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Abstract

The so far unknown particle nature of dark matter is a main motivation for extending

the Standard Model of particle physics. A recently promoted approach to solving this

puzzle is the concept of hidden sectors. Since the interactions of such sectors with the

visible sector are very weak, so are the current experimental bounds. Hidden sectors

might even contain sub-GeV scale particles that have so far escaped detection.

In this thesis, we study the phenomenology of Weakly Interacting Slim Particles

(WISPs) as well as their connection to dark matter in different Standard Model exten-

sions. In the Next-to-Minimal Supersymmetric Standard Model (NMSSM), a light CP-

odd Higgs, arising from spontaneous breaking of approximate symmetries, represents an

example of a WISP. Light gauge bosons of an extra U(1) symmetry in a hidden sector are

other well motivated candidates for WISPs and called hidden photons. Such light hidden

photons appear naturally in supersymmetry or string theory and might resolve the ob-

served deviation in the muon anomalous magnetic moment from predictions. Moreover,

scenarios in which hidden sector dark matter interacts via a light hidden photon with

the visible sector exhibit appealing features in view of recent astrophysical anomalies.

We study how the coupling of the CP-odd Higgs A0 to fermions can be constrained

by current measurements for the case where the A0 is lighter than two muons. Analysing

measurements of different rare and radiative meson decays, the muon anomalous mag-

netic moment as well as results from beam dump and reactor experiments, we severely

constrain the CP-odd Higgs to be heavier than 210 MeV or to couple to fermions four

orders of magnitude weaker than the Standard Model Higgs. These results apply more

generally to the coupling of an axion-like particle to matter.

Hidden photons can be constrained by experiments since they couple to charged

Standard Model particles via kinetic mixing with the ordinary photon. We derive several

constraints on the kinetic mixing for MeV-scale hidden photons from their production in

past electron beam dump experiments. Including previously unconsidered experiments

and taking into account the experimental acceptances, we exclude parts of the parameter

space which had not been constrained by any similar study before.

Additionally, we analyse different extensions of the Standard Model in which the

hidden sector contains a light dark matter particle besides the hidden photon. For

a minimal toy model and string-inspired supersymmetric hidden sector models with

gravity mediation, we perform a parameter scan and compute the dark matter relic

abundance and the scattering cross sections in direct detection experiments. We then

compare the results of these computations to current experimental measurements. In

this way, for the different models, we find viable dark matter candidates with potentially

interesting signals in direct detection experiments.

In summary, this work shows that WISPs, even though they only interact weakly

with the Standard Model, can be probed by experiments. Moreover, hidden photons

especially in connection to dark matter are found to exhibit interesting phenomenological

features.



Zusammenfassung

Die noch immer unbekannte Natur der Dunklen Materie ist einer der Hauptgründe,

das Standardmodell der Teilchenphysik zu erweitern. Versteckte Sektoren bieten einen

interessanten Ansatz zur Lösung dieses Rätsels. Da diese Sektoren sehr schwach mit dem

Standardmodell wechselwirken, sind sie kaum durch Experimente beschränkt. Selbst sehr

leichte Teilchen könnten darin enthalten und bisher unbeobachtet geblieben sein.

Diese Arbeit beschäftigt sich mit der Phänomenologie solcher leichter, schwach wech-

selwirkender Teilchen, genannt WISPs (Weakly Interacting Slim Particles), sowie deren

Verbindung zur Dunklen Materie in verschiedenen Erweiterungen des Standardmodells.

Im Nicht-Minimalen Supersymmetrischen StandardModell (NMSSM), ist das leichte CP-

ungerade Higgs, welches durch spontane Brechung approximativer Symmetrien entste-

hen kann, ein mögliches WISP. Ein weiteres Beispiel ist das leichte, versteckte Photon,

das Eichboson einer zusätzlichen U(1) Symmetrie im versteckten Sektor. Leichte ver-

steckte Photonen können in Supersymmetrie oder in der Stringtheorie vorkommen und

beispielsweise die Abweichung im anomalen magnetischen Moment des Myons erklären.

Außerdem haben versteckte Sektoren mit Dunkler Materie, welche über versteckte Pho-

tonen wechselwirkt, besondere Merkmale im Hinblick auf astrophysikalische Anomalien.

Wir untersuchen, wie die Kopplung des CP-ungeraden Higgs A0 an Fermionen durch

aktuelle Messungen beschränkt werden kann, wenn das A0 leichter ist als zwei Myonen.

Durch die Analyse verschiedener Mesonzerfälle, des anomalen magnetischen Moments

des Myons sowie Ergebnissen aus Experimenten an Reaktoren und mit festem Target

(beam dump) finden wir, dass das A0 schwerer als 210 MeV sein muss oder um vier

Größenordnungen schwächer an Fermionen koppelt als das Higgs. Diese Ergebnisse gel-

ten allgemein für die Kopplung axion-ähnlicher Teilchen an Materie.

Das versteckte Photon kann experimentell untersucht werden, da es aufgrund der ki-

netischen Mischung mit dem Photon an geladene Standardmodell-Teilchen koppelt. Wir

bestimmen Grenzen für diese Mischung aus der Produktion von versteckten Photonen

mit Massen im MeV-Bereich in Experimenten, die Elektronen auf feste Targets schießen.

Dank bisher unberücksichtigter Experimente und unter Verwendung der experimentellen

Akzeptanzen, schließen wir einen neuen Parameterbereich aus.

Desweiteren analysieren wir Erweiterungen des Standardmodells, die außer versteck-

ten Photonen auch Dunkle Materie im versteckten Sektor enthalten. Für ein Toy-Modell

und supersymmetrische versteckte Sektoren überprüfen wir, ob die Dunkle Materie in

der richtigen Menge produziert werden kann und ihre Streuung an Kernen mit experi-

mentellen Grenzen verträglich ist. In den verschiedenen Modellen finden wir mögliche

Dunkle Materie Kandidaten mit interessanten experimentellen Signaturen.

Insgesamt zeigt diese Arbeit, dass WISPs trotz ihrer schwachen Wechselwirkungen

experimentell überprüfbar sind. Außerdem können sie insbesondere in Verbindung mit

Dunkler Materie eine interessante Phänomenologie aufweisen.
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Introduction

The existence of a large amount of non-luminous, non-baryonic dark matter is nowadays

well established by numerous observations made on galactic up to cosmological length-

scales [1–4]. Dark matter is known to account for more than 80% of the matter density

in the Universe and thought to be abundantly present in form of large massive halos in

galaxies, including the Milky Way. Its particle nature, however, is still unidentified and

poses one of the most important open questions in both particle physics and cosmology.

Much effort is being made, both on the theoretical and the experimental side, to find

clues and provide approaches that allow us to improve our understanding and, hopefully,

finally solve this puzzle.

The Standard Model of particle physics is remarkably successful in being consistent

with many experimental tests. However, different shortcomings and open questions point

towards the existence of new physics. For example, the Standard Model does not include

neutrino masses and requires fine-tuning in order for the Higgs mass to remain small

despite large quantum corrections (hierarchy problem). Furthermore, it is generally ac-

cepted that the Standard Model does not provide an appropriate dark matter candidate.

A vast number of models extending the Standard Model exist. They range from mini-

mal models addressing one specific phenomenon to sophisticated frameworks that aim

at solving all the known fundamental problems. Many of these models also provide can-

didates for dark matter [1–7]. The most prominent candidates are the so-called Weakly

Interacting Massive Particles (WIMPs), since these are naturally produced in the correct

amount and further hopefully observable through weak-scale interactions. Among the

various Standard Model extensions, supersymmetry (SUSY) is a widely-used framework.

Specific well-studied examples include the Minimal and the Next-to-Minimal Supersym-

metric Standard Model, abbreviated as MSSM and NMSSM, respectively. Recently,

there has also been much interest in the concept of so-called hidden sectors, which are

the main focus of this thesis. These are characterised as lacking a direct connection

to the Standard Model and interact only very weakly through some messenger particle

with the visible sector. In general, the commonly considered models of physics beyond

the Standard Model frequently postulate new particles at the TeV scale. On the other

hand, there are also models predicting light particles with masses in the sub-GeV range

which, for example, reside in a hidden sector and could have connections to dark matter.

1



2 INTRODUCTION

Until now, dark matter has only been observed through gravitational interactions.

To solve the mystery of its particle nature and identify it as being a candidate of a

particular model, it is essential to also observe it via other interactions. Although, in

principle, such interactions may be absent, in this work, dark matter is assumed to

undergo some weak-scale interactions. Various experiments seeking to discover a signal

of such interactions have already been carried out and are currently in operation. One

usually distinguishes three different detection methods allowing complementary searches.

Direct detection experiments try to observe the recoil caused by the scattering of dark

matter on a nucleus [8–11]. Additionally, indirect detection experiments search for signs

of dark matter annihilation products, like neutrinos, gamma rays or positrons in cosmic

rays [12, 13]. Furthermore, dark matter might be produced in interactions of Standard

Model particles at a collider like the Large Hadron Collider (LHC) and would appear as

missing energy.

Much experimental work is dedicated to revealing the nature of dark matter and

finding concrete signs of physics beyond the Standard Model, especially to discovering

new particles at the TeV scale. However, no such particles have been detected yet.

Negative results in searches at the LHC progressively increase the mass scales at which

new particles might exist. Simultaneously, null results from indirect and direct detection

experiments continuously decrease the bounds on the strength with which dark matter

is allowed to self-annihilate or scatter on nuclei.

However, new light particles with masses in the sub-GeV to GeV range might still be

allowed and could have escaped detection because of very weak couplings to the Standard

Model. In analogy to their heavy counterparts, the WIMPs, such particles are called

WISPs, for Weakly Interacting Slim Particles. In general, an entirely new sector with

unobserved particles might exist where the gauge interactions are not directly linked to

the Standard Model sector. Then, the only interaction with the visible sector might

be very weakly through a messenger particle. Such scenarios with hidden sectors are

well motivated both from a theoretical and a phenomenological perspective. They call

for new physics searches at the high-intensity frontier and present a complementary

approach to high-energy experiments like the LHC. This thesis deals with two examples

of WISPs — the CP-odd Higgs of the NMSSM and the gauge boson, named hidden

photon, of an extra U(1) symmetry — and their phenomenological implications as well

as their connection to dark matter.

Hidden sectors are a generic feature of various Standard Model extensions, e.g. super-

symmetric models, where these can be the source of SUSY breaking [4, 14, 15]. In the

case of a hidden sector with an extra U(1) gauge symmetry, the corresponding gauge

boson, the hidden photon, acts as messenger to the Standard Model. Such scenarios

with a hidden U(1), which may remain unbroken down to low energies, arise frequently

in supersymmetric extensions [16–19] or string theories [20, 21]. The dominant interac-

tion of the hidden photon with the Standard Model occurs in the low-energy effective
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Lagrangian at the dimension four level through kinetic mixing with the ordinary pho-

ton [22–25] and is therefore not suppressed by some higher scale. This kinetic mixing

can be generated at high energies by loops of heavy particles charged under both the

hidden and the visible U(1) so that a typical estimate for the kinetic mixing is of the

order of a loop factor ∼ 10−3. A mass mγ′ for the hidden photon arises if the extra U(1)

symmetry is broken by a Higgs or Stückelberg mechanism. Masses for the hidden photon

in the MeV to GeV range can be obtained naturally for certain string compactifications

and additionally provide phenomenologically interesting features. The contribution of

an MeV-scale hidden photon to the anomalous magnetic moment of the muon can solve

the long-standing discrepancy between the measured value and the theoretical predic-

tion [26]. In connection with dark matter in the hidden sector, an MeV to GeV scale

hidden photon can enhance the present-day dark matter annihilation cross section by

the so-called Sommerfeld effect [27]. Additionally, the annihilation proceeding through

the hidden photon is naturally leptophilic if the hidden photon is so light that it can only

decay into leptons. These two special characteristics are advantageous when trying to fit

the anomalous excess in the positron fraction in cosmic rays observed by PAMELA [28],

FERMI [29, 30] and, recently, AMS [31] with positrons from dark matter annihilations.

Moreover, the signals reported by the direct detection experiments DAMA [32–34], Co-

GeNT [35,36] and CRESST [37,38], as well as the very recent claim by CDMS [39], can

be explained with an O(10 GeV) dark matter particle that undergoes spin-independent

scattering on nuclei mediated by a hidden photon.

In this thesis, we study how the parameter space of WISPs can be constrained by

experiments despite their very weak interactions. In particular, we explore different as-

pects of hidden sectors with a light hidden photon and the connection to dark matter.

The kinetic mixing with the photon produces an effective coupling of the hidden photon

to the electromagnetic current of the Standard Model which is suppressed by the kinetic

mixing parameter χ. This interaction allows the hidden photon to be probed and con-

strained by experiments. Like a normal photon, it can, for example, be produced off

an initial electron beam in a process similar to ordinary bremsstrahlung. Furthermore,

due to kinetic mixing, hidden photons can decay into charged Standard Model particles,

notably into an electron-positron pair in the mass range of interest in this work. Experi-

ments try to produce hidden photons by colliding an electron beam onto a fixed target

and to observe their decay products in a detector behind a thick beam dump. Since

the hidden photon only interacts very weakly, it traverses this dump while the Standard

Model background is absorbed. From the number of events expected in such an experi-

ment from the decay of the hidden photon we derive constraints on its mass mγ′ in the

MeV range and on the size of the kinetic mixing χ. Besides a theoretical calculation,

we also take the actual experimental acceptance into account. For this purpose, we

simulate events with a Monte Carlo generator and construct trajectories for the hidden

photon and its decay products. We then compute the acceptances by comparing these

trajectories with the set-up of different experiments while applying possible energy cuts.
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The resulting constraints of these searches for very weakly coupled light particles profit

from high intensities and are therefore complementary to the aforementioned efforts at

the energy frontier.

With the same kind of experiments it is also possible to probe other WISPs with

masses in the MeV range like the NMSSM CP-odd Higgs or axion-like particles in

general. Similar to hidden photons, these particles can be emitted off the initial electron

beam either in bremsstrahlung or by Primakoff production, see, e.g. [40]. They can

subsequently be searched for via their decay into a pair of photons or an electron-positron

pair. By analysing results obtained from the above-mentioned beam dump experiments

in terms of the CP-odd Higgs, we deduce constraints on its mass and its coupling to

Standard Model fermions. Moreover, we derive various other limits from different meson

decays, the muon anomalous magnetic moment and reactor experiments. Even though

this analysis was performed for the CP-odd Higgs, it does not rely on specific details of

the NMSSM and the resulting bounds can therefore be applied to the coupling of any

light pseudoscalar (axion-like) particle to Standard Model fermions.

Hidden sector models containing a dark matter particle in addition to a hidden pho-

ton exhibit further interesting features. In view of the aforementioned direct detection

signals, we focus on scenarios with an O(10 GeV) dark matter particle. First, we con-

sider a toy model, which is appealing because of its minimal particle content and few

parameters allowing for definite phenomenological predictions. Second, we study a more

sophisticated model of a dark sector embedded in a supersymmetric framework. In this

case, we examine two mechanisms by which the hidden gauge symmetry can be broken,

as these have different phenomenological implications. For all these models, we analyse

whether the dark matter particle can be produced in the right amount to yield the

observed dark matter relic abundance. Furthermore, we compute the scattering cross

sections of the dark matter particle and compare these to the aforementioned signal

claims as well as limits from direct detection experiments. In doing so, it is neces-

sary to distinguish whether the dark matter particle is a Dirac fermion or a Majorana

fermion. While the former scatters on nuclei in a predominantly spin-independent man-

ner, which could potentially explain the signal claims, the latter essentially only exhibits

spin-dependent scattering. This different behaviour leads to distinct signatures in direct

detection searches. Such experiments are thus able to probe complementary regions of

the parameter space.

In the following, we describe how the remainder of this thesis is organised.

Chapter 1 gives the theoretical background and ingredients for the analyses reported in

the subsequent chapters. We recapitulate the observational evidence for dark matter and

the properties demanded of a viable dark matter candidate. We also discuss the three

detection methods that are used to search for dark matter and comment on the challenges

they face. Furthermore, we introduce and motivate the different concepts of the Standard
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Model extensions that are relevant for this work. The basics of hidden sectors with

a hidden photon and kinetic mixing are established. Additionally, we introduce the

different models with a dark matter particle, besides the hidden photon, in the hidden

sector. We set the framework for the toy model and the supersymmetric realisations of

such a light hidden sector. For the latter, we discuss the two mechanisms by which the

hidden gauge symmetry is considered to be broken. Further, we specify the two limiting

scenarios of the NMSSM in which the CP-odd Higgs is light.

In Chapter 2, we present constraints derived on the light CP-odd Higgs A0, allowing

us to address the question of how light the A0 can be in the NMSSM. We discuss the

different types of meson decays through which one can search for the CP-odd Higgs and

show the regions of parameter space which can be excluded using various measurements

of such decays. Additionally, we consider the limits that can be obtained from the muon

anomalous magnetic moment as well as beam dump and reactor experiments. These

results are also published in [41] and quoted in the Review of Particle Physics by the

Particle Data Group (PDG) [4].

Chapter 3 treats the analysis of several electron beam dump experiments and the

resulting limits on the hidden photon mass and the kinetic mixing, as published in [42].

We discuss both the production of hidden photons in bremsstrahlung and the subsequent

decay into electrons. For the predicted number of events in an experiment, we illustrate

the dependence on the different parameters of the experimental set-up. We describe

how we determine the acceptance of each experiment under consideration by using the

results of the Monte Carlo simulations performed with MadGraph. Together with the

constraints obtained from our analysis we summarise the status of all current constraints

on hidden photons and briefly describe the various searches as well as future experiments.

Chapter 4 is concerned with the phenomenology of the different dark sector models in

which the hidden photon mediates the interaction between the Standard Model and the

dark matter particle in the hidden sector. We introduce the constraints that arise on

these kind of scenarios and illustrate their application to our dark sector models. The

resulting effects on the parameter space of the toy model and the supersymmetric models

are examined in detail with emphasis on the signatures in direct detection experiments.

Besides covering results published in [43], this chapter presents an update of the entire

analysis taking into account recent developments in direct detection experiments.

In Chapter 5, we conclude and give an outlook on future work.





Chapter 1

Fundamentals

This chapter sets the stage for the analyses carried out in this thesis and the findings

presented in the subsequent chapters. In Sec. 1.1, starting from the observational evi-

dence for dark matter, the requirements that have to be met by a viable dark matter

particle are summarised and WIMPs as appealing candidates are discussed. Addition-

ally, the distribution of dark matter in the galaxy and possible detection methods are

outlined. Sec. 1.2 introduces different extensions of the Standard Model which are of

importance for the remainder of this thesis, in particular hidden sectors. The case where

such sectors contain a hidden photon is then further examined in Sec. 1.3 in view of the

analysis carried out in Chapter 3 to derive constraints on hidden photons. The possibil-

ity that the hidden sector additionally comprises a dark matter particle is considered in

Sec. 1.4. There, the toy model and the supersymmetric dark sector models, for which

we analyse the phenomenology in Chapter 4, are introduced. In Sec. 1.5, we discuss the

light NMSSM CP-odd Higgs, for which the constraints are studied in Chapter 2.

1.1 Dark matter

There are many indications for the existence of a significant amount of non-luminous

matter in the Universe. Different observations of large astrophysical systems show that

the mass of an object (e.g. galaxy) determined from its gravitational effect does not

match the one inferred from its visible contents like stars, gas and dust. This discrepancy

can be solved by introducing an invisible, therefore called dark, form of matter that

makes up for the missing mass. Alternative solutions, suggesting a modification of the

laws of gravity on large scales, have also been proposed. While they can account for

certain observations without the need for dark matter, they usually fail to reproduce all

simultaneously and are therefore not studied further in this work. Especially the bullet

cluster discussed in Sec. 1.1.1 is not well explained in those models and favours particle

dark matter as solution.

7
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In the following, we summarise the evidence for the existence of dark matter and

certain requirements imposed on a valid candidate. Many reviews about dark matter

exist in the literature, e.g. Refs. [1–7]. Since so far not much is known about the

particle nature of dark matter, an additional discovery through some non-gravitational

interaction is indispensable in order to discriminate between different models and finally

identify a dark matter particle. An overview of different searches is given at the end of

this section.

1.1.1 Evidence for dark matter

On galactic scales, rotation curves of several spiral galaxies show an unexpected be-

haviour. The circular velocities of stars and gas in a galaxy according to Newtonian

mechanics should scale as v(r) ∝
√
M(r)/r with the radius r from the centre and the

mass M(r) enclosed in the sphere of radius r [3]. Thus, at large enough distances, when

most of the galaxy’s visible mass is contained inside of r and M(r) is constant, the veloc-

ities should fall off as v(r) ∝ 1/
√
r with increasing r. Instead, observations often yield

a flat distribution as shown in Fig. 1.1, which suggest the presence of a non-luminous

matter component in the galaxy. Therefore, in order to explain the flatness of the dis-

tribution, a halo of dark matter which extends beyond the radius of the visible disk is

required.

Figure 2: Rotation curve of NGC 6503. The dotted, dashed and dash-dotted lines are
the contributions of gas, disk and dark matter, respectively. From Ref. [50].

Rotation curves are usually obtained by combining observations of the 21cm
line with optical surface photometry. Observed rotation curves usually exhibit
a characteristic flat behavior at large distances, i.e. out towards, and even far
beyond, the edge of the visible disks (see a typical example in Fig. 2).

In Newtonian dynamics the circular velocity is expected to be

v(r) =

√
GM(r)

r
, (37)

where, as usual, M(r) ≡ 4π
∫
ρ(r)r2dr, and ρ(r) is the mass density profile,

and should be falling ∝ 1/
√
r beyond the optical disc. The fact that v(r) is

approximately constant implies the existence of an halo with M(r) ∝ r and
ρ ∝ 1/r2.

Among the most interesting objects, from the point of view of the observa-
tion of rotation curves, are the so–called Low Surface Brightness (LSB) galaxies,
which are probably everywhere dark matter-dominated, with the observed stel-
lar populations making only a small contribution to rotation curves. Such a
property is extremely important because it allows one to avoid the difficulties
associated with the deprojection and disentanglement of the dark and visible
contributions to the rotation curves.

Although there is a consensus about the shape of dark matter halos at large
distances, it is unclear whether galaxies present cuspy or shallow profiles in their
innermost regions, which is an issue of crucial importance for the effects we will
be discussing in the following chapters.

Using high–resolution data of 13 LSB galaxies, de Blok et al. [179] recently
showed, that the distribution of inner slopes, i.e. the power–law indices of the
density profile in the innermost part of the galaxies, suggests the presence of

16

Figure 1.1: Typical rotation curve exhibiting the flat behaviour at large radius, here for the

example of NGC 6503 from [3]. Different contributions arising from the gas, the disk and

the dark matter halo are shown as dotted, dashed and dash-dotted lines, respectively.

In a similar way, dark matter also manifests its existence on the scale of galaxy

clusters. Different methods can be applied to determine the mass of a cluster. They

usually yield a discrepancy between the gravitational and the visible mass suggesting

a contribution from dark matter. It is, for example, possible to deduce the mass from
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weak gravitational lensing or from the circular velocities of galaxies by application of the

virial theorem. Applying the latter method for the Coma cluster, F. Zwicky deduced in

1933 that the gravitational mass had to be much larger than the observed one and thus

suggested the existence of dark matter for the first time. Weak gravitational lensing

on the other hand uses the distortion of images of distant galaxies, which results from

the bending of light when passing by the gravitational potential of a massive object, to

infer the matter distribution along the line-of-sight. Other observations supporting the

presence of dark matter from subgalactic to inter-galactic scales exist, see, e.g. [3], but

are beyond the scope of this work.

A striking evidence for the existence of dark matter arises from the so-called Bullet

cluster [44]. Observed by the Hubble space telescope in 2006, it is the result of two

colliding galaxy clusters. The stellar components of both clusters behave collisionlessly

and are not much slowed down in the collision in contrast to the interacting fluid-like

gas and dust. This leads to the spatial separation shown in Fig. 1.2 between the stellar

component in the left-hand plot and the decelerated plasma cloud in the right-hand

plot. The mass distribution should then follow the gas which is known to form the

main matter contribution of the cluster. This is, however, not the case, as shown by the

green lines in Fig. 1.2. These lines depict the cluster’s mass distribution as inferred from

weak gravitational lensing. Instead of tracing the gas in the right-hand plot, the mass

distribution shown by the green lines is similar to the one of the stars. Thereby, the

presence of a non-luminous and collisionless component, which dominates the mass of

the cluster, is revealed. This surprising behaviour observed in the Bullet cluster seems to

be difficult to explain by employing modifications of gravity. It therefore demonstrates

compelling evidence for the existence of dark matter.

Figure 1.2: Observations of the Bullet cluster’s different components from [44].

Left: Stellar component overlaid with green lines representing the mass distribution obtained

from weak gravitational lensing. Blue crosses indicate the centre of the gas.

Right: X-ray image of the plasma cloud again overlaid with the mass distribution.

Finally, of great importance is the observation of the Cosmic Microwave Background

(CMB) radiation since it allows to precisely determine the total amount of dark matter
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in the Universe in the framework of the cosmological concordance model, the Lambda-

Cold Dark Matter model (ΛCDM)1. This radiation emerges from the time when the early

Universe became transparent for photons after it had cooled enough for electrons and

protons to recombine in neutral atoms. The further expansion of the Universe caused

these photons to redshift and cool. Observations today, by the COsmic Background

Explorer (COBE), the Wilkinson Microwave Anisotropy Probe (WMAP) and most re-

cently by the Planck satellite, show a near-perfect thermal black body spectrum with a

temperature of 2.726 K that is isotropic to 1 part in 105. Analysing the power spectrum

of temperature anisotropies in the CMB allows to determine different parameters of the

cosmological model. The most important parameters in the context of the present work

are the energy densities of different components in the Universe, in particular the overall,

the baryonic and the non-baryonic matter component. Based on the measurements of

the WMAP satellite the Review of Particle Physics by the PDG [4] quotes the density

of the baryonic matter as

Ωbh
2 = 0.022± 0.001 , (1.1)

and the one of cold (as explained in Sec. 1.1.2), non-baryonic dark matter as

ΩDMh
2 = 0.112± 0.006 , (1.2)

where the abundances Ωi = ρi/ρc are normalised to the critical density ρc for which the

Universe is flat and are further multiplied by the scaled Hubble parameter h defined as

H0 = 100h km s−1 Mpc−1. The overall matter content ΩM = Ωb + ΩDM of the Universe

is thus dominated by cold, non-baryonic dark matter since ΩM � Ωb. Some amount of

Ωbh
2 is also expected to serve as baryonic dark matter, e.g. in form of cold molecular gas

clouds or MAssive Compact Halo Objects (MACHO) but their contribution to the mass

of the galactic halo was found to be small [4]. Therefore, it is important to understand

the nature of this cold, non-baryonic dark matter and to find viable particle candidates.

Throughout this work, we simply refer to this as dark matter, implicitly assuming cold

and non-baryonic, and require the corresponding relic density to lie within 3σ of the

value given in Eq. (1.2). In March 2013, the Planck satellite [45] released their most

recent data and found a slightly higher value of

ΩDMh
2 = 0.1196± 0.0031 (Planck only), (1.3)

which is the most precise value obtained by one single experiment to date.

Altogether, nowadays the existence of a large amount of (cold, non-luminous) dark

matter in the Universe is well-established. Its exact particle nature is still unknown and

some candidates as well as necessary requirements are discussed in the following.

1This is the currently accepted cosmological model. It describes the expansion history of the Universe
after the Big Bang in agreement with observations. The model includes a non-zero cosmological constant,
called Lambda (Λ), together with Cold Dark Matter.
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1.1.2 Dark matter candidates

For a particle to qualify as viable candidate for dark matter, it has to meet different

requirements. As a first step, it is natural to check if the Standard Model provides such

a particle.

According to the measurements of the CMB, discussed earlier, a non-baryonic dark

matter component dominates the matter density of the Universe. The production of

a good dark matter candidate should therefore yield a density in agreement with the

measured relic abundance ΩDMh
2 given by Eq. (1.2). Two possible mechanisms to obtain

the required relic abundance are production from the decay of a heavier particle and

thermal production in the early Universe. The latter is the most common one and gives

rise to a large class of dark matter candidates, known as Weakly Interacting Massive

Particles (WIMPs), which naturally obtain the correct relic abundance. This is discussed

in more detail in Sec. 1.1.2.1.

Among the possible candidates within the Standard Model, all baryons are ruled

out by definition when looking for non-baryonic dark matter. Also, for a particle to

be dark, it should be non-luminous and thus neutral since it would have most likely

been seen otherwise. This then further excludes among the Standard Model particles all

charged leptons as dark matter candidates. Moreover, dark matter has to be stable or

at least sufficiently long-lived on cosmological time scales (lifetime larger than the age

of the Universe) not to have decayed by now. This requirement can, for example, be

achieved if the dark matter carries an additional quantum number preventing it from

decaying into Standard Model particles. This then eliminates also the Standard Model

gauge bosons and the Higgs boson as dark matter candidates. Neutrinos are thus the

only remaining potential candidate for dark matter in the Standard Model. They are,

however, not a good candidate since the light neutrino contribution to Eq. (1.2) is limited

to Ωνh
2 < 0.0062 [4], and since neutrinos form hot dark matter which is in conflict with

structure formation, as discussed in the following.

For consistency with structure formation, dark matter is generally considered to be

cold, as opposed to warm or hot. Cold dark matter is non-relativistic during structure

formation, while hot dark matter is relativistic. Particles with velocity distributions

between those two extrema are then denoted as warm. Because of these differences in

their behaviour, the three classes (cold, warm, hot) have different effects on the structure

formation and can be tested against observations. The general idea is that structure for-

mation starts with the smallest structures which consecutively cluster into larger ones.

This “bottom-up” formation is supported by observations of galaxies which are older

than superclusters. It can be achieved by cold dark matter since these particles moving

with non-relativistic velocities can clump on small scales. Large N -body simulations for

structure formation with cold dark matter (in a ΛCDM Universe) are consistent with

observations of the large-scale structure in the Universe. Hot dark matter, on the con-

trary, spoils this kind of structure formation since the relativistic dark matter particles
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can not clump on small scales and thus wash out small-scale density fluctuations (below

the free-streaming length). This is similar to the Silk damping [46] of small scales by

free-streaming photons during recombination. Therefore, in the presence of hot dark

matter, large structures form first and only later on in their fragmentation do the small

structures emerge. This top-down formation is, however, in conflict with the observa-

tions of the older galaxies and therefore disfavours hot dark matter. This is the reason

why Standard Model neutrinos are excluded as viable dark matter candidates. Warm

dark matter, on the other hand, does not lead to the same contradictions as hot dark

matter because of its smaller free-streaming length. It has been of interest since some

disagreement between cold dark matter simulations and observations occurred regarding

the small-scale structure of the Universe. One example, the so-called “missing satellite”

problem, arose in cold dark matter simulations which predicted a larger number of dwarf-

sized subhalos than found in observations [47,48]. Warm dark matter, in contrast to the

cold one, suppresses the formation at small scales because of the larger free-streaming

length and could solve this issue. However, recent discoveries of additional satellites

indicate that the problem might not have originated from the cold dark matter simu-

lations but was caused by incomplete observations. Another issue, referred to as the

“core-vs-cusp problem”, occurs since cold dark matter simulations predict cusps in the

inner dark matter density profile of galaxies in contrast to the constant density cores

expected from observations of dwarf galaxies [49]. Additionally, the simulations give too

high densities for the most massive subhalos to host the brightest Milky Way satellites

galaxies [50] which is known as the “too-big-to-fail problem”. Even though the cold dark

matter paradigm is generally adopted, warm dark matter can also be consistent with

structure formation and only hot dark matter is in conflict.

Another common assumption is that dark matter besides being cold behaves also

collisionlessly. This has already been inferred in Sec. 1.1.1 in view of the Bullet cluster.

While collisionless cold dark matter successfully reproduces the large-scale structures,

it is afflicted with the aforementioned small-scale problems. In this respect, warm dark

matter is not the only way out, but also the collisionless nature has been questioned. One

possible modification studied in this context is to allow the dark matter to self-interact.

However, the strength of the self-interaction required to solve these problems seemed

to be in tension with other observations and constraints, e.g. from the Bullet cluster.

A revival of interest in these scenarios arose since some of these constraints weakened

in improved simulations or could be avoided in new models with velocity-dependent

self-interactions. Recently, viable scenarios in which the dark matter has Yukawa-like

interactions mediated by a light messenger were suggested, e.g. in Refs. [51–53].

Further requirements arise since a viable dark matter candidate should neither spoil

the success of big bang nucleosynthesis (BBN) nor stellar evolution. The impressive

agreement between the predictions from BBN for the abundances of light elements (D,
3He, 4He, 7Li) and their primordial abundances inferred from observations allows to

constrain deviations from standard cosmology. Potential dangers arise, for example,
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when increasing the relativistic degrees of freedom (often parametrised by the effective

number of neutrinos Nν) and causing a faster expansion or if particle decays during or

after BBN produce high-energy photons capable of destroying the light elements. Note

that since the predicted abundances depend on the baryon density, BBN also allows

a determination of Ωbh
2 which agrees well with the CMB measurement in Eq. (1.2).

Details and a review on BBN can, for example, be found in [54]. Stellar evolution places

limits on extra exotic energy losses, cf. e.g. [55], since they would, for example, change

the lifetime or sound speed profile of stars and thereby can constrain certain dark matter

candidates.

Finally, dark matter is also constrained by various negative results of different exper-

imental searches. A viable dark matter candidate should therefore not produce a signal

that would have been detected in any of these experiments. An overview of the different

experiments is presented in Sec. 1.1.4.

In summary, this discussion showed, that the Standard Model does not provide

a candidate for dark matter. A particle with the properties of a good dark matter

candidate, outlined in this section, therefore has to be sought in new models of physics

beyond the Standard Model. Many such extensions exist and provide viable dark matter

candidates. Two possible scenarios are introduced in Sec. 1.2. To guarantee the stability

of the dark matter particle, many models impose a symmetry and thereby forbid the

decay into Standard Model particles. In several of these extensions, the dark matter

candidate belongs to the aforementioned class of Weakly Interacting Massive Particles

(WIMPs) which are described in the following.

1.1.2.1 Thermal relic abundance and WIMP dark matter

As mentioned earlier, thermal production is the most prominent mechanism to generate

the relic abundance of dark matter. It assumes that the dark matter particle ψ is in

thermal equilibrium with the primordial plasma in the early Universe. The annihilation

of ψ into Standard Model particles and the inverse production of ψ out of Standard

Model particles maintain the equilibrium density. Once the temperature T drops below

the dark matter mass mψ, the energy in the plasma is not sufficient for Standard Model

particles to efficiently produce ψ and it falls out of equilibrium. The evolution of the dark

matter number density nψ(t) with time t is described by the Boltzmann equation [1,56]

dnψ
dt

+ 3Hnψ = −〈σannv〉
[
(nψ)2 − (neq

ψ )2
]
, (1.4)

where H is the Hubble parameter, 〈σannv〉 is the thermally averaged annihilation cross

section and neq
ψ is the number density at thermal equilibrium. The expansion of the

Universe causing a dilution of the number density is encoded in the second term on the

left-hand side and the presence of interactions in the right-hand side. The equilibrium
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density in the non-relativistic limit is Boltzmann suppressed by neq
ψ ∝ exp[−mψ/T ].

After falling out of equilibrium, the dark matter density decreases exponentially with T

until the annihilation rate Γ = 〈σannv〉nψ of ψ drops below the expansion rate H. This

is referred to as freeze out. The number density per comoving volume nψa
3 then stays

constant since ψ stops to annihilate.

In order to determine the relic abundance of a self-annihilating dark matter particle

in the simplest case, the Boltzmann equation (1.4) has to be solved (further complication

can arise for example from coannihilations). For this purpose, the thermally averaged

annihilation cross section has also to be calculated. There exist different codes, e.g.

micrOMEGAs [57–61], which perform these tasks and numerically compute the relic

abundance of a dark matter particle in a given theoretical model. Solving the Boltzmann

equation, a rough estimate for the relic density of a dark matter particle with annihilation

cross section 〈σannv〉 can be obtained as

ΩDMh
2 =

mψ nψ
ρc

' 3 ∗ 10−27 cm3 s−1

〈σannv〉
, (1.5)

in units of the critical density ρc. In this approximation, the abundance is inversely

proportional to the annihilation cross section and independent of the dark matter mass.

It shows that the appropriate abundance can be obtained for a massive particle with

cross sections which are typical for weak interactions. Such particles are referred to as

Weakly Interacting Massive Particles (WIMPs) and represent a prominent class of dark

matter candidates. They freeze out when they are non-relativistic and thus constitute

cold dark matter. The argument that a GeV- to TeV-scale particle with weak-scale

annihilation cross section gets naturally produced with the right relic abundance is

called the “WIMP miracle”.

1.1.3 Dark matter spatial distribution

The presence of a large amount of dark matter in galaxies and galaxy clusters is inferred

from several observations, as discussed in Sec 1.1.1. An important issue — especially

regarding the effort described in Sec. 1.1.4 to detect other signs of dark matter than

gravitational ones — is the distribution of dark matter in these galactic halos and no-

tably the one of the Milky Way. The measured rotation curves of different galaxies can

be reproduced over a large range of radii by a class of density distributions with the

phenomenological form given by [2]

ρ(r) ∝ ρc

(r/a)γ [1 + (r/a)α](β−γ)/α
(1.6)

and certain sets of the parameters (α, β, γ). One possible shape described by (α, β, γ) =

(1, 3, 1) was found in 1996 by Navarro, Frenk and White [62] in N -body simulations

and is known as the NFW profile. In a later simulation, Moore et al. [63] obtained a
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profile with (α, β, γ) = (1.5, 3, 1.5), which predicts an even steeper cusp at the inner

region of the galaxy than the NFW one. The isothermal profile, on the other hand,

with parameters (α, β, γ) = (2, 2, 0) does not diverge as r → 0 and gives a core at the

galactic centre. Another example with finite central density is the Einasto profile [64]

which is not described by Eq. (1.6) but was also found to provide good agreement with

halos from N -body simulations.

In analyses of direct detection experiments (cf. Sec. 1.1.4.1), it is common to use

the so-called Standard Halo Model (SHM) [65] which will also be considered in most

of this work, though in some cases also the effects of changing to a different profile are

illustrated. The SHM assumes a spherically symmetric and isothermal distribution of

dark matter around the galactic centre as well as a Maxwellian distribution F (~v, r) ∝
exp(−v2/v̄2) for the dark matter velocities with a mean velocity v̄ = 220 km/s in the

galactic frame and an escape velocity vesc = 544 km/s. The density profile scales as r−2

and is often normalised to a local density of

ρDM = 0.3 GeV/cm3 (1.7)

at the solar position.

N -body simulations are of great importance for our understanding of the growth

of dark matter structure in the Universe in general and in particular regarding the

distribution of dark matter in galactic halos. They simulate the evolution of a large

number of dark matter “particles” under the influence of gravity starting from certain

initial conditions (matter distribution inferred from the inhomogeneities in the CMB)

until the formation of structures and galaxies. Because of the limited computational

power, the mass and spatial resolution as well as the number of “particles” is limited

so that, for example, the masses of the simulated “particles” are a multiple of the

solar mass. Simulations have been improved with better computational possibilities,

recent ones include the Via Lactea II simulation [66], the Aquarius project [67] and the

Millennium-II simulation [68]. While the simulations agree qualitatively at large scales,

the density profile in the inner region of galaxies as well as potential substructures in

the halo are still subject to discussions as they lie beyond current resolution. In contrast

to most simulations which only consider dark matter, recent ones also including baryons

indicate that the stellar disk affects the accretion of satellites and leads to the formation

of a co-rotating thick disc of stars and dark matter [69–71] referred to as dark disk. As

claimed in [72], baryons could also affect the density of dark matter in the inner region

of a galaxy and result in a spiked profile.

Another parameter of importance in this context is the above-mentioned local dark

matter density ρDM. It is also afflicted with uncertainties and depends on the shape of

the density profile [2]. While Eq. (1.7) is the generically used value, different studies

found values ranging from 0.2 GeV/cm3 to 0.6 GeV/cm3 (e.g. 0.39 GeV/cm3 in [73]

for an NFW or an Einasto profile, 0.43 GeV/cm3 in [74], 0.235 GeV/cm3 in [75], 0.2−
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0.56 GeV/cm3 in [76] for an NFW profile and very similar for an Einasto profile). Note

that, as an observer within the Milky Way, it is in general more difficult to determine

parameters for the dark matter halo of our own galaxy than for other galaxies.

1.1.4 Detection of dark matter

In order to confirm the existence of dark matter and determine its particle properties like

its mass or couplings, a detection through another interaction besides the gravitational

one is desirable. The three methods of currently employed experimental searches are

direct detection, indirect detection and searches at colliders. For each, the relevant

process is sketched in Fig. 1.3 by the arrows indicating the flow of time for the interactions

of two dark matter and two Standard Model particles.

Dark Matter

Dark Matter

Standard Model

Standard Model

Collider

Direct Detection

Indirect Detection

Figure 1.3: Diagram illustrating some unknown interaction (black disk) of two dark matter

and two Standard Model particles. The blue arrows give the direction of the time flow for

the respective process involved in the different dark matter detection methods.

In the following, the three searches are briefly summarised with emphasis on direct

detection, which is the most relevant in the context of this work. We only briefly com-

ment on the other two searches for completeness. Note, that they all rely on couplings of

dark matter to other forces than gravity, which might not be present. The assumption

that dark matter possesses other interactions is, however, well-justified for the class of

thermal relics and in particular WIMPs which by definition have weak scale interac-

tions, as discussed in Sec. 1.1.2.1. For the dark matter candidates studied throughout

this work, this assumption is considered to be valid.

1.1.4.1 Direct detection

Since dark matter from the galactic halo should continuously pass by the Earth, its

presence could be revealed once it interacts inside a detector with normal matter. Di-

rect detection experiments aim at measuring the elastic scattering2 of a dark matter

2Inelastic scattering on nuclei or electrons is in principle also possible, though usually less considered
in experiments since rates are suppressed and a discrimination from the natural radioactive background
is difficult. This possibility is therefore not discussed further in this work.
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particle on a nucleus of the target material. Various experiments are carried out using

different techniques to detect the resulting nuclear recoil. However, since dark matter

interacts only weakly, such events are expected to be rare. Experiments therefore use

large detectors placed far underground in order to suppress the background from cosmic

rays (most importantly neutrons produced in interactions of cosmic rays since they give

a similar signal as expected from dark matter). More details on the relevant calculations

and direct detection techniques are given for example in [1, 8–11].

The differential rate of nuclear recoils per unit detector mass, time and energy (typ-

ically in units of counts/kg/day/keV) is given by [11]

dR

dEr
= NN

ρDM

mDM

∫ vmax

vmin

v f(v)
dσN
dEr

(v,Er) dv , (1.8)

in which NN is the number of nuclei per kilogram of the target, ρDM is the local dark

matter density, mDM is the dark matter mass, v and f(v) are the dark matter velocity

and velocity distribution in the Earth rest frame and dσN /dER is the differential scat-

tering cross section on a nucleus N . The lower limit of the integration is given by the

minimal velocity vmin =
√
mNEr/(2µ2

N ), which can produce a recoil of energy Er. The

upper limit is set by the escape velocity vesc of the galaxy in the Earth rest frame, cf.

Sec. 1.1.3. The expected rate in an experiment thus requires to combine factors from

particle physics, nuclear physics and astrophysics as well as a good understanding of the

particular detector response. Interpretation of experimental results can thus be com-

plicated especially since some of these factors are afflicted with uncertainties which can

affect the derivation of limits.

Regarding the astrophysical factors, direct detection experiments usually assume

the Standard Halo Model introduced in Sec. 1.1.3. They consider the canonical value

of 0.3 GeV/cm3 for the local dark matter density and a Maxwell–Boltzmann velocity

distribution in the galactic frame. As mentioned above, different studies suggest devi-

ations from these standard assumptions which would affect the direct detection limits.

A variation in ρDM results in an overall factor in σN because of the proportionality

dR/dEr ∝ ρDMσN and is the same for all experiments. Changing the assumptions for

the velocity distribution, e.g. varying the shape, the escape or the mean velocity, affects

the limits of different experiments differently and in a more complicated way, depending

also on the dark matter mass. This is caused by experiments being sensitive to different

parts of the velocity distribution due to varying vmin for different target nuclei and en-

ergy thresholds. This effect is particularly important for light dark matter as discussed

in more detail, for example, in [77]. In [70], it was shown that also the presence of a

dark disk would have important consequences and enhance the rates in direct detection

experiments. Because of those uncertainties, halo-independent analyses like Ref. [78–80],

systematic studies of the uncertainties as in Ref. [81] and a better understanding of the

astrophysical uncertainties are important and subject to continuous effort, see also [65]

for a discussion.
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The scattering cross section on a nucleus N can in general be separated into a spin-

independent (SI) and a spin-dependent (SD) contribution, where the former results from

scalar or vector and the latter from axial couplings between the dark matter and the

nucleon. The dark matter-nucleus cross section can be written in terms of the cross

sections in the zero momentum transfer limit σSI
0 and σSD

0 as

dσN
dEr

=
mN

2µ2
N v

2

[
σSI

0 F
2
SI(Er) + σSD

0 F 2
SD(Er)

]
, (1.9)

in which µN = mDMmN /(mDM + mN ) is the dark matter-nucleus reduced mass, and

FSI and FSD are form factors which depend on the recoil energy Er. Experiments are

usually more sensitive to spin-independent scattering since it is coherently enhanced

for a nucleus N compared to a single nucleon, unlike in the case of spin-dependent

scattering, which even vanishes for nuclei with zero total spin (e.g. for even-even nuclei

with an even number of protons and neutrons). Therefore, in most experiments the use

of heavy target nuclei results generally in a larger spin-independent than spin-dependent

scattering cross section.

For a dark matter particle ψ, the spin-independent scattering can arise from scalar

or vector dark matter-quark interactions with the respective terms in the Lagrangian

given by [1, 10]

Lqscalar = aqψ̄ψq̄q and Lqvec = bqψ̄γµψq̄γ
µq , (1.10)

where the presence of the couplings aq and bq to quarks depends on the particular dark

matter model. The spin-independent part of the scattering cross section of Eq. (1.9)

then receives a contribution from the scalar dark matter-nucleus cross section given by

σSI
0, scalar =

4µ2
N
π

(
Zfp + (A− Z)fn

)2
, (1.11)

where Z and A are atomic number and atomic mass of the target nucleus and fp (fn) are

effective couplings of the dark matter particle to protons (neutrons). These parameters

fp and fn depend on the couplings aq to light and heavy quarks and on the contribu-

tions of the light quarks to the mass of the nucleon (these contributions are measured

experimentally but suffer from uncertainties, especially the s-quark contribution). The

part in the spin-independent scattering cross section arising from the vector couplings

only receives a contribution from the valence quarks and is given by

σSI
0, vec =

µ2
NB

2
N

64π
, (1.12)

where BN = Z(bu − bd) +A(bu + 2bd).
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The combined spin-independent contribution to the scattering cross section of dark

matter on a nucleus N can then be written as

dσSI
N

dEr
=

2mN
πv2

((
Zfp + (A− Z)fn

)2
+
B2
N

256

)
F 2

SI(Er) . (1.13)

In the most commonly studied case of scalar interactions and for approximately equal

couplings to protons and neutrons fp ≈ fn ≡ fN, the spin-independent scattering cross

section thus becomes

(
dσSI
N

dEr

)fp≈fn

scalar

=
2mN
πv2

A2f2
N F 2

SI(Er) =
mN

2v2µ2
N

σSI
N, scalar A

2 F 2
SI(Er) , (1.14)

where the cross section on a single nucleon N is expressed in analogy to the one given

in Eq. (1.11) for fp ≈ fn by

σSI
N, scalar =

4µ2
N

π
f2

N , (1.15)

with the dark matter-nucleon reduced mass µN = mDMmN/(mDM +mN) for a nucleon

with mass mN ≈ mp ≈ mn. The spin-independent scattering cross section in this partic-

ular case of Eq. (1.14) thus scales with the atomic mass squared A2 and is dominant for

heavy target nuclei, as mentioned above. Constraints from direct detection experiments

are then usually presented on the cross section per nucleon for scalar interaction under

the assumptions of fp ≈ fn.

On the contrary, in a case where dark matter couples to the charge of Standard

Model particles, the scattering occurs mostly on protons, while fn ≈ 0. Then, from

Eq. (1.13), the spin-independent scattering cross section follows for scalar and vector

interactions instead as

(
dσSI
N

dEr

)fn≈0

scalar

=
2mN
πv2

Z2f2
p F

2
SI(Er) =

mN
2v2µ2

N

Z2 σSI
p, scalar F

2
SI(Er) ,

(
dσSI
N

dEr

)fn≈0

vec

=
mN
πv2

Z2

128
F 2

SI(Er) =
mN

2v2µ2
N

Z2 σSI
p, vec F

2
SI(Er) , (1.16)

where for mN ≈ mp the scalar cross section per proton is roughly the same as the one

per nucleon of Eq. (1.15), i.e. σSI
p, scalar ≈ σSI

N, scalar, and for vector interactions the cross

section for scattering on a single proton is given by

σSI
p, vec =

µ2
N

64π
, (1.17)

in analogy to Eq. (1.12) for BN = Z, in the case where the coupling is to the charge.

Thus, in the particular case where the scattering takes place exclusively on protons, both

the vector and the scalar cross sections for spin-independent scattering scale with Z2,

instead of with A2 in the case of fp ≈ fn. This different scaling will become important in

the analysis of the direct detection signatures in a specific model studied in Chapter 4.
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Besides the astrophysical uncertainties in the computations of rates and cross sections

for direct detection experiments, further uncertainties are introduced when converting

the scattering cross sections between the partonic, the hadronic and the nuclear levels

and also complicate the comparison between experiments using different target nuclei,

cf. e.g. [10,82] and references therein. Another potentially problematic issue arises when

translating the measured energy to the actual recoil energy since it depends on the

detector response and can affect the comparison of experiments. In general, a dark

matter signal is expected to be largest at low recoil energies near the energy threshold of

the detector where it is most endangered to be affected by backgrounds, noise or a bad

understanding of the detector response. This is particularly important for light dark

matter for which the sensitivity decreases rapidly and low energy thresholds are crucial.

While most experiments want to observe an excess of nuclear recoil events produced

from dark matter scattering above the expected background rate, few experiments are

looking for a very particular feature in order to uniquely identify a signal of galactic

origin. This method, first suggested in [83, 84], relies on the Earth’s motion around

the Sun which is expected to cause an annual modulation of the signal rate. Since the

Earth’s velocity in the galactic rest frame results from the rotation of the Earth around

the Sun and the one of the Sun around the galactic centre as

v⊕ = 220 km/s
(
1.05 + 0.07 cos[2π(t− tm)/1 year]

)
(1.18)

it periodically fluctuates with a maximum when Earth and Sun move in the same (tm ≈
June 2nd) and a minimum when they move in opposite directions. In summer (winter),

there are then more dark matter particles with high (low) speed so that the event

rate peaks in summer for large recoil energies and in winter for small ones. This annual

modulation is however expected to be small ≈ 7% [9] since the orbital speed of the Earth

is much smaller than the one of the Sun. Another signature caused by the Earth’s motion

through the galaxy would be a forward-backward asymmetry in an experiment capable

of obtaining directional information on the recoiling nucleus [10,85]. Since backgrounds

are unlikely to show such a behaviour and only few events would be needed, it could be

an intriguing sign of dark matter, however, there are no directional experiments yet [11].

A large number of experiments have been constructed to look for signals originating

from the scattering of dark matter on a nucleus inside the detector. The null results

of these searches are continuously lowering the limits on the scattering cross sections

as a function of the dark matter mass. A summary of current experiments and future

plans is given in [11]. The XENON100 [86, 87] and CDMS-II [88, 89] experiments are

the largest and most prominent ones providing currently the strongest constraints on

spin-independent scattering. In Sec. 4.1.3, we give an overview of the limits which are of

importance in this work. Besides these negative searches, there are also four experiments

claiming the observation of a signal, two as an annual modulation and two as an excess in

the low energy events. The first evidence for a modulation was presented by the DAMA
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collaboration in 1998 [32] and has now reached a significance of 8.9σ by observing more

than 13 annual cycles [33,34]. In 2011, the CoGeNT experiment has claimed indications

of an annual modulation which is compatible with a light dark matter particle [35,36]. In

2012, the CRESST experiment found an excess of events above their known background

which might be explained by a light dark matter particle [37, 38]. While this work was

being finished, the CDMS collaboration reported the observation of 3 events after cuts at

an expected background of 0.4 events in a special analysis of their silicon detectors [39].

All experiments point towards a light dark matter particle, if the standard (most simple)

astrophysical assumptions are made, but the exact masses and cross sections required

to explain the signals differ somewhat. They are also in tension with the limits arising

from the negative searches especially from XENON and CDMS. These experiments,

however, are designed to look for heavier dark matter particles and are not the most

sensitive in the relevant low mass range due to their high thresholds and heavy target

nuclei (also the reliability of the detector performance close to the energy thresholds has

been questioned and their limits were disputed, e.g. in [90,91]). In view of the different

uncertainties and the limited knowledge in several ingredients needed to estimate the

number of events, the signals should not be dismissed easily. For different assumptions

on the astrophysical parameter or somewhat more exotic dark matter candidates, these

signals can be brought in agreement with each another and with the limits, examples of

which are given in Sec. 4.1.3.

1.1.4.2 Indirect detection

Besides direct detection it is also possible to search indirectly for dark matter by detect-

ing the products of its annihilation (or decay which is not the focus here). It is in general

possible to look for neutrinos, gamma rays, positrons, antiprotons or antideuterons aris-

ing either as primary products in the dark matter annihilation or as secondary ones,

e.g. from successive decays of primary particles. The flux of produced particles is pro-

portional to the square of the dark matter density ρψ and the annihilation cross section

times the relative velocity of the dark matter particles as φ ∝ ρ2
ψσannv. For a thermal

relic, the annihilation cross section would be linked to the one determining the relic

density (cf. Sec. 1.1.2.1) though differences might arise due to the lower velocity today

compared to the time of decoupling and since coannihilations could contribute to the

relic abundance. Because of the quadratic dependence on ρψ it is promising to look at

places with high density like the galactic centre and the Sun or the Earth, which can

capture and accumulate dark matter. Furthermore, the observation of a spectral fea-

ture like a line, for example, in the gamma ray spectrum would be a distinct signature

pointing towards dark matter.

An overview of different annihilation products that are promising for indirect searches

is, e.g. given in [3, 12, 13] and references therein. Charged cosmic rays like positrons or

antiprotons can in general not be associated with a particular source and are instead
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observed as a diffuse flux since they are deflected by the magnetic fields in the galaxy,

undergo interactions with the interstellar medium and lose energy. Their interpretation

in terms of a dark matter signal is, however, challenging as their propagation suffers from

uncertainties, and background estimates are complicated since these particles are also

produced by astrophysical sources. Neutrinos and gamma rays on the other hand are

neutral and not deflected by magnetic fields so that they point back to their origin. The

galactic centre is then a very promising source since the dark matter density is expected

to be high. Neutrinos, due to their weak interactions, can additionally emerge from the

centre of the Sun or the Earth but they require large detectors in order to be observed.

Besides the galactic centre, the halo or dwarf galaxies are also interesting targets to look

for gamma ray signals. More details on dark matter searches with neutrinos from the

Sun/Earth are given, e.g. in [1], and with gamma rays, e.g. in [92].

In the past years, several experiments reported observations of unexpected phe-

nomena which might originate from dark matter or point towards special unforeseen

astrophysical features. Some of these anomalies disappeared with time and others got

confirmed by additional experiments. The following listing is intended as a brief overview

without attempt of completeness.

There has been much excitement after the PAMELA experiment presented in 2008

their measurement of an excess in the positron fraction [28] over the predicted back-

ground of cosmic rays. This excess was confirmed by the Fermi collaboration [29, 30]

and in April 2013 also by the AMS experiment [31]. Since the first observation there have

been many works dedicated to the explanation of the excess either with astrophysical

sources like pulsars or with dark matter. In the latter case, the following obstacles have

to be overcome by a successful dark matter model: the required annihilation cross sec-

tion has in general to be larger than the standard thermal one needed to get the correct

relic abundance, cf. e.g. [93, 94] (typical boosts range from a factor of O(1) to O(100));

the dark matter annihilation should proceed dominantly into leptons and not produce

many hadrons since the PAMELA measurement [95,96] of the antiproton-to-proton flux

ratio does not show a corresponding excess, cf. e.g. [94].

Different observations of photons exhibiting somewhat curious features also attracted

attention and provoked interpretations in terms of dark matter. The INTEGRAL obser-

vation of a 511 keV line of photons from the galactic centre [97,98] could arise from the

annihilations of positrons produced in the annihilation of a light (MeV-scale) dark mat-

ter particle [99–102]. An unusual microwave emission in the region around the galactic

centre seen by WMAP (referred to as the WMAP haze and confirmed by Planck [103])

might be due to the synchrotron emission of relativistic e−/e+ originating from dark

matter annihilations at the galactic centre [104–106]. The existence of this haze has

also been confirmed by the Fermi satellite’s discovery of a corresponding gamma ray

haze (also called Fermi bubbles). In [107–109], an unexpected spectrum and angular

distribution of gamma rays from the galactic centre was found in the measurements of
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the Fermi Gamma Ray Space Telescope and explained by the annihilation of dark mat-

ter, though astrophysical explanations are also possible. Non-thermal radio filaments

which are characterised by their radio emission were found to exhibit a hard synchrotron

emission of unknown origin. It was shown in [110, 111] that the synchrotron spectrum

could be explained if dark matter annihilations within these filaments produce a nearly

monoenergetic electron spectrum. The model studied in [111] as possible solution to the

synchrotron emission from radio filaments can simultaneously account for the WMAP

haze and the gamma ray spectrum observed from the galactic centre. It constitutes of

a ∼ 10 GeV dark matter particle annihilating through a light gauge boson of an extra

U(1) symmetry (this so-called hidden photon is discussed in Sec. 1.3 and this model

is similar to the one of Sec. 1.4.2). However, note that there might of course also be

astrophysical explanations to all these phenomena.

Finally, a special spectral feature indicating the presence of a gamma ray line around

130 GeV was found in the data of the Fermi satellite in 2012 [112,113]. This has attracted

much attention since lines are considered to be a smoking gun signature for dark matter

annihilation, but it is still subject to discussions.

Like direct detection, indirect detection requires input from astrophysics which can

introduce uncertainties. Modifications in the dark matter density, e.g. at the galactic

centre by the presence of a cusp or in the halo by the presence of higher density clumps,

change the predicted fluxes of annihilation products. Deviations in the velocity distri-

bution affect the capture rate of dark matter in the Sun or the Earth. The propagation

and interactions of charged particles in the galaxy is difficult to model. The astrophys-

ical background might differ from the expectations and mimic dark matter signatures.

These and other obstacles complicate the interpretation of measurements in terms of

dark matter.

1.1.4.3 Collider searches

Finally, dark matter might be accessible to collider searches. Again relying on the

assumption that dark matter couples to Standard Model particles, it could in principle be

produced in the interactions of the latter. This production could occur either directly in

the collisions or in subsequent decay chains of other new particles which might be present

in the Standard Model extension. In the case mentioned above, where a symmetry is

introduced in order to prevent the dark matter from decaying, this very same fact avoids

in return the production of a single dark matter particle from Standard Model particles.

Dark matter or other new particles which might be contained in addition to dark matter

in the extension of the Standard Model will then only be produced in pairs out of

Standard Model particles at a collider. Since the dark matter does not interact much

with ordinary matter, once produced it would appear as missing energy and momentum

in the detector.



24 CHAPTER 1 FUNDAMENTALS

Dedicated searches at the Large Hadron Collider (LHC) were performed looking

for signatures with missing transverse energy /ET in combination with a single jet or

photon. Supposing that dark matter couples indirectly to quarks or gluons and that

the mediator of this interaction is heavy and can be integrated out, the coupling is

treated in the analysis as a point interaction and different effective contact operators are

studied. The results of this approach have also been translated into limits on the dark

matter scattering cross section which compared to direct detection bounds are stronger

at small masses. However, these limits can not always be applied since they rely on

strong assumptions such as a heavy mediator and that the involved operators are the

same at the energies relevant for LHC and those for direct detection. Both Atlas and

CMS conducted searches for monojet + /ET events in [114] and [115], respectively, as

well as for monophoton + /ET events in [116] and [117], respectively.

Specific signatures including other new particles, in general, depend on the details

of the particular Standard Model extension. While collider searches do not suffer from

astrophysical uncertainties, identifying a new stable particle produced in the laboratory

as the true dark matter first requires to ensure that it indeed exists in the galaxy in

sufficient numbers. An example of how dark matter properties could be determined at

a collider is given in [118].

1.1.4.4 Complementarity of detection methods

The experimental searches for dark matter discussed in Secs. 1.1.4.1 to 1.1.4.3 can be

used complementary. The strength with which a signal might be produced in one case

can in a given model, in principle, be related to the other observations. In Fig. 1.3,

the interactions which are relevant for the different searches are illustrated for two dark

matter and two Standard Model particles (caveats arise since different interactions might

not exhibit the same energy dependence and can involve couplings to different Standard

Model particles). For each interaction, the direction for the flow of time is indicated by

an arrow. The annihilation cross section connected to the thermal relic abundance in the

early Universe can be linked to searches with indirect detection experiments (arrow from

left to right), the scattering process relevant for direct detection (arrow from bottom to

top) and the production of dark matter at colliders (arrow from right to left).

Therefore, combining data from different types of experiments is very useful, see

e.g. [12,119,120]. It allows to cross-check results but also to circumvent the uncertainties

a certain method might inevitably be afflicted with, for example arising from the dark

matter velocity distribution in the case of direct detection or astrophysical backgrounds

in indirect detection. Furthermore, specific properties of a dark matter particle might

make it inaccessible to certain experiments while other could be better suited. Finally, in

the case of positive signals, ambiguities could complicate the reconstruction of the dark

matter properties like the mass or interaction strength while a combination of diverse

datasets could allow to break the degeneracy.
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1.1.4.5 Lessons from dark matter detection

Despite lots of experimental effort, the solution of the question of the particle nature of

dark matter still lacks conclusive and consistent signals. The different features reported

by indirect searches in cosmic rays might stem from the annihilation of dark matter

but they could also have astrophysical origins. Potential positive observations of the

scattering of dark matter in direct detection experiments seem to be in tension with

negative searches in other similar experiments. In general, the comparison of results

from different direct detection experiments is, however, problematic and relies on certain

assumptions. Results can be more or less in tension or even allowed under different

assumptions and therefore the signals should not be disregarded easily but rather might

serve as a guide to point towards potentially interesting dark matter candidates. For

such a candidate, it would be desirable if it could explain more than one and as many as

possible of the claimed signals simultaneously. However, one should keep in mind that

some of these signals might originate from dark matter while others might turn out to

be false. Furthermore, a viable candidate should be consistent with the numerous limits

obtained from null results in due consideration of the uncertainties and assumptions.

Interesting possibilities seem to arise for scenarios with light dark matter, having

a mass of about 10 GeV [121]. As discussed in Sec. 1.1.4.1, in this mass range, dark

matter may explain the signals observed by DAMA, CoGeNT, CRESST and CDMS

and be (marginally) consistent with direct detection limits since these weaken at small

masses and suffer from uncertainties (e.g. from astrophysical assumptions). According to

Sec. 1.1.4.2, such a light dark matter particle might further account for the synchrotron

emission from radio filaments, the WMAP haze and the gamma rays observed from

the galactic centre (though there might be tensions e.g. with antiproton limits). It is,

however, difficult to explain all these observed signals simultaneously with one dark

matter particle. In the models, which are analysed in Chapter 4 of this thesis, we

consider different dark matter candidates with a mass of O(10 GeV). We also discuss

the possible explanation of the signals found by DAMA and CoGeNT though they are

not the primary motivation but rather a potential additional feature, when trying to

find viable dark matter candidates in simple supersymmetric hidden dark sectors with

a hidden U(1) symmetry (see Sec. 1.4 for details on the models).

1.2 Standard Model and extensions

The Standard Model of particle physics describes the known elementary particles and

their interactions through the electromagnetic, strong and weak forces remarkably well.

However, as discussed in Sec. 1.1.2, it does not contain a particle which could serve

as viable candidate to explain dark matter. Various new physics models have been

suggested and many of them also provide a candidate for dark matter. In the following,
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we briefly introduce supersymmetry and hidden sectors, which are key ingredients of the

appealing models considered in this work.

1.2.1 Supersymmetry

Supersymmetry (SUSY) is one of the most prominent and best studied extensions of the

Standard Model. Relating bosons and fermions, this symmetry requires each Standard

Model particle to possess at least one so-called superpartner with the same mass but

a difference in spin of 1/2. Since superpartners have not been observed yet, supersym-

metry has to be broken by some yet unknown mechanism. One then could hope to

find superpartners with masses around a TeV since supersymmetry close to the TeV

scale has several appealing features. For example, it stabilises the Higgs mass at the

electroweak scale from being pulled towards the GUT or Planck scale by large quadratic

divergences arising from loop corrections (hierarchy problem). Furthermore, compared

to the situation in the Standard Model, it greatly improves the unification of the gauge

couplings at a high energy scale. Most importantly in the spirit of the previous sections,

it can provide stable neutral particles that can serve as dark matter candidates, the

neutralino being the most prominent example.

Enlarging the Standard Model with the least particle content needed for a viable su-

persymmetric extension, leads to what is known as the Minimal Supersymmetric Stan-

dard Model (MSSM). It requires to double the number of Standard Model particles and

to add an extra Higgs doublet in order to give masses to up- and down-type fermions

and to keep the theory anomaly free. Despite solving the aforementioned problems

of the Standard Model, the MSSM also possesses shortcomings that motivate further

non-minimal extensions, an example of which is the Next-to-Minimal Supersymmetric

Standard Model (NMSSM) discussed in Sec. 1.5.

1.2.2 Hidden sectors

A hidden sector is composed of a set of Standard-Model-neutral particles, which, in

contrast with the particles of the Standard Model, are charged under an additional

(Abelian or non-Abelian) gauge group. Such sectors are generically predicted in string

theories [20,21] and exist in various supersymmetric models as a source of SUSY break-

ing [4,14,15]. They are not directly connected to the Standard Model but could interact

with it through messenger particles. The most simple and most prominent model is

the one with an extra U(1) gauge symmetry in the hidden sector. In this case, the

corresponding U(1) gauge boson, the hidden photon γ′, acts as a messenger between the

hidden and the visible sector. This scenario is discussed in detail in Sec. 1.3.

Since the interactions with the visible sector are very weak, so are the current exper-

imental bounds. In fact, there might exist gauge fields and matter particles in the hid-

den sector with masses in the sub-GeV range that have so far escaped detection. These
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particles belong to a class which in analogy to WIMPs is often referred to as Weakly

Interacting Slim Particles (WISPs). Examples of WISPs are the aforementioned hidden

U(1) gauge bosons, the CP-odd Higgs of the NMSSM introduced in Sec. 1.5, and other

axion-like particles. For the CP-odd Higgs and the hidden photon, specific constraints

are derived in Chapters 2 and 3, respectively.

Furthermore, because of their weak couplings to the Standard Model these sectors

naturally provide a good hideout for dark matter. The possibility of dark matter in-

teracting via a light messenger particle, sometimes called a dark force, received much

interest as a potential explanation for some of the recent astrophysical observations men-

tioned in Sec. 1.1.4.2. The advantages of such a construction are discussed in Sec. 1.4

for the particular realisation of a hidden photon as a messenger.

1.3 Hidden sector with hidden photon

Models with an additional U(1) symmetry and the associated gauge boson, the hidden

photon γ′, in a hidden sector are of great interest from a top-down and a bottom-

up perspective, as discussed in the following. In this work, it is assumed that the

U(1) symmetry is broken at low energies by a Higgs or a Stückelberg mechanism. The

corresponding hidden photon can be light and acts as a messenger with the visible sector.

While in general the hidden photon can be as light as subelectronvolt, in this work we

consider masses in the MeV to GeV range.

1.3.1 Motivation

By definition, hidden sectors have no direct coupling with the visible sector since they

are neutral under the Standard Model gauge group and vice versa. At low energies,

their only interactions with the visible sectors might arise from non-renormalisable ef-

fective operators of mass dimension larger than four and would possibly be unobservable

since they are suppressed by some higher scale. However, the kinetic mixing of abelian

gauge fields from the hidden and the visible sector is an exception. It corresponds to a

renormalisable mass dimension four term in the low energy effective Lagrangian [22–25]

and would therefore not be suppressed. Thus, the dominant interaction of the hidden

photon γ′ considered in this work with the Standard Model at low energies appears at

the dimension four level through kinetic mixing with the visible sector hypercharge U(1)

gauge boson, as discussed in Sec. 1.3.2. In fact, kinetic mixing is one of the few renormal-

isable interactions through which hidden sectors can be probed. There is a number of

experiments capable of testing hidden photons with MeV- to GeV-scale masses. Certain

constraints are derived in Chapter 3 where also an overview of all current constraints is

given. A review of bounds for lighter masses is given in [122,123].
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From a top-down perspective, hidden sectors with an extra hidden U(1) symmetry

appear naturally in well-motivated extensions of the Standard Model, see e.g. [124]

and references therein. While one large-rank local gauge group is believed to unify

the Standard Model interactions at high energies, it must be broken at low energies in

order to describe the observed nature. This breaking of large gauge symmetries often

yields, besides the Standard Model gauge group, also extra U(1)s which may remain

unbroken down to low energies. If such U(1)s existed, they would remain undetected

up to now as long as they belong to some hidden sector. Extra U(1) factors were

predicted in the context of grand unified theories (GUTs) [125] and in supersymmetric

models [16–19]. Furthermore, it was found that hidden U(1)s arise in various embeddings

of the Standard Model in string theory: e.g. kinetic mixing was studied for the heterotic

string in [19,126–129] and for type II strings in [20,130–136]; both hidden photon masses

and kinetic mixing were considered in [20,21,137].

From a bottom-up point of view, the hidden photon is of great interest for various

phenomenological reasons. For MeV-scale masses, it provides a solution to the dis-

crepancy encountered in the muon anomalous magnetic moment between the Standard

Model prediction and the experimentally measured value [26], cf. Sec. 1.3.3. Models

in which an MeV- to GeV-scale hidden photon mediates the interaction between the

visible sector and a dark matter particle have attracted much attention, see, e.g. [43,

100, 102, 111, 138–155]. These models with a hidden photon as a dark force mediator

exhibit special features of interest in the context of the astrophysical observations listed

above, as discussed in Sec. 1.4. Specific models of this kind and their phenomenology

are then studied in Chapter 4. For masses much lighter than the ones considered in

this work, it is also possible that the hidden photon itself forms super-weakly interact-

ing dark matter [156–158]. Very light hidden photons in the milli-eV range could also

account for the excess of dark radiation besides ordinary photons and neutrinos [159]

which was present in former CMB data [160,161] though this indication has disappeared

in the recent Planck measurement [45], which is now compatible at 1σ with the Standard

Model value.

1.3.2 Low energy effective Lagrangian and kinetic mixing

At low energy, the dominant interaction of the hidden U(1) gauge boson (the hidden

photon γ′) with the visible sector is through kinetic mixing with the Standard Model

hypercharge U(1)Y gauge boson. The size of the kinetic mixing that can be generated

in string theory models ranges over several orders of magnitude from values as small

as ∼ 10−12 to ∼ 10−2 [19, 20]. From a field theory perspective, the kinetic mixing

can be generated from loops of heavy particles charged under both U(1)s [22–25]. By

integrating out these particles, the size of the kinetic mixing χY can be estimated as a

loop factor. For two heavy Dirac fermions with masses m1 > m2 and charges (Qv, Qh)1
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and (Qv,−Qh)2 under (U(1)v,U(1)h), i.e. the visible U(1)v and the hidden U(1)h, the

kinetic mixing is linked to the gauge coupling gh in the hidden sector by [24]

χY = −4

3

gY gh
16π2

QvQh ln
m2

1

m2
2

, (1.19)

where gY is the hypercharge gauge coupling. The kinetic mixing can then typically be of

the order of 10−3 for charges of order one and without a substantial hierarchy between

the masses. Smaller values of χY correspond to decreasing the hidden gauge coupling

which may be extremely small in the case of hyperweak groups in D-brane models with

LARGE bulk volume [20, 21, 162]. In any case, the kinetic mixing parameter is a small

quantity and so we can often focus on the leading order effects, higher order corrections

being negligible.

Throughout this work, results are presented in terms of the kinetic mixing χ with

the ordinary photon which is linked to χY via the cosine of the Weinberg angle by

χ = cWχY . (1.20)

Furthermore, assuming that the kinetic mixing originates from a high-energy theory, in

analogy to Eq. (1.19), we impose the relation

χ =
gY cW gh

16π2
κ (1.21)

between the hidden sector gauge coupling gh and the kinetic mixing χ. As SUSY con-

tributions change (1.19), relation (1.21) with κ = 1 is exact for one pair of SUSY chiral

multiplets and the logarithmic factor equal to one. The parameter κ depends on the

masses of the particles in the loop and must, in principle, be derived from the high-energy

model. Since κ only depends logarithmically on the mass splittings of the spectrum we

usually assume it equal to one (κ = 1) or vary it by at most an order of magnitude from

unity (0.1 ≤ κ ≤ 10). Note that all results studied in this work are only sensitive to the

absolute value of κ, while the effects of different signs were studied in [163].

The most simple low energy effective Lagrangian describing the kinetic mixing with

the ordinary photon in a hidden sector with just an extra U(1) symmetry and the

corresponding hidden photon γ′ is given by

Leff ⊃ −
1

4
F̃µνF̃

µν − 1

4
X̃µνX̃

µν +
χ

2
X̃µνF̃

µν +
m̃2
γ′

2
X̃µX̃

µ + ejµemÃµ, (1.22)

where χ is the kinetic mixing parameter, F̃µν = ∂µÃν −∂νÃµ is the field strength tensor

of the ordinary electromagnetic U(1) field Ãµ, similarly X̃µν = ∂µX̃ν − ∂νX̃µ is the

field strength tensor of the hidden U(1) gauge field X̃µ and jµem = Qψ̄γµψ is the usual

electromagnetic current, cf. also Appendix A.1. The physical consequences of the kinetic

mixing can be seen once the Lagrangian is written in the diagonal eigenbasis. Since the

hidden U(1) is assumed to be spontaneously broken, the hidden photon gets a mass.
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The mass mγ′ of the hidden photon can be generated either by the Stückelberg

mechanism or by the Higgs mechanism in the presence of a hidden Higgs field. Both

mechanisms can produce hidden photon masses over a large range [20,21] even down to

subelectronvolt. They naturally also allow for GeV-scale masses. For example in certain

string compactifications [20], the mass generated by the Stückelberg mechanism depends

on the volume of the extra dimension and thus the string scale MS as mγ′ ∼ M2
S/MPl

which for intermediate string scales of MS ∼ 109 − 1010 GeV and a Planck mass of

MPl ∼ 1018 GeV gives an MeV- to GeV-scale hidden photon mass.

Finally, diagonalizing the kinetic mixing term with the transformation

Ãµ = Aµ +
χ√

1− χ2
Xµ , X̃µ =

1√
1− χ2

Xµ , (1.23)

the Lagrangian expanded to first order in χ reads

Leff ⊃ −
1

4
FµνF

µν − 1

4
XµνX

µν +
1

2
m2
γ′XµX

µ + ejµemAµ + eχjµemXµ , (1.24)

where it can be seen that the electromagnetic current acquires a charge under the hidden

U(1), cf. also Appendix A.1. The last term couples the hidden photon to charged

Standard Model particles and gives rise to a QED-like vertex iχeQγµ. This allows

experiments to probe the hidden photon by producing it from charged fermions and

looking for its decay back into those particles. Searches with electron beam dump

experiments in which the hidden photon is emitted in bremsstrahlung from the initial

electron beam are studied in detail in Chapter 3. There, we derive the corresponding

constraints on the hidden photon mass mγ′ and kinetic mixing parameter χ from the

non-observation of the decay of the hidden photon. These results are also published

in [42].

1.3.3 Discrepancy in anomalous magnetic moment

The anomalous magnetic moment of the muon is well measured and can be computed

within the Standard Model to high precision. The Standard Model prediction takes

into account a QED part which is computed up to 4 loops and estimated for 5 loops,

an electroweak contribution which is suppressed by ∼ 10−9 and determined up to 2

loops (the 3-loop part is negligible) and a hadronic loop contribution at leading and

next-to-leading order. This hadronic contribution gives rise to the main uncertainties

in the theoretical calculation since it can not be calculated from first principles, cf. [4]

for more details. A comparison of the prediction and the measurement thus probes the

Standard Model at the quantum level and in case of disagreement might point towards

new physics.

The value measured in 2006 by the E821 [164, 165] experiment at the Brookhaven

National Laboratory (BNL) deviates from the Standard Model prediction. Currently,
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the Review of Particle Physics by the PDG [4] gives the difference between experiment

and theory as

∆aµ = aexpµ − asmµ = (28.7± 8.0)× 10−10 , (1.25)

(errors combined in quadrature) where aµ ≡ (gµ − 2)/2. This corresponds to a discrep-

ancy of 3.6σ. Other estimates of the hadronic contribution give slightly varying values

but consistently show a mismatch, e.g. [166,167].

This disagreement might have its origin in new physics beyond the Standard Model.

If this new physics contribution adds up to the theoretical prediction from the Standard

Model it could increase the theory estimate and make up for the higher measured value.

Supersymmetry is one possible solution as, e.g. recently presented in [168] and can partly

be probed at the LHC in the future.

The hidden photon with a mass in the MeV range, as considered in this work,

is another possible explanation. Because of its coupling to charged particles of the

Standard Model it gives an additional positive 1-loop contribution to the anomalous

magnetic moment of the muon of aγ
′
µ ∼ αχ2/2π which can increase the theory value and

solve the discrepancy for χ ∼ 10−3 [26].

1.4 Dark force and dark matter

Hidden sectors, like the minimal one with just a hidden photon discussed in Sec. 1.3, can

in general not only contain gauge but also matter fields. The possibility of a dark matter

particle residing in the hidden sector and interacting via a hidden photon attracted much

attention especially in the context of the astrophysical observations listed in Sec. 1.1.4.

Different ranges of dark matter and hidden photon masses have been studied in various

models, in particular, MeV- to GeV-scale hidden photons, often called a dark forces, [43,

100,102,111,138–155] but even massless U(1)s [169–172].

1.4.1 Motivation

In general, scenarios with dark matter and a light mediator like the hidden photon have

special features, which make them interesting from a phenomenological perspective, as

discussed in the following. In order to explain the rise in the positron fraction, which has

been observed by PAMELA [28] and was confirmed by Fermi [29, 30] and recently also

AMS [31], in terms of dark matter, the annihilation cross section has to be significantly

larger than the thermal one, as mentioned in Sec. 1.1.4.2. The required enhancement

is sometimes assumed to be of astrophysical origin (e.g. halo substructure like a nearby

clump with higher dark matter density) though large boost factors of this kind seem

unlikely [173]. Another possible boost could arise from the particle physics side by the

so-called Sommerfeld enhancement [27]. This increases the annihilation cross section at
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low velocities, i.e. the present-day signals as desired for PAMELA [141, 142, 174–176],

while leaving the one in the early Universe low enough to give the correct thermal relic

abundance. Such an effect can occur in the presence of a light force carrier like the

hidden photon which acts as a long-range attractive force and can enhance the cross

section by distorting the wave functions of the incoming dark matter particles. This is

discussed in more detail in [141,177] and can be viewed as a repeated exchange of force

carriers between the dark matter in a ladder Feynman diagram as illustrated in Fig. 1.4.

ψ
γ′

ψ̄

ℓ−

ℓ+

γ′

ℓ+

ℓ−

γ′

Figure 1.4: Feynman diagram for the annihilation of the hidden sector dark matter particle

ψ in presence of a light hidden photon γ′ (representative for a light mediator). The multiple

exchange of the γ′ in the ladder diagram leads to the Sommerfeld enhancement of the cross

section. The annihilation through a hidden photon with mγ′ . 1 GeV is leptophilic because

of kinematics.

Besides providing the boost factor, which is needed to get large enough cross sections

to explain the PAMELA excess, models with a light messenger particle have another

advantage. The dark matter annihilation into two hidden photons shown in Fig. 1.4 can

well be the dominant channel if other couplings are absent. Then, the annihilation is

naturally leptophilic (i.e. it proceeds dominantly into leptons) if the hidden photon is

so light (2me . mγ′ . 1 GeV) that kinematics only allow for decays into leptons. This

allows to reproduce the hard spectrum of positrons needed to fit the PAMELA excess

without overproducing antiprotons and violating the measured flux [141].

In addition, the hidden photon plays an important role for direct detection as it

mediates the scattering on nuclei. A light dark matter particle interacting via a hidden

photon could potentially explain the signals reported by the direct detection experiments

DAMA [33, 34], CoGeNT [35, 36], CRESST [37, 38] and CDMS [39]. Such scenarios

were, for example, studied for elastic scattering in [102,146] and for inelastic scattering

in [141,144,146,178,179]. Furthermore, it was considered in [180,181] that the scattering

on nuclei mediated by the hidden photon can be isospin violating. This might alleviate

the tension with the null results of the other searches, cf. also Sec. 4.1.3 for a discussion.

In view of the general benefits of hidden sectors, their phenomenologically inter-

esting features and the potential indications for dark matter, these scenarios received

much attention and various models have been studied. In this work, we construct and

analyse different models with a light hidden sector dark matter particle interacting via
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a hidden photon. Such a scenario could be of interest for the direct detection signals.

Although we discuss the possible explanation of these signals in Chapter 4, these are

not our primary motivation but instead we aim to explore which simple supersymmet-

ric hidden dark sectors with an extra U(1) give viable models and how they can be

constrained by observations. For this purpose, we have implemented our models in

micrOMEGAs [57–61]3, which enables us to compute the relic abundance and the scat-

tering cross sections of the dark matter particle. Comparing these observables with the

measurements of the relic abundance Eq. (1.2) and the limits and signals from direct

detection experiments discussed in Sec. 1.1.4.1 allows to determine the viable models

and the interesting parameter space. These results are presented in Chapter 4 and are

published in [43].

In the following, the models with light hidden sector dark matter, which are analysed

in Chapter 4, are introduced and important specifics are highlighted. The most minimal

set-up of Sec. 1.4.2 with just one additional Dirac fermion besides the hidden photon

is used as a toy model to illustrate the different features and the phenomenology with

the smallest possible number of parameters. More complete supersymmetric dark sector

models are then presented in Sec. 1.4.3. The differences of the toy model to similar

works of [102,152,154,187] and the supersymmetric model to [146] are also highlighted.

1.4.2 Toy model

This model assumes the simplest possible dark sector with a Dirac fermion ψ, which

carries unit charge under the (massive) hidden U(1), as dark matter candidate. Besides

the hidden photon mass mγ′ and the kinetic mixing χ as in Sec. 1.3, the dark matter

mass mψ is another free parameter of this model. In contrast to the similar models,

studied in [102,152,154,187], we do not treat the kinetic mixing χ and the hidden gauge

coupling gh as two independent free parameters. Instead, based on the assumption

that the kinetic mixing is generated from integrating out heavy particles, we fix gh

as a function of χ by the relation given in Eq. (1.21). This is a novel aspect of this

work and leads to qualitatively different results for the cross sections, as discussed in

Sec. 4.2. Most results for the toy model presented in Sec. 4.2 rely on the assumptions

that the parameter κ is set to κ = 1, but we also consider the effect of varying it within

0.1 ≤ κ ≤ 10.

The Lagrangian for this model is given by

L = LSM −
1

4
X̃µνX̃

µν +
χY
2
B̃µνX̃

µν +
1

2
m̃2
γ′X̃µX̃

µ + ghψ̄γ
µψX̃µ +mψψ̄ψ, (1.26)

where B̃µν and X̃µν are the field strength tensors for the hypercharge gauge field B̃µ

and the hidden photon gauge field X̃µ, respectively, ψ is the Dirac fermion dark matter

3As described in [43], LanHEP [182–186] was used to the generate the model-files for micrOMEGAs.
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particle, mψ is its mass, χY = χ/cW and m̃2
γ′ ≈ mγ′ +O(χ2

Y
), cf. Appendix A.4. We do

not include a Higgs sector and do not consider how the dark matter particle becomes

massive. A GeV-scale mass of the hidden photon could naturally be generated by the

Stückelberg mechanism.

Because of the interaction with the hidden photon, the dark matter particle can

annihilate into Standard Model particles and scatter off nuclei. In Chapter 4, we deter-

mine the regions of the parameter space which provide a viable dark matter candidate

and study their signature in direct detection experiments as well as the corresponding

constraints. The resulting phenomenology of the model is also published in [43].

1.4.3 Supersymmetric dark sectors

This section describes how the idea of the dark hidden sector, considered in the toy model

of Sec. 1.4.2, can be embedded into a supersymmetric model. It sets the theoretical

framework for the phenomenological analysis presented in Chapter 4. Similar to the toy

model, we seek to construct a hidden sector that contains a light dark matter particle

which interacts with the visible sector through kinetic mixing of a light hidden photon

with the hypercharge gauge field.

Other elegantly simple supersymmetric models have been studied in [143–146, 149,

151]. However, these works emphasised that supersymmetry breaking effects in the

visible sector would have to be dominated by gauge mediation in order to obtain small

enough masses for such a light hidden sector. We therefore examine whether a scenario

with light hidden sector dark matter is also possible in models with gravity mediation.

In view of the direct detection signals, we search for a gravity-mediated spectrum of

particles which can give the desired phenomenology. This is also of interest for the

question if such a model can be embedded into string theory. While hidden sectors in

general appear naturally there, cf. e.g. [20,21,128,133,136,137,188–190], it is difficult to

achieve gauge mediation dominance over gravity mediation in globally consistent models.

The hidden sector models considered in the following and in Chapter 4, have a similar

particle content and couplings to those in [146]. However, unlike argued in that work,

we show that gravity mediation domination also allows for interesting phenomenological

predictions under certain mild assumptions, without requiring additional sequestering

relative to the visible sector. A possible explanation of the signals found by DAMA

and CoGeNT together with constraints from different observations is then presented in

Chapter 4. The following discussion summarises the one presented in [43] where more

details can be found.

1.4.3.1 Supersymmetric kinetic mixing

In the models considered in this section, the dominant interaction between the visible

and the hidden sector is through kinetic mixing of the hidden U(1) gauge field with the
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hypercharge gauge field. A holomorphic kinetic mixing χh between hypercharge B̃α with

coupling gY (and gaugino the Bino, b) and hidden gauge superfield X̃α with coupling gh

(and gaugino written as λ) appears in the Lagrangian density as [43]

L ⊃
∫
d2θ

(
1

4g2
Y

B̃αB̃α +
1

4g2
h

X̃αX̃α −
χh
2
B̃αX̃α

)
. (1.27)

The physical kinetic mixing in the canonical basis [20,134] is then given by

χY = gY ghRe(χh) =
χ

cW
. (1.28)

As discussed above, it is assumed that there is no matter which carries charges of both

the hidden and the visible gauge groups. Therefore, this relationship is valid at all

energy scales. Furthermore, we shall take the value of the holomorphic kinetic mixing

parameter to be of the order of a loop factor [20]

χh ≡
κ

16π2
. (1.29)

In our analysis, we thus use the physical kinetic mixing χ and apply again the relation

of Eq. (1.21) with the hidden gauge coupling gh as in the case of the toy model.

1.4.3.2 Hidden matter fields

We construct the simplest anomaly free supersymmetric dark sector model which is

possible without adding dimensionful supersymmetric quantities. The superpotential

W ⊃ λSSH+H− (1.30)

contains a dimensionless Yukawa coupling λS and three chiral superfields S, H+, H−,

where H+ and H− carry charges ±1 under the hidden U(1).

These scenarios are inspired from D-brane models and were derived e.g. in [188,

190] from string theory. In [146], such a model with gauge mediation was studied and

denoted a “hidden sector NMSSM”, although we have set the cubic singlet term in the

superpotential to zero. The model possesses a global U(1) symmetry under which S and

H− are charged. This is, however, not respected by string theory and we consider that

it is either broken at higher order in the superpotential or through non-perturbative

effects so that it does not play a role in the following, cf. [43] for details.

Once soft supersymmetry-breaking terms are included, the potential for the hidden

sector is roughly given by [43]

Vh = |λS |2(|SH+|2 + |SH−|2 + |H+H−|2) +
g2
h

2
(|H+|2 − |H−|2 − ξ)2

+m2
H+
|H+|2 +m2

H− |H−|2 +m2
S |S|2 + (λSASSH+H− +

1

2
Mλλλ+ c.c.) , (1.31)
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with ξ = χgY /(ghcW )v
2

4 cos 2β, the soft masses m2
H±

and m2
S , the trilinear soft term AS

and the hidden gaugino mass Mλ.

The crucial difference for the phenomenology of the model, when considering grav-

ity mediation, is that the gravitino is not the lightest supersymmetric particle (LSP).

Therefore, the dark matter can consist of stable hidden sector particles. Depending on

the mechanism by which the hidden gauge symmetry is broken, the models yield dif-

ferent dark matter particles. We study two breaking mechanisms, which are described

in the following, and their respective implications on the particle content of the hidden

sector. A complete analysis of the model including a determination of the dark matter

relic abundance and the direct detection cross sections is then given in Chapter 4.

1.4.3.3 Symmetry breaking through running

One possibility is that the hidden gauge symmetry breaking is induced by the running

of the Yukawa coupling λS . This is similar to the case in the MSSM where the top

Yukawa coupling can, through running from the grand unified theory (GUT) scale, in-

duce electroweak symmetry breaking. In this scenario, the independent supersymmetric

parameters at the high-energy scale are then the kinetic mixing χ, the hidden sector

gauge coupling gh and the Yukawa coupling λS as well as the soft masses mH± , mS , Mλ

and AS . Thereby, since the fields H± are a non-chiral pair, we set mH+ = mH− at the

high-energy scale (note that there is no explicit Fayet–Iliopoulos term for the hidden

U(1) which would introduce a mass splitting).

The two-loop renormalisation group equations (RGEs) of the model, discussed in

detail in [43]4, drive in the case of mS > mH± the soft masses for m2
H±

to be negative at

low energies. This triggers the breaking of the hidden gauge symmetry. The coupling to

the visible sector through kinetic mixing determines ifH+ orH− condenses. Without loss

of generality, we take χ to be negative and find that H+ obtains a vacuum expectation

value (vev). A stable minimum where 〈H+〉 = ∆/λS and all other expectation values

vanish is obtained, according to [43], when ∆ is real and

0 ≤ m2
H− +m2

H+
+m2

S + 2∆2 , (1.32)

0 ≤ (m2
H− +m2

H+
+ ∆2)(m2

S + ∆2)− |AS |2∆2,

in which ∆ ≡
√
λ2
Sξ −m2

H+
λ2
S/g

2
h. The hidden photon mass induced by radiative hidden

gauge symmetry breaking is then given by

mγ′ =

√
2gh
λS

∆. (1.33)

4Note that the two-loop RGEs do not include the running of the kinetic mixing which is suppressed by
O(χ2) [146] and therefore equivalent to three-loop order. This would also introduce a weak dependence
on the visible sector parameters and is beyond the scope of this work.
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Values for mγ′ ranging from a few GeV to a hundred GeV can be obtained. In [43],

possible results for mγ′ are given as a function of mS and αS ≡ λ2
S/4π for two scenarios

with different hidden gaugino masses.

Choosing the soft masses and couplings at the MSSM GUT scale and running down,

we find models at the low-energy scale with hidden gauge symmetry breaking. Since

we apply a relation between χ and gh, given by Eq. (1.21), we reduce the number of

free parameters of the model by one if we fix κ = 1. However, as in the case of the toy

model, κ will also be allowed to vary within the range 0.1 ≤ κ ≤ 10, in the results of the

analysis in Chapter 4. This does not strictly reduce the number of parameters but rather

constrains them with important consequences. A scan over the remaining parameters

then allows to find viable models at the low-energy scale which will turn out to give an

interesting phenomenology. This search uses the RGE engine from SoftSUSY [191].

1.4.3.4 Symmetry breaking induced by the visible sector

Another possible mechanism to break the hidden gauge symmetry is via the effective

Fayet–Iliopoulos term, which is induced in the hidden sector by the kinetic mixing with

the visible Higgs D-term. This has been promoted in other works such as [146]. In

this case, the squares of the soft masses m2
H+

and m2
H−

can be positive as long as they

are small enough that the hidden gauge symmetry is broken and a stable minimum is

obtained.

Though this scenario is more difficult to justify in models with gravity mediation, it is

not implausible and can, for example, be achieved when the hidden sector is sequestered.

Then, the gravitino is assumed to be much heavier than the hidden sector. Furthermore,

the singlet mass-squared m2
S > 0 and the hidden gaugino mass-squared M2

λ are assumed

to be of a similar order of magnitude than the hidden Higgs soft terms m2
H+
,m2

H−
and the

hidden AS term is chosen to be small. This differs from the model of [146], where gauge

mediation is considered and the masses squared are instead given by m2
S ∼M2

λ ∼ 0.

1.4.3.5 Dark matter candidates

In these models, the dark matter particle can either be a Majorana fermion or a Dirac

fermion and is kept stable by R-parity.5 The fermion mass matrix in the basis of the

hidden gaugino, hidden Higgsinos and hidden singlino (λ̃, h̃+, h̃−, s̃) is given by

Mf =




Mλ mγ′ 0 0

mγ′ 0 0 0

0 0 0 ∆

0 0 ∆ 0



, (1.34)

5Even though the model also contains stable scalars, we do not consider them as dark matter candi-
dates since the protecting symmetries are expected to be broken at some higher order in the potential
so that they can ultimately decay.
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where the kinetic mixing with the visible neutralino is neglected. This mixing is taken

into account in the complete analysis and described in detail in [43]. The Majorana

fermion is obtained from diagonalising the λ̃, h̃+ states and the Dirac fermion from

h̃−, s̃. We refer to the former as “õ1” due to the notation used in micrOMEGAs for

the lightest odd particle and denote the latter as “õ7”. According to Eq. (1.34), there is

always a Majorana fermion lighter than the hidden gauge boson (in order to avoid this, a

mass for the hidden singlino would have to be added). Therefore, in the supersymmetric

dark sector models considered in this work, it is not possible to have a hidden photon

lighter than the dark matter particle. The Dirac fermion can be the dark matter particle

if the Yukawa coupling is λS <
√

2gh and the Majorana mass Mλ is rather small at the

high-energy scale (this is possible, e.g. in a string model). While the Dirac fermion can

not be the dark matter in radiative-breaking models it is an attractive candidate for

models with visible sector induced breaking. It would also not be a good candidate in

gauge mediation, where the singlet scalar is necessarily lighter than the fermion [146].

Note that in diagonalizing the mass matrix one always finds a Majorana fermion

from the λ̃, h̃+ states, which is lighter than the hidden photon. For the Dirac fermion

to be the dark matter particle, its mass has to be even below the one of the Majorana

fermion and is thus necessarily also smaller than mγ′ . Therefore, in these models the

dark matter particle can never be heavier than the hidden photon. This is in contrast to

the toy model and has phenomenological consequences which are discussed in Sec. 4.3.

1.5 The NMSSM

The Next-to-Minimal Supersymmetric Standard Model (NMSSM) is an attractive exten-

sion of the Minimal Supersymmetric Standard Model (MSSM) as mentioned in Sec. 1.2.1.

Certain shortcomings of the MSSM can be solved in the NMSSM by enlarging the field

content by an extra singlet superfield S.

1.5.1 Motivation

Historically, the NMSSM has been motivated as a solution to the so-called µ-problem

of the MSSM [192]. This problem is linked to the dimensionful parameter µ in the

supersymmetric mass term µHuHd in the superpotential, which is the analogous to the

Higgs mass term in the Standard Model. For different reasons [193,194], this parameter

is required to be of the order of the SUSY breaking scale µ ∼ O(100 GeV). There

is, however, in the MSSM no theoretical explanation why the µ-parameter is small

compared to the Planck scale and at a similar scale than the unrelated soft SUSY

breaking terms. This missing explanation is referred to as the µ-problem. It can be

solved in the NMSSM by requiring a scale-invariant superpotential and generating the

µ-term dynamically by the vev 〈S〉 of the extra singlet S instead of introducing an
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arbitrary µ-term. This effective µ-term in the NMSSM is thereby connected to the

mechanism of soft supersymmetry breaking and can easily be of the order of msoft

without having to be adjusted by hand.

More recently, it has been suggested that the fine-tuning problem of the MSSM

could be alleviated or removed in the NMSSM when the CP-odd Higgs A0 is light [195,

196]. This problem, also referred to as the little hierarchy problem, is caused by the

discrepancy between the tree-level prediction for the lightest Higgs mass as mh ≤ mZ

and the lower bound mh ≥ 114 GeV from LEP, which applies in most MSSM scenarios

(the scalar boson discovered at LHC [197, 198] might correspond to the lightest Higgs

with mh ' 125 GeV and would emphasise this discrepancy). Then, in the MSSM, large

soft supersymmetry breaking mass parameters are needed for the one-loop corrections

to lift the Higgs mass sufficiently. The presence of a light CP-odd Higgs in the NMSSM

allows for an additional decay channel h → 2A0 where the A0s either escape detection

or lead to exotic final states (four particle final states, e.g. 4τ) which would not appear

in the standard search channels. This weakens the LEP limits on mh [195, 196] and

thereby alleviates the tension with the tree-level prediction. Although this scenario is

now tightly constrained by the new ALEPH analysis [199] as well as BaBar data on

Υ(3S) decays [200, 201], some parameter space remains available [202] and can further

be probed by ηb-decays [203].

Further motivation for the NMSSM in general and a light A0 in particular arises since

it was found in [204] that NMSSM-like models can also be obtained from the heterotic

string. These scenarios yield specific versions of the NMSSM such as the Peccei–Quinn

(PQ) version. In this case, a light pseudo-Goldstone boson appears in the spectrum

whose mass is generated by small PQ violating effects and can therefore be much below

the GeV scale.

Moreover, the excitement in the course of the PAMELA observations also initiated

studies of the NMSSM and a light A0 in the context of dark matter, e.g. [176,187,205]. In

these works, the neutralino dark matter annihilation proceeds via the light pseudoscalar

which, for masses of a few hundred MeV, dominantly decays into leptons of the first

and second generation. This large fraction of leptons in the final state can account for

the observed positron excess in PAMELA. Hadronic decay modes are then naturally

suppressed because of kinematics. Therefore, the annihilation does not produce an

excess in antiprotons, which would be in contradiction with the antiproton spectrum

observed by PAMELA.

Motivated by these considerations, it is important to study constraints on a very

light A0. This task is accomplished in Chapter 2 and the resulting limits are published

in [41]. In the following, we review the theoretical framework for a light CP-odd Higgs

in the NMSSM.
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1.5.2 NMSSM and a light CP-odd Higgs

As mentioned in Sec. 1.5, the NMSSM is an extension of the MSSM with a gauge-

singlet superfield S. In our analysis in Chapter 2, we focus on a particular version of

the NMSSM which has no direct µ-term and is usually referred to as the Z3-symmetric

NMSSM. The relevant part of the superpotential of this Z3-symmetric NMSSM is given

by

W ⊃ λSH1H2 +
1

3
κS3 , (1.35)

where λ and κ are dimensionless Yukawa couplings. The corresponding soft-breaking

terms in the Higgs sector are

Vsoft = m2
1|H1|2 +m2

2|H2|2 +m2
S |S|2 +

(
λAλSH1H2 +

1

3
κAκS

3 + h.c.

)
, (1.36)

with the soft masses m1, m2, mS , and the trilinear soft terms Aλ and Aκ. As discussed

earlier, when S obtains a vev s = 〈S〉 of the order of the weak or supersymmetry breaking

scale, this generates an effective µ-term with µeff = λs [194]. Since this scale-invariant

cubic superpotential possesses an accidental discrete Z3-symmetry when all superfields

are transformed by ei2π/3, it is called the Z3-symmetric NMSSM.

It was found that in the two limiting cases where the Higgs potential possesses ei-

ther an approximate Peccei–Quinn or an approximate R-symmetry, a light pseudoscalar

A0 appears naturally [196, 206–210]. These two scenarios are sketched briefly in the

following.

1.5.2.1 Peccei–Quinn limit

In the limit κ → 0, where the term ∝ λ in Eq. (1.35) is the only one involving S, the

Lagrangian is invariant under the transformation

H1,2 → eiαH1,2 and S → e−2iαS . (1.37)

At the electroweak scale this global symmetry is spontaneously broken by the vevs of

H1,2 and S. This results in a massless Nambu–Goldstone boson, an axion-like particle,

which is given by [194]

A0 =
1

N

(
v sin 2β A0

MSSM − 2s SI

)
,

N =

√
v2 sin2 2β + 4s2 , (1.38)

where A0
MSSM = cosβ H1I + sinβ H2I is the MSSM pseudoscalar and the subscript I

refers to the imaginary part of the Higgs neutral component; as usual, tanβ = v1/v2

and v =
√
v2

1 + v2
2 = 174 GeV, with the vevs v1 and v2 of the two Higgs SU(2)-doublets

H1 and H2 which generate masses for the up-type quarks and the down-type quarks
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and charged leptons, respectively. The mass of the pseudoscalar can be expressed in the

large tanβ regime according to [207] by

m2
A0 ' −3κAκs . (1.39)

Since the renormalisation of κ is proportional to κ itself, this coupling can be very small

and lead to A0 being very light. In the NMSSM example obtained from the heterotic

string in Ref. [204], mentioned above, it was found that κ < O((φ/MPl)
5), with φ being

an average vev of certain Standard Model singlets. For φ being an order of magnitude

below the Planck scale, the value of κ can be as small as 10−6, therefore leading to a

mass of ∼ 100 MeV for the pseudoscalar. In other models, this mass can be even lighter.

Since the PQ symmetry is anomalous, as in the DFSZ axion models (by Dine, Fischler,

Srednicki [211] and Zhitnitsky [212]), the lower limit on mA0 is set by the anomaly

contribution and is of the order of 100 keV [211] (for s ∼ v).

1.5.2.2 R-symmetry limit

In the limit Aκ, Aλ → 0, the Higgs sector of the Z3-symmetric NMSSM is R-invariant,

i.e. invariant under an R-symmetry under which the superfields transform as [194]

H1,2 → eiαRH1,2 and S → eiαRS . (1.40)

Spontaneous breaking of this symmetry by the vevs of H1,2 and S results in an “R-

axion”. Its composition is given by [194],

A0 =
1

N

(
v sin 2β A0

MSSM + s SI

)
,

N =

√
v2 sin2 2β + s2 , (1.41)

with the same A0
MSSM as in Eq. (1.38).

Unlike the Peccei–Quinn symmetry discussed above, the R-symmetry is not a (classi-

cal) symmetry of the full Lagrangian [194]. Even if Aκ, Aλ → 0, the gaugino mass terms

break the R-symmetry explicitly. Non-zero A-terms are induced by renormalisation, so

their minimal value is a loop factor times the gaugino mass. The A0 mass is then again

approximated by (1.39).

In both PQ- and R-symmetric cases, the light pseudoscalar is in most of the pa-

rameter space singlet-like in the limit s � v sin 2β. Its couplings to gauge bosons and

Standard Model matter are suppressed in this limit. However, s cannot be too large,

otherwise a large effective µ-term is induced. An exception is the case λ � 1, which

corresponds to the “decoupling limit”, i.e. when there is no communication between the

singlet and the rest of the NMSSM.





Chapter 2

Constraints on the NMSSM

CP-odd Higgs

In Chapter 1, we argued that light particles with masses in the sub-GeV range, which

have not been detected so far because of their weak interactions with the Standard

Model, might still exist. These particles are often referred to as WISPs. Examples

of WISPs are axion-like particles, the hidden photon considered in Chapter 3 and the

NMSSM CP-odd Higgs which is the focus of the present chapter. A light CP-odd Higgs

in the NMSSM arises naturally from spontaneous breaking of approximate symmetries

like the Peccei–Quinn or R-symmetry, and can be obtained in heterotic string models,

as discussed in Chapter 1.

In this chapter, we study experimental constraints on the CP-odd Higgs with a mass

below the two-muon threshold and its couplings to fermions. We specifically address

the question how light a CP-odd Higgs can be. An introduction describing the relevant

background and formulae used in the subsequent analysis is given in Sec. 2.1. We

demonstrate how meson decays can be used to constrain the CP-odd Higgs. Using

different precision measurements, we derive in Sec. 2.2 numerous constraints from rare

and radiative meson decays as well as the anomalous magnetic moment of the muon.

Additional complementary constraints from reactor and beam dump experiments are

then presented in Sec. 2.3.

The obtained results apply more generally to the couplings of a light pseudoscalar

to fermions. They are published in [41] and quoted in the Review of Particle Physics

by the PDG [4]. This analysis was conducted in collaboration with Oleg Lebedev, Sául

Ramos-Sánchez and Andreas Ringwald.

2.1 The light CP-odd Higgs of the NMSSM

As mentioned in Sec. 1.5, the NMSSM is an extension of the MSSM with a gauge-singlet

superfield S. In this chapter, we focus on a particular version of the NMSSM which has

43
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no direct µ-term and is usually referred to as the Z3-symmetric NMSSM. It is introduced

in Sec. 1.5.2 and the superpotential and soft terms are given in Eqs. (1.35) and (1.36),

respectively. There, it is also argued that the model naturally contains a light CP-odd

Higgs in the two cases when the Higgs potential either has an approximate Peccei–Quinn

or an approximate R-symmetry. Since the constraints derived in this chapter are based

on interactions with fermions, the coupling of the CP-odd Higgs A0 to fermions is the

most important term of the Lagrangian for the following analysis. Adopting the notation

of Ref. [202], this term is given by

∆L = − g2

2mW
CAff

(
md d̄γ5d+

1

tan2 β
mu ūγ5u+m`

¯̀γ5`

)
A0, (2.1)

for down-type quarks d (mass md), up-type quarks u (mass mu) and leptons ` (mass

m`), where as usual tanβ = v1/v2 with vevs v1 = 〈H1〉 and v2 = 〈H2〉. In the NMSSM,

the coupling CAff can according to [202] be expressed in terms of the singlet-doublet

mixing angle θA and tanβ by CAff = cos θA tanβ, with cos θA = v sin 2β/N and N

given by Eq. (1.38) in the PQ-limit and by Eq. (1.41) in the R-symmetry limit. In what

follows, we treat CAff as a free parameter and derive various particle physics constraints

on it. In the NMSSM, very large (> 102) and very small (< 10−2) values of CAff lead

to violation of perturbativity and/or require finetuning. Therefore, it usually suffices to

focus on the moderate CAff window. However, since our analysis applies more generally

to the coupling of any pseudoscalar particle to matter, as long as the coupling CAff is

universal for all fermions, we discuss constraints also outside of this window.

Various constraints, in particular from meson decays, have already been well studied

for the A0 masses beyond the two-muon threshold mA0 > 2mµ. In the range 2mµ <

mA0 < 3mπ, where A0 decays predominantly into two muons, constraints arise from the

two decays K+ −→ π+A0 and B −→ K A0. The corresponding bound has been derived

in [213] and excludes roughly CAff > O(10−2). However, the bound weakens somewhat

for masses above the three-pion threshold since there the branching ratio for the decay

into muons decreases. For even larger A0 masses mA0 ≥ 1 GeV, the Υ −→ γA0 decay

imposes that CAff < 0.5 for tanβ ∼ 1 [202]. This bound also weakens for increasing mA0

till about O(1) for mA0 ∼ mΥ. Above 12 GeV, the DELPHI data on e+e− −→ bb̄A0 −→
bb̄bb̄ set a rather weak limit requiring that CAff < O(10) [202]. Further constraints,

which are usually relevant at large tanβ, are summarised in Ref. [194].

On the contrary, the light mass territory with mA0 < 2mµ is less well explored. Only

few constraints have been studied in Refs. [208, 213] in the framework of the NMSSM

and in Refs. [214,215] for Two Higgs Doublet Models (see also [216]). In what follows, we

study the {mA0 , CAff} parameter space with respect to various constraints arising from

different meson decays, the muon anomalous magnetic moment as well as reactor and

beam dump experiments. In particular, we discuss how light a CP-odd Higgs boson is

allowed to be. Since we work in terms of the coupling CAff between the A0 and fermions,

most of our results are largely independent of tanβ and specific features of the NMSSM.
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2.1.1 Decay width of the A0

In the mass range we are interested in, for mA0 below the two-muon threshold, A0 can

only decay into an electron-positron pair or into two photons. Its total decay width is

thus the sum

ΓA0 = ΓA0→e+e− + ΓA0→γγ (2.2)

of the partial decay widths into e+e− and into γγ. These are given by

ΓA0→ff̄ =

√
2GF
8π

m2
f mA0 C2

Aff

√
1− 4

m2
f

m2
A0

, (2.3)

ΓA0→γγ =

√
2GFα

2

16π3
m3
A0

∣∣∣∣∣
∑

i

rCAiiQ
2
i kiF (ki)

∣∣∣∣∣

2

, (2.4)

where the latter has been taken from [217] with the sum running over all Standard Model

fermions in which r = 1(Nc) for leptons (quarks), ki = m2
i /m

2
A0 , Qi is the charge of the

fermion in the loop; CAii = CAff for the down-type fermions and CAii = CAff/ tan2 β

for the up-type fermions. Here, we neglect the contribution from chargino loops as the

coupling is dominated by the Standard Model fermions. The loop function F (ki) is given

in [217] as

F (ki) =




−2
(

arcsin 1
2
√
ki

)2
for ki ≥ 1

4 ,

1
2

[
ln
(

1+
√

1−4ki
1−
√

1−4ki

)
+ iπ

]2
for ki <

1
4 ,

(2.5)

and has the limits

ki F (ki) =





0 for ki � 1 ,

−π2

8 for ki = 1
4 ,

−1
2 for ki � 1 .

(2.6)

For a very light A0, the only possible decay channel is the one into two photons. In

this case, for example for CAff = 1 and mA0 = 0.5 MeV, the total decay width is

about ΓA0 ' 4× 10−12 eV according to Eq. (2.2) with ΓA0→e+e− = 0. This corresponds

to a decay length of τc ∼ 60 km (for a boost factor γ ∼ 1). Above the two-electron

threshold, the total decay width increases since the decay into e+e− opens. Taking, for

example, mA0 = 50 MeV and CAff = 1, the total decay width becomes ΓA0 ' 10−5 eV,

according to Eq. (2.2). Thus, the corresponding decay length decreases to τc ∼ 2 cm.

Both example parameter points assume that tanβ = 1.

The dependence of the branching ratio BR(A0 −→ e+e−) = ΓA0→e+e−/ΓA0 on tanβ

is shown in Fig. 2.1 as a function of the mass of A0. Increasing tanβ reduces the up-type

quark contributions to the decay width into photons ΓA0→γγ in Eq. (2.4) and thereby

increases BR(A0 −→ e+e−). This dependence saturates for tanβ ≥ 3. The decay channel
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into an electron-positron pair A0 −→ e+e− dominates for masses mA0 above the two-

electron threshold and below ∼ 80 MeV, when the decay into two photons A0 −→ γγ

becomes important. For masses above the two-muon threshold, the decay A0 −→ µ+µ−

is dominant.
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Figure 2.1: Dependence of the A0 branching ratio into e+e− BR(A0 −→ e+e−) =

ΓA0→e+e−/ΓA0 on tanβ as a function of the A0 mass mA0 . The lowest (solid red) curve

corresponds to tanβ = 1, the higher (dashed blue) one to tanβ = 3 and the highest (dash-

dotted green) curve to tanβ = 10.

2.1.2 Specifics of the A0 in meson decays

In the following analysis in Sec. 2.2, an important set of constraints on the A0 parameter

space {mA0 , CAff} arises from the decay of a meson X in which an A0 can be produced

along with another meson Y by X −→ Y + A0. For the decay B0 −→ K0A0, the decay

width in the NMSSM was found in [213] as

Γ(B0 → K0A0) =
G2
F |VtbV ∗ts|2

210π5
|CA|2

|~pK |
m2
B0

∣∣∣fB0

0 (m2
A0)
∣∣∣
2
(
m2
B0 −m2

K0

mb

)2

, (2.7)

where GF is the Fermi constant, mB0 is the B0 mass, mK0 is the K0 mass, Vtb and Vts

are CKM matrix elements, cf. Tab. 2.1, |~pK | ' mB0/2 is the three momentum of the

kaon, the coupling CA as well as the form factor f0 are given in [213] and fB
0

0 (0) ∼
0.3 − 0.4 [218]. The decay width of the process K+ −→ π+A0 can be obtained from

Eq. (2.7) with the replacements b→ s, s→ d, K → π and B → K as

Γ(K+ −→ π+A0) =
G2
F |VtsV ∗td|2

210π5
|C ′A|2

|~pπ|
m2
K+

∣∣∣fK+

0 (m2
A0)
∣∣∣
2
(
m2
K+ −m2

π+

ms

)2

, (2.8)

where now the form factor fK
+

0 (0) ∼ 1 [219] has to be used and |~pπ| ' mK+/2 similar

to the case above. A measurement of the branching ratio BexpB0→K0+x or BexpK+→π++x

performed by an experiment for either of the two decays can thus be used to derive a
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constraint on A0 by requiring

BR(B0 −→ K0A0) ≡ Γ(B0 −→ K0A0)

ΓB0

!
≤ BexpB0→K0+x , (2.9)

or

BR(K+ −→ π+A0) ≡ Γ(K+ −→ π+A0)

ΓK+

!
≤ BexpK+→π++x , (2.10)

with Γ(B0 → K0A0) and Γ(K+ −→ π+A0) given by Eqs. (2.7) and (2.8), respectively,

and the total decay widths ΓB0 and ΓK+ . The quantity CA appearing in Eq. (2.7)

was calculated in Ref. [213] in the large tanβ regime to be CA ∼ CAff tanβ mbmt for

order one stop mixing and sparticles at the electroweak scale. Since the full NMSSM

calculation at low tanβ is not available, we estimate the order of magnitude of the

resulting limits by rescaling the large tanβ result and taking conservatively tanβ ∼
O(1).1 The limit from a measurement of B0 −→ K0 + x on the coupling CAff can then

be derived from Eq. (2.9) with Eq. (2.7) as

|CA|2 ≤ BexpB0→K0+x ΓB0

210π5

G2
F |VtbV ∗ts|2 |fB

0

0 (m2
A0)|2

2mB0

(
mb

m2
B0 −m2

K0

)2

,

CAff tanβ .
√
Bexp
B0→K0+x

ΓB0 mB0

25π2
√

2π

GF |VtbV ∗ts| |fB
0

0 (m2
A0)|

1

mt(m2
B0 −m2

K0)
,

CAff tanβ . 1.9
√
Bexp
B0→K0+x

, (2.11)

where the total B0 decay width ΓB0 = 4.3 × 10−13 GeV follows from the total lifetime

given in Tab. 2.1. Analogously, using C ′A ∼ CAff tanβ msmt in Eq. (2.8), the limit from

a measurement of K+ −→ π+ + x on CAff is found with Eq. (2.10) as

CAff tanβ .
√
Bexp
K+→π++x

ΓK+ mK+
25π2
√

2π

GF |VtsV ∗td| |fK
+

0 (m2
A0)|

1

mt(m2
K+ −m2

π+)
,

CAff tanβ . 29.7
√
Bexp
K+→π++x

, (2.12)

with the total K+ decay width ΓK+ = 5.32 × 10−17 GeV obtained from the lifetime

given in Tab. 2.1.

For the limits on the coupling CAff derived from these processes, it is important to

distinguish the following two classes of measurements and their different sensitivities to

complementary regions of the parameter space. In the first class of meson decays, only

the final-state meson is observed while the other decay products are invisible, i.e.

X −→ Y + invisible , (2.13)

with X and Y being mesons. Experimental limits on the branching ratios of such pro-

cesses can be used to exclude parts of the parameter space in which the A0 is sufficiently

1Essentially, this corresponds to the Standard Model contribution with an additional coupling (2.1).
The bR – sL transition is mediated by the W– t loop with A0 coupled to the top quark.
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long-lived to escape the detector and thus remains invisible to the experiment. These

limits, however, break down if the decay width of the A0 is so large that it decays in-

side the detector and thus does not meet the criterion of an invisible decay product.

This point in the parameter space where the exclusion region from processes of the type

X −→ Y + inv. ends is the starting point of the second class of meson decays, namely

the ones where besides the final-state meson a pair of leptons is detected, i.e.

X −→ Y + `+`− . (2.14)

Such measurements allow to derive limits on the A0 since they get a contribution from

the production of A0 in X −→ Y +A0 followed by the decay A0 −→ e+e−. They therefore

constrain the region of the parameter space where the A0 has a short lifetime and the

above-mentioned limits fail. The two classes give thus complementary constraints.

The limits on an invisible A0 thus apply if the decay length in the laboratory frame is

larger than the dimensions of the detector, i.e. as long as the lifetime τ of A0 fulfils τγ > d

or equivalently the total decay width ΓA0 meets the requirement ΓA0 < EA0/mA0d with

ΓA0 given by Eq. (2.2), γ being the boost factor, d the size of the detector (∼ 10 m) and

EA0 the energy with which the A0 is produced. As described above, the opposite of this

requirement, i.e. ΓA0 > EA0/mA0d, determines the lower bound of the constraints on a

visible A0. In a two-body decay X −→ Y + A0, the energy of the A0 decay product is

given by

EA0 =
m2
X −m2

Y +m2
A0

2mX
, (2.15)

where in the relevant cases m2
X � m2

Y ,m
2
A0 . Thus, the requirement for the first (second)

class of measurements to be applicable, i.e. the upper (lower) reach of the limits on an

invisible (visible) A0 is then given by

ΓA0
<

(>)
m2
X −m2

Y +m2
A0

2mXmA0 d
, (2.16)

which we refer to in the following as the invisibility- (visibility-) condition.

An estimate of this transition region between the applicability of the two different

measurements can be obtained in the two mass ranges mA0 < 2me and mA0 & 2me.

For the former, where the A0 can only decay into two photons, the invisibility-condition

Eq. (2.16) then translates with the decay width ΓA0→γγ of Eq. (2.4) to an upper reach

m4
A0 C

2
Aff .

4
√

2π3mX

GFα2d

∣∣∣∣∣
∑

`

k`F (k`) +
∑

d

1

3
kdF (kd) +

∑

u

4

3 tanβ2
kuF (ku)

∣∣∣∣∣

−2

,

where the sums run over leptons, down- and up-type quarks with CAii = CAff for the

first two and CAii = CAff/ tan2 β for the latter. For a detector of size d ∼ 10 m and

tanβ ∼ 1, the upper reach of the limits from measurements of the type X −→ Y + inv.
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becomes roughly

mA0

√
CAff . 25 MeV × 4

√
mX

GeV
for mA0 < 2me . (2.17)

Above the threshold for the decay into an electron-positron pair, i.e. mA0 & 2me, this

limit changes and an estimate can be derived from ΓA0 ∼ ΓA0→e+e− with Eq. (2.3) as

m2
A0 C

2
Aff .

2
√

2πmX

GFm2
ed

(
1− 4

m2
e

m2
A0

)− 1
2

.

Assuming again d ∼ 10 m, the upper reach of the limits from measurements of the type

X −→ Y + inv. is then given by

mA0 CAff . 8 MeV ×
√
mX

GeV
for mA0 & 2me . (2.18)

Thus, the constraints arising from measurements of decays in which the A0 is invisible in

the detector have an upper limitation given by Eqs. (2.17) and (2.18) in the mass ranges

mA0 < 2me and mA0 & 2me, respectively. Because of the different dependence of both

equations on mA0 and CAff , this upper limit is expected to show a different behaviour

in the mass ranges below and above the threshold for the decay into e+e−. When shown

in a log-log plot of CAff versus mA0 , the limitation in the lower mass range exhibits a

slope of −2 due to the invisibility-condition (2.17). For higher masses on the contrary,

Eq. (2.18) leads to a slope of −1. In both cases, the dependence of the upper limitation

of these constraints on the detector size is only square-root.

Parameters Particle Mass [GeV]

GF
√

2g2
2/(8m

2
W ) mB0 5.27955

Vtd 8.4× 10−3 mB± 5.27925

Vts 42.9× 10−3 mK0 0.493677

Vtb 0.89 mK± 0.493677

fπ 0.093 [GeV] mπ0 0.1349766

τB0 1.519× 10−12 [s] mπ± 0.13957

τB± 1.641× 10−12 [s] mΥ(1S) 9.46030

τK± 1.238× 10−8 [s] mΥ(3S) 10.3552

Table 2.1: Parameters, particle masses and lifetimes from [4] used for the numerical results

in this chapter.



50 CHAPTER 2 NMSSM CP-ODD HIGGS

2.2 Constraints from precision measurements

In this section, limits on the mass mA0 and the coupling CAff of the CP-odd Higgs

arising from meson decays as well as from the muon anomalous magnetic moment will

be presented. As mentioned above, the A0 can be produced in various meson decays

and constraints can be derived from measurements of branching ratios for the two cases

where the A0 is invisible or visible through its decay into e+e−. Further bounds arise

from the rare pion decay π0 −→ e+e− which occurs in the Standard Model only at the

loop-level and receives a tree-level contribution of the A0 and from the muon anomalous

magnetic moment to which the A0 contributes at the loop-level.

2.2.1 Rare B-decay B −→ K + invisible

Limits on the production of A0 in different rare B-meson decays [220–223] can be derived

from measurements of the branching ratios

BCLEO(B0 −→ K0
S + invisible) < 5.3× 10−5 , (2.19)

BBaBar(B− −→ K−νν̄) < 7.0× 10−5 ,

performed by CLEO [224] and BaBar [225], respectively. In the following, we will use

the more constraining CLEO result, which with Eq. (2.11) gives CAff < 0.02/ tanβ.

Thus, taking conservatively tanβ ∼ O(1), we find that the CLEO measurement requires

that

CAff < 10−2 , (2.20)

while values of CAff larger than 10−2 are excluded. This constraint is already strong

at small tanβ and gets even stronger at large tanβ. Since the experiments only detect

the final-state meson while the other decay products are invisible, the A0 has to remain

invisible and the obtained bound of Eq. (2.20) is only applicable as long as A0 is suffi-

ciently long-lived to decay outside of the detector. According to the invisibility-condition

Eq. (2.16) and the estimates Eqs. (2.17) and (2.18) with mX = mB0 = 5.28 GeV the

limit is valid up to

mA0

√
CAff . 37 MeV for mA0 < 2me ,

mA0 CAff . 18 MeV for mA0 & 2me , (2.21)

beyond which the A0 becomes visible in the detector.

The resulting exclusion region based on the CLEO measurement (2.19) is plotted in

Fig. 2.2 in brown and marked “B0 −→ K0 + inv.”. Note that, in contrast to the lower

boundary, the upper boundary of the exclusion contour is calculated quite reliably from

Eq. (2.16) and is essentially independent of tanβ. In the plot, we use the full A0-width

ΓA0 given by Eq. (2.2) in the determination of this upper boundary without restricting
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to the approximation ΓA0 ∼ Γe+e− for mA0 & 2me as done in the estimate in Eq. (2.21).

The kink in this upper line at mA0 ≈ 2me is due to the rapid drop in the decay width

as mA0 falls below the threshold for the decay into e+e−. The smaller decay width

causes an increase in the A0 lifetime and thus the invisibility-condition is applicable up

to larger values of the coupling CAff .

2.2.2 Rare K-decay K−→ π + invisible

Similarly to the process and constraint considered in Sec. 2.2.1, a light invisible A0 can

also be produced in K-decays. The corresponding branching ratio has been measured

by E787 [226,227] and E949 [228] to be2

BE787(K+ −→ π+ + invisible) < 4.5× 10−11 , (2.22)

BE949(K+ −→ π+ + invisible) < 10−10 .

Using the tighter E787 result, the limit can then be obtained from Eq. (2.12) as CAff <

2× 10−4/ tanβ. For tanβ ∼ O(1), the E787 measurement thus demands that

CAff < 10−4 . (2.23)

As in the previous section, the A0 has to be invisible for these measurements to be

applicable. Therefore, the upper reach of this constraint is again determined by the

invisibility-condition Eq. (2.16). For mX = mK+ = 494 MeV, it can be estimated with

Eqs. (2.17) and (2.18) that the limit is valid up to

mA0

√
CAff . 21 MeV for mA0 < 2me ,

mA0 CAff . 5 MeV for mA0 > 2me . (2.24)

In Fig. 2.2, this limit is shown as green shaded region, labelled “K+ −→ π+ + inv.”.

As in the B-decays discussed in Sec. 2.2.1, the lower boundary of the exclusion contour

only gets stronger with increasing tanβ and its precise value is not important for us.

Furthermore, its upper boundary caused by the invisibility-requirement shows a similar

behaviour as the one of “B0 −→ K0 + inv.”.

2.2.3 Rare decays B −→ K e+e− and K −→ π e+e−

In contrast to the cases of an invisible A0 studied in the previous two sections, A0

contributes to the processes B −→ K e+e− and K −→ π e+e− if it decays inside the

detector. As discussed in Sec. 2.1.2, measurements of those decays can thus be used to

constrain the A0 in the region of the parameter space where the earlier limits fail, namely

2Note that these measured bounds become significantly weaker at the pion pole, mA0 = mπ.
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at high couplings where the decay width is large and the lifetime is short. However, in the

experiments considered in this section, a cut on the invariant mass m`+`− > 140 MeV

of the lepton pair (i.e. the absolute value of the sum of the impulses of the outgoing

leptons) is adopted in order to suppress backgrounds like conversion of photons and

π0 −→ e+e−γ. Therefore, the resulting bounds only apply to masses mA0 > 140 MeV.

The BELLE experiment reported in [229] their finding of

BBELLE(B −→ K `+`−) ' 4.8× 10−7 , (2.25)

where ` includes muons and electrons with m`+`− > 140 MeV. Assuming lepton

universality, we will use a conservative bound on the branching ratio into electrons

BR(B → KA0 → K e+e−) < 2.4× 10−7 in our analysis. The resulting constraint from

the BELLE measurement on the A0 under the assumption that

BR(B −→ KA0 −→ K e+e−) ' BR(B −→ K A0)× BR(A0 −→ e+e−) , (2.26)

follows then similarly to Eq. (2.11) as

CAff tanβ . 1.9

√
Bexp
B0→K0+`+`−

BRA0→e+e−
. (2.27)

For tanβ ∼ 1, the branching ratio BR(A0 −→ e+e−) is about 20 − 40% in the relevant

mass range so that the limit requires that CAff < 2× 10−3.

However, at such small couplings, the decay length of A0 is much larger (∼ O(km))

than the size of the detector, so that the A0 is invisible and would not appear in the

measured process. Therefore, the limit can only be applied at larger couplings once the

A0 decays inside the detector. Applying the visibility-condition of Eq. (2.16), we get a

reduced requirement of

CAff < 8× 10−2 , (2.28)

which excludes the thin stripe 140 MeV < mA0 < 2mµ shown in Fig. 2.2 in cyan

and labelled “B −→ Ke+e−”. Note that here Eq. (2.17) gives a better estimate than

Eq. (2.18) since for this mass range the decay channel into γγ is the dominant one. In

the plotted exclusion curves, we always use the exact result with the full decay width.

Similarly, the same region of the parameter space for a visible A0 can be constrained

by another process which was measured by the NA48/2 experiment at CERN in different

K-decays [230] as

BNA48/2(K± −→ π± e+e−) ' 3.11× 10−7 , (2.29)
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where also the same kinematic cut me+e− > 140 MeV is employed. Using Eq. (2.12)

and an analogue of Eq. (2.26), we find that this measurement requires

CAff < 3× 10−2 . (2.30)

Since the visibility-condition Eq. (2.16) demands that CAff > 2 × 10−2 for A0 to be

visible in the detector, this constraint can be applied without restrictions. It is plotted

in pink in Fig. 2.2 and marked “K −→ πe+e−”.

It is noteworthy that the window 140 MeV < mA0 < 2mµ is eliminated simultane-

ously by the limits obtained from the two different processes presented in this section.

There are additional NMSSM contributions to B −→ K e+e− and K −→ π e+e− apart

from the one of A0 which could, in principle, lead to cancellations. However, consider-

ing two independent processes makes this possibility less likely and this window can be

excluded.

There is another measurement of BR(B −→ K `+`−) performed by BaBar [231]

which is sensitive to lower A0 masses since it imposes a lower kinematic cut of me+e− >

30 MeV. Because of the larger low-energy backgrounds caused by this lower cut, their

result loses somewhat in efficiency [213] and was reported as

BBaBar(B −→ K `+`−) ' 0.34× 10−6. (2.31)

According to Eq. (2.27), this would lead to a constraint of CAff < 1.3 × 10−3 which

is, however, again in the region where A0 is invisible. Therefore, in order for A0 to

decay inside the detector, the limit is determined by the visibility-condition Eq. (2.16)

and excludes for mA0 > 30 MeV the region with CAff & 10−1 − 100 depending on

the A0 mass. The exact shape of the limit is drawn in red in Fig. 2.2 and labelled

“B −→ Ke+e−”. Although one may question the reliability of this result at low e+e−

invariant masses, another experiment, to be discussed in the next subsection, excludes

a similar region of parameter space.

2.2.4 Rare K-decay K −→ π + X

A byproduct of the Kµ2 experiment at KEK in Japan originally looking for heavy neu-

trinos was a measurement of the 2-body decay K+ −→ π+ + X, where X is any par-

ticle [232]. The analysis was performed searching for a peak in the π+ momentum for

10 MeV < mX < 300 MeV. The resulting bound was found as

BKµ2(K+ −→ π+ +X) < 10−6 , (2.32)

at 90% C.L. for the mass range mX < 60 MeV and relaxes for larger mX to 10−5 at

mX ∼ 120 MeV.
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The exclusion limit on CAff obtained with Eq. (2.12) is plotted in black in Fig. 2.2

and marked “K+ −→ π+X”. The constraint amounts approximately to the requirement

that

CAff < 4× 10−2 , (2.33)

for masses mA0 > 10 MeV.

Note that for masses close to the pion mass mA0 ' mπ0 the limit (2.33) becomes

weaker. However, this region is constrained by π0 −→ e+e−, as discussed in Sec. 2.2.6.

Additionally, it is disfavoured by the π+−π0 mass difference which would be affected in

the presence of an A0 due to the shift in the π0 mass when π0−A0 mixing is taken into

account. Furthermore, a similar region of the parameter space up to mA0 = 100 MeV

is excluded by the process π+ −→ e+ν A0 with the subsequent decay A0 −→ e+e− [233]

(for applications to axion models, see [234]).
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aµ

π0 −→ e+e−

B→Ke+e−
K
→
π
e+
e−

Υ(1S) −→ γ + inv.

Υ(3S) −→ γ + inv.

K+−→ π+X
B0 −→ K0 + inv.

K+ −→ π+ + inv.

Figure 2.2: Constraints from various precision measurements on the mass mA0 of the light

NMSSM CP-odd Higgs A0 and its coupling to fermions CAff . Limits arise from different

meson decays in which the A0 either is sufficiently long-lived to be invisible in the detector

or appears via its decay into e+e−, from the tree-level contribution of the A0 to the rare pion

decay π0 −→ e+e− and from the loop-level contribution of the A0 to the muon anomalous

magnetic moment aµ. The coloured regions are excluded. All bounds include the effect of

varying BR(A0 −→ e+e−) with mA0 .
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2.2.5 Radiative Upsilon-decays Υ −→ γ + invisible

Further bounds arise from the production of A0 in radiative Υ-decays, where the relevant

measurements

BBaBar(Υ(1S) −→ γ + invisible) < 1.3× 10−5, (2.34)

BBaBar(Υ(3S) −→ γ + invisible) < 3× 10−6, (2.35)

have been performed by CLEO [235] and BaBar [236,237], respectively. The branching

ratio for the process Υ −→ γA0 is given in [213,238,239] as

BR(Υ −→ γA0) = BΥ→µ+µ−
GFm

2
b√

2πα
C2
Aff

(
1− m2

A0

m2
Υ

)
FQCD , (2.36)

where FQCD ∼ 0.5 is a factor taking into account QCD corrections and the branching

ratios into muons are given in [4] as BΥ(1S)→µ+µ− ' 0.025 and BΥ(3S)→µ+µ− ' 0.022.

Demanding that the branching ratio into γA0 does not exceed the values measured in

the experiments, the constraint on the coupling follows from expression (2.36) as

C2
Aff <

Bexp(Υ −→ γ + invisible)

BΥ→µ+µ−

√
2πα

GFm2
bFQCD

(
1− m2

A0

m2
Υ

)−1

, (2.37)

and leads to the requirements

CAff < 0.37 (CLEO) ,

CAff < 0.19 (BaBar) , (2.38)

which are independent of tanβ. In Fig. 2.2, the former is shown in yellow and marked

as “Υ(1S) −→ γ + inv.” and the latter in magenta labelled “Υ(3S) −→ γ + inv.”.

Since both experiments do not detect any final-state particles else than the photon,

the measurements apply only if the A0 decays outside the detector. The invisibility-

conditions Eqs. (2.17) and (2.18) give for mX = mΥ(3S) = 10.4 GeV an estimate of the

upper reach of the obtained BaBar limit as

mA0

√
CAff . 44 MeV for mA0 < 2me ,

mA0 CAff . 25 MeV for mA0 & 2me , (2.39)

which is roughly the same for the CLEO limit, where mX = mΥ(1S) = 9.5 GeV.

2.2.6 Pion decay π0 −→ e+e−

A light A0 provides a pseudoscalar decay channel for the rare pion decay into e+e− as

shown in the left diagram of Fig. 2.3 (see, e.g. [240]). This chirality-suppressed decay
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proceeds in the Standard Model only through a loop diagram with a π0γ∗γ∗ vertex as

shown in Fig. 2.3 on the right and has a very small branching ratio. The recent KTeV

measurement of this process [241] as

BKTeV(π0 −→ e+e−) ' 7.48× 10−8 (2.40)

is somewhat (3σ) above the Standard Model prediction [242,243]. To be conservative in

deriving a constraint on the A0, we require that the tree-level contribution from A0 does

not exceed the central experimental value, thus B(π0 −→ A0 −→ e+e−) < 7.5× 10−8.

q
γ

q̄
γ

e−

e+

e−

π0 π0
A0

e+

Figure 2.3: Feynman diagrams for the rare pion decay π0 −→ e+e−.

Left: Tree-level contribution from the CP-odd Higgs A0 in the NMSSM.

Right: Loop-level contribution in the Standard Model.

For the decay width in the NMSSM, we find

Γ(π0 −→ A0 −→ e+e−) ' G2
F

4π

m2
em

5
πf

2
π

|m2
π −m2

A0 + iΓA0mA0 |2 C4
Aff , (2.41)

where the up-quark contribution is neglected and 〈0|mdd̄γ
5d|π0〉 ' −im2

πfπ is assumed.3

The total decay width ΓA0 of the A0 is given by Eq. (2.2), the pion mass ismπ = 135 MeV

and the pion decay constant fπ = 93 MeV [244]. We neglect the π0 −A0 mixing effects

which are of order δm2/m2
π ∼ fπ/MW ∼ 10−3 and relevant only very close to the pion

mass.

The total width of the π0 is given by [244]

Γ(π0 −→ γγ) =
α2

64π3

m3
π

f2
π

, (2.42)

so that the limit on CAff follows as

C4
Aff < B(π0 −→ A0 −→ e+e−)

α2

16π2G2
F

|m2
π −m2

A0 + iΓA0mA0 |2
m2
em

2
πf

4
π

. (2.43)

Therefore, the KTeV result requires

CAff < 20 , (2.44)

3Our bound on CAff is not sensitive to this approximation since it scales as the square root of this
matrix element.
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for mA0 away from the pion resonance region while the constraint becomes stronger at

mA0 ' mπ. A more precise bound including the proper mA0-dependence is shown in

blue in Fig. 2.2 marked “π0 −→ e+e−”. This constraint is complementary to those of

the X −→ Y + invisible decays discussed in the previous sections, in that it excludes

the parameter space above CAff ' 20 regardless of the A0 mass. It is also a reliable

tree-level constraint and essentially independent of tanβ.

2.2.7 Muon anomalous magnetic moment

The A0 contributes at the loop-level to the anomalous magnetic moment of the muon aµ.

This quantity is well measured and calculated in the Standard Model, cf. Sec. 1.3.3. Cur-

rently, there is, however, a 3.6σ discrepancy ∆aµ between the Standard Model prediction

asmµ and the measurement aexpµ preformed by E821 [164,165] at BNL. This discrepancy

is given by [4]

∆aµ = aexpµ − asmµ = (28.7± 8.0)× 10−10 (2.45)

(errors combined in quadrature) and may be considered as a hint for new physics.4

In the NMSSM, aµ receives significant one- and two-loop contributions a1L
µ (A0) and

a2L
µ (A0) due to the CP-odd Higgs A0. They have been computed, for example, in [246]

and can be written as

δaµ(A0) = δa1L
µ (A0) + δa2L

µ (A0) , (2.46)

δa1L
µ (A0) = −

√
2GF
8π2

m2
µ |CAff |2 f1

(m2
A0

m2
µ

)
,

δa2L
µ (A0) =

√
2GFα

8π3
m2
µ |CAff |2

[
4

3

1

tan2 β
f2

( m2
t

m2
A0

)
+

1

3
f2

( m2
b

m2
A0

)
+ f2

( m2
τ

m2
A0

)]
,

where the functions f1 and f2 are defined as

f1(z) =

∫ 1

0
dx

x3

x2 + z(1− x)
,

f2(z) = z

∫ 1

0
dx

1

x(1− x)− z ln
x(1− x)

z
. (2.47)

The one-loop contribution a1L
µ (A0) is negative and therefore worsens the discrepancy

between the theoretical prediction and the measured value of aµ. The two-loop contri-

bution a2L
µ (A0), on the contrary, is positive and can resolve this discrepancy since it may

be dominant for mA0 above roughly 1 GeV. This does, however, not occur in the mass

range we are interested in.

4The discrepancy of 4σ quoted in our work [41] was based on an earlier result of [245]. The updated
∆aµ does not affect the conservative constraint derived on A0.
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Since there are other NMSSM contributions of both signs to the muon anomalous

magnetic moment, the contribution coming from the CP-odd Higgs A0 can be can-

celled. We therefore derive a constraint by requiring that the latter does not worsen the

discrepancy beyond 5σ as

δaµ(A0) ≤ aexpµ − asmµ ' 40× 10−10 (5σ) . (2.48)

The corresponding bound on CAff taking into account the full mA0-dependence of

Eq. (2.46) is shown in orange and marked “aµ” in Fig. 2.2 for tanβ ∼ 1. It roughly

demands that

CAff < 2 , (2.49)

for mA0 . mµ and weakens slightly with increasing A0 mass. The tanβ-dependence

is very mild in the region of interest since it stems only from the 2-loop contribution,

which is subdominant. Once this bound is imposed, the constraint from the electron

anomalous magnetic moment is satisfied automatically.

2.2.8 Other constraints

A summary of further (model-dependent) constraints is presented in Refs. [194, 213].

These are, however, weaker than the bounds derived in the previous sections and fur-

thermore require assumptions about the NMSSM spectrum. For instance, there are

contributions from all neutral Higgses to the decay Bs −→ µ+µ− and the B − B̄ mixing

which allow to eliminate parts of parameter space with CAff & O(10) depending on

their specific masses and tanβ [213].

There are further possible constraints from flavour physics, for example, arising from

J/Ψ decays. The measurement reported by CLEO of the process BCLEO(J/Ψ −→
γ + invisible) < 4.3× 10−6 [247] is somewhat weaker than the analogous Υ(3S) bound

from BaBar, considered in Sec. 2.2.5. Since the A0 coupling to up-type quarks relevant

in the J/Ψ decays falls very quickly with tanβ, the potential limit is less constraining

and we do not use this result in our analysis.

Another limit follows from the missing-energy process B −→ KA0A0. Since it is

driven by the hA0A0 coupling [248] it sets a mild constraint on the SH1H2 coupling in

the superpotential given by λ < 0.7.

For a light CP-odd Higgs, LEP data do not impose relevant constraints. Since the

A0 couples to the Z-boson at tree-level through the A0H0
i Zµ vertex [194], the (invisible)

Z-width does not set a limit on the mass of A0 . Electroweak oblique corrections are

suppressed by the mass of the heavier pseudoscalar (see, e.g. [205]) and thus also not

relevant. For the same reason, the production of A0 at LEP through e+e− −→ h A0

is suppressed. The associated production with bottom quarks e+e− −→ bb̄ A0 is also

insignificant [205]. Finally, the constraints from Z −→ γ A0 are also weak [249,250].
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Further bounds from astrophysics have been summarised in Ref. [208]. They are

usually relevant for pseudoscalar particles with sub-MeV masses. These are, however,

in the range 10−4 < CAff < 103 already excluded by meson decays in which an invisible

A0 due to its long lifetime appears as missing energy as shown in Fig. 2.2. An additional

constraint for very small couplings CAff < 10−4 and masses mA0 < 30 MeV has been

derived from the supernova SN1987A [208].

Altogether, the combination of various constraints presented in this section requires

the CP-odd Higgs to be heavier than two muons (210 MeV) or have very small couplings

CAff < 10−4 to fermions. The derivation of this bound does not rely on the specifics of

the NMSSM. It is only based on the coupling (2.1) of the A0 to fermions at tanβ ∼ O(1)

and is therefore much more general. This coupling is sufficient to induce the b − s and

s− d transitions (with a change of flavour resulting from Standard Model loops) which

were used in the processes like B −→ K A0 and K −→ π A0. Similarly, Υ decays,

π0 −→ e+e− and the muon anomalous magnetic moment are generated directly by the

coupling to fermions given by Eq. (2.1).

For completeness, we discuss in the next section further complementary constraints

arising from reactor and beam dump experiments. Those experiments were performed in

the past to constrain axion models and can now be reanalysed to limits on the CP-odd

Higgs as presented in the following.

2.3 Bounds from reactor and beam dump experiments

Even though the constraints derived in the previous section exclude an A0 with a mass

below 210 MeV and couplings to fermions larger than CAff ∼ 10−4, we present here

additional limits that rely on a different kind of physics compared to the meson decays

of Sec. 2.2. The following constraints from reactor and beam dump experiments are

therefore in this sense complementary.

2.3.1 Reactor experiments

The CP-odd Higgs, like other axion-like particles, can be emitted in place of photons from

excited nuclear levels. This makes nuclear reactors a source of pseudoscalar particles with

masses up to 10 MeV. Therefore, the results obtained in searches for axion-like particles

from nuclear power reactors carried out in the past can be used to derive constraints

on the parameter space of the CP-odd Higgs. Here, we consider two representative

experiments which employ the nuclear power reactors Bugey in France and Kuo-Sheng

in Taiwan.
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The detector used in [251] to look for axions was placed at a distance of 18.5 m

from the Bugey reactor core. The experiment searched for the decays a −→ e+e− of

an axion-like particle a into an electron-positron pair. Since no excess of e+e− events

has been observed, a constraint on the axion decay constant fa was derived for axion

masses above the two-electron threshold 2me and below ∼ 9.5 MeV. The corresponding

exclusion region for the CP-odd Higgs can be read off from Fig. 5 of [251] using the

conversion

CAff =
1

fa

2mW

g2
, (2.50)

from the coupling fa of an axion to fermions to the coupling CAff of the A0. The resulting

limit on the A0 covers the range 10−3 . CAff . O(1) for masses 2me ≤ mA0 . 9.5 MeV

and is shown in Fig. 2.4 in red.
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Figure 2.4: Constraints on the mass mA0 of the light NMSSM CP-odd Higgs A0 and its

coupling CAff to fermions from the nuclear power reactors Bugey (France) and Kuo-Sheng

(Taiwan).

Another experiment performed at the Kuo-Sheng nuclear reactor searched for axions

via Compton conversion on electrons [252]. For this purpose, a Germanium detector

was placed 28 m away from the reactor to measure the ionization energy resulting from

the axion-photon conversion in the detector. This experiment also did not observe a

signal and placed a limit on the axion’s coupling to electrons for masses from O(eV)

up to O(MeV). The exclusion region can be read off from Fig. 7 of [252] and their

Eq. (31), which limits gaee g
1
aNN < 1.3× 10−10 for axion masses below ∼ 1 MeV. Using

gaee = CAff g2me/(2mW ) and g1
aNN = 3 × 10−8mA0/eV, this translates into a bound
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for the A0 given by

mA0 CAff < 2× 10−3 MeV, (2.51)

for mA0 < 2me. This corresponds to the blue exclusion region at mA0 < 2me shown in

Fig. 2.4. The experiment has also some sensitivity to somewhat higher masses since an

A0 can be produced like an axion in the neutron capture process pn −→ dγ in place of

the photon. The transition energy of 2.23 MeV of this process defines the highest A0

mass that can be produced and thus limits the reach to mA0 < 2.23 MeV. Requiring

that the A0 does not decay before it reaches the detector, an expression equivalent to

the invisibility-condition Eq. (2.18) leads to a constraint of mA0CAff < 0.3 MeV for

mA0 > 2me and mA0 < 2.23 MeV. The resulting bulge at mA0 > 2me is also shown in

blue in Fig. 2.4.

2.3.2 Beam dump experiments

Another class of constraints arises from beam dump experiments in which axion-like par-

ticles in general and the CP-odd Higgs in particular can be emitted via bremsstrahlung

or Primakoff production (see, e.g. [40]). These experiments and their techniques are

described in detail in Sec. 3.1 and 3.2 in the context of the hidden photon. Like the CP-

odd Higgs, hidden photons can be produced in bremsstrahlung and the corresponding

constraints are given in Sec. 3.3.

In brief, the basic idea of these experiments is as follows. An intense beam of particles

(electrons or protons) is dumped onto a thick target which absorbs the beam and all the

Standard Model background produced by the beam. However, very weakly interacting

particle such as axions, the CP-odd Higgs or the hidden photon might also be produced

by the beam. These exotic particles traverse the dump because of their weak interactions

and can then possibly decay into Standard Model particles. These decay products are

then collected by the detector which is typically placed some meters behind the target

and well shielded from it.

In our analysis, we consider the following four representative examples of beam dump

experiments5 (in Sec. 3.2, additional ones and further details are given):

• E141 experiment at the Stanford Linear Accelerator Center (SLAC) in 1987 [254]:

2 × 1015 electrons at an energy of 9 GeV dumped onto a 12 cm tungsten target

with a detector placed 35 m behind the target;

• E774 experiment at Fermilab in 1991 [255]:

0.52 × 1010 electrons with 275 GeV dumped onto a 30 cm target with a detector

at the end of a 7.25 m long decay volume;

5We are not displaying the results of the electron beam dump experiment SLAC E137 [40] and the
proton beam dump experiment Fermilab 605 [253] since the corresponding exclusion regions are already
largely covered by the limits of the experiments displayed in Fig. 2.5.
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• CHARM experiment at CERN in 1985 [256]:

2.4× 1018 protons at 400 GeV dumped onto a thick copper target and a detector

placed in a distance of 480 m;

• Orsay experiment in France in 1989 [257]:

2× 1016 electrons with an energy of 1.6 GeV dumped onto a 1 m target followed

by a detector in a distance of 2 m.

We derive the corresponding exclusion regions presented in Fig. 2.5 by reading off the

limits on axions from the plots published in these papers and either using the conversion

factor for the axion decay constant given in Eq. (2.50) or calculating the decay time

according to Eq. (2.2).

E774

E141

Orsay

CHARM

10-4 10-3 10-2 10-1

10-3

10-2

10-1

1

10

102

103

C
A
ff

mA0 [GeV]

Figure 2.5: Constraints on the mass mA0 of the light NMSSM CP-odd Higgs A0 and its cou-

pling CAff to fermions from different beam dump experiments. In the CHARM experiment

(CERN), a proton beam is dumped. The other experiments E774 (Fermilab), E141 (SLAC)

and Orsay (France) use an electron beam.

Altogether, this section shows that the reactor and beam dump experiments by

themselves already eliminate most of the parameter space of the CP-odd Higgs, as

shown in Figs. 2.4 and 2.5. Since these experiments make use of a different kind of

physics compared to the limits from meson decays shown in Fig. 2.2, their bounds can

be considered as complementary ones.



2.4 Summary 63

2.4 Summary

In this chapter, it was shown that high precision measurements and experiments ex-

ploiting high intensities are able to probe light particles even if their couplings are weak.

By deriving constraints from meson decays, the muon anomalous magnetic moment and

reactor as well as beam dump experiments, the CP-odd Higgs with a mass mA0 < 2mµ

was found to be excluded for couplings CAff > 10−4. Smaller couplings can hardly be

achieved in the NMSSM and therefore require the A0 to be heavier than 210 MeV. Most

parts of the parameter space are even constrained by more than one experiment so that

the bound is based on independent processes. As the analysis did not use specific features

of the NMSSM and was performed in terms of the mass and the coupling to fermions

{mA0 , CAff}, the obtained results apply as well to the couplings of a light pseudoscalar

particle to matter. Note that unlike meson decays, electron beam dump experiments as

well as the muon anomalous magnetic moment probe directly the coupling to leptons,

which could be the only coupling to matter in exotic (“leptophilic”) scenarios. The

electron beam dump experiments are further analysed in the next chapter in order to

derive constraints on another WISP candidate, the hidden photon.

Our constraints on the light CP-odd Higgs affect the analysis which was performed

in [187] and which explained the PAMELA excess in the NMSSM in the presence of

a light A0. This analysis considered a heavy neutralino as dark matter particle and

masses for the A0 ranging from a few MeV to 250 MeV. The PAMELA excess was then

explained by the annihilation of the neutralino into hA0 followed by h −→ A0A0 and

subsequently A0 −→ e+e− or A0 −→ µ+µ−. In the cases in which the decay into e+e−

was studied, the A0 possessed a mass below the two-muon threshold and is therefore

severely constrained by our results. Our constraints are thus of importance for scenarios

in which a light A0 with A0 −→ e+e− is consider in order to obtain leptophilic dark

matter annihilations and, for example, essentially rules out the corresponding cases

in [187].

Another consequence of our findings is that the decay channel of the CP-odd Higgs

into µ+µ− is open since we showed that the A0 is heavier than twice the muon mass.

This implies that the CP-odd Higgs can be searched for at the LHC through the decay

into µ+µ−, see, e.g. [258–260]. This decay of the A0 into µ+µ− further allows the

lightest NMSSM CP-even Higgs h to be probed by searching for four muons via the

decay h −→ 2A0 −→ 4µ [261,262] or, in the case of an even heavier A0, for 4τ [263].





Chapter 3

Constraints on Hidden Photons

Hidden sectors with light extra U(1) gauge bosons, so-called hidden photons, are well

motivated, as discussed in Chapter 1. They arise naturally in various Standard Model

extensions like supersymmetry or string theory. MeV- to GeV-scale hidden photons are

phenomenologically of interest as they exhibit features which are desirable in the context

of dark matter, especially in view of recent astrophysical observations, as discussed in

Chapter 4. In addition, an MeV-scale hidden photon might explain the long-standing

discrepancy observed in the muon anomalous magnetic moment. Similar to the CP-odd

Higgs studied in Chapter 2, a light hidden photon could have escaped detection until

now due to its weak interactions and thus presents another example of a WISP.

As explained in Sec. 1.3, the kinetic mixing of the hidden photon with the ordinary

photon gives rise to a coupling of the hidden photon to the electromagnetic current of

the Standard Model. The coupling strength of this interaction is reduced by the size

of the kinetic mixing χ with respect to the electromagnetic one and a QED-like vertex

iχeQγµ arises (cf. also Appendix A). Experiments can then search for the hidden photon

via its interaction with charged fermions.

In this chapter, we study the possibility to probe hidden photons at electron beam

dump experiments and present the constraints obtained from this analysis. In these

experiments, the hidden photon can be produced in a process similar to ordinary brems-

strahlung off an initial electron beam. It can traverse the dump and then be observed

through its decay into charged leptons. In the following analysis, we assume that there

are no other particles in the hidden sector which are charged under the extra U(1)

and lighter than the hidden photon, so that the hidden photon can only decay into

Standard Model particles. In Sec. 3.1, we examine these processes and summarise the

most important formulae and computational steps needed to derive the number of events

expected in an experiment from the decay of the hidden photon (more details are given

in Appendix B). We further show how the corresponding exclusion contour arises and

how it depends on the specifics of the experimental set-up. The different experiments

under consideration are then introduced in Sec. 3.2. There, we also discuss in detail the

65
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determination of the experimental acceptances from the use of Monte Carlo simulations.

The resulting constraints from the analysed electron beam dump experiments are then

presented in Sec. 3.3. An up-to-date overview of all current limits on hidden photons

and a summary of future searches are given in Secs. 3.4 and 3.5.

Our analysis includes two new limits from experiments at the High Energy Accelera-

tor Research Organization in Japan (KEK) and the Laboratoire de l’accelérateur linéaire

(LAL, Orsay) which were not considered before. An additional innovation is that all

our constraints take into account the experimental acceptances obtained from Monte

Carlo simulations. These results were done in collaboration with Carsten Niebuhr and

Andreas Ringwald and are published in [42].

3.1 Principles of hidden photons in electron fixed-target

experiments

Hidden photons with masses in the MeV to GeV range can be tested and constrained

by experiments through their interaction with charged Standard Model particles. As

described in Sec. 1.3.2, the coupling of the hidden photon to the electromagnetic current

arises from the kinetic mixing of the hidden photon with the ordinary photon and is

given by a QED-like vertex iχeQγµ (cf. also Appendix A). Among possible experimental

searches, electron beam dump experiments are particularly well suited for kinetic mixing

values χ . 10−3. In these experiments, the basic idea is that hidden photons are emitted

from an electron beam incident on a target and are then observed in a detector behind

the dump through their decay into, e.g. e+e−, as sketched in Fig. 3.1. The emission

process is similar to bremsstrahlung of ordinary photons as illustrated in the left-hand

diagram of Fig. 3.2.

e−

e+
e−

γ′E0 Eγ′

Ltot

LdecLsh

Figure 3.1: Sketch of the set-up of an electron beam dump experiment. An incident electron

beam of energy E0 hits the target and produces a hidden photon γ′ with energy Eγ′ in

bremsstrahlung. The hidden photon traverses the shield and can be observed in the detector

via its decay, e.g. into e+e−. The definitions of the lengths Lsh, Ldec and Ltot used in the

text are illustrated in the set-up.



3.1 Principles of hidden photons in electron fixed-target experiments 67

In the range of low masses and small kinetic mixing, where the hidden photon pro-

duction rates are low, searches at fixed-target experiments are better suited than those

at colliders. One reason is that a fixed-target set-up can collect larger luminosities then

achieved at a collider. Assuming the same beam, consisting of Ne electrons in one bunch,

being either dumped onto a target or collided head-on with a second identical beam one

can relate the luminosity of both respective set-ups. We roughly estimate the luminosity

Lft at the fixed-target set-up and the luminosity Lcoll at a collider as

Lft ' Ne
N0ρshlsh

A
versus Lcoll ' N2

e

Ab
, (3.1)

where the target has density ρsh, number density nsh, atomic mass A and effective shield

thickness lsh, while the second beam has cross-sectional area Ab and bunch length lb.

Thus, the luminosity at a fixed-target experiment could in principle be by a factor

(N0ρshlshAb)/(ANe) ' nsh/ne × lsh/lb ' O(106) larger than at a collider. However,

the actual experiments under consideration typically collect O(ab−1) per day so that the

difference compared to state-of-the-art e+e− machines like Belle, which collects O(ab−1)

per decade, is only O(103). Another advantage of fixed-target experiments over colliders

arises from the cross sections for the hidden photon production processes in both cases,

sketched in Fig. 3.2, which scale as

σft
γ′ ∼

α3Z2χ2

m2
γ′

versus σcoll
γ′ ∼

α2χ2

E2
. (3.2)

For typical values of χ ' 10−4 and mγ′ ' 50 MeV, the cross section σft
γ′ can be roughly

O(pb) at a fixed-target experiment with a tungsten target. It is therefore considerably

larger than σcoll
γ′ of O(fb) which is achieved for the same parameters at a collider with

an energy of 1 GeV.

e−
e−

e+
e−

N

γ′

γ′

γ

Figure 3.2: Different production processes for hidden photons.

Left: Production in bremsstrahlung off the initial electron beam at a fixed-target experiment.

Right: Production at an e+e− collider.

In the 1980s and early 1990s, several electron beam dump experiments have been

carried out to search for light metastable pseudoscalar (axion-like) or scalar (Higgs-like)

particles. In this way, it was, for example, possible to rule out an axion-like particle with
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a mass of 1.8 MeV as explanation for the monoenergetic positron peak observed in heavy-

ion collisions at the Gesellschaft für Schwerionenforschung (GSI) in 1983 [264]. Like

hidden photons, such new particles could be produced in a process similar to ordinary

bremsstrahlung, could subsequently traverse the dump and then be detected via the

decay into Standard Model particles. The non-observation of the expected events had

then been used to derive limits on the mass and coupling strength of such hypothetical

particles [40, 254, 255, 257, 265]. The same considerations also lead to the constraints

on the CP-odd Higgs derived in Sec. 2.3.2. Following a similar line of thought, the

data of these experiments that were taken about two decades ago can nowadays also

be reused to derive constraints on other particles like the hidden photon. This task

was accomplished quite exhaustively in Ref. [266] for the past electron beam dump

experiments E141 [254] and E137 [40] at SLAC as well as E774 at Fermilab [255]. In [42],

we derived new constraints from two other experiments at KEK [265] and in Orsay [257]

that had not been considered so far. In extension of the earlier analysis, our results

include the different acceptances which we obtained with Monte Carlo simulations for

each experiment depending on the specific set-up, the detector geometry and possible

energy cuts. Additionally, we reanalysed the earlier limits by taking the corresponding

acceptances into account.

The following subsections summarise the analytic calculations performed in order to

derive the exclusion limits from electron beam dump experiments. We study the hidden

photon production in the Weizsäcker–Williams approximation following the discussion of

Ref. [266] and the probability for the subsequent decay into leptons. This allows to derive

an estimate for the number of events expected in an electron beam dump experiment.

Comparing this number with the measurement of a toy experiment illustrates how limits

from beam dump experiments are obtained. The shape of the exclusion contours and

their dependence on the different parameters of the set-up are discussed in detail.

3.1.1 Hidden photon production in bremsstrahlung

As mentioned above, analogous to ordinary photon bremsstrahlung, hidden photons can

be produced by initial- or final-state radiation off an electron (or positron) beam incident

on a fixed target. The corresponding production cross section has been calculated in [266]

in the Weizsäcker–Williams approximation based on the results of [267–269] for axion

bremsstrahlung. In this approximation, the target particle, i.e. a nucleus N in our case,

which is moving with great velocity in the frame of the electron, is replaced by a flux of

effective photons. This is known as the pseudophoton-flux of the Weizsäcker–Williams

method. The incident electron from the beam with energy Ee can then scatter off those

photons and radiate a hidden photon γ′, as illustrated in Fig. 3.3. Since the photons

are relatively soft, the cross section for the one-photon exchange process of the hidden

photon production can be written as a product of the pseudophoton-flux and the cross
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section for real photon scattering according to [266] as

dσγ′(e
−(pi) +N (Pi)→ e−(pf ) +N (Pf ) + γ′(k))

dEγ′ d cos θγ′
(3.3)

=

(
α ξ

π

)
 Eexe

1− xe

√
1−

m2
γ′

E2
e


 dσ(e−(pi) + γ(q)→ e−(pf ) + γ′(k))

d(pi · k)

∣∣∣∣
t=tmin

,

where xe ≡ Eγ′/Ee is the fraction of the incoming electron’s energy carried by the hidden

photon, pi (Pi) and pf (Pf ) are the initial and final state momenta of the electron e−

(nucleus N ), θγ′ is the labframe angle between the incident beam and the emitted hidden

photon, k is the hidden photon momentum, q = Pi − Pf is the photon momentum and

t ≡ −q2 its virtuality. Taking into account the form factors of the target, the effective

photon flux ξ was originally determined for the similar case of axion bremsstrahlung and

is given in [268,269] as

ξ(Ee,mγ′ , Z,A) =

∫ tmax

tmin

dt
t− tmin

t2
G2(t) , (3.4)

where for small emission angles one can approximate tmin ' (m2
γ′/2Ee)

2 and tmax ' m2
γ′ .

According to [266], their quadratic dependence on θγ′ can be neglected to excellent

approximation. The electric form factor G2(t) = G2,el(t) +G2,in(t) consists of an elastic

and an inelastic contribution [266]. The elastic one, given by

G2,el(t) =

(
a2t

1 + a2t

)2(
1

1 + t/d

)2

Z2 , (3.5)
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Figure 3.3: Diagrams and kinematic variables for the hidden photon production. The upper

two graphs show the full process of bremsstrahlung in electron nucleon scattering. The

lower two give the corresponding production in real photon scattering considered in the

Weizsäcker–Williams approximation to be convoluted with the pseudophoton flux, cf. [267].
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consists of an elastic atomic form factor and an elastic nuclear form factor, which describe

electron screening and the finite nuclear size, respectively. For a target nucleus of atomic

number Z and mass number A, the parameters are given by a = 111 Z−1/3/me and

d = 0.164 GeV2 A−2/3. The inelastic contribution parametrises the inelastic atomic

and nuclear form factor as

G2,in(t) =

(
a′2t

1 + a′2t

)2
(

1 + t
4m2

p
(µ2
p − 1)

(1 + t
0.71 GeV2 )4

)2

Z , (3.6)

where a′ = 773 Z−2/3/me, µp = 2.79 and mp is the proton mass. For the mass range

of interest, the effective photon flux ξ scales roughly as Z2 independent of mγ′ , as shown

in Appendix B.1 and Fig. B.1.

The differential cross section for the bremsstrahlung production of hidden photons

can then be estimated in the Weizsäcker–Williams approximation as

dσγ′

dxe dcos θγ′
= 8α3χ2E2

exe ξ(Ee,mγ′ , Z,A)

√
1−

m2
γ′

E2
e[

1− xe + x2e
2

U2
+

(1− xe)2m4
γ′

U4
−

(1− xe)xem2
γ′

U3

]
, (3.7)

where

U(xe, Ee,mγ′ , θγ′) = E2
e xe θ

2
γ′ +m2

γ′
1− xe
xe

+m2
e xe , (3.8)

is derived from the kinematics at the minimum tmin of the virtuality t in [266]. The func-

tion U describes the virtuality of the intermediate electron in the initial-state bremsstrahlung.

The approximations leading to these results are valid for

me � mγ′ � Ee and xeθ
2
γ′ � 1. (3.9)

Integrating Eq. (3.7) over the emission angle θγ′ of the hidden photon from 0 to some

maximum angle θmax set by the geometry of the experiment (in all experiments under

consideration it is θmax < 0.5 rad), we obtain

dσγ′

dxe
' 4α3χ2 ξ

√
1−

m2
γ′

E2
e

1− xe + x2e
3

m2
γ′

1−xe
xe

+m2
exe

, (3.10)

cf. also Appendix B.2 for details. Note that our result for the cross section (3.10) includes

a factor 1/2 which has erroneously been omitted in the results presented in Ref. [266].

It can be seen from Eqs. (3.8) that in most of the parameter space U is dominated by

the term∝ m2
γ′ . The production rate thus scales as α3χ2Z2/m2

γ′ which is also apparent in

Eq. (3.10) and already anticipated in Eq. (3.2). The produced hidden photons are highly

boosted and emitted at a small angle in forward direction. This is shown in Fig. 3.4,

in which the distributions of the emission angle θγ′ in the lab-frame with respect to the
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direction of the initial electron (left-hand plot) and the energy Eγ′ (right-hand plot) are

given. Both histograms are based on data obtained from Monte Carlo simulations with

MadGraph for a typical parameter point with mγ′ = 50 MeV and χ = 10−5. Because of

the small emission angles, an expansion to few or even zeroth order in θγ′ is usually a good

approximation. The maximum emission angle θγ′max ∼ max(
√
mγ′me/E0, m

3/2
γ′ /E

3/2
0 )

estimated in [266] is also smaller than the opening angle θ` ∼ mγ′/E0 of the decay

leptons. For those small emission angles, the production is largest when U of Eq. (3.8)

is minimised. This is the case when xe ≈ 1, i.e. when the hidden photon carries most of

the beam energy.

After being produced in the target, the hidden photons traverse potential shields due

to their tiny interactions with Standard Model particles. They can then be observed in

the detector through their decay back into Standard Model particles as described in the

following section.
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Figure 3.4: Distribution obtained from Monte Carlo simulations with MadGraph for a beam

energy of 1.6 GeV and a total of 3200 hidden photons produced with a mass of 50 MeV and

for a kinetic mixing value χ = 10−5.

Left: Hidden photon emission angle θγ′ with respect to the beam direction in the lab-frame.

Right: Energy E0 with which the hidden photon is emitted.

3.1.2 Hidden photon decay

The only possible decay channels of the hidden photon are those into Standard Model

particles through kinetic mixing, since it is assumed throughout this chapter that there

are no other particles in the hidden sector which are charged under the extra U(1)

and lighter than the hidden photon. In most of the parameter space covered by electron

beam dump experiments, the hidden photon mass ismγ′ . 2mµ so that the only available

decay channel is the one into e+e−. Above the two-muon threshold also γ′ → µ+µ−

opens and at even higher masses the decay into hadrons gets accessible. For our purpose,

the total decay width Γγ′ is given by

Γγ′ = Γγ′→e+e− + Γγ′→µ+µ−
[
1 +R(mγ′)

]
, (3.11)
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where the second term is only present for mγ′ ≥ 2mµ and R(
√
s) is defined as the energy

dependent ratio σ(e+e− → hadrons,
√
s)/σ(e+e− → µ+µ−,

√
s) taken from Ref. [4] (see

Appendix B.5 for more information). We find that the partial decay width into leptons

is given by

Γγ′→`+`− =
αχ2

3
mγ′

(
1 + 2

m2
`

m2
γ′

)√
1− 4

m2
`

m2
γ′
, (3.12)

where m` is the mass of the lepton.

The decay length lγ′ in the lab-frame, i.e. the distance after which the γ′-population

is reduced by a factor e, is defined as

lγ′ ≡ γβτγ′ =
Eγ′

mγ′

√√√√1−
m2
γ′

E2
γ′

1

Γγ′
, (3.13)

with the mean lifetime τγ′ = 1/Γγ′ and the total decay width Γγ′ of Eq. (3.11). For

typical values of χ and mγ′ . 2mµ and with Γγ′→e+e− given by Eq. (3.12), this can be

estimated as

lγ′ '
3Eγ′

αχ2m2
γ′
' 8 cm

Eγ′

1 GeV

(
10−4

χ

)2 (
10 MeV

mγ′

)2

, (3.14)

where me � mγ′ has been used. Since the region of interest both for mγ′ and χ spans

several orders of magnitude, so does the decay length, ranging from O(mm) to O(km).

In order for the decay products to be observable in an electron beam dump experiment,

the hidden photon has to decay in the open decay region between the end of the shield

and before or within the detector, i.e., in the area labelled Ldec in Fig. 3.1. Thus,

comparing the hidden photon decay length with the dimensions of the set-up gives an

indication for the reach of the experiments. For large values of χ and/or mγ′ , the decay

length is much shorter than the minimum extension of the shield required to suppress

the Standard Model background. The corresponding region of the parameter space is

therefore not accessible with electron beam dump experiments as will be discussed in

more detail below.

3.1.3 Number of expected events

In order to derive constraints on a new particle from the absence of a signal in a certain

experiment, we need to determine the number of events expected if this particle was to

exist. In general, the number of hidden photons produced in a fixed target experiment

from Ne electrons with initial energy E0 dumped on a target can be written as

Nγ′ = σγ′ Ne nsh Lsh = σγ′ Ne
N0

A
ρsh Lsh , (3.15)

where nsh, ρsh and A are the number density, density and atomic mass of the target,

respectively, Lsh is the length of the target plus shield, N0 is Avogadro’s number and
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σγ′ is the cross section for hidden photon production in bremsstrahlung discussed in

Sec. 3.1.1.

One has to take into account that the electrons, in passing through the target, might

interact with the material. In this way, their initial energy E0 becomes degraded before

they undergo the interaction producing a hidden photon at an energy Ee ≤ E0. This is

described by the energy distribution of the electron beam as a function of the penetration

depth t measured in units of the radiation length. According to [267], the electron energy

distribution can be estimated as

Ie(E0, Ee, t) =
1

E0

[
ln
(
E0
Ee

)] 4
3
t−1

Γ(4
3 t)

, (3.16)

where Γ is the Gamma function. The behaviour of Ie as a function of Ee for different

values of t is discussed in Appendix B.3 and shown in Fig. B.2. Depending on whether

the target is longer or much shorter than one radiation length, this expression can be

simplified to the two limiting cases of a thick or a thin target experiment as

Ie(E0, Ee, t) ≈





1

E0

(
E0 − Ee
E0

) 4
3
t−1 4

3
t t & 1 – “thick target” , (3.17)

δ(Ee − E0) t� 1 – “thin target” . (3.18)

This electron energy distribution has to be convoluted with the bremsstrahlung cross sec-

tion and integrated over the length lsh up to the total length Lsh of the target plus shield.

Expressing all distances in terms of the unit radiation length X0 as tsh = ρshlsh/X0 (see

Appendix B.4 for details), the number of hidden photons with energy Eγ′ = x0E0 pro-

duced per incident electron can be written as

dNγ′

dx0
= Ne

N0X0

A

∫ Tsh

0
dtsh

∫ E0

Eγ′+me

dEe Ie(E0, Ee, tsh)
E0

Ee

dσ

dxe

∣∣∣∣
xe=

Eγ′
Ee

, (3.19)

when a target of Tsh ≡ ρshLsh/X0 radiation lengths is used.

In order to be observed in an experiment, the hidden photons must decay behind

the shield and in front of, or within, the detector according to the differential decay

probability
dP (l)

dl
=

1

lγ′
e−l/lγ′ , (3.20)

with the decay length lγ′ defined in (3.13).

Finally, the total number of expected events from hidden photons, that are produced

in the target via bremsstrahlung off the electron beam and that decay at a distance z
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behind the front edge of the target, is given by

dNγ′

dx0 dz
= Ne

N0X0

A

∫ E0

Eγ′+me

dEe

∫ Tsh

0
dtsh

[
Ie(E0, Ee, tsh)

E0

Ee

dσ

dxe

∣∣∣∣∣
xe=

Eγ′
Ee

dP (z − X0
ρsh
tsh)

dz

]
,

(3.21)

where Ne and E0 are the number and energy of the incident electrons, respectively,

N0 ' 6 × 1023 mole−1 is Avogadro’s number, ρsh and X0 are the density and unit

radiation length of the target, respectively. The differential cross section dσ/dxe is given

in Eq. (3.10) (cf. also Appendix B.2 and Eq. (B.7)), the electron energy distribution

Ie(E0, Ee, t) in Eq. (3.16) and the differential decay probability dP/dz in Eq. (3.20).

3.1.4 Special case: thick target beam dump experiment

For the thick target experiments we are interested in, most of the hidden photon pro-

duction takes place within the first radiation length. Therefore, the dependence of the

hidden photon decay probability on tsh can be neglected and Eq. (3.21) simplifies to

dNγ′

dx0 dz
' Ne

N0X0

A

∫ E0

Eγ′+me

dEe

∫ Tsh

0
dtsh

[
Ie(E0, Ee, tsh)

E0

Ee

dσ

dxe

∣∣∣∣∣
xe=

Eγ′
Ee

dP (z)

dz

]
.

(3.22)

Since only hidden photons that decay between the end of the shield and before, or within,

the detector can be observed, z has to be integrated from Lsh to the total length Ltot of

the experiment. This leads to

dNγ′

dx0
' Ne

N0X0

A

∫ E0

Eγ′+me

dEe

∫ Tsh

0
dtsh

[
Ie(E0, Ee, tsh)

E0

Ee

dσ

dxe

∣∣∣∣
xe=

Eγ′
Ee

(
e−Lsh/lγ′ − e−Ltot/lγ′

)]
, (3.23)

where Ltot ≡ Lsh +Ldec with the length of the decay region Ldec, as sketched in Fig. 3.1.

The total number of events behind the dump, resulting from the decay of the hidden

photon, is thus obtained by integrating over x0 or equivalently over Eγ′ as

Nγ′ ' Ne
N0X0

A

∫ E0−me

mγ′

dEγ′

∫ E0

Eγ′+me

dEe

∫ Tsh

0
dtsh

[
Ie(E0, Ee, tsh)

1

Ee

dσ

dxe

∣∣∣∣
xe=

Eγ′
Ee

e−Lsh/lγ′
(

1− e−Ldec/lγ′
)]

BRdetect , (3.24)

where BRdetect is the branching ratio into those decay products that the detector is

sensitive to, i.e. electrons, muons or both.

For a specific experimental set-up, a constraint as a function of mγ′ and χ can be

derived by comparing the upper limit on the number of events observed in an experiment
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with the one expected from (numerically) integrating Eq. (3.24), cf. also Appendix B.6

for details. The exclusion region depends on the dimensions of the experiment Lsh and

Ldec, the number Ne and energy E0 of dumped electrons, the target material and the 95%

C.L. upper limit N95%up of the number of events observed in the experiment. An example

exclusion limit is illustrated in grey in Fig. 3.5(a) for a fictitious toy experiment with

E0 = 4 GeV, Lsh = 200 cm and Ldec = 200 cm which dumped Ne = 1 × 1014 electrons

and obtained a limit of N95%up = 10 events. The shape of the exclusion contour can be

understood by the following arguments.

As mentioned in Sec. 3.1.2, the upper reach of the experiments in the mγ′-χ plane

is set by the extension of the shield compared to the hidden photon decay length: if lγ′

gets much shorter than Lsh, the exponential factor e−Lsh/lγ′ in Eq. (3.24) drops rapidly.

This causes the number Nγ′ of expected events to decrease quickly since most hidden

photons decay inside the shield. Therefore, the sensitivity of the experiment breaks

down. The estimate of the decay length (3.14) indicates that in a log-log plot of χ

versus mγ′ this upper limit is given by a straight line with slope of −1. This behaviour

and the rapid decline of the exponential factor is shown in Fig. 3.5(a) by the green lines

which demonstrate how the value of e−Lsh/lγ′ decreases quickly from 10−1 at the lowest

line in steps of 10−5 to 10−51 at the upper most line. Thus, changing in a set-up either

the decay length lγ′ via E0 or the length Lsh of the shield, moves the upper boundary

of the exclusion limit accordingly as illustrated in Fig. 3.5(b). Therein, the central solid

orange line gives the exclusion contour for the settings of the original toy experiment,

the line to the left (short-dashed) results from either increasing Lsh or decreasing E0

by a factor of 4 and the line to the right (long-dashed) from either decreasing Lsh or

increasing E0 by the same factor. Note that, in all plots of Fig. 3.5(b–d), the interior of

each contour, i.e. the part enclosed with the χ-axis, is excluded and the coloured shaded

region symbolises the range in which the exclusion contour changes when varying a

certain parameter in the specified range.

The lower boundary of the exclusion contour on the other hand is for small hidden

photon masses almost horizontal, i.e. roughly independent of mγ′ . In this part of the

parameter space, the decay probability, which is contained in Eq. (3.23) in the part

enclosed in parenthesis, can be approximated as P ∝ Ldec/lγ′ by expanding the expo-

nentials for a large decay length lγ′ � Lsh, Ldec. In this limit, both the decay probability

and the production rate decrease ∝ χ2. The former scales as P ∝ 1/lγ′ ∝ χ2m2
γ′ because

of (3.14) and the latter as σγ′ ∝ χ2/m2
γ′ , cf. (3.2). The number of hidden photons then

follows as Nγ′ ∝ σγ′Ldec/lγ′ ∝ χ4Ldec and is therefore roughly independent of mγ′ . This

is indicated by the yellow band in Fig. 3.5(a) for an estimate of Nγ′ . Since Nγ′ falls of

very quickly with the fourth power of χ, the lower reach of the exclusion contour is lim-

ited by statistics. For decreasing kinetic mixing, too few hidden photons are produced

and many of them do not decay before the detector because of their long decay length.

The dependence of this lower boundary of the exclusion contour on Ldec is illustrated in

Fig. 3.5(c). Increasing or decreasing the length of the decay volume by a factor of 5 thus
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Lsh = { 800 cm, 200 cm, 50 cm }
E0 = { 1 GeV, 4 GeV, 16 GeV }

Ldec = { 40 cm, 200 cm, 1000 cm } Ne = { 1013, 1014, 1015 }
N95%up = { 100, 10, 1 }

Figure 3.5: (a) Grey exclusion contour of the toy experiment together with the experiment’s

upper and lower estimated reach. The green lines give the variation of the exponential factor

e−Lsh/lγ′ which multiplies Nγ′ from 10−1 in steps of 10−5 to 10−51 (upper reach). In the log-

log plot they have a slope of −1. The yellow band shows the lower reach for lγ′ � Lsh, Ldec

which is caused by too few statistics and roughly independent of mγ′ .

(b–d) Dependence of the exclusion contour on different factors of the experimental set-up:

Lsh, E0, Ldec, Ne and N95%up. The parameters given in bold are the ones of the original toy

experiment. They represent the central values and result in the solid contours. The other

parameters correspond to the outermost values of the range which leads to the shaded areas.

(b) Variation of the shield length Lsh or the beam energy E0 by a factor of 4 gives a similar

shift of the upper contour line. The short-dashed line corresponds to increasing Lsh or

decreasing E0, the long-dashed line to decreasing Lsh or increasing E0.

(c) Change in the exclusion limit originating from a reduction (short-dashed) or an increase

(long-dashed) of the length of the decay region Ldec by a factor of 5.

(d) Identical but opposite rescaling of the contour caused by a modification of the number

Ne of incident electrons or the upper limit of observed events N95%up by a factor of 10.

Decreasing (increasing) Ne or increasing (decreasing) N95%up gives the short-dashed (long-

dashed) purple line.
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extends or diminishes the exclusion limit as shown by the long-dashed and short-dashed

blue lines, respectively. The increased reach in case of a longer decay volume holds as

long as losses due to the smaller solid angle resulting from the more distant detector can

be neglected.

Lastly, both the number Ne of electrons dumped by the experiment and the upper

limit N95%up on the observed number of events control the overall scaling of the exclusion

contour in a reciprocal way. The effect of changing both by a factor of 10 is illustrated

in Fig. 3.5(d). There, the stronger exclusion bound, shown as long-dashed purple line,

corresponds to an increase (decrease) of Ne (N95%up) and the weaker bound, given as

short-dashed purple line, results from a decrease (increase) in Ne (N95%up).

3.2 Application to electron beam dump experiments

3.2.1 Overview of existing electron beam dump experiments

In the following, we give a brief overview of the different experiments that we used

to derive constraints. A summary of the most important parameters is also given in

Tab. 3.1.

KEK

An experiment looking for neutral penetrating particles was conducted in 1986 at the

National Laboratory for High Energy Physics (KEK) in Japan [265]. The interest

in such particles was fuelled by the aforementioned monoenergetic positron peak

observed at the Gesellschaft für Schwerionenforschung (GSI) in 1983 [264] which

could result, for example, from a light axion-like particle. At KEK, a 2.5 GeV

electron linear accelerator injected a total of 27 mC (1.69 × 1017 electrons) into a

tungsten target. In front of a 220 cm long decay volume, a dump of iron, lead and

plastic was used as shield against the background. The detector system, which was

looking for e+e− pairs, consisted of multiwire proportional chambers, scintillation

counters and a lead-glass Čerenkov counter. It was combined with a pair magnet

providing a horizontal momentum kick of 13.5 MeV in 70% of the running time and

of 40.5 MeV in the rest of the time. No energy cuts were used.

The experiment did not observe any signal and concluded that the GSI observa-

tion is unlikely caused by an axion. Thus, following Appendix B.7 we deduce the

corresponding 95% C.L. upper limit N95%up of 3 events for a Poisson signal.

SLAC E141

Also motivated by the GSI anomaly, this search for short-lived axions was performed

at SLAC in 1987 [254]. The experiment used an electron beam of E0 = 9 GeV which

was dumped onto a 12 cm tungsten target. Following an evacuated beam pipe, a
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spectrometer was placed 35 m downstream of the dump to look for positrons with

secondary energy E′ in the range between 70% and 90% of E0. A large part of the

beam pipe was surrounded by lead and concrete shielding to reduce the background.

In the last 5 m, the pipe had a diameter of 7.5 cm defining the angular acceptance

of 1.1 mrad. With a total of 2 × 1015 electrons (0.32 mC) dumped, the experiment

concluded that a pseudoscalar decaying to e+e− is ruled out as solution to the GSI

phenomenon.

From the background-subtracted number of positrons observed at different energies

and reported by the experiment in Fig. 1c of Ref. [254], we extract for x ≡ E′/E0 ≥
0.7 a total of 1126+1312

−1126 events. As described in Appendix B.7, we find that the

corresponding 95% C.L. upper limit, assuming a Gaussian signal, then has to be

taken as N95%up = 3419 events.

SLAC E137

Another experiment to look for neutral metastable penetrating particles was carried

out at SLAC in 1988 [40] with a 20 GeV electron beam dumped onto an aluminium

target. A 179 m thick hill served as earth shielding and was followed by a 204 m

wide open valley as decay region. The experiment dumped in total 1.86 × 1020

electrons in two phases, a first one consisting of 9.5 Coulomb and a second one of

20.4 Coulomb. The detector was an electromagnetic shower counter of dimensions

2 m × 3 m perpendicular to the beam axis in the first and 3 m × 3 m in the second

phase. It recorded either electron or positron events with an energy higher than

3 GeV.

The experiment reported that no candidate events were observed above 3 GeV in

their search for axion-like particles. Thus, according to Appendix B.7, the 95% C.L.

upper limit, assuming a Poisson signal, is given by N95%up = 3 events.

Orsay

In a search for light Higgs bosons, in 1989, a total of 2 × 1016 electrons (3.2 mC)

with an energy of 1.6 GeV provided by the Orsay linac was dumped onto a tungsten

target [257].1 Surrounded by lead shielding the dump had a total length of 1 m. It

was placed in front of a 2 m long and 10 cm wide decay volume inside a concrete

wall. Behind this, a combination of scintillation counters and lead-glass Čerenkov

counters was used to detect either electrons or positrons with an energy larger than

0.75 GeV.

The experiment concluded that the data which were taken within only a few hours,

did not contain any events. Therefore, the experiment ruled out a Standard Model

1Note that another beam dump experiment was performed in Orsay in 1986 [270] which we do,
however, not consider because it only reaches up to masses of about 15 MeV. In [271], it was suggested
that this experiment could be used to constrain U -bosons. This U -boson is similar to the hidden photon
but contains additional axial couplings. Constraints on this particle were studied in [18, 272–276], and
its connection to dark matter was considered in [100,138,139].
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Higgs between 1.2 and 52 MeV. Again following Appendix B.7, this translates to a

95% C.L. upper limit N95%up of 3 events for a Poisson signal.

Fermilab E774

In 1991, a 275 GeV electron beam at Fermilab was exploited in a search for short-lived

neutral bosons decaying to e+e− [255]. A total of 0.52×1010 electrons (0.83 nC) were

dumped onto a 30 cm tungsten electromagnetic calorimeter used as target. Behind

the shield a 2 m long decay space opened and was followed by four scintillation

counters. Another electromagnetic calorimeter was placed in a distance of 7.25 m

downstream from the dump and used for trigger. The experiment required two

charged particles in the detector, i.e. both the electron and the positron from the

decay. The final multiplicity-2 electromagnetic spectrum published in Fig. 4c of

the analysis in [255] was obtained by subtracting the background of, for example,

misidentified multiplicity-2 hadronic final states like K0
S → π+π−.

From this plotted spectrum, we find a total of zero events with excess multiplicity-2.

As this results from a subtraction of the background from the original multiplicity-2

spectrum, the statistical error is dominated by the total number of events in Fig. 4b

of their publication [255]. We read off this plot a total of 89 events and infer the

corresponding statistical error as
√

89 events. According to Appendix B.7, the 95%

C.L. upper limit is given by N95%up = 18 events.

target
E0 Nel Lsh Ldec

Nobs N95%up
[GeV] #electrons Coulomb [m] [m]

KEK 183.84
74W 2.5 1.69×1017 27 mC 2.4 2.2 0 3

E141 183.84
74W 9 2×1015 0.32 mC 0.12 35 1126+1312

−1126 3419

E137 26.98
13Al 20 1.87×1020 30 C 179 204 0 3

Orsay 183.84
74W 1.6 2×1016 3.2 mC 1 2 0 3

E774 183.84
74W 275 5.2×109 0.83 nC 0.3 2 0+9

−0 18

Table 3.1: Overview of the different beam dump experiments analysed in this work and their

specifications. The target materials are labelled by their mass number A, atomic number

Z and chemical symbol AZW/Al, where W stands for tungsten and Al for aluminium. The

number of observed events Nobs have directly been extracted from the experiment’s papers.

They differ in the case of E141 and E137 slightly from the estimates used in Ref. [266] as do

the corresponding 95% C.L. values obtained according to Appendix B.7.
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3.2.2 Acceptance of analysed experiments

The calculation of the expected number of hidden photons in a beam dump experiment

in Sec. 3.1 relies on the assumption of an ideal experimental layout in which all decay

products are seen in the detector. This is, however, not the case in a real experiment.

Because of possible energy cuts in the analysis as well as the geometry of the set-up

and the finite detector size compared to the angles under which the hidden photon and

the decay-leptons are emitted, not all events predicted by Eq. (3.24) are detected. To

estimate these effects, we simulate the hidden photon production and decay for all ex-

periments discussed in Sec. 3.2.1 (see also Tab. 3.1) with the Monte Carlo generator

MadGraph [277, 278]. Comparing the results of these simulations with the specifics

of the set-up enables us to determine the acceptance of each experiment. This is dis-

cussed in detail in the following and explained with illustrative examples of the Orsay

experiment. Note that we consider here only events where the hidden photon decay

occurs behind the shield and before/within the detector, since this criterion is already

accounted for in our theoretical estimate (3.24).

The production of the hidden photon in bremsstrahlung as well as its subsequent

decay into e+e− can be simulated with MadGraph for different hidden photon masses

and kinetic mixing values. Both processes were implemented for a fixed-target set-up

into MadGraph by Rouven Essig, Philip Schuster and Natalia Toro [278] for use in the

APEX experiment. We adopt this code to generate events for the electron beam dump

experiments listed in Sec. 3.2.1 and set the beam energy E0, the target atomic number

Z and mass number A according to the specifications given in Tab. 3.1. We simulate for

every experiment data samples with various combinations of hidden photon mass and

kinetic mixing. At each of those parameter points we generate about O(3000) events

providing us with the four-momenta of the hidden photon and of its decay products.

The collected events are then further analysed with Mathematica. There, we imple-

ment the energy cuts and three-dimensional layout of each experiment, i.e. the size of

the target and the decay volume (not only the extension in the z-direction of the beam,

but also possible boundaries in x- and y-direction) as well as the different detector com-

ponents with their respective positions and sizes. In order to estimate the acceptance

of the experiment, we need to find the number of decay products that are produced by

a hidden photon within the decay volume, hit all required components of the detector

and fulfil the selection criteria. The three different conditions c-1 to c-3 for a valid event

can thus be summarised as:

c-1) The hidden photon decay position must lie within the decay volume. Since the

acceptance only takes into account the decays that occur behind the dump and

before/within the detector, this criterion refers only to potential lateral boundaries

of the decay volume in x and y.
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c-2) Depending on the requirements of the experiment either one or both decay prod-

ucts have to pass through certain relevant detector components.

c-3) The energy of the hidden photon and/or the decay product(s) has to fulfil the

respective energy cuts.

The remaining number of valid events after applying c-1 to c-3 compared to the total

number of simulated events then gives the acceptance according to

#events|{c-1 ∧ c-2 ∧ c-3}

#events
. (3.25)

Since the Monte Carlo only generates four-momenta, we first have to construct the

decay position of the hidden photon according to the decay length given by Eq. (3.13),

determine the subsequent path of the decay products from this point on and compare it

with the lay-out of the detector. Assuming that the hidden photon is produced by an

electron with energy E0 at the impact point of the beam on the target, its trajectory

continues in the direction set by its four-momentum through the target. These assump-

tions are usually quite good since most of the hidden photon production takes place

early in the target where the electrons carry a large fraction of the initial beam energy.

With the distribution of an exponential decay, we random-generate the decay length of

the hidden photon from (3.13) as a function of its energy, mass and kinetic mixing. The

decay length must be corrected so that only decays behind the dump and before/within

the detector are taken into account. The repeated use of one generated Monte Carlo

event with various decay lengths allows us to artificially increase the data sample and

the statistics.

A three-dimensional example of the distribution of hidden photon decay positions

obtained for the settings of the Orsay experiment is shown in the left-hand plot of

Fig. 3.6. As described in Sec. 3.2.1, the decay region in this particular case is a 2 m

long and 10 cm wide volume passing through a concrete wall. It is represented as a

transparent grey cuboid in the left-hand plot of Fig. 3.6. The green points in this plot

indicate hidden photon decay positions within this volume, while brown points are not

valid since the decay takes place inside the surrounding wall. For the other experiments

under consideration, the decay volume is not limited in the x- and y-direction, so that

all hidden photon decays are allowed.

In the next step, out of all decays within the decay volume the fraction of leptons

that pass the detector has to be determined. For each decay position, we construct the

path of both leptons according to the four-momenta generated with MadGraph. In

the case of the KEK experiment, an additional momentum-kick resulting from the pair

magnet has to be taken into account. Depending on the requirements of the experiment

either both or only one of the two leptons have to traverse certain parts of the detector.

This is shown in the set-up of the Orsay experiment for three different events in the
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left-hand plot of Fig. 3.7. The grey cuboid again represents the decay volume and

the green panels to the right illustrate the three detector components through which

at least one of the decay-leptons has to pass. The tracks of the hidden photons are

shown in green for two events classified as valid and in brown for an event that must

be rejected. Note that those three trajectories have different origins since the plane at

z = 0 corresponds to the end of the dump and not the production point. The paths of

the two leptons indicated by orange dashed lines, originating from the hidden photon

shown as brown line, do not hit all the three detector parts so that this event is not

valid. The intersections of the trajectories of the leptons with the detector plane are

given as grey dots when outside and as coloured dots when inside the detector area.

Both decay-leptons of the hidden photon with the longest green track cross the entire

detector as shown by the red lines and the corresponding red dots. From the hidden

photon with the shorter green track one lepton does and one does not pass the detector

as represented by the solid and dashed purple lines, respectively. The right-hand plot of

Fig. 3.7 shows a green square, representing the topview of the first detector component

behind the decay volume. It contains the penetration points of all leptons resulting from
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Figure 3.6: Visualisation of the hidden photon decay position (left) and length (right) for a

total of 6400 events with a mass of mγ′ = 50 MeV and a kinetic mixing of χ = 1× 10−5.

Left: Hidden photon decay positions computed according to the four-momenta obtained from

MadGraph simulations and the decay lengths randomly generated following the distribu-

tion of an exponential decay. The dump is placed at the left end of the plotted region and

ends at z = 0. Points in green lie inside the 200 m long and 10 cm wide decay volume of the

Orsay experiment which is represented as a grey cuboid. Points in brown are not valid since

the decay occurs inside the wall surrounding the decay volume. Out of all events, about 91%

(∼ 5800 events) lie inside and 9% (∼ 600 events) outside the decay volume.

Right: Distribution of the hidden photon decay length compared to the curve of an expo-

nential distribution e−l/lγ′ with the decay length given by Eq. (3.13) where the mean hidden

photon energy of the data sample was used.
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6400 simulated hidden photon decays. Again, red and purple is used to distinguish the

cases where both or one decay-lepton, respectively, traverse the entire detector. Grey

implies that the lepton does not cross all parts of the detector.

In the last step, the energy of those leptons which pass the detector has to be

compared to the energy cuts applied in the experiment. Then, the acceptance can be

computed according to (3.25) as the ratio of the number of events for which the hidden

photon decays inside the decay volume and the required number of decay-leptons traverse

all detector components while passing the energy cuts, i.e. events fulfilling c-1 to c-3, with

respect to the total number of simulated events. In this way, we determine the acceptance

of each experiment for different combinations of mγ′ and χ. The acceptance decreases

slightly with increasing hidden photon mass but has very little dependence on χ. This

is expected since the acceptance relies on kinematics in comparing the mass-dependent

angles of emission and decay to the solid angle covered by the detector. Since both the

hidden photon emission angle and the opening angle of the decay-leptons increase with

mγ′ , as discussed in Sec. 3.1.1, the acceptance gets smaller at larger masses.
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Figure 3.7: Left: Illustration of three hidden photon decay events from Monte Carlo simula-

tions with MadGraph in the set-up of the Orsay experiment. The grey cuboid represents

the decay volume and is followed by the three detector components shown as green panels.

Both decay-leptons (dashed orange lines) from the hidden photon with the brown track miss

the detector. For the hidden photon with the longest green track, both leptons (solid red

lines) pass the detector. For the hidden photon with the shorter green track, only the lepton

shown by the solid purple line hits the detector while the one given by the dashed line misses.

Right: Topview of the first detector panel with impact points of the decay-leptons: red repre-

sents events where both, purple where only one and grey where none of the leptons traverse

the entire detector. The plot contains the ∼ 5800 events for which the hidden photon decays

inside the decay volume, cf. Fig. 3.6. Among those, 17% are not valid (grey dots) as they vi-

olate c-2 or c-3. The other 83% are detected (75% by one lepton and 8% by both as indicated

by purple and red, respectively) and pass the energy cuts, i.e. they fulfil c-2 and c-3.
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3.3 Limits on hidden photons from electron beam dump

experiments

Combining the results of the last two sections allows us to determine the 95% C.L.

exclusion limits on hidden photons from electron beam dump experiments. In Sec. 3.1,

the process of hidden photon production in bremsstrahlung and the subsequent decay

into leptons was studied. This analysis took the pseudophoton-flux of the Weizsäcker–

Williams approximation, nuclear and atomic size effects as well as the energy distribution

of electrons in the target into account. Those considerations condensed in the final

formula (3.24) giving the theoretical prediction for the number of expected events from

hidden photon decays in an ideal experiment which detects all produced leptons, see

also Appendix B.6. The limitations of a real experimental set-up like the geometry and

finite detector size demand a scaling down of this estimate. Comparing the kinematics,

emission angles and trajectories obtained using MadGraph Monte Carlo simulations

with the layout of the experiments presented in Sec. 3.2.1 allows to determine the actual

acceptance, as discussed in Sec. 3.2.2.
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Figure 3.8: Limits on the hidden photon mass mγ′ and the kinetic mixing χ from different

electron beam dump experiments. The limits from the experiments at KEK (dash-dotted

green line) and in Orsay (solid blue line) have been presented for the first time in the context

of this work. The limits from E141 (dotted purple line), E137 (dashed red line) and E774

(long-dashed orange line), which were already considered in Ref. [266], have been reanalysed

in the present work. Our analysis of all these limits takes the experimental acceptances

determined with MadGraph into account.
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Each experiment then excludes those points in the mγ′-χ-parameter space for which

the number of theoretically predicted events according to Eq. (3.24) multiplied with

the experimental acceptance from Sec. 3.2.2 is larger than the experiments upper limit

N95%up given in Tab. 3.1. The resulting limits for the different experiments are shown in

Fig. 3.8. The shape of the exclusion contours is as expected according to the discussion

in Sec. 3.1.4 and the estimates of Fig. 3.5. Our limits for the previously analysed

experiments at SLAC (E141 as dotted purple line and E137 as dashed red line) and at

Fermilab (E774 as long-dashed orange line) are comparable to those presented in [266].

However, the constraints we find are generally a bit weaker because of the factor 1/2

discrepancy in Eq. (3.10), the slightly varied numbers of events N95%up used for our 95%

C.L. contours and the somewhat different experimental acceptances which we obtained

from Monte Carlo simulations with respect to the rough estimates assumed in [266].

We find that the limits for the experiments at KEK and in Orsay, which are analysed

in our work for the first time, cover a similar region, though Orsay extends to slightly

higher masses. These new limits from KEK and Orsay allow us to exclude a region of

the parameter space which so far has not been constrained by any other electron beam

dump experiment, as shown in Fig. 3.8 by the dash-dotted green and solid blue lines,

respectively.

3.4 Current limits on hidden photons

Besides the limits from electron beam dump experiments derived in the previous sections,

various other constraints arise on the hidden photon mass mγ′ and the kinetic mixing χ.

They are discussed in the following and summarised in Fig. 3.9 in comparison to those

presented in Fig. 3.8.

Beam dump experiments with protons probe a similar region of the parameter space

as those with electrons. The general idea is that hidden photons can be produced in the

radiative decays of neutral pseudoscalar mesons which are generated by a proton beam.

Like in the case of electron beam dumps the hidden photon can traverse the shield and

be observed through its decay in the detector. The shape of their exclusion contours

is very similar to the one from electron beam dump experiment which was discussed in

Sec. 3.1.4. The upper limit again results from a too short decay length with respect to

the extension of the shield and thus features because of 1/lγ′ ∝ χ2m2
γ′ the same slope

of −1 in the log-log plot. For the lower limit, the production cross section here is for

small masses roughly ∝ χ2, instead of ∝ χ2/m2
γ′ in the case of electron beam dumps.

Therefore, multiplied with 1/lγ′ ∝ χ2m2
γ′ , the slope of the lower limits is −1/2 and

no longer independent of mγ′ . A first limit was obtained in [279] by reanalysing proton

beam dump data from the ν-Cal I experiment which were taken with a ∼ 70 GeV proton

beam provided by the U70 accelerator at the Institute of High Energy Physics (IHEP)

in Serpukhov. The original purpose of this experiment was to search for axions and
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light Higgs bosons. The decay of π0 mesons generated by the proton beam can produce

hidden photons in a similar way as ordinary photons in π → γγ. Since the analysis only

considered production from π0 decays, hidden photon masses up to mπ0 ' 134 MeV

can be probed. This is possible by searching for electromagnetic showers from the only

available decay channel of the hidden photon into e+e−. The limit derived in [279]

from the absence of a signal above the background overlaps with the one obtained from

KEK and Orsay as shown by the line labelled “ν-Cal I” in Fig. 3.9. Further limits,

denoted “NOMAD”, “PS191” and “CHARM” in Fig. 3.9, were derived from neutrino

experiments at CERN originally performed to search for the decay νh → νe+e− of a

heavy neutrino. The NOMAD experiment with a 450 GeV proton beam and PS191

with a 12.2 GeV proton beam were reanalysed in terms of hidden photons originating

from π0 decays in [280]. The former is limited to masses up to 95 MeV due to selection

cuts in the analysis but the combined mass coverage is similar to the one of ν-Cal I. In

the CHARM experiment with a 400 GeV proton beam, hidden photons originating from

η and η′ decays can be constrained up to about 500 MeV [281].

For the region with low mass and large kinetic mixing, the strongest constraints arise

from the anomalous magnetic moment of the muon and the electron labelled “aµ” and
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Figure 3.9: Collection of all current limits on hidden photons: from the electron beam dump

experiments of the present work (coloured lines, cf. Fig. 3.8, all other limits as grey lines),

Standard Model precision measurements, muon and electron anomalous magnetic moment,

a reinterpretation of the BaBar search e+e− → γµ+µ− for pseudoscalars, the electron fixed

target experiments A1 and APEX, the ν-Cal I experiment at the Serpukhov proton beam

dump, the KLOE experiment, the neutrino experiments NOMAD, PS191 and CHARM, the

Kaon decay K → µνγ′ and a search for rare decays by SINDRUM, cf. text for details.
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“ae”, respectively. The one-loop contribution of the hidden photon to the anomalous

magnetic moment of a lepton was calculated in [26]. As discussed in Sec. 1.3.3, there

is a discrepancy between the measured value of the muon anomalous magnetic moment

and the Standard Model prediction which could be resolved by the positive contribu-

tion arising from the hidden photon. A constraint can be derived demanding that this

contribution does not exceed the measured value by more than 5σ and was presented

in [26]. In the same analysis, a limit from the electron anomalous magnetic moment

was found by comparing the measurement to the Standard Model value. This limit has

recently been updated and strengthened in [282,283].

Another limit for this region of the parameter space was announced in [284] around

the same time as the update on ae. The decay K+ → µ+νµγ
′ was analysed using data

from the rare kaon decay K+ → µ+ + invisible where the muon is the only final-state

particle detected while all others are invisible neutral states. The obtained limit would

have improved the former ae bound but is not competitive with the improved one.

In the first analysis of the electron beam dump limits [266], a search for hidden

photons using electron fixed-target experiments with a thin target was suggested. The

idea is to exploit the same process of hidden photon production in bremsstrahlung

followed by the decay into leptons, used in the beam dump case, but to overcome the

limitation to the lower left corner of the parameter space {mγ′ , χ} by using instead a

thin target. This then allows to probe shorter decay lengths and thus larger values of χ.

The challenge is then to find a narrow resonance arising from the hidden photon decay in

the e+e− invariant mass spectrum over the large QED background from so-called trident

processes.2 The experiments A1 at MAMI in Mainz [285] and APEX at JLab [286–288]

are designed to search for such a resonance by placing two spectrometers at a small

angle off the beam axis behind the target. Both experiments were already able to set

new constraints in their first test runs, as shown in Fig. 3.9. They will further probe the

parameter space in the near future.

Higher masses and larger kinetic mixing values can be probed with collider experi-

ments. The KLOE-2 experiment [289] is carried out at the Frascati DAφNE φ-factory,

an e+e− collider. It searches for hidden photons produced in the decay of vector (V )

to pseudoscalar (P ) mesons analogous to V → Pγ. Decaying further to e+e− the hid-

den photon would appear as a peak in the e+e− invariant mass distribution. A first

limit from φ decays to ηe+e− was derived in [289]. It was recently improved by using

larger statistics [290] to the one shown in Fig. 3.9. The strongest constraint for masses

beyond ∼ 300 MeV arises from a search for a pseudoscalar a0 performed by BaBar

around the Υ(3S) resonance [291] in the process Υ(3S) → γa0 with the subsequent

decay a0 → µ+µ−. Because of identical final states this analysis was reinterpreted to

e+e− → γγ′ → γµ+µ− and used to set a limit on hidden photons [286,292–294] labelled

2The radiative trident process in which the hidden photon is replaced by an off-shell photon γ∗ is
an irreducible background. The larger Bethe–Heitler trident process, however, can be suppressed by
appropriate cuts because to the different kinematics. This is discussed in detail in Ref. [266].
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e+e− → γµ+µ− in Fig. 3.9. Higher masses are only very little constrained for kinetic

mixing values above ∼ 10−2. In [293], a bound was derived from the effect of a virtual

hidden photon on precision Standard Model observables. The strongest limit results

from the shift of the Z mass caused by the kinetic mixing. When combined with other

measurements around mZ , it leads to the curve labelled “SM PM”.

The most recent limit presented in January 2013 [295] was obtained reanalysing data

from a search for rare particle decays performed by the SINDRUM experiment at the

Paul Scherrer Institute (PSI) in 1992. The experiment studied decays π0 → γe+e− in a

magnetic spectrometer. A short-lived hidden photon produced in π0 → γγ′ and quickly

decaying to e+e− would appear as a peak in the experiment’s continuous e+e− invariant

mass distribution. The absence of such an excess allows to constrain a region at large

kinetic mixing where the hidden photon is short-lived.

An up-to-date overview of all those constraints on the mass mγ′ and kinetic mix-

ing χ of the hidden photon together with the ones from electron beam dump exper-

iments presented in Sec. 3.3 is shown in Fig. 3.9. For a larger range of masses and

kinetic mixing values 10−9 GeV ≤ mγ′ ≤ 103 GeV and 10−15 ≤ χ ≤ 1, a summary of

various constraints on hidden photons from cosmology (including BBN), astrophysics

and laboratory searches is given, for example, in [122, 123] and references therein. Not

included there is a very recent limit for masses of O(100 GeV) obtained in [296] from

LHC data. Using searches for a narrow Z ′-like resonances in the electron and muon

channels ATLAS [297, 298] excludes masses above ∼ 170 GeV and CMS [299] above

∼ 300 GeV but only for rather large kinetic mixing values & 0.02.

3.5 Future searches for hidden photons

Despite the numerous existing constraints on hidden photons with masses in the MeV

to GeV range a large part of the parameter space is not covered. The region discussed

in Sec. 1.3.3 in which the hidden photon could explain the discrepancy between the

measured and the predicted value for the muon anomalous magnetic moment is also

still partly allowed. This region was derived in the analysis of [26] and is shown as

a light green band in Fig. 3.10. Much effort was and is currently dedicated to probe

the open regions of the parameter space with future experiments. Various possibilities

and potential sensitivities of different searches have been examined for accelerator based

experiments like B-factories [292, 300, 301], electron fixed-target experiments [266, 302]

and proton beam dump experiments like long-baseline neutrino experiments [179, 303],

cf. also Ref. [304] for a recent overview.

The electron fixed-target experiments A1 at MAMI in Mainz [285] and APEX [286–

288] at JLab already placed first limits from their test runs, as discussed in Sec. 3.4.

Using different beam energies they are going to further extend their exclusion regions in
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the near future. Their projected sensitivity is indicated by the purple and pink line in

Fig. 3.10.

In addition, other possible search strategies were suggested [266,302,305], for exam-

ple, by using a low energy and high intensity electron beam and an internal hydrogen

gas target or by looking for displaced vertices in electron thin target experiments. The

DarkLight [306] experiment at JLab and a similar one at MESA in Mainz are using the

first technique. They plan to reach a sensitivity roughly sketched by the blue and cyan

line in Fig. 3.10 [302]. The yellow line is an estimate of the region accessible to the

second method and will be employed by the HPS [307] experiment at JLab.
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Figure 3.10: Projected sensitivities of future searches for hidden photons. The purple and

pink line display the reach of A1 in Mainz and APEX at JLab. Blue and cyan represents

the reach of DarkLight at JLab and MESA in Mainz. The yellow circle gives a rough

estimate for HPS at JLab. The light green band indicates the region in which the hidden

photon can account for the observed deviation in the muon anomalous magnetic moment

from predictions. Grey areas are the limits shown in Fig. 3.9.

3.6 Summary

This chapter presented an analysis of the search for hidden photons with electron beam

dump experiments, based on the production of hidden photons in bremsstrahlung and

the detection of their decay. The obtained results allowed us to derive constraints on

the mass mγ′ of the hidden photon and the strength of the kinetic mixing χ with the

ordinary photon for five different experiments. These high-intensity experiments exclude
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the lower left corner of the parameter space {mγ′ , χ} up to masses of about 300 MeV.

New limits from experiments at KEK and in Orsay exclude a previously unconstrained

region of the parameter space. These limits and the other reanalysed ones from the

experiments E141, E137 and E774 take the experimental acceptances from Monte Carlo

simulations into account. Various other constraints on hidden photons exist but a large

part of the parameter space is unconstrained and will partly be probed in the future.

This region, where the hidden photon is still allowed by experimental limits, is also of

interest for hidden sectors containing in addition a dark matter candidate, as studied in

the next chapter.



Chapter 4

Dark Forces and Dark Matter in

a Hidden Sector

We argued in Chapter 1 that there is overwhelming evidence for the existence of a

non-luminous, non-baryonic type of matter and that the understanding of the particle

nature of this dark matter requires physics beyond the Standard Model. It was also

discussed that models in which the dark matter particles resides in a hidden sector and

interacts through a hidden photon as a dark force are theoretically well motivated and

possibly exhibit interesting phenomenological features. In this context, we introduced

in Sec. 1.4 a specific toy model with minimal particle content (a Dirac fermion as dark

matter candidate) and very few parameters. Additionally, we presented a string-inspired

supersymmetric framework for a dark sector with gravity mediation domination. In this

case, we allowed the hidden gauge symmetry to be broken either radiatively or induced

by the visible sector.

The dark sectors models which we will consider throughout this chapter contain a

dark matter particle in the hidden sector which interacts with the visible sector through

kinetic mixing of the light hidden photon with the hypercharge gauge boson. We focus

on hidden sectors in which both the dark matter particle and the hidden photon are

light, with masses in the MeV to GeV range. Such a scenario is of interest in view

of the signals claimed by the direct detection experiments DAMA and CoGeNT (later

on also CRESST and very recently CDMS reported signals). Moreover, as discussed in

Chapter 3, hidden photons in the MeV range are accessible to different experiments and

are not only already subject to numerous constraints but will further be probed by new

searches in the future.

In this chapter, we study the phenomenology of the toy model and the supersym-

metric dark sector models. We investigate if and in which cases these models provide

viable dark matter candidates. Therefore, we examine if they produce the correct relic

abundance and are consistent with observations, in particular the results from direct

91
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detection experiments. The various constraints that have to be taken into account both

on the hidden photon and on the dark matter particle are summarised in Sec. 4.1. The

discussion for hidden photons is based on the results obtained in Chapter 3. The con-

sequences of all constraints on the parameter space and the reach of future searches for

hidden photons are then illustrated in Sec. 4.2 by their application to the toy model.

There, we analyse in detail the annihilation process of the Dirac fermion dark matter

candidate and the resulting relic abundance as well as its scattering on nuclei together

with the implications for direct detection. In Sec. 4.3, we then present the results of

the parameter scan over our supersymmetric dark sector models. Depending on the

breaking mechanism for the hidden gauge symmetry, the dark matter particle can be a

Dirac fermion or a Majorana fermion which exhibit distinct signatures in direct detection

experiments. We highlight the differences to the toy model and the phenomenological

consequences. For all analysed scenarios, we show in Sec. 4.4 how the recently updated

limits from direct detection experiments affect our findings.

A crucial novel aspect of our results with respect to other dark sector models is that

we apply the relation given in Eq. (1.21) between the kinetic mixing χ and the hidden

gauge coupling gh instead of keeping them independent, as discussed in Sec. 4.2. This

work was done in collaboration with Mark Goodsell and Andreas Ringwald and the

results presented in Secs. 4.2 and 4.3 are published in [43].

4.1 Constraints on hidden sectors

Hidden sectors containing a hidden photon are, despite their weak interaction with the

Standard Model, already subject to various constraints as discussed in Chapter 3 (cf. also

Fig. 3.9). However, those limits which were derived on the models with only a hidden

photon do not necessarily apply in the same way to the hidden sectors with an increased

particle content considered in this chapter. Extending the earlier studied simple sector

with hidden matter fields requires that additional bounds have to be considered, as

discussed in the following. The hidden photon is no longer the only particle subject to

constraints since also the dark matter has to fulfil certain requirements. This section

gives a summary of the different limits that have to be taken into account in the search for

viable models with dark matter and dark forces. Their implications are then illustrated

in Sec. 4.2 by application to the toy model introduced in Sec. 1.4.2. We also comment on

the reach of future experiments that have the potential to probe parts of the parameter

space and possibly rule out further models.

4.1.1 Limits on the hidden photon

An overview of the constraints from different laboratory experiments for a hidden sector

with an MeV- to GeV-scale hidden photon γ′ is given in Sec. 3.4 and shown in Fig. 3.9.
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Further limits for a larger range of masses and values of kinetic mixing, including bounds

from cosmology and astrophysics, have been reviewed in [122,123].

Since the supersymmetric models considered in the following analysis typically con-

tain hidden photons with masses in the GeV range, out of the constraints summarised in

Fig. 3.9 the following three are the most important ones. The only limit which applies to

the entire mass range of interest arises from Standard Model precision measurements, in

particular of the Z mass [293]. It excludes kinetic mixing values of roughly χ & 3×10−2.

The limit is shown as an approximately horizontal long-dashed cyan line in most plots

of χ versus mγ′ throughout this chapter (e.g. Figs. 4.3, 4.4, 4.5, 4.7 and 4.8). Another

limit restricted to much smaller masses comes from the requirement that the one-loop

contribution of the hidden photon to the muon anomalous magnetic moment aµ should

not increase it beyond 5σ of the measured value [26]. This constraint dominates for

mγ′ < 1 GeV and is drawn in the above-mentioned plots of this chapter as a dash-dotted

brown line. Furthermore, BaBar data taken on the Υ(3S) resonance to search for a

pseudoscalar in the process Υ(3S)→ γa0 → γµ+µ− can be reinterpreted because of the

same final state to e+e− → γγ′ → γµ+µ− and therefore set a model-dependent bound on

hidden photons [286, 292–294]. For masses in the range 0.2 GeV . mγ′ . 10 GeV, this

limit would be the strongest by excluding χ & 2× 10−3, but it is model dependent and

only holds if the γ′ can not decay into hidden sector particles. In the plots throughout

this chapter, we give the limit as it has been published in [293] by a short-dashed orange

line. This limit corresponds to the case that the hidden photon decays with a branching

ratio of 100% into the visible sector. In models in which decays into the hidden sector

are possible, this branching ratio decreases and the limit becomes weaker. Since smaller

branching ratios have not been considered in Refs. [286,292–294], the limit given in these

references can not be applied in such a case. In the supersymmetric models, which we

are considering, the hidden photon has often a similar mass to the dark matter particle,

cf. Sec. 1.4.3.5. If this is the case, it can not decay within the hidden sector and the

limit has to be respected. In this chapter, the limits from Standard Model precision

measurements, the muon anomalous magnetic moment and BaBar are drawn in colour

in most plots except for the log-log plots (Figs. 4.2 and 4.13) in which they are shown

in grey and labelled SM PM, aµ and e+e− → γµ+µ−, respectively.

In the cases where the BaBar limit is not applicable since the hidden photon can

decay within the hidden sector, a different but much weaker constraint from the Z

invisible width has to be taken into account. We require the contribution of the Z decay

into hidden sector particles via the mixing with the hidden photon to be1

Γ(Z → hidden)

Γ(Z → νν)
. 0.008 . (4.1)

1The number of light neutrinos is according to the LEP results Nν = (Γν + Γother inv.)/Γν = 2.984±
0.008 [4]. Thus, an extra contribution of 0.008 to Nν from decay into hidden sector particles leads to a
3σ discrepancy with the LEP measurement, instead of 2σ for the Standard Model.
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The coupling of the Z to the hidden sector current jµh = ψ̄γµψ is according to Eq. (A.61)

L ⊃ − ghsφ√
1− χ2

Y

jµhZµ , (4.2)

where sφ ' sWχY /(1 − x), χY = χ/cW , x ' m2
γ′/M

2
Z and cW , sW are the usual cosine

and sine of the weak mixing angle. The decay width of the Z to hidden sector fermions

ψ is then given by

ΓZ→ψψ̄ =
1

3
αh


 sφ√

1− χ2
Y




2

MZ

(
1 + 2

m2
ψ

M2
Z

)√
1− 4

m2
ψ

M2
Z

, (4.3)

where αh = g2
h/4π contains the hidden sector gauge coupling gh. Together with the

decay width into neutrinos

ΓZ→νiν̄i =
GFM

3
Z

6
√

2π
gνi =

e2MZ

48πs2
W c

2
W

gνi , (4.4)

where GF =
√

2g2/8M2
W , g = e/sW , cW = MW /MZ and gνi ≈ 0.5 the constraint

translates to

8c2
W s

2
W


 sφ√

1− χ2
Y




2 (gh
e

)2
(

1 + 2
m2
ψ

M2
Z

)√
1− 4

m2
ψ

M2
Z

. 0.008 , (4.5)

for a single hidden Dirac fermion of mass mψ < MZ and unit charge under the hidden

U(1) (see also [301]). In the models under consideration, where mψ � MZ , Eq. (4.5)

then simplifies to χgh . 0.04. For a small number of hidden sector particles (and gh < 1),

this constraint is weaker than the one from the Standard Model precision measurements

of the Z mass discussed above (SM PM).

For lighter hidden photons in the MeV range, also the limits from the electron beam

dump experiments at Orsay [257], KEK [265], SLAC (E141 [254] and E137 [40]) and

at Fermilab (E774 [255]) which were derived in Sec. 3.3 and are shown in Fig. 3.8 have

to be applied in the models considered in this chapter. However, since they rely on

the detection of the decay of the hidden photon to Standard Model particles (mostly

electrons) and assume that this is the only decay possible (i.e. mostly BR(γ′ → e+e−) =

100%), they have to be treated with caution here. These limits weaken if an additional

decay channel opens into hidden sector particles since such a decay stays unobserved

and lowers the branching ratio for the detectable channels. The same restriction applies

to most other constraints which were presented in Sec. 3.4 for hidden photons with

masses in the MeV range. With the exception of the limit from the rare kaon decay

K → µ+ inv. [284] and those from the anomalous magnetic moment of the electron and

the muon ae and aµ [26,282,283] all limits from fixed-target or collider searches assume

that the hidden photon can not decay within the hidden sector. All these constraints
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are shown in Fig. 4.2 for one specific toy-model with emphasis on the low mass range.

Besides these limits which were already mentioned, there are further constraints by the

proton beam dumps experiments ν-Cal I [279], CHARM, NOMAD and PS191 [280,281],

the electron fixed-target experiments A1 [285] and APEX [287] as well as bounds arising

from the production of hidden photons in different meson decays (KLOE [289] and

SINDRUM [295]). Details of all limits on hidden photons are given in Sec. 3.4.

As described in Sec. 3.5, there are not only limits on these light hidden photons,

but excitingly also dedicated experiments planned to search for these particles in other

regions of the parameter space. Some of those experiments are already running and were

able to set the first limits mentioned above. In the near future, the experiments A1 [285],

APEX [286–288], MESA, DarkLight [302, 306] and HPS [307] can further probe parts

of the parameter space that have not been constrained by other searches yet. This is

indicated by the rough estimates of the different sensitivities which are shown in Fig. 4.2

together with the results from the toy model.

4.1.2 Constraints from big bang nucleosynthesis

In order for our models to be viable, it is important that they do not produce too many

high-energy photons in the early Universe since these could dissociate nuclei (for example

lithium) and spoil the predictions from big bang nucleosynthesis. As the thresholds for

these processes are typically of the order of a few MeV, photons produced at higher

energies are potentially dangerous. This might impose constraints on the hidden sector

models, in which visible photons could arise, for example, from decays of particles in

the hidden sector, the occasional annihilation of the frozen-out dark matter particles or

oscillations of hidden photons into photons.

While BBN constraints on hidden sector matter which acquires a small charge under

the visible photon (therefore called “minicharged” particles) in the presence of a massless

hidden photons are summarised in [122], the massive case is studied in [43]. There, it is

concluded that for the massive hidden photon considered in this work, the hidden sector

states do not couple to the visible photon, cf. the diagonalisation of the physical states

in Eq. (A.60) and also (A.61). Moreover, once a hidden photon is produced, the physical

state does not oscillate into visible photons since for the kinetic mixing and mass ranges

of interest in this work the hidden photon is much heavier than the plasma mass mP

of the photon during BBN (mP . 10−8 MeV) so that their mixing is negligible as it

is proportional to χcWm
2
P /m

2
γ′ . Furthermore, because of the coupling to visible sector

matter the hidden photon decays with a width of Γ ' 1
3Q

2αχ2c2
Wmγ′ > 10−2χ2 GeV

and a lifetime τγ′ <
(
10−11/χ

)2 (
GeV/mγ′

)
s, i.e., for χ > 10−5 immediately on any

cosmological timescales without leaving a relic density of hidden photons. Therefore,

BBN constraints do not affect our dark matter models as discussed in more detail in [43].



96 CHAPTER 4 DARK FORCE AND DARK MATTER

4.1.3 Limits on the dark matter particle

Finally, there are several constraints on the mass and interaction strength of the dark

matter particle itself which have to be taken into account. In the following, the various

limits applied in the later analysis are summarised and discussed regarding their rele-

vance for the different dark matter particles obtained in our models. Our results which

were derived in 2011 assume the experimental data available at that time. Especially the

limits from direct detection experiments on spin-independent scattering of dark matter

are based on the results of an analysis carried out in [81] in mid 2011. There, a system-

atic treatment of various uncertainties in direct detection experiments was performed.

Due to the continuous progress in these experiments, limits have been updated since

then. We study in Sec. 4.4 the implications of those recent achievements on our models

and present in the following the different limits as they are applied in our analysis. Note

that the searches for dark matter at the LHC mentioned in Sec. 1.1.4.3 do not apply

here since they rely on the assumption that the mediator is heavy and can be integrated

out. This is, however, not the case for the light hidden photon considered in this work.

Dark matter annihilation cross section and relic abundance

Like for any viable dark matter particle, the relic abundance Ωh2 should not exceed the

value determined from cosmological data as given in Eq. (1.2) in order not to overclose

the Universe. In fact, we make the more loose requirement that the relic abundance be

within 3σ of the measured value since the error of this measurement is smaller than the

grid we can scan over in our supersymmetric models. This strict upper limit on the relic

abundance translates to a lower limit on the thermally averaged dark matter annihilation

cross section 〈σannv〉 because of the dependence Ωh2 ∝ 1/〈σannv〉, cf. Eq. (1.5). On the

other hand, there is in principle no objection to having a dark matter candidate whose

abundance is lower than the measured one. In this case, however, the particle under

consideration would only constitute a part of the total dark matter in the Universe

while other particle(s) would make up the remaining part. We refer to this scenario

as subdominant dark matter. The supplementary dark matter component could, for

example, be an axion or an axion-like particle. Their phenomenology is not the subject

of this work and we shall simply assume that both their direct detection cross sections

and their interactions with the hidden sector are negligible. The relic abundance of our

hidden sector dark matter candidate is computed with micrOMEGAs [57–61] where we

have implemented our different models. In the subsequent plots with our results, we

will always indicate in dark green those dark matter candidates which provide the entire

relic abundance and in light green those which contribute a subdominant part.
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Dark matter scattering cross section and direct detection limits

Constraints on the scattering cross section of the dark matter particle on nuclei arise

from the non-observation of a signal in direct detection experiments. A large number

of such experiments are conducted and continuously lower their limits on the allowed

elastic scattering cross sections on protons or neutrons. For those limits, one has to

distinguish between spin-dependent (SD) and spin-independent (SI) scattering and the

corresponding direct detection experiments. As discussed in Sec. 1.1.4.1, the constraints

on the spin-independent scattering cross section are generally stronger than the ones

on the spin-dependent one, since the former increases proportional to the mass of the

target nuclei and most experiments use heavy target atoms. Depending on the nature

of the dark matter particle, one or the other class of direct detection experiments is

more sensitive. If the dark matter particle is a Dirac fermion it will appear mostly in

spin-independent searches while a Majorana fermion because of its axial couplings can

be searched for in spin-dependent experiments. In both cases, it will be shown that

current limits are already able to exclude parts of the parameter space of our models.

Furthermore, because of their constant progress in lowering the limits they continue to

probe the dark matter candidates predicted by our models. The effect of these updated

constraints is then presented in Sec. 4.4.

In our later analysis, as for the relic abundance, we again use micrOMEGAs to com-

pute the different scattering cross sections of the dark matter particles. We then apply

the corresponding constraints from the direct detection experiments to the obtained

cross sections of the different dark matter particles. Two caveats have to be taken into

account when comparing these cross sections with the experimental limits.

The first caveat arises for the case of spin-independent scattering of the hidden

sector Dirac fermion with nuclei. This scattering takes place mostly due to γ′ exchange.

However, since especially at low mγ′ , the mixing of the hidden photon can be treated as

being effectively only with the ordinary photon (see Appendix A.4 and Eq. (A.62)) this

scattering interaction with the nucleus mostly results from the coupling of the photon

to the proton’s electric charge. Therefore, the spin-independent scattering of the Dirac

fermion occurs almost exclusively on the proton inside the nucleus and it is thus strongly

isospin-dependent. However, as discussed in Sec. 1.1.4.1, for a better comparison between

limits from different direct detection experiments using different targets, the bounds on

spin-independent scattering are usually presented on the cross section per nucleon under

the assumption of equal effective couplings fp and fn to protons and neutrons. In this

case of fp ≈ fn, the cross sections scale with the square of the atomic mass of the

nucleus, i.e. ∝ A2, as shown in Eq. (1.14). This case can, however, not be applied to

the Dirac fermion, which scatters solely on protons so that fp 6= fn ≈ 0. In this case,

the cross section instead scales with the square of the charge of the nucleus, i.e. ∝ Z2,

cf. Eq. (1.16). Therefore, the corresponding limits from direct detection experiments on
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σSI, DD
N have to be rescaled to a constraint on the cross section σSI

p on protons only. For

each experiment this needs to be done individually by

σSI
p =

A2

Z2
σSI, DD

N , (4.6)

where Z and A are the atomic number and the mass number of the element in the target

on which the scattering takes place. The spin-dependent interactions, on the contrary,

are dominated by Z exchange and thus have only a rather weak isospin dependence. For

all models analysed in the following, the results on the spin-independent direct detection

cross sections will be presented for scattering on protons σSI
p since this is the dominant

interaction for the Dirac fermion dark matter candidate.

The second caveat arises since the constraints from direct detection experiments on

the scattering cross section assume that the local density of the dark matter particle is

given by the generic value of ρDM = 0.3 GeV/cm3, cf. 1.1.3 and Eq. (1.7). Therefore,

the limits strictly apply only to those dark matter particles that provide the entire relic

abundance. In the cases where the dark matter makes up only a subdominant contri-

bution of the total dark matter density, the bounds on the scattering cross section have

to be rescaled accordingly and thus become weaker. For this rescaling, it is reasonable

to assume that the dark matter in our local neighbourhood has the same content of

different dark matter contributions as when averaged over the whole Universe. Then,

the local density ρψ of a dark matter candidate ψ relates to the local total dark matter

density ρDM in the same way as their abundances

ρψ
ρDM

=
Ωψh

2

ΩDMh2
. (4.7)

The generic direct detection bounds on a dark matter particle that constitutes the entire

local density therefore need to be multiplied by ΩDMh
2/Ωψh

2 (which is > 1). This gives

the weaker limit on the cross section of a subdominant candidate. Instead of scaling

the limit for each dark matter particle as a function of its relic density up, we choose to

keep the limits universal and rather scale the particle’s real cross section σψ down by

σψresc = σψ
Ωψh

2

ΩDMh2
, (4.8)

to the effective cross section σψresc with which it appears in direct detection experiments

(note that σψresc < σψ, since Ωψh
2 < ΩDMh

2 so that direct detection limits are less

constraining for subdominant dark matter).

Spin-independent direct detection experiments

For spin-independent scattering and for the low dark matter masses (∼ 10 GeV) we

are interested in, the strongest constraints are set by XENON100 [86] and the silicon
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run of CDMS [308]2 (referred to as CDMSSi hereafter). However, there is a long-

standing tension between those exclusion limits on the one hand and the signal claims

by DAMA [33,34] and later on also by CoGeNT [35,36] on the other hand (further claims

by CRESST [37,38] and very recently by CDMS [39] also exist3). This tension caused a

large debate on the reliability and comparability of these constraints. Especially the low

dark matter masses, which might explain the signals, are close to the energy threshold of

the experiments and therefore subject to many discussions. As mentioned in Sec. 1.1.4.1,

the general comparison of the cross section per nucleon between experiments is also

often considered problematic since these results are obtained with different techniques

and target materials. They might furthermore suffer from nuclear physics uncertainties.

In addition, the limits and claims are subject to astrophysical uncertainties (halo model,

dark matter velocity distribution and local dark matter density) that can affect the

results from different experiments in a different way and thereby increase or decrease

the tension, cf. Sec. 1.1.4.1. In any case, although continuously improved limits more

and more rule out most (or all) of the DAMA and CoGeNT preferred regions, those

positive signals remain and should not be discarded carelessly.

In the last years, there have been numerous studies of how to reconcile those different

results both depending on a particle physics model and in a model-independent way. We

adapt the analysis of [81] which made a systematic scan of the various results taking

into account specific uncertainties of the experiments and their backgrounds. Addition-

ally, the effects emerging from different astrophysical assumptions were studied. They

showed that for standard astrophysics the DAMA preferred region is in conflict with

the XENON100 and CDMSSi limits while CoGeNT is still allowed. The compatibility

of CoGeNT with the limits mainly results from taking into account the uncertainty in

the strongly disputed scintillation efficiency of XENON100 at low recoil energies. This

scenario considers the so-called Standard Halo Model (SHM, cf. Sec. 1.1.3) where the

dark matter is assumed to have a spherically symmetric and isothermal distribution, a

local density ρ� = 0.3 GeV cm−3 and a Maxwellian velocity distribution with mean

v̄ = 220 km/s and escape velocity vesc = 544 km/s. For different assumptions on the

halo density profile, it is shown that also the DAMA preferred region can be consistent

with the exclusion limits. In our analysis, we will usually use the SHM and show in a

few cases the differences that arise when changing for example to an Einasto [64] or a

Navarro–Frenk–White [62] (NFW) profile. A discussion of dark matter density profiles

is given in Sec. 1.1.3 and details on the considered halo models in Ref. [81].

Another interesting possibility considered in [180, 181, 309–313] to reconcile the dis-

agreement between the signal claims and the limits is to allow for isospin-dependent

2Another special CDMS analysis of the germanium data [89] with low energy threshold gives a very
similar exclusion limit and will therefore not be considered separately.

3We have not explicitly included the CRESST and CDMS signals in our analysis. One of CRESST’s
two signal regions [37,38] roughly agrees with the regions preferred by the DAMA and CoGeNT signals,
although this is still subject to astrophysical uncertainties. A similar region is also compatible with the
excess of events observed by CDMS [39], which was released while this thesis was being finalised.
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interactions with just the right behaviour to suppress the interaction cross section with

xenon nuclei. Thereby, it is possible to circumvent the most stringent limit arising from

XENON100. However, a recent analysis [314] found that constraints from cosmic ray

antiproton data can be important for isospin violating scenarios though their limits from

an effective operator approach do not directly apply in cases with a light mediator. In

our models, as mentioned above, the interaction of the Dirac fermion dark matter parti-

cle is almost entirely with protons rather than neutrons and thus also isospin-dependent.

However, in contrast to the other works, in our case the isospin-dependence can not be

tuned to give the desired effect, so we do not pursue this direction further.

In our analysis, we strictly apply the limits from XENON100 and CDMSSi derived

in [81] to the spin-independent scattering cross sections of the different dark matter

candidates. The resulting plots of the parameter space will thus only contain points for

which the dark matter particle is not excluded by any of these two experiments. For

those points, we further indicate in purple or red if the dark matter particle possesses the

right cross sections to explain the signal claim of CoGeNT or DAMA, respectively. In

the plots of σSI
p versus mDM in Sec. 4.3 (see Figs. 4.6 and 4.9), the CDMSSi limit is shown

as a dashed turquoise line and XENON100 as a dash-dotted blue line. CDMSSi sets

the stronger constraint at the low dark masses in most halo models while XENON100 is

only for the Einasto profile more constraining. The CoGeNT preferred region is shown

in purple and the DAMA one in red/orange.

Spin-dependent direct detection experiments

The spin-dependent scattering both on protons and on neutrons, for the low dark matter

masses we are interested in, is constrained by a number of direct detection experiments

listed in the following. Note for completeness, that there have also been attempts to

explain the DAMA signal by spin-dependent scattering either exclusively from neu-

trons [315] or from protons [316]. However, the former case is not applicable here, since

in our models the cross sections of the Majorana fermion, which is the only dark mat-

ter candidate with sizeable spin-dependent scattering, are always of the same order of

magnitude for protons and neutrons. It is thus impossible for the Majorana fermion

to scatter only on neutrons like in [315]. In the second analysis [316], it was shown by

analysing neutrinos coming from the annihilation of dark matter in the Sun that for

scattering on protons, Super-Kamiokande rules out the DAMA preferred region almost

independently of the specific dark matter model and annihilation channel. In addition,

the largest spin-dependent cross sections that can be obtained in our models are more

than one order of magnitude below the ones required in both scenarios to accommo-

date DAMA. Therefore, if spin-dependent scattering is confirmed as explanation of the

DAMA (and CoGeNT) signals, it would rule out the models considered in this paper as

they can not accommodate the required cross sections. Hence, we do not study these

possibilities in more detail.
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In our analysis, we use all results from the various direct detection experiments to

constrain the cross sections σSD
p and σSD

n for spin-dependent scattering on protons and

on neutrons in our models. The strongest limits on spin-dependent scattering on pro-

tons were provided by PICASSO [317] for the lightest and COUPP2011 [318] for the

slightly larger masses until June 2011. The SIMPLE experiment [319] more recently

published a constraint which is in the low mass region one order of magnitude stronger

than the previous ones. However, the reliability of this limit has been questioned, due

to the criticism concerning the limited lifetime of the used detectors as well as the

background discrimination and subtraction methods [320] (see also the collaboration’s

response [321] for details). Further but much weaker limits are set by COUPP2007 [322]

and KIMS [323]. Using Super-Kamiokande data on the neutrino fluxes from the Sun, an-

other constraint can be derived on the spin-dependent cross section on protons since this

scattering causes the dark matter to be captured inside the Sun, where its annihilation

can produce neutrinos [324]. However, this limit should be considered as an estimate

since it can vary depending on the model specific annihilation channel and branching

ratios. Furthermore, it is limited to dark matter masses above 20 GeV because the

experiment’s analysis only considered such events where the muon, which is produced

from the neutrino, traverses the entire detector in the upward direction (called upward

through-going muon); this leads to a quite high threshold on the initial neutrino energy

and causes the experiment’s sensitivity to be restricted to larger dark matter masses.4

The cross section σSD
n for spin-dependent scattering on neutrons, on the other hand,

is constrained by XENON10 [325], Zeplin [326] and CDMS [88, 89, 327]. For the mass

range of interest in this paper, the strongest of those limits is set by XENON10. It is,

however, weaker then the limit from SIMPLE on σSD
p . Since the Majorana fermion in

our models has very similar cross sections for spin-dependent scattering on protons and

neutrons, the SIMPLE limit constrains the parameter space more than XENON10.

In the following analysis, we apply to the cross sections for spin-dependent scat-

tering on protons and to the ones for spin-dependent scattering on neutrons all direct

detection bounds with the exception of the one from SIMPLE [319] as strict exclu-

sions. The presented parameter points are all consistent with those limits. Because of

the criticism of the result from the SIMPLE experiment, we do not apply this bound

universally but rather show the effect on our results when taking it into account. In

Sec. 4.3, the cross sections both for scattering on protons and on neutrons obtained by

scanning over the parameter space in the different models are shown together with the

corresponding limits. Figures of σSD
p versus mDM contain the exclusions from SIMPLE

as short-dashed brown line, Super-K as dashed black line, PICASSO as long-dashed

orange line, COUPP2011 as dash-dotted turquoise line, COUPP2007 as dotted blue line

4There is another more recent analysis [316] of Super-Kamiokande data on neutrino fluxes where the
limits for different annihilation channels also extend to smaller dark matter masses. Application of these
constraints, however, requires to take into account the annihilation details and branching ratios and is
left for future works.
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and KIMS as solid green line. In the corresponding plots of σSD
n versus mDM, the limit

from XENON10 is shown as dash-dotted blue, the one from Zeplin as dotted pink and

the one from CDMS as dashed turquoise line.

4.2 Application to the toy model

Before studying the complex supersymmetric models, the phenomenology of hidden

sector dark matter will be illustrated in this section by the minimal toy model introduced

in Sec. 1.4.2. The application of the different constraints discussed in the previous section

is demonstrated and potential viable models are presented. The toy model assumes

the simplest possible dark sector which contains besides the (massive) hidden photon

discussed in Chapter 3 only one additional Dirac fermion ψ with unit charge under the

hidden U(1). The model does not include a Higgs sector and so we do not consider

how the dark matter particle becomes massive. In any case, the hidden photon could

naturally have a GeV-scale mass generated by the Stückelberg mechanism [20, 21] and

does not require a Higgs sector. This minimal particle content allows us to focus on

the essence of the dark matter phenomenology in a reasonably large parameter space

without the benefits and downsides of further tunable parameters. This is essentially

the model considered also in other works [102,152,154,187] with the difference that we

insist on the relation between the hidden gauge coupling gh and the kinetic mixing χ

given in Eq. (1.21). The parameters of the model are then the dark matter mass mψ, the

hidden photon mass mγ′ , the kinetic mixing χ and the O(1) parameter κ that relates χ

with the hidden sector gauge coupling gh.

4.2.1 Constraints and future searches

The relic abundance of the Dirac fermion dark matter candidate was computed with

micrOMEGAs where we have implemented the toy model. The annihilation of our dark

matter candidate can proceed via the two processes shown in Fig. 4.1 either through a

virtual hidden photon into Standard Model fermions or into two real hidden photons.

While the s-channel annihilation (diagram on the left) is possible for the full range of

dark matter masses, the t-channel process (diagram on the right) is kinematically only

accessible for dark matter masses mψ ≥ mγ′ for which it is also dominant. The thermally

averaged annihilation cross section for both channels is given by, cf. Appendix C,

〈σannv〉ψψ̄→ff̄ ≈ χ2e2g2
h

2π

m2
ψ

(4m2
ψ −m2

γ′)
2
, (4.9)

〈σannv〉ψψ̄→γ′γ′ ≈
πα2

h

m2
ψ

, (4.10)

where αh = g2
h/4π.
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The s-channel leads to a resonant enhancement of the annihilation cross section for

mγ′ = 2mψ. Accordingly, the relic abundance drops at this resonance since it is inversely

proportional to the annihilation cross section. This behaviour can be seen in Fig. 4.2

in which the relic abundance as determined with micrOMEGAs is shown in green as a

function of the kinetic mixing χ and the hidden photon mass mγ′ for two different dark

matter masses of 6 GeV (left-hand plot) and 7 GeV (right-hand plot). The thin dark

green bands represent the regions in which the correct relic abundance of Eq. (1.2) is

obtained. In the left-hand plot, this is shown for three different values of κ (κ = 10, κ = 1

and κ = 0.1 from top to bottom) and in the right-hand one for κ = 0.1. These bands

exhibit the expected resonances at 12 GeV and 14 GeV, respectively. In the light green

areas, the dark matter candidate gives a subdominant contribution to the total relic

abundance. The white regions, on the other hand, are excluded since the annihilation

is too weak at such small kinetic mixing values or large hidden photon masses and the

dark matter becomes overabundant.

ψ γ′

ψ̄

ψ

ψ̄ γ′

f

f̄

γ′

Figure 4.1: Feynman diagrams for the annihilation of the hidden sector dark matter particle ψ

via its interaction with the hidden photon γ′.

Left: The s-channel annihilation via a virtual γ′ into Standard Model fermions f is possible

for the entire range of dark matter and hidden photon masses and is resonant at mγ′ = 2mψ.

Right: The t-channel process into two real hidden photons is kinematically only accessible

when mψ ≥ mγ′ . In this range, it is the dominant channel.

For hidden photon masses much smaller than the dark matter mass, the annihilation

is dominated by the t-channel process (right-hand diagram in Fig. 4.1) and is essentially

independent of mγ′ , cf. Eq. (4.10). In this case, for a given dark matter mass, this cross

section and thus the relic abundance are fixed solely by the hidden gauge coupling gh,

which itself is determined via Eq. (1.21) by the kinetic mixing χ up to a factor κ, i.e.

〈σannv〉ψψ̄→γ′γ′ ∝ χ4/κ4. Therefore, in Fig. 4.2, the green lines indicating the correct

relic abundance are horizontal at small mγ′ and their position in χ depends on κ. For

larger values of κ, the cross section of Eq. (4.10) decreases and the correct relic abundance

is obtained at larger values of χ. This is also apparent by the three lines in the left-hand

plot of Fig. 4.2 which move upwards with increasing κ: the lowest line corresponds to

κ = 0.1, the middle one to κ = 1 and the highest one to κ = 10. Because of the

relation (1.21) a change by one order of magnitude in κ changes χ by the same amount.

The grey areas in Fig. 4.2 are excluded by the limits on hidden photons discussed

in Secs. 3.4 and 4.1.1. All constraints can be applied in their original form and do not

have to be modified to account for the additional presence of the dark matter particle
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in the hidden sector. This would only be necessary if the hidden photon could decay

invisibly inside the hidden sector and thus applies to the right side of the resonance,

where mγ′ ≥ 2mψ. In this range, the only existing bound is the one from Standard

Model precision measurements (SM PM) which is, however, independent of the γ′ decay

channels. The coloured lines (with labels in the right-hand plot) represent the future

searches for hidden photons as described in Secs. 3.5 and 4.1.1. It can be seen from the

plot that those experiments will probe interesting parts of the parameter space.

Not only does the hidden photon enable the dark matter particle to annihilate it also

mediates its elastic scattering on nuclei. Since the dark matter particle of the toy model

considered in this section is a Dirac fermion, this scattering process is spin-independent.

The corresponding cross sections obtained with micrOMEGAs have to be in agreement

with the limits from CDMSSi and XENON100 and can be compared to the positive

observations of DAMA and CoGeNT. As discussed in Sec. 4.1.3, the spin-independent

cross sections per nucleon quoted by direct detection experiments need to be rescaled

with Eq. (4.6) to the cross section per proton of the Dirac fermion dark matter particle.

Furthermore, if the dark matter is subdominant the scattering cross sections have to be

rescaled according to Eq. (4.8) for comparison with the direct detection results which

rely on the generic value of the total local dark matter density. The resulting exclusions

and regions of interest for DAMA and/or CoGeNT are shown in Fig. 4.2 for κ = 0.1

and two different settings of dark matter masses and halo models: the left-hand plot

assumes mDM = 6 GeV and a Standard Halo Model (SHM) while the right-hand one

uses mDM = 7 GeV and an Einasto profile. For the former settings, some of the CoGeNT

preferred region is neither excluded by CDMSSi nor by XENON100 and scattering cross

sections matching the ones preferred by CoGeNT can be obtained in the region of the

parameter space shown in purple (90% and 99% contour are shown in lighter and darker

shades) in the left-hand plot. For the latter settings, besides CoGeNT, also a part of the

DAMA preferred region is in agreement with the limits and in addition overlaps with

CoGeNT. Accordingly, cross sections in the red band in the right-hand plot can explain

the DAMA signal, those in the purple band the CoGeNT signal and those in the blue

band can explain both DAMA and CoGeNT at the same time. At the place where these

bands coincide with the dark green stripe, the dark matter candidate not only possess a

cross section which can explain the respective direct detection signals but also provides

all of the dark matter in the Universe. In the largest part, however, the coloured bands

lie on top of the light green areas and thus the corresponding direct detection signal is

explained by a subdominant dark matter particle.

The constraints from CDMSSi and XENON100 on the spin-independent scattering

cross section do not apply to the low dark matter mass of 6 GeV used in the left-hand

plot of Fig. 4.2. However, for an Einasto profile, the dark matter particle with a mass

of 7 GeV is constrained by XENON100 but still below the reach of CDMSSi, as shown

in the right-hand plot. The XENON100 limit excludes the parameter space above the

blue line as indicated by the dashed vertical lines. At the place where the XENON100
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limit enters the region of subdominant dark matter (light green area), the scattering

cross sections are rescaled as described in Sec. 4.1.3 to account for the smaller local dark

matter density. This causes the kink in the exclusion line of XENON100. In the white

overabundant region, the limit is not rescaled and the straight line there exhibits the

behaviour obtained for a constant dark matter density equal to the observed one.

10-2 10-1 1 10

10-7

10-6

10-5

10-4

10-3

10-2

10-1

mΓ' @GeVD

Χ

NOMAD
& PS191 E137

CHARM

ν
-C

a
l
IKEK

Orsay

E141

SM PM

E774

ae aµ

e+e−→γµ+µ−KLOE

SINDRUM
K→

µν
γ
′

APE
X

A1

C
o
G

e
N

T

κ = 0.1

κ = 1

κ = 10

mDM = 6 GeV

SHM

10-2 10-1 1 10

10-7

10-6

10-5

10-4

10-3

10-2

10-1

mΓ' @GeVD

Χ

HPS

DarkLight

MESA
APEX
A1

D
A

M
A

&
C
o
G

e
N

T

κ = 0.1

mDM = 7 GeV

Einasto

Figure 4.2: Allowed parameter space for the toy model with a Dirac fermion dark matter

candidate for two different scenarios. In both plots, the dark green lines correspond to

regions where the correct relic abundance is obtained, the light green areas give only a

subdominant dark matter particle and the white ones are excluded because the dark matter

is overabundant. The scattering cross sections in the subdominant areas are rescaled by the

relic abundance according to Eq. (4.8) and the spin-independent limits and signals regions

are rescaled by Eq. (4.6) to scattering on protons only. All grey shaded areas are constraints

on hidden photons and the coloured lines indicate sensitivities of future searches.

Left: Model with a 6 GeV dark matter candidate assuming the Standard Halo Model (SHM).

The dark green lines with the correct relic abundance are given for three different values of κ:

the lowest corresponds to κ = 0.1, the middle to κ = 1, the upper to κ = 10. The purple

band indicates where the cross sections for the case of κ = 0.1 could explain the CoGeNT

signal. The grey regions give the limits from the electron beam dump experiments E774,

E141 E137, Orsay and KEK, the proton beam dumps ν-Cal I, CHARM, NOMAD & PS191,

the electron fixed target experiments A1 and APEX, the anomalous magnetic moment of the

electron and the muon ae and aµ, the KLOE experiment at the DAφNE e+e− collider, the

decay K → µνγ′, a search for rare meson decays by SINDRUM, a model-dependent BaBar

search in e+e− → γµ+µ− as well as Standard Model precision measurements SM PM (cf.

Secs. 3.4 and 4.1.1 for details).

Right: Model with a 7 GeV dark matter candidate assuming an Einasto profile and κ = 0.1.

The scattering cross sections can explain the CoGeNT signal in the purple band, DAMA

in the red band and both at the same time in the blue band. The blue line represents

the XENON100 bound which excludes all the hatched area. The coloured lines indicate

the sensitivities of the hidden photon searches DarkLight, MESA, APEX, A1 and HPS (see

Secs. 3.5 and 4.1.1).
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The shape of all those contours — limits like the XENON100 line as well as allowed

regions like DAMA and CoGeNT — which represent certain cross sections are not only

influenced by the rescaling of the local dark matter density but also significantly affected

by the application of the relation gh ∝ χ/κ of Eq. (1.21). For a dark matter particle

with the correct relic abundance, the spin-independent scattering cross section of the

Dirac fermion behaves as

σSI ∝ χ2g2
h

m4
γ′

(1.21)∝ χ4

m4
γ′
, (4.11)

for a constant dark matter mass and fixed κ. Thus, the XENON100 limit scales as

χ ∝ mγ′ and the corresponding line in the white areas has a slope of 1 in the log-log

plot of Fig. 4.2. On the contrary, if gh was kept constant instead of being determined

by relation (1.21) the contour would follow χ ∝ m2
γ′ , i.e. possess a slope of 2 in a log-log

plot. These characteristics change dramatically once rescaling is taken into account. For

a subdominant dark matter particle, the scattering cross section has to be multiplied

by the relic abundance, cf. Eq. (4.8), which is proportional to 1/〈σannv〉. The thermal-

averaged ψ-ψ̄ annihilation cross section times velocity 〈σannv〉 of the s- and t-channel is

given in Eqs. (4.9) and (4.10), respectively. For fixed dark matter and hidden photon

mass, they are proportional to g2
hχ

2 and g4
h, respectively, and both translate with rela-

tion (1.21) to 〈σannv〉 ∝ χ4. In the region of interest, where the direct detection bands

enter the subdominant area at mγ′ � mψ, the t-channel annihilation is the dominant

process. Thus, when applying the relation gh ∝ χ/κ and rescaling with 〈σannv〉 ∝ χ4

the scattering cross section becomes

σSI
resc ∝

χ4

m4
γ′

1

〈σannv〉
∝ 1

m4
γ′
, (4.12)

for a constant dark matter mass and fixed κ. The rescaled cross sections are thus

approximately independent of χ. Therefore, both the XENON100 exclusion bound as

well as the allowed regions for DAMA and CoGeNT are represented by almost vertical

lines and bands in the subdominant region of Fig. 4.2.

As discussed in detail in this section, the Dirac fermion dark matter particle has

large spin-independent scattering and some of the corresponding cross sections are in

the reach of current or next generation direct detection experiments. Therefore, parts

of the parameter space are already excluded, for example, by XENON100 as shown by

the blue line and the hatched area in the right-hand plot of Fig. 4.2. Since the direct

detection experiments continuously improve their limits, they will further probe the

parameter space of the model and push, for example, the blue line in this plot towards

the lower right corner of the parameter space. The impact of the latest bounds on the

allowed parameter space of the toy model is discussed in Sec. 4.4.1.
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4.2.2 Toy model example data point

For a better understanding of the above results and the toy model, a concrete example

set of explicit values is discussed in view of the different experimental observables. This

set of values is chosen such that the model satisfies all constraints and gives a cross

section within the CoGeNT allowed region while constituting all of the dark matter.

Fixing κ = 0.1, as in the left-hand plot of Fig. 4.2, and assuming a dark matter mass of

6 GeV, we find that the model gives a dark matter relic abundance within three standard

deviations of the measured value (1.2) for χ ' 1 × 10−5. According to relation (1.21)

this kinetic mixing corresponds to a hidden gauge coupling of gh ' 0.05.

The scattering of the Dirac fermion dark matter candidate is almost entirely spin-

independent and on protons. Scattering cross sections in agreement with CoGeNT

are possible for hidden photon masses in the range between 0.24 and 0.31 GeV. The

corresponding cross sections σSI
p range from 1.4 × 10−39 cm2 for the smaller hidden

photon masses to 4.9 × 10−40 cm2 for the larger ones. The cross sections of the direct

detection limits and signal regions have to be rescaled by Eq. (4.6) to cross sections for

scattering solely on protons in order to be comparable with σSI
p . Then, the cross sections

of the dark matter particle can explain the CoGeNT signal for a Standard Halo Model

and in the case of an Einasto profile fit both DAMA and CoGeNT [81].

In this range compatible with CoGeNT, the hidden photon is much lighter than the

dark matter and the annihilation is almost entirely through the t-channel process (right-

hand diagram in Fig. 4.1), which compared to the s-channel process is not suppressed

by the kinetic mixing. This t-channel annihilation is almost independent of the hidden

photon mass. Therefore, the dark green region in Fig. 4.2 in which the dark matter relic

abundance matches the observed one is approximately horizontal up to hidden photon

masses close to the dark matter mass. The width of the hidden photon in the given

mass range lies between 1.9× 10−13 GeV and 2.6× 10−13 GeV.

4.2.3 Toy model parameter scan

Since the dark matter mass mψ is a free parameter of the toy model, we perform a scan

over mψ in the range between 0.8 GeV and 25 GeV. In this way, we find viable models

for the entire parameter space of kinetic mixing χ versus hidden photon mass mγ′ , as

shown in Fig. 4.3. We refrain from running also over κ since the parameter space is

already covered and instead fix it to its central value κ = 1. The obtained scatter plots

in the plane χ versus mγ′ are shown again for the Standard Halo Model in the left-hand

and the Einasto profile in the right-hand plot (for details of the halo models, see [81]).

The colouring indicates by darker shades those models in which the dark matter can-

didate has the total relic abundance and by lighter shades those were it is subdominant.

For the models in green, the dark matter particle is viable and in agreement with all
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constraints but possesses scattering cross sections which can not fit any of the signals

in the direct detection experiments. In the purple regions, the scattering cross sections

are able to explain the CoGeNT signal while the dark matter is either subdominant

(lighter purple) or gives the correct relic abundance (darker purple). The red and the

blue regions are only present for the Einasto profile in the right-hand plot. The red ones

correspond to scattering cross sections in agreement with DAMA, while in the blue re-

gions the scattering cross sections explain simultaneously DAMA and CoGeNT. In both

cases, the darker and lighter shades again reflect the dark matter abundance. Since for

the Standard Halo Model the DAMA region does not overlap with the CoGeNT one

and is excluded by the other direct detection constraints, there are neither blue nor red

areas in the left-hand plot. The overlap in the mass-cross section space of the signal

regions of DAMA and CoGeNT leading to the blue region for an Einasto profile is also

possible for an NFW profile. This scenario is not plotted since it looks very similar to
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Figure 4.3: Allowed parameter space for the toy model with a Dirac fermion dark matter

candidate ψ in the plane of kinetic mixing χ versus hidden photon mass mγ′ when scanning

over mψ in the range from 0.8 GeV to 25 GeV and fixing κ to 1. Darker shades of a certain

colour indicate regions in which the correct relic abundance is obtained and lighter shades

correspond to parts where the dark matter candidate is subdominant. The green areas in

both plots are in agreement with the relic density and all direct detection constraints but the

scattering cross sections do not explain any of the signal claims (all scattering cross sections

are rescaled for subdominant dark matter and all limits as well as signal regions from [81] are

rescaled to scattering on protons only). In both plots, the constraint from Standard Model

precision measurements is shown as the almost horizontal long-dashed cyan line, the (model-

dependent) BaBar limit is shown as a short-dashed orange line and the muon anomalous

magnetic moment constraint is given as dash-dotted brown line at the top left corner.

Left: Assuming the Standard Halo Model (SHM), the cross sections for spin-independent

scattering on protons obtained in the purple areas can explain the CoGeNT signal and are

consistent with the other direct detection constraints.

Right: For an Einasto profile, parts of both the DAMA and CoGeNT preferred regions are

consistent with the direct detection constraints. The cross sections obtained in the purple

area again can explain the CoGeNT signal, those in the red one the DAMA signal and those

in the blue one both at the same time.
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the Einasto case. In the following analysis of the supersymmetric models, we shall use

mostly the Standard Halo Model since the choice of halo model has a more dramatic

effect on the presence (or absence) of an overlap of the signal regions than it has on the

allowed parameter space of our models.

In Sec. 4.2.2, we presented concrete parameter sets for models with very light hidden

photons (mγ′ < GeV) and a Dirac fermion dark matter candidate with a mass of a

few GeV. These models were consistent with all constraints and provided the total relic

abundance in the Universe. In addition, the dark matter particle possessed scattering

cross sections able to explain the direct detection signals. As can be seen in Fig. 4.3,

such a scenario is also possible in a region of the parameter space at higher hidden

photon masses. For mγ′ & 6 GeV and χ ∼ 10−3, the purple area in the left-hand plot

and also the red and blue areas in the right-hand plot are shown in darker shades. Since

the direct detection signals are only in agreement with the other limits for dark matter

masses between 5.5 and 8.9 GeV, the hidden photon is in all these models heavier than

the dark matter mγ′ & mDM. Therefore, the annihilation proceeds only via the s-channel

diagram of Fig. 4.1 since the t-channel is not accessible in this region. When decreasing

the hidden photon mass, the t-channel opens and significantly enhances the annihilation

rate which causes a drop in the abundance. Because of (4.8), this reduces the rescaled

scattering cross sections accordingly and leads to the disappearance of the allowed region

and the interruption of the purple band. An example model constituting the entirety of

the dark matter while obeying all constraints and explaining DAMA and CoGeNT (in

the case of an Einasto profile) is obtained for mψ = 6 GeV, mγ′ = 14.1 GeV, χ = 0.0016

and κ = 1 (thus, gh = 0.72). It gives a spin-independent scattering cross section of

5.1 × 10−40 cm2 which fits the direct detection signals. For these settings, the hidden

photon is quite wide with a width of 0.17 GeV and decays almost entirely into two dark

matter particles.

4.3 Analysis of a supersymmetric dark sector

In this section, we discuss how the phenomenology changes when the basic toy model

is replaced by a hidden sector which is embedded into a more complex supersymmetric

model. We present the results of a scan over the parameter space of the models intro-

duced in Sec. 1.4.3. The phenomenology is different for the two mechanisms considered

in Secs. 1.4.3.3 and 1.4.3.4 by which the hidden gauge symmetry is broken. Both scenar-

ios are confronted with constraints on the relic abundance of the dark matter particle

and results from direct detection experiments.

We implement our models in micrOMEGAs [57–61] in order to obtain in each

model predictions for different parameters which can be compared to experimental data.

MicrOMEGAs automatically computes all of the required annihilation cross sections and
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integrates the Boltzmann equations to give the relic abundance. Furthermore, it calcu-

lates the different direct detection cross sections for scattering on protons and neutrons.

All the interactions between the hidden and visible sector are taken into account in-

cluding the neutralino mixing and Higgs portal term which are described in [43] and

which we believe to be novel results. Because of these interactions, there is a connection

to specific particles in the visible sector and consequently a mild dependence on the

spectrum and couplings assumed in the visible sector. Since we are investigating the

effects of gravity mediation, and for minimality, we chose the visible sector to consist

of the MSSM with a Higgs mass above the LEP bound and the lightest visible sector

neutralino in the range 100 to 200 GeV. Changing the spectrum within these ranges

leads to quantitative changes of a few percent in the hidden sector phenomenology, but

not to qualitative ones.

As mentioned in Sec. 1.4.3, we take the kinetic mixing parameter χ < 0 so that

the field H+ rather than H− obtains a vacuum expectation value (vev). Because of the

symmetry of the model, the sign of χ is entirely a matter of choice, and the physical

results are unchanged when considering the opposite sign. Therefore, and for ease of

comparison with the findings derived in Sec. 4.2 for the toy model, the magnitude of χ

is used in the plots presenting our results.

The phenomenology of the supersymmetric hidden sector models is presented in the

following separately for the two breaking mechanisms since their different dark mat-

ter candidates exhibit rather distinct features. Wherever comparison is possible, the

differences and similarities with the toy model are emphasised.

4.3.1 Models with radiative breaking domination

In the following, the hidden gauge symmetry is assumed to be broken radiatively through

the running of the Yukawa coupling λS , as described in Sec. 1.4.3.3. The dark matter

candidate in this scenario is, as mentioned in Sec. 1.4.3.5, exclusively the Majorana

fermion õ1 so that the scattering on nuclei is dominantly spin-dependent. We start

with presenting the results for the relic abundance and the scattering cross sections for

a complete parameter scan and then give detailed numbers obtained for one specific

viable model.

4.3.1.1 Parameter scan for radiative breaking domination

We perform a scan over the kinetic mixing χ and the hidden photon mass mγ′ in order

to find parameter combinations which give a light dark matter candidate with a mass

in range between 0.8 and 20 GeV. We insist that λS and the hidden gauge coupling

gh inferred from χ remain perturbative and thereby obtain via Eq. (1.21) an upper

limit on χ. Since we are most interested in light hidden gauge bosons, we limit the
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scans to a maximum value of 40 GeV for mγ′ . The low-energy parameters are found by

choosing boundary conditions at the high-energy scale (1016 GeV) and running down.

In practice, we fix at the high-energy scale mH± = 100 GeV, consider for κ different

values ∈ {0.1, 0.5, 1, 2, 4, 6, 8, 10} and scan over λS , mS , Mλ, AS and χ. This procedure

ensures that we get consistent models at the low-energy scale, rather than having chosen

the parameters completely ad hoc.

The details of those low-energy models obtained from the parameter scan are then

used as input for micrOMEGAs. This further allows us to determine the corresponding

relic abundances and scattering cross sections of the dark matter particle in each model.

The results of this analysis projected on the plane of the absolute value of the kinetic

mixing χ versus the hidden photon mass mγ′ are shown in Figs. 4.4 and 4.5. Both

figures demonstrate the effect of either fixing κ = 1 (left-hand plots) or scanning over

it in the range 0.1 ≤ κ ≤ 10 (right-hand plots). Clearly, allowing for a variation

in κ seriously increases the parameter space in which viable models are found. This

is in stark contrast to the toy model of Sec. 4.2 in which the parameter space was

already filled for fixed κ = 1 (cf. Fig. 4.3). The green colour in the plots encodes

again the dark matter relic abundance. Dark green points correspond to models that

give the correct relic abundance while light green points represent a subdominant dark

matter candidate. The coloured lines indicate the limits from the muon anomalous

magnetic moment (dash-dotted brown), the BaBar search (short-dashed orange) and

the Standard Model precision measurements (long-dashed cyan). All points shown in

both figures are in agreement with the various direct detection constraints with the

exception of the one from the SIMPLE experiment which is not taken into account in

Fig. 4.4. The effect of including the SIMPLE limit is then illustrated in Fig. 4.5 where

in comparison to Fig. 4.4 some of the dark green models, providing the correct relic

abundance at larger hidden photon masses, disappeared since they violate the SIMPLE

bound.

The direct detection cross sections for spin-dependent and spin-independent scat-

tering obtained with micrOMEGAs are plotted in Fig. 4.6 as a function of the dark

matter mass mDM. For comparison, the different limits and signal regions discussed in

Sec. 4.1.3 are also shown. For those plots, we scanned over the hidden photon mass

mγ′ , the kinetic mixing χ as well as the parameter κ in the range 0.1 ≤ κ ≤ 10. The

cross sections are again rescaled for subdominant dark matter according to Eq. (4.8).

The top plot contains the cross sections σSD
p for spin-dependent scattering on protons

and the corresponding experimental bounds. At the bottom, the cross sections σSI
p for

spin-independent scattering on protons are shown in the left-hand plot and those for

spin-dependent scattering on neutrons σSD
n in the right-hand plot.

As the dark matter particle considered in this subsection is the Majorana fermion õ1

it dominantly possesses spin-dependent scattering. In the top and in the right-hand plot

of Fig. 4.6, it can be seen that the cross sections σSD
p and σSD

n turn out to be quite large
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and are partly even already excluded by current experiments. In fact, the plot at the

top visualises that the most stringent constraint arises on the spin-dependent scattering

on protons from the SIMPLE experiment, which is sketched as short-dashed brown line.
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Figure 4.4: Viable models with radiatively induced breaking of the hidden gauge symmetry

in the parameter space of the magnitude of the kinetic mixing χ versus the hidden photon

mass mγ′ . Dark green areas correspond to models that provide the correct dark matter

relic density, and light green regions give a subdominant dark matter candidate. Lines rep-

resent the constraints from Standard Model precision measurements (long-dashed cyan), a

model-dependent reinterpretation of a BaBar search (short-dashed orange) and the muon

anomalous magnetic moment (dash-dotted brown). All points contained in the plot corre-

spond to viable models that are in agreement with all direct detection constraints except

for the SIMPLE exclusion limit. The Standard Halo Model (SHM) has been used.

The two plots illustrate the effect from either keeping the parameter κ fixed or allowing it to

vary by one order of magnitude in each direction:

Left: κ = 1. Right: 0.1 ≤ κ ≤ 10.
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Figure 4.5: Viable models with radiatively induced breaking of the hidden gauge symmetry in

the plane of the magnitude of the kinetic mixing χ versus the hidden photon mass mγ′ . Same

colouring and exclusion lines as in Fig. 4.4. Again, all points correspond to viable models

that are in agreement with all direct detection constraints, while now we are including the

SIMPLE exclusion limit. The SHM has been used.

Again the effect of keeping κ fixed or allowing it to vary is illustrated:

Left: κ = 1. Right: 0.1 ≤ κ ≤ 10.
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If taken at face value it excludes many parameter points for dark matter masses above

∼ 7 GeV. Since the different cross sections are related, the inclusion of the SIMPLE

limit on scattering on protons directly removes also large portions of the parameter

space with large cross sections for spin-independent scattering on protons σSI
p as well as

spin-dependent scattering on neutrons σSD
n . This is illustrated for both cases in the two

plots at the bottom of Fig. 4.6, where yellow and orange points indicate those models

that lie above the SIMPLE exclusion limit for spin-dependent scattering on protons in

the top plot (hereby points in yellow have a subdominant and those in orange the total

dark matter abundance). As can be seen from the right-hand plot at the bottom, the

SIMPLE limit for spin-dependent scattering on protons is more constraining than limits

for scattering on neutrons for which XENON10 excludes only very few models. The

effect on the parameter space of allowed models when including the SIMPLE limit is

also illustrated in Figs. 4.4 and 4.5. There, the former figure shows the viable models

when this limit is not taken into account and the latter one contains those models that

remain after the limit is applied.

As mentioned above, the fact that the hidden sector dark matter candidate in the

models with radiative breaking domination is a Majorana fermion leads to extremely

small cross sections for spin-independent scattering, as shown in the left-hand plot of

Fig. 4.6. They do, however, obtain a contribution from the Higgs portal term, which

is always present in supersymmetric theories. This is described in detail in [43], where

also a simple approximation for the contribution of the Higgs portal term is derived as

σSI,Portal
N ∼ 10−45cm2 ×

(
mõ1

mN +mõ1

)2 ( χ

0.002

)2
(

GeV

mγ′

)2

, (4.13)

where mõ1 is the mass of the Majorana fermion õ1 and mN the one of the nucleon.

This result agrees with the cross sections from micrOMEGAs plotted in the left-hand

plot of Fig. 4.6. There is also a contribution from squark exchange, which is, however,

somewhat smaller and more spectrum-dependent. These spin-independent scattering

cross sections of the Majorana fermion are, in contrast to the Dirac fermion of the toy

model, very similar for scattering on protons and on neutrons since the Higgs portal term

is not isospin-violating. This is different to the scattering of the Dirac fermion which is

essentially only on protons since it is mediated by the hidden photon which mixes with

the photon. Therefore, we labelled in Eq. (4.13) the cross section as σSI,Portal
N with “N”

denoting Nucleons. In the left-hand plot of Fig. 4.6, we give the cross sections σSI,Portal
p

for scattering on protons rather than on nucleons since this allows direct comparison

with the results of the Dirac fermion in the other models. The signal regions of DAMA

and CoGeNT as well as the limits are shown for a Standard Halo Model (SHM). Despite

the contribution from the Higgs portal term, it can been seen that the cross sections

σSI
p for scattering on protons are several orders of magnitude below the reach of current

experiments. Consequently, these models are not able to provide the large cross sections

needed to explain the DAMA or CoGeNT signals. We do not study other halo profiles
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since they only allow potentially excluded signals to be marginally consistent but are of

no interest for models that can not give the required cross sections.
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Figure 4.6: Direct detection cross sections of the Majorana fermion dark matter candidate õ1
obtained with micrOMEGAs for models with radiatively induced breaking. All plots are

scanned over κ in the range 0.1 ≤ κ ≤ 10. Models in dark green give the correct dark matter

relic abundance while for those in light green the dark matter particle is subdominant and

the cross sections have to be rescaled accordingly.

Top: Spin-dependent scattering cross sections σSD
p on protons and corresponding constraints

from the direct detection experiments SIMPLE (lowest-lying, short-dashed brown curve), PI-

CASSO (long-dashed orange line), COUPP2011 (dash-dotted turquoise limit), COUPP2007

(dotted blue line) and Super-K (dashed black line at the right edge of the plot).

Left bottom: Spin-independent scattering cross sections σSI
p on protons together with signal

contours from DAMA (red/orange lines) and CoGeNT (purple lines) as well as exclusion

limits from CDMSSi (dashed turquoise line) and XENON100 (dash-dotted blue line). Limits

and signal regions are rescaled to cross sections for scattering on protons only and shown for

the SHM.

Right bottom: Spin-dependent scattering cross sections σSD
n on neutrons together with the

limits by XENON10 (dash-dotted blue line), Zeplin (dotted pink line) and CDMS (dashed

turquoise line) from bottom to top.

In both plots at the bottom, points in yellow and orange lie above the SIMPLE limit on σSD
p

and give a subdominant and total dark matter abundance, respectively.
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4.3.1.2 Example model with radiative breaking domination

For a better understanding and for complementarity to the plots which can only show

two-dimensional projections of the parameter space, we give in the following a concrete

example of one model. This model satisfies all experimental constraints and provides

the entire dark matter relic abundance. We take κ to be unity and the soft masses mH±

approximately 100 GeV at the high-energy scale. We then run the parameters down and

make adjustments at the high scale in order to find appropriate values at low energies.

It turns out that mS is somewhat larger and drives the soft hidden Higgs masses to

become tachyonic. The parameters at the low- (10 GeV) and high-energy (1016 GeV)

scales are given in Tab. 4.1 together with the particle spectrum at low energies after

hidden gauge symmetry breaking.

The dark matter candidate is the Majorana fermion õ1 and has a mass of 5.2 GeV.

With a relic density of Ωõ1h
2 = 0.112 it provides the entire dark matter in the Universe.

As expected, the cross section for spin-independent scattering on protons is with σSI
p =

3.8× 10−47 cm2 very small. It is several orders of magnitude below the reach of current

direct detection experiments. The cross section for spin-dependent scattering on protons

is σSD
p = 2.8× 10−38 cm2 and very similar to the one for scattering on neutrons σSD

n =

2.2×10−38 cm2. The hidden photon and the hidden Higgs both have a mass of 11.6 GeV.

Their widths are 6.8×10−8 GeV and 4.8×10−8 GeV, respectively, and both decay mostly

invisibly into two Majorana fermions õ1.

Considering in the visible sector for the MSSM the parameters at the SPS1b bench-

mark point [328]5, the full neutralino mass matrix in the basis (B0, W0, h
0
u, h

0
d, λ̃, h̃+)

is given by

Mneutralino =




166 0 −2.73 43.8 −0.01 −0.01

0 310 2.73 −79.9 0 0

−2.73 2.73 0.00 −512 0 0

43.8 −79.9 −512 0 0 0

−0.01 0 0 0 20.7 11.6

−0.01 0 0 0 11.6 0




, (4.14)

in which all masses are expressed in GeV. The eigenmasses of this matrix are 5.2, 25.9,

164, 298, 516 and 530 GeV. For the same data point, we can compute the mixing between

5This benchmark point is disfavoured by the LHC results and gives a too small mass for the lightest
Higgs, but the dependence of our results on the visible sector parameters is small. Changing to another
benchmark point is left for future work.
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the original Higgs eigenstates and the mass eigenstates to be




H+

h

H


 =




1.0 −3.6× 10−5 1.2× 10−7

3.6× 10−5 1.0 0

−1.2× 10−7 0 1.0







h1

h2

h3


 . (4.15)

High scale parameters Low scale parameters Particle Mass [GeV]

κ −1.0 κ −1.0 õ7 14.0

χ −0.0008 χ −0.0005 õ1 5.2

αh 0.0031 αh 0.003 õ2 25.9

αS 0.011 αS 0.010 γ′ 11.6

Mλ 21.4 GeV Mλ 20.7 GeV H+ 11.6

m2
H+

1012 GeV2 m2
H+

−66.8 GeV2 H− 7.7

m2
H−

1012 GeV2 m2
H−

−68.9 GeV2 S 406

m2
S 4182 GeV2 m2

S 4062 GeV2

AS −0.2 GeV AS −1.5 GeV

Table 4.1: Parameters and particle masses of an example gravity mediated hidden sector

model in which the hidden sector gauge symmetry is broken radiatively. The Majorana

fermion dark matter particle õ1 has a mass of 5.2 GeV and constitutes with Ωõ1h
2 = 0.112

the total relic abundance. The model is consistent with all direct detection constraints. The

scattering cross sections are σSI
p = 3.8 × 10−47 cm2, σSD

p = 2.8 × 10−38 cm2 and σSD
n =

2.2× 10−38 cm2 and thus beyond the reach of current experiments.

4.3.2 Models with visible sector induced breaking

In the following, the gauge symmetry in the hidden sector is assumed to be broken by the

effective Fayet–Iliopoulos term, as described in Sec. 1.4.3.4. In this scenario, the dark

matter particle can be either a Dirac fermion or a Majorana fermion, cf. Sec. 1.4.3.5.

The direct detection signature of both candidates is quite different since the scattering

of the former is expected to be mostly spin-independent while it is dominantly spin-

dependent for the latter. Therefore, the cases in which the Dirac fermion constitutes

the dark matter particle resemble to some extend the toy model of Sec. 4.2. The cases

in which the dark matter is provided by the Majorana fermion have some similarities to

the models with radiative breaking domination of Sec. 4.3.1. The details and differences

will become clear in the following discussion of the parameter space and the results for
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the relic abundance and the scattering cross sections. Again, we give also a concrete

example of one viable model with explicit numbers.

4.3.2.1 Parameter scan for visible sector induced breaking

We search for viable models with visible sector induced breaking by scanning over the

parameters at the low-energy scale. Thereby, we again insist on the perturbativity for

the Yukawa coupling λS and the hidden sector gauge coupling gh, like in the models with

radiative breaking domination. The soft supersymmetry breaking masses are chosen to

be small which is, for example, possible when they are induced in gauge mediation or

by sequestering of the hidden sector. We are again interested in a light hidden sector

with hidden photon mass and dark matter mass up to 40 GeV. Phenomenologically,

the results of this subsection can be considered to be a detailed examination of the

model of [146] with the following two differences. In our models, in contrast to [146],

the gravitino mass is large and the kinetic mixing χ is linked to the gauge coupling gh

via the relation in Eq. (1.21).

As discussed in Sec. 1.4.3.5, depending on the particular low-energy parameters, the

dark matter candidate in these models can be either the Majorana fermion õ1 or the Dirac

fermion õ7. With the different low-energy parameters obtained from the scans, we again

use micrOMEGAs to compute for both dark matter particles the relic abundance and

the various scattering cross sections which are relevant for direct detection. Applying all

constraints discussed in Sec. 4.1, yields the viable models shown in Fig. 4.7, in the plane

of the absolute value of the kinetic mixing χ versus the hidden photon mass mγ′ . In this

figure, both plots contain only points which are in agreement with all direct detection

limits specified in Sec. 4.1.3 including the one from the SIMPLE experiment. The colour

code in both plots and in all other plots throughout this section is identical to the one

used in Fig. 4.3 for the scatter plots of the toy model. The dark matter candidate in the

dark green regions possesses the correct relic abundance and in the light green areas it is

subdominant. As in Fig. 4.3, the coloured lines represent the constraints from Standard

Model precision measurements (long-dashed cyan line), the muon anomalous magnetic

moment (dash-dotted brown line) as well as the model-dependent BaBar limit (short-

dashed orange line). In the two plots of Fig. 4.7, the effect of allowing for a variation in

κ is illustrated. The parameter space expands quite strongly from keeping κ = 1 fixed in

the left-hand plot to scanning over κ the range 0.1 ≤ κ ≤ 10, as shown in the right-hand

plot.

Even though in the models of this section the dark matter candidate can also be a

Dirac fermion just like in the toy model, there are no viable models with parameters in

the lower right area of the plots in Fig. 4.7. This is in strong contrast to the scatter

plot of the toy model in Fig. 4.3. This contrast arises since in the models here the

dark matter particle can never be heavier than the hidden photon. It can be seen from
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Eq. (1.34) that there is always a Majorana fermion with mass equal or less than mγ′ . For

the Dirac fermion to be the dark matter particle, it is required to be even lighter than

the Majorana fermion. It is then necessarily also lighter than the hidden photon. Thus,

in the models with visible sector induced breaking, the dark matter particle can never

annihilate via the t-channel diagram shown on the right side of Fig. 4.1. The lower right

part of the parameter space is therefore empty, in contrast to the toy model, where it

was filled by dark green points obtaining the correct relic abundance from the t-channel

annihilation (like those in the horizontal band in Fig. 4.2). The coarser grid and small

holes in the scatter plots of this section, compared to the ones of the toy model, is caused

by the fact that the parameter space here can not be scanned as continuously as for the

toy model.
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Figure 4.7: Viable models with visible sector induced breaking of the hidden gauge symme-

try for fixed κ = 1 (left) or scanned over κ in the range 0.1 ≤ κ ≤ 10 (right). In the plane

of the magnitude of the kinetic mixing χ versus the hidden photon mass mγ′ , dark green

points represent models that give the correct relic abundance and light green ones provide a

subdominant dark matter candidate. All models are in agreement with all constraints from

direct detection including SIMPLE. Lines represent limits from Standard Model precision

measurements (long-dashed cyan line), a model-dependent BaBar search (short-dashed or-

ange line) and the muon anomalous magnetic moment (dash-dotted brown line).

Left: κ = 1. Right: 0.1 ≤ κ ≤ 10.

Since the Dirac fermion dark matter candidate is expected to show in the direct

detection experiments which are looking for spin-independent scattering, we can compare

its cross sections to the signal claims of DAMA and CoGeNT. As in the toy model, the

scattering cross sections obtained with micrOMEGAs have to be rescaled by Eq. (4.8)

for subdominant dark matter particles. Additionally, the experimental limits and signal

regions for the spin-independent case have to be rescaled by Eq. (4.6) to take into

account that the Dirac fermion scatters exclusively on protons. The models in which the

dark matter particle can explain the direct detection signals are represented in different

colours in Fig. 4.8 in the plane of the magnitude of kinetic mixing versus the hidden

photon mass. As in the right-hand plot of Fig. 4.7, the parameter space is scanned

over 0.1 ≤ κ ≤ 10 and all direct detection constraints are applied. Again, dark and
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light green colours indicate models which give a dark matter candidate with the total

or a subdominant relic abundance, respectively. Overlaid on the green areas, we present

in different colours the regions of interest for the different direct detection claims. In

the left-hand plot, the purple points correspond to models where the scattering cross

section is in agreement with the CoGeNT signal for the Standard Halo Model (SHM).

The effect of changing the halo model is then displayed in the right-hand plot where

the Einasto profile is used (a similar picture is obtained for an isothermal or an NFW

profile, cf. [81] for details on the halo models). In this scenario, also a part of the DAMA

favoured region is allowed by the direct detection constraints and the models with the

corresponding cross sections are represented in red. The models shown in blue provide

scattering cross sections that simultaneously fit the DAMA and the CoGeNT signals. In

both plots, the dark matter particle explaining the direct detection signals is always a

subdominant Dirac fermion independent of the halo model, as will become evident from

the following discussion and Fig. 4.9.

5 15 25 35
10-4

10-3

10-2

10-1

5 15 25 35
10-4

10-3

10-2

10-1

χ χ

mγ′ [GeV] mγ′ [GeV]

Figure 4.8: Viable models with visible sector induced breaking overlaid with coloured re-

gions in which the scattering cross sections can explain the different direct detection claims

(rescaled to scattering on protons). Both plots are scanned over 0.1 ≤ κ ≤ 10 and shown

in the plane of the magnitude of the kinetic mixing χ versus the hidden photon mass mγ′ .

As in Fig. 4.7, all points are in agreement with all direct detection limits including SIMPLE

and coloured lines give constraints. Green areas again indicate the relic abundance.

Left: Cross sections in the purple areas fit the CoGeNT signal for the SHM. In these regions,

the dark matter is subdominant and the cross sections are rescaled with the relic abundance.

Right: For an Einasto profile, cross sections can explain CoGeNT in the purple regions,

DAMA in the red ones and both simultaneously in the blue regions. Again the dark matter

is subdominant and the cross sections are rescaled accordingly.

In Fig. 4.9, the spin-independent scattering cross sections σSI
p on protons, computed

with micrOMEGAs, are plotted as a function of the dark matter mass, scanned over

the kinetic mixing χ, the hidden photon mass mγ′ and the parameter κ in the range

0.1 ≤ κ ≤ 10. Dark green colours correspond again to models providing the correct relic

abundance and light green ones to subdominant dark matter candidates. For the latter,

the scattering cross sections have been rescaled with the relic abundance by Eq. (4.8)
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to account for the lower local dark matter density. The coloured lines represent the

limits and signal regions of the direct detection experiments discussed in Sec. 4.1.3. For

these limits and signal regions, the original cross sections for scattering per nucleon

have been rescaled to those on protons according to Eq. (4.6). In the left-hand plot,

the Standard Halo Model (SHM) has been used and in the right-hand plot an Einasto

profile. It can be seen that for the SHM only the CoGeNT region (purple) is allowed

by the XENON100 (dash-dotted blue) and CDMSSi (dashed turquoise) limits while the

DAMA region (red/orange) is excluded. For the Einasto profile, also a part of DAMA

is allowed and overlaps with CoGeNT. This explains that there are solely purple regions

in the left-hand plot of Fig. 4.8 while the right-hand plot contains in addition red and

blue ones. Furthermore, it can be seen that the dark matter particle responsible for

explaining the direct detection signals is subdominant since the signal regions lie in a

light green area.
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Figure 4.9: Cross sections σSI
p for spin-independent scattering on protons for models with

visible sector induced breaking scanned over 0.1 ≤ κ ≤ 10. In the light green regions, the

cross sections are rescaled to account for the smaller local density of the subdominant dark

matter candidate. Both plots split into two disjoint green areas: the dark matter particle is

the Dirac fermion õ7 in the upper region and the Majorana fermion õ1 in the lower one. Points

in yellow and orange lie above the SIMPLE limit of Fig. 4.10 on σSD
p and give a subdominant

and the total relic abundance, respectively. Signal contours from CoGeNT (purple lines) and

DAMA (red/orange lines) are shown together with exclusion limits from CDMSSi (dashed

turquoise line) and XENON100 (dash-dotted blue line). All have been rescaled to scattering

on protons and are given for two different halo models.

Left: The Standard Halo Model (SHM) as define in [81] is assumed.

Right: The Einasto profile has been used.

The plots showing the spin-independent scattering cross section in Fig. 4.9 appear to

be split into two disjoint regions. These regions are caused by the two dark matter can-

didates which are possible in the different models with visible sector induced breaking.

The Dirac fermion õ7 on the one hand has large spin-independent scattering cross sec-

tions and corresponds to the upper light green region. These cross sections are, as in the

toy model scenario, in the range of current direct detection experiments and may explain
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the signals in DAMA and CoGeNT. In contrast to the toy model, this is, however, only

possible with a subdominant dark matter candidate. Similar to the radiatively-induced

breaking case discussed in Sec. 4.3.1, the Majorana fermion õ1 on the other hand has

very small spin-independent scattering cross sections despite the contribution from the

Higgs portal term and squark exchange. They are below ∼ 10−45 cm2 and correspond

to the lower region in the plots (light green area and thin stripe of dark green). The

plots only show the cross sections for scattering on protons since they are the dominant

ones for the Dirac fermion. For the Majorana fermion, those for scattering on neutrons

are roughly of the same size since they arise from the Higgs portal term which is not

isospin-violating. The yellow and orange points in both plots of Fig. 4.9 show the effect

of including the constraint from the SIMPLE experiment. In contrast to the green areas

which are in agreement with this bound, those regions indicate models for which the

spin-dependent scattering cross section on protons is in conflict with the SIMPLE limit.

The models shown in yellow contain a subdominant dark matter candidate and those in

orange provide the correct relic abundance.

The cross sections σSD
p and σSD

n for spin-dependent scattering on protons and on

neutrons, respectively, are presented in Fig. 4.10. They were again obtained with

micrOMEGAs and have been scanned over 0.1 ≤ κ ≤ 10. As in Fig. 4.6, the lines

illustrate the limits from the direct detection experiments described in Sec. 4.1.3. In the
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Figure 4.10: Cross sections for spin-dependent scattering in models with visible sector in-

duced breaking, scanned over 0.1 ≤ κ ≤ 10. Exclusion contours from the corresponding direct

detection experiments are as described in Fig. 4.6. Cross sections in the light green areas are

rescaled because the dark matter particle is subdominant. The plots only contain models

in which the Majorana fermion õ1 is the dark matter candidate since the spin-dependent

scattering cross sections of the Dirac fermion õ7 are too small to appear.

Left: Cross sections σSD
p for spin-dependent scattering on protons. Besides the limits given in

Fig. 4.6, the KIMS limit is shown as solid green line (note that the lowest lying, short-dashed

brown line is the SIMPLE limit).

Right: Cross sections σSD
n for spin-dependent scattering on neutrons. Points in yellow and or-

ange lie above the SIMPLE limit and give a subdominant and total relic density, respectively.
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left-hand plot for scattering on protons, the different limits on σSD
p arise from SIMPLE

(short-dashed brown line), PICASSO (long-dashed orange line), COUPP2011 (dash-

dotted turquoise line), COUPP2007 (dotted blue line), Super-K (dashed black line) and

KIMS (solid green line). In the right-hand plot, the cross sections σSD
n for scattering

on neutrons are given together with the limits from XENON10 (dash-dotted blue line),

Zeplin (dotted pink line) and CDMS (dashed turquoise line). The left-hand plot shows

which models lie above the SIMPLE limit on σSD
p and are potentially excluded. These

models correspond to the above-mentioned yellow and orange regions, which are shown

in the right-hand plot for σSD
p and in Fig. 4.9 for σSI

p . All points contained in Fig. 4.10,

represent models where the Majorana fermion õ1 is the dark matter candidate since the

Dirac fermion õ7 possesses almost no spin-dependent scattering on nuclei. Therefore, in

the plots for spin-independent scattering in Fig. 4.9, the effect of the SIMPLE exclu-

sion limit only matters for the lower regions in which the Majorana fermion is the dark

matter particle. Like in the case of spin-independent scattering, the Majorana fermion

also exhibits roughly the same cross sections for spin-dependent scattering on protons

and on neutrons. The limit on σSD
p from SIMPLE (left-hand plot) is, however, more

constraining than the limit on σSD
n from XENON10 (right-hand plot). Each plot in

Figs. 4.9 and 4.10 contains only those models which are in agreement with all the limits

shown in the other plots.

4.3.2.2 Example model with visible sector induced breaking

In the following, we present the specific parameters, cross sections and other relevant

quantities for one particular model that can explain the CoGeNT signal for a Standard

Halo Model and both DAMA and CoGeNT signals for an Einasto profile. The low scale

parameters and the resulting particle spectrum is given in Tab. 4.2. We take, at the

low-energy scale, κ = −10 and αh = 0.040 ≡ g2
h/4π, which corresponds according to

Eq. (1.21) to χ = −0.016, and set αS = 0.027 ≡ λ2
S/4π. The soft masses are given by

sequestered values Mλ = mH+ = mH− = mS = 1 GeV and the hidden A-term vanishes,

AS = 0.

The Dirac fermion õ7 is the lightest hidden sector particle with a mass of 6.4 GeV.

It has a relic abundance of Ωõ7h
2 = 0.0023 and is thus a subdominant dark matter

candidate. Its spin-independent scattering is as expected almost entirely on protons. We

find the corresponding effective scattering cross section of σSI
p = 5.5 × 10−40 cm2 after

rescaling with the dark matter abundance according to Eq. (4.8). The hidden photon

and the hidden Higgs both have a mass of 10.7 GeV. Their widths are 3.4× 10−5 GeV

and 1.6× 10−10 GeV, respectively. The hidden photon decays mostly into light leptons

and quarks and the hidden Higgs dominantly to bb̄, cc̄ and τ+τ−.
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Using in the visible sector for the MSSM the parameters at the SPS1b benchmark

point [328], the full neutralino mass matrix in the basis (B0, W0, h
0
u, h

0
d, λ̃, h̃+) reads

Mneutralino =




166 0.00 −2.73 43.8 −0.02 −0.17

0.00 310 2.73 −79.9 0.00 0.00

−2.73 2.73 0.00 −512 0.00 0.00

43.8 −79.9 −512 0.00 0.00 0.00

−0.02 0.00 0.00 0.00 1.00 10.7

−0.17 0.00 0.00 0.00 10.7 0.00




, (4.16)

with all numbers expressed in GeV. The eigenmasses are 10.2, 11.2, 164, 298, 516 and

530 GeV. The mixing between the original Higgs eigenstates and the mass eigenstates

is at the same data point found to be




H+

h

H


 =




1.0 −1.1× 10−3 3.7× 10−6

1.1× 10−4 1.0 0

−3.7× 10−6 0 1.0







h1

h2

h3


 . (4.17)

Low scale parameters Particle Mass [GeV]

κ −10.0 õ7 6.4

χ −0.016 õ1 10.2

αh 0.038 õ2 11.2

αS 0.027 γ′ 10.7

Mλ 1.0 GeV H+ 10.7

m2
H+

1.0 GeV2 H− 6.5

m2
H−

1.0 GeV2 S 6.6

m2
S 1.0 GeV2

AS 0.0

Table 4.2: Hidden sector low scale parameters and particle masses for an example sequestered

model in which the hidden gauge symmetry breaking is induced by the visible sector. The

Dirac fermion õ7 has a relic density of Ωõ7h
2 = 2.3 × 10−3 and is thus a subdominant dark

matter particle. The rescaled direct detection cross section for spin-independent scattering

on protons is σSI
p = 5.5× 10−40 cm2. The model is consistent with all direct detection limits.

It can explain the CoGeNT signal for a SHM and also DAMA for an Einasto profile.
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4.3.2.3 Low mass region

In contrast to the previous section, in which we studied hidden photons in the GeV

range, the following results for models with visible sector induced breaking are focused on

masses below 1 GeV. Such light masses are of particular interest in view of the searches

for hidden photons that are already running or planned for the near future, as discussed

in Sec. 3.5. To obtain such light masses in these models, however, requires some amount

of fine-tuning. Scanning over the low-energy parameters, as in Sec. 4.3.2.1, we again

compute the relic abundance and scattering cross sections of the dark matter particle

with micrOMEGAs. The allowed models, scanned over κ in the range 0.1 ≤ κ ≤ 10,

are shown in Fig. 4.11 in the plane of the absolute value of the kinetic mixing χ versus

the hidden photon mass mγ′ . The same colour code as in the previous sections is used

to discriminate between dark matter candidates with the total relic abundance (dark

green) and subdominant ones (light green). The grey areas are the constraints on hidden

photons presented in Secs. 3.3 and 3.4. The coloured lines indicate the sensitivities of

future searches for hidden photons, as discussed in Sec. 3.5. Numerous models are found

to contain a viable dark matter candidate and possess a hidden photon in the region of

interest for these experiments.
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Figure 4.11: Viable models with visible sector induced breaking and a light hidden photon

in the plane of the magnitude of the kinetic mixing χ versus the hidden photon mass mγ′ ,

scanned over 0.1 ≤ κ ≤ 10. Dark green points represent models which give the correct relic

abundance, light green ones provide a subdominant dark matter candidate. As in Fig. 4.2,

grey areas and coloured lines are constraints and sensitivities of future searches for hidden

photons, respectively.
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As in Sec. 4.3.2.1, the dark matter particle can be either a Dirac fermion or a Majo-

rana fermion. Furthermore, in the considered models with visible sector induced break-

ing, the dark matter particle can never be heavier than the hidden photon, as discussed

earlier. Since we focus on models with a very light hidden photon, the mass of the

dark matter particle is then always below 1 GeV throughout this section. Such small

masses are, however, below the threshold of direct detection experiments. Therefore,

the corresponding limits of these experiments, which are summarised in Sec. 4.1.3, do

not apply here. The direct detection cross sections, obtained with micrOMEGAs and

rescaled according to Eq. (4.8), are shown in Fig. 4.12 for spin-independent (left-hand

plot) and spin-dependent (right-hand plot) scattering on protons. Similar to the results

obtained at higher masses in Sec. 4.3.2.1, cf. Fig. 4.9, the spin-independent scattering

cross sections split again into two distinct regions. In the upper one, the dark matter

candidate is the Dirac fermion and in the lower one it is the Majorana fermion. For the

spin-dependent case, the cross sections for scattering on protons and on neutrons are

again roughly the same and only the former ones are displayed in the right-hand plot of

Fig. 4.12. This plot contains models in which the Majorana fermion is the dark matter

particle since the Dirac fermion has negligible spin-dependent scattering.
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Figure 4.12: Scattering cross sections for a light dark matter candidate in models with visible

sector induced breaking for 0.1 ≤ κ ≤ 10. Points in dark green correspond to models that

provide the total relic abundance. For points in light green, which give a subdominant dark

matter candidate, the cross sections have been rescaled to account for the lower local density.

All dark matter masses are below the threshold of direct detection experiments.

Left: Cross sections σSI
p for spin-independent scattering on protons.

Right: Cross sections σSD
p for spin-dependent scattering on protons. Cross sections σSD

n for

spin-dependent scattering on neutrons are similar.

For the considered models with a very light hidden sector, it is not possible to

probe the dark matter particle with conventional direct detection experiments. Since

the dark matter is so light, its scattering on the heavy target nuclei produces a nuclear

recoil energy which is well below the energy threshold of these experiments. Other

detection methods are therefore required to probe such light dark matter particles.

The DAMIC experiment [329] searches for low mass dark matter with Charge Coupled
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Devices (CCDs) detectors and released a first limit for masses down to 1.2 GeV and cross

sections ∼ 3×10−39 cm2, cf. also Sec. 4.4. The next run of this experiment will not only

reach lower cross sections but might also probe even smaller masses like the ones obtained

in our models. Another possibility suggested in [330] is to search for the scattering of

light dark matter on electrons rather than on nuclei. According to [330], this scattering

on electrons would allow experiments with xenon, argon, helium, or germanium targets

to probe dark matter with masses in the MeV range. The light dark matter particle of

our models scatters on electrons mediated by the hidden photon and could then also be

searched for by those experiments. Finally, for these light hidden sectors, the hidden

photon may instead be detected in the fixed target experiments shown in Fig. 4.11,

particularly if the hidden photon cannot decay to hidden matter (as in the reasonably

generic case when the dark matter particle has mass near that of the hidden photon).

4.4 Implications of updated direct detection data

Some of the direct detection experiments, used in the previous sections to constrain

the dark matter scattering cross sections, improved their limits since our analysis was

performed. In this section, the effect of these new constraints on the different models is

studied. We present updated versions of the results which were derived for the toy model

in Sec. 4.2 and for the supersymmetric models with radiative breaking domination in

Sec. 4.3.1 and with visible sector induced breaking in Sec. 4.3.2. In addition, we change

the requirement on the relic abundance to the most recent Planck [45] measurement of

ΩDMh
2 = 0.1196± 0.0031, cf. Eq. (1.3). Models giving an abundance within 3σ of this

result are considered to provide the entire dark matter in the Universe, those with a

lower abundance yield a subdominant dark matter candidate.

For the direct detection experiments sensitive to spin-independent scattering of dark

matter, for which we used the limits derived in [81], the strongest additional bounds

arise from the following three experiments:

• The DAMIC experiment [329] places a constraint on dark matter masses in the

range 1.2 . mDM . 10 GeV and cross sections for scattering on nucleons of about

σSI
N ∼ 3× 10−39 cm2.

• A special search for light dark matter enabled XENON10 [331] to constrain masses

down to 4 GeV with scattering cross sections on nucleons of σSI
N ∼ 10−39 cm2, while

the limit weakens to about σSI
N ∼ 10−42 cm2 for masses O(10 GeV).6

6The limit which was originally published by XENON10 and has been used throughout this section
was changed in an erratum of [331] when this thesis was about to be finished. The corrected limit is
weaker and therefore less constraining for the parameter space of our models. Some of the signal regions
might also still be allowed. These changes will be included in future work [332].
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• The limit from XENON100 used in the previous sections was based on data from

100 live days of the experiment. The newer limit [87] with 225 live days of data

provides currently the strongest bound for dark matter masses above 8 GeV.

For the Dirac fermion dark matter candidate of our models, these limits again have to

be rescaled according to Eq. (4.6) to cross sections for scattering on protons. These

improved bounds further increase the tension with the signal claims by DAMA and

CoGeNT, which were considered in the previous sections. Most of their preferred regions

(if not all) are in contradiction with these limits, especially with XENON100 (the same

applies also to the signal claims by CRESST and CDMS). Therefore, in this section, we

do no longer study if our models can reproduce the cross sections required to explain

those signals but instead only apply the updated limits. We assume that the signals are

excluded when the most simple settings for the standard dark matter halo are considered.

We then do not anymore plot the DAMA and CoGeNT regions from [81] as in the

previous sections, but instead the DAMA, CoGeNT and CRESST regions as given in [87].

On the spin-dependent side, new limits were released by PICASSO2012 [333] and

COUPP2012 [334] for scattering on protons. The former constrains masses down to

∼ 4 GeV and is for light dark matter stronger than the SIMPLE limit, which was

partly included in our previous analysis. The latter has a similar but slightly weaker

exclusion curve as SIMPLE. The previous bounds for scattering on neutrons were sig-

nificantly improved to cross sections of σSD
n ∼ 10−40 cm2 for masses of 10 GeV by the

XENON100 [335] experiment. In the same analysis, XENON100 published also a limit

on spin-dependent scattering on protons which is stronger than the ones used in our

previous analysis (except for the one by SIMPLE) but not competitive to the updates of

PICASSO2012 and COUPP2012. We then apply these four recent bounds to the spin-

dependent scattering cross sections in our new analysis. As a consequence of this, the

effect of including or neglecting the SIMPLE limit, which was displayed in our analysis

by the yellow and orange colouring (cf. Figs. 4.6, 4.9 and 4.10) is reduced, as shown in

the subsequent figures.

In the following, we present the new results for the toy model and the supersymmetric

models with radiative breaking domination and visible sector induced breaking. They

take into account all the updated limits from direct detection experiments.

4.4.1 Toy model

The toy model has been introduced in Sec. 1.4.2 and analysed in detail in Sec. 4.2. Since

its dark matter candidate is a Dirac fermion it has only spin-independent scattering on

protons. The relevant new constraints on the corresponding cross sections are thus

the ones from DAMIC, XENON10 and XENON100. The cross sections obtained with

micrOMEGAs have again to be rescaled by Eq. (4.8) for subdominant dark matter
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particles. The direct detection limits must be rescaled by Eq. (4.6) to limits for scattering

on protons. For the case considered in Fig. 4.2, i.e. mψ = 6 GeV, the analogous picture

with the improved limits is shown in Fig. 4.13. Instead of the three green lines giving

the correct abundance for different values of κ, we here only show the case for κ = 0.1

corresponding to the lowest green line. In the light green area, the dark matter particle

is subdominant Again, the grey areas give constraints and the coloured lines sensitivities

of future searches for hidden photons. The purple band indicates the region where the

cross sections are able to explain the CoGeNT signal. However, as indicated by the

coloured lines and the hatched area, this region is entirely excluded by the recent limit

from XENON10 (black line). This is in contrast to the earlier case of Fig. 4.2 where a

dark matter mass of 6 GeV was still unconstrained and the CoGeNT preferred region

was in agreement with the direct detection limits.

A scan over the dark matter mass in the range 0.8 GeV to 25 GeV is then shown

for κ = 1 in Fig. 4.14, again in the plane of kinetic mixing χ versus hidden photon

mass mγ′ . This plot is equivalent to the left one of Fig. 4.3. As expected, the new

plot does no longer contain purple points since the CoGeNT region is excluded by the

updated direct detection limits. Furthermore, a large part of the parameter space which

was displayed in dark green is now shown in light green. The reason for this is that

the corresponding models, which gave the correct relic abundance and were shown in
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Figure 4.13: Allowed parameter space for the toy model with mψ = 6 GeV and κ = 0.1

when taking into account the updated direct detection limits. The thin dark green line gives

the correct relic abundance, in the light green area the dark matter particle is subdominant.

As in Fig. 4.2, the grey areas are excluded and the coloured lines represent the sensitivities

of future searches for hidden photons. The coloured lines and hatched regions show the

limits from the recent direct detection experiments: DAMIC in brown, XENON10 in black

and XENON100 in purple. In contrast to Fig. 4.2, the purple band indicating the CoGeNT

preferred region is now excluded by XENON10 for the Standard Halo Model.
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dark green, are now excluded since they do not fulfil the improved direct detection

bounds. Then, the only remaining viable scenarios in this region of the parameter space

correspond to subdominant dark matter candidates. There are, however, still many

viable models that survive the new limits and give the correct relic abundance or a

subdominant dark matter candidate.
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Figure 4.14: Allowed parameter space for the toy model when taking into account the updated

direct detection limits, for κ = 1 and scanned over the dark matter masses in the range

from 0.8 GeV to 25 GeV. As in Fig. 4.3, points in green (light green) give the correct

(subdominant) relic abundance and the lines represent different limits. In contrast to the

left-hand plot of Fig. 4.3, the purple CoGeNT region has disappeared since it is not allowed

by the new direct detection constraints.

4.4.2 Models with radiative breaking domination

For the supersymmetric models with radiative breaking domination, the dark matter

candidate is a Majorana fermion. As discussed in Sec. 4.3.1, the Majorana fermion has

tiny spin-independent scattering so that only direct detection experiments which are

sensitive to spin-dependent scattering can probe these models. Therefore, the relevant

updates are the ones on the spin-dependent side by PICASSO2012, COUPP2012 and

XENON100. Taking these new limits into account, the parameter space with the viable

models is shown in Fig. 4.15, in the plane of the magnitude of the kinetic mixing χ

versus the hidden photon mass mγ′ . These displayed models are in agreement with

all direct detection constraints and either provide the correct relic abundance (dark

green) or a subdominant dark matter candidate (light green). Again, the different direct

detection cross sections have been computed with micrOMEGAs and rescaled according

to Eq. (4.8) for subdominant dark matter candidates.

Compared to the analysis of Sec. 4.3.1, we find that more models are excluded than in

Fig. 4.4, where the SIMPLE limit was not applied. The current result is, however, essen-

tially the same as the one in Fig. 4.5, in which the SIMPLE limit was taken into account.

Thus, the updated limits do not constrain the parameter space significantly stronger
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than the SIMPLE limit did. This becomes also apparent in the plots with the corre-

sponding direct detection cross sections for spin-dependent scattering on protons and

on neutrons, shown in Fig. 4.16. Besides the previous limits presented in Fig. 4.6, lines

for the updated ones from PICASSO2012 (long-dashed orange), COUPP2012 (dash-

dotted turquoise) and XENON100 (long-dashed purple) on σSD
p are contained in the

left-hand plot and from XENON100 (long-dashed purple) on σSD
n in the right-hand plot.

COUPP2012 and PICASSO2012 almost close the gap to the SIMPLE limit. Therefore,

the effect of including or disregarding the SIMPLE limit is reduced. There are then

fewer yellow or orange models which represent the ones in conflict with SIMPLE (yellow

indicating subdominant dark matter and orange the correct relic abundance). Since

the SIMPLE limit remains the strongest one on σSD
p , the updates by COUPP2012 and

PICASSO2012 do not improve compared to the previous situation when SIMPLE was

included. However, the XENON100 limit on σSD
n does exclude a few models which were

previously allowed by all limits (also SIMPLE), as shown in the right-hand plot by the

light green points which lie above the long-dashed purple line.
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Figure 4.15: Viable models with radiative breaking domination after taking into account the

updated direct detection limits and scanned over 0.1 ≤ κ ≤ 10. Points in green (light green)

give the correct (subdominant) relic abundance.

Left: Models in the plane of the magnitude of the kinetic mixing χ versus the hidden photon

mass mγ′ . Coloured lines are constraints as in Fig. 4.5.

Right: Cross sections σSI
p for spin-independent scattering on protons together with lines for

new limits from XENON10 (dash-double dotted black) and XENON100 (long-dashed purple)

as well as the shaded signal regions from DAMA (orange), CoGeNT (pink) and CRESST

(cyan). Old exclusion lines from CDMSSi (dashed turquoise) and XENON100 (dash-dotted

blue) are as in Fig. 4.6. Points in yellow lie above the SIMPLE limit and are subdominant.

For spin-independent scattering, the corresponding cross sections for the Majorana

fermion are, as expected, very small since they only arise from the Higgs portal term,

which gives a small cross section. They are shown in the right-hand plot of Fig. 4.15.

Similar to the situation in Fig. 4.6, the cross sections are much below the reach of

current experiments. Therefore, they are not affected by the new limits from XENON10

(dash-double dotted black line) and XENON100 (long-dashed purple line).
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Altogether, many models with radiative breaking domination are still allowed after

including the updated limits. Future direct detection experiments can further probe the

spin-dependent scattering of the Majorana fermion dark matter candidate.
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Figure 4.16: Cross sections for spin-dependent scattering in models with visible sector induced

breaking together with updated direct detection limits for 0.1 ≤ κ ≤ 10. As in Fig. 4.6, points

in green (light green) are allowed with all other constraints and give the correct (subdominant)

relic abundance, orange (yellow) ones give the correct (subdominant) abundance but lie above

the SIMPLE limit.

Left: Cross sections σSD
p for scattering on protons and lines for new limits from COUPP2012

(dash-dotted turquoise), PICASSO2012 (long-dashed orange) and XENON100 (long-dashed

purple) as well as the old limit from SIMPLE (short-dashed brown).

Right: Cross sections σSD
n for scattering on neutrons together with the lines for the new limit

from XENON100 (long-dashed purple) as well as the old limits from XENON10 (dash-dotted

blue), Zeplin (dotted pink) and CDMS (dashed turquoise).

4.4.3 Models with visible sector induced breaking

In the supersymmetric models with visible sector induced breaking, the results pre-

sented in Sec. 4.3.2 illustrated the differences with which the two possible dark matter

candidates, the Dirac fermion and the Majorana fermion, appear in direct detection

experiments. The Dirac fermion shows mostly in spin-independent scattering, similar to

the scenario in the toy model. The Majorana fermion has very little spin-independent

and dominantly spin-dependent scattering, as in the models with radiative breaking

domination. Thus, different direct detection experiments probe the two particles and

therefore all aforementioned updates have to be included in order to determine the al-

lowed models. In the plane of the magnitude of the kinetic mixing χ versus the hidden

photon mass mγ′ , the region where viable models can be found then reduces to the one

shown in the left-hand plot of Fig. 4.17. This plot is the updated equivalent to the right-

hand plot of Fig. 4.7, when all new constraints are taken into account. Again, points in

dark green give the correct relic abundance and those in light green provide a subdomi-

nant dark matter candidate. Several models, which gave the correct relic abundance and

were shown in dark green in the right-hand plot of Fig. 4.7, are no longer present in the
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left-hand plot of Fig. 4.17. These models are excluded once the updated direct detection

constraints are taken into account and only subdominant dark matter candidates are

still viable in this region of the parameter space, as discussed in the following.
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Figure 4.17: Viable models with visible sector induced breaking after taking into account

the updated direct detection limits and scanning over 0.1 ≤ κ ≤ 10. Points shown in green

(light green) give the total (subdominant) relic density.

Left: Models in agreement with all direct detection limits in the plane of the magnitude of

the kinetic mixing χ versus the hidden photon mass mγ′ . Lines show limits as in Fig. 4.7.

Right: Cross sections σSI
p for spin-independent scattering on protons together with lines

for new limits by DAMIC (dotted brown), XENON10 (dash-double dotted black) and

XENON100 (long-dashed purple) as well as old limits by CDMSSi (dashed turquoise) and

XENON100 (dash-dotted blue), cf. Fig. 4.9. Shaded areas indicate preferred regions of the

signals by DAMA (orange), CoGeNT (pink) and CRESST (cyan). Points in yellow are

subdominant and in conflict with SIMPLE.

The direct detection cross sections obtained from micrOMEGAs are again rescaled

according to Eq. (4.8) for subdominant dark matter. They are shown together with the

respective direct detection limits in the right-hand plot of Fig. 4.17 for spin-independent

scattering on protons (σSI
p ) and in Fig. 4.18 for spin-dependent scattering on protons

and on neutrons (σSD
p and σSD

n ). Each plot in both figures contains only models which

fulfil all the constraints shown in the other plots. For spin-independent scattering,

the experimental limits on the cross section σSI
N per nucleon have again been rescaled

according to Eq. (4.6) to limits on σSI
p for scattering exclusively on protons. Besides the

old limits from CDMSSi (dashed turquoise line) and XENON100 (dash-dotted blue line),

which were shown in Fig. 4.9, the plot contains the new limits from DAMIC (dotted

brown line), XENON10 (dash-double dotted black line) and XENON100 (long-dashed

purple line). They exclude the preferred regions of the signal claims by DAMA (orange

shade), CoGeNT (pink shade) and CRESST (cyan shade). The new plot of σSI
p shows

again that the cross sections obtained in the models with visible sector induced breaking

cluster in two disjoint regions. The upper region corresponds to the dark matter particle

being the Dirac fermion and the lower one to the Majorana fermion.
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The disappearance of dark green points in the left-hand plot of Fig. 4.17 is mostly

due to the DAMIC limit on σSI
p which extends the earlier limits to much lower masses.

In this way, it eliminates many models which gave the correct relic abundance at small

masses, as shown by the dotted brown line in the right-hand plot of the same figure.

Therefore, for some parts of the parameter space only models which give a subdominant

dark matter candidate are still viable. Furthermore, since the preferred regions for the

signals claims by DAMA or CoGeNT are excluded by the new limits, there are no longer

areas coloured in purple, red or blue, as they were shown in Fig. 4.8.

The cross section for spin-dependent scattering on protons and on neutrons are given

in Fig. 4.18 together with the corresponding direct detection limits, which are updated

compared to the ones of Fig. 4.10. Both plots only contain models in which the Majorana

fermion is the dark matter particle since the Dirac fermion has little spin-dependent

scattering. The left-hand plot for σSD
p contains the new limits from PICASSO2012

(long-dashed orange line), COUPP2012 (dash-dotted turquoise line) and XENON100

(long-dashed purple line) together with the older limit from SIMPLE (dashed brown

line). For σSD
n , the right-hand plot shows the new XENON100 bound (long-dashed

purple line) along with the older limits from XENON10 (dash-dotted blue line), Zeplin

(dotted pink line) and CDMS (dashed turquoise line). Compared to the corresponding

plots in Fig. 4.10, the new XENON100 limit on σSD
n for scattering on neutrons has the

most significant impact. It excludes many models as shown by the long-dashed purple
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Figure 4.18: Cross sections for spin-dependent scattering in models with visible sector in-

duced breaking together with updated direct detection limits for 0.1 ≤ κ ≤ 10. As in

Fig. 4.10, points in green (light green) are allowed with all other constraints and give the cor-

rect (subdominant) relic abundance, orange (yellow) points give the correct (subdominant)

abundance but are in conflict with SIMPLE.

Left: Cross sections σSD
p for scattering on protons and lines for new limits from COUPP2012

(dash-dotted turquoise), PICASSO2012 (long-dashed orange) and XENON100 (long-dashed

purple) as well as old ones from SIMPLE (short-dashed brown) and Super-K (dashed black).

Right: Cross sections σSD
n for scattering on neutrons together with the lines for the new limit

from XENON100 (long-dashed purple) as well as the old limits from XENON10 (dash-dotted

blue), Zeplin (dotted pink) and CDMS (dashed turquoise).
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line in the right-hand plot of Fig. 4.18. This results in the large indentation in the

left-hand plot. Furthermore, together with the new PICASSO2012 and COUPP2012

bounds, it reduces the effect on the parameter space caused by including or disregarding

the SIMPLE limit. Since the new bounds have almost the same reach as SIMPLE, there

are less models which are in conflict with SIMPLE but allowed by all other constraints.

The yellow and orange regions, corresponding to these models, therefore diminish, as

already discussed in Sec. 4.4.2 for the scenario with radiative breaking domination.

Even after the new constraints are taken into account, there are still many viable

models with visible sector induced breaking. They can provide the correct relic abun-

dance or give a subdominant contribution for either a Dirac fermion or a Majorana

fermion as dark matter candidate. Future direct detection experiments can further probe

the former through its spin-independent and the latter via spin-dependent scattering.

4.5 Summary

In this chapter, the dark matter relic abundance and direct detection cross sections of a

toy dark sector model and complete string-inspired supersymmetric dark sector models

were examined. The analysis emphasised the natural relationship between the kinetic

mixing parameter and the hidden gauge coupling. For the supersymmetric models, the

cases of radiative and visible sector induced breaking of the hidden gauge symmetry

were distinguished and a stark phenomenological contrast between the two scenarios

was established. Different signatures of a Dirac fermion and a Majorana fermion dark

matter particle arise since the former scatters spin-independently and the latter spin-

dependently. Our results show that the toy model as well as the supersymmetric dark

force models with gravity mediation give viable light dark matter candidates. The

Dirac fermion dark matter particle in the toy model and the models with visible sector

induced breaking can furthermore obtain the scattering cross sections that might explain

the signals in DAMA and CoGeNT (though not specifically analysed this would also be

possible for CRESST and CDMS). The tension with the direct detection limits is not

alleviated by the models and can only be reduced by non-standard assumptions for the

dark matter halo. Signatures and constraints from indirect detection for these dark

sector models have not been studied and are left for future work.



Chapter 5

Conclusions and Outlook

The question regarding the particle nature of dark matter is one of the great challenges of

present-day particle physics. Since the Standard Model does not provide an appropriate

candidate, it is well established that finding an answer requires an extension of the

Standard Model. Numerous models have been proposed to solve this puzzle and provide

a dark matter candidate. Many of these models involve new physics at the TeV scale and

great experimental effort is being made at the high-energy frontier, searching for new

heavy particles. Other models, on the contrary, predict new light particles which are

very weakly coupled to the Standard Model and have therefore not been detected yet.

The search for these particles — often referred to as WISPs — presents a complementary

approach to uncovering new physics and requires high-intensity experiments.

An interesting concept in this context is that of hidden sectors. They contain parti-

cles that lack a direct connection with the Standard Model since they are neutral under

the corresponding gauge groups. Consequently, they might only interact weakly with

the visible sector through a messenger particle. This makes them an ideal environment

not only for accommodating WISPs but also for dark matter. Furthermore, they are

often predicted in string theories and can be contained in various supersymmetric mod-

els. One particular example that arises frequently is the case of a hidden sector with

an extra U(1) symmetry. The corresponding gauge boson, the hidden photon, may be

light and couples weakly to the Standard Model through kinetic mixing with the or-

dinary photon. Such scenarios also provide interesting phenomenological features and

have received much attention in connection with dark matter.

In this thesis, we examined whether MeV-scale WISPs can be probed experimen-

tally despite interacting only weakly with the Standard Model. Using the example of

two candidates, the aforementioned hidden photon γ′ and the CP-odd Higgs A0 of the

NMSSM, we found that current experimental data constrain the mass and the couplings

of these particles. Furthermore, in view of the connection with dark matter, we studied

different models with dark sectors in which a light dark matter particle interacts with

the visible sector through the hidden photon. We showed that these models provide

viable dark matter candidates with interesting prospects for direct detection.

135



136 CHAPTER 5 CONCLUSIONS AND OUTLOOK

Constraints on a light CP-odd Higgs in the NMSSM

The NMSSM is an attractive extension of the MSSM and was originally introduced to

solve the so-called µ-problem. A light CP-odd Higgs A0 can arise from the spontaneous

breaking of approximate symmetries (Peccei–Quinn or R-symmetry) and is motivated

by string theory. In the work performed with Oleg Lebedev, Sául Ramos-Sánchez and

Andreas Ringwald, we focused on the mass range where the CP-odd Higgs is lighter

than two muons since larger masses have already been studied. The analysis and the

constraints which we derived on the mass mA0 of the light A0 and its coupling CAff to

fermions were presented in Chapter 2.

We used various flavour physics precision measurements to place limits on the CP-

odd Higgs in Sec. 2.2. The A0 can be produced from the radiative decays X −→ γ +A0

of a meson X or via the rare decays X −→ Y +A0 to another meson Y . The branching

ratio of such a process is constrained by experimental measurements of the type X −→
Y/γ+invisible orX −→ Y/γ+`+`−, according to the detected final states. The A0, which

can decay into γγ or e+e− in the mass range of interest, can contribute to either of these

processes. Therefore, we distinguished between the two possibilities that, depending

on its decay width, the A0 decays either outside or inside the detector. We compared

both cases to the corresponding measurements and in this way probed complementary

regions of the A0 parameter space. The search for an invisible A0 only applies at small

masses and couplings where the decay width is large and the lifetime is long enough for

the A0 to escape the detector. The measurements where the leptons in the final state

are detected come into play once the lifetime is sufficiently short so that the A0 can be

observed through its decay into e+e−. Since in both cases the derived limits depend

on the decay width of the A0, we found that the exclusion contours for masses lighter

and heavier than twice the electron mass exhibit a different behaviour. While below the

two-electron threshold the A0 only decays into two photons, the additional decay into

electrons severely reduces the lifetime for heavier masses. Furthermore, we considered

the rare pion decay into e+e− which is only a loop process in the Standard Model,

while it proceeds through the CP-odd Higgs at tree-level. The measured branching

ratio allowed us to exclude large couplings of the A0. We also included another limit

obtained from requiring that the loop contribution of the A0 to the muon anomalous

magnetic moment does not worsen the observed discrepancy beyond 5σ. In Sec. 2.3, we

studied further limits from reactor and beam dump experiments, which are based on a

different kind of physics and can therefore be considered as complementary.

In summary, we have addressed the question of how light the CP-odd Higgs of the

NMSSM can be. We found that masses below 210 MeV and couplings to fermions larger

than 10−4 are excluded, usually even by more than one experiment. This is shown

in Fig. 2.2 for the constraints arising from meson decays. Since smaller couplings can

scarcely be achieved in the NMSSM, we conclude that the A0 has to be heavier than

about 210 MeV. Our constraints on the CP-odd Higgs are published in [41] and quoted
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in the Review of Particle Physics by the PDG [4]. They show that even very small

couplings, like the ones of the CP-odd Higgs, can be constrained, e.g. with precision

measurements from flavour physics or high-intensity beam dump experiments. In gen-

eral, all our constraints apply to the couplings of a light pseudoscalar (axion-like) particle

to matter since our analysis did not assume details of the NMSSM. Instead, the con-

straints have been derived solely in terms of the mass and the coupling strength. While

the limits from meson decays require a coupling to quarks, those from electron beam

dump experiment and the muon anomalous magnetic moment only rely on the coupling

to leptons. They therefore also apply to leptophilic scenarios, where the pseudoscalar

can only couple to leptons.

Our results severely constrain NMSSM scenarios in which the PAMELA excess is

explained by leptophilic neutralino annihilations via a light CP-odd Higgs which subse-

quently decays to e+e−, as discussed in Sec. 2.4. According to our analysis, the CP-odd

Higgs in the NMSSM should be heavier than two muons and might therefore be searched

for at the LHC through the decay into µ+µ−.

Constraints on a light hidden photon

The hidden photon can be probed in experiments through its coupling to charged Stan-

dard Model particles. This coupling is generated by kinetic mixing with the photon and

has a strength which is suppressed by the kinetic mixing parameter χ compared to the

electron charge. In the work done in collaboration with Carsten Niebuhr and Andreas

Ringwald, we studied constraints from electron beam dump experiments on the hidden

photon mass mγ′ and the kinetic mixing χ. Our analysis is described in Chapter 3 and

the resulting limits on hidden photons with masses in the MeV range are published

in [42].

In Sec. 3.1, we studied the production of the hidden photon in bremsstrahlung off an

initial electron beam. Requiring that the hidden photon subsequently decays behind the

beam dump and in front of the detector, we derived the number of events predicted to

arise in an electron beam dump experiment. This enabled us to explore the characteristic

shape of the expected exclusion contour as a function of the hidden photon mass mγ′ and

the kinetic mixing χ. We also studied the dependence of this contour on the specifications

of a particular experimental set-up. From these considerations, we found that these kind

of experiments can only access the lower left corner of the parameter space, i.e. small

hidden photon masses and small kinetic mixing values. We stressed that the reach of

electron beam dump experiments is limited at small values of χ by statistics and in the

direction of large mγ′ and/or large χ by the need for a long enough lifetime for the

hidden photon to traverse the dump. We then introduced the five experiments labelled

KEK, E141, E137, Orsay and E774, which were used in our analysis in Sec. 3.2. For each

of these experiments, we generated events with MadGraph and constructed the path
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of the hidden photon from the production to the decay, followed by the trajectories of its

decay products. Comparing the results of these simulations with the three-dimensional

layout and geometry of the experiments and taking into account potential energy cuts

applied in the experiments’ data analysis, we determined the actual acceptance of each

experiment.

Finally, our resulting exclusion contours on the hidden photon mass mγ′ and the

kinetic mixing χ were presented in Fig. 3.8 for the five electron beam dump experiments

that were analysed. For the first time the limits were obtained by combining the theo-

retical estimate for the number of events with the experimental acceptance from Monte

Carlo simulations. The exclusion contours exhibit the behaviour which was anticipated

in light of the above-mentioned considerations. Including the results of experiments

at KEK and Orsay which had not been considered before, we were able to exclude a

part of the parameter space which had not been constrained previously by any other

similar experiment. Finally, we gave an overview of all current constraints on hidden

photons from various searches in Sec. 3.4 and summarised plans for future experiments

in Sec. 3.5.

Since large parts of the parameter space are still allowed, it is interesting to further

check whether it is possible to probe as yet unexplored regions with potential future elec-

tron beams. While the region which is typically accessible for these kind of experiments

is mostly excluded, pushing the limits further towards small χ or towards the upper

right corner of the parameter space {mγ′ , χ} might require rather extreme measures,

like severely shortening the shield or dumping a very large number of electrons. These

considerations of how to extend the reach of a new experiment have to take into account

the dependence of the limit on the experimental set-ups since, for example, collecting

ten times more electrons would only result in lowering the reach in χ by a factor of
4
√

10 ' 1.8. For the ongoing 2013 Snowmass Study, as part of the Intensity Frontier

working group, we currently also investigate if and how one can extend and improve

the search and limits for hidden photons. Another open issue is whether the present

limits can be improved by taking into account the fact that not only the initial electron

from the beam but also the secondary electrons, produced in the thick target by the

showering of the first one, might emit a hidden photon. An interesting question, which

was not addressed in this thesis, concerns the modification of our limits in the presence

of hidden sector particles that are lighter than the hidden photon and charged under

the hidden U(1). As we assumed that the hidden photon can only decay into Standard

Model particles, our constraints become weaker once the hidden photon can also decay

within the hidden sector. A study of the modified limits is left for future works.

Hidden sector models with dark matter and a hidden photon

The phenomenology of different models which, besides a hidden photon, also contain a

light dark matter particle in the hidden sector was studied in Chapter 4. In these models,
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the dark matter particle can annihilate either into a real hidden photon or through

a virtual one in an s-channel exchange into Standard Model fermions. Additionally,

because of kinetic mixing, the hidden photon can mediate the scattering of dark matter

on nuclei. These processes are relevant for the determination of the dark matter relic

abundance and the prospects at direct detection experiments. In view of the signals

claimed by certain direct detection experiments, we focused on models with a GeV-

scale dark matter particle. We considered a toy model as well as simple string-inspired

supersymmetric models with gravity mediation for which we allowed the hidden gauge

symmetry to be broken either radiatively or by the visible sector. For these different

scenarios, we addressed the question whether viable dark matter candidates can be

obtained in agreement with observations. The results of this analysis, performed together

with Mark Goodsell and Andreas Ringwald, are published in [43].

In the dark sector models, in addition to the constraints on the hidden photon which

were discussed in Chapter 3, we also had to take into account limits on the accompanying

dark matter particle. In Sec. 4.1, we summarised all relevant constraints, especially

emphasizing the various limits from direct detection experiments. We discussed the

application of these constraints to our models. It is necessary to distinguish whether

the dark matter particle is a Dirac fermion or a Majorana fermion since the former

scatters spin-independently and the latter spin-dependently. Therefore, different direct

detection experiments have to be taken into account for both particles. Our analysis

did not only consider dark matter particles which provide the entire relic abundance but

also those which constitute a subdominant part of the total dark matter in the Universe.

In the case of subdominant dark matter, the scattering cross sections had to be rescaled

compared to those from direct detection experiments to account for the lower local dark

matter density. Due to recent improvements in direct detection limits, we also performed

an update of our analysis in Sec. 4.4. There, we studied the implications of these new

limits on the parameter space of our models.

For the Dirac fermion dark matter particle, we argued that the spin-independent

scattering mostly involves protons, i.e. it is strongly isospin-dependent, since it is medi-

ated by the hidden photon which couples only to charged particles. In our analysis, the

cross sections for spin-independent scattering from direct detection experiments, which

are generally normalised to scattering on nucleons, therefore had to be rescaled accord-

ingly. Then, the Dirac fermion dark matter particle turned out to be mostly constrained

by XENON100 and CDMSSi as well as DAMIC and XENON10 in the updated analy-

sis. We further found that the Dirac fermion can obtain scattering cross sections in the

range required to fit the DAMA and CoGeNT signals. Even though we did not consider

the CRESST and CDMS signals explicitly, these suggest cross sections and masses in a

range similar to DAMA and CoGeNT and could also be accommodated by our models.

While the signals by DAMA and CoGeNT were still in agreement with the limits applied

in our first analysis, they are in tension with the newer limits when making the standard

assumptions for the dark matter halo.
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The Majorana fermion dark matter particle, which undergoes mostly spin-dependent

scattering, turned out to receive the strongest constraint from SIMPLE for scattering

on protons. Because of discussions questioning the reliability of this constraint, we high-

lighted the effect which arises from applying or disregarding this limit. In the updated

analysis, the newer limits by COUPP and PICASSO as well as the one by XENON100

for scattering on neutrons turned out to be almost as constraining as SIMPLE.

Based on these considerations we examined whether a certain model could predict a

viable dark matter candidate with the correct (or a subdominant) relic abundance and

still be in agreement with the constraints from direct detection experiments. For the toy

model with minimal particle content, we performed a scan over the parameter space and

computed the relic abundance and spin-independent scattering cross sections of the Dirac

fermion dark matter particle with micrOMEGAs in Sec. 4.2. Analysing the results with

respect to the above-mentioned experimental requirements, we obtained viable models

in most of the parameter space with hidden photon masses ranging from O(100 MeV)

to 40 GeV and kinetic mixing values from 10−5 to 10−2. Dark matter particles having

a mass between 0.8 GeV and 25 GeV were found to provide either the correct or a

subdominant relic abundance in this parameter space. In some regions, the scattering

cross section turned out to be in agreement with those explaining the DAMA and/or

CoGeNT signal for different halo models. The updated direct detection constraints

eliminated these signal regions, but we still found viable dark matter candidates for the

same parameter space of hidden photon mass and kinetic mixing.

For the supersymmetric dark force models, we discussed, in Sec. 4.3, the phenomenol-

ogy of the two scenarios which we obtained by considering two different mechanisms to

break the hidden gauge symmetry. In the case of radiatively induced breaking, in con-

trast to the case of the toy model, we found that the dark matter particle is a Majorana

fermion. The resulting direct detection cross sections, computed with micrOMEGAs,

are very small for spin-independent scattering and beyond the reach of experiments.

The spin-dependent scattering dominates and was shown to be partly constrained by

experiments. The different low-energy models, which were obtained by scanning over the

high-energy parameters and running down to the low scale, were therefore confronted

with bounds from the direct detection experiments which are sensitive to spin-dependent

scattering. Models providing viable dark matter candidates with a mass of a few GeV

up to ∼ 15 GeV were obtained but did not populate as much of the parameter space as

in the toy model.

In the case where the breaking of the hidden gauge symmetry is induced by the visible

sector, we searched for models by scanning over the low-energy parameters. The dark

matter particle in these scenarios can either be a Dirac fermion or a Majorana fermion.

The former was found to exhibit a phenomenology similar to the toy model with the

following two differences. First, in all the supersymmetric dark sector models under

consideration, the dark matter particle can never be heavier than the hidden photon.
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Therefore, a large region of the parameter space at large hidden photon masses and

small kinetic mixing values does, in contrast to the toy model, not provide any viable

dark matter candidates since the t-channel annihilation into two hidden photons is not

possible. Second, while the Dirac fermion dark matter particle can again obtain the

scattering cross sections required to explain the direct detection signals, its contribution

to the relic abundance in these cases is always subdominant. In the scenarios in which the

Majorana fermion constitutes the dark matter particle, the phenomenology resembles

the one in models with radiative breaking domination. The Majorana fermion can again

be probed by direct detection experiments sensitive to spin-dependent scattering. A

particular scan for very light hidden sectors yielded viable models with an MeV-scale

hidden photon which may be detected by the future experiments discussed in Chapter 3.

In summary, our results on dark sectors showed that both our toy model as well

as the supersymmetric dark force models with gravity mediation predict viable light

dark matter candidates. The new approach of fixing the hidden gauge coupling by the

relation (1.21) as a function of the kinetic mixing gave qualitatively different results for

the cross sections. Our models were found to have interesting potential for testing in

direct detection experiments, both for spin-independent and spin-dependent scattering.

In the toy model and in the model with visible sector induced breaking, the Dirac fermion

dark matter candidate can have spin-independent scattering cross sections which are

able to explain the direct detection signals observed by DAMA, CoGeNT, CRESST and

CDMS. The models themselves do, however, not provide the means to reduce the generic

tension with the direct detection limits and would require non-standard assumptions for

the dark matter halo. We showed that light hidden sector scenarios coming from models

with radiatively induced breaking, which are most relevant for gravity mediation, can

be viable, in contrast to what was claimed in earlier works. We found that these models

can even be somewhat probed by direct detection experiments which are sensitive to

spin-dependent scattering.

Very recent results following the observation of a signal by CDMS [39] might have

implications for our updated analysis which have not been taken into account in this

thesis. The XENON10 limit [331] applied in Sec. 4.4 excluded a large part of the

parameter space in the toy model and in the models with visible sector induced breaking.

However, in [336] it was found that the actual XENON10 limit is weaker by almost a

factor of 10 than the one originally published in [331]. An erratum of [331] now also

confirms the weaker limit. The new limit is therefore less constraining for the parameter

space of our models than assumed in our analysis. In [336] it is further claimed that the

signal observed by CDMS is no longer excluded, even with standard assumptions for the

halo. A very recent update [337] of the analysis performed by CoGeNT in 2012 moved

their signal region closer to the one of CDMS. The cross sections required to explain both

signals might thus still be in agreement with current limits. Since these cross sections

are similar to the ones considered in our analysis for DAMA and CoGeNT, both the toy

model as well as the models with visible sector induced breaking could also yield the
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cross sections preferred by the new observations. Including the weaker XENON10 limit

as well as the signal regions in the analysis of the parameter space for both models is

left for future work [332].

While we have focused on direct detection signatures in this thesis, there are further

possible avenues to extend the work carried out in the context of these models. We plan

to study the constraints on the dark matter annihilation from indirect detection exper-

iments. These include gamma rays from dwarf spheroidal galaxies or from the galactic

centre, radio waves produced in the halo from charged annihilation products, for exam-

ple, by synchrotron radiation, and neutrinos from the Sun. Even though the dependence

of our results on the visible sector parameters is small, changing the considered MSSM

benchmark scenario could also be of interest.



Acknowledgements
This thesis would not have been possible without the help of several people who in

one way or another contributed and assisted in the preparation and completion.

First of all, I owe my deepest gratitude to my supervisor Andreas Ringwald for his

scientific and personal support as well as his encouragement and guidance. I am thankful

to Torsten Bringmann and Günter Sigl for agreeing to referee my disputation and my

dissertation, respectively.

I am especially grateful to Mark Goodsell, Oleg Lebedev, Carsten Niebuhr and Sául
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Appendix A

Kinetic Mixing

This appendix gives an overview of kinetic mixing. It is shown how the kinetic and

mass terms are diagonalised in a Lagrangian which includes the hidden photon and the

kinetic mixing. The resulting couplings of the physical gauge bosons to the matter fields

are derived. Note that, since the kinetic mixing parameter χ is a small quantity we can

often focus on the leading order effects while higher order corrections are negligible.

A.1 Mixing with the ordinary photon

We consider the most simple low energy effective Lagrangian

L ⊃ −1

4
F̃µνF̃

µν − 1

4
X̃µνX̃

µν +
χ

2
F̃µνX̃

µν +
1

2
m̃2
γ′X̃µX̃

µ + ẽjµemÃµ , (A.1)

where F̃µν = ∂µÃν−∂νÃµ is the field strength tensor of the ordinary U(1) gauge field Ãµ

and X̃µν = ∂µX̃ν − ∂νX̃µ is the field strength tensor of the hidden U(1) gauge field X̃µ.

The electromagnetic current is jµem = Qψ̄γµψ. The Lagrangian contains a non-diagonal

kinetic term with kinetic mixing parameter χ and all fields in this unrotated mixed

basis are denoted with tilde. Those without tilde refer to the ones in the physical mass

eigenbasis in which the kinetic terms and the mass terms are diagonal.

In order to diagonalise the field strength, the transformation

X̃µ =
1√

1− χ2
Xµ , (A.2)

Ãµ = Aµ +
χ√

1− χ2
Xµ , (A.3)
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is applied to the Lagrangian. This results in

L ⊃ − 1

4
FµνF

µν − 1

4

1

1− χ2
(χ2 + 1− 2χ2)XµνX

µν +
1

2

m̃2
γ′

1− χ2
XµX

µ

+ ẽjµemAµ + ẽ
χ√

1− χ2
jµemXµ

− 1

4

χ√
1− χ2

FµνX
µν − 1

4

χ√
1− χ2

XµνF
µν +

1

2

χ√
1− χ2

FµνX
µν , (A.4)

in which the mixing terms in the last line cancel. The final Lagrangian

L ⊃ −1

4
FµνF

µν− 1

4
XµνX

µν +
1

2

m̃2
γ′

1− χ2
XµX

µ + ẽjµemAµ + ẽ
χ√

1− χ2
jµemXµ (A.5)

shows that the term for the coupling of the electromagnetic current jµem to the ordinary

photon field Aµ is the standard one so that one can identify ẽ = e. Expanding the

Lagrangian to first order in χ gives

L ⊃ −1

4
FµνF

µν− 1

4
XµνX

µν +
1

2
m2
γ′XµX

µ + ejµemAµ + eχjµemXµ . (A.6)

It can be seen that the non-orthogonal rotation introduces a coupling between the visible

sector current jµem and the hidden gauge field Xµ. The visible sector particles acquire

a non-zero minicharge under the hidden U(1). Thus, due to kinetic mixing the hidden

photon couples to the ordinary electromagnetic current with a QED-like vertex ieQχγµ,

when expanding the coupling to first order in χ.

A.2 Mixing with hypercharge

In analogy to (A.1), we consider the low energy effective Lagrangian for the mixing with

the hypercharge gauge field, given by

L ⊃ −1

4
B̃µνB̃

µν − 1

4
X̃µνX̃

µν +
χY
2
B̃µνX̃

µν +
m̃2
γ′

2
X̃µX̃

µ + gY j
µ
BB̃µ , (A.7)

where now B̃µν = ∂µB̃ν − ∂νB̃µ is the field strength tensor of the U(1)Y hypercharge

gauge field B̃µ and gY = e/cW is the hypercharge gauge coupling1 with cW being the

cosine of the Weinberg angle. Again X̃µν is the field strength tensor of the hidden U(1)

gauge field X̃µ. The parameter χY entering in the mixing term with the hypercharge is

connected to χ in Eq. (A.1) by χ = χY cW . The visible sector current jµB is discussed in

Sec. A.3.

1To be precise, the couplings in the mixed basis here should again be labelled with a tilde as in (A.1).
However, it is shown in Sec. A.1 that ẽ = e and since the other parameters are at most modified by
higher orders of χ, we neglect this dependence in the following and write them directly without tilde.
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In analogy to the previous section, the transformation

X̃µ =
1√

1− χ2
Y

Xµ , (A.8)

B̃µ = Bµ +
χY√

1− χ2
Y

Xµ , (A.9)

diagonalises the kinetic terms in the Lagrangian and gives

L ⊃ −1

4
BµνB

µν− 1

4
XµνX

µν +
1

2

m̃2
γ′

1− χ2
Y

XµX
µ+gY j

µ
BBµ+gY

χY√
1− χ2

Y

jµBXµ , (A.10)

where again the visible sector particles get charged under the hidden U(1).

A.3 Currents

The currents used in this appendix are defined as

jµW = T3ψ̄γ
µPLψ , (A.11)

jµB = YLψ̄γ
µPLψ + YRψ̄γ

µPRψ (A.12)

= Qψ̄γµψ − T3ψ̄γ
µPLψ ,

jh = ψ̄hγ
µψh , (A.13)

where YL = Q− T3, YR = Q and

PL =
1

2
(1− γ5) , PR =

1

2
(1 + γ5) , PL + PR = 1 , (A.14)

γµ =




0 σµ

σ̄µ 0


 , γ5 =



−1 0

0 1


 , (A.15)

and ψ and ψh refer to Dirac spinors in the visible and hidden sector, respectively, with

ψ =



η

ξ̄


 , ψL = PLψ , ψR = PRψ . (A.16)

The particle content in the visible sector is



uL

dL


 ,



νL

eL


 , uR, dR, eR, (νR) , (A.17)
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with assignments for the electric charge Q, the weak isospin T3 and the hypercharge Y

given by

Q T3 Y Q T3 Y

uL
2
3

1
2

1
6 uR

2
3 0 2

3

dL −1
3 −1

2
1
6 dR −1

3 0 −1
3

νL 0 1
2 −1

2 νR 0 0 0

eL −1 −1
2 −1

2 eR −1 0 −1 .

(A.18)

Then, for

jµA = jµW + jµB , (A.19)

jµ
Z0 =

1

cW sW
(c2
W j

µ
W − s2

W j
µ
B) , (A.20)

it follows with Eqs. (A.11) and (A.12) that

jµA = Qψ̄γµψ , (A.21)

jµ
Z0 =

1

cW sW

(
c2
WT3ψ̄γ

µPLψ − s2
WQψ̄γ

µψ + s2
WT3ψ̄γ

µPLψ
)

=
1

cW sW

(
T3ψ̄γ

µPLψ − s2
WQψ̄γ

µψ
)

=
1

cW sW
ψ̄γµ

(
T3PL − s2

WQ
)
ψ . (A.22)

Thus, the currents can be also be written as

g2j
µ
W = e(cW j

µ
Z0 + sW j

µ
A) , (A.23)

gY j
µ
B = e(cW j

µ
A − sW j

µ
Z0) . (A.24)

For direct detection experiments, it is most relevant to consider the currents in

the vector and axial vector basis. While a hidden Dirac fermion may couple to both

components, a U(1) mixing primarily with the hypercharge will almost entirely only

couple to the vector current. To see this, let us consider the hypercharge and weak

currents slit into vector and axial vector contributions. The hypercharge current of

Eq. (A.12) reads

jµB =
1

6
ūγµPLu+

1

6
d̄γµPLd+

2

3
ūγµPRu−

1

3
d̄γµPRd−

1

2
ēγµPLe−

1

2
ν̄γµPLν − ēγµPRe

(A.25)

and can be written with PL and PR of Eq. (A.14) as

jµB,vec =
5

12
ūγµu− 1

12
d̄γµd− 3

4
ēγµe− 1

4
ν̄γµν ,

jµB,axial =
1

4
ūγµγ5u− 1

4
d̄γµγ5d− 1

4
ēγµγ5e+

1

4
ν̄γµγ5 . (A.26)
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Accordingly, the weak current of Eq. (A.11) given by

jµW =
1

2
ūγµPLu−

1

2
d̄γµPLd+

1

2
ν̄γµPLν −

1

2
ēγµPLe (A.27)

splits into

jµW,vec =
1

4
ūγµu− 1

4
d̄γµd− 1

4
ēγµe+

1

4
ν̄γµν ,

jµW,axial = − 1

4
ūγµγ5u+

1

4
d̄γµγ5d+

1

4
ēγµγ5e− 1

4
ν̄γµγ5ν = −jµB,axial . (A.28)

A.4 Electroweak Lagrangian

Extending the Lagrangian (A.7) to include the electroweak couplings gives

L ⊃ − 1

4
B̃µνB̃

µν − 1

4
X̃µνX̃

µν +
χY
2
B̃µνX̃

µν − 1

4
W̃µνW̃

µν

+
1

8
v2(gY B̃µ − g2W̃µ)2 +

1

2
m̃2
γ′X̃µX̃

µ

+ gY j
µ
BB̃µ + g2j

µ
W W̃µ + ghj

µ
hX̃µ , (A.29)

which describes the coupling of the currents jµB, jµW and jµh to the respective unrotated

gauge bosons B̃µ, W̃µ, and X̃µ corresponding to hypercharge, weak and hidden gauge

bosons, respectively. There, X̃µν is again the field strength tensor of the hidden U(1)

gauge field X̃µ, B̃µν is the field strength tensor of the U(1)Y hypercharge gauge field B̃µ,

and Wµν is the field strength tensor of the neutral SU(2)L gauge field Wµ ≡ W 3
µ . The

currents jµB, jµW and jµh are discussed in Sec. A.3 and g2 = e/sW is the weak coupling

constant, where sW is the sine of the Weinberg angle.

Applying again the transformation given by Eqs. (A.8) and (A.9) the Lagrangian

reads

L ⊃ − 1

4
BµνB

µν − 1

4
XµνX

µν − 1

4
W̃µνW̃

µν (A.30)

+
1

2

m̃2
γ′

1− χ2
Y

XµX
µ +

1

8
v2(gYBµ + gY

χY√
1− χ2

Y

Xµ − g2W̃µ)2

+ gY j
µ
YBµ + g2j

µ
W W̃µ + gY

χY√
1− χ2

Y

jµBXµ + gh
1√

1− χ2
Y

jµhXµ ,

and has diagonal kinetic terms while the mass terms are not diagonal yet. It can be

seen in the last term in the second line that the mass of the Z gets shifted due to the

kinetic mixing as discussed also in the following.
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We make further the definitions

Z̃µ ≡ cW W̃µ − sWBµ ,
Aµ ≡ sW W̃µ + cWBµ , (A.31)

where Z̃µ is the usual Z-boson of the Standard Model, Aµ is the usual photon, sW and

cW are sine and cosine of the weak mixing angle, respectively, and

e = gY cW = g2sW ,

g2
Y + g2

2 =
e2

c2
W s

2
W

=
g2
Y

s2
W

=
g2

2

c2
W

,

M̃2
Z =

v2

4
(g2
y + g2

2) =
v2

4

e2

c2
W s

2
W

=
v2

4

g2
Y

s2
W

=
v2

4

g2
2

c2
W

,

=⇒ gY sW + g2cW = 2
M̃Z

v
s2
W + 2

M̃Z

v
c2
W = 2

M̃Z

v
. (A.32)

Thus, applying the transformation

W̃µ = cW Z̃µ + sWAµ ,

Bµ = − sW Z̃µ + cWAµ , (A.33)

to the Lagrangian (A.30) and considering the mass term

L ⊃ 1

2

m̃2
γ′

1− χ2
Y

XµX
µ +

v2

8


gYBµ +

gY χY√
1− χ2

Y

Xµ − g2W̃µ




2

≡ 1

2
(Z̃µ Xµ)M2

2×2

(
Z̃µ

Xµ

)
, (A.34)

this can be written using the relations in Eq. (A.32) as

1

2
(Z̃µ Xµ)M2

2×2

(
Z̃µ

Xµ

)
(A.35)

=
1

2

m̃2
γ′

1− χ2
Y

XµX
µ +

v2

8


(gY cW − g2sW )Aµ − (gY sW + g2cW )Z̃µ +

gY χY√
1− χ2

Y

Xµ




2

=
1

2

m̃2
γ′

1− χ2
Y

XµX
µ +

1

2
M̃2
Z


Z̃µ −

sWχY√
1− χ2

Y

Xµ




2

. (A.36)

The mass matrix M2
2×2 for (Z̃µ, Xµ) can then be written as

M2
2×2 = M̃2

Z

(
1 − tanα

− tanα x
1−χ2 + tan2 α

)
, (A.37)
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where we defined

tanα =
sWχY√
1− χ2

Y

, sinα =
sWχY√

1− c2
Wχ

2
Y

, cosα =

√
1− χ2

Y√
1− c2

Wχ
2
Y

, (A.38)

x ≡
m̃2
γ′

M̃2
Z

. (A.39)

We find the eigenvalues for the matrix M2
2×2 as

m2
± =

M̃2
Z

2(1− χ2
Y

)

[
1 + x− χ2

Y
+ s2

Wχ
2
Y
±
√

(1 + x− χ2
Y

+ s2
Wχ

2
Y

)2 − 4x(1− χ2
Y

)

]

=
M̃2
Z

2(1− χ2
Y

)

[
1 + x− χ2

Y
+ s2

Wχ
2
Y
±
√

(1− x− χ2
Y

+ s2
Wχ

2
Y

)2 + 4xs2
Wχ

2
Y

]

=
M̃2
Z

2(1− χ2
Y

)

[
1 + x− c2

Wχ
2
Y
±
√

(1 + x− c2
Wχ

2
Y

)2 − 4x(1− χ2
Y

)

]
, (A.40)

in which m+ and m− correspond to the Z mass MZ and the hidden photon mass mγ′ ,

respectively. They are roughly given by

M2
Z ≡ m2

+ = M̃2
Z

[
1 +

s2
Wχ

2
Y

1− x + ...

]
, (A.41)

m2
γ′ ≡ m2

− = m̃2
γ′

[
1 +

(1− s2
W − x)χ2

Y

1− x + ...

]
. (A.42)

This shows that the kinetic mixing shifts the mass of the Z but the masses are only

shifted at order χ2
Y

.

The transformation to diagonalise the mass term can in general be written as a

unitary transformation described by the following ansatz as a function of an angle φ

(
Z̃µ

Xµ

)
=

(
cφ sφ

−sφ cφ

)(
Zµ

γ′µ

)
, (A.43)

so that the hidden photon γ′ and the Z are thus defined as

Zµ ≡ cφZ̃µ − sφXµ ,

γ′µ ≡ sφZ̃µ + cφXµ . (A.44)



152 APPENDIX A KINETIC MIXING

We find that the mass matrix of Eq. (A.37) is diagonalised for

cφ = cosφ =
M̃2
Z tanα√

M̃4
Z tan2 α+ (M̃2

Z −m2
+)2

=
(M̃2

Z −m2
−)√

M̃4
Z tan2 α+ (M̃2

Z −m2
−)2

' 1− s2
Wχ

2
Y

2(1− x)2
+ ... , (A.45)

sφ = sinφ =
(m2

+ − M̃2
Z)√

M̃4
Z tan2 α+ (M̃2

Z −m2
+)2

=
M̃2
Z tanα√

M̃4
Z tan2 α+ (M̃2

Z −m2
−)2

' sWχY
1− x + ... , (A.46)

where tanα from Eq. (A.38) has been used.

Applying the transformation (A.43) to the fields in the mass term of Eq. (A.36), the

mass term can be expressed as

L ⊃ 1

2
ZµZ

µ

[
m̃2
γ′

1− χ2
Y

s2
φ + M̃2

Z(cφ + sφ
χY√

1− χ2
Y

sW )2

]
(A.47)

+
1

2
γ′µγ

′µ
[

m̃2
γ′

1− χ2
Y

c2
φ + M̃2

Z(sφ −
χY√

1− χ2
Y

sW cφ)2

]

+ γ′µZ
µ

[
−

m̃2
γ′

1− χ2
Y

sφcφ + M̃2
Z(cφ + sφ

χY√
1− χ2

Y

sW )(sφ −
χY√

1− χ2
Y

sW cφ)

]
,

in which the term in parenthesis in the first line corresponds to the physical Z mass, the

one in parenthesis in the second line to the physical hidden photon mass and the one

in parenthesis in the last line has to vanish for the mass matrix to be diagonal, which

gives a condition for the mixing angle φ as

−
m̃2
γ′

1− χ2
Y

sφcφ + M̃2
Z(cφ + sφ

χY√
1− χ2

Y

sW )(sφ −
χY√

1− χ2
Y

sW cφ)
!

= 0. (A.48)

Thus, the physical masses can be read off the first line for the Z as

M2
Z = m2

+ = M̃2
Z(cφ + sφsW

χY√
1− χ2

Y

)2 + s2
φ

1

1− χ2
Y

m̃2
γ′ (A.49)

= M̃2
Z

[
1− s2

φ(1 + s2
W

χ2
Y

1− χ2
Y

+
x

1− χ2
Y

) + s2φsW
χY√

1− χ2
Y

]
,
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and off the second line for the hidden photon as

m2
γ′ = m2

− = M̃2
Z(sφ − cφsW

χY√
1− χ2

Y

)2 + c2
φ

1

1− χ2
Y

m̃2
γ′ (A.50)

= M̃2
Z

[
c2
φ

x

1− χ2
Y

+ s2
W

χ2
Y

1− χ2
Y

+ s2
φ(1− s2

W

χ2
Y

1− χ2
Y

)− s2φsW
χY√

1− χ2
Y

]
,

which can be written as

(
M2
Z

m2
γ′

)
=

(
m2

+

m2
−

)
=




(cφ + sφsW
χ
Y√

1−χ2
Y

)2 s2
φ

(sφ − cφsW χ
Y√

1−χ2
Y

)2 c2
φ






M̃2
Z

m̃2
γ′

1−χ2
Y


 . (A.51)

Inverting the matrix then gives



M̃2
Z

m̃2
γ′

1−χ2
Y


 =

1

c4
φ − s4

φ +
2cφsφsWχ

Y√
1−χ2

Y




c2
φ −s2

φ

−(sφ − cφsWχ
Y√

1−χ2
Y

)2 (cφ +
sφsWχ

Y√
1−χ2

Y

)2



(
M2
Z

m2
γ′

)
,

(A.52)

so that M̃Z and m̃γ′ can be expressed in terms of the physical masses as

M̃2
Z =

1

c4
φ − s4

φ +
2cφsφsWχ

Y√
1−χ2

Y

(
c2
φM

2
Z − s2

φm
2
γ′
)
, (A.53)

m̃2
γ′ =

1− χ2
Y

c4
φ − s4

φ +
2cφsφsWχ

Y√
1−χ2

Y


−(sφ −

cφsWχY√
1− χ2

Y

)2M2
Z + (cφ +

sφsWχY√
1− χ2

Y

)2m2
γ′


 .

(A.54)

Inserting this into the condition (A.48) which arises from the requirement that the

off-diagonal mass term has to vanish and defining S = (sφ − cφsWχY /
√

1− χ2
Y

) and

C = (cφ + sφsWχY /
√

1− χ2
Y

) gives

0 = − sφcφ(−S2M2
Z + C2m2

γ′) + (c2
φM

2
Z − s2

φm
2
γ′)CS

0 = M2
ZcφS(sφS + cφC)−m2

γ′sφC(sφS + cφC) , where (sφS + cφC) = 1

0 = M2
Zcφsφ −M2

Zc
2
φsW

χY√
1− χ2

Y

−m2
γ′sφcφ −m2

γ′s
2
φsW

χY√
1− χ2

Y

0 = − s2
φsW

χY√
1− χ2

Y

m2
γ′ + cφsφ(M2

Z −m2
γ′)− c2

φsW
χY√

1− χ2
Y

M2
Z

0 = − t2φsW
χY√

1− χ2
Y

m2
γ′ + tφ(M2

Z −m2
γ′)− sW

χY√
1− χ2

Y

M2
Z , (A.55)

where tφ = tanφ.



154 APPENDIX A KINETIC MIXING

This condition has the solutions

tanφ = −

√
1− χ2

Y

2sWχYm
2
γ′

(
−(M2

Z −m2
γ′)±

√
(M2

Z −m2
γ′)

2 − 4s2
W

χ2
Y

1− χ2
Y

M2
Zm

2
γ′

)

= −

√
1− χ2

Y

2sWχY x̂

(
−(1− x̂)±

√
(1− x̂)2 − 4s2

W

χ2
Y

1− χ2
Y

x̂

)
, (A.56)

where we defined x̂ ≡ m2
γ′

M2
Z

. For x < 1, this can be estimated as

tanφ ≈ −

√
1− χ2

Y

2sWχY x̂
(1− x̂)

(
−1 +

√
1− 4s2

W

χ2
Y

1− χ2
Y

x̂

(1− x̂)2

)

x�1≈ −

√
1− χ2

Y
(1− x̂)

2sWχY x̂


−1 + 1− 2s2

Wχ
2
Y
x̂

(1− χ2
Y

)(1− x̂)2
− 1

8

(
4s2
Wχ

2
Y
x̂

(1− χ2
Y

)(1− x̂)2

)2

+ ...




x�1≈ sWχY√
1− χ2

Y
(1− x̂)

+
s3
Wχ

3
Y
x̂

(1− χ2
Y

)3/2(1− x̂)3
+ ... . (A.57)

As we are only interested in terms up to order χ2
Y

at most, it follows that

cosφ =
1√

1 + tan2 φ
≈ 1− 1

2
tan2 φ+ ...

≈ 1− 1

2

s2
Wχ

2
Y

(1− χ2
Y

)(1− x̂)2
+ ... , (A.58)

sinφ = cosφ tanφ ≈
(

1− 1

2

s2
Wχ

2
Y

(1− χ2
Y

)(1− x̂)2

)
sWχY√

1− χ2
Y

(1− x̂)

≈ sWχY√
1− χ2

Y
(1− x̂)

+O(χ3
Y

). (A.59)

In total, to diagonalise both the kinetic term and the mass terms the complete

transformation

W̃µ ≡ sWAµ + cW (cφZµ + sφγ
′
µ) , (A.60)

B̃µ ≡ cWAµ − sW (cφZµ + sφγ
′
µ) +

χY√
1− χ2

Y

(cφγ
′
µ − sφZµ)

= cWAµ − (sW cφ +
χY√

1− χ2
Y

sφ)Zµ + (
χY√

1− χ2
Y

cφ − sW sφ)γ′µ ,

X̃µ ≡
1√

1− χ2
Y

(−sφZµ + cφγ
′
µ) ,

has to be applied to the Lagrangian (A.29).
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The relevant terms of the Lagrangian then read

L ⊃ − 1

4
FµνF

µν +
1

2
m2
γ′γ
′
µγ
′µ +

1

2
M2
ZZµZ

µ (A.61)

+ eAµ

[
jµW + jµB

]

+ Zµ

[
g2cW cφj

µ
W − (sW cφ +

sφχY√
1− χ2

Y

)gY j
µ
B −

sφ√
1− χ2

Y

ghj
µ
h

]

+ γ′µ

[
g2cW sφj

µ
W + (

cφχY√
1− χ2

Y

− sW sφ)gY j
µ
B +

cφ√
1− χ2

Y

ghj
µ
h

]
.

Using the approximations of cφ and sφ from Eqs. (A.45) and (A.46) to expand the

couplings to first order, the interaction terms in the Lagrangian can be written as

L ⊃ eAµ

[
jµW + jµB

]

+ Zµ

[
g2cW j

µ
W − gY sW j

µ
B − sW

χY
1− xghj

µ
h

]

+ γ′µ

[
g2cW sW

χY
1− xj

µ
W + gY χY (1− s2

W

1− x)jµB + ghj
µ
h

]

⊃ eAµ j
µ
A

+ Zµ

[
ejµ
Z0 − sW

χY
1− xghj

µ
h

]

+ γ′µ

[
ecW

χY
1− xj

µ
A −

eχY x

cW (1− x)
jµB + ghj

µ
h

]
, (A.62)

where gY = e/cW , g2 = e/sW and the currents jµA and jµ
Z0 are defined by Eqs. (A.19)

and (A.20) in Sec. A.3.

In the same way, the full interaction terms of the Lagrangian (A.61) can then be

rewritten with Eqs. (A.23) and (A.24) in terms of jµA and jµ
Z0 instead of jµB and jµW as

L ⊃ eAµ j
µ
A

+ Zµ

[
ejµ
Z0

(
cφ + sW sφ

χY√
1− χ2

Y

)
− ecW sφ

χY√
1− χ2

Y

jµA −
sφ√

1− χ2
Y

ghj
µ
h

]

+ γ′µ

[
ejµ
Z0

(
sφ − sW cφ

χY√
1− χ2

Y

)
+ esW cφ

χY√
1− χ2

Y

jµA +
cφ√

1− χ2
Y

ghj
µ
h

]
. (A.63)
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Inserting further the expressions from (A.21) and (A.22) yields

L ⊃ eAµj
µ
A

+ Zµ

[
−Q e

cW

(
sW cφ + sφ

χY√
1− χ2

Y

)
ψ̄γµψ

+ T3
e

cW sW

(
cφ + sφsW

χY√
1− χ2

Y

)
ψ̄γµPLψ −

sφ√
1− χ2

Y

ghj
µ
h

]

+ γ′µ

[
−Q e

cW
sW
(
sφ − cφ

χY√
1− χ2

Y

(sW + cW )
)
ψ̄γµψ

+ T3
e

cW sW

(
sφ − sW cφ

χY√
1− χ2

Y

)
ψ̄γµPLψ +

cφ√
1− χ2

Y

ghj
µ
h

]
. (A.64)



Appendix B

Number of Events from Hidden

Photons in Electron Beam Dump

Experiments

This appendix gives additional information and details on the hidden photon production

in bremsstrahlung and the number of events expected in an electron beam dump ex-

periment. The pseudophoton-flux is presented for the different experiments in Sec. B.1.

Details on the integration of the cross section are given in Sec. B.2. The shape and nu-

merical approximation of the electron energy distribution is discussed in Sec. B.3. The

radiation length and unit radiation length are defined in Sec B.4. The so-called R-ratio

and its use in the hidden photon decay width is explained in Sec. B.5. The peculiarities

of the numerical calculation of the number of events are summarised in Sec. B.6. Finally,

the determination of the 95% C.L. upper limits is given in Sec. B.7.

B.1 Weizsäcker–Williams pseudophoton-flux

As described in Sec. 3.1, the cross section for the production of hidden photons in

bremsstrahlung can be computed in the Weizsäcker–Williams approximation according

to Eq. (3.3) with a pseudophoton-flux given by Eq. (3.4). For the different experiments

summarised in Sec. 3.2.1, the behaviour of the pseudophoton-flux as a function of the

hidden photon mass is presented in Fig. B.1. The pseudophoton-flux varies between the

experiments due to the different settings but shows in all cases for light hidden photons

only a mild dependence on mγ′ . The right-hand plot indicates that for small masses the

flux normalised to the atomic number Z of the target is similar for all experiments. The

production cross section is thus expected do have the same dependence σγ′ ∝ Z2.
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Figure B.1: Pseudophoton-flux ξ of the Weizsäcker–Williams approximation as a function of

the hidden photon mass mγ′ .

Left: Pseudophoton-flux ξ for the different electron beam dump experiments KEK (dash-

dotted green line), E141 (dotted purple line), E137 (dashed red line), Orsay (solid blue line)

and E774 (long-dashed orange line), cf. Sec. 3.2.1.

Right: Normalised to the atomic number Z of the target, the pseudophoton-flux ξ is similar

for all experiments and O(5− 10) for the mass range of interest.

B.2 Hidden photon bremsstrahlung production cross sec-

tion

To perform the integral of the production cross section over the emission angle θγ′ we

rewrite the function U(xe, Ee,mγ′ , θγ′) from Eq. (3.8) as

U(xe, Ee,mγ′ , θγ′) = E2
e xe

(
θ2
γ′ +

m2
γ′

E2
e

1− xe
x2
e

+
m2
e

E2
e

)
= E2

e xe (θ2
γ′ + ηe) , (B.1)

with

ηe =
m2
γ′

E2
e

1− xe
x2
e

+
m2
e

E2
e

. (B.2)

Then the differential production cross Sec. (3.7) can be integrated as

dσγ′

dxe
= 8α3χ2 ξ(Ee,mγ′ , Z,A)

√
1−

m2
γ′

E2
e

[
1− xe + x2e

2

E2
exe

∫ 1

−1

d cos θγ′

(θ2
γ′ + ηe)2

(B.3)

+
(1− xe)2m4

γ′

(E2
exe)

3

∫ 1

−1

d cos θγ′

(θ2
γ′ + ηe)4

−
(1− xe)xem2

γ′

(E2
exe)

2

∫ 1

−1

d cos θγ′

(θ2
γ′ + ηe)3

]
,

where the integration than is performed by changing to
∫ 1
−1 d cos θγ′ =

∫ π
0 sin θγ′ dθγ′ →∫ θmax

0 sin θγ′ dθγ′ . The angle θγ′ is not integrated up to π but only up to a small angle

θmax determined by the angular acceptance of the different experiments.
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Defining the three integrals over θγ′ as Ũi, with i = 2, 3, 4 labelling the power of the

denominator, and computing them with Mathematica in the limit of small ηe yields

Ũ2 =

∫ θmax

0

sin θγ′dθγ′

(θ2
γ′ + ηe)2

' 1

2ηe
− 1.8 +

log ηe
12

+ 7.3ηe +
ηe log ηe

120
+O(η2

e) , (B.4)

Ũ3 =

∫ θmax

0

sin θγ′dθγ′

(θ2
γ′ + ηe)3

' 1

4η2
e

− 1

24ηe
− 3.7− log ηe

240
+ 30ηe − 3.0× 10−4ηe log ηe+

+O(η2
e) , (B.5)

Ũ4 =

∫ θmax

0

sin θγ′dθγ′

(θ2
γ′ + ηe)4

' 1

6η3
e

− 1

72η2
e

+
1

720ηe
− 10 + 9.9× 10−5 log ηe + 1.2× 102ηe+

+ 5.5× 10−6ηe log ηe +O(η2
e) , (B.6)

for θmax = 0.5 rad.

Keeping only the leading terms in Ũi (ηe � 1, from Eq. (B.2) for me � mγ′ � Ee,

xe ≈ 1) the differential cross section reads together with Eq. (B.2)

dσγ′

dxe
' 8α3χ2 ξ(Ee,mγ′ , Z,A)

√
1−

m2
γ′

E2
e

1

2

1

m2
γ′

1−xe
xe

+m2
exe

(B.7)

[
1− xe +

x2
e

2
+

1

3

(1− xe)2m4
γ′

(m2
γ′

1−xe
xe

+m2
exe)

2
− 1

2

(1− xe)xem2
γ′

m2
γ′

1−xe
xe

+m2
exe

]
.

Neglecting terms with higher orders of the electron mass this approximates to

dσγ′

dxe
' 4α3χ2 ξ(Ee,mγ′ , Z,A)

√
1−

m2
γ′

E2
e

1− xe + 1
3x

2
e

m2
γ′

1−xe
xe

+m2
exe

(B.8)

me→0' 4α3χ2 ξ(mγ′ ,Ee,Z,A)
xe
m2
γ′

√
1−

m2
γ′

E2
e

(
1 +

x2
e

3(1− xe)

)
, (B.9)

which includes a factor 1/2 that erroneously omitted in the expression of [266].

The total hidden photon production cross section can then be estimated from inte-

grating Eq. (B.9) as

σ =
4

3
α3χ2 ξ(mγ′ , Ee, Z,A)

1

m2
γ′

log

(
1

(1− xe)c

)
(B.10)

∝ 4

3
α3 Z2 χ2

m2
γ′
, (B.11)

where (1− xe)c = max(m2
e/m

2
γ′ ,m

2
γ′/E

2
e ) according to [266].
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B.3 Electron energy distribution Ie(E0,Ee, t)

The energy distribution Ie of the electrons after having passed through t radiation length

of the target is given in Eq. (3.16). The shape of this distribution as a function of the

electron energy Ee is shown in Fig. B.2 at various positions t in the target. The plot

assumes an initial beam energy E0 of 1.6 GeV which corresponds to the one used in

the Orsay experiment. The black line corresponds to the very beginning of the target

(t = 0.01) and peaks at large values of Ee close to the beam energy. With increasing

depth in the target the distribution spreads out to lower energies (blue lines) until it

eventually turns over (green lines) and peaks around zero for large values of t (red to

magenta lines).

0 0.5 1.0 1.5
0

0.4

0.8

Ee [GeV]

I e

t ∈ {0.01...0.2...0.8...2...7}

Figure B.2: Electron energy distribution Ie at different positions t in the target for a beam

energy E0 = 1.6 GeV.

B.4 Radiation length and unit radiation length

The radiation length r0 of a target with density ρsh is determined by the unit radiation

length X0 in g/cm2 as

r0 [cm] =
X0 [g/cm2]

ρsh [g/cm3]
. (B.12)

The unit radiation length X0 follows with the electron radius re = α/me from the

definition in [4] as

X0 =
m2
eA

4α3N0

1

Z2 [Lrad − f(Z)] + Z L′rad

, (B.13)

in which Z and A are the atomic number and the mass number of the target material,

respectively, N0 = 6.022 × 1023 mole−1 is Avogadro’s number and Lrad as well as L′rad
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are for elements with Z > 4 given by

Lrad = ln
(

184.15 Z−1/3
)

and L′rad = ln
(

1194 Z−2/3
)
. (B.14)

The function f(Z) is according to [4] an infinite sum which can be approximated with

4-digits accuracy for elements up to uranium by

f(Z) = α2Z2
[
(1+α2Z2)−1+0.20206−0.0369 α2Z2+0.0083 α4Z4−0.002 α6Z6

]
. (B.15)

With those definitions, the quantity Tsh in the upper limit of the integration over the

target in units of the radiation length in Eq. (3.21) is then defined as

T ≡ Lsh

r0
=

Lsh ρsh

X0
. (B.16)

It thus depends on the density ρsh and the unit radiation length X0 of the target as well

as the physical length Lsh of the target plus shield.

B.5 Remark on R-ratio

For large enough masses, the hidden photon can not only decay into leptons but also into

hadrons. In this case, one has to properly take into account the occurrence of hadronic

resonances. This is done by using the experimentally measured ratio of the electron-

positron cross section into hadrons to the one into muons. This so-called R-ratio is

defined as

R(
√
s) =

σ(e+e− −→ hadrons,
√
s)

σ(e+e− −→ µ+µ−,
√
s)

. (B.17)

The world data for R is given in Ref. [4].

As the photon and the hidden photon couple in the same way to charged particles

(up to a factor χ), we take the ratio of the cross sections to be the roughly same for the

photon and the hidden photon

σ(e+e− −→ γ −→ hadrons)

σ(e+e− −→ γ −→ µ+µ−)
' σ(e+e− −→ γ′ −→ hadrons)

σ(e+e− −→ γ′ −→ µ+µ−)
. (B.18)

For an on-shell hidden photon, we decompose the cross section using the narrow width

approximation as

σ(e+e− −→ γ′ −→ hadrons)

σ(e+e− −→ γ′ −→ µ+µ−)

∣∣∣∣√
s=mγ′

' σ(e+e− −→ γ′) BR(γ′ −→ hadrons)

σ(e+e− −→ γ′) BR(γ′ −→ µ+µ−)

∣∣∣∣√
s=mγ′

=
Γ(γ′ −→ hadrons)

Γ(γ′ −→ µ+µ−)

∣∣∣∣√
s=mγ′

. (B.19)
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The decay width of the hidden photon into hadrons then follows as

Γ(γ′ −→ hadrons) = Γ(γ′ −→ µ+µ−)
σ(e+e− −→ hadrons)

σ(e+e− −→ µ+µ−)

∣∣∣∣√
s=mγ′

(B.20)

= Γ(γ′ −→ µ+µ−) R(mγ′) , (B.21)

which has been used in Eq. (3.11).

B.6 Number of expected events Nγ′

The total number of events predicted in an electron beam dump experiment is given

according to Eq. (3.24) by

Nγ′ =Ne
N0X0

A
8α3χ2 BRdetect

∫ E0−me

mγ′

dEγ′

∫ E0

Eγ′+me

dEe

∫ Tsh

0
dtsh (B.22)





1

E0

[
ln E0

Ee

]btsh−1

Γ(btsh)
ξ(mγ′ ,Ee,Z,A)

(
e−Lsh/lγ′ − e−Ltot/lγ′

) 1

E2
e Eγ′

√
1−

m2
γ′

E2
e

[(
Ee − Eγ′

Ee
+
E2
γ′

2E2
e

)
Ũ2(Ee) +

(
Ee − Eγ′
E2
eEγ′

)2

m4
γ′Ũ4(Ee)−

Ee − Eγ′
E3
e

m2
γ′Ũ3(Ee)

]

,

where the electron energy distribution Ie from Eq. (3.16), the differential production

cross section dσ/dxe from Eq. (B.3) and the integrals Ũi from Eqs. (B.4) to (B.6) have

been used, the effective photon flux ξ(mγ′ ,Ee,Z,A) and the decay length lγ′ are defined

in Eqs. (3.4) and (3.13), respectively, and BRdetect refers to the branching ratio for the

decay of the hidden photon into those particles the detector is sensitive too (usually

electrons and positrons so that BRdetect = 1 for mγ′ < 2mµ in the absence of other

lighter particles in the hidden sector).

Integration borders

It is equivalent to perform the integration with the following choices of the integration

borders

∫ E0−me

mγ′

(∫ E0

Eγ′+me

f(Ee, Eγ′) dEe

)
dEγ′ ≡

∫ E0

mγ′+me

(∫ Ee−me

mγ′

f(Ee, Eγ′) dEγ′

)
dEe .
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Numerical integration

The integration of Eq. (B.22) can not be carried out analytically. We therefore perform

numerical computations for each of the experiments discussed in Sec. 3.2.1, using the

specific parameters for E0, Lsh, Ldec, Z and A given in Tab. 3.1, and scanning over the

entire parameter space {mγ′ , χ}. These numerical integrations, however, diverge since

for small t the function Ie(E0, Ee, t) of Eq. (3.16) sharply peaks at Ee ' E0 (cf. also black

and blue lines in Fig. B.2). Therefore, we define a cut ε at which we split the integral over

tsh in two parts: for very small tsh ≤ ε we approximate the function Ie(E0, Ee, tsh) by the

delta-function according to Eq. (3.18); for larger tsh ≥ ε we keep the exact expression of

Eq. (3.16). In this way, in the region tsh ≤ ε, the integration both over t and Ee can be

carried out analytically and the one for tsh ≥ ε can be done numerically. An example

for this separation for the integral solely of Ie over Ee is illustrated in Fig. B.3, in a

specific scenario with E0 = 1.6 GeV and Eγ′ = 0.8 GeV. Considering only t > 0, the

integration of Ie Eq. (3.16) over Ee can be carried out analytically and is plotted as a

function of t in Fig. B.3 as dashed blue line. The numerical integration shown as solid

orange line does not yield good results at small t, where the result is well represented

by the analytic integration over the delta-function, shown as solid green line.

0.001 0.01 0.1 1
0

0.5

1

t

∫
d
E
e
I e

Figure B.3: Comparison of the analytic integration for
∫
dEe Ie with the numerical one. This

represents the average energy of the electrons in the beam normalised to E0 at position t in

the target (in units of the radiation length). The results from the integration are shown for

E0 = 1.6 GeV and Eγ′ = 0.8 GeV where the different lines correspond to:

dashed blue line: analytic integration of

∫ E0

Eγ′

dEe
1

E0

[
ln
(
E0

Ee

)] 4
3 t−1

Γ( 4
3 t)

,

solid green line: analytic integration of

∫ E0

Eγ′

dEe δ(Ee − E0) ,

solid orange line: numerical integration of

∫ E0

Eγ′

dEe
1

E0

[
ln
(
E0

Ee

)] 4
3 t−1

Γ( 4
3 t)

.
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Thus, combining the result N≤ε of the partly analytical integration for tsh ≤ ε with

the result N≥ε for the numerical integration at tsh ≥ ε, the total number of events

predicted in an electron beam dump experiment follows from Eq. (B.22) as

Nγ′ = Ne
N0X0

A
8α3χ2 (N≤ε +N≥ε ) BRdetect , (B.23)

with

N≤ε =

∫ E0−me

mγ′

dEγ′

∫ E0

Eγ′+me

dEe

∫ ε

0
dtsh




δ(Ee − E0) (B.24)

1

E2
e Eγ′

ξ(mγ′ ,Ee,Z,A)

(
e−Lsh/lγ′ − e−Ltot/lγ′

)
√

1−
m2
γ′

E2
e

[(
Ee − Eγ′

Ee
+
E2
γ′

2E2
e

)
Ũ2(Ee) +

(
Ee − Eγ′
E2
eEγ′

)2

m4
γ′Ũ4(Ee)−

Ee − Eγ′
E3
e

m2
γ′Ũ3(Ee)

]


and

N≥ε =

∫ E0−me

mγ′

dEγ′

∫ E0

Eγ′+me

dEe

∫ Tsh

ε
dtsh





1

E0

[
ln E0

Ee

]btsh−1

Γ(btsh)
(B.25)

1

E2
e Eγ′

ξ(mγ′ ,Ee,Z,A)

(
e−Lsh/lγ′ − e−Ltot/lγ′

)
√

1−
m2
γ′

E2
e

[(
Ee − Eγ′

Ee
+
E2
γ′

2E2
e

)
Ũ2(Ee) +

(
Ee − Eγ′
E2
eEγ′

)2

m4
γ′Ũ4(Ee)−

Ee − Eγ′
E3
e

m2
γ′Ũ3(Ee)

]

.

In N≤ε, the integral over tsh can be carried out analytically as

N≤ε =

∫ E0−me

mγ′

dEγ′

∫ E0

Eγ′+me

dEe




ε δ(Ee − E0)

1

E2
e Eγ′

ξ(mγ′ ,Ee,Z,A)

(
e−Lsh/lγ′ − e−Ltot/lγ′

)
√

1−
m2
γ′

E2
e

[(
Ee − Eγ′

Ee
+
E2
γ′

2E2
e

)
Ũ2(Ee) +

(
Ee − Eγ′
E2
eEγ′

)2

m4
γ′Ũ4(Ee)−

Ee − Eγ′
E3
e

m2
γ′Ũ3(Ee)

]

,
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and the integral over Ee with the δ-function as

N≤ε =

∫ E0−me

mγ′

dEγ′




ε

1

E2
0 Eγ′

ξ(mγ′ ,E0,Z,A)

(
e−Lsh/lγ′ − e−Ltot/lγ′

)
√

1−
m2
γ′

E2
0

[(
E0 − Eγ′

E0
+
E2
γ′

2E2
0

)
Ũ2(E0) +

(
E0 − Eγ′
E2

0Eγ′

)2

m4
γ′Ũ4(E0)− E0 − Eγ′

E3
e

m2
γ′Ũ3(E0)

]

.

Together with Eqs. (B.13) and (B.15), the total number of events can then be written

as

Nγ′ = 2Nem
2
e χ

2 1

Z2 [Lrad − f(Z)] + ZL′rad

(N≤ε +N≥ε ) BRdetect . (B.26)

Experimental exclusion contours

In the computation of the exclusion contours shown in Fig. 3.8, the parameter ε is set

to 0.07. For the functions Ũi of Eqs. (B.4) to (B.6), arising from the hidden photon

production cross section, the two leading terms of the approximations are included.

The total number Nγ′ of events is then obtained by scanning over the parameter space

in mγ′ and χ and numerically integrating Eq. (B.26) at each point {mγ′ , χ} for the

parameters E0, Lsh, Ldec, Z and A of a particular experiment as given in Tab. 3.1. A

certain experimental limit is then obtained by comparing this theoretical prediction for

Nγ′ with the 95% C.L. upper limit N95%up on the number of events observed by the

experiment. The resulting limit, however, assumes an ideal experiment that can observe

all of the decay-leptons. Therefore, the actual experimental acceptance still has to be

taken into account in order to derive the final exclusion contour. In this way, the final

exclusion contour of an experiment becomes slightly weaker then the ideal exclusion

contour.

For each experiment, the different acceptances are obtained as described in Sec. 3.2.2

by comparing the results from Monte Carlo simulations with the specific set-up of the

respective experiments. These simulations are performed at several points {mγ′ , χ} in

the parameter space such that the region where the aforementioned prediction of the

ideal exclusion limit is entirely covered. At each point {mγ′ , χ}, the acceptance is then

computed from the simulations. The final exclusion contours shown in Fig. 3.8, are then

derived by interpolating these acceptances as a function of mγ′ and χ and multiplying

them with the ideal limit obtained from Eq. (B.26) for a certain 95% C.L. upper limit

N95%up of the number of observed events.
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B.7 Number of observed events and 95% C.L. upper limit

The number Nobs of events that where observed in an experiment are given in Tab. 3.1.

From this number, the 95% C.L. upper limit on the number N95%up of events used in

the exclusion contour is deduced for a Poisson and a Gaussian signal as described in the

following.

Poisson signal

For very few or zero observed events, the 95% C.L. intervals for a Poisson signal are

presented in Tab. VI of Ref. [338]. There, the 95% C.L. upper limit corresponding to

zero observed event is given as

N95%up = 3 , (B.27)

for Nobs = 0.

Gaussian signal

In the case of a Gaussian distribution with mean µ and error σ, we derive the number

corresponding to the 95% C.L. upper limit using a modified distribution in order to

exclude the non-physical part which arises when the distribution gets negative. This

negative part of the distribution has to be ignored and the positive part has to be

normalised again to 1.

We then define f(x) as the integral over the normal distribution from −∞ to x by

f(x) =

∫ x

−∞

1√
2πσ

e−
(x−µ)2

2σ2 , (B.28)

with mean µ and error σ.

If the negative part of the distribution was not excluded, the 95% C.L. upper limit

would be obtained by solving

f(N95%C.L.) = 0.95 (B.29)

for N95%C.L..

In our case, however, we need to define a new function f>0(x) by removing the

negative part (which is given by f(0)) of the original distribution

f>0(x) =
1

‖f>0(x)‖
(
f(x)− f(0)

)
θ(x) , (B.30)
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and normalising the new function back to 1 according to

f>0(∞)
!

= 1 =
1

‖f>0(x)‖
(
f(∞)− f(0)

)
,

‖f>0(x)‖ = f(∞)− f(0) ,

so that the desired function is given by

f>0(x) =
1

f(∞)− f(0)

(
f(x)− f(0)

)
θ(x) . (B.31)

Therefore, the 95% C.L. upper limit N95%C.L. on the number of events for a Gaussian

distribution with mean µ and error σ is found by solving

f>0(N95%C.L.) = 0.95 (B.32)

for N95%C.L..





Appendix C

Dirac Fermion Dark Matter

Annihilation

C.1 Dark matter t-channel annihilation cross section

The dark matter annihilation into two real hidden photons, which in the text we refer

to as t-channel annihilation involves the two diagrams shown in Fig. C.1. Summing over

both contributions, the matrix element reads

iM = v̄(k)(−ighγν)ε∗ν(k′)
i(/p− /p′ +mψ)

(p− p′)2 −m2
ψ

ε∗µ(p′)(−ighγµ)u(p)

+ v̄(k)(−ighγµ)ε∗µ(p′)
i(/p− /k′ +mψ)

(p− k′)2 −m2
ψ

ε∗ν(k′)(−ighγν)u(p) (C.1)

= − ig2
hε
∗
ν(k′)ε∗µ(p′)v̄(k)

(
γν(/p− /p′ +mψ)γµ

(p− p′)2 −m2
ψ

+
γµ(/p− /k′ +mψ)γν

(p− k′)2 −m2
ψ

)
u(p). (C.2)

γ′ψ

ψ̄ γ′

p p′

k k′

q = p− p′ q = p− k′

p

p′ψ̄

ψ

γ′

γ′

p′

k′

µ

ν µ

ν

v̄

u u

v̄

ǫ∗µ
ǫ∗µ

ǫ∗ν
ǫ∗ν

Figure C.1: Feynman diagrams for the dark matter annihilation in the t- and u-channel into

two real hidden photons γ′.

169
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Both denominators can be simplified using p2 = m2
ψ and p′2 = k′2 = m2

γ′ to m2
γ′ − 2p · p′

and m2
γ′ − 2p · k′, respectively. Then, the squared matrix element summed over the

photon polarization and averaged over the dark matter spin follows as

1

4

∑

spin

|M|2 =
1

4
g4
h

(
−gνν′ +

k′νk
′
ν′

m2
γ′

)(
−gµµ′ +

p′µp
′
µ′

m2
γ′

)

Tr

[
(/k −mψ)

(
γν(/p− /p′ +mψ)γµ

m2
γ′ − 2p · p′ +

γµ(/p− /k′ +mψ)γν

m2
γ′ − 2p · k′

)

(/p+mψ)

(
γµ
′
(/p− /p′ +mψ)γν

′

m2
γ′ − 2p · p′ +

γν
′
(/p− /k′ +mψ)γµ

′

m2
γ′ − 2p · k′

)]
. (C.3)

Inserting the kinematic in the centre of mass system and evaluating the trace this be-

comes

1

4

∑

spin

|M|2 =
16g4

h

((−2m2
ψ +m2

γ′ − 2|~p|2)2 − 4c2
θ|~p|2|~p ′|2)2

(C.4)

[
− 4c4

θ|~p|4|~p ′|4 − c2
θ|~p|2|~p ′|2(8m4

ψ + 8m2
ψ(m2

γ′ + |~p|2) +m4
γ′ + 8m2

γ′ |~p|2)

+ (−2m2
ψ +m2

γ′ − 2|~p|2)2(m4
ψ −m2

ψ(m2
γ′ − 4|~p|2) + |~p|2(m2

γ′ + |~p|2))
]
,

where cθ stands for cos θ with θ being the hidden photon angle in the centre of mass

frame between p and p′. In terms of the Mandelstam variables this is

1

4

∑

spin

|M|2 =
2g4
h

(m2
ψ − t)2(s+ t−m2

ψ − 2m2
γ′)

2

[
− 2m8

ψ − 4m8
γ′ (C.5)

+ 8m6
ψ(t−m2

γ′) + 4m6
γ′(s+ 3t)−m4

γ′(s
2 + 6st+ 14t2) + 2m2

γ′t(s+ 2t)2

− t(s+ t)(s2 + 2st+ 2t2)−m4
ψ(30m4

γ′ + 3s2 + 4st+ 12t2 − 8m2
γ′(2s+ 3t))

+m2
ψ

(
s3− 28m6

γ′+ 2ts2+ 8st2+ 8t3+m4
γ′(22s+ 28t)− 2m2

γ′(3s
2+ 4st+ 12t2)

)]
.

The cross section is then obtained from [4]

dσ

dt
=

1

64πs( s4 −m2
ψ)
|M|2, (C.6)

by integration with the limiting values t0(θ = 0) and t1(θ = π) as t0(t1) = −(|~p| ∓ |~p ′|)2

and multiplying by 1/2 to account for the double counting because of identical particles

in the final state. The annihilation cross section times velocity in the limit of small

velocities is then roughly given by

σannv '
πα2

h

m2
ψ

√√√√1−
m2
γ′

m2
ψ

. (C.7)
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C.2 Dark matter s-channel annihilation cross section

For the s-channel annihilation of the dark matter particle through a virtual hidden

photon into Standard Model particles shown in Fig. C.2, the matrix element is given by

iM = v̄(k)(−ighγµ)u(p)
−igµν

(p+ k)2 −m2
γ′
ū(p′)(−iχeγν)v(k′) (C.8)

=
ighχe

(p+ k)2 −m2
γ′
v̄(k)γµu(p) ū(p′)γµv(k′) . (C.9)

Summing over the spins in the final state and averaging over those of the dark matter,

the squared matrix element is

1

4

∑

spin

|M|2 =
1

4

g2
hχ

2e2

(p+ k)2 −m2
γ′

(C.10)

Tr
[
(/k −mψ)γµ(/p+mψ)γµ

′
]
Tr
[
(/p
′ +mf )γµ(/k

′ −mf )γµ′
]

=
8e2g2

hχ
2

(p+ k)2 −m2
γ′

(
k · p′ k′ · p+ k · k′ p · p′ +m2

f k · p+m2
ψ

(
k′ · p′ + 2m2

f

))

=
4e2g2

hχ
2

m2
γ′ − s2

(
ts− 2t

(
m2
ψ +m2

f

)
+
(
m2
ψ +m2

f

)2
+ t2 +

1

2
s2

)
, (C.11)

where in the last line the Mandelstam variables are used. In the centre of mass frame,

the cross section is then obtained by integrating Eq. (C.6) with t0(t1) = −(|~p| ∓ |~p ′|)2

and taking the limit for small velocity as

σannv '
χ2e2g2

h

2π

m2
ψ

(4m2
ψ −m2

γ′)
2

√√√√1−
m2
f

m2
ψ

(
1 +

m2
f

2m2
ψ

)
. (C.12)
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µ ν
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v̄

Figure C.2: Feynman diagram for the dark matter annihilation in the s-channel via a virtual

hidden photons γ′ into fermions.
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