due to Fresnel diffraction, small variations in the propagation
distances might change these spectral density modulations significantly.

Finally, the CSD, W (u1,u2; z), was determined in the plane of observation. In the
horizontal direction it can be given by the following expression

W (x1, x2; z) =
∑

nm

βnmE∗

nm(x1, y1 = 0; z)Enm(x2, y2 = 0; z). (4.16)

Due to the symmetry of our scattering geometry, the same result is obtained in the
vertical direction. The modulus of the CSD, |W (x1, x2; z)|, as a function of the transverse
positions, x1 and x2, is shown in Figure 4.10 (a-d) for different apertures. The modulus
of the SDC |µ(∆x)| = |µ(−∆x/2, ∆x/2)| as a function of the separation ∆x for the same
apertures is presented in Figure 4.10 (e-h) (red solid line). This calculation corresponds
to the measurements of the contrast in a double pinhole experiment with varying pinhole
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Figure 4.8: (top) The total spectral density distribution behind a circular aperture with
(a) 3 mm and (b) 1 mm diameter. (bottom) The spectral density of the
lowest nine modes behind the aperture. The length of the scale bar is 2 mm.

separation ∆x and the center of the double pinhole positioned on the optical axis of the
beam. For comparison, the SDC, |µ(∆x)|, for the same geometry and source parameters,
but without the pinhole is shown by the blue dashed line. The spectral density profiles,
S(x), for the same aperture sizes are shown in the insets of Figure 4.10 (e-h).

As a result of our simulations, we notice that the 5 mm pinhole does not affect the
transmitted radiation. The spectral density profile S(x) as well as the modulus of the
SDC |µ(∆x)| in the observation plane calculated with and without the pinhole are the
same. For the smaller pinhole diameters of 3 mm and 2 mm the size of the beam de-
creases, but the modulus of the SDC is not significantly altered. Our simulations suggest,
that in the present geometry down to pinhole sizes of 2 mm no significant changes in
the coherence length of the beam in the observation plane are expected. Only for the
smallest pinhole size of 1 mm are the values of |µ(∆x)| significantly enhanced at large
separations (see Figure 4.10 (h)). In this case the SDC cannot be described by a single
Gaussian function (compare to results in [115]). However, we should note here that these
separations are much larger than the beam size and will be difficult to access in a real
experiment.

We analyzed as well the degree of transverse coherence ζ (2.31) and the available
photon flux PT behind each pinhole (see Table 4.2). The transmitted photon flux was
calculated by the equation PT =

∫

Sout(u)du/
∫

Sin(u)du, where Sin(u) and Sout(u) is
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Figure 4.9: (top) The total spectral density distribution in the plane of observation calcu-
lated for a circular aperture, (a) 3 mm and (b) 1 mm in diameter. (bottom)
The spectral density distribution of the lowest nine modes in the plane of
observation. The length of the scale bar is 5 mm.

the spectral density distribution (2.36) incident on and behind the aperture. If no pinhole
is present in the beamline, then obviously the transmitted photon flux is PT = 100% and
the degree of transverse coherence has the value determined by the source parameters
ζ = 0.18. Results from the Table 4.2 show that the degree of transverse coherence,
ζ, is significantly increased for the smaller pinholes. However, this happens at a loss
of the transmitted photon flux PT . It is interesting to note that the product PT · ζ,
which may be considered as the amount of the coherent photon flux, is about 20 % after
transmission through the larger pinholes. It drops down to a value of about 10 % for
the 1 mm pinhole. However, in the latter case almost a fully coherent beam , ζ = 0.78,
is achieved with 10% of the transmitted radiation.
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Figure 4.10: Transverse coherence properties of the radiation in the observation plane.
(a-d) The modulus of the CSD |W (x1, x2; z)|. (e-h) The modulus of SDC
|µ(∆x)| as a function of the separation ∆x. The insets in (e-h) show the
spectral density distribution S(x) in the horizontal direction. The red solid
lines show the simulations with the presence of the circular aperture. The
blue dashed lines show the same functions obtained without a pinhole. Sim-
ulations were performed with pinhole diameters of (a,e) 5 mm, (b,f) 3 mm,
(c,g) 2 mm, and (d,h) 1 mm.
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Table 4.2: The transmitted photon flux, PT , and the degree of transverse coherence, ζ,
behind the aperture. Four different pinhole diameters are analyzed.

no pinhole PT = 100% ζ = 18%

5 mm PT = 97% ζ = 19%
3 mm PT = 69% ζ = 29%
2 mm PT = 39% ζ = 46%
1 mm PT = 10% ζ = 78%
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5 Transverse coherence measurements at
free-electron lasers

A variety of techniques to measure the transverse coherence properties of radiation has
been developed. These techniques can be divided into two classes: amplitude correlation
and intensity correlation measurements. The methods belonging to the former class
are based on the superposition principle. The interference of waves is observed and
the visibility of the interference fringes is analyzed. Most prominent representatives of
such measurements are the Young’s double slit experiment (see chapter 2.3.6) and the
Michelson experiment [60].

Interestingly, in their pioneering experiments Hanbury Brown and Twiss have shown
[63, 2], that correlation measurements can be performed even if no interference pat-
tern is observable. They systematically studied intensity fluctuations of thermal light,
in particular the degree of intensity correlation in a coincidence measurement. They
showed, that for thermal light these measurements provide the same information about
the degree of transverse coherence as the amplitude measurements.

5.1 Young’s double pinhole measurements at LCLS [79]

LCLS is the first free-electron laser in the x-ray regime and started its operation in
2009 [42]. In this chapter we present the first coherence measurements at LCLS. These
measurements are of vital importance for understanding the FEL operation and for
planing coherence based experiments at x-ray FELs.

Conventionally, Young’s experiment is performed with the apertures being positioned
in a relatively weak photon beam, allowing multiple measurements with the same aper-
ture. The objective of the present experiment was to characterize the coherence proper-
ties of a strongly focused FEL beam, as it is used by most users. These single shot mea-
surements were performed in the so-called “diffract-and-destroy” mode [116], meaning
that due to the extremely high power density in the focus, each aperture was destroyed
during the interaction with a single FEL pulse. However, the FEL pulses are so short,
that the pulse passes the aperture before the destruction occures. Several identical aper-
tures (about 10) for each pinhole separation were manufactured to increase the number
of measurements.

The experiment was conducted at the soft x-ray research (SXR) instrument of the
LCLS. A sketch of the experiment is shown in Figure 5.1. The LCLS was operated
with an electron bunch charge of 250 pC and with 13 undulator segments tuned to
deliver 780 eV (λ = 1.6 nm) x-ray photons. Under these conditions, LCLS is expected
to reach its saturation regime [42, 117, 118]. The duration of a single pulse of about
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Figure 5.1: A sketch of the experiment showing thirteen undulator modules, a set of KB-
mirrors focusing the beam on a sample frame and the detector, protected
from the direct beam by a beamstop. The inset shows (a) a photograph
of the silicon wafer containing the apertures, and SEM images of different
apertures (b) before and (c) after the exposure to a single LCLS pulse.

300 fs was determined from electron bunch measurements. The average energy was
about 1 mJ per pulse, which corresponds to 0.8 · 1013 photons per pulse. The beam
was delivered to the end-station through a beam transport system that includes three
plane distribution mirrors and a monochromator comprised of a spherical mirror followed
by a plane grating [119]. The measurements presented here were performed with the
monochromator grating replaced by a plane mirror. The spherical mirror was operated
in grazing incidence geometry (incidence angle of 89.2◦) and focused the beam at the
exit slit of the monochromator (focal length 7.8 m). At the sample position, the beam
was focused to a size (FWHM) of 5.7 ± 0.4 µm in the horizontal and 17.3 ± 2.4 µm in
the vertical direction (see Appendix A.9). Focusing was achieved by a pair of bendable
Kirkpatrick-Baez (KB) mirrors consisting of a silicon substrate coated with a 37.4 nm
thick boron carbide reflective coating [120, 121, 122], with focal lengths of 1.5 m (V)
and 2 m (H). The limiting vertical aperture of the beam delivery system was twice the
FWHM of the beam size at the grating position for 800 eV x-ray photons. Therefore,
we assume that in the vertical direction the degree of coherence measured in the focus
corresponds to the degree of coherence of the source.

A multiple aperture array with varying pinhole separations in the range from 2 µm
to 15 µm was manufacured. The apertures were fabricated1 by electroplating a 1.3 µm
thick gold layer on top of a 100 nm silicon nitride substrate supported by windows etched
in a 200 nm thick silicon wafer (see Figure 5.1 (a)). The 1.3 µm gold film attenuates
the beam by eight orders of magnitude at the photon energies of 780 eV used here.
The sample was 20 × 25 mm2 in size and consisted of 4 arrays of 11 x 13 windows,
for a total of 572 windows. Each window, 50 × 50 µm2 in size, contained one pair of

1The apertures were manufactured by A. Sakdinawat, Y. Liu, W. Bang, and D. Attwood from the
University of California in Berkley.
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pinholes. The distance between individual windows was 768 µm in both directions. The
pinhole diameter varied from 340 nm for the smallest separation to 500 nm for the largest
separation to account for the reduction in intensity due to the larger separations probing
the less intense regions of the beam.

These apertures were positioned in the focus of the beam inside the Resonant Coherent
Imaging (RCI) end-station2 (Figure 5.1). After each shot on the sample, the array
was moved to an unexposed sample position. To accumulate statistics, each pinhole
configuration was measured several times giving 110 patterns in total. Interference
patterns were recorded by a Princeton Instruments PI-MTE 2048B direct illumination
Charge Coupled Device (CCD) with 2048×2048 pixels, each 13.5 × 13.5 µm2 in size,
positioned 80 cm downstream of the apertures (Figure 5.1). A 3 mm wide rectangular
beamstop manufactured from B4C was positioned in front of the CCD to protect it from
the exposure to the direct FEL beam.

5.1.1 Determination of the spatial coherence properties

Figure 5.2 shows typical single-shot diffraction patterns measured with different pinhole
separations. For small separations between the pinholes a high contrast diffraction pat-
tern was observed implying a high degree of coherence on that length scale. For larger
separations the visibility of the fringes is slightly reduced due to the partial coherence
of the incoming beam.

The diffraction data were analyzed by fitting expression (2.83)

I(q) = (I1 + I2) · ID(q) ·
[

1 +
∣

∣

∣
γeff

12 (τ)
∣

∣

∣
cos(q ·d + α12(0))

]

, (5.1)

to each measured diffraction pattern in the 2D area shown in Figure 5.2 (a,d,g) by
black dashed rectangles. Here I1,2 are the intensities incident on pinhole one and two,
ID(q) = |A(q)|2 is the Airy distribution (2.77) due to diffraction through a round pinhole
of diameter D, and effective complex degree of coherence (CDC) is given by

γeff
12 = 2

√
I1I2

I1 + I2
γ12. (5.2)

In this analysis (see Appendix A.8 for details), we considered a region of the diffraction
pattern shown in Figure 5.2 where |γeff

12 (τ)| ≈ |γeff
12 (0)| and α12(τ) ≈ α12(0) are good

approximations as the time delay associated with the path-length difference3 is much
shorter than the coherence time τc, τ ≪ τc = 0.55 fs (see below).

The analysis of all diffraction patterns has shown that some of them contain a con-
tribution from an incoherent background, mostly to one side of the diffraction pattern,
which leads to a reduced visibility of fringes (see Figure A.3 in Appendix). A possible
origin of the apparent background is the presence of the higher harmonics in the FEL

2The RCI chamber was constructed and operated by the group of A. Scherz.
3The maximum time delay in the analyzed region is 0.2 fs for the maximum aperture separation of

15 µm.
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Figure 5.2: Measured diffraction patterns. Left column: Interference fringes from pin-
holes separated by (a) 2 µm, (d) 8 µm and (g) 15 µm each exposed to a single
shot of the LCLS beam as a function of the transverse momentum transfer
qx, qy. The area used for the analysis of the transverse coherence is shown
by the dashed black rectangle close to the center of the patterns. Middle col-
umn: Line scans of the interference fringes on the right edge of the marked
region, experimental data (red dots) and results of the theoretical fit (black
lines). Right column: enlarged regions of the line scans shown in the middle
column.

beam, which are transmitted by the material. For the analysis considered here, regions
with sufficient signal on the opposite side of the beamstop (marked with the dashed
rectangle in Figure 5.2 (a,d,g)) were considered.

The following parameters were determined while fitting Equation (5.1) to the experi-
mental data: the incident intensity I1 + I2, the modulus of the effective CDC |γeff

12 |, the
relative phase α12(0) of the wave-field between the pinholes, the pinhole separation d,
the pinhole diameter D, and the position of the beam centre q0

x,y. The small inclina-
tion angle of about 30 mrad in the vertical alignment of the double pinholes was taken
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Figure 5.3: The modulus of the effective CDC, |γeff
12 |, as a function of pinhole separation.

The experimental values determined from the fitting procedure are shown
by red circles. The error bars show the standard deviation of these values.
A Gaussian function (black line) has been fit to the best shot values (black
squares), which gives a coherence length of 16.8 ± 1.7 µm. The blue dashed
line shows the decrease in the value of |γeff

12 | due to the maximum measured
offset between the position of the apertures and the incident beam. (inset)
The contribution of higher order modes to the modulus of the CDC. The
fully coherent case (single mode) is shown by the red dashed line. The two
mode contribution is shown by the black line.

into account during the data analysis. Measured values of |γeff
12 | were corrected for the

finite width of the modulation transfer function (MTF) of the detector [123]. The de-
tector MTF was measured4 at the SSRL synchrotron source by observing the variation
of the contrast produced by two pinholes at a fixed pinhole separation as a function of
the sample to detector distance. A Gaussian MTF function with a width (rms) of 25
fringes/mm was found for our detector. Finally, the modulus of the effective CDC |γeff

12 |
at a particular pinhole separation was determined for each shot (Figure 5.3). A Gaussian
fit, exp

(

−d2/2ξy
2
)

, through the ’best’ shots (those that provided the highest degree of
coherence and which are shown as black squares in Figure 5.3) gives an upper estimate
for the transverse coherence length, ξy = 16.8 ± 1.7 µm, of the focused LCLS beam in
vertical direction.

Our analysis shows a significant variation of the effective degree of coherence between
different pulses for the same pinhole separation (see Figure 5.3). While this variation
could be explained by shot-to-shot fluctuations of the coherence properties of the XFEL

4The measurements of the MTF were carried out by D. Zhou from the group of J. Stör and A. Scherz
at the SSRL.
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Figure 5.4: The modulus of the effective degree of coherence |γeff
12 |as a function of the

pinhole separation d. Each red circle corresponds to a single value of |γeff
12 |

determined in the simulation with a random shift of the center of the incom-
ing beam. The black solid and the blue dashed line are the same as in Figure
5.3.

beam, it may also arise from uncertainty in the position of the incoming beam with
respect to the center of the pinhole pair, which leads to a difference in intensity at
each pinhole. According to Equation (5.2) the value of the effective CDC, |γeff

12 |, can
be significantly lower than the intrinsic CDC, |γ12|, if these incident intensities are not
equal. We observed that some pulses were not centered on the apertures and did not
destroy the pinholes (see Figure A.4 (a) in Appendix A.9). To determine the possible
maximum deviation of the incident pulses with respect to the center of the pinhole pair
we analyzed SEM images of these apertures. A maximum deviation of 11 µm in vertical
direction was found. The impact of this positional uncertainty on the contrast, deduced
from the beam size and the Gaussian fit through the ’best’ shots, is described by the blue
dashed line in Figure 5.3. Most of the experimentally determined values lie in the range
between the two lines corresponding to the ’best’ and the maximum offset shots. From
this we conclude that this positional uncertainty is the dominant cause of the apparent
shot-to-shot variation of the CDC.

To support this conclusion we performed additional simulations. We assumed that
the modulus of the CDC, |γeff

12 |, for a centered FEL beam is described by the black curve
in Figure 5.4, which corresponds to a coherence length of ξy = 16.8 µm determined
from our analysis of exerimental data (see Figure 5.3). The effect of the positional
uncertainty on |γeff

12 | was simulated for a Gaussian incident intensity with a beam size
of 17.3 µm (FWHM) and randomly distributed offsets of the beam in vertical direction.
A uniformly distributed random number within a range of ±11 µm, that corresponds
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to the maximum offset observed from SEM images, was generated for each offset and
the corresponding values I1 and I2 of the intensities incident on individual pinholes
were calculated. The effective degree of coherence, |γeff

12 |, was calculated for each specific
position of the incoming beam according to equation |γeff

12 | = 2
√

I1I2/(I1+I2)|γ12|. These
values are shown in Figure 5.4 by red circles. Ten shots were considered for each pinhole
separation. Comparison of the simulations shown in Figure 5.4 with the results of the
experimental data presented in Figure 5.3 confirms our conclusion, that the positional
uncertainty is the dominant cause for the apparent shot-to-shot variation of the effective
CDC.

The analysis of the highly offset shots in the horizontal direction also allowed us to
estimate how uniform the coherence properties of the pulses are as a function of the
transverse position within the pulse. We compared the values of the CDC for strongly
horizontally offset and vertically centered pulses with the remainder of the pulses. These
offset pulses also displayed high coherence, which implies that the coherence properties
of the LCLS pulses appear to be spatially uniform.

The knowledge of the transverse coherence length of the LCLS beam in the vertical
direction and an estimate of its vertical focus size is sufficient to determine the degree
of transverse coherence, ζy (2.44), in vertical direction. For the focused LCLS beam
we found ζy = 0.75 ± 0.08. A similar value, ζx, is expected in the horizontal direction
as the source size and the beam divergence at LCLS have comparable magnitudes in
both directions (see chapters 3.3.2,5.3 and [42, 117]). Thus the total degree of transverse
coherence for the full beam is ζ = 0.56± 0.12, which agrees well with the value ζ ≈ 0.65
obtained in simulations [118] for similar LCLS parameters.

Using the Gaussian Schell-model (GSM), the photon beam emittance (2.61) εy in
vertical direction can be expressed as (2.64) εy = λ/(4πζy), where σy is the size (rms)
and σ′

y is the divergence (rms) of the source. Substituting into this expression the
measured value of the degree of transverse coherence, ζy, we find that the emittance of
the LCLS beam is εy = 0.17 ± 0.02 nmrad. This agrees well with typical values reported
for the LCLS photon beam at 800 eV with a source size of σy = 20 µm and a divergence
of σ′

y = 8.5 µrad [117]. For a diffraction limited beam with ζy = 1, the same source size
and x-ray photon energy would have a smaller divergence of about 6.4 µrad (see Figure
5.5).

To estimate the number of independent coherent modes contributing to the total
radiation field we apply the GSM to the ’best’ shots in vertical direction. This yields
β1/β0 = 0.14 ± 0.05 and β2/β0 = 0.02 ± 0.01 for the first and for the second mode,
respectively. This indicates that for separations of up to 15 µm, which corresponds to
the FWHM of the beam, two modes are sufficient to describe the coherence properties
of the beam in vertical direction (see inset in Figure 5.3).

The total power of the wave-field

P =

∫

S(u)du

can be determined in this case by integrating the total spectral density, which is a
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Figure 5.5: Divergence of the LCLS beam. Simulations for the partially coherent LCLS
beam with a degree of transverse coherence of 75 % (red line) (source size
σ = 20 µm and divergence σ′ = 8.5 µrad. Compared to a fully coherent
(diffraction limited) source with the same source size and divergence σ′

coh =
6.4 µrad (blue line) as function of the propagation distance from the source.
The inset shows an enlarged region.

product of the horizontal and vertical contributions, each described by Equation (2.36).
This leads to the following result

P = P0 + P0,1 + P1,0 + · · · =
∑

j

βx
j

∑

i

βy
i = βx

0βy
0 + βx

0βy
1 + βx

1βy
0 + · · · ,

where we have neglected the contribution of modes higher than two. From this expres-
sion, the relative power of the dominant mode is

P0/P = [1 + βy
1/βy

0 + βx
1/βx

0 + · · · ]−1
. (5.3)

We have measured the degree of coherence in the vertical direction only. Extrapolating
our results to the horizontal direction and using Equation (5.3) we estimate that 78 ± 8 %
of the total FEL beam power is concentrated in the dominant transverse “TEM00” mode.
This value is substantially higher than at any existing x-ray source at that wavelength
(it is about 1% for synchrotron sources). From these results we conclude, that at FEL
sources like LCLS almost the full photon flux can be used in coherence based experiments,
contrary to the synchrotron sources, where only a small fraction of the beam is available
for such applications.
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Figure 5.6: Temporal coherence characterization. (a,c) Interference patterns, the ana-
lyzed region is shown by a black square. (b,d) The visibility (black line) as a
function of the time delay τ associated with the path-length difference. (b,d)
show results determined from (a,c). Gaussian fits are also shown (red lines).

5.1.2 Determination of the temporal coherence properties

Some of the pulses (six in total) that illuminated apertures with larger pinhole separa-
tions (greater than 10 µm) produced extremely bright interference patterns. This allows
the determination of the fringe visibility up to the edge of the detector, which corresponds
to time delays of τ ≈ 0.6 fs for a pinhole separation of 15 µm. In these conditions the
time dependence in (5.1) was taken into account explicitly, providing a measurement of
the temporal coherence for individual femtosecond pulses. We have seen in chapter 2
that in Fresnel approximation, which can be assumed here, the time delay is constant
along the lines perpendicular to the pinhole separation. We averaged the visibility in
the analyzed region (red square in Figure 5.6 (a,c)) along the fringes for each selected
pulse (black line in Figure 5.6 (b,d)) and fitted this visibility |γeff

12 (τ)| by a Gaussian,
exp

(

−τ2/2τ2
c

)

(red line in Figure 5.6 (b,d)). An average over six pulses, τ̄c, of the de-
termined single pulse values of τc yields a temporal coherence time, τ̄c ≈ 0.55 ± 0.12 fs.
For a beam with a Gaussian spectrum this value is in good agreement with the estimate
[60] τc ∼ 1/σω = 0.4 fs, where σω = 2.5 fs−1 is the rms bandwidth of the LCLS beam at
that energy [117].

Combining the results from the transverse and temporal coherence measurements we
can estimate the degeneracy parameter δLCLS of the LCLS beam. It is given by (see
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Appendix A.7)

δLCLS = Nph · ζx · ζy ·
τc

2σt
, (5.4)

where Nph is the number of photons in a single pulse, ζx,y is the degree of transverse
coherence in the horizontal and vertical directions, σt is the rms pulse duration and τc

is the coherence time. Substituting Nph = 1012 − 1013 photons per pulse, ζx · ζy = 0.56,
T = 300 fs, and τc = 0.55 fs in Equation (5.4) we estimate the degeneracy parameter of
the LCLS beam to be

δLCLS = 109 − 1010.

The x-ray radiation from the LCLS is therefore highly degenerate and about 1010 photons
are contained in the coherence volume or equivalently [59] in the phase space volume
occupied by a single photon. This number is slightly lower than δ = 1010−1014 predicted
by E. Saldin and colleagues [44] based on SASE simulations. However, this number is
significantly higher than degeneracy parameter at synchrotron sources. For instance, at
high brilliance synchrotron source PETRA III we estimate from Equation (5.4) δ ≈ 1
for the same photon energy.

5.2 Young’s double pinhole measurements at FLASH [124]

We employed the single pulse methodology developed in [79] to measure the transverse
coherence properties of individual pulses at FLASH. The measurements were carried out
at the BL2 beamline. The machine was operated at a wavelength of 7.9 nm delivering
photon pulses with 180 µJ per pulse on average. The beam delivery system consisted of
two flat distribution mirrors and an elliptical mirror, which focuses the beam to a size
of about (10 ± 2) × (10 ± 2) µm2 FWHM (see Appendix A.9.2) 70 m downstream of the
undulator exit. The acceptance of the mirrors was sufficiently large in both directions
[125], therefore we assume that the beam was not cut by the mirrors. Double pinhole
apertures, identical to those used at LCLS (see chapter 5.1), were positioned in the focus
of the beam inside a dedicated vacuum chamber HORST5 [126]. The double pinhole
diffraction patterns were recorded with an in-vacuum CCD (LOT/Andor DODX436-
BN) with 2048 × 2048 pixels, each 13.5 × 13.5 µm2 in size. A 3 mm linear beam stop
manufactured out of B4C was oriented perpendicular to the interference fringes and
protected the CCD from the direct FEL beam. A 200 nm thick Pd foil was mounted
few centimeters upstream from the camera to absorb the visible light generated during
the damage process of the apertures. A sample to detector distance of 0.34 m provided
a sufficient sampling of the fringes and the observation of the first zero of the Airy
distribution on the detector.

Typical recorded and dark field corrected single shot diffraction patterns are shown in
Figures 5.7 and 5.8 as a function of the momentum transfer q for a pinhole separation
of 4 µm (a) and 11 µm (d). In Figure 5.7 the double pinholes were oriented horizontally
and vertical fringes originate from the interference between the field scattered at different

5The HORST chamber was constructed and operated by the group of A. Rosenhahn.
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Figure 5.7: Left column: Single shot interference patterns from pinholes separated by
4 µm (a) and 11 µm (d) oriented vertically. The scale bar is 20 µm−1 wide.
The area used for the analysis is marked by the black rectangle close to
the center of the patterns. Middle column: Line scans of the interference
fringes on the edge of the marked region close to the center of the diffraction
pattern, experimental data (red dots), and results of the theoretical fit (black
lines). Right column: Enlarged regions of the line scans shown in the middle
column.

pinholes. In Figure 5.8 a similar diffraction pattern measured with vertically oriented
double pinholes are presented. The first minimum of the Airy distribution is visible at
|q| ≈ 25 µm−1 in all figures. The line scans through the measured diffraction patterns
(Figures 5.7 (b) and 5.8 (b)) show a high contrast level for the small pinhole separation for
both the horizontal and vertical directions. The contrast decreases for larger separations
(see Figures 5.7(e) and 5.8(e)), which indicates a smaller magnitude of the complex
degree of coherence at these length scales.

On most of the diffraction patterns a noise was observed. It consisted of a constant
background and a few hot pixels randomly distributed over the whole diffraction pattern
(’salt and pepper noise’). We attribute the appearance of this noise to the light generated
during the damage process of the pinholes. Since the Pd foil was not attached to the
detector but was positioned a few centimeters upstream, light could leak between the
foil and detector and be a source of this noise.

To determine the modulus of the effective complex degree of coherence |γeff
12 | for each

measured single shot interference pattern, Equation (5.1) was fit to the data. We added
a constant A to Equation (5.1) to accommodate for the presence of the constant back-
ground noise. The hot pixels were removed from the diffraction patterns and were not
considered in the analysis procedure. In particular, the two-dimensional area marked
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Figure 5.8: The same as in Figure 5.7 for horizontally oriented double pinholes.

with a black rectangle in Figures 5.7(a,d) and 5.8(a,d) was analyzed. Eight fit param-
eters including

∣

∣γeff
12

∣

∣, (I1 + I2), D, d, α12, A and the position of the optical axis in the
horizontal and vertical directions were found. The quality of fit was characterized by
an R-factor R =

∑

i(I
th
i − Iexp

i )2/
∑

i(I
exp
i )2, where Iexp is the background corrected

measured data, Ith is the fit and summation is made over all points in the fitted area.
All fits with R > 0.01 were excluded from the further analysis (less than 50% from the
total number of the diffraction patterns in each direction). For each shot a confidence
interval of |γeff

12 | was determined as a value for which R was twice as large as the min-
imum value, while all other fit parameters were fixed. Typical fit results are shown in
Figures 5.7(b,d), 5.8(b,d).

As a result of the data analysis, the modulus of the effective CDC |γeff
12 | as a function of

the pinhole separation is shown in Figures 5.9 (a) and (b) for the horizontal and vertical
directions. We approximated the highest values of |γeff

12 | for each pinhole separation
(shown by black squares) with the Gaussian function exp[−d2/(2l2c )] shown by black
line in Figures 5.9 (a) and (b). This yields an upper bound estimate of the transverse
coherence length in each direction. In this way we determined the transverse coherence
length (rms) to be lHc = 6.2 ± 0.9 µm in the horizontal and lVc = 8.7 ± 1.0 µm in
the vertical direction. During this fitting procedure we fixed the value of |γeff

11 | at zero
pinhole separation to one according to its definition in Equation (5.2). An unconstrained
fit yields a value of |γeff

11 | ≈ 0.8 in both directions and provides slightly larger values for
the transverse coherence length. We attribute this to inhomogenities in the transmission
through the pinholes.

To measure the beam profile in the plane of the apertures we analyzed polymethyl-
methacrylate (PMMA) imprints produced by single FEL pulses with a varying degree
of attenuation of the beam (see Appendix A.9.2). Three sets of PMMA imprints with

91



5 Transverse coherence measurements at free-electron lasers

0 4 8 12 16
0

0.2

0.4

0.6

0.8

1

Pinhole separation ∆x, µm

|γ 12ef
f |

(a)

Horizontal direction

0 4 8 12 16
0

0.2

0.4

0.6

0.8

1

Pinhole separation ∆y, µm

|γ 12ef
f |

(b)

Vertical direction

Figure 5.9: The modulus of the CDC in horizontal (a) and vertical (c) direction. The
red circles show the measured values. Each point corresponds to a single
FEL shot. Gaussian fits through he highest values are shown by black lines.
Blue dashed lines show the reduction of contrast due to beam positioning
instabilities.

one order of magnitude difference in attenuation of the incoming beam were analyzed.
Using a Gaussian beam approximation a beam size of (10 ± 2) × (10 ± 2) µm2 FWHM
was determined. In the horizontal direction additional features on the sides of the beam
were observed. For the strongly attenuated beam, however, round craters, 15 µm in
diameter, indicate that the central part of the beam is round.

As follows from our analysis (see Figure 5.9) the values of |γeff
12 | vary significantly from

shot to shot for the same pinhole separation. We attribute this variation mainly to the
beam position instabilities in the plane of the sample (see section 5.1). We estimated
the deviation of the beam center relative to the sample by analysing the PMMA im-
prints measurements. The positions of thirty two craters in the PMMA were found
and compared with the nominal positions expected from the sample stage movement.
A maximum offset between the position of the apertures and the incident beam was
determined to be ±12 µm in the horizontal and ±8 µm in the vertical direction. We
attribute this positional uncertainty to both, instabilities of the sample stages and beam
positional jitter. Using these values as the offset of a Gaussian beam with a size of
10 × 10 µm2, we can calculate the difference of the intensity incident on pinhole one
and two. The error imposed by this uncertainty in position compared to the Gaussian
fit through the highest values of |γeff

12 | (black solid line in Figures 5.9 (a) and (b)) is
shown by the blue dashed line in Figures 5.9 (a) and (b). Most of the measured values
lie between the black and the blue line, which indicates that the positional uncertainty
is the dominant cause for the apparent variations in |γeff

12 |. However, as this error is
quite significant, we cannot definitively exclude shot to shot variations in the degree of
coherence |γ12|. Moreover, simulations of the FLASH beam with the code GENESIS for
a similar wavelength 13.5 nm indicate slight shot to shot variations in the CDC [127].

We have also characterized the temporal coherence of the FLASH beam for the same
operation conditions of FLASH [124]. The temporal coherence measurements were car-
ried out at the PG2 beamline immediately after the transverse coherence measurements
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Figure 5.10: The modulus of the complex coherence function g(τ) as a function of the
time delay. The top and bottom axes show the delay in wavecycles and
femtoseconds, respectively. In the inset an enlarged region of ±10 fs, which
corresponds to about ±375 wavecycles, is shown. This Figure was made by
F. Sorgenfrei from the group of W. Wurth.

using an autocorrelator [128, 78]. The coherence time was found to be τc = 2 fs (see
Figure 5.10). The pulse duration was estimated to be in the order of 100 fs.

The statistical properties of the radiation at FLASH are described by the full mutual
coherence function Γ(r1, r2; τ). We have characterized the MCF as a function of the
space coordinates and as a function of the time delay. Combining the results from these
measurements we determined the magnitude of the complete MCF of the radiation at
FLASH, assuming the radiation is cross spectrally pure [60]. According to its definition
in Equation (2.22) the MCF is a function of two coordinates in space and one coor-
dinate in time. For visualization purposes we show a 3D representation of the MCF
|ΓV (y1, y2; τ)| in the vertical direction in Figure 5.11. A similar result is obtained for
the MCF |ΓH(x1, x2; τ)| in the horizontal direction.

A similar analysis as in chapter 5.1 yields a degree of coherence of ζy = 0.72 ± 0.08
in the vertical and ζx = 0.59 ± 0.10 in the horizontal direction for the best shots. The
total degree of transverse coherence ζ = ζxζy = 0.42 ± 0.09 is slightly smaller than
the value 0.56 ± 0.12 found for the LCLS beam. From mode decomposition in the
frame of the Gaussian Schell-model we estimate that 62 ± 11 % of the total radiation
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Figure 5.11: A representation of the MCF |ΓV (y1, y2; τ)| determined from the mea-
surements of the transverse (Gaussian fit to the maximum values) and
temporal coherence properties. The MCF was normalized according to
|ΓV (0, 0; 0)| = 1 and the isosurface with |ΓV (y1, y2; τ)| = 0.15 (red), is
shown. The projections of |ΓV (y1, y2; τ)| in τ , y1, y2 directions are also
presented.

power is contained in the dominant transverse mode. According to Equation (A.24) the
degeneracy parameter is given by

δFLASH ≈ 1010 − 1011,

where we used Nph = 7 · 1012 as the total number of photons in a single pulse. This
value is comparable with the degeneracy parameter found for the LCLS beam.

The coherence measurements presented here indicate a significantly higher degree of
transverse coherence of the FLASH beam than previously reported values (see sections
3.3.2, 5.3 and [77]). We attribute this to the higher performance of the FLASH acceler-
ator complex after its upgrade [129]. A comparison with values reported for the LCLS
[79] shows, that both machines, though operating at significantly different wavelengths
and different pulse energies, provide similar values of the degree of coherence.

5.3 Young’s double slit measurements at FLASH [77]

In an experiment before the major upgrade of FLASH in 2009 the transverse coherence
was measured using a double-slit experiment. This measurement was conducted at the
fundamental undulator harmonic at a wavelength of 13.7 nm during the commissioning
phase of FLASH. The average energy per pulse was about 10 µJ, which is well below the
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saturation that was reached at 40 µJ in an earlier experiment [47] at the same wavelength.
At these average energies about 1012 photons are produced per pulse. FLASH was
operated at 1 MHz repetition rate with 10 bunches per train and a 5 Hz repetition rate
of the bunch trains.

The experiment was performed with a set of horizontal and vertical slits laser cut
into an 80 µm thick stainless steel foil that was positioned at a distance z1 = 20 m
downstream of the last operating undulator module in the FEL tunnel. The distance d
between the slit centers was 150, 300 and 600 µm for both vertical and horizontal pairs.
The individual slit width was a = 30 µm for the first two pairs and a = 50 µm for the
last pair. The detection system consisted of a fluorescent screen (Ce doped YAG crystal)
converting the XUV radiation into the visible range. The resulting fluorescent radiation
was imaged with a standard objective lens with a focal length of f = 50 mm onto a
Basler A311f CCD camera. In this geometry of the experiment the effective detector
pixel size was 29.4 µm in the vertical direction and 20.8 µm in the horizontal one. The
detector was located at a distance z2 = 4.438 ± 0.005 m downstream of the slit mask.
Each interference pattern measured in this experiment was a result of the accumulation
of ten bunches of a single train of FEL radiation. Each measurement for a given slit
separation was repeated ten times.

A typical interference pattern measured on the detector with a vertical slit separation
of 150 µm is shown in Figure 5.12 (a). From these 2D data sets 1D interference patterns
were obtained by choosing an area on the detector centered at the maximum intensity and
averaging over three pixels (shown in Figure 5.12 (a)) in the direction perpendicular to
fringes. The averaging procedure was necessary to improve the statistics of the measured
signal.

The experimental data was analyzed using fitting. Here, the diffraction patterns from
individual slits did not overlap on the detector and the full expression (2.81) was used
for the analysis. The diffraction pattern from a single slit was described by [54]

I1,2(q) =
(axay

4z

)2
(

sin (qxax/2)

qxax/2

)2 (

sin (qyay/2)

qyay/2

)2

, (5.5)

where ax and ay are the slit width and height, respectively. Typical results of the
fit for different slit separations are shown in Figure 5.12 (b-d). As a result of the
fitting procedure the absolute value of the complex coherence factor |γ12| was obtained
for each slit separation for both the horizontal and vertical directions (see Figure 5.13
). During this analysis we found, that the values of |γ12| do not vary significantly
between different diffraction patterns, measured with the same slit separation. Contrary
to the measurements presented in chapters 5.1 and 5.2 this experiment was conducted
in nondestructive regime that allowed to carefully align the slits for each measurement.
An average over several pulse trains produces a single diffraction pattern. To compare
the obtained values of the complex coherence factor with the intensity distribution we
plotted on the same figure the intensity distribution. It was obtained by rescaling the
experimental results reported in reference [47] to a 20 m distance from the source.

The obtained values of the degree of coherence were approximated by a Lorentzian
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Figure 5.12: Results of a double-slit experiment. (a) A typical data set measured on the
detector with vertical slits of 150 µm separation. Each image is a result
of an accumulation of ten pulses. The framed region in the image of three
pixels wide was used for further analysis. (b-d) Results of the fit (solid lines)
to experimental data (points) for different slit separations d=150 µm (b),
d=300 µm (c), d=600 µm (d) in the horizontal direction. The error bars of
the data are less than 3 % and are smaller than the symbols used to represent

the data. The error metric defined as E =
∑N

i=1

(

Iexp
i − Ifit

i

)2 /
∑N

i=1

(

Ifit
i

)2

was less than 0.002 for all fits.

function

L(x) =
1

1 +
(

x
ξ

)2

with parameters ξH = 300 ± 15 µm and ξV = 250 ± 13 µm, which can be considered as
an estimate of the coherence length at that distance from the source. These estimates
show that the coherence properties of the FEL are of the same order of magnitude in
both vertical and horizontal directions, though slightly higher in the horizontal direc-
tion. However, a comparison with our GSM simulations in chapter 3.3.2 shows that the
measured values of the degree of coherence for different slit separations are considerably
lower than ultimately predicted by the model (see Figure 3.12 (d)). The apparent source
size corresponding to the experimentally found values for the coherence lengths can be
calculated using the GSM. The analysis gives a value of σ = 180 µm, which is about 2.5
times larger than considered in our theoretical modelling. This size is in good agreement
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Figure 5.13: Modulus of the CDC as function of slit separation in the horizontal (circles)
and vertical (squares) directions obtained as a result of the fit to experi-
mental data. A Lorentzian fit to the obtained values of |γ(∆x)| is shown
by solid (vertical direction) and dash (horizontal direction) lines. The in-
tensity distribution scaled from the results of the reference [47] is shown in
the inset.

with the source size observed with the wavefront sensor at similar operating conditions
of FLASH [130].

5.4 Coherence measuremens at FLASH using a uniformly

redundant array [93]

A single double pinhole (or slit) coherence measurement yields the complex coherence
factor at a certain separation, the pinhole separation. A full characterization of the CDC
requires a number of double pinhole measurements with varying pinhole separations. The
complete coherence function can also be measured using other techniques, including x-
ray grating interferometry [131], phase space tomography [132, 133] and methods, which
employ statistical (Brownian) motion of scattering objects [134]. However, similar to the
Young’s double pinhole experiments, these techniques require a number of measurements.

There is considerable interest to fully characterize the transverse coherence properties
of the radiation from a single diffraction pattern. Such a technique can be applied to
measure the coherence of single FEL pulses or provide a fast and effective coherence
measurement at synchrotron sources. To probe the degree of coherence at different sep-
arations in a single interferogram, a scattering structure with more slits or scatterers
can be utilized. The diffraction pattern of an arbitrary aperture illuminated by partially
coherent, narrow bandwidth light can be written as a convolution of the Fourier trans-
form of the CDC, γ(q), and the diffraction pattern produced by fully coherent radiation
Icoh(q) [135, 136, 70]

I(q) = γ(q) ⊗ Icoh(q), (5.6)

where ⊗ denotes the convolution operation. The inverse Fourier transform of this expres-
sion gives the values of the complex degree of coherence γ(∆r) for different separations
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//

Figure 5.14: The layout of the PG2 beamline (Reproduced from [139]) and the SEM
image of the URA aperture used during the coherence measurements.

of points ∆r = r2 − r1,
γ(∆r) = I(∆r)/Icoh(∆r) (5.7)

where Icoh(∆r) is the inverse Fourier transform of Icoh(q).
According to Equation (5.7), the knowledge of Icoh(∆r) and the measurement of the

diffraction pattern produced by a partially coherent beam provides a way to obtain the
CDC γ(∆r) of the radiation incident on the aperture. To optimize this measurement,
the aperture can be refined to find the best functional form of Icoh(∆r). It can be shown
[137, 115] that in the far field, given a known incident wavefront and beam intensity
profile, a measurement with a uniformly redundant array (URA) [138] as the aperture
is an exemplary tool for diffraction-based coherence measurements. A URA consists of
slits, which are arranged such, that on a finite grid every slit separation is present an
equal number of times. It follows directly from Equation (5.7) that the CDC can be
determined for all relative distances from the smallest separation within the URA up to
the size of the URA aperture in a single measurement.

A drawback of a URA measurement is the fact, that the analysis requires a precise
knowledge of the function Icoh(q). This function, however, depends on the properties of
the incident radiation, such as intensity profile and the wavefront curvature. Different
methods can be applied to determine Icoh(q). One can simulate the properties of the
incident beam and find Icoh(q) by propagating the incident field through the URA
structure and through free space to the detector using for example Equations (2.3,2.10).
Another possibility is to use an aperture and to filter out the coherent part of the beam
further upstream and to measure Icoh(q) on the detector using the same experimental
apparatus.

The incident wave field has to be known, because each slit separation appears an
equal number of times, but not only once. The double slit interference patterns from
different positions within the whole aperture interfere in the plane of observation and a
straightforward analysis without the knowledge of the wavefront is not possible. Instead
of URAs non redundant arrays (NRA) [140, 141] can be used. There each slit separation
is used only once and the wavefront curvature can be reconstructed from the interference
pattern. However, also in an NRA measurement the intensity profile has to be known
[140, 141].
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Figure 5.15: The total intensity distribution (left) and the intensity distribution of the
lowest nine contributing modes (right) calculated in the focus of the PG2
beamline. The length of the scale bar is 20 µm. The contribution of the
modes is the same as at the source shown in Figure 4.7.

We have used a URA to completely characterize the transverse coherence proper-
ties of individual FLASH pulses. The experiment was conducted at the plane grating
monochromator beamline PG2 [139] at FLASH, where we measured the transverse co-
herence of the third harmonic (wavelength 2.7 nm) of the fundamental harmonic at a
wavelength of 8 nm [93]. The beamline consists of 1 distribution mirror and a monochro-
mator comprised of a collimating mirror, plane mirror ,plane grating, focusing mirror
and an exit slit. The monochromatic beam is focused by a spherical mirror on the sam-
ple position 71.6 m downstream of the source. A schematic sketch of the beamline is
shown in Figure 5.14 and an overview of the optical elements present in the beamline
is shown in Table 5.1. To measure the coherence properties of the third harmonic the
plane grating was set to its first order.

A one dimensional URA pattern was generated using the algorithm described in [138]
6. The sample was a combination of three copies of the URA shifted in the vertical
direction. The horizontal size of the URA was 50.5 µm, the smallest slit width and the
smallest slit separation were both 0.5 µm. The vertical size was 18 µm, a slit width of
4.8 µm and a slit separation of 6.5 µm (see inset in Figure 5.14). The URA structure
was manufactured7 on a 100 nm thick silicon nitride membrane coated with 600 nm of
gold and 200 nm of palladium by focused ion beam (FIB) milling. An SEM image of the
complete structure is shown in Figure 5.14. The aperture was positioned in the focus
of the beam, and the diffracted radiation was detected using a CCD camera 0.53 m
downstream of the sample (see Figure 5.14).

For quantitative analysis of the URA measurements, the beam properties in the focus
of the PG2 beamline were simulated for a wavelength of 2.7 nm. We considered the
same source parameters as described in Section 3.3.2, i.e. a source size of 68 µm and a
transverse coherence length at the source of 62 µm. This choice of source parameters is
motivated by GENESIS simulations, which show that the source size of the fundamental

6The dimension parameter r = 103 was used.
7The structure was manufactured by D. Stickler in the group of H-P. Oepen at the University of

Hamburg.
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Figure 5.16: The transverse coherence properties of the radiation in the focus of the PG2
beamline for horizontal direction. The modulus of the CSD, |W (x1, x2)| (a)
the modulus of the SDC |µ(−∆x/2, ∆x/2)| as a function of separation ∆x
(b). The inset in (b) shows the respective spectral density profile. The
coherence properties in vertical direction are identical.

and the third harmonic are similar [127]. We applied the general scheme of propagation
presented in Section 4.3 to calculate the coherence properties in the focus of the PG2
beamline. The propagation of individual modes Es

jj′(x, y) from the source to the obser-
vation plane was carried out using a conventional wave propagation code PHASE [143].
Perfect optics were assumed in our simulations.

As a result of these calculations the total spectral density distribution (or intensity
profile in case of a monochromatic beam) and the lowest nine modes in the focus of the
PG2 beamline are shown in Figure 5.15. The structure of the modes looks similar to the
modes calculated at the source (see Figure 4.7), which is reasonable, since perfect optics
have been assumed in our simulations. The simulated transverse coherence properties in
the focus of the beam are presented in Figure 5.16. The CSD in the horizontal direction
was calculated according to (4.16). The absolute values of this function are shown in
Figure 5.16 (a). The corresponding modulus of the SDC, |µ(∆x)|, is shown in Figure

Table 5.1: The layout of the PG2 beamline. The parameters for the monochromator
[142] used in the calculations are shown in brackets.

element distance from incidence Radius
the source angle (surface)

plane mirror 45 m 2 deg
toroidal mirror 49 m 2 deg 718.8 m/ 3.63 m

plane mirror 55.4 m 1.039 deg
plane grating 55.5 m 2.75 deg

sagittal mirror 57.5 m 2 deg 0.698 m
toroidal mirror 69.5 m 2 deg 57.3 m / 0.093 m

focus 71.5 m
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Figure 5.17: (a,b) URA diffraction patterns measured with different single pulses shown
in logarithmic intensity scale. (c) The diffraction pattern Icoh(q) calculated
in Fresnel approximation for the URA shown in Figure 5.14. (d) The inverse
Fourier transforms I(∆x) and Icoh(∆x) of I(qx) and Icoh(qx) shown in (a,c).
The analyzed region is shown by black rectangles. (e) The modulus of the
CDC, γ(∆x) as a function of separation ∆x determined from the single pulse
diffraction pattern (a) using Equation (5.7) (red solid line). A Gaussian fit
is shown by blue dashed line. The scale bar in (a-c) is 1 mm wide.

5.16 (b). The SDC is perfectly fit by a Gaussian with a transverse coherence length of
10 µm in the horizontal direction. The inset of Figure 5.16 (b) shows the spectral density
profile in the horizontal direction. The rms width of the beam is 11 µm. A wavefront
curvature of R = 4.8 m in the horizontal direction for the most dominant TEM00 mode
was found. The coherence properties in horizontal and vertical direction are identical,
therefore only horizontal direction is presented.

For the URA analysis the coherent diffraction pattern Icoh(q) was calculated in Fresnel
approximation using Equations (2.10,2.3). The aperture transmission function T (r) with
a value of T (r) = 1 for the transmission region and a value of T (r) = 0 for the opaque
region was obtained from the SEM image of the URA shown in Figure 5.14. The incident
beam properties determined through simulations in the horizontal direction were used:
a beam size of σf = 12 µm and a wavefront curvature of R = 4.8 m. To calculate Icoh

the CDC was set to 1 everywhere γ(∆r) = 1, i.e. ξ ≫ σ. According to Equation (5.7)
the intehsity profile of the partially coherent and coherent beam are the same.

Fifty single shot diffraction patterns in each direction were recorded and analyzed
using Equation (5.7). The analysis of a typical single shot interferogram is shown in
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Figure 5.18: The analysis of URA diffraction patterns for different individual FLASH
pulses.

Figure 5.17. The measured I(q) and the calculated Icoh(q) diffraction patterns are
shown in Figure 5.17 (a,b) and (c), respectively. The rectangular region (indicated by a
black box) in the image (seven pixels high) was averaged to determine I(qx) and Icoh(qx).
The inverse Fourier transforms I(∆x) and Icoh(∆x) of the intensities I(qx) and Icoh(qx)
are shown in Figure 5.17 (d). The modulus of the CDC |γ(∆x)| as a function of the
separation ∆x in the horizontal direction was determined for this individual FLASH
pulse by applying Equation (5.7) and is shown in Figure 5.17 (e) by the red line. The
experimentally found |γ(∆x)| is well reproduced by a Gaussian N · exp(−∆x2/[2ξ2

f ])
(blue dashed line in Figure 5.17 (e)). The fit parameter N was introduced to normalize
|γ(∆x)| to unity at ∆x = 0. A transverse coherence length of ξf = 9.0 ± 0.1 µm was
found for this particular pulse.

The same analysis was performed for all measured data. In a large number (27 out of
50) of single shot measurements two superimposed diffraction patterns shifted by a small
distance with respect to each other were observed (see Figures 5.17 (b)). The direction
and magnitude of this shift in different recorded diffraction patterns appears to be un-
correlated. The analysis of these diffraction patterns yields an oscillatory behaviour of
|γ(∆x)|. The possibility that unintentionally two FLASH pulses were measured in one
diffraction pattern was excluded during the measurement by reducing the fast shutter
opening time to a value, which was significantly smaller than the time between two
consecutive pulses from FLASH. A possible explanation for the appearance of the su-
perposition of two diffraction patterns could be the presence of two spatially separated
sources in the FLASH undulator which both contribute to a single FEL pulse. An indi-
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Figure 5.19: The analysis of the URA diffraction patterns for different individual FLASH
pulses. Each circle represents a transverse coherence length determined
from the Gaussian fit to the modulus of the CDC |γ(∆x)| (see Figure 5.18).
The mean value (black solid line) and the rms deviation (blue dashed lines)
of all values are shown. The error bars are smaller than the symbols used
to represent the results.

cation of two sources at FLASH was also observed during beam position measurements
in the far field [142].

In total 15 out of 50 pulses produced clean diffraction patterns with a high signal8.
In Figure 5.18 we present the modulus of the complex coherence factor in the horizon-
tal direction for some of these FEL pulses. It can be seen in Figure 5.18 that |γ(∆x)|
is well approximated by a Gaussian function for each FEL pulse. The transverse co-
herence length ξf was obtained for each analyzed pulse and is shown in Figure 5.19.
The values vary from shot to shot between ξf = 6.2 ± 0.1 µm (Figure 5.18 (d)) and
ξf = 13.5 ± 0.2 µm (Figure 5.18 (b)). The average over 15 single shot values of the
transverse coherence length is ξ̄f = 9.8 ± 2 µm. For the majority of these (10 out of 15)
the transverse coherence length lies within the error bar of the average value (see Figure
5.19).

We compared the experimentally determined values with our simulations performed
using the coherent mode decomposition. Both the measured and the simulated modulus
of the CDC |γ(∆x)| are well reproduced by Gaussian functions. The measured transverse
coherence length ξ̄f = 9.4 ± 2 µm and the calculated value ξf = 10 µm are in good
agreement. The simulated rms beam width of σf = 12 µm concords with beam size
measurements at a distance of 0.37 m downstream of the source (see Appendix A.9). The
experimental data, however, indicate a slightly larger focus size. The agreement between

8The remaining 8 diffraction patterns were neglected in the analysis due to poor statistics in the
diffracted signal.
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Figure 5.20: The impact of the wavefront curvature on the analysis of the URA diffrac-
tion patterns. The ”experimental” diffraction pattern I(q) in (5.7) is calcu-
lated using a Gaussian Schell-model beam with ξf = 10 µm, σf = 12 µm,
and R = 4.8 m. The coherent (ξf = ∞) diffraction pattern Icoh(q) was
simulated with σf = 12 µm and R = 4.8 m (black solid line), σf = 12 µm
and R = ∞ m (red solid line), σf = ∞ µm and R = 4.8 m (green solid
line), and σf = ∞ µm and R = ∞ m (blue solid line). A Gaussian fit to
the blue circles is shown by the blue dashed line.

the measured and the simulated values is surprising, as we used source parameters in the
simulations, which were determined at a different wavelength. It is very likely that during
the measurement the source parameters were different. Nevertheless, the agreement
between the experimental and theoretical results shows that the assumption made for
the theoretical simulations were not too far off from the real situation.

The impact of the intensity profile and the wavefront of the incident beam on the
CDC determined in a URA measurement was analyzed. In particular, we replaced the
experimental diffraction pattern I(q) with a simulated pattern. A beam size, transverse
coherence length, and wavefront curvature of σ = 12 µm, ξ = 10 µm and kx2/(2R)
with R = 4.8 m, respectively, were used to calculate I(q). These values were deter-
mined through the mode decomposition method (see Figure 5.16). This ”experimental”
diffraction pattern was analyzed exactly in the same way as the measured data, i.e. us-
ing Equation (5.7). The analysis was performed four times with varying conditions to
calculate Icoh (see Figure 5.20).

1. σ = 12 µm, ξ = 10 µm, R = 4.8 m (input values)

2. σ = 12 µm, ξ = 10 µm, R = ∞ m (incorrect wavefront)

3. σ = ∞ µm, ξ = 10 µm, R = 4.8 m (incorrect beam size)

4. σ = ∞ µm, ξ = 10 µm, R = ∞ m (incorrect beam size and wavefront).
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Figure 5.21: (a) Sum of all measured diffraction patterns. The rectangular area in the
center is 7 pixel high and shows the analyzed region. (b) The average
modulus of the CDC |γ(∆x)| (red line) determined from the diffraction
pattern in (a). A Gaussian function with ξf = 5 µm (blue dashed line) is
also shown. The scale bar in (a) is 1 mm wide.

It is readily seen in Figure 5.20 that the determined CDC depends on both the intensity
and the wavefront curvature of the parameters of the incident radiation, used in the
analysis. The analysis with the correct beam parameters yields the CDC, which was
used as the input of the simulation (black line). We also see in Figure 5.20 that the
wavefront is not significant in our case. The red curve obtained with an incorrect wave-
front in the analysis deviates just slightly from the input CDC shown by the black line.
In our simulation the intensity distribution has a larger impact on the URA analysis
(blue and green curves in Figure 5.20). Both curves show strong modulations, which
appear as a result of inhomogeneous illumination of the slits within the URA structure.
The Gaussian fit (blue dashed line in Figure 5.20) to |γ(∆x)| obtained in the worst case,
when both beam size and wavefront curvature are wrong (blue line in Figure 5.20), yields
a transverse coherence length of 9.5 ± 0.1 µm. This number is about 5% smaller than
the simulated transverse coherence length ξ = 10 µm. The analysis of all measured data
with the plane wave approach provides slightly lower values for the transverse coher-
ence length. However, the discrepancy of these values is less than 5% for all measured
diffraction patterns.

We have also estimated the average transverse coherence length of all 50 measured
pulses, including the pulses being generated by two sources. The average diffraction
pattern (see Figure 5.21 (a)) was analyzed using the procedure, which was used for the
analysis of single pulse diffraction patterns. The modulus of the CDC obtained from the
average diffraction pattern is shown in Figure 5.21. We note that the functional form
cannot be reproduced by a single Gaussian, however, the transverse coherence length
can be estimated to be about 5 µm. The average transverse coherence length is reduced
by a factor of two as compared with single shot diffraction patterns.

The decrease of the coherence length is possibly due to the mirror imperfections and
small positional uncertainties of the FEL beam. Each shot ’sees’ a different part of the
mirror and an average over many shots smears out the features measured on the detector
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and reduces the effective coherence length. Additionally to the surface imperfections of
the optical elements, radiation at a wavelength of 2.7 nm is strongly absorbed by the
carbon mirror coatings. This might introduce additional phases on each mirror. Another
explanation is the presence of two sources in the FEL beam (see comment on page 102).
In the single shot analysis we considered only clean diffraction patterns, where only one
source was observed. During the averaging procedure we consider all measured pulses
and obtain an average coherence length of two sources, which is smaller than the value
determined from clean patterns.

5.5 Intensity correlations

More than half a century ago Hanbury Brown and Twiss have demonstrated [63, 2] that
measurements of intensity fluctuations of light from a chaotic source at two separated
spatial positions carry information on the coherence and hence the size of the source.
These pioneering experiments initiated developments in the field of quantum optics [64].
Nowadays similar principles are used in the analysis of correlations in the systems of
ultra-cold atoms forming Bose-Einstein condensates [65]. The core idea of the Hanbury
Brown and Twiss experiment is to measure the second-order correlation function (2.18)9

Γ(2)(r1, r2, ; t1, t2) = 〈E∗(r1, t1)E
∗(r2, t2)E(r2, t2)E(r1, t1)〉 =

= 〈I(r1, t1)I(r2, t2)〉 .
(5.8)

They measured the intensity fluctuations at two detectors positioned at separated points
r1 and r2 as a coincidence effect. The time resolution of the detectors was good enough
to resolve the fluctuations of the radiation. With a not sufficient time resolution average
intensities 〈I(r, t)〉T instead of the instantaneous intensities I(r, t) appear in (5.8) and
Γ(2)(r1, r2; t1, t2) approaches a constant value given by 〈I(r1, t1)〉T 〈I(r2, t2)〉T .

For chaotic light obeying Gaussian statistics Equation (5.8) reduces to [46, 144]

Γ(2)(r1, r2; τ) = 〈I(r1, t)〉〈I(r1, t)〉
(

1 + |γ(r1, r2; τ)|2
)

(5.9)

where τ = t2−t1 and γ(r1, r2; τ) is the CDC defined in (2.17). Therefore, a measurement
of the normalized second order correlation function (2.19)

γ(2)(r1, r2; τ) =
Γ(2)(r1, r2; τ)

〈I(r1, t)〉〈I(r1, t)〉
= 1 + |γ(r1, r2; τ)|2

yields the absolute value of the first-order correlation function, γ(r1, r2). Hanbury Brown
and Twiss have measured the transverse coherence properties of the light from a star,
and have used the van Cittert-Zernike theorem to determine the size of the star. The
success of their method is based on the fact, that intensity measurements are not sensitive
to phases, as they are simply not measured. The phase fluctuations introduced during

9For brevity we write Γ(2)(r1, r2; t1, t2) instead of Γ(2)(r1, r1, r2, r2; t1, t1, t2, t2).
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the propagation through the atmosphere made amplitude based stellar interferometry
extremely challenging.

Later it was suggested by Ikonen [145] that measurements of intensity correlations can
be extended from stationary to pulsed sources. He pointed out that the pulse duration
defines the time resolution of the measurement and has estimated the impact of a finite
pulse duration on the outcome of the second-order correlation function [145]

γ(2)(r1, r2) = 1 +
τc

2T
|γ(r1, r2)|2, (5.10)

where τc is the coherence time of the radiation and T is the pulse duration10. It follows
from (5.10) that the ratio between the coherence time τc and the pulse duration T
has to be sufficiently high in order to determine the first order correlation function. In
particular Ikonen proposed to measure intensity correlation at synchrotron sources, with
their pulse durations of less than 100 ps and the ability to achieve a comparably high
coherence time using monochromators.

This approach was demonstrated at synchrotron sources [146, 147], where an ultra
high-resolution monochromator (∆E = 120 µeV at E = 14 keV) was used to obtain
a coherence time comparable with the 30 ps single pulse duration at the SPRING8
synchrotron source. Fast avalanche photo diode detectors were used in [146, 147] to
discriminate different bunches from the synchrotron.

Both difficulties present at the synchrotron sources may be overcome at FEL sources:

• The pulse duration at FEL sources is about three orders of magnitude shorter than
the pulse duration at synchrotron sources and intensity correlation measurements
seem to be feasible. Typically, in the hard x-ray regime the ratio τc/2T is about
10−3. However, a monochromator can be used to reduce the bandwidth and to
increase the coherence time. For instance, with a pulse duration of about 100 fs
and a bandwidth of ∆E/E = 10−4 at a photon energy of 12 keV, the ratio τc/2T
will be about 0.01. As will be shown later this value should be sufficiently high to
determine the correlation function from the intensity correlation measurement.

• Another important issue is that at FEL sources the time between consecutive
pulses can be arbitrarily chosen. Then a pixelated detector with comparably poor
time resolution can be used, and a coincidence measurement between all measured
intensity positions (individual pixels) can be performed simultaneously. From the
same dataset higher order correlation functions Γ(n) for n > 2 can be easily calcu-
lated.

According to FEL theory [44, 68] in the linear regime of operation FEL sources obey
Gaussian statistics, and the second-order correlation function is expected to have the
form of Equation (5.10). An ensemble of pulses in the frame of the Gaussian statistics,
which mimics a FEL in linear regime, was simulated and analyzed. We utilized the

10In ref. [145] the pre factor τc/T appears in formula 5.10. It is, however, not specified which definition
of the coherence function was used. We will see later in Figure 5.23 (a), that the ratio τc/2T provides
the proper scaling in our simulations.
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Figure 5.22: An individual radiation pulse generated with the method described in Ap-
pendix A.3. (a) The intensity and the (b) phase of the field E(θx, ∆ω) as a
function of the angle θx = qx/k and ∆ω = ω − ω0. The same quantities for
the field E(x, t) (c,d). (e) The spectrum S(∆ω) =

∫

|E(θx, ∆ω)|2dθx and
(f) the intensity profile I(θx) =

∫

|E(θx, ∆ω)|2d∆ω are also shown. The
scale in (a,b) and (c,d) are identical.

approach described in the Appendix A.3 (see Equation (A.16)), to generate a large
statistical ensemble of pulses. We then applied the intensity correlation analysis to
this ensemble. We used parameters of FLASH (see chapter 3.3.2) with a wavelength of
13.5 nm, a source size of σ = 68 µm, and a transverse coherence length of ξ = 62 µm.
We assumed a FWHM bandwidth of ∆ω/ω0 = 1%, which is typical for FEL sources
at this photon energy and T = 21 fs, which corresponds to a FWHM pulse duration of
50 fs. The field E(θx, ∆ω) as a function of the scattering angle θx = qx/k in the far
field and ∆ω = ω − ω0 is shown in Figure 5.22(a,b). The field of the same pulse E(x, t)
as a function of the source position x and time t is shown in Figure 5.22 (c,d). It is
readily seen from this figure that the field is partially coherent in space and time. From
the structure of the ’speckles’ in the intensity profile in x direction we estimate that
the width of a single ’speckle’ is about five times smaller than the width of the beam.
This indicates that about five transverse modes are present in the beam, in agreement
with the results in 3.3.2. The structure of the field in the spectral domain ∆ω is slightly
different. There are about twenty modes present. As such, the transverse coherence of
the pulse is higher than its temporal coherence. It is worth noting that the area where
the amplitude is approximately constant coincides with the size of the ’speckles’ in the
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Figure 5.23: Intensity correlation analysis. The second order correlation function

γ(2)(∆θx)− 1 determined from an average over 100 pulses (red circles), 500
pulses (green circles), 2500 pulses (blue circles), 25000 (black circles) pulses
are shown. The black line shows the same function calculated according to
(5.10). The intensity profile determined from the same number of pulses
marked with the same colors as in (a) is shown in (b) for an average of 100
pulses.

intensity distribution. This is a characteristic of a chaotic ensemble, as mentioned above,
and is the origin of the relation (5.9) [144].

The single pulse spectrum defined as S(∆ω) =
∫

|E(θx, ∆ω)|2dθx and the intensity
profile I(θx) =

∫

|E(θx, ∆ω)|2d∆ω are presented in Figure 5.22 (e) and (f). The longi-
tudinal mode structure is well visible in the spectrum. In the average intensity profile
(Figure 5.22 (f)), however, the mode structure is suppressed. An average over a high
number of longitudinal modes smears out the structure of the transverse modes. If the
pulse would be longer and the bandwidth remained the same an even higher smearing
would be observed in (Figure 5.22 (f)). In the limit T ≫ τc the mode structure vanishes
and an intensity correlation analysis is not possible, in agreement with (5.10).

The results from the intensity correlation analysis of the ensemble of the generated
statistical pulses are shown in Figure 5.23. A total ensemble of 25000 pulses was gener-
ated and different portions of this ensemble were analyzed separately. The normalized
second order correlation function calculated from 250 different ensembles of 100 pulses,
50 ensembles of 500 pulses, 10 ensembles of 2500 and from one ensemble of 25000 pulses is
shown in Figure 5.23 (a). The standard deviations between values found during the anal-
ysis of different ensembles were considered as the errorbars. For comparison, γ(2)(∆θx)
calculated using Equation (5.10) is also shown. It can be seen that in our simulation
about 500 pulses are sufficient to estimate the transverse coherence properties of the
radiation and the errors are small. The values determined from the total ensemble of
25000 pulses reproduce well the analytical formula (5.10). The intensity distribution
of the same ensemble of pulses is shown in Figure 5.23 (b). There 100 pulses give a
sufficient estimate of the intensity distribution.

The same analysis was performed for a varying bandwidth of the radiation, which
can be adjusted by a monochromator. Five different values of the bandwidth in the
range between 1% and 0.1% were simulated, while the pulse duration was fixed. The
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Figure 5.24: Intensity correlation analysis for a varying bandwidth. (a) The second order

correlation function γ(2)(∆θx) − 1 determined from an average over 5000
pulses for a FWHM bandwidth σFWHM of 1% (black line), 0.31% (red line),
0.18% (green line), 0.13% (blue line), and 0.1% (cyan line). (b) The values
γ(2)(0) − 1 as a function of the coherence time τc = 1/σf . From the linear
fit (blue line) we determine a pulse duration of T = 22.2 ± 1.4 fs.

second order correlation function determined from 5000 shots for each magnitude of
the bandwidth is shown in Figure 5.24. All curves yield the same transverse coherence
length, they have, however, a different value at ∆θx as expected from Equation (5.10).
We analyzed the ratio

τc

2T
= γ(2)(0) − 1

for different values of the bandwidth, which correspond to different coherence times τc,
and determined the pulse duration T (see Figure 5.24). A linear fit through the found
values yields a pulse duration of T = 22.2 ± 1.4 fs, which agrees well with the initial value
of T = 21 fs. A similar approach was used in [147] to characterize the pulse duration of
the synchrotron radiation.

Finally, the intensity correlation method can be effectively applied to measure the
transverse coherence properties of beams generated at an FEL operating in the linear
regime. These measurements for a varying bandwidth also provide the average pulse
duration of the radiation. This method might be especially effective in characterizing
the pulse durations of very short pulses, as shorter times increase the contrast in the
measurement. Importantly, the experimental arrangement is simple and 5000 pulses
can be accumulated in 10 minutes, provided the FEL operates with a repetition rate of
10 Hz.

Additionally, by a measurement of higher order correlation functions in the saturation
or nonlinear regime one might investigate whether the FELs possess coherence of orders
higher than one in the x-ray regime. Using the method outline above we can easily
calculate the correlation function for order shigher than two, as the intensity in each
detector pixel are available. This can be used to find out whether FELs obey Gaussian
statistics or not. Second and higher order intensity correlation functions at FLASH
were measured recently [148]. In these experiments we demonstrated the high transverse
coherence properties of FEL beam that makes it similar to laser sources. At the same
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time, we have seen that FEL radiation obeys Gaussian statistics in non-linear regime
that makes it similar to chaotic sources.
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Theoretical investigation

We have applied a general theoretical approach based on the results of statistical optics
to describe the correlation properties of fields generated by third generation synchrotron,
FEL and next generation synchrotron sources. Assuming stationary radiation, we have
substituted a real source by an equivalent planar Gaussian Schell-model (GSM) source
with the same size and divergence as a real source. This phenomenological approach
characterizes the source with four parameters, the source size and its transverse coher-
ence length in the horizontal and vertical direction. It can be used to propagate the
correlation functions to different distances from the source, including the propagation
through thin optical elements, with simple analytic functions. The size of an x-ray beam
and its coherence length can be estimated at any distance from the source. As this
approach is mostly suited for the description of synchrotron sources we have established
limits of the applicability of the GSM for these sources. We found that at the state of the
art third generation synchrotron source PETRA III the GSM can be applied to precisely
calculate the coherence properties of wave fields at x-ray energies higher than 3 keV. At
less brilliant sources the GSM yields realistic estimates at even lower photon energies.
Additionally, an analytical description of focusing of partially coherent radiation has
been developed. This method was used to calculate coherence properties near the focus
of the P10 beamline at PETRA III, which concord well with experimental beam size
measurements.

The GSM was also used to estimate the coherence properties of planned new generation
x-ray sources. We found, that with the anticipated electron beam parameters highly
coherent photon beams with a total degree of coherence of about 30% can be expected
in the hard x-ray regime.

We have investigated whether the approximation of stationary radiation is applicable
to pulsed sources, which is especially questionable at FEL sources with their ultrashort
pulses. We have shown that the temporal coherence does not influence the spatial
coherence (and vice versa) of x-ray wave fields during propagation in free space for all
realistic sources available today and in near future. As such, in the x-ray regime the
propagation laws for the coherence functions well known for stationary fields can be
applied to propagate the wave fields generated at pulsed sources. This is in contrast to
the radiation fields produced by optical lasers, where a coupling between temporal and
spatial coherence may occur during propagation.

Theoretical investigations of highly coherent fields generated at FELs were performed
using the mode decomposition of the correlation functions. We found, that sources as
coherent as FELs can be described by a small number of contributing modes. We have
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also presented a computational method, which is based on the mode decomposition and
allows to calculate the transverse coherence properties as well as the beam intensity
profile of partially coherent radiation at any position in a beamline. Our approach
can be easily implemented, since it is based on wavefront propagation, for which several
powerful computational methods are already developed. The important extension to the
conventional wave propagation methods is the consideration of all contributing modes.
We applied this method to calculate the propagation of the correlation properties for two
realistic examples. We also demonstrated that the modes and their contributions can be
readily found numerically, if the correlation function at the source is known. This means,
that the mode decomposition approach can be used to simulate the characteristics of
realistic FEL beams, determined for example in detailed SASE calculations.

Experimental characterization of coherence at FELs

We have conducted several experiments to characterize coherence properties of FEL
sources. The coherence properties of the LCLS using the focused soft x-ray beam at a
photon energy of 780 eV were measured. The beam at LCLS is highly coherent, however,
not fully coherent. The total degree of transverse coherence was found to be 56%, from
which we estimate that 78% of the total power is contained in the dominant mode.
Furthermore, the temporal coherence of the LCLS beam was measured to be 0.55 fs,
in good agreement with an averaged LCLS spectrum at these energies. We have also
estimated the degeneracy parameter of the LCLS radiation to be in the range of 1010 to
1011. This value is in good agreement with 1010 − 1014 predicted from detailed SASE
simulations [44]. This number is significantly larger than at any other existing sources
operating at this photon energy range and is comparable with the degeneracy parameter
of conventional optical lasers.

We have also measured the transverse and longitudinal coherence properties of the
XUV free-electron laser FLASH. We have experimentally verified that the transverse
coherence length is similar in both directions. From our measurements we conclude that
the focused FLASH beam is highly coherent with a total degree of transverse coherence
of about 40%. A mode decomposition has shown that about 60% of the total power is
concentrated in the fundamental mode. The temporal coherence was measured to be
1.8 fs. The degeneracy parameter of the FLASH was found to be in the range of 1010 to
1011, similar to LCLS.

In 2009 FLASH went through a major upgrade, where, along with another electron
energy upgrade yielding photon wavelengths down to about 4 nm, a 3rd harmonic accel-
erator module was installed, in order to improve the capabilities for longitudinal electron
bunch compression and in this way enhance the machine stability. This led to a higher
stability of the FEL operation at the expense of longer pulse durations, typically around
100 fs. Our measurements before and after the upgrade indicate, that the transverse
coherence has been significantly improved through the upgrade.

We also measured the transverse coherence using uniformly redundant arrays (URA).
This method allows to determine the coherence properties completely from one interfer-
ence pattern. In particular, the transverse coherence properties of the third harmonic
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radiation at a wavelength of 2.7 nm in the water window were analyzed. The results of
these measurements concord well with the simulations performed in the frame of a mode
decomposition analysis. The transverse coherence length of single pulses varies, however,
about 70% of these values lie within the standard deviation of all values. Averaging over
a number of pulses reduced the transverse coherence length by a factor of two. The
apparent drop of the transverse coherence length is possibly due to the impact of optics
imperfections and positional instabilities of the FEL beam.

As an alternative method, we proposed to conduct Hanbury Brown and Twiss ex-
periments at FELs. Measuring the intensity correlations it is possible to determine
the average transverse coherence properties and the average pulse duration of FEL ra-
diation. Analyzing higher order correlation functions gives a deeper understanding of
the quantum statistics of FEL radiation. Using simulations we confirmed, that such
measurements are feasible at FEL sources.

Conclusions

In conclusion, we have presented several theoretical techniques, which can be used to
predict the transverse coherence properties of synchrotron and FEL radiation. These
methods can be effectively used to calculate radiation characteristics at the experimental
stations and will hopefully help the beamline scientists and experimentalists to better
utilize the partially coherent beams at third and fourth generation x-ray sources.

Finally, coherence measurements presented in this thesis lead to a better undestanding
of the high degree of coherence at FEL sources and provide a solid foundation for future
coherence-based experiments that exploit these bright, coherent x-ray beams. These
coherence measurements at FEL sources indicate that almost the full transverse photon
flux is coherent and can be used for coherence-based applications. The degeneracy pa-
rameter was found to be in the range of 1010−1011, which is similar to conventional laser
sources and was never observed at these wavelengths at synchrotron sources. However,
in the time domain FEL and conventional laser sources are fundamentally different. The
former produce pulses with poor temporal coherence, whereas the latter generate fully
coherent pulses. Theory also predicts that SASE FELs are similar to chaotic sources
and therefore can be only coherent in the first order. An intriguing question is whether
seeded FELs will be fully coherent sources in all orders according to Glauber and in
this way be equivalent to conventional single mode lasers. Hanbury Brown and Twiss
experiments may be a tool to answer this question.
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7 List of Abbreviations

CDC Complex Degree of Coherence
CRL Compound Refractive Lenses
CSD Cross Spectral Density
ERL Energy Recovery Linac
ESRF European Synchrotron Radiation Facility
FEL Free-Electron Laser
FLASH Free-Electron LASer in Hamburg
FWHM Full Width at Half Maximum
GSM Gaussian Schell-Model
LCLS Linac Coherent Light Source
MCF Mutual Coherence Function
SASE Self Amplification of Spontaneous Emission
SDC Spectral Degree of Coherence
SEM Scanning Electron Microscopy
XUV Extreme Ultra Violet
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〈· · · 〉 Ensemble average
〈· · · 〉T Time average
ax, ay Slit width and height
c Speed of light
D Pinhole diameter
∆ Expansion coefficient
δ Degeneracy parameter
ε Emittance of the photon beam
εcoh Emittance of the diffraction limited Gaussian photon beam
εe Emittance of the electron beam
Γ(r1, r2, τ) Mutual coherence function
γ Lorentz factor
γ(r1, r2, τ), γ12(τ) Complex degree of coherence
γeff

12 (τ) Effective complex degree of coherence
h̄ Planck constant
I(r) Intensity distribution
k Wave vector
λ Wavelength
µ(r1, r2, ω), µ12(ω) spectral degree of coherence
NA Numerical aperture
Nph Number of photons per pulse
Lu Undulator length
Pz Propagator over distance z
q Degree of transverse coherence
r Spatial position
R Radius of curvature
S(r, ω) Spectral density
σ, Σ Beam size
σ′ Divergence of the beam
t Time
τ Time delay
W (r1, r2, ω) Cross spectral density
ξ,Ξ Transverse coherence length
ζ Normalized degree of transverse coherence
zeff Effective distance, Rayleigh length for coherent radiation
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Mancini, V. Joshi, J. Krzywinski, R. Soufli, M. Fernandez-Perea, S. Hau-Riege,
A. G. Peele, Y. Feng, O. Krupin, S. Moeller, and W. Wurth. Coherence properties
of individual femtosecond pulses of an x-ray free-electron laser. Phys. Rev. Lett.
107,144801 (2011).

6. I. A. Vartanyants, A. Singer, A. P. Mancuso, et al. Coherence properties of an
x-ray free-electron laser, Photon science 2011 (DESY), page 54, (2011).

7. W.F. Schlotter, J.J. Turner, M. Rowen, P. Heimann, M. Holmes, O. Krupin, M.
Messerschmidt, S. Moeller, J. Krzywinski, R. Soui, M. Fernandez-Perea, N. Kelez,
S. Lee, R. Coee, G. Hays, M. Beye, N. Gerken, F. Sorgenfrei, S. Hau-Riege, L. Juha,
J. Chalupsky, V. Hajkova, A.P. Mancuso, A. Singer, O. Yefanov, I. A. Vartanyants,
G. Cadenazzi, B. Abbey, H. Sinn, J. Lüning, S. Schaert, S. Eisebitt, W.-S. Lee,
A. Scherz, A.R. Nilsson, and W. Wurth. The Soft X-ray Instrument for Materials
Studies at the Linac Coherent Light Source X-ray Free-Electron Laser. Review of
Scientific Instruments 83, 043107 (2012).

8. A. Singer, F. Sorgenfrei, A. Mancuso, N. Gerasimova, O. Yefanov, J. Gulden,
T. Gorniak, T. Senkbeil, A. Sakdinawat, Y. Liu, D. Atwood, S. Dziarzhytski, A. Al-
Shemmary, S. Duesterer, R. Treusch, E. Weckert, A. Rosenhahn, W. Wurth, and

118



9 Own publications

I. Vartaniants. Spatial and temporal coherence properties of single free-electron
laser pulses. Optics Express 20, 17480 (2012).

9. A. Singer, U. Lorenz,F. Sorgenfrei, N. Gerasimova, J. Gulden, O. Yefanov, R.
Kurta, A. Shabalin, R. Dronyak, R. Treusch, V. Kocharyan, E. Weckert, W. Wurth,
and I. A. Vartanyants. Hanbury Brown and Twiss interferometry at a free-electron
laser. submitted (2013)

10. A. Singer and I. A. Vartanyants. Coherence properties of focused x-ray beams at
high brilliance synchrotron sources. in preparation

11. A. Singer and I. A. Vartanyants. Coherence properties of x-ray free-electron lasers.
invited Review paper, in preparation

119



9 Own publications

Publications not directly related to the thesis

1. A. P. Mancuso, A. Schropp, B. Reime, L.-M. Stadler, A. Singer, J. Gulden,
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Interferenzerscheinungen bei Röntgenstrahlen. Annalen der Physik, 41 (1913).

[15] W. H. Bragg and B. W. L. Proc. Roy. Soc. Ser. A, 88 (1913).

121



Bibliography

[16] W. H. Bragg and B. W. L. Proc. Roy. Soc. Ser. A, 89 (1913).

[17] W. H. Bragg and B. W. L. Proc. Roy. Soc. Ser. A, 88 (1913).

[18] W. H. Bragg and B. W. L. Proc. Roy. Soc. Ser. A, 88 (1913).

[19] Nobelprize.org. The Nobel Prize in Chemistry 2009 - Advanced Information (2009).

[20] A. C. Thompson and D. Vaughan, editors. X-ray Data Booklet. Lawrence Berkeley
National Laboratory, University of California, second edition (2001).

[21] R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu. Potential for
biomolecular imaging with femtosecond X-ray pulses. Nature, 406, 752 (2000).

[22] H. N. Chapman et al. Femtosecond X-ray protein nanocrystallography. Nature,
470, 73 (2011).

[23] V. Elser. Phase retrieval by iterated projections. J. Opt. Soc. Am. A, 20, 40
(2003).

[24] J. Miao, P. Charalambous, J. Kirz, and D. Sayre. Extending the methodology of
X-ray crystallography to allow imaging of micrometre-sized non-crystalline speci-
mens. Nature, 400, 342 (1999).

[25] M. A. Pfeifer, G. J. Williams, I. A. Vartanyants, R. Harder, and I. K. Robinson.
Three-dimensional mapping of a deformation field inside a nanocrystal. Nature,
442, 63 (2006).

[26] O. M. Yefanov, A. V. Zozulya, I. A. Vartanyants, et al. Coherent diffraction
tomography of nanoislands from grazing-incidence small-angle x-ray scattering.
Applied Physics Letters, 94, 123104 (2009).

[27] A. P. Mancuso, A. Schropp, B. Reime, et al. Coherent-Pulse 2D Crystallography
Using a Free-Electron Laser X-Ray Source. Phys. Rev. Lett., 102, 035502 (2009).

[28] J. Gulden, O. M. Yefanov, A. P. Mancuso, et al. Coherent x-ray imaging of defects
in colloidal crystals. Phys. Rev. B, 81, 224105 (2010).

[29] J. Nelson, X. Huang, J. Steinbrener, et al. High-resolution x-ray diffraction mi-
croscopy of specifically labeled yeast cells. Proceedings of the National Academy
of Sciences, 107, 7235 (2010).

[30] A. P. Mancuso, T. Gorniak, F. Staier, et al. Coherent imaging of biological samples
with femtosecond pulses at the free-electron laser FLASH. New Journal of Physics,
12, 035003 (2010).

[31] M. M. Seibert et al. Single mimivirus particles intercepted and imaged with an
X-ray laser. Nature, 470, 78 (2011).

122



Bibliography

[32] P. Wochner, C. Gutt, T. Autenrieth, et al. X-ray cross correlation analysis uncovers
hidden local symmetries in disordered matter. Proc. Nat. Acad. Sci., 106, 11511
(2009).

[33] M. Altarelli, R. P. Kurta, and I. A. Vartanyants. X-ray cross-correlation analysis
and local symmetries of disordered systems: General theory. Phys. Rev. B, 82,
104207 (2010).

[34] D. K. Saldin, H. C. Poon, M. J. Bogan, et al. New Light on Disordered Ensembles:
Ab Initio Structure Determination of One Particle from Scattering Fluctuations
of Many Copies. Phys. Rev. Lett., 106 (2011).

[35] J. D. Jackson. Classical Electrodynamics. Wiley, 3rd edition (1999).

[36] D. Attwood. Soft X-Rays and Extreme Ultraviolet Radiatio. Cambridge University
Press, 1st edition (1999).

[37] G. Kulipanov, A. Skrinsky, and N. Vinokurov. MARS - a project of the diffraction-
limited fourth generation X-ray source based on supermicrotron. Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 467-468, Part 1, 16 (2001).

[38] A. M. Kondratenko and E. L. Saldin. Generation of coherent radiation by a
relativistic electron beam in an undulator. Part. Accelerators, 10, 207 (1980).

[39] R. Bonifacio, C. Pellegrini, and L. Narducci. Collective instabilities and high-gain
regime in a free electron laser. Optics Communications, 50, 373 (1984).
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A.1 Numerical implementation of the wave propagation in free

space

In this section the numerical realization of the Fresnel approximation is briefly out-
lined. For brevity we omit ω in this section and consider only one transverse direction
E(s, z0) := E(sx, sy = 0, z0; ω) and E(u, z1) := E(ux, uy = 0, z1; ω). The extension of
our discussion to two dimensions is straightforward.

To numerically calculate the field in the plane at z1 (see Figure 2.1) we discretized
Equations (2.3,2.6)

Ez1
n =

∆skeikz

2πiz
eik

(n ·∆u)2

2z

M/2
∑

m=−M/2

(

Ez0
m eik

(m ·∆s)2

2z

)

e−ik
(m ·∆s)(n ·∆u)

z ∆s, (A.1)

where s = m ·∆s, u = n ·∆u, Ez0
m = E(m ·∆s, z0) and Ez1

n = E(n ·∆u, z1) are the
discretized fields in the planes at z0 and z1, and m, n are integer numbers. The number
of grid points is M in both planes and the summation is made over a region, which is
symmetric around the optical axis at m = 0.

It is readily seen that the sum has the form of the discrete Fourier transform. Compar-
ing Equation (A.1) with the definition of the discrete Fourier transform Fn of a function
fm [149]

Fn = DFT{f} =

M−1
∑

m=0

fme−2πi mn
M (A.2)

we see that, apart from the phase factor before the sum, Ez1
n is the Fourier transform of

Ez0
m eik

(m ·∆s)2

2z . The relation between ∆s and ∆u can be found from the comparison of
the exponentials in Equations (A.1,A.2)

2π
mn

M
=

k(m ·∆u)(n ·∆s)

z
⇒ ∆u =

λz

M∆s
.

The only thing we still have to take care of is the ordering of summation which is
different in Equations (A.1) and (A.2). Before and after the discrete Fourier transform
the fields have to be reordered such, that the optical axis is positioned at m = 0 and the
summation is performed from m = 0 → m = M . This reordering operation is known as
fftshift [149].

If Fraunhofer approximation is valid, the quadratic phase term eik
(m ·∆s)2

2z can be
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dropped and

Ez1
n = eik

(n ·∆u)2

2z DFT {Ez0}
Finally, for the practical evaluation of the discrete Fourier transform (A.1) it is con-

venient to use the Fast Fourier Transform (FFT) algorithm [149]. On a single core of
a modern CPU1 the two dimensional FFT of a 2048x2048 array of random complex
numbers can be performed in less than 50 ms.

A.2 The degree of transverse coherence

The degree of transverse coherence is expressed as (2.31)

ζ =

∫∫

|µ(x1, x2)|2S(x1)S(x2)dx1dx2
[∫

S(x)dx
]2 .

After the substitution x = x1, x
′ = x1 + x2 we find

ζ =

∫

|µ(x, x′ − x)|2S(x)S(x′ − x)dxdx′

[∫

S(x)dx
]2 .

For a Schell-model beam µ(x, x′ − x) simplifies to µ(x′). In that case the expression
above is given by

ζ =

∫

|µ(x′)|2 (S ⊗ S) (x′)dx′

[∫

S(x)dx
]2 ,

where ⊗ denotes the convolution operation.
Let us now consider a GSM source (2.40,2.41). Apart from the normalization constant,

which is present in both the numerator and the denominator, the spectral density S(x)
is given by the normalized Gaussian distribution

S(x) =
1√
2πσ

exp

(

− x2

2σ2

)

= N(0, σ),

where σ is the rms size of the beam. The convolution of two normalized Gaussian dis-
tributions N(0, σ1) and N(0, σ2) is known to be also a normalized Gaussian distribution
N(0,

√

σ2
1 + σ2

2). This yields

(S ⊗ S)(x) =
1√

4πσ2
exp

(

− x2

4σ2

)

in the nominator and
∫

S(x)dx = 1 in the denominator. As in the GSM the SDC is
also Gaussian function µ(x′) = exp

(

−x′2/2ξ2
)

, we finally find the degree of transverse

1Intel(R) Xeon(R) CPU, X5570 @2.93GHz
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coherence in the form

ζ =
ξ

√

ξ2 + 4σ2

Introducing the parameter q = ξ/σ (2.45) for GSM sources yields

ζ =
q

√

4 + q2
and q =

4ζ
√

1 − ζ2

A.3 Simulations of single pulses in the frame of Gaussian

statistics

In this chapter we aim to generate an ensemble of individual light pulses with a finite
bandwidth and a finite pulse duration. If the fields from different pulses are independent
and many pulses are calculated, we approach the limit of Gaussian statistics. We follow
up on the idea proposed in [150] to generate partially coherent pulses. The authors of
[150] showed through numerical simulations, that they were able to produce ensembles
of pulses with the same statistical properties as the pulses generated at free-electron
lasers. A similar approach was proposed earlier in [151] to generate chaotic radiation.
Here we develop a solid basis for such an approach and extend this method to the spatial
domain. Eventually, we will present a method to generate individual partially coherent
pulses in space and time.

The idea of the authors of [150] is the following. They generate an initial pulse
E0(ωk) =

√

S(ωk)e
iφ(ωk), where S(ωk) is the average spectrum, ωk = k ·∆ω gives an

equidistant grid of frequencies, and φ(ωk) are independent random numbers in the range
[−π, π) for different ωk. They multiply the Fourier transform of E0(ω) by a filter function,
with its width corresponding to the known FEL pulse duration. Finally, the inverse
Fourier transform of this product describes a pulse with a finite bandwidth and a finite
pulse duration and mimics the statistical properties of FEL pulses.

We start with the initial field E0(ω) in the frequency domain. According to the
sampling theorem an arbitrary complex valued function with a finite width of its Fourier
spectrum T0 can be written as

E0(ω) =
∑

k

E0(ωk)sinc(ωkT0 − ωT0), (A.3)

where sinc(x) = sinx/x, ωk = kπ∆ω, ∆ω = 1/T0 and k is an integer. For ω = ωk we
find E0(ω) = E0(ωk). We choose T0 to be much larger than the pulse duration. Writing

E0(ω) as a product of the amplitude and phase E
(r)
0 (ωk) = Aω(ωk)e

iφ(r)(ωk) we determine

the Fourier transform of E
(r)
0 (ω)

E
(r)
0 (t) = ΠT0(t)

∑

k

Aω(ωk)e
iφ

(r)
k eiωkt, (A.4)
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where

ΠT0(t) =

{

π/T0 for |t| < T0

0 elsewhere

is the Fourier transform of sinc(ωT0) and φ
(r)
k = φ(r)(ωk). Now we multiply the field in

the time domain E0(t) by the pulse envelope which is much narrower than T0 and find
the expressions

E(r)(t) = At(t)
∑

k

Aω(ωk)e
iφ

(r)
k e−iωkt

E(r)(ω) =
∑

k

Ãt(ω − ωk)Aω(ωk)e
iφ

(r)
k

(A.5)

for the field in the time domain and in the frequency domain, respectively. We denote
the Fourier transform of an arbitrary function f by f̃ .

Using Equations (2.89, 2.90) we determine the MCF and the CSD,

Γ(t1, t2) = A∗

t (t1)At(t2)
∑

k

|Aω(ωk)|2e−iωk(t2−t1)

W (ω1, ω2) =
∑

k

Ã∗

t (ω1 − ωk)Ãt(ω2 − ωk)|Aω(ωk)|2.
(A.6)

In both derivations we have assumed that φ
(r)
k are independent uniformly distributed

random numbers in the range [−π, π) for different r, hence [33]

lim
N→∞

1

N

N
∑

r=1

ei(φ
(r)
l

−φ
(r)
k

) = δkl, (A.7)

where δkl is the Kronecker delta. The average intensity, the average spectrum, the CDC
and the SDC are given by

I(t) = |At(t)|2
∑

k

|Aω(ωk)|2

S(ω) =
∑

k

|Ãt(ω − ωk)|2|Aω(ωk)|2

|γ(t1, t2)| =

∑

k |Aω(ω)|2e−iωk(t2−t1)

∑

k |Aω(ωk)|2

|µ(ω1, ω2)| =

∑

k Ã∗
t (ω1 − ωk)Ãt(ω2 − ωk)|Aω(ωk)|2

√

∑

k |Ãt(ω1 − ωk)|2|Aω(ωk)|2
√

∑

k |Ãt(ω1 − ωk)|2|Aω(ωk)|2
,

(A.8)

The shape of the average intensity is determined by |At(t)|2, which means that the
initial and final pulse shapes are identical. It is interesting to note that the final spectrum
is characterized not only by the initial spectrum |Aω(ω)|2 of the field, but is a convolution
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between the initial spectrum and the Fourier transform of At(t)
2. The coherence time is

determined by the inverse width of the initial spectrum of |Aω(ω)|2. As such, the Wiener-
Khintchine theorem (2.26) is not valid, if the width of Ãt(ω) is comparable or larger than
the width of Aω(ω). This limit appears when the pulse duration is comparable or larger
than the coherence time, i.e. for temporally highly coherent pulses. In the other limit,
when the pulse duration is much larger than the temporal coherence time the Wiener-
Khintchine theorem can be applied.

As an example we assume that the initial pulse shape |At(t)|2 and the initial spectrum
|Aω(ω)|2 are both Gaussian

At(t) = a exp

(

− t2

4T 2

)

and Aω(ω) = b exp

(

−(ω − ω0)
2

4Ω2
0

)

.

Substituting these functions in (A.8) we find after some algebra

I(t) = I0 exp

(

− t2

2T 2

)

,

S(ω) = S0 exp

(

− (ω − ω0)
2

2
[

1
4T 2 + Ω2

0

]

)

|γ(t1, t2)| = exp

(

(t2 − t1)
2

2
Ω2

0

)

|µ(ω1, ω2)| = exp

(

−(ω2 − ω1)
2T 4

2T 2 + 1
2Ω2

0

)

.

(A.9)

Defining the coherence time as τc = 1/Ω0 we find that Equations (A.9) are identical to

I(s, t) = exp

(

− s2

2σ2
− t2

2T 2

)

S(s, ω) = exp

(

− s2

2σ2
− (ω − ω0)

2

2Ω2

)

γ(s1, s2, t1, t2) = exp

(

−(s2 − s1)
2

2ξ2
− (t2 − t1)

2

2τ2
c

)

µ(s1, s2, ω1, ω2) = exp

(

−(s2 − s1)
2

2ξ2
− (ω2 − ω1)

2

2Ω2
c

)

,

(A.10)

which describe the statistical properties of GSM pulses for s1 = s2 = 0.
It is worth mentioning that this model only describes situations, where the CDC

depends on the times t1 and t2 through the difference t2 − t1.
This method can be extended to the spatial domain. Applying the sampling theorem

in two dimensions an arbitrary two dimensional complex function with finite Fourier

2This expression is missing in [150], where |Aω(ω)|2 is considered as the final average spectrum.
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spectra in both dimensions can be expressed as

E
(r)
0 (q, ω) =

∑

mn

E
(r)
0 (qm, ωn)sinc(qmD0 − qD0)sinc(ωnT0 − ωT0), (A.11)

where E
(r)
0 (qm, ωn) = Aq(qm)Aω(ωn)eiφ

(r)
mn . The momentum transfer q is the inverse

coordinate of the position s and D0 is much larger than the extend of the field in the
spatial domain. Applying the same procedure as described above we find the field as a
function of time t and position s

E(r)(s, t) = At(t)As(s)
∑

mn

Aω(ωm)Aq(qn)eiφ
(r)
mne−i(ωmt−kns)

(A.12)

and as a function of the frequency ω and the position s

E(r)(s, ω) = As(s)
∑

mn

Ãt(ω − ωm)Aω(ωm)Aq(qn)eiφ
(r)
mneikns. (A.13)

Here we have introduced the functions Aq(q) and As(s) with the widths corresponding
to the angular divergence and the source size. The MCF is determined by

Γ(s1, s2; t1, t2) =A∗

s(s1)As(s2)
∑

n

|Aq(qn)|2eikn(s2−s1)

A∗

t (t1)At(t2)
∑

m

|Aω(ωm)|2e−iωm(t2−t1)
(A.14)

and the CSD can be expressed as

W (s1, s2; ω1, ω2) =A∗

s(s1)As(s2)
∑

n

|Aq(qn)|2eikn(s2−s1)

∑

m

|Ãt(ω − ωm)|2|Aω(ωm)|2.
(A.15)

Here we have used

lim
N→∞

1

N

N
∑

r=1

ei(φ
(r)
nm−φ

(r)

n′m′
) = δnn′δmm′ ,

which is is equivalent to (A.7)3. Although the field of individual pulses E(r)(s, t) does

not factorize in spatial and temporal components due to the mutual phase φ
(r)
mn, the

statistical averages do factorize Γ(s1, s2; t1, t2) = Γ(s1, s2)Γ(t1, t2) in this model. The

3We can rearrange the integers nm into a single integer j = n ·M + m, where m = 1, . . . M . Using
the phases φ

(r)
j and φ

(r)

j′
in Equation (A.7) yields δjj′ . The integers j and j′ are equal if and only if

n = n′ and m = m′.

136



A Appendix

same holds for the CSD. If we assume At(t), Aω(ω), As(s), and Aq(q) are all Gaussian

At(t) = a exp

(

− t2

4T 2
0

)

Aω(ω) = b exp

(

−(ω − ω0)
2

4Ω2
0

)

As(s) = c exp

(

− s2

4σ2

)

Aq(q) = d exp

(

− q2

4σ2
q

)

,

(A.16)

we readily see that, provided ξ = 1/σq, Equations (A.14,A.15) are identical to (2.89,2.90),
which describe the coherence properties of GSM pulses now for arbitrary positions s1, s2.

A.4 Synchrotron radiation

The far field expression for the radiation field generated by a single electron is given by
Equation (28) in [98] or (48) in [82]

Ef (η, s, z, θ̄) ∼ exp

(

iz/2
[

θ̄ − s

z

]2
)

ψf

(∣

∣

∣θ̄ − s

z
− η

∣

∣

∣

)

, (A.17)

where ψf (x) = sin(x2/4)/(x2/4).
The to calculate the cross spectral density let us first consider

E(η, s, z, θ̄ + ∆θ/2)E∗(η, s, z, θ̄ − ∆θ/2)

= ψf

(∣

∣

∣

∣

θ̄ +
∆θ

2
− s

z
− η

∣

∣

∣

∣

)

ψf

(∣

∣

∣

∣

θ̄ − ∆θ

2
− s

z
− η

∣

∣

∣

∣

)

× exp

(

[i
z

2

[

∣

∣

∣

∣

θ̄ +
∆θ

2
− s

z

∣

∣

∣

∣

2

−
∣

∣

∣

∣

θ̄ − ∆θ

2
− s

z

∣

∣

∣

∣

2
])

= ψf

(∣

∣

∣

∣

θ̄ +
∆θ

2
− s

z
− η

∣

∣

∣

∣

)

ψf

(∣

∣

∣

∣

θ̄ − ∆θ

2
− s

z
− η

∣

∣

∣

∣

)

exp
(

iz
[

θ̄ ·∆θ − ∆θ · s
z

])

Inserting the last expression in (3.3)

W (z, θ̄, ∆θ) = eizθ̄∆θ

∫

dsdηf⊥(s, η)e−i∆θsψf

(∣

∣

∣

∣

θ̄ +
∆θ

2
− s

z
− η

∣

∣

∣

∣

)

ψf

(∣

∣

∣

∣

θ̄ − ∆θ

2
− s

z
− η

∣

∣

∣

∣

)

.

Using the substitution φ = s/z − θ̄ + η ⇔ s = z(φ + θ̄ − η) we obtain (44) in [98]

W (z, θ̄, ∆θ) = eizθ̄∆θ

∫

dφdηf⊥(z[φ+θ̄−η], η)e−i∆θ(φ+θ−η)ψf

(∣

∣

∣

∣

φ − ∆θ

2

∣

∣

∣

∣

)

ψf

(∣

∣

∣

∣

φ +
∆θ

2

∣

∣

∣

∣

)

.

The phase space distribution of the electron bunch can be written as (47,52,53) in [98]

f⊥(s, η) = fs(s)fη(η)
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were

fs(s) = exp

(

− s2
x

2Nx

)

exp

(

−
s2
y

2Ny

)

fη(η) = exp

(

− η2
x

2Dx

)

exp

(

−
η2

y

2Dy

)

.

The integration in dη can be carried out analytically and gives in 1D

∫

dηe−i∆θ(φ+θ−η) exp

(

−(φ + θ − η)2

2N
− η2

2D

)

=

√
2π

z2/N + 1/D
exp

(

− (φ + θ̄)2

2(N/z2 + D)
− ND∆θ2

2(N/z2 + D)
− i

(φ + θ̄)∆θN/z

N/z2 + D

)

.

For the cross-spectral density we obtain

W (z, θ̄, ∆θ) ∼ eiz∆θθ̄ exp

(

− NxDx∆θ2
x

2(Nx/z2 + Dx)
−

NyDy∆θ2
y

2(Ny/z2 + Dy)

)

×
∫

dφxdφy exp

(

− (φx + θ̄x)2

2(Nx/z2 + Dx)
− (φy + θ̄y)

2

2(Nx/z2 + Dx)

)

exp

(

−i
(φx + θ̄x)∆θxNx/z

Nx/z2 + Dx
− i

(φy + θ̄y)∆θyNy/z

Ny/z2 + Dy

)

(A.18)

ψf





√

[

φx − ∆θx

2

]2

+

[

φy −
∆θy

2

]2




ψf





√

[

φx +
∆θx

2

]2

+

[

φy +
∆θy

2

]2




One dimension

As we are interested in the coherence properties in the center of the beam in the hori-
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zontal direction. Substituting ∆θx = θ̄x = 0 in (A.18) we find

W (z, θ̄y, ∆θy) ∼ eiz∆θy θ̄y exp

(

−
NyDy∆θ2

y

2(Ny/z2 + Dy)

)

×
∫

dφy exp

(

− (φy + θ̄y)
2

2(Nx/z2 + Dx)

)

exp

(

−i
(φy + θ̄y)∆θyNy/z

Ny/z2 + Dy

)

∫

dφx exp

(

− φ2
x

2(Nx/z2 + Dx)

)

ψf





√

φ2
x +

[

φy −
∆θy

2

]2


 ψf





√

φ2
x +

[

φy +
∆θy

2

]2


 .

This is the expression (62) in [98], with the exception that here another Gaussian term is
appearing in the dφx integral. Replacing x by y and vice versa we obtain the coherence
properties in the horizontal direction in the vertical center of the beam. This expression
is more general than the result in [98], as here no assumptions are made. In [98] it is
assumed that Dx ≫ 1 and Nx ≫ 1, which is not valid at high brilliance synchrotron
sources such as PETRA III for low photon energies.

In the far field (63 in [98], N ≪ z2D) the expression simplifies to

W (z, θ̄y, ∆θy) ∼ eiz∆θy θ̄y exp

(

−
Ny∆θ2

y

2

)

×
∫

dφy exp

(

−(φy + θ̄y)
2

2Dx)

)

∫

dφx exp

(

− φ2
x

2Dx

)

ψf





√

φ2
x +

[

φy −
∆θy

2

]2




ψf





√

φ2
x +

[

φy +
∆θy

2

]2


 .

A.5 Propagation of a GSM beam through the thin lenses

In this chapter we calculate the propagation of partially coherent radiation through a
beamline including one thin optical element (see Figure 4.2). To determine the focus
size, the transverse coherence length in the focus and the distance between the lens and
the focus we identify in Equations (2.49,4.3)

Σ̃1 = σf∆f , Ξ̃1 = ξf∆f

where σf is the focus size and ξf is the transverse coherence length in the focus. The
radius of curvature (2.51) Rf behind the lens and the expansion coefficient (2.50) ∆f

(this parameter describes the difference between the focus size and the size of the beam
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behind the lens, see equation above) can be written as

R̃1 = −zf1



1 +

(

2kσ2
fζf

zf1

)2


 and ∆f =



1 +

(

zf1

2kσ2
fζf

)2




1/2

.

One can rewrite

R̃1 = −zf1∆
2
f

(

2kσ2
fζf

zf1

)2

= −zf1

∆2
f

(

2kΣ̃2
1ζf

zf1

)2

(A.19)

which yields

∆2
f = −

(

2kΣ̃2
1ζf

)2

zf1R̃1

. (A.20)

On the other hand ∆2
f can be expressed as

∆2
f = 1 +

(

zf1

2kσ2
fζf

)2

= 1 + ∆4
f

(

zf1

2kΣ̃2
1ζf

)2

.

Comparing the two expressions for ∆2
f

−

(

2kΣ̃2
1ζf

)2

zf1R̃1

= 1 +

(

2kΣ̃2
1ζf

)4

z2
f1R̃

2
1

(

zf1

2kΣ̃2
1ζf

)2

= 1 +

(

2kΣ̃2
1ζf

)2

R̃2
1

we determine the distance between the focal plane and the lens

zf1 = − R̃1

1 +
(

R̃1/[2kΣ̃2
1ζf ]

)2 (A.21)

Substituting the focal distance from equation (A.21) in equation (A.20) yields the
expansion coefficient

∆2
f = 1 +

(

2kΣ̃2
1ζf

R̃1

)2

(A.22)

A.5.1 The magnification factor

Here we calculate the magnification factor M = σf/σ for an infinite large aperture, Ω →
∞. An infinite aperture implies that the beam size is not modified by the transmission
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through the lens Σ̃1 = Σ1. Using (4.4) we write

σ2
f =

Σ1

∆f
=

σ2∆2
1

1 +

(

zeff∆2
1

R̃1

)2 =
σ2∆2

1

1 +

(

zeff∆2
1

R1
− zeff∆2

1

f

)2

and find

M2 =
∆2

1

1 +

(

zeff∆2
1

R1
− zeff∆2

1

f

)2 =
1

1

∆2
1

+

(

zeff∆1

R1
− zeff∆1

f

)2 =
1

1

∆2
1

+

(

z10

zeff∆1
− zeff∆1

f

)2

In the last step we have used (2.50,2.51)

R1 =
z2
eff

z10
∆2

1

The right term of the denominator we express as

z10

zeff∆1
− zeff∆1

f
=

z10f − z2
eff∆2

1

zeff∆1f
=

z10f − z2
10 − z2

eff

zeff∆1f
=

z10(f − z10) − z2
eff

zeff∆1f

=
f − z10

f

z10

zeff∆1
− zeff

∆1f
=

(

f − z10

f

) (

z10

zeff∆1
− zeff

(f − z10)∆1

)

This yields the magnification factor

M2 =
(f/[f − z10])

2

α
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The denominator can be written as

α =
f2

(f − z10)2∆2
1

+

(

(f − z10)z10 − z2
eff

zeff∆1(f − z10)

)2

=
f2z2

eff + ((f − z10)z10 − z2
eff)2

z2
eff∆2
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2z2

10 + z4
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2
eff

(z2
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=
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2(z2
10 + z2

eff) + f2z2
eff − (f − z10)

2z2
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eff − 2z10(f − z10)z
2
eff

(z2
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10)(f − z10)2
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eff − (f − z10)
2z2

eff + z4
eff − 2z10(f − z10)z

2
eff

(z2
eff + z2

10)(f − z10)2

= 1 + z2
eff

f2 − (f − z10)
2 + z2

eff − 2z10(f − z10)

(z2
eff + z2

10)(f − z10)2

= 1 + z2
eff

f2 − f2 − z2
10 + 2fz10 + z2

eff − 2z10f + 2z2
10)

(z2
eff + z2

10)(f − z10)2

= 1 +
z2
eff

(f − z10)2

Finally, the magnification factor can be expressed as

M2 =

(

f

f − z10

)2 (

1 +
z2
eff

(f − z10)2

)−1

M =

∣

∣

∣

∣

f

f − z10

∣

∣

∣

∣

(

1 +
z2
eff

(f − z10)2

)−1/2

A.5.2 Distance from the lens to the focus

In the case of an infinite large aperture Ω → ∞ the focus distance is given by

zf1 = − R̃1

1 + (R̃1/[2kΣζf ])2
= − R̃1

1 + (R̃1/[∆2
1zeff])2

= −∆2
1z

2
eff

R̃1

∆2
1

1 + (∆2
1zeff/R̃1)2

= −M2 ∆2
1z

2
eff

R̃1

= −M2

(

∆2
1z

2
eff

R
− ∆2

1z
2
eff

f

)

= −M2

(

z − ∆2
1z

2
eff

f

)

142



A Appendix

The difference zf1 − f is expressed as

zf1 − f = −M2
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∆2
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− 2z +
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(
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1 + (z10/zeff)2

∆2
1

)

= M2 (z10 − f) .

The result is
zf1 − f = M2(z10 − f).

A.6 Numerical mode decomposition

The mode decomposition approach is not limited to the GSM sources. If the CSD of
the source is known, integral Equation (2.35) can be used to find the corresponding
modes. The numerical solution of the Fredholm integral equation is not straightforward,
however, there are techniques to find this solution in certain cases.

We assume that the CSD in the source plane is known and is given as a four dimen-
sional array of complex numbers4 Wij,kl = W (xi

1, y
j
1, x

k
2, y

l
2), where i, j, k, l = 1, 2, . . . N .

The aim is to find a set of the eigenvalues βn and the corresponding modes En
kl, which

all satisfy
N

∑

i=1

N
∑

j=1

Wij,klE
n
ij = βnEn

kl.

4We assume that the array has the same number of elements in each direction. If the wavefront is flat
at the source real numbers can be used.
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Figure A.1: (a) The modulus of the SDC |µ(∆x)| determined from the initial CSD (black
solid line) and from the sum of 25 lowest modes (red dashed line). (b)The
spectral density S(x). (c) The intensity distribution of 16 lowest modes.

The double sum can be rewritten as

N2
∑

q=1

WpqE
n
q = βnEn

p

or W̄ ~En = βn
~En,

where q = iN + j = 1, 2, . . . N2 and p = kN + l = 1, 2, . . . N2, W̄ is the N2 × N2

matrix with the elements Wpq and ~En = (En
1 , En

2 , . . . En
N2)

T is a column vector with
N2 elements. Now the solution of the Fredholm integral equation is expressed as an
eigenvalue problem. The eigenvalues describe the main properties of linear operators,
which appear throughout the whole field of physics, as they correctly describe a vast
number of phenomena in the first approximation. As such, the solution of the eigenvalue
problem or the diagonalization is very well studied in the field of numerical mathematics.

The eigenvalue problem can be effectively solved by a variety of approaches. In our
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case only a small number of modes contribute to the total radiation field and the majority
of the eigenvalues are small, i.e βj/β0 ≪ 1 for almost all j. Then algorithms based on
the Lanczos method [152] are effective. They are based on the following idea: due to the
fact that Wpq is hermitian [46] all eigenvalues are real and the set of the eigenvectors, the
modes, forms an orthogonal basis of the parameter space. Therefore, an arbitrary vector
~S can be written as a sum of the eigenvectors ~S =

∑

n αn
~En. Applying the operator W̄

m times on the vector ~S yields

W̄ (W̄ (W̄ · · · (W̄ ~S))) = W̄mS =
∑

n

βm
n αn

~En ≈ βm
0 α0E0

where β0 is the eigenvector corresponding to the largest eigenvalue β0. The eigenvector
~E0 and the eigenvalue β0 are thus given by

~E0 ≈ W̄m~S

|W̄m~S|
, β0 =

|W̄ ~E0|
| ~E0|

.

Is the largest eigenvalue found, the next eigenvalue is determined as the largest eigen-
value of the matrix W̄ ′ = W̄ − β0

~E0 · ~ET
0 . Applying these steps consecutively we can

determine all contributing eigenvalues and eigenvectors. Since only vector multiplica-
tions are involved, the Lanczos method requires only O(M) operations, where M is the
size of the Wpq matrix. Moreover, since the number of contributing modes in our case
is rather small a fast convergence is possible.

To find the largest eigenvalues and the corresponding eigenvectors we used the matlab
routine eigs, which is based on the ARPACK library [152]. We performed numerical sim-
ulations to find the mode decomposition of a given CSD function with a fixed frequency.
Three different CSDs were considered We used the numerical mode decomposition to
determine the first 25 modes of a GSM source (2.40,2.41) with the CSD in the form

W (x1, y1, x2, y2) = exp

(

−x2
1 + y2

1 + x2
2 + y2

2

4σ2
− (x2 − x1)

2 + (y2 − y1)
2

2ξ2

)

. (A.23)

Parameters from FLASH σ = 68 µm, ξ = 62 µm (see chapter 3.3.2) were used in this
simulation5. The modulus of the SDC |µ(∆x)| = |µ(−∆x/2, ∆x/2, ∆y = 0, ∆y = 0)|
as a function of the separation ∆x is shown in Figure A.1 a. The spectral density
S(x) = S(x, y = 0) as a function of the position across the beam in the horizontal
direction is shown in the inset of Figure A.1 a. We compared these functions for the initial
CSD (black lines) with the same functions determined from the mode decomposition
(red dashed lines) using the lowest 25 modes in (2.34). It is readily seen from Figure
A.1 a, that the initial CSD and the sum of 25 lowest modes deliver the same intensity
distribution and the same modulus of the SDC in the horizontal direction. Due to the
symmetry of the initial CSD the same result is obtained in the vertical direction.

The normalized contribution βn/β0 of the first 25 modes is shown in Figure A.1

5These parameters were determined for a wavelength of λ = 13.5 nm. The wavelength, however, is
irrelevant for the mode decomposition
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Figure A.2: Coherent modes of the GSM. The comparison between the analytical ex-
pression of the modes (2.70) (solid lines) with the modes determined in a
numerical mode decomposition (circles). The field En(x) = En(x, y = 0)
as a function of the horizontal position x across the beam is shown. Modes
number 1,2,4,7,12 in Figure A.1 are shown.

b. The intensity distribution |En(x, y)|2 of the respective modes is shown in Figure
A.1 c. In Figure A.2 we present the comparison of the analytic formulas , Eana

n (x),
(2.68) (black line) with the numerically determined modes , Enum

n (x) (dashed lines)
modes. This comparison shows excellent agreement. The error χ2 =

∑

i |Eana
n (xi) −

Enum
n (xi)|2/(

∑

i |Eana
n (xi)|2), where the summation is performed over all positions xi, is

also shown in Figure A.2 for n = 1, 2, . . . , 5 and is less than 10−6 for all modes.
From these results we conclude, that the mode decomposition is an effective tool to

simulate the radiation properties of the FEL sources. The numerical mode decomposition
with a decent sampling (the size of the CSD was chosen to be 201×201×201×201) can
be performed in a reasonable time (about two minutes) on a moderate machine6. The
numerically determined modes can be propagated through an arbitrary arrangement
of optical elements using the well developed techniques for wavefront propagation, as
demonstrated in the previous chapter.

6The machine used for the simulations consists of 8 double core processors (Intel(R) Xeon(R) CPU,
X5570 @2.93GHz) and has 71 Gb of Random-Access-Memory.
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A.7 Degeneracy parameter

We start with Heisenberg’s uncertainty relation for the photons7 [46]

∆px∆x ≥ h̄

2
,

where ∆px, ∆x are the uncertainties in the momentum and position and h̄ = h/2π and
h is the Planck constant. Applying similar relations to other conjugate pairs ∆py, ∆y
and ∆E, ∆t, where E is the photon energy and t is the time, we find

∆px∆x∆py∆y∆E∆t ≥
(

h̄

2

)3

,

which is a condition for the phase space volume of light. The minimum phase ocupied
by light is Vs = (h̄/2)3 and can be regarded as the space ocupied by a single photon.
The degeneracy parameter [66, 46] can be defined as

δ = Nph ·
Vs

V

where Nph is the total number of photons, Vs = (h̄/2)3 is the phase space volume
ocupied by a single photon, and V = ∆px∆x∆py∆y∆E∆t is the phase space ocupied
by all photons.

The uncertainties in x, y directions can be replaced by the beam size σx and the
divergence σ′

x of a Gaussian Schell-model beam ∆x = σx, ∆px = h̄kσ′
x and similarly

for y direction. The energy uncertainty ∆E is given by ∆E = h̄σω, where σω is the
rms width of the spectrum, and ∆t = σt with σt being the rms pulse duration. Using
τc = 1/σω the phase space volume of the photon beam is given by

V = εxεy(2k)2
2σt

τc

(

h̄

2

)3

.

and using Equations (2.61,2.64) we obtain

Vs

V
= ζx · ζy ·

τc

2σt
.

Finally, the degeneracy parameter can be expressed as

δ = Nph · ζx · ζy ·
τc

2σt
. (A.24)

If the coherence time is on the order of the pulse duration, the ratio τc/(2σt) is replaced
with ζt, which is defined similarly to the normalized degree of cohernce in the spatial

7The uncertainty relations are often written with a factor h rather than h̄/2 on the right hand side.
The value of the factor depends on the definition of the uncertainties. Here h̄/2 is chosen so that the
uncertainties can be described as rms widths of the Gaussian beam.
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domain.

A.8 Analysis of the Young’s measuremens at LCLS

The analyzed regions shown in Figure 5.2 were divided into vertical slices 10 pixels wide.
The number of slices varied from 5 to 10 depending on the pinhole size. The single
shot values of |γeff

12 |, shown in Figure 5.3, are each an average over these slices, with
error bars given by the statistical variation (standard deviation) between these slices.
The diffraction patterns, where the incoherent background was present in the data in
the analyzed region, were identified by a high variation of the fit parameters between
different slices. These interference patterns, as well as the patterns with poor signal,
were excluded from our evaluation. In Figure A.3 (a,c) the diffraction pattern and the
visibility map of an included measurement are presented. Figures A.3 (b,d) show a
measurement, where the visibility varies significantly in the analyzed region. It changes
its value from about 0.5 to 0.7 and this particular shot was excluded from the analysis.

A.9 Beam width characterization

A.9.1 Measurements at SXR beamline at LCLS

To estimate the average size of the focus, we exploited the shot-to-shot variation in
alignment between the beam and the apertures due to instabilities in the beam position
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Figure A.3: (a,c) Two diffraction patterns measured a pinhole separation of 8 µm. Cor-
responding visibility maps (c,d) shown the contribution of incoherent back-
ground. Visibility maps were calculated according to Equation (2.84) for all
vertical line scans.
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Figure A.4: a) The SEM image of an aperture after exposure to a single LCLS pulse.
This particular pulse was not centered on the double pinhole (indicated by
red arrows), which lies outside of the damaged region. b) The total scattered
intensity of all pulses, which did not destroy the pinholes (red dots) and a
Gaussian fit through these points (black line). The numbers are normalized
by the maximal total scattered intensity determined for the same pinhole
separation. Due to the asymmetry of the beam (the beam is larger in the
vertical direction, see SEM image in a) the horizontal direction was rescaled
by a factor of 3.1 ± 0.2 to obtain effectively a round beam. The intensities
are shown as a function of the distance between the center of double pinhole
and the center of the beam, determined as the position with maximal extend
of the crater in the vertical and horizontal direction.

and the sample stage in the plane of the sample. Using the coordinates of undamaged
pinholes and the corresponding scattered intensities measured as an integrated signal
at the CCD we determined a few points on the tails of the intensity distribution curve
at the position of the pinholes (see Figure A.4 (a)) . Fitting a Gaussian through these
points gives an average beam size of 17.3 ± 2.4 µm FWHM in the vertical direction and
5.7 ± 0.4 µm FWHM in the horizontal, in the plane of the apertures.

A.9.2 Measurements at BL2 beamline at FLASH

To measure the beam profile in the plane of the apertures we analyzed PMMA imprints
produced by single FEL pulses with varying degree of attenuation of the beam. Three
sets of PMMA imprints with one order of magnitude difference in attenuation were
analyzed. Using Gaussian beam approximation a beam width of about 10 × 10 µm
FWHM was determined. In the horizontal direction additional features on the sides of
the beam were observed. For the less intense beam, however, round craters, 15 µm in
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diameter, indicate that the central part of the beam is more less smooth.
The focus width of the FLASH beam at the BL2 beamline was measured prior to

the double pinhole coherence mesurements in November 2010. Imprints on 1 µm thick
PMMA film with varying degree of attenuation were recorded and analyzed afterwards
by an SEM. The absorbers used in our experiment and the corresponding attenuation are
listed in table A.1 for the fundamental (λ = 7.9 nm), Tf , and for the third harmonic T3.
The ratio P3/Pf between the contribution of the third harmonic, P3, and the contribution
of the fundamental, Pf , is also shown in table A.1. For the unattenuated beam a ratio
of 0.6 % was reported in [47] The PMMA imprints were recorded for all 5 degrees of

no Att. 100 nm Al 200 nm Al 300 nm Al 490 nm Si

Tf 1 0.076 0.58 · 10−2 0.45 · 10−3 0.24 · 10−4

T3 1 0.79 0.62 0.49 0.27
P3/Pf 0.006 0.06 0.64 6.5 67.5

Table A.1: The absorbers and the corresponding degrees of attenuation for the funda-
mental, Tf , and the third harmonic T3 radiation at FLASH.

attenuation, however, only the first three produced craters. The SEM images of the
craters measured without attenuation, with a 100 nm thick Al absorber and with a 200
nm thick Al absorber are shown in Fig 1.

All SEM images of the imprints are inclined by an angle of about 77.2 degree clockwise
with respect to the orientation which was present during the experiment. After the
correction of this inclination angle the horizontal crater size, sh, and the vertical crater
size, sv, was determined from each SEM image. The result of this analysis is sumerized
in table A.2.

no Att. 100 nm Al 200 nm Al
sh/µm sv/µm sh/µm s′h/µm sv/µm sh/µm sv/µm

1 66.2 36.9 41.3 25.2 23.2 13.7 17.2
2 61.3 36.9 44.2 26.5 23.5 12.8 15.5
3 62.9 36 43.6 27.4 23.3 13.1 16.6
4 64.4 38.5 42.7 23.3 23.5 13.5 15.9
5 60.5 41.1 42.9 24.9 24.0

mean 63.1 37.9 43.0 25.5 23.5 13.3 16.3
std 2.3 2.0 1.1 1.6 0.3 0.4 0.8

Table A.2: The horizontal sh and the vertical sv size of the crater determined from
the SEM images shown in Figure A.6. Two values are noted for horizontal
direction corresponding to the full size of the beam, sh, and the central part
of the beam s′h, both shown in figure A.6 c.

To estimate the beam size we applied Liu’s method [153]. The result of this analysis
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Overview

no Att. no Att.

100 nm Al 100 nm Al

200 nm Al 200 nm Al

Figure A.5: SEM images of the craters produced by the FEL beam with different ab-
sorbers in the beam.
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Figure A.6: Analyzed SEM images. a: no attenuator, b: 100 nm Al absorber, c: 200
nm Al absorber. d:The size of the crater as a function of the logarithm of
the attenuation (proportional to the intensity). The total crater size in the
horizontal direction (red triangles), the size of the central part of the crater
in the horizontal direction (blue triangles, see also b) and the crater size in
the vertical direction (black circles). The slope of the linear fit is equal to
2σ2, where σ is the width of a Gaussian function.

is shown in Figure A.6. An rms beamsize of 19.2 µm in the horizontal direction and
10.7 µm in the vertical direction was found. This values correspond to 45 µm x 25 µm
FWHM.

The experimental values are adequately described by linear functions. This means
that the measured points of the intensity distribution curve can be approximated by a
Gaussian function in both directions.

In the SEM images, especially in the images of the imprints recorded with 100 nm
Al absorbers in the beam, a non-Gaussian beam shape in the horizontal direction can
be directly observed. Additional craters on the left and the right side of the central
maximum are visible. If we neglect these additional features which appear to result
from strong intensity modulations we can consider the beam to be approximately round.
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This approximation yields a focus size of 10 µm×10 µm FWHM.
We analyzed the uncertainty in the position of the beam relative to the center of

the double pinhole. We determined the crater center positions produced by the FEL
beam in the PMMA (see overview of the craters in Figure A.5) relative to each other.
According to motor positions we know how large the relative distance should be. Any
deviation corresponds to the positional uncertainty that we aim to recover. Since the
multiple aperture frame and the PMMA were mounted on the same sample holder, the
beam jitter determined from the SEM images of the damaged PMMA corresponds to
the beam jitter on the double pinholes. The analysis yields an rms jitter of 7.4 µm in
the horizontal 6.3 µm in the vertical direction. The peak to peak value is 24 µm in the
horizontal and 16 µm in the vertical direction.

A.9.3 Measurements at PG2 beamline at FLASH

About twenty single shot intensity profiles were analyzed. The mean values and the
standard deviations are presented here. The beam was elongated in the vertical direction
due to the use of a horizontal plane grating.
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Figure A.7: The intensity profile measured at PG2. (a) A single shot profile recorded
with the CCD at a distance of 0.37 m downstream of the focus. The projec-
tion of the beam profile in the horizontal (red circles) (b) and in the vertical
(red squares) (c). Gaussian fits in (b,c) are shown by blue solid lines. The
scale bar in (a) is 50 µm wide.
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