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Abstract

We study the connection between the early and late accelerated expansion of the

universe and string theory. In Part I of this thesis, the observational degeneracy

between single field models of inflation with canonical kinetic terms and non-

canonical kinetic terms, in particular string theory inspired models, is discussed.

The 2-point function observables of a given non-canonical theory and its canonical

transform that is obtained by matching the inflationary trajectories in phase space

are found to match in the case of Dirac-Born-Infeld (DBI) inflation. At the level of

the 3-point function observables (non-Gaussianities), we find degeneracy between

non-canonical inflation and canonical inflation with a potential that includes a

sum of modulated terms. In Part II, we present explicit examples for de Sitter

vacua in type IIB string theory. After deriving a sufficient condition for de Sitter

vacua in the Kähler uplifting scenario, we show that a globally consistent de Sitter

model can be realized on a certain Calabi-Yau manifold. All geometric moduli

are stabilized and all known consistency constraints are fulfilled. The complex

structure moduli stabilization by fluxes is studied explicitly for a small number of

cycles. Extrapolating to a larger number of flux carrying cycles, we verify statis-

tical studies in the literature which show that, in principle, the string landscape

can account for a universe with an extremely small cosmological constant.



Zusammenfassung

Diese Arbeit untersucht den Ursprung von früher und heutiger beschleunigter Ex-

pansion des Universums im Kontext von Stringtheorie. Teil I widmet sich den

Observablen von inflationären Theorien, die durch ein einzelnes skalares Feld mit

kanonischen oder nicht-kanonischen kinetischen Termen beschrieben werden. Einer

nicht-kanonischen Theorie wird durch Übereinstimmug der Phasenraumtrajektorie

der inflationären Lösungen eine kanonische Theorie zugeordnet dessen 2-Punkt-

Funktions Observablen im Fall von DBI Inflation mit denen der nicht-kanonischen

Theorie übereinstimmen. Diese Entartung existiert auch im Fall der 3-Punkt-

Funktions Observablen wenn dem Potential der kanonischen Theorie modulierte

Terme hinzugefügt werden. In Teil II präsentieren wir explizite Beispiele für de

Sitter Vakua in Typ IIB Stringtheorie. Wir leiten zunächst eine hinreichende Be-

dingung für de Sitter Vakua im ‘Kähler uplifting’ Szenario her und geben dann ein

Beispiel für eine solche Konstruktion auf einer bestimmten Calabi-Yau Mannig-

faltigkeit an. Dabei werden alle geometrischen Moduli stabilisiert und alle bekan-

nten Konsistenzbedingungen erfüllt. Die Komplexe-Struktur-Moduli werden für

eine kleine Zahl and Zykeln explizit stabilisiert. Wir extrapolieren unsere Ergeb-

nisse zu Fällen mit einer größeren Anzahl von Zykeln. Wir können so statistische

Studien verifizieren, die vorhersagen das Stringtheorie ein Universum mit einer

extrem kleinen kosmologischen Konstante beschreiben kann.
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Chapter 1

Introduction

In recent years, experimental cosmology has provided us with deep new insights

into the history of the universe: 1) the observation of the late-time accelerated

expansion of the universe (dark energy) and 2) strong hints towards a much faster

accelerated expansion of the universe (inflation) before the universe entered its

thermal big bang phase. Dark energy was first observed by studying the brightness-

redshift relation of supernovae [1, 2] and was later also detected in the cosmic

microwave background (CMB) radiation [3, 4]. Strong hints for an inflationary

epoch in the early universe originate from the observation of the CMB temperature

field. The CMB has been found with the empirical properties to show an average

mean temperature which is the same in all directions while having an almost scale

invariant spectrum of tiny O(10−5) perturbations, and pointing to a spatially flat

universe at the O(10−3) level [3–7].

On the theoretical side, string theory is a very promising candidate for a con-

sistent theory of quantum gravity that has the potential to unify gravity and the

known interactions of the standard model of particle physics in a common frame-

work. At low energies, it reduces to the well know and tested theories of general

relativity and potentially the standard model of particle physics. 1 General rel-

ativity governs the dynamics of the standard model of cosmology, the ΛCDM

concordance model, in which the late time evolution of the universe is dominated

by dark energy (‘Λ’) and cold dark matter (‘CDM’), with traces of baryonic matter

and radiation. However, in earlier times the universe had been much hotter, at the

very least ∼ 10 MeV during big bang nucleosynthesis (BBN), when nuclei heavier

than the lightest isotope of hydrogen were formed. Furthermore, the energy scale

1String theory in principle provides all the necessary ingredients to realize the gauge group

and matter content of the standard model of particle physics but to this day a fully explicit

realization has not been established.
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Chapter 1. Introduction

of many models of inflation is the GUT scale (∼ 1016 GeV) which is only a few

orders of magnitude smaller than the Planck scale (MP ' 1.22 · 1019 GeV), the

natural energy scale of quantum gravity. Hence, signatures of an UV complete

theory of gravity might show up in the observables of inflation, e.g., in the CMB.

As a different motivation, when extrapolating the observed expansion backwards

in time, at very high energies of O(MP), quantum gravity significantly affects the

general relativity description, rendering it inaccurate. Ignoring quantum gravity

effects, the backwards extrapolated expansion leads to the famous big-bang sin-

gularity.2 To understand what actually happens at energy scales above MP, a UV

complete theory of gravity is necessary. For these reasons, it is sensible to connect

questions of early universe cosmology and quantum gravity, in particular string

theory since it is our best candidate for such a theory to date. The field of re-

search is often referred to as string cosmology. After all, observational cosmology

might be our best chance to confront string theory with experimental data since

no terrestrial experiment can come close to the energy densities available in the

early universe.

Let us first comment on the connection between inflation and string theory.

The dynamics of inflation can effectively be modeled by one or more scalar fields,

minimally coupled to gravity, so-called inflaton(s). An important class of models

is given by Lagrangians of a canonically normalized scalar field φ, i.e., the kinetic

term is given as (∂µφ)2. Then, the crucial feature is an almost flat potential, in

order for inflation to last long enough to realize the observed homogeneity and

flatness of the CMB. Most phenomenological features, for instance the calculation

of the quantum fluctuations that source the temperature fluctuations of the CMB,

do not depend on the UV completion of these effective field theories. However, the

almost flatness of the potential is often an ad-hoc assumption as generically there

should be corrections from MP suppressed operators, especially when the range the

field travels during inflation is (super-)Planckian. The compactification of D > 4

dimensional string theories to 4D, generically leads to a large number of gravita-

tionally coupled scalar fields that parametrize the shape and size of the curled up

extra dimensions, the so-called moduli fields. In simple compactifications, there

is no potential for these moduli. However, for phenomenological reasons, e.g., the

non-observation of fifth-forces on solar system scales and also cosmological con-

straints, these moduli have to be stabilized at a rather high scale of at least ∼ 10

TeV. The potential for the moduli fields is generated by considering more compli-

cated compactifications. An interesting question is, if one or more of these moduli

2However, it is not clear if a singularity remains when an inflationary epoch has preceded the

hot big bang phase.
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might have played the role of the inflaton(s). In this context, an attempt can be

made to actually compute the MP suppressed operators, constructing an effective

field theory of D3-brane inflation that is UV completed by string theory [8–10].

An effective field theory of the inflationary quantum fluctuations in the spirit of

the pion Lagrangian can be written largely UV-independent [11]. Furthermore,

string theory can be useful in leading to signals that cannot arise in the framework

of effective field theories, and inspire the discovery of these potential signals in

effective field theories.

In Part I of this thesis, we study the scenario in which the dynamics of inflation

are governed by a single scalar field φ. Most generally, the kinetic term in the

effective 4D Lagrangian of this inflaton is intrinsically non-canonical, i.e., cannot

be transformed to (∂µφ)2 via a field redefinition. For instance, such non-canonical

kinetic terms frequently arise in the 4D effective action of compactified string

theories. Our limitation to single field inflation is for simplicity since a single field

is sufficient to construct inflationary models that are in agreement with the data.

In particular, multi-field inflation generically predicts a detectable non-Gaussian

signal in the CMB temperature fluctuations. However, the CMB temperature

spectrum follows, to a very large extent, a Gaussian distribution. The constraints

on non-Gaussianity have been improved by the recent Planck data [4], such that

many multi-field models are observationally disfavored.

The main point of interest in Part I is the observational degeneracy between

non-canonical and canonical models of single field inflation. More precisely, we

want to answer the following question: if and under which conditions can a canon-

ical model that agrees with a given non-canonical model at the level of the obser-

vational consequences be constructed? We begin with a review (Chapter 2) where

we provide a brief summary of the ΛCDM concordance model, the concept of in-

flation and its dynamics in terms of a (non-) canonically normalized scalar field.

In what follows, we focus on the inflationary observables. These are calculated as

n-point functions of the quantum fluctuations of φ and the metric degrees of free-

dom. In Chapter 3 we give a summary of our work [12]. We describe a procedure

to construct a canonical theory from a non-canonical theory which, under certain

specified conditions, agrees with the original non-canonical theory at the level of

the 2-point function observables. The matching at the level of the 3-point func-

tion observables, i.e., non-Gaussianities, is discussed in Chapter 4, summarizing

our work [13]. The 2-point function observables are matched by constructing a

canonical theory whose inflationary phase space trajectory is identical to that of

a non-canonical theory. Matching of the 3-point function observables proceeds via

a summation of periodic non-Gaussianities such that the non-Gaussianity that is

3



Chapter 1. Introduction

characteristic for non-canonical theories, is resembled in a Fourier series of these

periodic contributions. Hence, we are ultimately able to show that we can con-

struct a canonical inflationary theory that agrees with a given non-canonical theory

at the level of the 2- and 3-point function observables.

In Part II of this thesis, we turn to the connection of the late phase of ac-

celerated expansion of the universe (dark energy) and string theory. We study

explicit models for dark energy in the context of the string theory landscape. As

is consistent with current experimental data, dark energy is assumed to arise as

vacuum energy, i.e., an effective cosmological constant of the theory of quantum

gravity which we consider to be string theory. This effective cosmological constant

depends on the value of the effective potential of the scalar fields of the theory,

in particular the moduli, at a (local) minimum in field space.3 String theory, in

principle, contains an extremely high number of such vacuum configurations, i.e.,

a whole landscape of string vacua [14–19]. This is useful in addressing a very

serious fine-tuning problem: the extreme smallness of the observed value of the

cosmological constant today in terms of the natural scale of quantum gravity, the

Planck scale. The enormous number of vacua found in string theory tells us that

in principle there should also be a vacuum with an extremely small cosmological

constant which is selected on anthropic grounds, as not even galaxies would have

been possible to form in a universe with a large cosmological constant [20].

The goal in Part II is to construct explicit vacua in string theory that allow for

fine-tuning of the cosmological constant to the extremely small observed value. The

motivation for this task is proof of existence: a fully explicit string compactification

with a small positive cosmological constant, i.e., a de Sitter (dS) vacuum, that

fulfills all mathematical consistency constraints would indicate that string theory

can in fact describe our world. Conversely, if string theory could not describe

such a state, this would indicate the need to look for alternative explanations of

dark energy or even a different theory of quantum gravity altogether. Note that

the extreme tuning necessary to obtain a cosmological constant that is extremely

small is a highly non-trivial and very restrictive constraint.

We work in type IIB string theory since in this corner of the string theory

landscape, moduli stabilization is arguably best understood and hence most suit-

able for explicit constructions of de Sitter vacua. In a review (Chapter 5), we first

motivate the quest for de Sitter vacua in string theory in more detail and also

review moduli stabilization in type IIB supergravity, which is the low energy limit

3In case of a global minimum the vacuum is stable, while it is meta-stable in the case of a

local minimum, decaying via quantum tunneling to the true vacuum state of the theory.
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Figure 1.1: This figure schematically shows a possible realization of the history

of our universe in the string theory landscape in terms of a one dimensional

potential V (φ) with a scalar field φ representing the moduli fields. H is the

Hubble rate which characterizes the energy scale of inflation. Figure taken

from [27].

of type IIB string theory. In Chapter 6, we present the results of our work [21],

where a sufficient condition for de Sitter vacua which depends on the compactifi-

cation parameters is derived. Chapter 7 is dedicated to an explicit construction

of a de Sitter vacuum that fulfills all known mathematical consistency conditions

on a specific compactification manifold, stabilizing all moduli. The construction

is along the lines of the sufficient condition found in [21] and was first presented

in [22]. Finally, in Chapter 8, we discuss to what extent the vacua allow for tuning

of the cosmological constant. Statistical studies of the string theory landscape

predict that a large amount of fine-tuning for the cosmological constant is avail-

able [17, 23, 24]. Based on explicitly constructing the full solution space of a three

moduli example, we confirm that there is indeed, in principle, a sufficiently large

number of vacua for compactifications with O(10− 100) moduli fields to tune the

cosmological constant to its observed small value. The results presented in this

chapter were first published in [25] and [26].

In summary, this thesis deepens the study of the connection between string

theory and the two known phases of accelerated expansion in the history of the

universe: inflation and dark energy. The dynamics and vacuum configurations of

scalar moduli fields originating from the compactification of string theory effec-

tively model these two phases. Moduli stabilization is therefore the crucial factor

in obtaining a better understanding of accelerated expansion in the framework of

string theory. In Figure 1.1, we sketch a potential realization of the history of our

universe in the context of the string theory landscape: The universe starts at a

meta-stable vacuum state with a rather high energy of order of the Planck scale

5



Chapter 1. Introduction

and then tunnels to a region where the scalar potential is flat enough to support an

inflationary expansion. Next, the field “rolls down” this flat region of the potential

and ends up in another minimum with an extremely small vacuum energy which

is the vacuum state we observe today.
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Part I

Non-canonical inflation
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Chapter 2

The inflationary paradigm

In this chapter, we provide background information for Chapter 3 and Chapter 4.

We start with a review of the ΛCDM concordance model in Section 2.1 which

finishes with a discussion of its shortcomings at the end of this section. A solution

to these in the framework of the inflationary paradigm is presented in Section 2.2,

where we explain the physical concept of inflation. In Section 2.3, we give a more

detailed explanation of the inflationary mechanism in terms of a single scalar field

minimally coupled to gravity with a canonical or non-canonical kinetic term. We

end this chapter with a motivation and outline for the comparison of inflationary

observables in canonical and non-canonical theories of inflation.

2.1 The ΛCDM concordance model

The ΛCDM concordance model of cosmology 1 very successfully explains the his-

tory of the universe at least until BBN, i.e., up to temperatures of ∼ 1 MeV.

Assuming homogeneity and isotropy on the largest scales of the universe, the

space-time of the universe can be described by a Friedmann-Lemâıtre-Robertson-

Walker (FLRW) metric

ds2 = −dt2 + a(t)dx2 , (2.1)

where t is the cosmological time coordinate, x represents the three spatial coor-

dinates and a(t) is the scale factor which completely determines the evolution of

the homogeneous universe. The expansion rate is characterized by the Hubble

parameter

H =
ȧ

a
, (2.2)

1For books covering cosmology and in particular inflation see e.g., [28–30]. For reviews on

inflation, see e.g., [31–33].

9



Chapter 2. The inflationary paradigm

which is positive for an expanding universe and negative for a collapsing universe.

The dynamics of the homogeneous and isotropic universe are described by the

Einstein equations

Rµν −
1

2
gµνR+ Λgµν = Tµν , (2.3)

where Rµν is the Ricci curvature tensor, R the Ricci scalar, Λ the cosmological

constant and Tµν the energy-momentum tensor. We have set the reduced Planck

mass MP/
√

8π ≡ 1 in eq. (2.3) and will continue to use this convention in the

following unless demonstrating suppression of certain quantities by MP. Further-

more, we use the signature (−1, 1, 1, 1) for the metric in Minkowski space and use

natural units c = ~ = 1. The energy-momentum tensor is that of a perfect fluid

with energy density ρ and pressure p which in is given as

Tµν =


ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 , (2.4)

in the fluid rest frame. For the ansatz eq. (2.1), the Einstein eq’s (2.3) become the

Friedmann equations

H2 =

(
ȧ

a

)2

=
1

3
ρ− k

a2
, (2.5)

Ḣ +H2 =
ä

a
= −1

6
(ρ+ 3p) , (2.6)

where k characterizes the spatial curvature of the universe, i.e., k = ±1 for posi-

tively/negatively curved and k = 0 for flat space like hypersurfaces. Eq. (2.5) and

eq. (2.6) can be combined into the continuity equation

dρ

dt
+ 3H(ρ+ p) = 0 ⇔ d ln ρ

d ln a
= −3(1 + w) , (2.7)

with the equation of state parameter w ≡ p/ρ which is given as w = 0 for non-

relativistic matter and w = 1/3 for radiation or relativistic matter. For a cosmo-

logical constant the equation of state is w = −1 which can be seen directly from

the Einstein eq’s (2.3). In a local free-fall frame with no matter, i.e., gµν = ηµν

the Minkowski metric and the RHS in eq. (2.3) is zero and the energy-momentum

tensor is given as

TΛ
µν =


ρΛ 0 0 0

0 −ρΛ 0 0

0 0 −ρΛ 0

0 0 0 −ρΛ

 , (2.8)

10



2.1. The ΛCDM concordance model

with ρΛ = Λ. Hence, pΛ = −ρΛ.

The continuity eq. (2.7) is solved by

ρi ∝ a−3(1+wi) , (2.9)

where the index ‘i’ characterizes the different species that contribute to the en-

ergy density of the universe, i.e., baryons (‘b’), dark matter (‘dm’), photons (‘γ’),

neutrinos (‘n’), dark energy/a cosmological constant (‘Λ’). With

ρ ≡
∑
i

ρi and p ≡
∑
i

pi , (2.10)

and defining the present energy density relative to the critical energy density ρcrit =

3H2
0 as

Ωi ≡
ρi0
ρcrit

, (2.11)

eq. (2.5) can be expressed as(
H

H0

)2

=
∑
i

Ωi a
−3(1+wi) + Ωka

−2 . (2.12)

The index ‘0’ refers to evaluation of a cosmological parameter at present time t0

and we have normalized the scale factor such that a0 ≡ a(t0) = 1. Furthermore,

Ωk ≡ −k/a2
0H

2
0 parametrizes the curvature dependent term in the Friedmann

equation eq. (2.5). At t = t0, eq. (2.12) implies the consistency relation∑
i

Ωi + Ωk = 1 . (2.13)

Observations of the CMB [4], baryon acoustic oscillations (BAO) [34] and su-

pernovae (SNe) [1, 2] can determine the contribution of the different species to the

current energy density of the universe to be

Ωb ' 0.05 , Ωdm ' 0.27 , ΩΛ ' 0.68 , |Ωk| ≤ 10−3 . (2.14)

Despite the notable successes of the hot big bang model it has the following

severe shortcomings with respect to initial conditions:

• The horizon problem: The horizon is defined as the maximum distance light

can travel after the big bang

τ ≡
∫ t

0

dt′

a(t′)
=

∫ a

0

da

H a2
=

∫ a

0

d ln a

(
1

aH

)
, (2.15)

11



Chapter 2. The inflationary paradigm

where (aH)−1 is the comoving Hubble radius. If the universe is dominated

by one species, i.e., Ωi ' 1 with equation of state w, eq. (2.12) can be solved

by
1

aH
=

1

H0

a
1
2

(1+3w) , (2.16)

which implies

τ =

∫ a

0

da

H a2
∝ a

1
2

(1+3w) . (2.17)

During the hot big bang the universe is either dominated by radiation (w =

1/3) or matter (w = 0) such that the horizon is monotonically increasing

with time.

The CMB is homogeneous up to relative fluctuations of ∼ 10−5. However, in

the hot big bang model only regions within an angle of less than 1◦ have been

in causal contact, i.e., their particle horizons during recombination, which

is the time at which protons and electrons formed neutral hydrogen for the

first time, intersect. In fact, the CMB consists of roughly 105 patches that

have never been in causal contact in the hot big bang but yet are in thermal

equilibrium. This immense fine-tuning of spatial initial conditions is dubbed

the horizon problem.

• The flatness problem: Defining 2

Ω(a) ≡ ρ(a)

ρcrit(a)
with ρcrit ≡ 3H(a)2 , (2.18)

we can write eq. (2.5) as

1− Ω(a) =
−k

(aH)2
=
−k
H2

0

a1+3w , (2.19)

using eq. (2.16). Hence, during matter or radiation domination the deviation

of Ω(a) from one grows as the universe evolves. To explain the smallness of

|Ωk| = |1 − Ω(a0)| ≤ 10−3 today, Ω(a) must have been even closer to one

in the past, e.g., |1 − Ω(aBBN)| ≤ 10−16 during BBN.3 Since 1 − Ω(a) can

be expressed as the difference between the average potential energy and the

average kinetic energy over a region of space, one can interpret its smallness

as a fine-tuning of initial velocities.

2Note that the density Ω(a) is time-dependent while Ω = Ω(a0) in eq. (2.11) is a constant.
3An obvious solution to the flatness problem is that the universe has always been exactly

flat, i.e., k = 0. In this sense, the flatness problem does not necessarily involve a high degree of

tuning in terms of digits and can hence be considered less severe than the horizon problem.
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2.2. The concept of inflation

• The defect problem: This problem is less severe than the two previously men-

tioned or might even be absent since it depends on the kind of physics that

describe the universe if one extrapolates the hot big bang to much earlier

times, i.e., higher energies than BBN. If this kind of physics implies that the

universe passed through phase transitions that produce large abundances of

topological defects such as very massive particles carrying magnetic charges,

cosmic strings or domain walls, these effects can spoil for instance homo-

geneity or successful predictions of the hot big bang such as BBN.

2.2 The concept of inflation

Whereas the hot big bang model cannot explain the very special initial conditions

described in the above problems, the framework of inflation [35–37] can give a

natural explanation to these conditions. A crucial input in deriving both the

horizon and flatness problems was the monotonic growth of the comoving Hubble

radius (aH)−1 during the hot big bang. The simple idea of inflation is to introduce

a period that precedes the hot big bang where (aH)−1 is decreasing, or conversely,

where ä > 0, i.e., the expansion accelerates.4

This solves the horizon problem by enlarging the particle horizon τ at recom-

bination compared to the hot big bang theory, see eq. (2.15). In other words,

regions of the universe that have never been in causal contact during the hot big

bang phase have been in causal contact during the inflationary epoch. The flatness

problem is solved since during an inflationary period where (aH)−1 is decreasing,

Ω(a) = 1 is an attractor as can be seen from eq. (2.19). The defect problem is

solved since relics such as magnetic monopoles are exponentially diluted during

an inflationary period. This explains their absence in the following hot big bang

phase. Finally, density perturbations and their scale dependence observed in the

CMB and in BAO are generated from quantum fluctuations during inflation. These

quantum fluctuations are generated on subhorizon scales, exit when the comoving

Hubble radius becomes smaller than their comoving wavelength and hence become

classical superhorizon density perturbations.

The defining property of inflation, i.e., the shrinking of (aH)−1, can be formu-

lated as the following equivalent conditions on the dynamics of the inflationary

4For alternative ideas to inflation see e.g., the pre-big bang [38] or cyclic universe [39] scenarios.

However, a major drawback for these models is the difficulty to predict the observed density

perturbation spectrum also at the level of polarizations of the CMB whereas this is not a problem

in the case of inflation.
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Chapter 2. The inflationary paradigm

epoch:

• Accelerated expansion:

d

dt

(
1

aH

)
< 0 ⇔ ä > 0 , (2.20)

whereas in the hot big bang phase d2a/dt2 < 0 for matter fulfilling the strong

energy condition ρ+ 3p ≥ 0, as can be seen from eq. (2.6). The second time

derivative of a can be related to the first time derivative of H = ȧ/a via

ä

a
= H2(1− ε) , with ε ≡ − Ḣ

H2
, (2.21)

such that ä > 0 implies ε < 1 during inflation.

• Negative pressure: In return, d2a/dt2 > 0 requires

p < −1

3
ρ , (2.22)

i.e., negative pressure or a violation of the strong energy condition. This

condition can also be validated from the dependence of (aH)−1 on w, i.e.,

eq. (2.16) implies w < −1/3.

To solve the horizon, flatness and defect problem, inflation has to stretch phys-

ical scales sufficiently. A convenient way to measure the growth of the scale factor

from the beginning ai to the end ae of inflation is the number of efolds

Ne ≡ ln
ae
ai

=

∫ te

ti

H dt . (2.23)

Depending on the energy scale of reheating, i.e., the transition of the inflationary

phase to the hot big bang phase, 50-60 efolds are necessary to solve the horizon

and flatness problem. This also implies a very strong dilution of defects if these

would have been produced in an epoch preceding inflation.

As can be seen from eq. (2.6), during inflation Ḣ < 0 which implies that if

|Ḣ| . 1, inflation will not last long enough to generate 50-60 efolds. To generate

enough efolds, we have to demand that |Ḣ|, |Ḧ| � 1. Demanding that H is almost

constant during inflation we can expand

H = H(0) −H(1)t−
1

2
H(2)t

2 −O(t3) , (2.24)

with H(i) > 0. Defining

η ≡ ε̇

Hε
=

Ḧ

Ḣ H
− 2

Ḣ

H2
, (2.25)
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2.3. Canonical vs. non-canonical dynamics

and using the definition of ε in eq. (2.21), we can write

Ne = H(0)(te − ti)−
1

2
H(1)(t

2
e − t2i )−

1

6
H(2)(t

3
e − t3i )−O(t4) ,

' H(0)(te − ti)−
1

2
εH2

(0)(t
2
e − t2i )−

1

6
ε(η + 2ε)H3

(0)(t
3
e − t3i )−O(t4) .

(2.26)

Hence, assuming H(0)(te − ti) ∼ 50 − 60 we have to demand ε, |η| . O(10−2) in

order to generate enough efolds. The fact that H ' H(0) is almost constant during

inflation implies an exponential growth of the scale factor a ∝ eH(0)t.

2.3 Canonical vs. non-canonical dynamics

In this section, we will discuss which physical theory can realize an inflationary

epoch. Let us study a single scalar field φ minimally coupled to gravity via

S =

∫
d4x
√
g

[
M2

P

2
R+ p(X,φ)

]
, (2.27)

with 4D Ricci scalar R and X ≡ −(∂µφ)2/2 ' φ̇2/2 since spatial derivatives are

rapidly washed out during inflation. Even though this is obviously not the most

general ansatz (we could consider multiple scalar fields or non-minimal coupling to

gravity 5) it is the most economic ansatz since it can provide an inflationary model

that is consistent with the current CMB data as we will see below. Furthermore,

the motivation to consider only one scalar field is strengthened by the fact that

multi scalar field inflation is observationally disfavored due to the non-observation

of non-Gaussianities in the CMB until this day [4]. Fermions are not useful for

inflationary model building since a background field value different from zero would

break Lorentz invariance. Massive vector bosons, on the other hand, could provide

viable inflatons. However, the come at the price of a certain spatial anisotropy of

the universe after inflation [42] that has so far evaded detection.

The most general form of p(X,φ) for which the equations of motion derived

from eq. (2.27) are second-order in the field φ, in order to avoid propagating ghosts

or extra degrees of freedom, is the Hordenski action [43–45]. From an effective field

theory point of view, we expect the function p(X,φ) to have the form

p(X,φ) =
∑
n≥0

cn(φ)
Xn+1

Λ4n
− V (φ) = Λ4S(X,φ)− V (φ) , (2.28)

5In the case of f(R) theories [40], this can be transformed to a minimally coupled Lagrangian

of the form eq. (2.27) via a Weyl transformation of the metric. The Higgs boson may be a valid

candidate for the inflaton if it is non-minimally coupled to gravity [41].
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Chapter 2. The inflationary paradigm

with some cutoff scale Λ that characterizes where the effective field theory descrip-

tion breaks down. In this work, we will restrict ourselves for practical reasons to

the case where the coefficients cn are not field dependent, i.e., cn(φ) = cn, such

that p(X,φ) is separable, i.e.,

p(X,φ) = Λ4S(X)− V (φ) . (2.29)

A theory is intrinsically non-canonical if the higher order kinetic terms Xn with

n > 1 play a significant role in the dynamics. Note that this is qualitatively

different from theories with non-canonical kinetic terms e.g.,

L = − 1

2φ2
(∂µφ)2 − V (φ) , (2.30)

where one can, at least in principle, find a field redefinition. In this case, ψ = lnφ

transforms eq. (2.30) to a canonical theory in ψ.

The inflationary dynamics and observables are described in terms of the gen-

eralized slow-roll parameters ε and η defined in eq. (2.21) and (2.25), the speed of

sound and its time derivation [46, 47]

c2
s ≡

(
1 + 2X

∂2p/∂X2

∂p/∂X

)−1

, κ ≡ ċs
H cs

. (2.31)

In the canonical case p(X,φ) = X − V (φ) these reduce to

ε = εV ≡
1

2

(
V ′

V

)2

, η = 4εV − 2ηV , ηV ≡
V ′′

V
, c2

s = 1 , κ = 0 . (2.32)

The equations of motion derived from eq. (2.27) with pressure p = p(X,φ) and

energy density

ρ = 2X
∂p

∂X
− p . (2.33)

are

p = −ρ (1− 2

3
ε) ,

ρ̇ = −3H (ρ+ p) = −6H X
∂p

∂X
.

(2.34)

Since during inflation ε � 1 and hence p ' −ρ we can write the second equation

in eq. (2.34) as

−
√

2X
∂p

∂X
' 1

3H

∂p

∂φ
. (2.35)

In the canonical limit p(X,φ) = X − V (φ) the equations of motion turn into the

slow-roll equations

φ̈+ 3Hφ̇+ V ′(φ) = 0 and H2 =
1

3

(
1

2
φ̇2 + V (φ)

)
. (2.36)
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2.3. Canonical vs. non-canonical dynamics

The equation of state becomes

w =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

, (2.37)

so we have to demand 1
2
φ̇2 � V (φ) for inflation and hence H2 ' 1

3
V (φ).

For general separable p(X,φ) given in eq. (2.29), inflationary solutions can be

found as algebraic solutions Xinf = X(A) to the equation [48]

√
2X Λ2 ∂S(X)

∂X
= A , (2.38)

with the ‘non-canonicalness’ parameter

A(φ) =
V ′

3H Λ2
. (2.39)

A� 1 is equivalent to the canonical limit of the theory, since

A(φ) =

(
2

3
εV
V

Λ4

)1/2

, (2.40)

and εV � 1. On the other hand, for A � 1 the theory shows its non-canonical

nature, i.e., the terms Xn with n > 1 dominate the Lagrangian and we can have

εV > 1 but still ε� 1.

For theories with a finite convergence radius X/Λ4 < R of S(X), it was shown

that a truly non-canonical inflationary solution of eq. (2.38) with A � 1 exists

under the following conditions [48]:

• The derivative ∂XS(X) diverges at the radius of convergence R.

• The potential is large in units of the cutoff scale, i.e., V � Λ4 such that the

energy density of the potential always dominates that of the kinetic terms.6

Note that a finite radius of convergence implies a speed limit X < RΛ4. Theories

without a speed limit with a p(X,φ) monotonically increasing in X might loose

validity for X > Λ as an effective field theory. Furthermore, it has been shown

that that inflationary solutions act as an attractor in phase space, i.e., for general

initial conditions (φ,X)in the phase space trajectory flows towards the inflationary

solution [48].

The two central questions that we will discuss in the following two chapters

are:

6Note that the effective field theory description is valid as long as H < Λ. This generally

allows large values of the potential in terms of the cutoff scale since H
Λ '

(
V
Λ4

)1/2 Λ
MP

.
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Chapter 2. The inflationary paradigm

• Can an inflationary solution of a non-canonical theory be transfered to a

canonical theory?

• If yes, under which condition do the phenomenologies of the original non-

canonical theory and the transformed canonical theory agree?

It is hard to transform the complete theory, i.e., to find a field transformation φ→
χ that transforms a general function p(X,φ) to a canonical Lagrangian p̃(X,χ) =

X − V (χ). On the other hand, finding a transformation that relates only the

inflationary solution of a general p(X,φ) to an inflationary solution of a canonical

theory is straightforward, as shown in Section 3.1. We will refer to this kind of

transformation as on-shell since it relates only special solutions to the equations

of motion to each other instead of a transformation of the full Lagrangian.

As far as phenomenology is concerned, the inflationary observables arise as

quantum fluctuations of the field φ and the metric degrees of freedom around the

classical background inflationary solution given in eq. (2.38). By transforming a

non-canonical theory to a canonical theory via an on-shell transformation these

background solutions are in agreement but it is not clear if the fluctuations around

these solutions are as well. The inflationary observables are related to n-point

functions of scalar and tensor fluctuations. These are the comoving curvature

perturbations R which are a gauge invariant mixture of the fluctuations of φ and

the scalar degrees of freedom of the metric, and the two polarization modes h of

the tensor fluctuations hij of the metric. In perturbation theory, CMB observables

such as temperature fluctuations are qualitatively a series expansion in the n-

point functions with the expansion parameter being the relative amplitude of the

fluctuations sim10−5.

In Chapter 3, we first discuss how to match the inflationary background solution

of a non-canonical theory to a canonical inflationary theory in Section 3.1 and

then move on to the potential matching of the inflationary observables of the two

theories at the level of the 2-point function. In Section 3.2, we discuss a condition

on the speed of sound cs(A) as a function of the non-canonicalness parameter A

for the matching of the 2-point function observables. DBI inflation [49, 50] as an

example of non-canonical inflation that matches these conditions is discussed in

more detail in Section 3.3. This Chapter summarizes the results of [12].

In Chapter 4, we discuss the matching of 3-point function observables, i.e.,

non-Gaussianities. There is generally a large amplitude of non-Gaussianities in

non-canonical inflation [47], while in canonical slow-roll inflation non-Gaussianities

tend to be small [51]. However, resonant features in the potential V (φ) of a canon-
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2.3. Canonical vs. non-canonical dynamics

ical theory can generate large non-Gaussianities [52–54]. These can be superim-

posed to generate similar non-Gaussianities to those generated in non-canonical

inflation [13],7 hence indicating a possible matching of canonical and non-canonical

inflationary observables at the level of the 3-point function. After briefly introduc-

ing non-Gaussianities in the beginning of Chapter 4, we explain the summation of

resonant non-Gaussianities in Section 4.1. The degeneracy with non-Gaussianities

from non-canonical inflation is demonstrated in Section 4.2. Finally, we give some

concluding remarks on Part I.

7Note that this degeneracy can also arise via a different mechanism, as in [55, 56]. Here,

equilateral non-Gaussianity is induced by inflaton fluctuations sourced by gauge quanta via the

pseudoscalar coupling φFF̃ to some gauge field F . However, the non-Gaussianity we consider in

Chapter 4 has a different origin, coming only from the potential for φ.
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Chapter 3

Comparison of 2-point function

observables

Before we discuss the observational degeneracy of canonical and non-canonical

inflationary theories at the level of the 2-point function, let us introduce the 2-

point function observables. In momentum space, the power spectra ∆2
s ≡ ∆2

R of

the scalar modes R and ∆2
t ≡ 2∆2

h of the tensor modes h are given by

〈R(k)R(k′) 〉 = (2π)3 δ(k + k′)
2π2

k3
∆2
s(k) ,

〈h(k)h(k′) 〉 = (2π)3 δ(k + k′)
π2

k3
∆2
t (k) ,

(3.1)

with k = |k| = |k′| and 〈. . . 〉 is the ensemble average of the fluctuations. The scale

dependence of the power spectra is defined by the scalar spectral indices/tilts

ns(k)− 1 ≡ d ln ∆2
s(k)

d ln k
and nt(k) ≡ d ln ∆2

t (k)

d ln k
. (3.2)

The inflationary observables, i.e., the scalar power spectrum ∆2
s, the tensor power

spectrum ∆2
t , the scalar spectral index ns and the tensor spectral index nt can

then be calculated via [46, 47]

∆2
s(k) =

1

8π2

H2

M2
p

1

csε

∣∣∣∣
csk=aH

,

∆2
t (k) =

2

π2

H2

M2
p

∣∣∣∣
k=aH

,

ns(k)− 1 = −2ε− η − κ|csk=aH ,

nt(k) = −2ε|k=aH .

(3.3)

The observables have to be evaluated at the time of horizon crossing aH. Note

that scalar fluctuations travel with speed of sound cs while tensor perturbations
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travel with speed of light c = 1. In the canonical case, eq. (3.3) reduces to

∆2
s(k) =

1

8π2

H2

M2
p

1

ε

∣∣∣∣
k=aH

,

∆2
t (k) =

2

π2

H2

M2
p

∣∣∣∣
k=aH

,

ns(k)− 1 = −2ε− η|k=aH ,

nt(k) = −2ε|k=aH ,

(3.4)

where we have used cs = 1.

3.1 On-shell transformation of inflationary solu-

tions

In any theory, canonical or non-canonical with scalar field χ, the inflationary

solution can be expressed as a function in phase space Xinf (χ). We want to obtain

the solution Xinf (φ) from a canonically normalized Lagrangian with scalar field φ

and potential Vcan(φ). In the following we describe how to construct Vcan(φ).

In a canonically normalized theory that allows slow-roll inflation, the equations

of motion eq. (2.36) are approximately

φ̇ ' −V
′
can(φ)

3H(φ)
, H2(φ) ' Vcan(φ)

3
, (3.5)

where ′ denotes the derivative with respect to φ. Using φ̇ = −
√

2X we obtain

√
6X dφ =

1√
Vcan

dVcan . (3.6)

Now, going on-shell X = Xinf (χ) and using dφ = dχ we can integrate both sides

of eq. (3.6) to solve for Vcan:∫ φ

φ0

√
6Xinf (χ) dχ =

∫ V

V0can

dVcan√
Vcan

,

⇒ Vcan(φ) =

(√
V0can +

∫ φ

φ0

√
3

2
Xinf (χ) dχ

)2

,

(3.7)

with V0can = Vcan(φ0). Eq. (3.7) can be seen as an on-shell transformation of

the originally possibly non-canonical theory to a canonical theory. It gives us

the potential Vcan, whose dynamics described in eq. (3.5) give exactly the same

trajectory in phase space as in the original theory. In other words, given an
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inflationary trajectory in a theory with general kinetic term, we have derived the

form of the potential in a theory with canonical kinetic term which will give rise

to the same inflationary trajectory. We assume that the kinetic term is canonical

and X = Xcan
inf = Xnoncan

inf = Xinf , and find the corresponding Vcan. This is not

a field transformation, since we simply match the inflationary trajectory in two

different theories. Hence, for any properties regarding the inflationary background

solution, the fields χ and φ are the same while their general dynamics governed

respectively by their non-canonical and canonical Lagrangians are different.

If the original theory is canonical with potential V (χ), the inflationary trajec-

tory is given by [48]

Xcan
inf =

(V ′)2

6V
, (3.8)

such that Vcan(φ) = V (χ).

3.2 Conditions on the agreement of observables

In this section, we compare the number of efolds Ne, the scalar power spectrum ∆2
s,

the tensor power spectrum ∆2
t and the scalar spectral index ns of non-canonical and

canonical inflation. We discuss under what conditions these observables will match

for a non-canonical theory and a canonical theory whose potential is obtained via

eq. (3.7) such that it describes the same dynamics as the non-canonical theory.

The natural time measure during inflation is the number of efolds Ne that

inflation produces in the time interval [ti, tf ]. According to eq. (2.23), it is defined

as

Ne =

∫ tf

ti

H(t) dt =

∫ φend

φNe

H(φ)

φ̇
dφ =

∫ φNe

φend

(
V (φ)

6Xinf (φ)

)1/2

dφ , (3.9)

where in the last equation we have used H2 ' V/3 and φ̇ = −
√

2X on the

inflationary trajectory in phase space and φend is the field value when inflation

ends. In the case of a canonically normalized Lagrangian, this reduces to

Ne =

∫ φNe

φend

V (φ)

V ′(φ)
dφ =

∫ φNe

φend

1√
2ε
dφ . (3.10)

The observables are evaluated as functions of the comoving momentum k. Due

to the fact that the sound speed cs is generically different from one, the time of

horizon crossing for scalar modes is different from the time of horizon crossing for

tensor modes. In terms of efolds Ne, the different times of horizon crossing are
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determined via

scalar modes: csk = aH ⇔ ln k = (Ne − ln cs) + lnH ,

tensor modes: k = aH ⇔ ln k = Ne + lnH .
(3.11)

Hence, the moment of horizon crossing of the scalar modes is earlier than that

of the tensor modes and the correction is logarithmic in cs with ln cs < 0 due

to cs < 1. The speed of sound is constrained from the non-observation of non-

Gaussianities of the equilateral type to be cs & 0.1 such that the correction to

horizon crossing is of the order of one efold. We will ignore this correction in the

remainder of this section but will discuss its significance in Section 3.3.2. It will

turn out that the correction is negligible for ∆2
s and ∆2

t while it is significant for

ns.

3.2.1 Theories with a speed limit

Let us examine under which conditions the observables of non-canonical inflation

and canonical inflation obtained as a function of Ne, as discussed in Section 3.1,

will agree. Let us make two assumptions:

• The non-canonical theory has a canonical branch, i.e., a region in phase space

where p ' X − V , and hence Vcan ' V in this region.

• The non-canonical theory has a speed limit R such that Xinf ' Λ4R for

A� 1.

We can perform the integration in eq. (3.7) analytically and obtain

Vcan(φ) =
3

2
RΛ4(φ− C)2 , (3.12)

with a constant C for the canonical potential in the limit for A� 1. This implies

εcan =
1

2

(
V ′can
Vcan

)2

=
3RΛ4

Vcan(φ)
. (3.13)

It was shown in [48] that the first slow-roll parameter becomes

ε =
√

2R
εV
A

(3.14)

for A� 1. Using the definition of A, eq. (2.39), and eq. (3.13), the agreement of

∆2
s and ∆2

t as a function of φ can be phrased as conditions on the potentials and

the speed of sound, i.e.,

Vcan ' V and cs =

√
2R

A
for A� 1 . (3.15)
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Note that the first condition in eq. (3.15) is trivially satisfied in the canonical

limit A � 1. In the non-canonical limit A � 1, the derivative V ′ will generically

have large values while V ′can has to be small in order to support slow-roll inflation.

Thus, at some value A∗ in the A � 1 limit, V and Vcan will no longer agree.

However, there can be an intermediate regime A ∈ [1, A∗] with Vcan ' V and

V ′can � V ′. This intermediate regime can even serve to describe the complete

phenomenologically interesting region if cs(A
∗) < 0.1, such that only the region

A > A∗ is excluded due to non-observation of equilateral non-Gaussianities.

The first condition in eq. (3.15) implies an agreement as a function of Ne as

well since according to eq. (3.9)

canonical: Ne =

∫ φNe

φend

1√
2εcan

dφ =

∫ φNe

φend

(
Vcan(φ)

6RΛ4

)1/2

dφ ,

non-canonical: Ne =

∫ φNe

φend

(
V (φ)

6Xinf (φ)

)1/2

dφ =

∫ φNe

φend

(
V (φ)

6RΛ4

)1/2

dφ .

(3.16)

As far as the spectral indices ns and nt are concerned we do not find agreement

in the limit A� 1 since

canonical: ns − 1 = −6εcan + 2ηcan = −12RΛ4

Vcan
,

nt = −2εcan = −6RΛ4

Vcan
,

non-canonical: ns − 1 = −2ε− η − κ =

√
2R

A
(−6εV + 2ηV )− κ ,

nt = −2ε = −2
√

2R

A
εV ,

(3.17)

using η =
√

2R/A(4εV − 2ηV ) as was shown in [48]. However, this does not

exclude an agreement in an intermediate region A & 1. Furthermore, the scalar

spectral index ns receives significant corrections from the fact that cs < 1 in non-

canonical theories. This can improve the agreement, as we will summarize in

Section 3.3.2. For nt we cannot expect such an improvement but this observable

is phenomenologically much less relevant since at present not even ∆2
t has been

measured.

Let us now investigate with some examples when the second condition in

eq. (3.15) on the speed of sound cs can be fulfilled. First, we note that using

eq. (2.38) the speed of sound can be expressed as

c2
s(A) =

A∂Xinf/∂A

2Xinf

. (3.18)
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Chapter 3. Comparison of 2-point function observables

Hence, we need to know the functional dependence Xinf (A) in order to decide

whether the observables ∆2
s and ∆2

t of the canonical and non-canonical theory

agree. For p(X,φ) = Λ4S(X) − V (φ) as defined in eq. (2.28) this dependence is

determined by the identity

2
X

Λ4

(∑
n≥0

(n+ 1) cn

(
X

Λ4

)n)2

= A2 , (3.19)

using the algebraic equation for the inflationary solution, eq. (2.38). To obtain

Xinf (A) we have to invert eq. (3.19), which is impossible for generic coefficients cn.

However, we will discuss some closed form expressions for p(X,φ) in the following.

Consider the class of non-canonical Lagrangians defined by

p(X,φ) = Λ4

[
1−

(
1− 1

a

X

Λ4

)a]
− V (φ) , (3.20)

with 0 < a < 1 such that ∂p/∂X diverges at the radius of convergence Ra = a.

This class of non-canonical Lagrangians includes the DBI action which is defined

via the case a = 1/2, i.e.,

p(X,φ) = Λ4

[
1−

(
1− 2

X

Λ4

)1/2
]
− V (φ) . (3.21)

In this case, the inflationary solution, solving eq. (2.38), is given as

Xinf =
Λ4

2

A2

1 + A2
. (3.22)

It is discussed in Section 4.1 of [12], that c2
s ' A−2 for A � 1, fulfilling the

second condition in eq. (3.15), only for a = 1/2. There are of course plenty of

other models apart from those defined by eq. (3.20) that fulfill the conditions

of a canonical branch and a speed limit. The question of whether there could

be examples other than DBI where the conditions on the potential and speed of

sound eq. (3.15) for an agreement of ∆2
s and ∆2

t are fulfilled is hard to answer in full

generality but no other cases were found in [12]. Due to the lack of other working

examples where the agreement conditions eq. (3.15) are matched, we suspect that

the description in terms of a canonical theory may be special to the DBI case.

We will study this case more explicitly in the following section. We note at this

point that the matching of the background equation of motion does not necessarily

mean that fluctuations around this background in the two different theories should

match. One should thus not expect agreement of the inflationary observables in

general, even if the inflationary trajectory is the same. This makes the agreement

in the DBI case all the more remarkable.
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3.3. DBI inflation with an inflection point potential

3.3 DBI inflation with an inflection point poten-

tial

We now want to give an example of our general considerations in Section 3.2.1.

We consider the DBI action together with an inflection point potential:

p(X,φ) = − 1

f(φ)

(√
1− 2f(φ)X − 1

)
− V (φ) , (3.23)

with

V (φ) = V0 + λ(φ− φ0) + β(φ− φ0)3 . (3.24)

To study a numerical example, we fix the parameters of this theory to be

V0 = 3.7·10−16 , λ = 1.13·10−20 , β = 1.09·10−15 , φ0 = 0.01 , f = 1.6·1021 .

(3.25)

These are the values that were considered in [48]. In particular, the field-dependent

warp factor has been set to a constant f = Λ−4 which is justified if the range of

field values that φ travels during inflation is small. The parameters in eq. (3.25)

have been chosen such that for a canonical kinetic term p(X,φ) = X − V the

amplitude of the scalar fluctuations and the spectral index agree with observations,

i.e., ∆2
s = 2.41 · 10−9 and ns = 0.961.

Let us first see when eq. (3.23) is in the non-canonical regime by evaluating the

‘non-canonicalness’ parameter A. We find that for φ . 0.025 we are in the canon-

ical regime A ≤ 1, while for φ & 0.025 we enter the non-canonical regime A > 1.

The phase space trajectory Xinf (φ) for eq. (3.23) is determined by eq. (3.22). This

determines the potential Vcan(φ) that resembles the trajectory from a canonical ki-

netic term via eq. (3.7). We perform the integration numerically and show Vcan(φ)

compared to the original inflection point potential V (φ) in Figure 3.1. We see

that, as expected, Vcan agrees with V in the canonical regime while it is flatter

than V in the non-canonical regime. To see that Vcan actually supports slow-roll

inflation we check εcan and ηcan as functions of φ, finding that these parameters

are � 1 in the canonical as well as in the non-canonical regime.

3.3.1 Comparison of observables

We compare the observables of the canonical and non-canonical theory in Fig-

ure 3.2, exemplarily for ∆2
s. The agreement in ∆s and ∆t at the level of ∼ 1% is

up to values φ < 0.2 which is roughly one order of magnitude more than the value of

φ where the non-canonical regime begins. So as discussed following eq. (3.15) there
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Chapter 3. Comparison of 2-point function observables

Figure 3.1: Comparison of the inflection point potential V ≡ Vinfl of eq. (3.24)

and the potential of the canonical theory Vcan(φ) obtained via eq. (3.7) for

φ ∈ [0, 0.025] (left) and φ ∈ [0, 0.12] (right).

is indeed an intermediate regime where the observables agree even though Vcan is

much flatter than V . Furthermore, since cs < 0.1 for φ > 0.06, the phenomeno-

logically viable region is included in this intermediate regime. The agreement of

ns − 1 of the two theories as functions of Ne holds only up to φ ≤ 0.05. However,

there are important corrections to ns − 1 induced by the fact that the speed of

sound cs in the non-canonical theory is smaller than one. We will discuss these

corrections in Section 3.3.2.

Note that there is an additional upper bound on cs which has to be fulfilled in

order to treat the inflationary quantum fluctuations perturbatively [11, 57, 58]. If

the speed of sound becomes too small, the perturbations become strongly coupled

and in particular the expressions for the inflationary observables eq. (3.3) are

not valid. For DBI this can be expressed as a bound on the ‘non-canonicalness’

parameter [48]

A <

(
3 ε

V

)1/5

. (3.26)

For our numerical example, this implies A < O(100) and hence φ . 0.2. Note

that this is exactly the region where we find agreement between the non-canonical

and transformed canonical theory. A proof for the agreement of the observables

∆2
s and ∆2

t in the whole intermediate region (note that in Section 3.2.1 this was

shown only in the limit A� 1) can be found in Section 4.2 of [12].

The agreement works out as well for the DBI action with a Coulomb type

potential

V (φ) = V0 −
T

(φ+ φ0)n
, (3.27)

instead of an inflection point potential. The non-canonical regime is accessed for

φ < φ0 while the canonical regime is given by φ > φ0. Hence, the agreement with
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Figure 3.2: Comparison of the observables ∆2
s (right) of the non-canonical

DBI and the transformed canonical theory. Since the number of efolds (left) of

the two theories agrees as a function of φ, the agreement of the observables as

a function of φ can be read as an agreement as a function of Ne.

the transformed canonical theory is trivially found for φ < φ0 and extends to the

non-canonical regime until the condition V ' Vcan is violated.

3.3.2 Corrections from cs < 1

As we discussed in eq. (3.11), the observables have to be evaluated as functions

of the comoving momentum k which implies different times of horizon crossing for

scalar and tensor modes respectively. Under the condition Hcan ' Hnon−can which

follows from Vcan ' V , an agreement of tensor observables T as functions of ln k

is equivalent to Tcan(Ne) = Tnon−can(Ne) having used Ne = ln k − lnH.

For scalar observables S however, we have to take into account that Ne−ln cs =

ln k − lnH in the non-canonical theory while Ne = ln k − lnH in the canonical

theory. Hence, we have to check for the equality Scan(Ne) = Snon−can(Ne − ln cs).

Since the non-observation of equilateral non-Gaussianities implies | ln cs| � N t
e, it

is sufficient to expand Snon−can to first order in ln cs, i.e.,

Snon−can(Ne − ln cs) ' Snon−can(Ne)− S ′non−can(Ne) ln cs . (3.28)

In Section 5 of [12], we perform this expansion for the scalar power spectrum

∆2
s and the scalar spectral index ns. We find that the corrections to ∆2

s are of

the order of the slow-roll parameters while the corrections to ns can be sizable.

We find that the regime where ns − 1 of the canonical and non-canonical theory

agree at the level of 1% is increased from φ ≤ 0.05 to φ ≤ 0.08. Consequently, the

phenomenologically interesting region where cs > 0.1 given by φ ≤ 0.06 is included

due to the inclusion of this correction.
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Chapter 4

Comparison of 3-point function

observables/non-Gaussianities

So far CMB observations tell us that the spectrum of the perturbations of R is

Gaussian [3, 4]. For a Gaussian spectrum all information is contained in the 2-

point function or equivalently the power spectrum via eq. (3.1). In this case, all

odd correlations vanish and the higher even-point functions are given as functions

of the 2-point function. Future CMB and BAO experiments might detect a de-

viation from a Gaussian spectrum, i.e., non-Gaussianities that potentially encode

information about the details of the inflationary mechanism. In this case, the

3-point function which is often also referred to as the bispectrum has the form

< R(k1)R(k2)R(k3) >= (2π)3 δ3(k1 + k2 + k3)F (k1,k2,k3) , (4.1)

where we parametrize F (k1,k2,k3) following [52] as

F (k1,k2,k3) = (2π)4 ∆4
s

(k1k2k3)2

G(k1, k2, k3)

k1k2k3

, (4.2)

i.e.,

< R(k1)R(k2)R(k3) >= (2π)7 ∆4
s

k2
1k

2
2k

2
3

δ3(k1 + k2 + k3)
G(k1, k2, k3)

k1k2k3

. (4.3)

This parametrization is motivated by the fact that for scale-independent fluctua-

tions F (k1,k2,k3) is symmetric in its arguments and a homogeneous function of

degree -6. Furthermore, ∆2
s is the expansion parameter for the influence of higher

order n-point functions on the observables, i.e., the 3-point function is proportional

to ∆4
s. Note that 3-point function calculations are sensitive to the time-evolution

of the vacuum while this is a higher order effect in case of the 2-point function.
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observables/non-Gaussianities

It is useful to divide the function G(k1, k2, k3)/(k1k2k3) into a part that mea-

sures the amplitude of the non-Gaussianities fNL and a shape function S(k1, k2, k3)

via [59]
G(k1, k2, k3)

(k1k2k3)
= fNL S(k1, k2, k3) , (4.4)

with 1

fNL ≡
10

9

G(k, k, k)

k3
. (4.5)

The potential wealth of information decoded in non-Gaussianities lies in the fact

that it is not only characterized by a number but by a momentum dependent func-

tion S(k1, k2, k3). Since different inflationary Lagrangians imply different shape

functions S(k1, k2, k3), a detection of non-Gaussianities could distinguish between

different inflationary dynamics that are degenerate at the level of the 2-point func-

tion. In general, the shape refers to the dependence of S(k1, k2, k3) on the momen-

tum ratios k2/k1 and k3/k1 when the overall momentum scale K is fixed, while

the dependence of S on K when the momenta ki are fixed gives the running of the

bispectrum.

4.1 Summed resonant non-Gaussianities

We discuss the derivation of summed resonant non-Gaussianities in this section.

After presenting a scalar potential with a sum of modulations we present the

influence of these modulations on the power spectrum and the bispectrum.

4.1.1 Potential, solution and slow-roll parameters

From an effective field theory point of view, we can begin with a model of a single

scalar field with canonical kinetic term and modulated potential

V (φ) = V0(φ) +
∑
i

Ai cos

(
φ+ ci
fi

)
, (4.6)

where we have generalized the modulated potential in [52, 54] to the case where

the modulation is a series of terms with varying phases. Superimposing modulated

terms in the potential is directly connected to superimposing the associated non-

Gaussianities as we will see in the following. The sum in eq. (4.6) is a small

1The prefactor in eq. (4.5) is chosen such that for the local shape Glocal(k1, k2, k3)/(k1k2k3) =

f local
NL (k3

1 + k3
2 + k3

3)/(k1k2k3) which is often used to parametrize non-Gaussianities phenomeno-

logically, fNL = f local
NL .
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Figure 4.1: Modulated linear potential, for a convenient choice of ci, fi values.

perturbation to the equation of motion [13], i.e.,

φ̈+ 3Hφ̇+ V ′0(φ) =
∑
i

Ai
fi

sin

(
φ+ ci
fi

)
, (4.7)

instead of the first equation in eq. (2.36).

For suitable coefficients and values of fi, the sum remains a small perturbation

on the potential V0(φ) (see Figure 4.1). It is shown in [13] that slow-roll inflation

for this theory is supported for sufficiently large fi, while a large time variation in

the slow-roll parameters is possible, e.g.,

δ̇1

H
=

∑
i

√
2ε?
fi

3b?i cos

(
φ0 + ci
fi

)
, (4.8)

with δ ≡ Ḧ
2Ḣ H

= η
2
− ε. It turns out [13, 54] that the perturbative expansion of

the equations of motion eq. (4.7) is justified for fi �
√

2ε? ∀ i where the subscript

? indicates evaluation at horizon exit, e.g., ε? ≡ εV0(φ?). The parameter b?i in

eq. (4.8) is defined as

b?i ≡
Ai

V ′0(φ?)fi
. (4.9)

In Sections 4.1.2 and 4.1.3 we give the power spectrum and bispectrum respec-

tively, finding that the bispectrum is given by a series of the resonant bispectra

found for a singly modulated potential in [52, 54]. This bispectrum was first cal-

culated in [52]; here we follow closely the notation and analysis in [54]. The details

of our calculations are given in Appendix A of [13].
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4.1.2 The power spectrum

To find the power spectrum we have to solve a differential equation, the Mukhanov-

Sasaki equation for the mode function Rk of the curvature perturbation [54]

d2Rk

dx2
− 2(1 + δ1(x))

x

dRk

dx
+Rk = 0, (4.10)

where x = −kτ for τ the conformal time and δ1 is the first order contribution in

an expansion δ = δ0 + δ1 +O(b?i ),

δ1 = −3
∑
i

b?i sin

(
φ0 + ci
fi

)
. (4.11)

The differential eq. (4.10) can be solved by means of the stationary phase

approximation [13, 54] with the solution outside the horizon k/aH � 1 i.e., x =

−kτ = k/aH � 1 (using the definition of conformal time and the fact that during

inflation H is constant):

Rk(x) = R
(0)
k,0

[
1 +

∑
i

3b?i

√
fiπ

2
√

2ε?
cos

(
φk + ci
fi

)

− i
∑
i

3b?i

√
fiπ

2
√

2ε?
sin

(
φk + ci
fi

)
+O(x3)

]
,

(4.12)

where φk = φ?−
√

2ε? ln k
k?

is the value of the field when the mode with comoving

momentum k exits the horizon. This implies

|R(0)
k |

2 = |R(0)
k,0|

2 [1 + δns] , (4.13)

with

δns =
∑
i

3b?i

(
2πfi√

2ε?

)1/2

cos

(
φk + ci
fi

)
, (4.14)

which is just the generalization of eq. (2.30) in [54] one might have expected.

4.1.3 The bispectrum

The leading order to the bispectrum originates from the interaction Hamiltonian

HI(t) ⊃ −
∫
d3xa3(t)ε(t)δ̇(t)R2(x, t)Ṙ(x, t), (4.15)

where to linear order in b?i we can use the approximations ε ≈ ε?, δ ≈ δ1 and use

the unperturbed mode functions Rk(x).2 Eq. (4.15) is one of many contributions

2To see why we can use the unperturbed mode functions, see Appendix A.2 of [13].
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to the interaction Hamiltonian that can be derived from the effective Lagrangian

of the perturbations. It is the leading contribution in our case since δ̇(t) is large.

The single modulation analysis of [54] carries over to multi modulated case,

with the 3-point function given by eq. (4.3) for

G(k1, k2, k3)

k1k2k3

=
1

8

∫ ∞
0

dX
δ̇1

H
e−iX

[
−i− 1

X

∑
i 6=j

ki
kj

+
i

X2

K(k2
1 + k2

2 + k2
3)

k1k2k3

]
+ c.c,

(4.16)

where K ≡ k1 + k2 + k3, X ≡ −Kτ , and δ̇1 is given by eq. (4.8). The integral

has its dominant contribution in the vicinity of Xres,i =
√

2ε?
fi

[13, 54], deep inside

the horizon. Up to an overall phase,3 the bispectrum is found to be a sum of the

resonant bispectra found in [54]:

Gres(k1, k2, k3)

k1k2k3

=
∑
i

3
√

2πb?i
8

(√
2ε?
fi

)3/2 [
sin

(
φK + ci
fi

)
− fi√

2ε?

∑
` 6=m

k`
km

cos

(
φK + ci
fi

)

−
(

fi√
2ε?

)2
K(k2

1 + k2
2 + k2

3)

k1k2k3

sin

(
φK + ci
fi

)]

=
∑
i

3
√

2πb?i
8

(√
2ε?
fi

)3/2 [
sin

(√
2ε?
fi

ln
K

k?
+
ci
fi

)
+

fi√
2ε?

∑
6̀=m

k`
km

cos

(√
2ε?
fi

ln
K

k?
+
ci
fi

)
+ ...

]
.

(4.17)

As a consistency check of our calculation, we have confirmed that this sum of

resonant bispectra satisfies the squeezed limit consistency relation [51, 60]. The

details are presented in Appendix A.3 of [13].

4.2 Equilateral features from summed resonant

non-Gaussianity

We now want to discuss what kind of non-Gaussianities could have a sizable overlap

with summed resonant non-Gaussianity. One could also turn this question around

3Note that each term in the sum over i in eq. (4.17) actually has a different phase contribution

which depends on the fi. However, we can absorb these terms into the ci which we are free to

choose, such that eq. (4.17) is correct.
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and ask what values the parameters b?i , fi and ci have to take in order to generate

a degeneracy. From an effective field theory point of view it is perfectly fine to

choose ad hoc values for these parameters as long as they are not in conflict with

observations such as the power spectrum and fulfill certain consistency conditions.

For instance, the frequencies should certainly not be super Planckian, i.e., fi < 1,

and monotonicity of the inflaton potential requires b?i < 1.

In [53, 61], bounds on oscillating features in the power spectrum were given

for a quadratic and a linear inflaton potential respectively. The bound that was

found in both works is

b?i fi <
10−5

√
2ε?

, (4.18)

for a single modulation in the potential, which may be avoided if the symmetry

under time translations is collectively broken [62]. In the following, we assume that

this bound is valid for multiple modulating terms in the potential. For more detail

on when this bound, eq. (4.18), is applicable, see the discussion in Section 4.2.4.

Let us briefly discuss the general form of the bispectrum. Due to the appear-

ance of the delta function in eq. (4.3), a momentum configuration is completely

characterized by the absolute values of the three momenta k1, k2 and k3. Fur-

thermore, for a scale-invariant spectrum this reduces to two variables. Then,

one usually considers the bispectrum as a function of the two rescaled momenta

x2 = k2/k1 and x3 = k3/k1. A region that includes only inequivalent momentum

configurations is given by 1− x2 ≤ x3 ≤ x2.

Let us switch to the variables x± = x2 ± x3, with 1 < x+ < 2 and 0 < x− < 1.

Note that the resonant non-Gaussianity eq. (4.17) is to first order in fi/
√

2ε? only

a function of x+ and k1 but not of x− since

sin

(√
2ε?
fi

ln
K

k?

)
= sin

(√
2ε?
fi

(y + ln k1/k?)

)
, (4.19)

having defined y ≡ ln(1 + x+). Summed resonant non-Gaussianities are therefore

not scale invariant, as is clear from in the explicit dependence on k1 in eq. (4.19).

We will discuss the issue of scale dependence in Section 4.2.2.

Furthermore, eq. (4.19) implies that as far as other types of non-Gaussianities

are concerned, we can only expect degeneracies with the summed resonant type

if they are predominantly a function of x+. We will show in Section 4.2.1, that

this is primarily the case for equilateral non-Gaussianity, typically arising in non-

canonical models of inflation.

To measure the degree of degeneracy between different kinds of non-Gaussianities

we follow [59]. The cosine of two shapes is defined via the normalized scalar prod-
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uct

C(S, S ′) =
F (S, S ′)√

F (S, S)F (S ′, S ′)
, (4.20)

where

F (S, S ′) =

∫
V

dV
K
S(k1, k2, k3)S ′(k1, k2, k3) . (4.21)

The integration is defined via

dV
K

=
dk1 dk2 dk3

k1 + k2 + k3

=
1

2
kdk dα dβ , (4.22)

where we have switched to the variables k, α and β defined according to [59]

k =
1

2
(k1 + k2 + k3) , k1 = k(1− β) ,

k2 =
k

2
(1 + α + β) , k3 =

k

2
(1− α + β) ,

(4.23)

with the integration boundaries

α ∈ [−1 + β, 1− β] , β ∈ [0, 1] and k ∈ [kmin, kmax] . (4.24)

4.2.1 Equilateral and local shapes for x− → 0

Let us check which shape functions can be well approximated by the limit x− → 0

by calculating the respective cosines defined in eq. (4.20). Out of the many known

types of non-Gaussianities,4 we discuss the following two representative types: The

equilateral type
Gequil(k1, k2, k3)

k1k2k3

= f equilNL Sequil(k1, k2, k3) , (4.25)

with

Sequil(k1, k2, k3) =
(k1 + k2 − k3)(k1 + k3 − k2)(k3 + k2 − k1)

k1k2k3

, (4.26)

is characteristic of non-canonical inflation. The local type is given by

Glocal(k1, k2, k3)

k1k2k3

= f localNL Slocal(k1, k2, k3) , (4.27)

with

Slocal(k1, k2, k3) =
k3

1 + k3
2 + k3

3

k1k2k3

, (4.28)

and is dominant for instance in multi-field inflation.

4For an overview see e.g., [63].
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In the limit x− → 0, the shape functions are given by

S
x−→0
equil (x+) =

4(x+ − 1)

x2
+

, (4.29)

S
x−→0
local (x+) =

4 + x3
+

x2
+

. (4.30)

Now, the cosine in eq. (4.20) can be evaluated to find the overlap of Sequil and

S
x−→0
equil (x+):

C(Sequil, S
x−→0
equil ) = 0.93 . (4.31)

Hence, the equilateral shape is well approximated by its x− → 0 limit. For the

local shape the overlap is much smaller. Slocal diverges for squeezed momentum

configurations which makes it necessary to regulate the integrals that enter the

cosine eq. (4.20). We only give an upper bound C(Slocal, S
x−→0
local ) < 0.7, which was

obtained by cutting the integration boundaries eq. (4.24) as follows:

β ∈ [∆, 1−∆] with ∆ = 5 · 10−5 . (4.32)

Notice that the shape function Snon−can from non-canonical inflation shows

a slightly more complicated momentum dependence than the equilateral shape

function eq. (4.26), see [47]. We find C(Snon−can, S
x−→0
non−can) > 0.93, so the approxi-

mation by the x− → 0 limit is even better in the case of Snon−can.

4.2.2 Scale invariance vs. scale dependence

Let us now discuss how well the scale-invariant equilateral shape can be approxi-

mated by a scale-dependent shape, such as summed resonant non-Gaussianity. It

is obvious that the overlap cannot be made arbitrarily large; however, we will show

in the following that the overlap can still be considerable.

Let Sperequil(y) be the periodic generalization of

S
x−→0
equil (y) = 4

ey − 2

(ey − 1)2
, y ∈ [ln 2, ln 3] , (4.33)

to y ∈ R, i.e., Sperequil(y + ∆y) = Sperequil(y) with ∆y = ln 3 − ln 2. This definition

is motivated by the fact that we are going to Fourier expand on the interval

y ∈ [ln 2, ln 3] and this expansion will itself be periodic with period ∆y.

Furthermore, let us consider the scale-dependent shape Sperequil(y + ln k1/k?) =

Sperequil(lnK/k?) which is a shape that can be approximated by the shape of some

combination of resonant non-Gaussianities, since they have the same functional
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4.2. Equilateral features from summed resonant non-Gaussianity

Figure 4.2: The scale-invariant shape S
x−→0
equil (y) (left) and scale-dependent

shape Sperequil(y + ln k1/k?) (right) for y ∈ [ln 2, ln 3] and ln k1/k? ∈ [0,∆y]

dependence, see eq. (4.19). The different shapes in (y, ln k1/k?) space are shown

in Figure 4.2.

The calculation of the cosine eq. (4.20) between the shapes Sperequil(ln 2k/k?) and

Sequil(α, β) simplifies due to the reduced dependencies on the integration variables

k, α and β to

C
(
Sequil, S

per
equil

)
=

∫
dα dβ Sequil(α, β)(

2
∫
dα dβ Sequil2(α, β)

)1/2

×
2
∫ kmax
kmin

dk k Sperequil(ln 2k/k?)(
[k2
max − k2

min]
∫ kmax
kmin

dk k Sperequil
2(ln 2k/k?)

)1/2
.

(4.34)

We find that eq. (4.34) is to a very good approximation independent of the values

of kmin and kmax, if kmin � k? and kmax � k?. This is due to the periodicity of

Sperequil(ln 2k/k?), yielding the second fraction on the RHS of eq. (4.34) essentially

independent of these values. For kmax = 104k? and kmin = 10−4k?, we find

C
(
Sequil, S

per
equil

)
= 0.83 . (4.35)

Let us also mention that the overlap would be greater than 83%, if we had

considered not the equilateral shape function eq. (4.26), but the exact shape func-

tion [47] that arises in non-canonical single field models of inflation. This is due

to the fact that the overlap between Sx−→0 and S is larger than for the equilateral

shape function eq. (4.26), as discussed at the end of Section 4.2.1. Finally, as we

will see in the following Section 4.2.3, oscillatory features remain in the squeezed

limit even if the periodic equilateral shape is synthesized in a Fourier analysis. An
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observation of such oscillatory features in the CMB bispectrum, see [64], would

break the degeneracy with the equilateral shape.

4.2.3 Fourier analysis

Having found that the equilateral shape function has a non-negligible degeneracy

with the one dimensional function Sperequil(y + ln k1/k?), the question of degeneracy

with summed resonant non-Gaussianities can be expressed in terms of a Fourier

analysis. Let us set k1 = k? for conciseness in the remainder of this section;

however the following analysis is valid for all values of k1.

Let us define

Bi =
3
√

2πb?i
8

(√
2ε?
fi

)3/2

and Fi =

√
2ε?
fi

. (4.36)

Then, summed resonant non-Gaussianity, eq. (4.17), can, to first order in fi/
√

2ε?,

be written in the form5

Gres
k1k2k3

(y) =
2N∑
i=1

Bi sin(Fiy + Ci) =
N∑
i=1

Bi cos(Fiy) +BN+i sin(Fiy) , (4.37)

where in the last equality of eq. (4.37), we have chosen the phases Ci such that

there appears a sine and a cosine for each frequency Fi. Clearly, eq. (4.37) has

the form of a Fourier expansion with vanishing constant term. Ref. [13] performs

the Fourier expansion, i.e., calculates the coefficients Bi in terms of f equilNL and Fi

demanding Gperequil(y) ' Gres(y) for N = 5 and N = 10. For N = 5 we find using

eq. (4.36)

fi =

√
2ε?
Fi

= 0.06

√
2ε?
i

and b?i =
8

3
√

2π

Bi

F
3/2
i

≤ f equilNL

fmaxNL

, (4.38)

with fmaxNL ≡ 140 where the number originates from the maximal Bi and minimal

Fi that were found numerically in the Fourier decomposition.

There are two things we can conclude from eq. (4.38). First of all, frequencies

are necessarily sub-Planckian as is required for consistency. Second, we see that

for f equilNL > fmaxNL the monotonicity condition b?i < 1 is violated. Hence fmaxNL ≡ 140

is the maximal equilateral non-Gaussianity that could be matched by summed

resonant non-Gaussianity if there were no constraints from the power spectrum.

5Due to the suppression by fi/
√

2ε? � 1, the second order contribution to Gres/(k1k2k3)

induces a non-negligible correction only in the squeezed momentum configurations which we

discuss at the end of this section.
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4.2. Equilateral features from summed resonant non-Gaussianity

To conclude this section let us discuss the role of the second order corrections

that become sizable in the very squeezed limit to the resonant bispectrum given

in eq. (4.17). Since these corrections come with an inverse power of the Fourier

frequencies Fi =
√

2ε?/fi and generically u1 � ui for i . N , the corrections are

dominated by the low frequency terms i & 1. Hence, assuming that Sperequil can

be approximated to arbitrary precision in a Fourier analysis we define the shape

function

Sper−correquil ≡ Sperequil +
1

F1

∑
l 6=m

kl
km

cos

(
F1 ln

K

k?

)
, (4.39)

with F1 ' 15.5 to estimate the effect of these corrections. We find

C
(
Sequil, S

per−corr
equil

)
= 0.77 , (4.40)

compared to 83% correlation between Sequil and Sperequil. As expected, the second

order terms further break the degeneracy with the equilateral shape in the very

squeezed limit. However, the effect is moderate.

4.2.4 Constraints from the power spectrum

Let us discuss the constraint on the product b?i fi from the power spectrum, i.e.,

eq. (4.18). Non-observation of oscillating contributions to the 2-point function

can place tight constraints on the maximum amount of resonantly generated non-

Gaussianity with equilateral characteristics. However, the power spectrum con-

straint can be evaded when the time translation symmetry (which gives rise to

scale invariance) is collectively broken as in [62]. Here, we discuss the bound on

fNL arising from the constraints on oscillations in the power spectrum, and also

the mechanism of collective symmetry breaking whereby this constraint may be

avoided.

First, using eq. (4.38), we find

b?i fi <
8

3
√

2π

√
2ε? f

equil
NL ui

F
5/2
i

< 5 · 10−4f equilNL

√
2ε? , (4.41)

where the product on the far right is the maximum value of b?i fi. Since the maxi-

mum value of b?i fi has to be smaller than the upper bound given in eq. (4.18) this

implies

ε? f
equil
NL < 10−2 . (4.42)

Given the values for b?i and fi obtained for the Fourier expansion, we can check

the behavior of eq. (4.14). We find that to leading order it behaves like a single
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oscillation with fi given by the lowest frequency f1. This means that the 2-point

function bounds found for the singly modulated potential will still apply in our

case, assuming no other U(1)s are present, as in [62].

Note, that eq. (4.18) was derived for large-field models (linear axion mon-

odromy inflation [53] and a quadratic potential [61]), and thus should not have

validity for, ε? . 10−3. Therefore, from this result we can argue at most for a

resonantly generated f equilNL . O(1).

This constraint from the 2-point function bound can be understood from the

fact that the resonant N -point functions in inflationary models with periodically

broken shift symmetry display a hierarchical suppression with increasing N [65].

However, if the mechanism of shift symmetry breaking is collective (such that scale

invariance is protected by several independent symmetries), this hierarchy is no

longer present. Any scale-dependent correlation function must depend on all the

couplings required to break the symmetry, so that it is possible to have a nearly

scale-invariant power spectrum and large non-Gaussianity (scale dependence in

the bispectrum), as was shown for resonantly generated non-Gaussianity in [62].

In this case, for instance when an extra global U(1) symmetry is present, the

constraints discussed above can be avoided. A sizable equilateral type fNL (up to

140) could be produced via the summation discussed here, without implying large

oscillations in the power spectrum.

The limit eq. (4.42) was derived for a large-field model by imposing the limit

which the 2-point function data places on this model in eq. (4.18). As such,

we cannot apply our bound to small-field models. In the absence of a collective

breaking of the shift symmetry, e.g., by additional global U(1) symmetries [62],

the structure of the resonant N-point functions places a tight constraint fNL ∼
O(5) [65], regardless of the field range during inflation. For a parametrically

small-field model (∆φ60 e−folds � 1), we would have to get multiple instanton

contributions with axion decay constants with even parametrically smaller values

in order to produce many wiggles in the potential within the 60 e-fold field range.

As the axion decay constants are typically given by an O(1) inverse power of the

size of the extra dimensions, they are difficult to suppress. Therefore, we expect

parametrically small-field models to appear generically with few or no significant

oscillatory contributions within their 60 e-folds field range. If this is true, then

small-field models might be generically expected to produce no oscillations in the

2-point function and no resonant non-Gaussianity at all.

As we saw in Section 4.1 and this section, a potential that is modulated by a

sum of small oscillating terms as given in eq. (4.6) leads to a bispectrum that is
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4.2. Equilateral features from summed resonant non-Gaussianity

a sum of resonant bispectrum terms, eq. (4.6). This sum can be interpreted as a

Fourier series of resonant bispectra that, for appropriate choices of the parameters

Ai, fi and ci, can lead to a significant degeneracy with the equilateral bispectrum

shape. An important question is a string theoretic motivation for this scenario

which can be found in Section 4 of [13] where a possible origin of the sum of

oscillating terms in the potential in the context of axion monodromy inflation [53,

66] is discussed.

To conclude Part I of this thesis, we showed that for inflationary theories

of a single scalar field there can be significant observational degeneracy. More

precisely, the equilateral type of non-Gaussianities that are characteristic for non-

canonical inflation are found to have sizable overlap with summed resonant non-

Gaussianity from a canonical theory. Due to constraints from the non-observation

of oscillatory features in the power spectrum, this degeneracy generically only

holds up to fNL ∼ O(1) such that the observation of a larger fNL of the equilateral

shape would be a decisive sign for non-canonical inflation. At the level of 2-point

function observables there is generically much more space for degeneracies between

models as only two numbers have been measured so far: ∆2
s and ns. Within the

error bars of the measurements it is typically hard to distinguish between different

theories of inflation. We identified the conditions on the agreement of ∆2
s, ns and

so far unobserved ∆2
t when constructing a canonical from a non-canonical theory

by mapping the phase space trajectories of the two theories. We find that for DBI

inflation these two theories agree at the level of these observables for a whole range

of efolds Ne but do not find any other examples for this matching. To conclude, it

might not be as easy as previously thought to distinguish between canonical and

non-canonical single field inflation from cosmological observations.
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Part II

De Sitter vacua in string theory
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Chapter 5

De Sitter model building

We discuss how the phenomenon of dark energy arises in the context of the string

theory landscape. Similar to Part I of this thesis, we start with a review chapter.

After briefly summarizing the experimental evidence for dark energy in Section 5.1,

we give a short introduction to string theory, in particular type IIB, in Section 5.2.

Next, we discuss the connection between the vacuum energy of string theory and

dark energy in terms of an effective cosmological constant in Section 5.3. Finally,

in Section 5.4 we focus on the structure of effective 4D N = 1 effective scalar

potentials of the moduli fields that arise from the compactification of string theory

and give a brief introduction into moduli stabilization in type IIB. We end this

chapter with an outline for Chapters 6-8.

5.1 The experimental case for dark energy

The discovery of the late-time acceleration of the universe has imposed an enor-

mous challenge on theoretical particle physics. The first direct evidence came from

type IA supernovae [1, 2]. Being so called standard candles, their intrinsic peak

brightness is known, such that one can determine their luminosity distance dL by

the observed effective brightness and the redshift

1 + z ≡ λobs
λemit

=
a(tobs)

a(temit)
, (5.1)

via the observed wavelength of the peak. Now in a FLRW universe, the luminosity

distance can be expressed as a function of redshift as well as the cosmological

parameters H0, ΩΛ, Ωm and Ωk. Experimental data from type IA supernovae up to

a redshift of z ∼ 1 favors a flat universe with a positive cosmological constant [1, 2].
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Chapter 5. De Sitter model building

Furthermore, there is observational evidence for dark energy from the temper-

ature power spectrum of the CMB. From the WMAP satellite, the location of the

first peak in the temperature spectrum implies Ωtot = 1, i.e., a flat universe. The

contribution of photons and neutrinos to Ωtot is negligible and the height of the

first peak in the temperature spectrum implies Ωm ' 0.3 for the non-relativistic

matter in the universe, i.e., baryons and cold dark matter. Since ΩΛ is the only

missing component, it follows indirectly that ΩΛ ' 0.7. However, taking data from

the Atacama Cosmology Telescope (ACT), the South Pole Telescope (SPT) and

BAO into account [3–7], the CMB by itself also directly implies a flat universe

with a positive cosmological constant.

So far the experimental data is consistent with equation of state w = −1 [3,

4, 34, 67] for the portion of the universe that makes up dark energy. As we saw

in eq. (2.8), this is characteristic of a cosmological constant. A deviation w > −1

would rule out a cosmological constant as the origin of dark energy.1

5.2 String theory

Before we discuss how dark energy can arise in string theory, let us elaborate on

some basics of the theory.2 String theory is a promising candidate for a theory

of quantum gravity, reconciling quantum mechanics and general relativity. Fur-

thermore, string theory can describe the gauge interactions and particle content

of the standard model of particle physics, hence potentially describing all known

fundamental forces and forms of matter. Whereas quantum field theory is a quan-

tum theory of relativistic point-like particles, string theory is a quantum theory of

relativistic strings, i.e., objects that are extended in one spatial dimension. The

usual concept of quantum mechanics is kept in string theory. As a result of the

space-like extension of the string, world lines of particles become world sheets of

strings. Point-like interaction vertices of quantum field theory are replaced by

world sheets with a certain topology, effectively smearing out all interaction ver-

tices. This implies the finiteness of scattering amplitudes in string theory order by

order in perturbation theory. Since the low energy limit of some string theories in-

cludes general relativity, string theory is therefore related to as the UV completion

of general relativity.

One can formulate the dynamics of a one-dimensional string in D-dimensional

space-time in terms of a two-dimensional conformal field theory (CFT) with a

1A future experiment that is designed to determine w more precisely is e.g., [68].
2For an introduction to string theory see e.g., [69–72].
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D dimensional target space, i.e., a so-called sigma model of bosonic fields. This

theory has one dimensionful free parameter α′ which is the string tension and a

dimensionless parameter gs, the string coupling constant. The latter is determined

by the VEV of the dilaton φ(10) which is a scalar field arising in the string spectrum

as we will discuss below. In order to obtain fermionic degrees of freedom in the

spectrum of the string, one has to add fermionic fields to the worldsheet CFT. For

consistency reasons, CFTs that obey a so-called worldsheet supersymmetry, hence

leading to superstring theories, are of particular interest. To cancel the conformal

anomaly, which is required by mathematical consistency, one has to either consider

a 10D target space or introduce more complicated CFTs whose low energy effective

actions are generically difficult to construct. The spectrum of superstring theories

can be obtained by quantizing the left- and right-moving modes of the string

independently. It consists of an infinite tower of string excitations which form

irreducible representations of the target space Lorentz group. The higher string

excitations inherit higher masses with mass spacing given by α′.

Phenomenologically, we are interested in superstring theories that have zero-

mass states since only those theories can potentially include a massless graviton.

Furthermore, the theory should not contain any tachyonic states for the sake of

stability and admit a flat background. Under these conditions, there are five

superstring theories that live in a 10D target space. If both left- and right-moving

modes are described by a supersymmetric theory, the theory is referred to as type

II which has 32 supercharges in 10D. There are two different type II theories: type

IIA which is non-chiral and type IIB which is chiral with respect to the 10D Lorentz

group. Type I string theory can be obtained by orientifolding, i.e., identifying left-

and right-moving modes of type IIB string theory which has 16 supercharges in

10D. To cancel the anomalies in type I, one has to add open string states to the

theory. The other possibility to obtain 16 supercharges in 10D is by introducing

a supersymmetric theory for the right-moving excitations and a bosonic theory

for the left-moving excitations. These are the heterotic string theories. There

are two heterotic string theories which differ by their gauge group in 10D. These

five string theories are connected to each other and also to 11D supergravity by

a net of dualities, some of which are non-perturbative in nature. Due to these

connections, it is conjectured that the five string theories describe certain limits

of a more fundamental theory, called M-theory, whose low energy limit is given by

11D supergravity [73].

In the low energy limit of string theory, only the massless states of the spectrum

play a role due to the large masses of the higher excitations. The massless spectra of

the five string theories coincide with the massless spectra of the five mathematically
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consistent supergravities in 10D: The type IIA and IIB which are N = 2, the

SO(32) type I, and the E8 × E8 and SO(32) heterotic supergravities which are

N = 1. As these supergravities describe locally supersymmetric field theories in

10D, they always include a metric field gMN and hence contain general relativity.

Note that the non-renormalizability of these supergravities is not a problem since

they are considered as effective theories being UV completed by string theory.

Apart from the field content, supergravity includes extended solitonic objects in

p spatial dimensions, so-called Dp-branes. The defining property for Dp-branes is

that they define a Dirichlet boundary condition for open strings.

For the remainder of this work, we will study type IIB string theory in its

supergravity limit together with D3- and D7-branes. The spectra of the left-

and right-moving massless modes appear in vector or spinor representations of

SO(8) which is the little group of the 10D Lorentz group. They are referred to

as the Neveu-Schwarz (NS) and Ramond (R) sector, respectively. Since left- and

right-moving modes can be treated independently, there are four combinations of

representations that determine the overall massless spectrum. In the case of type

IIB string theory, the NSNS sector consists of the dilaton φ(10) which is related to

the string coupling via gs = eφ
(10)

, the Kalb-Ramond anti-symmetric 2-form field

B2 and the metric gMN . The RR sector is built by the antisymmetric n-form fields

Cn, for n = 0, 2, 4 while the NSR and RNS sectors are space-time fermions. The

anti-symmetric form fields induce the field strengths

Fn ≡ dCn−1 (n = 1, 3, 5) , H3 ≡ dB2 , (5.2)

with F5 being self-dual, i.e., F5 = ∗10F5, where ∗10 denotes the 10D Hodge-star

operator. Even though there is no manifestly covariant action for selfdual p-

forms [74], we can formulate an effective N = 2, 10D supergravity action and

impose the self-duality condition later at the level of the equations of motion. To

do so we redefine the fields as

τ ≡ C0 + ie−φ
(10)

, G3 ≡ F3 − τH3 ,

F̃5 ≡ F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 .

(5.3)

The IIB action in the 10D Einstein frame, which is related to the 10D string frame

via a Weyl transformation gEMN = e−φ
(10)/2gMN , can be written as [70, 75]

S =
2π

l8s

[∫
d10x

√
−gER(10) − 1

2

∫
1

(Imτ)2
dτ ∧ ∗10dτ̄

+
1

Imτ
G3 ∧ ∗10Ḡ3 +

1

2
F̃5 ∧ ∗10F̃5 + C4 ∧H3 ∧ F3

]
,

(5.4)
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where ls = 2π
√
α′ is the string length andR(10) is the 10D Ricci scalar with respect

to gEMN . The action in eq. (5.4) is invariant under SL(2,Z) transformations

τ → aτ + b

cτ + d
with a, b, c, d ∈ Z and ad− bc = 1 ,(

H3

F3

)
→

(
d c

b a

)
·

(
H3

F3

)
,

(5.5)

which implies

G3 →
G3

cτ + d
. (5.6)

As we discussed above, type IIB string theory has to be formulated in 10D

for mathematical consistency, so 6Ds have to be compactified in order to make

contact with our 4D world. The choice of compactification corresponds to a choice

of a 6D compact manifold whose metric typically has a large number of non-trivial

deformations (moduli) which correspond to volume and shape characteristics of the

manifold. These moduli are described as massless scalar fields in a 4D effective

low energy theory, i.e., their potential is flat for simple compactifications. This

effective theory is obtained via a Kaluza-Klein (KK) reduction [76, 77]: The 6

extra dimensions manifest themselves via an infinite tower of massive states that

can be integrated out of the effective 4D action if the energy scale is below the KK

scale, which is the mass scale of the first excitations. Often, 4D N = 1 space-time

supersymmetry is imposed for phenomenological reasons 3 and for its power to keep

control over quantum corrections to the effective theory above the supersymmetry

breaking scale. This singles out a class of 6D manifolds which include Calabi-

Yau (CY) manifolds [79] 4 that we will focus on in the remainder of this work.

Defining properties of CY manifolds are being compact, complex, Kähler and of

SU(3) holonomy. The moduli of CY manifolds can be divided into Kähler/volume

moduli and complex structure/shape moduli. Their number is counted by the

Hodge numbers h1,1 and h2,1 respectively.

5.3 De Sitter vacua in string theory

What are possible explanations for dark energy? The only definite experimental

data that is available right now is that we observe a non-vanishing contribution

3Low energy SUSY can be used to stabilize the Higgs mass at the electroweak scale and

often comes with an interesting phenomenology, for instance connecting particle physics and

cosmological constraints, see e.g., [78].
4For a comprehensive review see e.g., [80].
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to the energy density of the universe ΩΛ = 0.68 with an equation of state that

is consistent with w = −1. These are the characteristics of our universe being in

a state of a de Sitter vacuum, i.e., a homogeneous and isotropic universe that is

dominated by a positive cosmological constant. A negative cosmological constant

would characterize an anti-de Sitter (AdS) vacuum.

As we discussed in Section 2.2, scalar fields are useful ingredients to model ex-

ponential expansion of the universe. Hence, let us once again consider a canonically

normalized scalar field φ minimally coupled to gravity

S =

∫
d4x
√
g

[
M2

P

2
R+

1

2
(∂µφ)2 − V (φ)

]
. (5.7)

In a local minimum φ = φ0 of the scalar potential V (φ) this has an equation of

state eq. (2.37)

w =
1
2
(∂µφ)2 − V (φ)

1
2
(∂µφ)2 + V (φ)

= −1 , (5.8)

using ∂µφ = 0. The energy-momentum tensor that is induced by the effective

scalar potential Veff (φ) is T Vµν = −Veff (φ0)ηµν , where Veff is the scalar poten-

tial that includes the tree-level contribution V as well as perturbative Vp and

non-perturbative Vnp quantum corrections and finite temperature contributions

VT . This energy-momentum tensor can be absorbed into an effective cosmological

constant

Λeff = Λ + Veff (φ0) = Λ + V (φ0) + Vp(φ0) + Vnp(φ0) + VT (φ0) , (5.9)

in Einsteins eq’s (2.3) in a free-fall frame gµν = ηµν .

It is important to note that the Lagrangian in eq. (5.7) is not renormalizable.

Hence, it only makes sense to consider this Lagrangian as an effective theory of a

UV complete quantum theory of gravity below some cutoff scale. String theory is

arguably the best understood candidate for such a theory of quantum gravity that

currently exists.

Now, what is the natural value of the energy density ρΛ = Λeff in a theory of

quantum gravity? The scale of quantum gravity is the Planck scale MP and hence

in the absence of any dynamical mechanism that keeps Λeff at small values or any

fine-tuning, the terms in eq. (5.9) are expected to add up such that ρΛ ∼ M4
P '

1076GeV4. However, the observed value of ΩΛ ∼ 1 corresponds to ρΛ ∼ 10−46GeV4.

This imposes maybe the most severe problem in todays theoretical physics, the

cosmological constant problem: Why is the observed cosmological constant 10−122

times smaller than its expected natural value in theories of quantum gravity?
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Even before the discovery of ΩΛ > 0 in the late 1990’s, the reason why we do

not observe a large cosmological constant in our universe needed to be explained.

A possible anthropic explanation was that galaxies and therefore observers could

never have formed in such a universe with |ρΛ| ∼ M4
P due to its extremely accel-

erated expansion [20]. The observational fact of ΩΛ > 0 added significantly to the

severity of the cosmological constant problem since it is usually easier to explain

that a number is exactly zero by some mechanism 5 as opposed to being extremely

small in its natural units.

As we discussed in the previous section, there is a large number of scalar mod-

uli fields for string theory compactified on CY manifolds. Moduli fields are not

charged under the standard model gauge group but couple only gravitationally.

Hence, their action can be brought into the form eq. (5.7) and in case their ef-

fective potential Veff stabilizes them in a (meta-)stable minimum, they directly

influence the value of the cosmological constant via eq. (5.9). Let us make some

phenomenological comments on moduli stabilization: If the moduli would have

small masses < 10−2 GeV, they would induce fifth-forces, modifying the strength

of gravity, e.g., at solar system distance scales. Furthermore, they can cause cos-

mological problems. As Planck-coupled fields, their characteristic decay rate is

Γ ∼ 1
16π

m3
φ

M2
P

. If moduli are abundant during the hot big bang phase they tend

to overclose the universe, i.e., the energy density Ωφ stored in the moduli fields

acts as a form of dark matter that dominates the energy density of the universe 6

and typically spoils the predictions of BBN. These cosmological problems are typ-

ically solved if mφ & 30 TeV which makes Γ large enough that the moduli decay

gravitationally well before BBN.

Hence, in order to accommodate the non-observation of light scalar fields that

couple gravitationally in nature, the moduli have to be stabilized at a rather high

mass scale. This corresponds to adding further ingredients to the effective theory,

i.e., considering more complicated compactifications, that lift the flat directions,

developing a potential for these moduli. These ingredients depend on the details of

the considered compactification and will be discussed in the following. A pressing

question at this point is the following: what allows us to add or not add these

ingredients into the theory and which 6D manifold do we choose? The conceptual

understanding of string theory is so far largely based on perturbative formulations.

5For instance, the photon is believed to be exactly massless due to gauge invariance.
6Light axion-like fields φ can act as cold dark matter if they are produced non-thermally via

a vacuum realignment mechanism [81–83]. This mechanism fixes the value of φ for H & mφ

which causes a coherent oscillation around the VEV at late times mφ & 3H, which effectively

resembles a state of cold dark matter.
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However, there are strong indications that there is already a large abundance of

perturbatively consistent backgrounds that could potentially describe a universe

with a small positive cosmological constant. How many of these backgrounds could

accommodate a standard model like gauge group, hence rendering a description

of our world, remains an open question since at a more detailed level explicit

constructions of such phenomenological backgrounds turn out to be difficult. The

remainder of this work will mainly be concerned with the following quest: The

construction of explicit vacua in type IIB string theory that allow a fine-tuning of

the cosmological constant to the extremely small observed value.7

We choose to work in the context of type IIB because moduli stabilization is

arguably best understood in this theory, using quantized VEVs for the gauge field

strengths F3 and H3, i.e., fluxes. In this context, the number of de Sitter vacua

is exponentially large due to the large number of fluxes. A topologically distinct

flux has to be used to stabilize each complex structure modulus and the number

of complex structure moduli of CYs is typically O(100) which leads to the number

of isolated de Sitter vacua scaling like eO(1)h2,1
. This extremely large number of de

Sitter vacua is usually referred to as the landscape of string vacua [17–19]. Due to

general statistical arguments for a flat number density of the effective cosmologi-

cal constant [23, 24], the landscape can provide an anthropic explanation for the

smallness of the cosmological constant since the number of vacua is large enough

to produce vacuum energies with average spacing . 10−122. In other words, string

theory can accommodate a universe with such a small vacuum energy which can

already be considered a success given the severity of the cosmological constant

problem and the fact that quantum field theory by itself does not teach us any-

thing about the cosmological constant. In this work, we will go beyond statistical

arguments for the distribution of the cosmological constant and explicitly construct

large sets of vacua.

The anthropic selection of our vacuum is generically thought [19] to proceed

in a population process of the landscape by Coleman-deLuccia tunneling and eter-

nal inflation. Coleman-deLuccia tunneling [84] describes the quantum tunneling

from a false vacuum, which is a classically stable excited state that is quantum-

mechanically unstable, to the true vacuum state of the theory, including gravita-

tional effects. The false vacuum decay proceeds via the nucleation of bubbles in

the false vacuum, where each bubble is an open universe. The theory of eternal

inflation [85] is based on the fact that there can be large quantum fluctuations

7The very important task of constructing a standard model sector with the corresponding

gauge groups and representations will only be touched upon by in principle allowing such a

sector locally in the compactification.
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produced during inflation. These can increase the energy density in some parts of

the universe to such an extent that these regions expand at a much greater rate

than their parent domains. Conversely, large quantum fluctuations inside these

domains lead to regions with even larger energy density and hence expansion rate

and so on. In this sense, the universe is eternally inflating. Combining eternal

inflation and Coleman-deLuccia tunneling with the string theory landscape, every

vacuum of the theory is expected to be accessible in some region of the universe.

If the anthropic selection of our vacuum in such a population process of the land-

scape is the end of the story or if there might be a selection mechanism that does

not have to rely on anthropic reasoning remains an open question.

Before we discuss de Sitter model building in greater detail in Section 5.4, let

us briefly summarize the state of the art for de Sitter model building in Type IIB

string theory/F-theory on CY with orientifolds. As far as moduli stabilization is

concerned, the complex structure moduli are stabilized by fluxes [14] while the

Kähler moduli are stabilized by non-perturbative effects [15, 16] or a combination

of perturbative and non-perturbative effects [86, 87]. As a first result, one often

ends up with an AdS vacuum such that an uplifting sector has to be added to

the effective theory. Uplifting mechanisms are, for instance, anti D3-branes [16],

D-terms [88–90], F-terms from matter fields [91], metastable vacua in gauge theo-

ries [92], dilaton dependent non-perturbative effects [93] and F-terms of the Kähler

moduli [21, 22, 86, 94]. We will focus on F-terms of the Kähler moduli in the re-

mainder of this work since it is especially suitable for an explicit construction of a

de Sitter vacuum.

Orientifolds have to be introduced since type II compactified on CY yields an

N = 2 effective theory in 4D. Including orientifold planes in the compactification

effectively truncates the N = 2 moduli space to N = 1. Orientifold planes arise

from the orientifold projection, which combines a discrete symmetry that identifies

left- and right-moving modes on the worldsheet with a discrete symmetry of the

target space. The orientifold plane is given as the fixed point of the discrete target

space symmetry which can be defined in terms of an isometric and holomorphic

involution σ of the CY. One can define Op planes with p = 3, 5, 7, 9 spatial dimen-

sions. In this work, we only consider O7 planes, with σ leaving invariant a two

complex dimensional submanifold of the CY. Apart from reducing the supersym-

metry from N = 2 to N = 1, Op planes have negative Dp-brane charge. Hence,

including O7 planes in the compactification allows us to include D7-branes with

an overall zero D7-charge. The overall Dp-charge, the so-called Dp-tadpole, has

to be canceled inside the compactification manifold because otherwise stationary

solutions to the equations of motion are not possible. According to Gauss’ law,
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a net charge would source field lines that would cause decompactification since a

stationary solution is only possible in a 10D non-compact space. Furthermore, har-

monic (p, q)-forms are either even or odd eigenstates of the holomorphic involution

which in particular splits the number of Kähler and complex structure moduli in

h1,1
± and h2,1

± . After orientifolding the number of Kähler moduli and complex struc-

ture moduli that remain in the spectrum are given by h1,1
+ and h2,1

− respectively.

Furthermore, there are h1,1
− chiral multiplets with purely axionic scalar fields and

h2,1
+ vector multiplets. In the following, we refer to h1,1

+ by h1,1 and to h2,1
− by h2,1,

for simplicity, unless stated otherwise.

F-theory [95] arises from the observation that the axio-dilaton of type IIB can

be interpreted as the complex structure modulus of an elliptic curve fibred over

the base of the CY 3-fold.8 Hence, F-theory can geometrically be considered as a

12D theory that is compactified on a CY 4-fold that is elliptically fibred. In the

limit of weak string coupling, F-theory is equivalent to type IIB (Sen limit [98]).

The attraction of F-theory is due to the geometrization of non-perturbative gauge

theory effects as well as its property of being intrinsically non-perturbative away

from the Sen limit.

5.4 Moduli stabilization in type IIB string the-

ory

Let us consider the effective 4D N = 1 supergravity scalar potential V of the

following set of chiral multiplets: the h1,1 Kähler moduli Ti = ti + i ci, the h2,1

complex structure moduli Ua = νa + i ua of a CY 3-fold X3 and the axio-dilaton

τ = σ + i s. The real scalar fields ci, νa and σ are referred to as axions since

they have axion-like couplings to gauge fields. For instance, the coupling of the

ci’s to U(1) gauge field strengths can be found in the effective action of D7-branes

wrapping 4-cycles Di whose volume is given by ti [99]. The real part s = Im(τ) is

related to the string coupling gs as s = g−1
s .

The scalar potential V is determined by the Kähler potential K and the holo-

morphic superpotential W as

V = eK
(
Kαβ̄DαWDβW − 3|W |2

)
, (5.10)

where DαW = Wα + KαW , Kαβ̄ is the inverse of Kαβ̄ and the indices α and β

run over all geometric moduli. The Kähler potential and superpotential are given

8For reviews see [75, 96, 97].
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as [100]

K = Kk(Ti, T̄i, τ, τ̄) +Kcs(Ua, Ūa)− log(−i(τ − τ̄)) ,

W = W0(Ua, τ) +Wnp(Ti, Ua, τ) ,
(5.11)

where Kk is the Kähler potential of the Kähler moduli, Kcs of the complex struc-

ture moduli, W0 the tree-level superpotential and Wnp includes non-perturbative

corrections to the superpotential. While K includes perturbative as well as non-

perturbative corrections, W only receives non-perturbative corrections due to its

holomorphicity. The perturbative corrections to K come in various powers of α′

and gs. Since these corrections are only known to leading order at present, one

has to ensure that higher order corrections do not spoil any phenomenological im-

plications that have been derived from the scalar potential that only includes the

leading order corrections. This issue of trustability of the effective potential can

generically be avoided by considering theories in which the moduli are stabilized

such that gs � 1 and the overall volume of the CY V � 1.

Note that W does not depend on the Kähler moduli at tree-level. Furthermore,

eq. (5.10) obeys a no-scale structure [101, 102] in the Kähler moduli sector:

Ki̄DiWDjW = 3|W |2 , for i, j = 1, .., h1,1 , (5.12)

such that

V = eKKcd̄DcWDdW ≥ 0 , (5.13)

where the indices c and d run over the moduli Ua and τ . Hence, at the tree-level

only the Ua and τ develop a scalar potential if W0 6= 0. We will discuss their

stabilization in Section 5.4.1. The Kähler moduli potential remains flat at tree-

level such that perturbative and/or non-perturbative corrections have to be taken

into account for their stabilization. This will be discussed in Section 5.4.2.

5.4.1 Complex structure moduli stabilization

In this section, we discuss the stabilization of the complex structure moduli and

axio-dilaton by fluxes.9 The number of complex structure moduli is related to the

number of 3-cycles b3 = 2h2,1 + 2 in the CY 3-fold X3. We choose a symplectic

basis {Aa, Bb} for the b3 3-cycles∫
Aa

αb =

∫
X3

αb ∧ βa = δba ,

∫
Bb
βa =

∫
X3

βa ∧ αb = −δba , (5.14)

9For recent reviews see [103–105].
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where {αb, βa} are the Poincaré dual cohomology elements to the 3-cycles and

a, b = 0, .., h2,1.

Having chosen a symplectic basis for the 3-cycles, this defines a choice of co-

ordinates ωa on complex structure moduli space via the period integrals over the

holomorphic 3-form Ω via

ωa =

∫
Aa

Ω , Gb =

∫
Bb

Ω . (5.15)

Note, that there are h2,1 + 1 coordinates ω0, .., ωh2,1 even though there are only

h2,1 complex structure moduli. This is because ω0 refers to the normalization

of the holomorphic 3-form Ω. The complex structure moduli can be defined via

Ua = ωa/ω0 for i = a, .., h2,1. The period vector Π(ωa) = (Gb, ωa) is inherited from

a holomorphic function G(ωa) of degree two in the ωa known as the prepotential

via Gb = ∂bG of the underlying N = 2 CY compactification.

The Kähler potential of the complex structure moduli Ua can then be written

as

Kcs(Ua, Ūa) = − log

(
−i
∫
X3

Ω(Ua) ∧ Ω̄(Ūa)

)
= − log

(
i(ω̄aGa − ωaḠa)

)
= − log

(
−iΠ† · Σ · Π

)
,

(5.16)

where in the third line of eq. (5.16) we have introduced the symplectic matrix

Σ =

(
0 1

−1 0

)
, (5.17)

and used the intersection formula∫
X3

X ∧ Y =
h2,1∑
a=0

(∫
Aa

X

∫
Ba
Y −

∫
Aa

Y

∫
Ba
X

)
, (5.18)

for general 3-forms X and Y .

The Gukov-Vafa-Witten flux superpotential is determined by the flux of F3

and H3 via [106]

W0(Ua, τ) =
1

2π

∫
X3

(F3 − τH3) ∧ Ω(Ua) . (5.19)

Due to the quantization of the 3-form flux

1

(2π)2α′

∫
Aa

F3 = f1a ∈ Z ,
1

(2π)2α′

∫
Ba
F3 = f2a ∈ Z ,

1

(2π)2α′

∫
Aa

H3 = h1a ∈ Z ,
1

(2π)2α′

∫
Ba
H3 = h2a ∈ Z ,

(5.20)
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eq. (5.19) can be written as

W0(Ua, τ) = 2π [(f1a − τ h1a)Ga − (f2a − τ h2a)Ua] , (5.21)

where we have set α′ = 1 and used again eq. (5.18) and the definition of the periods

eq. (5.15).

The D3-tadpole induced by turning on RR and NS flux is given by

L ≡ 1

(2π)4(α′)2

∫
X3

H3 ∧ F3 = h · Σ · f = h1f2 − h2f1 . (5.22)

It has been realized in [107], that localized sources of D3-charge such as orientifolds

have to be included in the compactification in order to cancel the contribution in

eq. (5.22) that is induced by non-vanishing H3 and F3 fluxes.

The no-scale structure eq. (5.12) is broken by α′ corrections [108] and string

loop corrections [109] in K, as well as non-perturbative corrections to the super-

potential and K. However, these corrections are parametrically small in every

moduli stabilization scenario where the overall volume V of X3 is large as we al-

ready mentioned above. Hence, the scalar potential for the dilaton and complex

structure moduli eq. (5.13) is positive semi-definite in this limit and a supersym-

metric extremum given by a solution to the system of equations

DτW = 0 and DUaW = 0 , for a = 1, .., h2,1 , (5.23)

will always be a minimum, i.e., all eigenvalues of the second derivative matrix Vab

are positive [87].

Note that due to the appearance of the symplectic matrix, the tadpole eq. (5.22)

is at first not positive definite. However, as has been discussed in [14, 24], imposing

the supersymmetry conditions DaW = 0 results in G3 = F3 − τ H3 being imag-

inary self-dual (ISD), i.e., ∗6G3 = i G3. Since the ISD component of G3 always

results in positive semi-definite contributions to the tadpole while the anti-ISD

(∗6G3 = −i G3) component of G3 always yields negative semi-definite contribu-

tions, a supersymmetric point always has L ≥ 0. This can be seen nicely if the

ISD condition is displayed as [110]

∗6 sH3 = −(F3 − σH3) , (5.24)

i.e., only h2,1 + 1 of the original 2h2,1 + 2 fluxes are independent once the ISD

condition is invoked and

L ∼
∫
X3

H3 ∧ F3 ∼
∫
X3

H3 ∧ ∗6H3 ∼
∫
X3

√
g̃|H3|2 > 0 , (5.25)
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where we have used eq. (5.24). As is easily verified, the SL(2,Z) transformations in

eq. (5.5) leave the D3-tadpole eq. (5.22) invariant. When determining the solution

space of flux vacua of X3 we have to make sure to consider only inequivalent vacua

under the transformations eq. (5.5).

5.4.2 Kähler moduli stabilization

Including the leading α′ correction [108] as well as non-perturbative corrections to

the superpotential [111] the effective 4D theory of the Kähler moduli is defined by

Kk = −2 log

(
V(ti) +

1

2
ξ̂(τ, τ̄)

)
,

Wnp =
h1,1∑
i=1

Ai(Ua, τ) e−aiTi ,

(5.26)

where

ξ̂(τ, τ̄) = − ζ(3)χ

4
√

2(2π)3
(−i(τ − τ̄))3/2 , (5.27)

is the leading α′ correction to the Kähler potential with χ representing the Euler

number of X3.10 There are additional corrections to Kk that we will mostly neglect

in the following: string loop corrections entering Kk [109] are suppressed by gs, as

well as higher orders of V in V due to the extended no-scale structure of V [112].

Also, higher order α′ corrections [113] are neglected due to their volume suppres-

sion.11 Finally, non-perturbative corrections to Kk are generically expected to be

subleading compared to perturbative corrections due to their exponential suppres-

sion.

The exponential terms in the non-perturbative superpotential in eq. (5.26) can

originate from two sources: Euclidean D3-brane 12 instantons with ai = 2π wrap-

ping around 4-cycles ofX3, or gaugino condensation in pure non-Abelian 4DN = 1

super-Yang-Mills theories on stacks of D7-branes wrapping around 4-cycles of X3.

In the latter, ai = 2π/Ni where Ni is the Coxeter number of the corresponding

gauge group that is realized by the stack of D7-branes. The dependence of the one-

loop determinants Ai(Ua, τ) on the complex structure moduli and the axio-dilaton

is, in general, poorly understood. However, these moduli are generically stabilized

at tree level and hence at a higher scale compared to the Kähler moduli which are

10In the following, we set α′ = 1 in natural units.
11This is of course only valid if there are no large coefficients in front of these higher order

terms in the 1/V expansion of the scalar potential.
12An euclidean D3-brane is related to a standard D3-brane with 4D world volume by a Wick

rotation of the time coordinate, so it is an object with four spatial dimensions.
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stabilized by subleading effects with respect to an expansion of the potential V in

V . Therefore, the Ais can generically be considered constant for the purpose of

Kähler moduli stabilization. In the following, we will often consider D7-branes,

wrapping divisors, which are 4-cycles that are submanifolds of X3 with complex

codimension one, i.e., complex dimension two. The value of Ai is related to a

geometric property of the corresponding divisor Di: Ai 6= 0 only if Di is rigid, i.e.,

does not allow continuous deformation into other divisors. Hence, rigid divisors

are particularly interesting for the purpose of Kähler moduli stabilization.

The scenarios of moduli stabilization that we discuss in the following, i.e., the

Kachru-Kallosh-Linde-Trivedi (KKLT) scenario [16], the large volume scenario

(LVS) [86, 87] and the Kähler uplifting scenario [21, 86, 94], all rely on the effects

summarized in eq. (5.26) but operate in different regions of the parameter space

of the effective 4D theory. This parameter space is spanned by {W0, ξ̂, Ai, ai}.
The leading terms in an expansion in V−1 of the scalar potential that follows from

eq. (5.26) can be written schematically as

V ∼
W 2

np

V
− WnpW0

V2
− ξ̂ W 2

0

V3
. (5.28)

KKLT vacua

In the KKLT scenario, the fluxes in eq. (5.20) are fine-tuned such that |W0| �
1, typically |W0| < 10−5. The smallness of W0 implies that the terms ∝ ξ̂ in

eq. (5.28) are strongly suppressed such that the first 2 terms on the LHS have to

be balanced against each other in order to construct a minimum. These minima

are supersymmetric, i.e., solutions to the equations DTiW = 0. For one Kähler

modulus T , Kk = −3 log(T + T̄ ) and one non-perturbative effect Wnp = AeaT , the

minimum T = t0 (c0 = 0) lies at

W0 = −Ae−at0
(

1 +
2

3
at0

)
. (5.29)

Hence, W0 has to be small and negative in order for V ∼ t
3/2
0 ∼ − log |W0| to

be large enough to justify the supergravity approximation V � 1. For h1,1 > 1,

moduli stabilization in the KKLT scenario generically requires a non-perturbative

effect for each Kähler modulus. However, in a variation of the KKLT scenario [114],

a single non-perturbative effect on an ample divisor 13 can lead to a minimum for

all ti and one linear combination of the ci. In this case, the remaining axionic

directions remain flat.
13An ample divisor Damp in a basis {Di} of divisors for i = 1, .., h1,1 is given as Damp =∑h1,1

i niDi with exclusively positive coefficients ni > 0.
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Since all moduli are stabilized supersymmetrically, i.e., DαW = 0, the vacuum

energy at the minimum is at first negative

VAdS = −3 eKW 2 , (5.30)

such that a positive contribution to the potential, an uplifting term, is needed

to construct a de Sitter vacuum. Of the uplifting mechanisms discussed in Sec-

tion 5.3, anti D3-branes, F-terms from matter fields and F-terms from metastable

vacua in gauge theories can be used. D-terms are not available in this scenario

since the vanishing of the F-terms of the geometric moduli DαW = 0 implies

vanishing of the D-terms as well. Even though the Kähler moduli sector by itself

develops a stable minimum in the sense of a positive definite Hessian in the KKLT

scenario, consideration of the complete mass matrix that includes the axio-dilaton

and complex structure moduli might reveal directions that become tachyonic upon

uplifting [115].14

LVS vacua

In the LVS scenario, all three terms in eq. (5.28) are balanced against each other

to yield a stable minimum for the Kähler moduli. The simplest example of the

LVS can be realized for a manifold with two Kähler moduli Tb and Ts with a

‘swiss-cheese’ volume form V ∼ t
3/2
b − t

3/2
s and one non-perturbative effect on TS,

Wnp = Ae−aTs . The potential takes the form

V ∼ a2A2
√
ts e
−2ats

V
− atsAe

−atsW0

V2
+
ξ̂ W 2

0

V3
. (5.31)

All three terms are of similar magnitude if ts ∼ logV for arbitrary values of

W0. This is a natural way to achieve exponentially large V with Wnp � W0 and

hence very good control over higher order corrections to the effective potential.

Evaluating the potential V at the minimum yields an AdS vacuum that has to

be uplifted to de Sitter. However, in this case the F-terms of the Kähler moduli

are not zero such that D-terms can be used for the uplift. Furthermore, dilaton

dependent non-perturbative effects as well as the uplifting options that apply in

the KKLT scenario are available.

14A supersymmetric AdS minimum is always stable as was first pointed out by Breitenlohner

and Freedman [116].
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Kähler uplifting vacua & outline

In the Kähler uplifting scenario, the last two terms in eq. (5.28) are relevant

V ∼ −WnpW0

V2
− ξ̂ W 2

0

V3
. (5.32)

The W 2
np/V term can be neglected since V ∼ O(102 − 103) is not exponentially

large and a � 1 such that Wnp � 1. Contrary to the KKLT and LVS scenario

de Sitter vacua can be realized by the potential in eq. (5.32) alone, there is no

need for an additional uplifting sector. Due to the fact that moduli stabilization

of the geometric moduli without further input makes the construction of Kähler

uplifted de Sitter vacua possible, this scenario is especially suitable for the following

attempts that we will pursue in the remainder of this work:

• A model-independent analysis for a sufficient condition for de Sitter vacua

in the context of Kähler uplifting : In Chapter 6, we elaborate on a sufficient

condition for the compactification parameters to realize a de Sitter vacuum.

After presenting the analysis for the Kähler moduli sector in Section 6.1,

we include the complex structure moduli and the dilaton and show in a

perturbative analysis in Section 6.2 under which condition all moduli are

stabilized simultaneously. This chapter is a summary of [21].

• The construction of explicit examples of Kähler uplifted de Sitter vacua: In

Chapter 7, which summarizes [22], we present a globally consistent brane and

gauge flux configuration that realizes a de Sitter vacuum along the lines of the

sufficient condition given in Chapter 6. After discussing general constraints

on large gauge group ranks N (that imply small a) in Section 7.1, we focus

on a specific manifold to construct a globally consistent de Sitter model:

CP4
11169[18]. The analysis is presented from the IIB perspective in Section 7.2

and from the equivalent F-theory perspective in Appendix C.2.

• Explicit flux compactifications that lead to an estimate of the tunability of

the cosmological constant : Finally, in Chapter 8 we construct the full so-

lution spaces of supersymmetric flux vacua of the reduced moduli space of

CP4
11169[18]. The reduction of this moduli space is discussed in Section 8.1.

The construction of the full solution space via the polynomial homotopy con-

tinuation method is considered in Section 8.2, while an alternative method,

the minimal flux method, is summarized in Section 8.3. This chapter gives

an overview of the results obtained in [25] and [26].
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Chapter 6

De Sitter vacua by Kähler

uplifting

6.1 A meta-stable de Sitter vacuum for the Kähler

modulus

We will at first restrict ourselves to one-parameter models with h1,1 = 1 and

h2,1 > 1 so that the Euler number χ = 2(h1,1− h2,1) < 0 (which will be shown to

be part of the the sufficient condition for the existence of de Sitter vacua). Later,

we will extend the analysis to all so-called ‘swiss-cheese’ CY 3-folds with arbitrary

h1,1 > 1 and h2,1 > h1,1, giving a strong indication that the mechanism discussed

in this section works for all 3-folds with χ < 0.

For one-parameter models, we have V = γ(T + T̄ )3/2 with γ =
√

3/(2
√
κ) and

κ denotes the self-intersection number of the single Kähler modulus T = t + ic.

Following [86, 94, 108] we can write the resulting scalar potential eq. (5.10) in the

form

V (T ) = eK

(
KT T̄

[
WTWT + (WT ·WKT + c.c)

]
+ 3ξ̂

ξ̂2 + 7ξ̂V + V2

(V − ξ̂)(ξ̂ + 2V)2
|W |2

)
.

(6.1)

The non-trivial task is to find stationary points of V (T ) with respect to t. It

is straightforward to show that the axionic direction has an actual minimum at

c = 0. The Kähler potential does not depend on c and the exponential in eq. (5.26)

introduces trigonometric functions sin(ac) and cos(ac) into V (T ). Then it can be

shown that Vc = 0 for c = nπ/a for n ∈ Z. We restrict ourselves to the case c = 0
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so that after insertion of WT we obtain

V (t) =eK
(
KT T̄

[
a2A2e−2at + (−aAe−atWKT + c.c)

]
+ 3ξ̂

ξ̂2 + 7ξ̂V + V2

(V − ξ̂)(ξ̂ + 2V)2
|W |2

)
.

(6.2)

6.1.1 Approximating V (T ) in the large volume limit

In [94], it was shown that one can get de Sitter minima for T at parametrically

large volume V ' O(102 . . . 103) and weak string coupling gs ' 0.1. The stable

minimum is realized at ξ̂/(2V) ' 0.01 such that neglecting higher orders in the α′

expansion is well justified and string loop effects are double-suppressed due to the

smallness of gs and the extended no-scale structure [112]. This minimum can be

constructed under the following conditions

• Put a stack of N ' O(30 . . . 100) D7-branes on the single 4-cycle that un-

dergoes gaugino condensation.1

• Choose the flux induced superpotential W0 ' O(−30) and the parameter

ξ̂ ' O(10). Note that a W0 of this rather large magnitude does not induce

problematic back reactions, as in type IIB the fluxes are imaginary self-dual

(ISD) and of (1,2) or (0,3) type which restricts the back reaction to the warp

factor.

In this setup, one typically obtains a minimum at T ' O(40) so that the non-

perturbative contribution to the superpotential Ae−aT is small enough to also

trust the Ansatz for the non-perturbative superpotential.

In this context, we can give a parametric understanding of the scenario by

approximating the scalar potential eq. (6.2) under the constraint of the typical

values of the parameters a,A,W0, ξ̂, γ. We use the condition ξ̂/(2V) ' 0.01 and

the validity of the non-perturbative superpotential:

V � ξ̂, |W0| � Ae−at . (6.3)

Under these approximations, the leading terms in the scalar potential eq. (6.2)

are [21]

V (x) ' −W0a
3A

2γ2

(
2C

9x9/2
− e−x

x2

)
, C =

−27W0ξ̂a
3/2

64
√

2γA
. (6.4)

1In the context of compact F-theory models very large gauge groups have been con-

structed [117], e.g., SO(7232).
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Figure 6.1: The approximate 2-term scalar potential V (x) from eq. (6.4) for

different values of C.

with x = a · t and C > 0 for W0 < 0. The stationary point in the axionic direction

c = 0 is always a minimum since the mass Vcc > 0 for W0 < 0 [21].

6.1.2 A sufficient condition for meta-stable de Sitter vacua

To calculate extrema of eq. (6.4) we need to calculate the first and second derivative

with respect to x (V ′ = ∂V
∂x

)

V ′(x) =
−W0a

3A

2γ2

1

x11/2

(
C − x5/2(x+ 2)e−x

)
, (6.5)

V ′′(x) =
−W0a

3A

2γ2

1

x13/2

(
11

2
C − x5/2(x2 + 4x+ 6)e−x

)
. (6.6)

Solving for an extremum V ′(x) = 0 yields

x5/2(x+ 2)e−x = C (6.7)

which cannot be solved explicitly in an analytic way. Plotting the approximate

expression eq. (6.4) of V (x) for different values of the constant C in Figure 6.1

we observe the following behavior: We see that with growing C we first obtain an

AdS minimum. This minimum breaks supersymmetry since

FT '
−3W0

2tV
6= 0 . (6.8)
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Then at some point the minimum transits to de Sitter, and for even larger C the

potential eventually develops a runaway in the x direction. We can analytically

calculate the window for C where we obtain a meta-stable de Sitter vacuum by

identifying:

• Lower bound on C: V (xmin) = V ′(xmin) = 0 ⇒ {xmin, C} ' {2.5, 3.65}

• Upper bound on C: V ′(xmin) = V ′′(xmin) = 0 ⇒ {xmin, C} ' {3.11, 3.89}

These numerical values for {xmin, C} are the only solutions with xmin > 0. The

region close to {xmin, C} is the one relevant for obtaining a small positive cosmo-

logical constant suitable for describing the late-time accelerated expansion of the

universe. For a = 2π/100, the lower bound on x corresponds to a volume V ' 100

so we are indeed at parametrically large volume. The allowed window for C to

obtain meta-stable de Sitter vacuum is approximately

3.65 .
−27W0ξ̂a

3/2

64
√

2γA
. 3.89 . (6.9)

The following details regarding this sufficient condition for metastable de Sitter

vacua can be found in [21]:

• When focusing on the leading order α′ correction to the scalar potential we

have to make sure that flux induced α′ corrections are suppressed. It is

shown in Section 2.4 of [21], that these corrections can be tuned irrelevant

by choosing small W0 . O(1) and gs . 0.01 such that eq. (6.9) is fulfilled.

• In Section 2.5 of [21] we give an equivalent formulation of this sufficient

condition in the context of F-theory. The topological data of the 3-fold, i.e.,

the parameters ξ, γ, χ and h2,1 translate to 4-fold parameters while the gauge

group rank entering a is determined by the ADE singularity enforced at the

degeneration point of the elliptically fibred torus. The condition on W0(G3)

becomes a condition on the 4-form flux G4. In this sense, the sufficient

condition eq. (6.9) becomes purely geometrical (except for G4) in the F-

theory picture.

• There is a necessary condition for de Sitter vacua in general 4D N = 1

supergravity that imposes a condition on the curvature of the scalar field

space induced by the Kähler potential [118]. For consistency, this necessary

condition needs to be fulfilled if the sufficient condition in eq. (6.9) is satisfied.

This is checked in Section 2.6 of [21].
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• A numerical example that shows the validity of the above approximations

to obtain the sufficient condition by comparing the full scalar potential,

eq. (6.2), versus the approximated version, eq. (6.4), can be found in Sec-

tion 2.7 of [21].

• A discussion of the decay rate of these metastable vacua via quantum tun-

neling [84, 119–121] is found in Section 2.8 of [21]. The tunneling is pre-

dominantly in the direction of the volume modulus while the other Kähler

moduli do not show a finite barrier. At first approximation it turns out that

the lifetime of these metastable vacua is extremely large with respect to the

age of the universe.

In Section 6.2, we will show that fulfilling condition eq. (6.9) is still sufficient

to obtain a meta-stable minimum of the scalar potential when all the remaining

moduli fields of the CY, i.e., the dilaton and the complex structure moduli, are

included in the stabilization analysis. Hence, this is truly a sufficient condition

for meta-stable de Sitter vacua and no tachyonic instabilities occur by including

further moduli, contrary to the standard KKLT scenario [115, 122].

6.1.3 h1,1 > 1

We will now proceed to show explicitly that the above argument can be extended

to the full class of all CY 3-folds with h1,1 > 1 arbitrary and χ < 0 which are

of ‘swiss cheese’ type.2 A ‘swiss cheese’ type CY is characterized by a classical

volume given by

V = γ (T + T̄ )3/2 −
h1,1∑
i=2

γi (Ti + T̄i)
3/2 . (6.10)

We will look for de Sitter vacua which satisfy ReTi � ReT for i = 2 . . . h1,1 such

that V ∼ γ (T+T̄ )3/2, i.e., the h1,1−1 blow-up Kähler moduli form the ‘holes’ of the

‘swiss cheese’. This entails choosing the ai for i = 2 . . . h1,1 of the nonperturbative

superpotential effects on the associated 4-cycles such that ai � a ≡ a1 while

enforcing aiti > 1 to maintain the validity of the one-instanton approximation.

We will again determine the leading terms in ξ̂/V as before. The scalar poten-

2For the two Kähler moduli of CP4
[1,1,1,6,9] the Kähler uplifted de Sitter minimum was found

numerically first in [123].
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tial reads

V = eK
(
KTI T̄J

[
aIaJAIAJe

−a(TI+T̄J ) + (−aIAIe−aTIWKTJ + c.c)
]

+3ξ̂
ξ̂2 + 7ξ̂V + V2

(V − ξ̂)(ξ̂ + 2V)2
|W |2

)
. (6.11)

Guided by eq. (6.4), the leading terms in the scalar potential can be determined

to be [21]

V =
4W0

V2

(
atAe−at cos(ac) +

h1,1∑
i=2

aitiAie
−aiti cos(aici)

)
+

3ξ̂W 2
0

4V3

+
h1,1∑
i=2

4

3

aiA
2
i

V2

√
ti
γi
e−2aiti

[
V√
2

+ 3γi
√
ti(aiti + 1)

]
. (6.12)

Although the terms ∼ e−2aiti appear subleading, at the prospective minimum one

can show that e−at ∼ e−aiti ∼ ξ̂/V . This implies that the terms ∼ e−2aiti are in

fact ∼ ξ̂2/V3 (including the factor of V in the rectangular bracket) and are thus

of relevant order for minimization.

This potential has a full minimum at at ' aiti ' 3 for i = 2 . . . h1,1, and

c = ci = 0, implying

V ' γ(2t)3/2 ' γN3/2 , (6.13)

if the quantity C defined in eq. (6.4) satisfies a structurally similar bound on C

as in the one-parameter case discussed above. However, the numerical interval of

C-values allowed by the metastability conditions increases slowly with h1,1. The

size of C ∼ |W0| for given ξ̂, intersection numbers, and gauge group ranks.

6.2 Inclusion of the dilaton and complex struc-

ture moduli

Turning on ISD 3-form fluxes generically leads to a supersymmetric stabilization of

all complex structure moduli and the axio-dilaton at an isolated supersymmetric

extremum in moduli space. Due to the no-scale structure eq. (5.12), the scalar

potential of the complex structure moduli and the axio-dilaton eq. (5.13) is positive

semi-definite. Hence, every flux-induced isolated supersymmetric extremum for the

axio-dilaton and the complex structure moduli has a positive-definite mass matrix,

and is a true local minimum. In both the LVS and the Kähler uplifting scenario,

all no-scale breaking terms are suppressed by an extra inverse power 1/V of the
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6.2. Inclusion of the dilaton and complex structure moduli

volume compared to the flux-induced part above [21, 87]. As the flux-induced piece

is positive semi-definite and O(1/V2), any negative term must come from no-scale

breaking contributions which are O(1/V3). Hence, any small shift of τ or one of

the Ua will see a positive O(1/V2) increase in the scalar potential overwhelming

any possible decreasing O(1/V3) contribution from Kähler moduli stabilization as

long as the overall volume is large.

Thus, any choice of flux producing an isolated SUSY extremum DτW =

DUaW = 0 will be a minimum of the full potential once the LVS or Kähler uplifting

generate a local minimum for the Kähler moduli at large volumes. Hence, there is

no need for a detailed model-by-model calculation of flux-induced mass matrix for

the complex structure moduli and the axio-dilaton (a task practically unfeasible

for typical values h2,1 = O(100)).

After these general remarks, let us now explicitly include the dilaton τ and

an arbitrary number h2,1 of complex structure moduli Ua into our stabilization

analysis. A commonly used example of a CY 3-fold with one Kähler modulus are

smooth hypersurfaces in CP4, for instance the quintic CP4
11111. In this case, we

generically have O(100) complex structure moduli so the Euler number of our CY

3-fold will be of the order

χ = 2(h1,1 − h2,1) ∼ O(−200) . (6.14)

For a perturbative treatment, we demand the expansion parameter ξ̂/V . 0.1 to

be small. For typical volumes in Kähler uplifting V ∼ O(102 − 103) we thus expect

the leading α′ correction to the Kähler potential to be ξ̂ = O(10). This needs the

dilaton Im(τ) = g−1
s to be at weak coupling: gs ' O(0.1) using eq. (5.27). Finding

meta-stable minima of an effective scalar potential of O(100) complex scalar fields

is, in general, a challenging and cumbersome task. A further difficulty enters by the

fact that the explicit form of the Kähler potential eq. (5.26) and the superpotential

eq. (5.19) of the complex structure sector

Kk = −2 log

(
γ(T + T̄ )3/2 +

ξ̂(τ, τ̄)

2

)
,

W = C1(Ua) + i C2(Ua) · τ + Ae−aT , (6.15)

with C1 and C2 depending on the 3-form fluxes and the Ua given in eq. (5.21),

are only known explicitly for some special CY 3-folds [124]. We assume A to be

constant, neglecting its dependence on the complex structure sector. Note that A

is always paired with an exponential term e−aT in the superpotential and, hence,

also in the scalar potential which suppresses its influence on moduli stabilization
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for large t. However, since in general the function A(τ, Ua) is not known, we

cannot go beyond this qualitative argument in a model-independent way. This

leaves us with a possible caveat: a very steep functional dependence of A(τ, Ua)

might derail our perturbative treatment of complex structure moduli stabilization

in certain examples.

We can split the full scalar potential into four parts

V = V (T ) + V (T,τ) + V (τ) + V (U), with V (T,τ) = eK
(
KT τ̄DTWDτW + c.c

)
,

V (τ) = eK
(
Kτ τ̄ |DτW |2

)
, V (U) = eKKUaŪbDUaWDUbW .

(6.16)

where V (T ) contains the F-terms of T and the −3|W |2 term given in eq. (6.1) and

V (τ) and V (U) are the F-terms of τ and the Ua, respectively and V (T,τ) mixes the

F-terms of T and τ . The latter are non-zero since Kk induces non-zero KT τ̄ .

We expect a meta-stable minimum of the effective scalar potential which in-

cludes the dilaton and complex structure moduli to have the following properties:

1) The complex structure moduli should be stabilized approximately in a super-

symmetric minimum like the dilaton since they enter the scalar potential similarly.

2) They are even further decoupled from the SUSY breaking Kähler modulus since

there is no mixing term in the Kähler potential for the complex structure moduli.

We show in Appendix A.1 that the deviation is, in general, a 1-st order effect and

hence the fields are stabilized supersymmetrically to 0-th order.

6.2.1 Mass scales & SUSY breaking

Let us neglect the complex structure moduli Ua in this subsection for simplicity,

qualitatively the mass scales and SUSY breaking of these moduli are represented

by that of the dilaton which we include in the analysis. To 1-st order in ξ̂/V or

Ae−at/|W0| the first three terms in eq. (6.16) can be found in Section 3.1 of [21].3

The 0-th order potential for the field s is ∼ (C1 + C2s)
2 if we neglect terms that

are suppressed either by ξ or e−at relative to the quadratic potential. Hence, the

supersymmetric locus is

s0 = −C1

C2

> 0 ⇒ C1C2 < 0. (6.17)

The shift of s to this supersymmetric minimum due to the 1-st order terms V (T )

and V (T,τ) will be discussed in Section 6.2.2 to first order. The extremum of t to
3For a numerical example that compares the approximated and full expression for the potential

V , see Section 3.4 of [21].
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1-st order is governed by V (T ) only since V (T,τ) ∝ DτW and DτW equals zero to

0-th order so that V (T,τ) is actually a 2-nd order term. Finally, the axion field

derivatives Vc and Vσ can be minimized for c = nπ/a for n ∈ Z and σ = 0. As in

Section 6.1, we restrict to c = 0.

Using the approximate scalar potential V (t, s, τ, σ) of eq. (6.16) we can calculate

the mass matrix of the moduli as the second derivative with respect to the real

fields. The masses of the canonically normalized scalar fields are m2
t ,m

2
c ∼ ξ̂/V3

and m2
s,m

2
σ ∼ 1/V2.4 In this approximation, the fields s and σ have the same mass

which expresses that they are in the same chiral multiplet and supersymmetry is

unbroken in the τ direction to 0-th order.

The hierarchy between the masses of the t- and s-modulus is given paramet-

rically as m2
t/m

2
s ∼ ξ̂/V . As we will see now, this implies that supersymmetry is

predominantly broken in the T direction, i.e., FT � Fτ where

Fi = eK/2DiW . (6.18)

The direction FT has a non-vanishing 0-th order contribution [21]

FT ' −
3C1√

−2C1/C2 tV
. (6.19)

As expected, the first non-vanishing contribution to Fτ is 1-st order [21]:

Fτ ' −
9C1ξ̂

10
√

2V2 (−C1/C2)3/2
' −FT ·

3 t C2

10C1

· ξ̂
V

(6.20)

so supersymmetry is predominantly broken in the T direction which is what one

would expect since t is stabilized in a minimum with spontaneously broken super-

symmetry.

The gravitino mass can be approximated to 0-th order to

m2
3/2 = eK |W |2 ' − 2C1C2

V2
= − C1C2

4γ2t3
∼ 10−4 . . . 10−3 , (6.21)

in units of M2
P which is of order ∼M2

GUT for typical volumes.

We note that m3/2 < ms ,mσ which renders the supersymmetric starting point

for them a self-consistent approximation. Moreover, the KK scale here is given for

a single volume modulus (i.e., no anisotropies are possible) and the volume given

in units of α′ as V = L6 as

mKK =
1

L
√
α′
∼ 1

V2/3
, (6.22)

4A detailed calculation of the masses including canonical normalization and diagonalization

of the inverse Kähler metric can be found in Section 3.2 of [21].
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in units of M2
P while the gravitino mass as well as the moduli masses scale at least

∼ 1/V . Here we have used the relation between 10D string frame and 4D Einstein

frame
1

α′
=

(2π)7

2
M2

P

g2
s

V
. (6.23)

Therefore, the use of a 4D effective supergravity description is justified, although

the separation
m3/2

mKK

∼ 1

V1/3
, (6.24)

will typically be only of O(0.1) here. Nevertheless, there is a parametric hierarchy

between the moduli mass scale, the SUSY and the KK-scale in the limit of large

volume V → ∞. This suppresses potential mixing between the moduli masses and

KK masses alleviating their danger of causing additional tachyonic directions.

6.2.2 F-term induced moduli shifts

The 1-st order terms of the scalar potential include terms that are proportional to

either e−at or ξ̂ so we write it as a perturbance δV (1) = V (T ) + V (T,τ) of the 0-th

order scalar potential V (0) = V (τ) + V (U). Expanding this to first non-vanishing

order in ~θ = (s, ua) around the supersymmetric minimum ~θ0 = (s0, u0a) gives 5

V = V (0) +
1

2
(~θ − ~θ0)︸ ︷︷ ︸

δ~θ

V
(0)
~θ0 ~θ0

(~θ − ~θ0) + δV (1) + δV
(1)
~θ0

(~θ − ~θ0) + . . . , (6.25)

where subscript ~θ0 denotes differentiating with respect to ~θ, evaluated at ~θ0. Notice

that we again only expand around the real parts of the moduli fields since the

supersymmetric minimum for all axionic VEVs equal to zero is an exact minimum

of the scalar potential. Demanding that δ~θ still is a minimum of V , we get an

expression for δ~θ in terms of 0-th order terms:

Vδ~θ = 0 ⇔ δ~θ = −
(
V

(0)
~θ0 ~θ0

)−1

· δV (1)
~θ0

. (6.26)

First, let us note that the matrix V
(0)
~θ0 ~θ0

has to be positive definite. It is not

sufficient to demand the weaker condition of Breitenlohner-Freedman vacuum sta-

bility [116] since we are spontaneously breaking supersymmetry in the T direction

to obtain a de Sitter vacuum. Hence, the feature of AdS space that keeps a tachyon

5For a general supergravity analysis of the influence of supersymmetrically stabilized heavy

moduli on the stabilization of lighter moduli see [125, 126], where the O(ξ/V) shifts of the heavy

moduli were also found.
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from exponentially rolling down a negative definite V
(0)
~θ0 ~θ0

is absent in our case. As

is shown in Appendix A.1,

δ~θi ∼
ξ̂

V
. (6.27)

Furthermore, it is also demonstrated that δ~θi does not depend on positive powers

of h2,1, such that a large number of complex structure moduli cannot increase the

induced shifts. We supplemented this line of thinking by an explicit example based

on T 6 in Section 5 of [21]: the dependence is harmless as there we find δs ∼ const.,

and δ~u ∼ 1/h2,1.

As 1-st order terms in the scalar potential induce a 1-st order shift δ~θ on ~θ, 2-nd

order terms induce a 1-st order shift δt of the Kähler modulus. This calculation is

summarized in Appendix A.2. δt could potentially induce a shift in m2
t , especially

for large h2,1. This has to be checked case by case for a specific model as we

cannot make a general statement regarding the h2,1 dependence of this mass shift.

However, for the torus example based on T 6 in Section 5 of [21], we find that the

shift is always in a region where it does not induce any tachyonic directions for

the t-modulus.

At this point, we have succeeded now in determining the combined scalar po-

tential of the volume modulus T ,the dilaton τ , and an arbitrary number h2,1 of

complex structure moduli Ua in a fully analytical form to first order in a perturba-

tion expansion around the supersymmetric locus for the τ, Ua. The resulting full

minimum is a tunable de Sitter minimum of the same form and type as found in

the previous section for T , and it is perturbatively stable under the inclusion of

the dynamics of the dilaton τ and all Ua (with certain caveats, as there may be

non-generic dependence on h2,1 in the coefficients of the perturbation expansion).
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Chapter 7

Explicit stabilization of the

Kähler moduli

As we have seen in the previous section eq. (6.13), the volume of a Kähler uplifted

de Sitter vacuum on a swiss-cheese manifold scales as V ∼ N3/2, where N is the

Coxeter number of the gauge group realized by the stack of D7-branes on the

large divisor.1 Thus, we will address the question of large gauge group ranks in

IIB compactifications in Section 7.1 since they induce a large volume. There is a

number of consistency constraints that have to be fulfilled in order to construct

a globally consistent D7-brane configuration that can realize a Kähler uplifted

de Sitter vacuum. These constraints are addressed in general in Section 7.1 and

summarized for the explicit example of the manifold CP4
11169[18] in Section 7.2.2

In Section 7.3, we present the effective stabilization of the Kähler moduli in a de

Sitter vacuum.

7.1 Constraints on large gauge group rank in the

landscape

In this section, we discuss generic constraints on obtaining large gauge group

gaugino condensation which is a crucial input for the method of Kähler uplifting. In

the context of non-compact CYs, it was already discussed in [106] that arbitrarily

high gauge group ranks are possible. As we will see, the situation in the compact

case is more restrictive. We will mostly discuss the perturbative type IIB picture.

However, an equivalent treatment in F-theory is possible.

1For another possibility to realize the Kähler uplifting scenario with large V see [127].
2An equivalent discussion in the F-theory picture can be found in C.2.
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Our laboratory will be the landscape of complex three-dimensional CY mani-

folds that are hypersurfaces in toric varieties. These were classified in [128] by con-

structing all 473,800,776 reflexive polyhedra that exist in four dimensions, yielding

30,108 distinct Hodge numbers of the corresponding CY manifolds X3. For sim-

plicity we will study a subset of these, i.e., the set of 184,026 maximal polytopes

yielding 10,237 distinct Hodge numbers. These can be represented by a weight sys-

tem of positive integers n1, ..., n5. One of the projective coordinates {u1, ..., u4, ξ}
of a four-dimensional toric space can be associated to each integer ni:

u1 u2 u3 u4 ξ

n1 n2 n3 n4 n5

with 0 < n1 ≤ n2 ≤ n3 ≤ n4 ≤ n5 . (7.1)

The integers ni determine the scaling equivalence relation the coordinates satisfy:

(u1, ..., u4, ξ) ∼ (λn1u1, ..., λ
n4u4, λ

n5ξ) , with λ ∈ C∗ . (7.2)

The divisors Di : {ui = 0} and Dξ : {ξ = 0} are called toric divisors. A hypersur-

face in such toric space is a CY (i.e., its first Chern class vanishes) if the degree of

the defining equation is equal to
∑5

i ni.

Eq. (7.2) defines the complex four-dimensional projective space CP4
n1n2n3n4n5

.

If one of the weights ni is greater than one, the ambient space is not smooth.

This is the case for any toric CY that is not the quintic, which is given by ni = 1,∑5
i ni = 5. The corresponding singularities have to be resolved if they intersect the

CY hypersurface. The resolution process yields additional weights, i.e., eq. (7.1)

becomes a k × (k + 5) matrix, called the weight matrix, that defines the resolved

toric ambient space Xamb
4 . Generically, the greater the ni in eq. (7.1), the more

lines of weights have to be added to obtain a smooth CY. Often there is more than

one choice to resolve the singularities, corresponding to different triangulations of

the corresponding polytope. The number of lines of the weight matrix k gives the

dimension of H1,1(Xamb
4 ,Z). Since some divisors of Xamb

4 might either intersect X3

in two or more disconnected and independent divisors of X3, or even not intersect

X3 at all, dimH1,1(Xamb
4 ,Z) is not necessarily the same as h1,1 = dim H1,1(X3,Z).

However, increasing k will generically also increases h1,1.

To realize an N = 1 supersymmetric compactification of type IIB in four

dimensions and to consistently include D-branes and fluxes we introduce O7 ori-

entifold planes in the construction. For simplicity, we only consider orientifold

projections acting via the holomorphic involution

σ : ξ 7→ −ξ , (7.3)
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i.e., the sign of the coordinate with the highest weight is reversed. We demand

nξ ≡ n5 =
4∑
i=1

ni , (7.4)

such that the CY hypersurface equation symmetric under (7.3) is given by

ξ2 = P(2
∑4
i ni,... )

. (7.5)

The dots denote possible additional weights that have to be added to obtain a

3-fold free of singularities. Note that eq. (7.5) only holds if nξ =
∑
ni also for the

resolution weights which we assume is in many cases possible and which we have

verified in various examples.

Hence, all information of the CY 3-fold is stored in the weights n1, . . . , n4

and the chosen triangulation. Moreover, the resolution of the three dimensional

manifold CP3
n1n2n3n4

is the base B3 of the elliptically fibered 4-fold that realizes the

uplift of the type IIB model to F-theory. For this reason, models fulfilling eq. (7.4),

are named models of the ‘F-theory type’. These are 97,036 weight systems leading

to 7,602 distinct pairs of Hodge numbers. The first Chern class of B3 defines a

non-trivial line bundle, the anti-canonical bundle K̄, with K̄ = c1(B3) (we use the

same symbol to denote the line bundle and its corresponding divisor class). Due

to eq. (7.4) the homology class of the O7-plane at ξ = 0 is given as [O7] = K̄.

Now, we discuss the inclusion of D7-branes from the IIB perspective. The

presence of the O7-plane induces a negative D7-charge of −8[O7]. This has to

be compensated by the positive charge of the D7-brane stacks [D7]. This tadpole

condition can be formulated in terms of a polynomial equation on certain polyno-

mials in the complex coordinates ui of the resolved base manifold B3 (for details

see Appendix B.1). The D7-brane that is defined by these polynomials is called

in the literature ‘Whitney brane’, as it has the singular shape of the so called

Whitney umbrella [129]. It can split into stacks of 2Ni branes on a toric divisor

Di : {ui = 0} via a factorization of the polynomials in u2Ni
i . This realizes an

Sp(Ni) gauge group. For the branes to be supersymmetric, the polynomials have

to be holomorphic functions so Ni cannot be arbitrarily large. In Appendix B.1,

we derive that a sufficient condition for holomorphicity is

Ni ≤ 3
nξ
ni
. (7.6)

Due to the ordering of the ni, eq. (7.1), we expect to be able to put the largest

number of branes on the divisor D1 and the constraining quantity is the largest

integer Nlg that is smaller than 3nξ/n1. Nlg will serve as our large gauge group

indicator in the following.3 Nlg only serves as an easily computable estimate for

3For a detailed discussion of the meaningfulness of Nlg, see Section 2.2 of [22].
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Figure 7.1: The large gauge group indicator Nlg as a function of h1,1. The gray

dots denote the general set of models, while the blue dots denote the conservative

set (for explanations see text). The red dashed line denotes the critical gauge

group rank for Kähler uplifting N crit.
lg = 30.

the largest gauge group rank one can obtain in a 3-fold of the F-theory type. To

see if one can stabilize the Kähler moduli in a large volume, one has to check the

additional constraints case by case. We will do this in Section 7.2, constructing a

consistent model of a Kähler uplifted de Sitter vacuum.

7.1.1 Maximal gauge group ranks

In this section, we give the results of our scan for the maximal gauge group indi-

cator Nlg in the 97,036 models of the F-theory type contained in the classification

of [128]. We use PALP to calculate the Hodge numbers resulting in 7,602 distinct

pairs of Hodge numbers. We refer to this set of weight systems as the general set.

We also gather all weight systems that lead to the same pair of Hodge numbers

and choose as the representative the weight system with the smallest Nlg corre-

sponding to the most conservative estimate for the maximal gauge group. This set

of weight systems is referred to as the conservative set. We restrict our attention

to manifolds with negative Euler number χ = 2(h1,1 − h2,1), further reducing the

set of weight systems to 8,813 corresponding to 3,040 distinct pairs of (h1,1, h2,1).

We do this since χ < 0 is a necessary condition to apply the method of Kähler

uplifting.

Our results are summarized in Figure 7.1. The maximal Nlg we obtain is 2,330

in the general set and 806 in the conservative set. The minimal Nlg is 12 in both
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sets corresponding to the base CP3
1111. The mean N̄lg we find is 204.5 in the

general set and 132.8 in the conservative set. Generically, the critical value for

Kähler uplifting to be in large volume regime (V & 100) is N crit.
lg = 30 . Since the

actual volume also depends on the intersection numbers and the stabilized volumes

of the divisors other than D1, N crit.
lg = 30 can only serve as an estimate for large

volume. The subset of weight systems with Nlg < N crit.
lg is 444 in the general set

and 267 in the conservative set, corresponding to only 5% respectively 9% of the

models where the method of Kähler uplifting is not applicable.

Another important feature we notice is the dependence of Nlg on h1,1. We see

from Figure 7.1 that Nlg tends to increase with h1,1. In other words, if one wants

to have very large gauge groups one has to buy this by a rather high number of

Kähler moduli which of course has the disadvantage of increasing the complexity

of the model, especially if it is not swiss cheese.4 The tendency of Nlg ∝ h1,1 can be

explained from the weight system: As nξ =
∑4

i ni becomes large, a large number

of lines has to be added to the weight matrix to make the 3-fold singularity free

which generically increases the number of Kähler moduli.

We conclude this section with the remark that the possibility to engineer large

enough gauge groups to obtain a large volume in the framework of Kähler uplifting

is a generic feature of the landscape region we have analyzed.

7.2 The type IIB perspective of CP4
11169[18]

In this section, we present an explicit example of a brane and gauge flux setup

on a 3-fold of the landscape region studied in Section 7.1. To keep the analysis

tractable, we study a 3-fold with small h1,1. Looking at Figure 7.1, we see that

there is a model with h1,1 = 2 that has Nlg = 27, which is close to the critical

value N crit.
lg = 30. This is the CY 3-fold X3 that is a degree 18 hypersurface in

CP4
11169 (it is usually denoted as CP4

11169[18]). The corresponding weight system of

the ambient toric space after resolving the singularities is

Xamb
4 :

u1 u2 u3 u4 u5 ξ

1 1 1 6 0 9

0 0 0 1 1 2

. (7.7)

The two lines determine the two scaling equivalence relations that the coordinates

satisfy (see eq. (7.2)). We will see in Section 7.3 that on this manifold we can

stabilize the two Kähler moduli to values corresponding to a volume V ' 52.

4For an algorithm to check for the swiss cheese property of a 3-fold see [130].
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Let us mention some geometric properties of X3 that will be needed during the

following analysis. The CY is a hypersurface in the ambient space (7.7), defined

by the equation

ξ2 = P18,4(ui) ≡ u5Q18,3 , (7.8)

where the factorization of the polynomial P18,4 is enforced by its weights. The

Hodge numbers of X3 are h1,1 = 2 and h2,1 = 272. The (holomorphic) orientifold

involution is given by ξ 7→ −ξ. This involution has h1,1
− = 0 and then the number

of invariant Kähler moduli is h1,1
+ = h1,1 = 2. Due to the factorization of eq. (7.8),

there are two O7-planes O7u5 and O7Q at the fixed locus ξ = 0 that do not

intersect. One can show that the divisor O7u5 is a rigid divisor in the 3-fold X3.

Its homology class in the ambient space is Dξ · D5 = [X3] · D5

2
. We see that the

class of this integral 4-cycle in the 3-fold is Dfix
5 = D5

2
. So we can use it as an

element of an integral basis.

Using the triple intersection numbers of CP4
11169[18] in terms of D1 and Dfix

5 ,

we find an approximately swiss cheese volume of the 3-fold [22]

V =
1

6

∫
X

J ∧ J ∧ J =

√
2

3

(
V1 +

1

3
V5

)3/2

−
√

2

9
V3/2

5 , (7.9)

with Vi = Re(Ti) being the volumes of the respective divisors. Dfix
5 is rigid and

hence fulfills the sufficient condition to contribute to the gaugino condensation

superpotential. D1 is not rigid, but one can choose a proper gauge flux on the

wrapped D7-branes, that fixes the h2,0 = 2 deformations as is discussed in Ap-

pendix B.2.2.

In constructing an explicit brane and gauge flux setup on X3 we address the

following issues that are crucial in constructing a global model [90, 131–134]:

• The choice of the orientifold involution determines the class of the O7-plane.

D7-tadpole cancellation then implies [D7] = −8[O7], fixing the degrees of the

polynomial defining the D7-brane configuration. Requiring the presence of

a D7-brane stack on D1 with maximal gauge group rank Nlg might force the

defining polynomial to factorize further, leading to the presence of another

large rank stack (For details see Appendix B.2.1). Due to the swiss cheese

structure of the volume form, this might destroy the large volume approxi-

mation and one has to check that this does not happens. As we discuss in

Appendix B.2.1, we can realize an Sp(24) gauge group on D1 which enforces

an SO(24) gauge group on Dfix
5 .

• To lift unwanted zero modes that might destroy gaugino condensation on

some D7-brane stacks, one needs to ‘rigidify’ the wrapped non-rigid toric
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divisors (in the present case D1). To do this, the gauge flux FD1 has to be

properly adjusted. Furthermore, it breaks the Sp(24) gauge group to SU(24)

and induces a D3-charge of Q
FD1
D3 = 144. (For details see Appendix B.2.2.)

• To avoid the introduction of additional zero modes, due to non-zero gauge

flux (possibly forced by Freed-Witten anomaly cancellation [135, 136]) and

D-terms for the Kähler moduli, one has to choose such a flux in a proper way.

As we show in Appendix B.2.3, FD1 can be chosen without any problematic

consequences in our case even though for intersecting stacks this is generically

not possible.

• One has to saturate the D3-tadpole cancellation condition. The compactifi-

cation ingredients that induce a D3-charge are the (fluxed) D7-branes, the

O7-planes, the D3-branes and the RR and NS field strengths F3 and H3.

The total D3-brane charge that has to be canceled by the RR and NS fluxes,

eq. (5.22), is

L = QO7s
D3 +Qstacks

D3 +QW
D3 =

−104 for QW
D3 = −81

−96 for QW
D3 = −73 ,

(7.10)

where QW
D3 is the D3-brane charge of the Whitney brane. (For details see

Appendix B.2.4.)

At this point, we have a fully consistent picture of the D-brane and gauge flux

setup in our 3-fold X3 that ensures that gaugino condensation from the divisors D1

and Dfix
5 contributes to the superpotential of the four dimensional N = 1 effective

supergravity.

7.3 Kähler uplifted de Sitter vacua of CP4
11169[18]

The two Kähler moduli T1 and T2 of CP4
11169[18] can be stabilized in a de Sitter

minimum by Kähler uplifting as we discuss in the following. The Kähler potential

of T1 and T2 is given as

K = −2 log

[
1√
12

(
(T1 + T̄1) +

1

3
(T2 + T̄2)

)3/2

− 1

18
(T2 + T̄2)3/2 +

1

2
ξ̂(τ, τ̄)

]
,

(7.11)

with the leading order α′ correction ξ̂ given in eq. (5.27) with Euler number χ =

2(2− 272) = −540 and we have used eq. (7.9) for the volume of the CY. To apply

the method of Kähler uplifting we need to balance the leading order α′ correction
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to the Kähler potential with non-perturbative contributions to the superpotential.

These originate from gaugino condensation of an SU(24) and SO(24) pure super

Yang Mills from respectively 24 D7-branes wrapping the divisors D1 and Dfix
5

corresponding to T1 and T2 respectively. The induced superpotential is

W = W0 + A1 e
− 2π

24
T1 + A2 e

− 2π
22
T2 . (7.12)

Our analysis in Section 7.2 has shown that A1, A2 6= 0. The induced D3-tadpole by

this gauge flux and the geometric contributions from the D7-branes is L = 96 or

104, see eq. (7.10). The one-loop determinants A1 and A2 depend on the complex

structure moduli, the dilaton and also potentially D7-brane moduli. As we have

discussed above, the explicit dependence on these moduli is unknown, however for

the purpose of Kähler moduli stabilization the values of A1 and A2 can be assumed

be constant since complex structure moduli are stabilized at a higher scale. Since

there is a large number of flux parameters due to h2,1 = 272, it seems a reasonable

assumption that one should be able to use the freedom in this sector to mildly

tune A1 and A2 to a value desired for the stabilization of the Kähler moduli.

Choosing A1 = A2 = 1, it was found numerically in [22], that the pairs of W0

and s that are suitable to realize a de Sitter vacuum with small positive tree level

vacuum energy 5 lie on the curve

W dS
0 (s) = 70.2 s−2.35 with s ≥ 4 . (7.13)

Actually, it is a band rather than a curve, the lower bound of the band corre-

sponding to Minkowski vacua and the upper bound corresponding to the minimum

becoming an inflection point. For a single Kähler modulus this corresponds to the

upper and lower bound in eq. (6.9), respectively. Since the width of the band is

rather small and we are interested in vacua with a small cosmological constant,

we choose to display the lower bound in eq. (7.13).

The volume of the divisors at theses de Sitter vacua can be numerically deter-

mined as 〈T1〉 ' 10.76 and 〈T2〉 ' 12.15 which implies V ' 52 in units of α′. The

not too large overall volume emerges from the fact that we have only realized an

N1 = 24 gauge group on D1 which is actually lower than the critical gauge group

rank ∼ 30. Note that we were forced to choose the rank smaller than the maximal

rank Nlg = 27 in order to consistently incorporate the subtleties in the D7-brane

configuration and construct a fully consistent model, see Appendix B.2.1. Since

models with a larger number of Kähler moduli allow in principle larger maxi-

5In this case, small refers to how small we can tune 〈V 〉 by choosing numerical values for W0

and s to a certain decimal place and is not related to the tuning of the cosmological constant.
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mal gauge group rank, one may also realize larger overall volumes in these more

complicated cases.
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Chapter 8

Constructing explicit flux vacua

In this chapter, we study the flux vacua of a particular CY: The degree 18 hyper-

surface in a 4 complex dimensional projective space X3 ≡ CP4
11169[18] in the large

complex structure limit [25].1 This manifold is the standard working example of

both the LVS and the Kähler uplifting scenario and its geometric properties have

been worked out in great detail in [137]. We switch on flux along six 3-cycles that

correspond to two complex structure moduli that are invariant under a certain

discrete symmetry that can be used to construct the mirror manifold [138]. For

this purpose we review a known argument that a supersymmetric vacuum in these

two complex structure moduli corresponds to a supersymmetric vacuum of all 272

complex structure moduli [139, 140].

For an explicit construction of the flux vacua, we use the fact that the prepo-

tential G of the two complex structure moduli space has been worked out in [137]

in the large complex structure limit. We apply two computational methods to find

flux vacua on this manifold:

• The polynomial homotopy continuation method [141] allows us to find all

stationary points of the polynomial equations that characterize the super-

symmetric vacuum solutions. The fluxes fi ∈ Z appear as parameters in

these equations and are restricted by the D3-tadpole L which depends on

the chosen brane and gauge flux configuration imposed on the manifold.

Since the restriction is of the form
∑
f 2
i ≤ L, this method allows us to

explicitly construct, for the first time, all flux vacua in the large complex

structure limit that are consistent with a given D3-tadpole L. This is done

by applying the polynomial homotopy continuation method at each point in

flux parameter space. This method has the attractive feature of being highly

1For an analogous study of the manifold CP
4
11111[5] see [26].
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parallelizable.

• The minimal flux method [140] finds flux parameters that are consistent with

a given D3-tadpole L for a given set of vacuum expectation values (VEVs)

of the complex structure moduli. Hence it is in a sense complementary to

the polynomial homotopy continuation method where the role of parameters

and solutions is exchanged with respect to this method. However, it is not

possible to find all flux vacua for a given tadpole L with this method.

Our results are complementary to statistical analysis by [23, 24].2 The uniform

distribution of physical quantities such as the gravitino mass and the vacuum

energy density in the landscape have recently been questioned both in general [145–

147] and in the context of Kähler uplifting [148–150]. Hence, our results present an

important check of the general results found in [23, 24] on a very realistic example,

X3. This is especially true since we are able to construct the complete solution

space of flux vacua for a given tadpole L.

In Section 8.1, we review the reduction of the full moduli space of the 272

complex structure moduli to two complex structure moduli. The scans for flux

vacua with the polynomial homotopy continuation method and the minimal flux

method are presented in Section 8.2 and Section 8.3, respectively.

8.1 Effective reduction of the moduli space

As we discuss in Appendix D in greater detail, the 272 dimensional complex struc-

ture moduli space of CP4
11169[18] can be reduced to a two dimensional moduli space

by making use of a global symmetry. Also, we show that it is possible to achieve

DaW = 0 for all 272 complex structure moduli, and hence find a minimum of

the positive definite tree-level no-scale scalar potential eq. (5.13). This is possible

if flux is only switched on for the cycles that transform trivially under the above

mentioned global symmetry, i.e.,

f = (f11 , f12 , f13 , f21 , f22 , f23 , 0, ..., 0) and h = (h11 , h12 , h13 , h21 , h22 , h23 , 0, ..., 0) .

(8.1)

Effectively, one is left with the task of solving the equations

DIW = 0 for I = τ, U1, U2 . (8.2)

2For explicitly constructed vacua on two different two parameter models in the vicinity of the

Landau-Ginzburg respectively conifold point see [142]. For a study of flux vacua of X3 in the

context of accidental inflation [143] see [144].
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In [137], the prepotential G for the two complex structure moduli U1 = ω1/ω0

and U2 = ω2/ω0 was derived via mirror symmetry in the large complex structure

limit to be

G(ω0, ω1, ω2) = ξω2
0 +

17ω0ω1

4
+

3ω0ω2

2
+

9ω2
1

4
+

3ω1ω2

2
− 9ω3

1 + 9ω2
1ω2 + 3ω1ω

2
2

6ω0

,

(8.3)

with ξ = ζ(3)χ
2(2π i)3 ' −1.30843 i determined by the Euler number χ of the CY.

Eq. (8.3) receives instanton corrections which are given as

Ginst.(q1, q2) =
1

(2π i)3

(
540q1 +

1215q2
1

2
+ 560q3

1 + 3q2 − 1080q1q2 + 143370q2
1q2

−45q2
2

2
+ 2700q1q

2
2 +

244q3
2

9
+ . . .

)
, (8.4)

with qa = exp (2π iUa) and we have set ω0 = 1. The dots in eq. (8.4) denote

higher powers in the qa which are suppressed in the large complex structure limit

ua = Im(Ua) & 1. We define the large complex structure limit via

|Ginst.|
|G|

≤ εLCS ,
540e−2πu1

(2π)3|G|
≤ εLCS and

3e−2πu2

(2π)3|G|
≤ εLCS , (8.5)

for small εLCS. The two last condition in eq. (8.5) are imposed to ensure that

there are no cancellations between the terms in Ginst., i.e., the leading correction

in e−2πua is actually small.

8.2 The polynomial homotopy continuation

method

We want to solve the non-linear eqs. (8.2) derived from the prepotential eq. (8.3) for

the 6 real variables xi = u1, u2, s, ν1, ν2 and σ. The parameters of these equations

are the 12 fluxes f1, f2, h1 and h2 in eq. (8.1). Though systems of non-linear

equations are extremely difficult to solve in general, if the non-linearity in the

system is polynomial-like, then the recently developed algebraic geometry methods

can rescue the situation. In particular, we use the so-called numerical polynomial

homotopy continuation (NPHC) method [141] which finds all the solutions of the

given system of polynomial equations. This method has been used in various

problems in particle theory and statistical mechanics in [151–161].
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8.2.1 The algorithm

Let us briefly explain the NPHC method.3 For a system of polynomial equations

P (x) = (p1(x), . . . , pm(x))T = 0 with x = (x1, . . . , xm)T there is a maximal number

of isolated solutions in Cm for generic values of the coefficients which is
∏m

i=1 di,

where di is the degree of the ith polynomial. This is the classical Bézout bound

(CBB) [141, 162].

To find solutions to P (x) = 0 one can take advantage of the CBB. Now, a so

called homotopy can be constructed

H(x, t) = γ(1− t)Q(x) + t P (x) , (8.6)

where γ is a generic complex number, t ∈ [0, 1) and Q(x) = (q1(x), . . . , qm(x))T

is another system of polynomial equations. Note that H(x, 0) = γQ(x) and

H(x, 1) = P (x), such that we can track each solution of Q(x) = 0 from t = 0

to t = 1, finding all solutions to P (x) = 0 if the following 2 conditions are ful-

filled: 1) the solution set of H(x, t) = 0 for 0 ≤ t ≤ 1 consists of a finite number

of smooth paths, called homotopy paths, each parameterized by t ∈ [0, 1), and

2) every isolated solution of H(x, 1) = P (x) = 0 can be reached by some path

originating at a solution of H(x, 0) = Q(x) = 0. It is then convenient to choose a

system Q(x) where the solution space is easily obtained, e.g.,

Q(x) =
(
xd1

1 − 1, . . . , xdmm − 1
)
, (8.7)

where di is the degree of the ith polynomial of the original system P (x) = 0. The

CBB ofQ(x) and P (x) are equal. Hence, the task of finding solutions of P (x) = 0 is

transfered to efficiently track all paths from the easily obtained Q(x) = 0 solution.

A strong advantage of the NPHC lies in the fact that the path tracking is highly

parallelizable.

For solving eq. (8.2) we use a method known as Cheater’s homotopy [26, 163,

164] which is based on the NPHC but does not use the CBB, since this bound

often overestimates the actual number of solutions to P (x) = 0. We want to

solve a parametric system, ~f(~q; ~x) = ~0 where ~x are variables and ~q are parameters

(in our case the fluxes). Cheater’s homotopy first solves the system at a generic

parameter point and uses those solutions as the starting point for the systems at

all other parameter-points. It makes use of the fact that the maximum number of

complex solutions at any parameter point is the number of solutions at a generic

parametric point, as has been shown in [163, 164].

3For a more detailed explanation of the NPHC method see Section 3.1 of [25] and Section 3

of [26].
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8.2.2 The scan

We define a set of flux parameters on which we apply the algorithm described in the

previous Section 8.2.1. Since we are only interested in supersymmetric flux vacua,

we can make use of the ISD condition eq. (5.24) and define a flux configuration

via

H3 =

(
h1

h2

)
and F3 =

(
−h2

h1

)
, (8.8)

with h1, h2 ∈ Z3. Note that since we have two complex structure moduli, we have

initially 2 · 2 + 2 = 6 flux parameters for both H3 and F3 but the ISD condition

eq. (5.24) reduces this to the six parameters given in eq. (8.8). Furthermore, the

D3-tadpole eq. (5.22) becomes manifestly positive semi-definite, i.e.,

L = h2
1 + h2

2 . (8.9)

To scan efficiently, we apply the paramotopy algorithm to only SL(2,Z) in-

equivalent flux configurations. In Section 3.2 of [25] it is derived that these are

given as (
h1

h2

)
∼=

(
−h1

−h2

)
∼=

(
−h2

h1

)
∼=

(
h2

−h1

)
. (8.10)

where the 3-rd and 4-th flux vector in eq. (8.10) are related to the 1-st by a

transformation τ ′ = −1/τ , while the 2-nd is related to the the 1-st via τ ′ = τ . The

number of SL(2,Z) inequivalent flux configurations in a spherical region defined

by a spherical constraint eq. (8.9) can be estimated as π3/(4 Γ[4])(
√
L)6, using

the formula for the volume of the n-sphere Vn(r) = πn/2/Γ(n/2 + 1) rn. The

factor 1/4 accounts for the 4 equivalent configurations in eq. (8.10). If more flux

configurations are switched on, n > 6, the number of lattice points grows very

rapidly ∼ Ln/2.

For our scan, we choose L = 35 such that we scan over 52,329 parameter points

(the above estimate yields 55,391). On the FermiLab cluster using 100 nodes each

with 32 cores (each core with 2.0 GHz cloak speed), the calculation time in total

is around 75, 000 hours, with 60− 100 minutes per parameter point.

8.2.3 Distribution of parameters

In this section, we want to discuss the distribution of the following parameters as

results of the scan defined in the previous Section 8.2.2:

• u1 and u2, to see how many points reach the large complex structure limit

as defined in eq. (8.5).
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• τ , to identify regions of weak and strong coupling.

• The number of solutions for a given D3-tadpole L.

• W0, the flux superpotential.

• The masses of the moduli m2 and the gravitino mass m2
3/2.

• The available fine-tuning ∆Λ of the cosmological constant Λ.

• The amount of flux vacua for which a de Sitter vacuum can be constructed

via Kähler uplifting in 8.2.4.

For the 52,329 parameter points, we find a total of 531,370 solutions to the

eqs. (8.2). This corresponds to an average of 10.2 solutions per parameter point.

For 1,360 parameter points, we do not find any solutions. Many of the solutions

are unphysical and hence have to be sorted out: 288,160 fulfill the criterion of

a physical string coupling gs > 0, and 26,297 and 16,235 are in accordance with

the large complex structure criterion eq. (8.5) for εLCS = 10−1 and εLCS = 10−2,

respectively. Due to the strong suppression of the large complex structure limit in

the general solution space of eq. (8.2), the minimal flux method has the advantage

of directly searching for solutions in this region.

For the distribution of the dilaton, we can

use SL(2,Z), to transform each solution

to the fundamental domain

− 1

2
≤ Re(τ) ≤ 1

2
and |τ | > 1 ,

(8.11)

via the successive transformations

τ ′ = τ + b , G′3 = G3 , (8.12)

i.e., a = 1, b ∈ Z, c = 0, d = 1 and

τ ′ = −1/τ , G′3 = G3/τ , (8.13)

i.e., a = 0, b = −1, c = 1, d = 0.

We show the distribution of the obtained

values for τ = σ + i s in Figure 8.1. We

see that the the strongly coupled region

s = 1/gs ∼ 1 is preferred and large values

of s > 10 are obtained for a fraction of

5%.

Figure 8.1: Distribution of τ

for the paramotopy scan with

εLCS = 10−2.
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Figure 8.2: The number of vacua Nvac with h2 < L (left) and the logarithmic

distribution of the flux superpotential W0 (right) in the large complex structure

limit with εLCS = 10−2.

The number of vacua of X3 in the large complex structure limit for a given

D3-tadpole L was estimated in [140] as 4

Nvac =
(2πL)3

3!

∫
det(−R− 1 · ω) , (8.14)

with Kähler form ω and the curvature 2-form R of the moduli space. The integral

in eq. (8.14) was estimated in [140] to be be 1/1296, using the Γ symmetry of the

moduli space such that

Nvac ' 0.03L3 . (8.15)

Since paramotopy allows us to find all solutions for a given flux configuration we

can check not only the L dependence of eq. (8.14), but also the normalization.

This depends on the value chosen for εLCS, i.e., a greater εLCS will yield a larger

normalization factor. Fitting the number of solutions with h2 ≤ L in the large

complex structure limit to the tadpole L we find

Nvac ' (0.50± 0.04)L2.94±0.03 for εLCS = 10−2 , (8.16)

Nvac ' (0.85± 0.06)L2.93±0.03 for εLCS = 10−1 . (8.17)

The dependence of Nvac on L and the fit in eq. (8.16) are shown in Figure 8.2. Con-

sidering the very general arguments that are used to derive the estimate eq. (8.14),

the agreement within an order of magnitude with the factual number of vacua

strongly confirms the statistical analysis of [23, 24]. In the following, we set

εLCS = 10−2.

4Note that Nvac ∼ L6 in [140] which is due to the fact that 12 independent fluxes have been

switched on while we effectively switch on 6 independent fluxes, see eq. (8.8).
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The distribution of the flux superpotential is shown in Figure 8.2. We find that

for most vacua O(101 − 103) values are preferred. To calculate the masses of the

moduli we have to know the value of the volume V of X3. Note that we have not

specified the stabilization mechanism for the Kähler moduli in this chapter and

hence have no information about the value of V . Therefore, we can only calculate

the physical masses m as a function of V−1, i.e.,

m =
mcs

V
, (8.18)

where mcs is the mass calculated from the effective theory of the complex structure

moduli only, i.e., K = Kcs and W = W0.

Let us discuss the distribution of the physical moduli masses m2 in terms of m2
cs,

i.e., the eigenvalues of the Hessian ∂a∂bV of the no-scale potential eq. (5.13) for

a, b = u1, u2, s, ν1, ν2, σ as well as the gravitino mass m2
3/2 in terms of the quantity

m2
cs, 3/2 ≡ m2

3/2 V2 = eKcs|W0|2 . (8.19)

This quantity, m2
cs, 3/2, governs the scale of the typical AdS cosmological constant

induced by the flux superpotential ignoring the contributions from the Kähler

moduli sector. The distribution of m2
3/2 peaks at 〈m2

3/2〉 = 3.5× 10−2 · (100
V )2 with

a standard deviation 3 × 10−2 · (100
V )2. The complex structure moduli and the

dilaton are stabilized at m2 ∼ O(10−3 − 102)(100
V )2. These ranges for the moduli

and gravitino masses are compatible with the values obtained for a single explicit

flux choice in the same construction [21, 22].

The AdS/dS cosmological constant before tuning is up to O(1) factors esti-

mated to be

Λ ∼
m2

3/2

V
=
m2

cs, 3/2

V3
, (8.20)

in both the LVS and Kähler uplifting scenarios. In particular, the tunability of

mcs, 3/2 by 3-form flux directly translates into the tunability of the cosmological

constant via
∆Λ

Λ
∼ 2

∆mcs, 3/2

mcs, 3/2

. (8.21)

Note that the RHS of eq. (8.21) is independent of the volume V , i.e., fine-tuning

of mcs, 3/2 only has a tiny effect on the VEVs of the Kähler moduli.

Since the polynomial homotopy continuation method allows us to calculate all

solutions for a given tadpole L, we can estimate ∆Λ/Λ by determining the average

spacing ∆mcs, 3/2 for all values of mcs, 3/2 that are to be found in a σ-interval

around 〈mcs, 3/2〉. Since the number of vacua is given as a power-law in L, with

94



8.2. The polynomial homotopy continuation method

the exponent linear in the number of flux carrying complex structure moduli h2,1
eff ,

we expect ∆mcs, 3/2/mcs, 3/2 to be of the form

∆mcs, 3/2

mcs, 3/2

∼ C

La (h2,1
eff +1)

, (8.22)

with C, a > 0. We can determine these parameters by fitting the LHS of eq. (8.22)

as a function of L for h2,1
eff = 2. Choosing a 3-σ interval around 〈mcs, 3/2〉 we find

the available tuning for the cosmological constant to be

∆Λ

Λ
' (6.0± 0.3)L−(0.95±0.005) (h2,1

eff +1) , (8.23)

where we have included the statistical errors of the fit parameters C and a.

Let us assume that eq. (8.23) is valid and 〈mcs, 3/2〉 ∼ O(10) also for larger

values of L ∼ O(103) and larger values of h2,1
eff ∼ O(101 − 102). 5 Then, we can

extrapolate the values of the cosmological constant eq. (8.20) and its tunability to

more realistic scenarios, see Table 8.1.

h2,1
eff L ∆Λ/Λ

2 34 7 · 10−3 ± 5 · 10−4

2 500 5 · 10−5 ± 4 · 10−6

40 34 3 · 10−58 ± 2 · 10−58

40 500 10−102 ± 10−102

Table 8.1: The tunability ∆Λ/Λ of the cosmological constant for different

values of h2,1
eff and L with statistical errors propagated from eq. (8.23). The

untuned values of the cosmological constant are estimated via eq. (8.20) to be

O(10−4−10−22) in units of M4
P for V of O(102−108). The first row of this table

is directly calculated from our dataset while the last three rows are obtained as

an extrapolation via eq. (8.23).

To tune the cosmological constant to the accuracy given in Table 8.1, one has

to make the assumption that every supersymmetric flux vacuum has no tachy-

onic directions after uplifting and stabilizing the Kähler moduli. In particular,

for large values of h1,1 there could be strong suppressions of tachyonic free con-

figurations [145–147]. In the following section, we will determine how many de

Sitter vacua can be constructed from our dataset on X3 via the method of Kähler

uplifting.

5This assumption is reasonable when the prepotential G is of the same structure as eq. (8.3),

i.e., we are considering the large complex structure limit away from e.g., conifold singularities

via a mirror construction. It may be interesting to consider such examples with h2,1
eff = h1,1 > 2,

e.g., by choosing random pre-factors in a general polynomial prepotential of degree 2 in the ωi.
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Figure 8.3: The number of Kähler uplifted de Sitter vacua as a function of

∆A (left) and data points (s, |W0|) (right). Kähler uplifting can be applied in

the shaded region (∆A = 4).

8.2.4 de Sitter vacua via Kähler uplifting

Let us discuss for what proportion of flux vacua the class of Kähler uplifted de

Sitter vacua constructed in Section 7.3 is applicable. For the specific point in

moduli space A1 = A2 = 1, we found that the parameters W0 and s have to lie on

the curve eq. (7.13). To extend this class of vacua to more general values of A1

and A2, we introduce the parameter ∆A and the scaling relations

W0 → W0 ·∆A , A1 → A1 ·∆A , A2 → A2 ·∆A , (8.24)

under which the position of a minimum of the potential eq. (5.10) is invariant since

V → V ·∆A2. For a given uncertainty in the one-loop determinants ∆A−1 ≤ Ai ≤
∆A around A1 = A2 = 1 we can then define the criterion

W dS
0 (s)

∆A
≤ |W0| ≤ W dS

0 (s) ·∆A and s ≥ 4 , (8.25)

for a given data point (s, |W0|) to allow a de Sitter vacuum via Kähler uplifting.

We show the number of Kähler uplifted de Sitter vacua depending on ∆A in

Figure 8.3. Due to the low number of weakly coupled vacua with s� 1 and O(1)

values of the superpotential, the number of vacua that can be uplifted to de Sitter

via Kähler uplifting is strongly suppressed. For ∆A = 10, only 7, i.e., a fraction

of ∼ 10−4 of the total number of flux vacua allow such an uplifting.

The available tuning of the cosmological constant via fluxes can be estimated

again via eq. (8.21). The Kähler moduli stabilization yields a volume of V ' 53

such that the untuned cosmological constant is Λ ∼ 6 · 10−6 and

∆Λ

Λ
' 0.38± 0.27 , (8.26)
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for ∆A = 10. We remind the reader that this is calculated for L = 34 which is

the maximal value we reach in our paramotopy scan and hence less than L = 104,

eq. (7.10), which is maximally allowed by the gauge flux and D7-brane construction

realized for a Kähler uplifted de Sitter vacuum in Section 7.3.

To summarize this section, the polynomial homotopy continuation method al-

lows us to find all flux vacua for a given D3-tadpole L. The number of these vacua

is well estimated by the statistical analysis of [23, 24]. We find that strongly cou-

pled vacua s & 1 are preferred as well as O(101 − 103) values of W0. Our results

can be used to estimate the tunability of the cosmological constant by fluxes and

the number of flux vacua that can be Kähler uplifted to a de Sitter vacuum.

8.3 The minimal flux method

In this section we briefly describe the minimal flux method that was first used

by Denef, Douglas and Florea [140]. In contrast to the polynomial homotopy

continuation method described in Section 8.2, we fix starting values for the VEVs

〈U1〉fix, 〈U2〉fix and 〈τ〉fix and solve for the flux values f and h.

Due to the linear dependence of W0 on f and h, see eq. (5.21), the quantities

DIW0 = W0I + KIW0 for I = τ, U1, U2 are linear in these flux vectors. Hence, if

we want to solve the system of equations

(W0, DτW0, DU1W0, DU2W0) = 0 , (8.27)

this can be written as

M · (f, h) = 0 , (8.28)

with M ∈ R8×12 for general VEVs 〈U1〉, 〈U2〉, 〈τ〉 ∈ C. The dimensions of M result

from the fact that we have 8 real equations in eq. (8.27), and there are 12 flux

integers in total in f and h. Note that we have also included the condition W0 = 0

in eq. (8.27). However, we are not interested in flux vacua where W0 is strictly

zero since none of the well studied moduli stabilization mechanisms KKLT [16],

LVS [87] and Kähler uplifting [21, 22, 86, 94] apply in this situation. As such,

eq. (8.27) will only serve as a starting point and we will eventually end up with

vacua where W0 6= 0 and O(1).

For M ∈ R8×12 there is no hope to find a solution of eq. (8.28) since the

flux parameters need to be integers. However, if we neglect instanton corrections

induced by eq. (8.4) and choose rational starting values 〈U1〉, 〈U2〉, 〈τ〉 ∈ Q+ iQ in

the superpotential, the only transcendental number in eq. (8.28) is ξ = ζ(3)χ
2(2π i)3 =
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−1.30843.. i. If we approximate ξ by a rational number ξrat, for instance ξrat =

−13/10 i, we have accomplished M ∈ Q8×12.

Now we can hope to find a solution of eq. (8.28) although the entries of f and h

will generically be quite large for generic M , since one expects them to be at least

of the order of the lowest common denominator of the entries of M . This puts

tension on the D3-tadpole constraint eq. (5.22) since generally the geometry of the

compactification manifold and D7-brane configuration generates L ∼ 102 − 104.

We use the same algorithms [165] as the authors of [140], to generate as small

as possible values for the entries of f and h in order to generate a not too large

D3-tadpole L < Lmax where we choose Lmax = 500 to be the maximal value for

the D3-tadpole that we consider.

Since the system of equations eq. (8.28) is under-determined, the solution space

is given by all linear combinations of linearly independent vectors (f, h)i for i =

1, .., 4, where each (f, h)i is a solution to eq. (8.28), i.e.,

(f, h)sol =
4∑
i=1

ai (f, h)i with ai ∈ Z . (8.29)

For obvious practical reasons, we cannot consider all possible values of the ai. We

find that basis vectors of solutions with L((f, h)i) < 10 are extremely rare in our

scan. Hence, since L(ai(f, h)i) = a2
iL((f, h)i), we can safely restrict ourselves to

all values of the ai with −3 ≤ ai ≤ 3 in order to fulfill L((f, h)sol) < Lmax.

In the next step, we are looking for solutions to eq. (8.2), including instanton

corrections eq. (8.4) to the prepotential and also setting ξ to its transcendental

value. We insert the flux solution (f, h)sol into the equations

(DτW0, DU1W0, DU2W0) = 0 (with instanton corrections) , (8.30)

leaving the VEVs 〈U1〉, 〈U2〉 and 〈τ〉 unfixed. These are six real equations for

six real variables and we can numerically search for a solution in the vicinity of

〈U1〉fix, 〈U2〉fix and 〈τ〉fix. A check needs to be carried out on a case by case

basis to determine if the complex structure limit is still valid for these perturbed

solutions. The shift of the VEVs from their fixed values may also induce a shift

in the superpotential, i.e., W0 is not zero anymore. However, note that the value

that W0 will take in the end is not in any way under our control and it has to be

checked if one obtains useful values for the purpose of moduli stabilization.

The above outlined algorithm can be iterated by sampling over a set of VEVs

〈U1〉fix, 〈U2〉fix and 〈τ〉fix and approximate ξ values ξrat.

For the minimal flux method, we find ∼ 1000 flux vacua with L < 500 out of

∼ 107 parameter points of our scan. A detailed presentation of the results can

98



8.3. The minimal flux method

be found in Section 4.3 of [25]. This method allows us to control the region in

W0 and moduli space where we are intending to find flux vacua. Hence, we more

easily access the regions of weak string coupling and of the large complex structure

limit compared to the polynomial homotopy continuation method. For this much

smaller set of flux vacua constructed with the minimal flux method, the fraction

of Kähler uplifted de Sitter minima is approximately 10%. This is a considerably

higher proportion of vacua compared to the polynomial homotopy continuation

method (which was only ∼ 0.01 %). This is due to the fact that the minimal flux

method naturally finds values for gs and W0 in a region where Kähler uplifting is

applicable.
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Chapter 9

Conclusions and Outlook

Let us start by concluding Part II of this thesis (as Part I was already concluded

at the end of Chapter 4). Following the motivation of providing a proof of exis-

tence for de Sitter vacua in string theory, we derived a sufficient condition for de

Sitter vacua in the Kähler uplifting scenario in the low energy supergravity limit

of type IIB string theory in Chapter 6. This condition can be expressed in terms

of the compactification parameters, more precisely the geometry of the Calabi-Yau

manifold and the fluxes. This sufficient condition provides guidance in the con-

struction of explicit examples for de Sitter vacua. In Chapter 7, we constructed

such an example on the manifold CP4
11169[18], taking into account all known con-

sistency constraints such as tadpole conditions and anomaly cancellations. The

question of whether this set of de Sitter vacua can include a subset with extremely

small vacuum energy as in our universe was addressed in Chapter 8. The explicit

treatment of O(100) fluxes which are needed to tune the cosmological constant

to O(10−120)M4
P is technically extremely difficult. Hence, we restrict our explicit

analysis to 6 fluxes on CP4
11169[18] and extrapolate our results to higher dimensional

flux spaces. In agreement with semi-analytical results [23, 24], our extrapolation

strongly indicates that such a fine-tuning of the cosmological constant is indeed

possible.

So did we succeed in constructing an explicit example of a de Sitter vacuum

in string theory? Certainly we can answer this question affirmative if higher order

corrections in α′ and gs that are as yet unknown do not spoil the analysis pre-

sented in this work. Due to the large volume and weak coupling limit we take, this

is generically the case if the coefficients of these higher order corrections are not

too large. Hence, it is an important task for the future to calculate these higher

order corrections and check their effect on moduli stabilization and inflationary

101



Chapter 9. Conclusions and Outlook

model building.1 If one does not have to rely on its IIB limit, a particular suitable

approach is F-theory since it is non-perturbative in gs such that all corrections

originating from gs are automatically included. Another very important task is to

verify that the standard model of particle physics can be included in a globally

consistent compactification of string theory. In particular, these global construc-

tions should allow for an extremely small cosmological constant and an early phase

of inflation in order to be more realistic.2

The attempt to construct fully realistic models of our universe in the sense of

both particle physics and cosmology is crucial to find out if string theory does

in fact describe our world. Due to the highly non-trivial constraints such as the

cosmological constant fine-tuning that reality imposes on string phenomenology,

one ideally might hope for distinct features that are shared by many models in

the string theory landscape. Most optimistically, these could lead to intrinsically

stringy predictions in both particle physics and cosmology. Hence, a better under-

standing of the landscape as well as its statistics and dynamics, such as tunneling

and the population mechanism, is very important. In some corners of the land-

scape, string theory already provides statistical preference for a small cosmological

constant [148] or for the type of inflationary model [169]. Finally, the upcoming

experimental data, e.g., from the LHC and CMB polarization data from Planck,

might provide further guidance for model building in string theory. This includes,

for instance, answers to the questions of what the energy scale of inflation is and

whether low energy supersymmetry is realized in nature.

1For instance we find potentially de-stabilizing effects on moduli stabilization in the LVS and

Kähler uplifting scenario in a study of the effect of certain α′4 corrections [166] to the scalar

potential [167]. However, to make a decisive statement on the relevance of these corrections one

has to calculate all corrections at least to fourth order in α′ to the scalar potential.
2For attempts in this direction see e.g., [168].
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Appendix A

F-term induced shifts of the

moduli - details

We present details on the derivation of the F-term induced shifts presented in

Section 6.2.2.

A.1 Deviation of s and ua from the SUSY mini-

mum

We will now estimate the correction δ~θ for a general complex structure sector to

be of the order ξ̂/V multiplied with terms depending on Kc.s., W0 and derivatives

of these expressions with respect to s and ua. To analyze the scaling of V
(0)
~θ0 ~θ0

with

respect to our expansion parameter ξ̂/V only the overall factor eK is relevant since

there is otherwise no t dependence in V (0). Hence

V
(0)
~θ0 ~θ0
∼ V−2 . (A.1)

To analyze the scaling of δV
(1)
~θ0

with respect to ξ̂/V , we have to build the

derivatives of V (T ) and V (T,τ) with respect to s and ua respectively and evaluate at

the supersymmetric minimum. A detailed calculation given in Section 4.1 of [21]

yields

δV
(1)
~θ0
∼ W0 |(W0)~θ0|

ξ̂

V3
. (A.2)

So finally going back to eq. (6.26) we indeed obtain

δ~θi ∼
ξ̂

V
, (A.3)
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to be a 1-st order perturbation of the supersymmetric minimum ~θ0.

Note that our analysis does not take into account a possible dependence of δ~θ

on h2,1. This implies the potential caveat that a perturbative expansion of the

shift from the supersymmetric minimum in ξ̂/V might not be consistent for large

h2,1, as we will now discuss. The parts of the scalar potential V (T ) and V (T,τ)

depend on U1, . . . , Uh2,1 via the flux superpotential W0. Hence, when we calculate

the deviation of the 0-th order supersymmetric VEV of the dilaton or a complex

structure modulus to 1-st order we might expect the deviation to depend on the

number of fields that are supersymmetrically stabilized. In the worst case, one

could expect the deviation to grow with the number of fields included such that

the 1-st order deviation would eventually become of the same order as the 0-th

order VEV which would make our perturbative expansion valid only up to certain

number of fields included. This is what one could expect naively, since a growing

number of fields could ’pull away’ the supersymmetrically stabilized fields from

their VEVs via δV (1) the stronger the more fields are included.

However, we will give here a short argument why we expect no such deleterious

dependence of the shifts δ~θ on h2,1 to arise. Upon inspection of eq. 6.26 concerning

the ua = ImUa we see that we can approximate the mass matrix V
(0)
~θ0~θ0

entering

there by two extreme cases within which we will typically find realistic exam-

ples. Consider first the non-generic case, where V
(0)
~θ0~θ0
∼ 〈µ2〉diag(O(1), . . . ,O(1))

is roughly diagonal, where µ denotes the common mass scale assumed for this

non-generic case. Now we note that δV
(1)
~θ0
∼ |(W0)~θ0| and from the 3-cycle decom-

position of the CY 3-fold we have eq. (5.21). At a generic point in the interior of

moduli space of a generic CY we expect the periods Gi, in being the dual complex

structures, to have the same sizes as the Ua, and thus δV
(1)
~θ0
∼ |(W0)~θ0| will be

roughly constant in h2,1. For our first case of a roughly diagonal mass matrix this

implies that the shifts δ~θ are roughly constant in h2,1. Now consider the 2nd generic

case of a non-diagonal mass matrix which we approximate by V
(0)
~θ0~θ0

∼ 〈µ2〉O(1)

∀i, j = 1 . . . h2,1. In this case, each row on the LHS of eq. (A.4), which is eq. (6.26)

before inversion, contains a sum over all δ~θi with roughly equally sized coefficients

V
(0)
~θ0 ~θ0
· δ~θ = −δV (1)

~θ0
. (A.4)

Now as V
(0)
~θ0~θ0

has roughly equal sized entries everywhere, eq. (A.4) should have a

solution

δ~θ ∼
〈

1

µ2

〉
1

h2,1
, (A.5)

for the shifts of the complex structure moduli, where µ denotes the mass scale of

the eigenvalues of a mass matrix with roughly equal entries everywhere. As a given
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tree-level mass matrix V
(0)
~θ0~θ0

for a given model will in general fall in between these

two extreme cases, we expect no positive power of h2,1 to appear in the shifts δ~θ.

A.2 Backreaction on the Kähler modulus

We will now derive an expression for the 1-st order shift in δt of the Kähler modulus

due to 2-nd order terms in the scalar potential. δt will then be used to calculate the

perturbance of the mass m2
t ' KT T̄ ·V (T )

tt due to these 2-nd order terms. Splitting

eq. (6.16) into 1-st order V (T ) and 2-nd order δV (2) = V (T,τ) +V (τ) +V (U) terms we

can perform an expansion in δt along the lines of eq. (6.25) in δt and obtain [21]

δt

t
= −(δV (2))t

t V
(T )
tt

=
ξ̂∆

V
, (A.6)

where ∆ is a function which is O(1) in the fluxes, whose overall sign and depen-

dence on h2,1 and hence the smallness of δt/t is in general unknown. We can

expand the perturbed mass m̃2
t

m̃2
t = m2

t + (∂tm
2
t ) δt+

1

2
(∂2
tm

2
t ) δt

2 + . . .

=
5W 2

0

4sV2
· ξ̂
V
eKc.s.

1− 31

2

ξ̂∆

V
+O

(
ξ̂∆

V

)2
 . (A.7)

So if ∆ is negative it cannot cause a tachyonic direction in t. However, if ∆ is

positive, only values of ∆ that are smaller than roughly O(10) can be allowed

to keep the spectrum tachyon free. Due to its constant scaling in the fluxes we

typically expect ∆ = O(1).

Let us pause here again to discuss a possible dependence of the expansion on

h2,1. Once it is shown that the dilaton and complex structure moduli are stabilized

supersymmetrically with a 1-st order deviation one expects this to induce a 2-nd

order term in the potential. This is due to the quadratic dependence of V (τ)

and V (U) on the respective F-terms and the structure of V (T,τ) which is a 1-st

order term times Fτ . Since V (T ) is a 1-st order term we expect an effective 1-st

order correction on the stabilization of t. A correction of the VEV of t induces a

correction in m2
t which could in the worst-case create a tachyonic direction in t.

Similar to the situation discussed above for the deviation of the dilaton and the

complex structure moduli from the supersymmetric minimum, there is the danger

that the correction to m2
t will be negative and scale with positive powers of h2,1.

Then, a non-tachyonic t direction would only be possible up to a certain upper
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bound on h2,1. Note, that in case the correction to m2
t is positive, a scaling with

h2,1 would even increase m2
t and make this direction more stable in the end.
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The type IIB perspective of

CP
4
11169[18] - details

B.1 D7-branes from the IIB perspective

It was found in [129] that for a single invariant D7-brane saturating the D7-tadpole

cancellation condition, its world volume is given by the (non-generic) polynomial

equation

η2 − ξ2χ = 0 , (B.1)

with η and χ sections of K̄4 and K̄6, respectively. (For practical purposes, η and

χ can be seen as polynomials in the complex coordinates ui of the resolved base

manifold B3.) This D7-brane is called in the literature ‘Whitney brane’, as it has

the singular shape of the so called Whitney umbrella [129].

For non-generic forms of the polynomials η an χ, the Whitney brane can split

into different stacks. In particular a stack of 2Ni branes wrapping the invariant

toric divisor Di : {ui = 0} manifests itself via the factorizations η = uNii η̃ and

χ = u2Ni
i χ̃ such that eq. (B.1) becomes

u2Ni
i

(
η̃2 − ξ2χ̃

)
= 0 , (B.2)

where on the invariant divisor at ui = 0 there is an Sp(Ni) stack and η̃2 − ξ2χ̃

describes a Whitney brane of lower degree. Since the Whitney brane has always

to be described by a holomorphic equation, Ni cannot be made arbitrarily large.

For ui=1,...,4 we can be more specific. Eq. (B.2) becomes

u2Ni
i

(
η̃2

(4nξ−niNi,... ) − ξ
2χ̃(6nξ−2niNi,... )

)
= 0 , (B.3)
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where the dots denote the degrees that are imposed via the weight system of the

resolved ambient space Xamb
4 . If the degree in the first scaling is the most restrictive

we obtain the strongest bound from the holomorphicity of χ̃, i.e.,

Ni ≤ 3
nξ
ni
. (B.4)

B.2 Consistency constraints for D7-branes on

CP
4
11169[18]

We give more details on the constraints that have to be fulfilled in order to realize

a consistent D7-brane configuration on CP4
11169[18] as is summarized in Section 7.2.

B.2.1 D7-brane configuration

We discuss the inclusion of D7-branes, following the general procedure discussed

in Appendix B.1. To cancel the D7-charge of the O7-planes at ξ = 0, the equation

describing the D7-brane configuration is given by (see eq. (B.1))

η2
36,8 − ξ2χ54,12 = 0 , (B.5)

where the degrees of the η and χ polynomials are dictated by the degrees of ξ and by

the requirement that [D7] = −8[O7] = −8Dξ. It turns out [22] that for a maximal

rank of N1 = Nlg = 27 of the gauge group on the invariant divisor D1, the Whitney

brane in eq. (B.5) splits into a brane and an image brane. This generically induces

a non-trivial flux on these split branes in order to cancel Freed-Witten anomalies

which in turn could generated additional chiral zero-modes. This can be avoided

by a lower degree gauge group Sp(24) on D1 such that the Whitney brane does

not split. Furthermore, this gauge group on D1 enforces a further factorization of

eq. (B.5) in u5 which induces an SO(24) gauge group on Dfix
5 .

B.2.2 Rigidifying D1 by gauge flux

The equation describing D1 is u1 = 0, which can be deformed to u1 +ζ2u2 +ζ3u3 =

0. We see that we have two deformation moduli, consistent with the fact that

h2,0(D1) = 2. We need to lift such zero modes in order to avoid destroying gaugino

condensation on the D7-brane stack wrapping D1. In Section 3.3 of [22], an explicit

gauge flux FD1 wrapping D1 is constructed that fixes these deformation moduli.

This rigidifying flux is taken such that it is not a pull-back of a CY3 2-form,
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i.e., it will not generate additional chiral matter and will not enter in the D-term

constraints. The flux constrains the holomorphic embedding of the D-brane by

the F-term constraint F2,0 = 0 as first suggested in [90] and introduced in [170].

Furthermore, the explicit flux constructed in [22] that rigidifies all the D7-branes

in the Sp(24) stack induces a D3-charge of

Q
FD1
D3 = 144 , (B.6)

and breaks the Sp(24) gauge group to SU(24).

B.2.3 Avoiding D-terms and zero-modes from matter fields

In Appendix B.2.1, we introduced D7-brane stacks on the divisors D1 and D5. If

the branes carry non-zero flux, we have to worry about possible charged matter

fields arising at the intersection of the two D7-brane stacks or from the D7-brane

bulk spectrum. These zero modes might force the contribution to the superpoten-

tial from gaugino condensation to be zero. These problematic fluxes also generate

Kähler moduli dependent Fayet-Iliopoulos (FI) terms ξi [89, 99, 171]. This would

introduce a D-term potential for the Kähler moduli. However, the method of

Kähler uplifting which we use requires a pure F-term potential.

In the following, we show that additional zero-modes and D-terms can be

avoided for an appropriate choice of gauge flux F on the branes wrapping the

divisors D1 and Dfix
5 . The gauge flux F combines with the pull-back of the bulk

B-field on the wrapped 4-cycle to give the gauge invariant field strength

F = F −B . (B.7)

The number of additional zero modes and the Kähler moduli dependent Fayet-

Iliopoulos terms appearing in D-terms are given by integrals of the form∫
Di

FDi ∧D =

∫
X3

D ∧Di ∧ FDi , (B.8)

where D is an arbitrary divisor in the 3-fold X3. If it is possible to choose the fluxes

FD1 and FDfix
5

such that eq. (B.8) vanishes for i = 1, 5 these fluxes do not have

any problematic consequences. In particular, an integral such as (B.8) vanishes if

the flux FDi is orthogonal to the 2-forms of Di that are pull-backed from the CY

3-fold X3.

When turning on gauge flux one has to make sure that the Freed-Witten

anomaly [135, 136] is canceled, i.e., the gauge flux on a brane wrapping divisor D

has to satisfy

F +
c1(D)

2
∈ H2(X3,Z) . (B.9)
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If the divisor D is non-spin, its first Chern class c1(D) is odd and F cannot be set

to zero. On the other hand, the expression appearing in the physical quantities

is the gauge invariant flux eq. (B.7). By choosing the B-field appropriately, one

can make this invariant flux equal to zero. For a set of D7-brane stacks wrapping

non-intersecting divisors, the global B-field can be chosen such that the pull-back

on all such divisors make F = 0 for all the stacks. However, for intersecting stacks

this is not possible in general. In Section 3.4 of [22] we prove that our case is not

generic in this respect: We can choose the B-field such that both FD1 and FDfix
5

are

trivial, i.e., eq. (B.8) vanishes. Hence, additional zero-modes as well as D-terms

can be avoided by tuning of the gauge flux.

B.2.4 D3-tadpole cancellation condition

The D3-tadpole has to cancel for consistency. The compactification ingredients

that induce a D3-charge are the (fluxed) D7-branes, the O7-planes, the D3-branes,

the O3-planes and the RR and NS field strengths F3 and H3. The RR and NS

fluxes and the D3-branes have a positive contribution given by eq. (5.22) and

QD3(ND3×D3) = ND3, respectively. In our case we do not have O3-planes, while

we have O7-planes. Each O7-plane contributes negatively by QO7
D3 = −χ(O7)/6.

We have two O7-planes, whose D3-charge sum up to QO7s
D3 = −92 where we used

χ(O7u5) = 3 and χ(O7Q) = 549.

A stack of Ni D7-branes and their Ni images wrapping a divisor Di contributes

to the total D3-charge positively via the gauge flux and negatively via a geometric

contribution:

QD7
D3(Di) = 2Ni

(
−1

2

∫
Di

FDi ∧ FDi −
χ(Di)

24

)
, (B.10)

where the overall factor two comes from sum over the stack and its image stack

which have the same D3-charge. For the brane-stacks on D1 and Dfix
5 described in

Appendix B.2.1, we obtain the following D3-tadpole:

Qstacks
D3 =Q

FD1
D3 − 2N1

χ(D1)

24
− 2N5

χ(Dfix
5 )

24
= 144− 3− 72 = 69 , (B.11)

where we have used N1 = 24, N5 = 12, eq. (B.6) for the D3-charge of FD1 ,

χ(D1) = 36 and χ(Dfix
5 ) = 3.

The Whitney brane, defined by the equation η2 − ξ2χ = 0, has a singular

world volume. Thus we have to compute its contribution to the D3-tadpole indi-

rectly, see [134] and Section 3.5 of [22], taking into account the trivial flux on the
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brane [129, 133]. One obtains two possible results for the charge of the Whitney

brane, i.e., QW
D3 = −81 and QW

D3 = −73.

Taking into account the contribution from the O7-planes and the D7-brane

stacks, and the negative contribution from the Whitney brane, we obtain the

following total D3-brane charge from our brane configuration:

L = QO7s
D3 +Qstacks

D3 +QW
D3 =

−104 for QW
D3 = −81

−96 for QW
D3 = −73 .

(B.12)
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C.1 D7-branes from the F-theory perspective

Let us now discuss the constraints on the large gauge group rank in the perturba-

tive limit of F-theory. This theory is physically equivalent to weakly coupled type

IIB. However, the geometric F-theory picture provides a different perspective and

a cross check of our results in the IIB picture presented in Appendix B.1.

Before we discuss the D7-brane setup in F-theory let us set the stage. To obtain

an N = 1 effective four dimensional effective theory starting from 12-dimensional

F-theory we have to compactify on an elliptically fibered CY 4-fold. More specif-

ically, the 4-fold can be described as a hypersurface in an ambient fivefold which

is a CP2
123 fibration over a three dimensional base B3, i.e. one introduces three

additional complex coordinates coordinates and a scaling relation

(X, Y, Z) ∼ (λ2X,λ3Y, λZ) . (C.1)

As far as the scaling in the classes of the base is concerned Z scales as a section of

the canonical bundle K of B3, in order to ensure the CY condition of the 4-fold.

The elliptically fibered CY 4-fold can be defined by the Tate model [172, 173]:

Y 2 + a1XY Z + a3Y Z
3 = X3 + a2X

2Z2 + a4XZ
4 + a6Z

6 , (C.2)

where the Tate polynomials ai are functions of the base coordinates ui such that

they are sections of K̄i.

In F-theory, D7-branes manifest themselves via singularities of the elliptic fi-

bration. To engineer a singularity on a divisor Dj : {uj = 0} the Tate polynomials
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have to factorize as

ai = uwij ai,wi , (C.3)

with positive integer numbers wi encoding which kind of singularity is realized.

Since ai,wi has to be holomorphic, wi cannot be made arbitrarily large. For a

tabular overview of the possible resolvable singularities that can arise in such a

construction see [174] and Table 1 of [22]. The singularities with Coxeter number

larger than 30 are either of the Sp, SU or SO type. We can again analyze the

constraints on the maximal gauge group rank in more detail. The most severe

constraints regarding holomorphicity of eq. (C.3) come from a3 and a6, leading to

the same large gauge group indicator Nlg as in the IIB picture.

So far our F-theory discussion has been for generic values of the string cou-

pling. However, we eventually want to obtain a stable de Sitter vacuum by using

the leading α′ correction to the Kähler potential [108] which is only known in per-

turbative type IIB. As long as this correction remains unknown in non-perturbative

F-theory, we have to restrict our analysis to Sen’s weak coupling limit gs → 0 [98].

It turns out,1 that there is no restriction on the ai in the Sen limit as long as

the weak coupling limit exists. Hence, a singular configuration over a divisor Dj

enforced via a factorization ai = uwij ai,wi remains intact in the weak coupling limit.

C.2 D7-branes on CP
4
11169[18]

In this section, we revisit some results of Section 7.2 by using the F-theory lan-

guage. We first discuss the D7-brane configuration in F-theory. We consider the

CY 4-fold that is an elliptic fibration over the base manifold

B3 :

u1 u2 u3 u4 u5

1 1 1 6 0

0 0 0 1 1

. (C.4)

The toric divisors of B3, defined by the equations ui = 0 will be called D̂i, in order

to distinguish them from their double covers Di in X3 (given by the complete

intersection {ui = 0} ∩ {ξ2 − P18,4 = 0} in Xamb
4 ).

We find that enforcing an Sp(24) singularity on the divisor D̂1 of B3 forces us

to impose an SO(24) singularity on D̂5. This agrees with the type IIB perspective

discussed in Appendix B.2.1. This can be seen in detail from the factorization of

the Tate polynomials in u1 and u5, see Section 4 of [22].

1For a detailed discussion of the D7-brane configuration in the Sen limit see Section 2.2 of [22].
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Now we consider the 4-fold where the Sp(24) singularity is resolved along the

lines described in [175, 176] and Appendix B.1 of [22]. The resolution introduces

a set of new divisors, the exceptional divisors E2i−1 (i = 1, ..., N), that are P1

fibrations over the surface in the base B3 where the fiber degenerates. From the F-

theory point of view, the gaugino condensation contribution to the superpotential

is generated by M5-instantons wrapping the exceptional divisors that resolve the

corresponding singularity [177]. In the presence of fluxes, the necessary condition

for an M5-instanton wrapping a divisor D to contribute to the superpotential is

that χ0(D) ≥ 1, which is the known modification of the condition χ0(D) = 1

without fluxes [75, 178].

In Appendix B.1 of [22], we derive the following formula for the arithmetic

genus of the exceptional divisors

χ0(E2i−1) = χ0(D); i = 1, .., N − 1 ,

χ0(E2N−1) = χ0(D̂) ,
(C.5)

where D̂ is the divisor {pD̂ = 0} on the base manifold B3 where the singularity

sits and D is its double cover in X3.

In our example we imposed an Sp(N1 = 24) singularity on the divisor D̂1 which

implies

χ0(E2i−1) = 3 for i = 1, . . . , N1 − 1 and χ0(E2N1−1) = 1 , (C.6)

using χ0(D1) = 3. We see that all of them satisfy the necessary condition for an

M5-instanton to contribute to the superpotential in the presence of fluxes. This

agrees with what we found in type IIB language, where we have seen that this

actually happens, i.e. switching on a proper gauge flux fixes the deformation on

the wrapped divisor, leading to the possibility of having gaugino condensation.
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Reducing the complex structure

moduli space of CP4
11169[18]

Consider the two parameter ψ, φ-family of 3-folds CP4
11169[18] given by the vanish-

ing of the polynomials

x18
1 + x18

2 + x18
3 + x3

4 + x2
5 − 18ψx1x2x3x4x5 − 3φx6

1x
6
2x

6
3 , (D.1)

i.e., all except two of the 272 complex structure moduli which correspond to mono-

mials in the general degree 18 CY hypersurface equation have been set to zero. As

was discussed in [137], eq. (D.1) is invariant under a global Γ = Z6×Z18 symmetry.

This symmetry is used in the Greene-Plesser construction [138] to construct the

mirror CY which in this case has h1,1 = 272 and h2,1 = 2. Furthermore, the mod-

uli ψ and φ in eq. (D.1) describe the two complex structure moduli of this mirror

manifold. As was pointed out in [179], the periods of the mirror agree with those

of CP4
11169[18] at the Γ symmetric point. Also, [179] shows that the complete set

of h2,1 complex structure moduli can be divided into a Γ-invariant subspace and

its complement. The moduli with trivial transformation are exactly those that do

not vanish at the Γ symmetric point, in this case ψ and φ.

To make use of the agreement of the prepotential for the complex structure

sector of CP4
11169[18] and its mirror in the large complex structure limit, it is useful

to introduce the complex coordinates U1 and U2 that are related to ψ and φ as [137]

X1 = − 1

q1

(
1 + 312q1 + 2q2 + 10260q2

1 − 540q1q2 − q2
2

− 901120q3
1 + 120420q2

1q2 + 20q3
2 + . . .

)
,

X2 = − 1

q2

(
1 + 180q1 − 6q2 + 11610q2

1 + 180q1q2 + 27q2
2

+ 514680q3
1 − 150120q2

1q2 − 5040q1q
2
2 − 164q3

2 + . . .
)
,

(D.2)
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up to third order in the qj ≡ e2π iUj with the large complex structure coordinates

X1 =
(18ψ)6

3φ
and X2 = (3φ)3 . (D.3)

The large complex structure limit corresponds to Xj →∞ which is equivalent to

Im(Uj)→∞ as can be seen from eq. (D.2).

There are two conifold singularities given by the equations [137]

CF1 : (26244ψ6 + φ)3 = 1 ⇔ X2

27

(
X1

432
+ 1

)3

= 1 ,

CF2 : φ3 = 1 ⇔ X2

27
= 1 .

(D.4)

Let us come back to the problem of finding supersymmetric extrema by solving

eq. (5.23). As was noted in [140, 180], to find an extremum it is sufficient to turn

on fluxes only along the six Γ-invariant 3-cycles, i.e.,

f = (f11 , f12 , f13 , f21 , f22 , f23 , 0, ..., 0) and h = (h11 , h12 , h13 , h21 , h22 , h23 , 0, ..., 0) ,

(D.5)

having set to zero all the components along the b3 − 6 non-invariant 3-cycles. It

is then possible to achieve DaW = 0 for all 272 complex structure moduli,1 and

hence to find a minimum of the positive definite tree-level no-scale scalar potential

eq. (5.13). This is due to the fact that, for this Γ invariant flux, the symmetry

Γ is realized at the level of the four-dimensional effective action. Note that the

restriction to flux on the Γ invariant cycles is purely for simplicity, as the analysis

of the complete 272 dimensional complex structure moduli space is practically

extremely challenging.

Let us explain more detailed why the flux vector in eq. (D.5) generically pro-

vides a stable minimum of all 272 complex structure moduli [140, 180]. We first

consider DŨa
W0 = 0, where Ũa for a = 3, . . . , 272 denote the non-trivially trans-

forming moduli under Γ = Z6 × Z18. In the large complex structure limit, the

prepotential G is a polynomial function of all h2,1 complex structure moduli that

has to transform trivially under Γ, since if it would not, Γ could be used to fix the

non-trivially transforming moduli.2 Hence, the non-trivially transforming Ũa have

to appear at least quadratic in G in order to represent a Γ invariant contribution

1Note that orientifolding will project out some of the 272 complex structure moduli. Since

the exact number of projected out directions depends on the position of the O-plane we stick to

the upper bound of 272 for a general treatment.
2G completely determines the moduli space of the (before orientifolding) N = 2 moduli space.

If it would not be invariant the complex structure moduli space would have been reduced, i.e.,

some flat directions lifted but this does not happen just because there exists a Γ symmetric point.
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to G. This information, together with having switched on flux only along the Γ

invariant directions, is sufficient to show

W0,Ũa
= KŨa

= 0 at Ũa = 0 for a = 3, . . . , 272 , (D.6)

since W0,Ũa
is a polynomial function which is at least linear in the Ũa, see eq. (5.21)

and KŨa
is a rational function which is at least linear in the numerator in the Ũa,

see eq. (5.16). Hence, DŨa
W0 = W0,Ũa

+KŨa
W0 = 0 at Ũa = 0 for a = 3, . . . , 272.

This reduces the full set of conditions DaW = 0 ∀a to the three equations

DIW |Ũa=0 = 0 for I = τ, U1, U2 . (D.7)

This is equivalent to set Ũa = 0 from the beginning and study the stabilization

problem for the reduced case with two complex structure moduli.

Finally, we mention that in order to have a valid description of the complex

structure moduli by a polynomial prepotential G we have to ensure that we are

not in the vicinity of the conifold points eq. (D.4), i.e.,∣∣∣∣∣X2

27

(
X1

432
+ 1

)3

− 1

∣∣∣∣∣ ≥ εCF and

∣∣∣∣X2

27
− 1

∣∣∣∣ ≥ εCF , (D.8)

with small εCF .
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