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Zusammenfassung

Der algebraische Zugang zur perturbativen Quantenfeldtheorie in der Minkowskiraum-
zeit wird vorgestellt, wobei ein Schwerpunkt auf die inhärente Zustandsunabhängig-
keit des Formalismus gelegt wird. Des Weiteren wird der Zustandsraum der pertur-
bativen QFT eingehend untersucht. Die Dynamik wechselwirkender Theorien wird
durch ein neues Verfahren konstruiert, das die Gültigkeit des Zeitschichtaxioms in
der kausalen Störungstheorie systematisch ausnutzt. Dies beleuchtet einen bisher un-
bekannten Zusammenhang zwischen dem statistischen Zugang der Quantenmechanik
und der perturbativen Quantenfeldtheorie. Die entwickelten Methoden werden zur ex-
pliziten Konstruktion von KMS- und Vakuumzuständen des wechselwirkenden, mas-
siven Klein-Gordon Feldes benutzt und damit mögliche Infrarotdivergenzen der Theo-
rie, also insbesondere der wechselwirkenden Wightman- und zeitgeordneten Funktio-
nen des wechselwirkenden Feldes ausgeschlossen.

Abstract

We present the algebraic approach to perturbative quantum field theory for the real
scalar field in Minkowski spacetime. In this work we put a special emphasis on the in-
herent state-independence of the framework and provide a detailed analysis of the state
space. The dynamics of the interacting system is constructed in a novel way by virtue
of the time-slice axiom in causal perturbation theory. This method sheds new light in
the connection between quantum statistical dynamics and perturbative quantum field
theory. In particular it allows the explicit construction of the KMS and vacuum state for
the interacting, massive Klein-Gordon field which implies the absence of infrared di-
vergences of the interacting theory at finite temperature, in particular for the interacting
Wightman and time-ordered functions.
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Introduction

Historical Remarks

The field of theoretical physics is characterized by the desire to unify models that suc-
cessfully describe various aspects of nature into a common, superordinate framework.
This objective can already be found in what is possibly the pioneering work in theo-
retical physics, that is Newton’s “Philosophiæ Naturalis Principia Mathematica” from
1687. In this seminal work he proposed that the motion of the objects in a physical
system is caused by the action of forces on and between the constituents of the system
and their dynamical response corresponding to Newton’s equations of motion. There-
fore the diverse laws of motion in nature – e.g. the elliptical motion of planets around a
central star which was discovered by Kepler in 1609, the ballistic motion of projectiles
near the surface of the earth or the sinusodial motion induced by springs – could all be
derived by classifying the relevant forces that act upon the system and by solving the
associated equations of motion. This novel point of view led to a scientific paradigm
shift as well as to a simplification of the treatment of mechanical systems.

A breakthrough of similar significance was accomplished by Boltzmann in the sec-
ond half of the 19th century with his kinetic theory of gases. The theory describes
how the phenomenological laws of thermodynamics which govern the macroscopical
properties of a system in thermal equilibrium like temperature, energy or entropy can
be derived from a statistical description of microscopical systems. This set the corner-
stone for the unification of the previously disjoint areas of physics in microscopical and
macroscopical systems and is nowadays known as statistical mechanics.

The insight of Boltzmann was without doubt profound and was successfully applied
to many models. However shortly after its publication problems were found in the im-
plementation of his ideas into systems that are described by fields. The most prominent
and important example in this endeavor is the model of the black body. The system con-
sists of the electromagnetic radiation field whose dynamics is governed by Maxwell’s
equations and which is in thermal equilibrium with a cavity that incloses the field. If
the cavity has a small opening it will emit radiation in such a way that the equilibrium
inside it is not disturbed. This is the famous black body radiation. It is expected that the
model of black body radiation is a good approximation to the radiation field emitted
by macroscopical bodies in thermal equilibrium, such as glowing metals and stars.

The application of Boltzmann’s statistical methods to the black body model was done
by Rayleigh (1900) and Jeans (1905). The derived Rayleigh-Jeans law states that the
energy density $(ω) per frequency mode ω of the radiation field of the black body with
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temperature β−1 = kBT is given by

$RJ(ω) =
ω2

4π3c2β
, (0.1)

where c is the speed of light and kB is Boltzmann’s constant. This result agrees with
measured values of the radiation spectrum of hot objects for small frequencies ω, whereas
for large values of ω there is a considerable discrepancy. Even worse from a theoretical
point of view is that the model is intrinsically inconsistent, since it predicts that the total
energy density (that is the integral of $RJ in equation (0.1) over ω) of the radiation field
is infinite due to the fact that contributions from the ultra-violet (UV) part of $RJ grow
infinitely. This is absolutely not to be expected from the well-established model of elec-
tromagnetism. This phenomenon is known as the UV or Rayleigh-Jeans catastrophe.
It will be rediscovered in the treatment of classical field theory at finite temperature in
section 1.3.3.

It was Planck who predicted that the correct energy density spectrum is given by

$Pl(ω) =
h̄ω3

4π3c2
1

eβh̄ω − 1
.

With this ingenious insight, that took place already in 1900, he saved the model of
black body radiation. Despite solving the UV problem of the black body model, this
formula could not be derived from electrodynamics with Boltzmann statistics, though.
The assertion of Planck was, in retrospective, an anticipation of quantum theory whose
breakthrough took place not until the 1920s.

Using the theory of quantized matter as the basis of a statistical analysis á la Boltz-
mann, Bose found in collaboration with Einstein in 1924 that a system of identical and
indistinguishable particles can be described by the Bose-Einstein distribution function
which, applied to the black body system, predicts the Planck’s spectrum $Pl formula for
the energy density.

This was the final verification that the thermodynamics of macroscopical systems
can actually be derived from the application of statistical methods to microscopical
systems, whose dynamics has to be described by the laws of quantum theory. This
concept condensed in the notion of quantum statistical mechanics which was used to
predict and explain a wide range of interesting phenomena such as

• Bose-Einstein condensation

• superfluidity, superconductivity, stimulated emission

• Fermi’s exclusion principle and the degeneracy pressure of bound electrons and
neutrons

• semiconductor physics in all its variety

and many more. This closes the historical introduction to the relation between classical
and quantum physics on the one hand and the statistical approach on the other. In the
light of the preceding discussion the question to ask, from a today’s perspective, would
be: And what about quantum field theory?
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Infrared Problem in Perturbative QFT at Finite Temperature

Infrared Problem in Perturbative QFT at Finite Temperature

After the groundbreaking invention of quantum field theory (QFT) by Born, Heisen-
berg, Jordan (1925) and Dirac (1927), it quickly ascended to become the most powerful
tool in describing the interactions of atomic and sub-atomic matter and electromag-
netism. With the experimental discovery of more and more structure in the sub-atomic
world and the introduction of renormalization theory within the perturbation theory of
interacting QFTs, the success of quantum field theoretical models in physics continues
until today.

This naturally led to the question whether the statistical methods used in quantum
mechanics could also be applied to quantum field theory. From a heuristic point of
view many exciting phenomena are expected to be present in quantum field theories
in thermal equilibrium. For example it is assumed that quantum chromodynamics ex-
hibits a phase transition at very high temperatures (∼ 1012 K), where the quarks and
gluons can be described by free, i.e. de-confined, fields. This state is called the quark-
gluon plasma and theoretical evidence that supports this claim comes from results in
lattice field theory. For a discussion we refer to [ZJ+02].

In addition, the thermal equilibrium state of the quantum fields, that constitute the
standard model of high-energy physics, are assumed to provide a good model for the
description of the interactions of matter in an early stage of the universe. This model
is presumed to be valid as long as the effects of curvature are small – compared to
the temperature of the system – but the non-zero density is non-negligible. One of the
main features that is expected to be explained by this model is the emergence of an
almost homogeneously distributed electromagnetic radiation field that permeates the
universe and is called cosmic background radiation. In fact, the cosmic background ra-
diation that is visible today as microwave radiation – thus the name cosmic microwave
background (CMB) – seems to be described extremely well by a black body radiation
at a temperature around 2.7 K. Furthermore a great amount of information concerning
the cosmic evolution of the universe can be extracted from the fluctuations within the
CMB (and other data), such as the composition of the energy content of the universe or
its age. A detailed introduction to this topic can be found in [Wei08].

From the theoretical side, the pioneering work in the mathematical foundation of sta-
tistical methods in free QFTs was done in the works of Araki and Woods [AW63] for the
Bose and Araki and Wyss [AW64] for the Fermi gas, where the structure of the thermal
equilibrium states was investigated in the algebraic approach to QFT. In the seminal
work of Haag, Hugenholtz and Winnink [HHW67] it was shown that a thermal equi-
librium state could not be given by a density matrix any more in infinitely extended
systems, but it could be characterized by a weaker condition, the so-called KMS con-
dition [Kub57, MS59]. Furthermore, the relation between the mathematical profound
theory developed by Tomita and Takesaki [Tak70] in the realm of operator theory and
KMS states was explored and established a new connection between mathematics and
physics.

The first attempts to include statistical methods in the perturbative description of
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interacting QFTs were made in the realm of Euclidean QFT (EQFT) where the formal
analogy between the inverse temperature β and the Euclidean time was used to derive
a Feynman diagrammatic expansion akin to perturbative expansions for the vacuum
state. The Feynman propagator was found to be β-periodic in Euclidean time, hence
could be represented as a sum

DE
F (τ, x) =

1
(2π)3β ∑

n∈Z

∫ e−i(ωnτ−px)

ω2
n + p2 + m2 d3 p, ωn =

2πn
β

.

It was Matsubara who derived the diagrammatic expansion in this formalism [Mat55].
In order to give credit for this, the frequencies ωn are usually called Matsubara frequen-
cies. This approach was developed further by several authors and standard references
for this approach are [FHS65, LB00]. An Osterwalder-Schrader type theorem that can
be used to construct the corresponding QFT on Minkowski spacetime from the EQFT,
as it is the case in the vacuum state [OS73], is unfortunately not available for the EQFTs
that are obtained in this way. Hence only time-independent (static) observables can be
directly calculated within this framework.

It was therefore necessary to develop a perturbative theory with real-time arguments,
i.e. in Minkowski spacetime. There are three established approaches to formulate the
perturbative expansions in the literature. The first one is called Thermo Field Dynam-
ics [ETU57, TU75, Oji81, MOU84]. This approach extrapolates ideas from [HHW67]
and modifies the perturbative expansions by introducing unobservable thermal ghost
fields in the interaction. The second one is based on a contour integrals in the complex-
ified time plane which was introduced by Schwinger [Sch61] and applied to the finite
temperature QFT by Keldysh [Kel65]. Both approaches are equivalent to a large extent
which is shown in [MNU84] and in the substantial review of Landsman and van Weert
[LvW87].

A third framework was developed by Steinmann in two seminal papers, one dealing
with the vacuum state [Ste93] and one with the finite temperature case [Ste95]. The
advantage of his formulation was that unlike in the first two approaches also non-time
ordered expectation values of observables like the Wightman functions could be de-
rived, which play a major role in the axiomatic classification of the theory.

All three approaches have in common that the (real-time) Feynman propagator of the
vacuum theory is replaced by its finite temperature counterpart

Dβ
F(x) =

1
(2π)4

∫
e−i(p0x0−px)

(
i

p2 −m2 + iε
+ 2π

δ(p2 −m2)

eβh̄|p0| − 1

)
︸ ︷︷ ︸

D̂β
F(p)

dp .

The use of Dβ
F and its related functions introduce severe infra-red (IR) divergences in

the formal diagrammatic expansions, in addition to the known UV divergences that
are well-understood in the case of the vacuum state and are due to slow decay of the
Fourier transform D̂β

F. The UV problem can be dealt with by standard methods, in
particular the renormalization machinery can be applied independently of the temper-
ature, since the part of D̂β

F that decays slowly is the same as for the vacuum Feynman
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propagator. Notice that IR divergences are absent in the EQFT case, which has been
shown be Kopper, Müller and Reisz in [KMR01].

The IR problems can be illustrated by the following example: Consider a fish-graph
contribution

Dβ
F(x− y)2 =

1
(2π)4

∫
e−ik(x−y)

∫
D̂β

F(p)D̂β
F(k− p)dp︸ ︷︷ ︸

=(D̂β
F∗D̂

β
F)(k)

dk .

In the following we disregard the UV behavior of the integrals for a moment. The
convolution in the integrand of the RHS has a local singularity at k = 0 due to the
singular thermal contributions in D̂β

F which diverges like |k|−1 [Ste95]. Clearly higher
order contributions may increase the divergence at the origin, since expressions of the
above type are multiplied with each other. This will lead to objects that do not define a
distribution anymore.

What makes it even harder to decide whether the mentioned singularities cause the
perturbative expansion to diverge is, that in general sums of contributions of the above
kind are present in a fixed order of perturbation theory and it is in general hard to say
whether the divergences cancel in the sum. Let us consider an example in perturba-
tion theory. The derivation is a straightforward application of the formalism that is
developed in section 2.3 which coincides with the respective expansions in the above-
mentioned frameworks.

Denote the expectation value of the time-ordered two-point function of the inter-
acting scalar 1fields at points x and y with a cubic interaction λφ3 in the free thermal
equilibrium state by T(x, y). The first non-trivial term in the perturbative expansions
of T is in order O(λ2) and is calculated to be

T̂(x, y)
O(λ2)∼ (F|F|F)(x, y)− (−|F|+)(x, y) + (−|+ |+)(x, y)

+ (−| − |+)(x, y)− (F| − |+)(x, y)− (−|+ |F)(x, y) , (0.2)

up to constants. The notation (I|J|K)(x, y) denotes the fish graph with functions I, J, K

(I|J|K)(x, y) =
∫

Dβ
I (x− z1)Dβ

J (z1 − z2)
2Dβ

K(z2 − y)dz1 dz2, I, J, K ∈ {+,−, F} .

(0.3)

Here Dβ
+ = (Dβ

−)
∗ denotes the KMS two-point function. The Fourier transform of

(I|J|K) in equation (0.3) is given, up to constants, by

(̂I|J|K)(p) = D̂β
I (p) ·

(
D̂β

J ∗ D̂β
J

)
(p) · D̂β

K(p) =
I, p K, p

J, k

J, p− kx y

5
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The IR singularities of the loop parts can be estimated by the above argument, but
the hard part is to show that T̂(p) actually defines a distribution. The problem arises
from the fact that the external legs of the diagrams are neither equal nor independent,
which would allow a discussion of the loop part alone. They are related by the unitarity
relation

Dβ
F + (Dβ

F)
∗ = Dβ

+ + Dβ
− .

Moreover, the higher order contributions grow rapidly in number and a systematic
cancellation is not visible, as Steinmann has remarked in [Ste95]. It is argued in [NS84,
LvW87] that the related, so-called pinching singularities are absent for specific time-
ordered expectation values. A proof that IR divergences are absent in general is, to our
best knowledge, not to be found in the literature.

This presence of IR divergences is a severe problem since it implies that not all in-
teracting expectation values of observables are well-defined. Speaking in more general
terms, this means that the interacting theory may not possess an interacting thermal
equilibrium state. This would seriously spread doubt on the way perturbation theory
is done, because if it only works for the vacuum state then the conceptual depth of the
formalism would be limited.

Solution to the Problem, Organization of the Thesis

The divergences arising in the perturbative expansion of the interacting state may be
related to the non-vanishing influence of the interaction at asymptotic times in the ther-
mal equilibrium state. This feature is absent in the vacuum sector of the massive inter-
acting theory, where the interacting state is assumed to fulfill the LSZ-asymptotic con-
ditions [LSZ55, LSZ57] – indicating the accessibility of the interacting state by means of
scattering theory. This behavior can actually be derived from general axioms of quan-
tum field theory (Wightman axioms or Haag-Kastler axioms) in the presence of isolated
mass shells in the energy momentum spectrum [Haa92]. It may be interpreted as a con-
sequence of the fact that (stable) particles are far from each other at large times such
that their interaction can be neglected.

This comfortable situation is however no longer present in the case that the system is
in a thermal equilibrium. A first sign of this has been given in a fundamental work by
Narnhofer, Requardt and Thirring who showed in [NRT83] that the existence of stable
particles (defined as eigenstates of the mass operator) is incompatible with interaction.

Another crucial observation has been carried out by Bros and Buchholz in [BB02]
who analyzed the asymptotic behavior of interacting quantum field theories at finite
temperature in an axiomatic and non-perturbative setting. It was found that the expec-
tation values of the interacting theory (with interaction λφ4 with both λ ≶ 0) differed
significantly from the expectation values of the free field at asymptotic times.

This explains why the methods that are used in scattering theory which include the
construction of the expectation values of the interacting theory in terms of the free the-

6
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ory in asymptotic times amongst others, may not be the correct ansatz. This hint is
taken seriously in the present approach.

The path to construct the interacting theory in a thermal equilibrium state will be
guided by the following principles:

The state-independent construction of the observables of the interacting theory:

In order to accomplish this we use the recently developed approach of perturbative al-
gebraic quantum field theory (pAQFT). The explicit construction of the algebras of free
and interacting observables, based on the ideas of causal perturbation theory á la Ep-
stein and Glaser [EG73] and developed in a series of papers starting from [BF00, DF00],
is presented in the first and second chapter. It leads to a fundamentally different view-
point of QFT at finite temperature, in which the term “at finite temperature” amounts
to the selection of one particular state in the state space of the theory of the (free or
interacting) scalar field. This is in contrast to setting up a separate theory, as in Thermo
Field Dynamics or the Schwinger-Keldysh approach.

A novel contribution in this thesis is a discussion in section 2.3.2 on interacting the-
ories which are induced by the same classical interaction functional V ∈ Acl, but are
constructed within two (equivalent) realizations of the free theory A1 and A2. Due to
the general construction, we know that both interacting theories are equivalent, how-
ever not equal, since the isomorphism between the algebras may not be the identity
map. We find that the interaction functionals Vi ∈ Ai, represented as free fields over
the respective algebras, differ by a local interaction which is in general of lower or-
der than V. The relation of this observation with the axiom of perturbative agreement,
which is introduced in the work of Hollands and Wald [HW05], is drawn.

This result is illustrated on the example of the quartic interaction in the algebra of
Wick polynomials Avac and Aβ, where the Wick-ordering is carried out with respect to
the vacuum two-point function and the KMS two-point function with inverse temper-
ature β (with same mass m ≥ 0) respectively. It is shown that the monomial Φ4

x ∈ Avac

at the point x ∈ M is mapped under the isomorphism of Avac and Aβ as:

λ

4!
Φ4

x ∈ Avac −→ λ

4!
Φ4

x +
λh̄F(βm)

8π2β2︸ ︷︷ ︸
1
2 m2

th

Φ2
x ∈ Aβ .

The appearance of the Φ2
x-term is interpreted as the influence of the state, around which

the perturbative expansion is done. The term is non-vanishing even if m = 0 and corre-
sponds (for λ > 0) to the so-called thermal mass, which is mentioned in many points in
the literature, see e.g. [Alt90, BP90, LB00]. In section 2.3.2 the appearance of the thermal
mass term 1

2 m2
th in the perturbative expansions is commented. It is argued that using

the thermal mass term as a part of a modified free action yields an interacting theory,
that is not a formal power series in λ in general. This confirms similar observations in
the literature, e.g. in [Alt90] for the quartic model.
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Discussion of the state space in pAQFT:

The treatment of pAQFT in the literature is concerned with the algebraic constructions
to a large extent, however an extensive understanding of the state space will be imper-
ative for the constructions of interacting states in pAQFT. Thus a strong emphasis is
put on this topic in this thesis, elaborating important features of the state space of both
classical and quantum field theory in sections 1.3.3 and 1.5 for the free theories and in
section 2.4 for the interacting theory.

The case of the classical KMS state of the free field is discussed as an interesting
example at the end of section 1.3.3. At that point the Rayleigh-Jeans UV catastrophe
from equation (0.1) is rediscovered in a more general context. We point out that there is
actually a class of observables for which the expectation values in this state exist. The
localized fields are, expectably, not contained in this class.

The state space of the free quantum theory is analyzed in section 1.5. There we draw
the connection between the traditional notion of states from axiomatic approaches (see
e.g. [Haa92]) with the canonical states on quantum algebras, that are obtained by formal
deformation quantization [BW98]. Moreover a symmetry analysis of the state space is
carried out emphasizing the translation invariant states in relativistic quantum theories.

We present two complementary methods of deriving interacting states for a given,
interacting system. The first way is the well-established method of asymptotic expan-
sion, in which the interacting state is assumed to coincide with the free state in

• the past of the interaction Vg, if g ∈ D(M) is a spacetime cutoff of the interaction
V,

• the asymptotic past (with suitable convergence properties) in the case g tends to
the constant function g = 1 over M.

This method is implicitly used in many approaches, in particular in the founding works
of causal perturbation theory in [EG73, BS75, EG76]. By using this ansatz to derive the
interacting KMS state we obtain, as an example, exactly the same expansion for the
time-ordered expectation values of the interacting fields, as in equation (0.2).

Due to the fact that the status of the possible cancellations of the IR divergences (ap-
pearing in individual graphs) in the expansions of general observables is unclear, we
abandon this ansatz and introduce a novel approach, which circumvents asymptotic
expansions of the interacting state.

Avoiding the asymptotic expansion of the interacting state:

The complicated IR divergences in the perturbative expansions which were indicated
in the last section, on the one hand, and the results on the asymptotic influence of the
interaction on the interacting state from [BB02] on the other, motivated the search for
an alternative perturbative construction of the interacting state. This is accomplished
by our novel method that exploits the validity of the time-slice axiom (TSA) in pertur-
bative QFTs [CF09].
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Solution to the Problem, Organization of the Thesis

The TSA, which was first formulated by Haag and Schroer in [HS62], states that the
values of the observables in some regionO ⊂ M can be derived from the knowledge of
the algebra of observables, which is restricted to small but finite region Σε in Minkowski
spacetime M, see figure 1. Here, a time-slice is thought to be a four dimensional sub-
manifold of M that has an tiny extent in time direction and a spacelike extent, that is
large enough such that its future (or past) domain of dependence incloses O. Hence
in order to compute an observable at an arbitrary point x ∈ M we need to know the
theory only on the full time-slice (−ε, ε)×R3 of M.

O
Σε

t

x

D+(Σε)

R×V

Figure 1.: The time-slice Σε which determines the theory in its future domain of depen-
dence D+(Σε) ⊃ O. A “space-slice” R×V ⊂ M with a finite spatial volume
V ⊂ R3.

The TSA is a weaker replacement of the uniqueness axiom on the initial value prob-
lem that can be formulated in the following way: The values of all observables in a
region O ⊂ M of the theory are determined by the initial values of the canonical vari-
ables on a Cauchy surface whose domain of dependence incloses O. This can be seen
as a limiting case of the TSA, in which the “thickness” of the time-slice goes to zero.
While such a uniqueness property holds in classical field theory, it is expected that the
restriction of the interacting quantum fields to a Cauchy surface are, in general, ill-
defined. The TSA is a regularization of this uniqueness axiom and can be shown to
hold in perturbatively constructed QFTs [CF09].

The validity of the TSA in perturbative QFTs is used in chapter 3 to construct the
interacting dynamics αVt (seen as a one-parameter group) of observables, which are
restricted to a time-slice and are under the influence of the interaction V. Due to
the principles of our approach the interacting dynamics αVt is constructed in a state-
independent manner and depends only on the values of V in a slightly larger time-slice.

Moreover we show that αVt can be implemented by unitaries Wh(t) in the algebra of
the free field for any given time, if the spatial extent of the interacting theory is fixed,
i.e. for observables in a “space-slice”R×V. Here, h denotes a test-function inR3 which
cuts the interaction V off in spacelike directions and is constant on the volume V ⊂ R3.

9



Introduction

The Wh(t) fulfill the co-cycle relation

Wh(t + s) = Wh(t)αt(Wh(s)), t, s ∈ R

and are well-known in the literature on quantum statistical mechanics, see e.g. in the
textbook [BR02b]. This construction connects the frameworks of causal perturbation
theory and quantum statistical mechanics in very transparent and smooth way.

In this way we obtain a regularization of the canonical approach to perturbative QFT,
in which the dynamics of the system is derived for the canonical quantum field and
its conjugate momentum, restricted to a Cauchy surface Σ. This approach is highly
singular, since higher order Wick polynomials, which describe the interactions of rela-
tivistic QFTs, have been shown to possess no well-defined restriction to a Cauchy sur-
face and the perturbative expansions of the interacting fields produce additional UV
divergences, even after renormalization of the time-ordered products (Stückelberg di-
vergences) [Stü51].

In chapter 4 we present the construction of the interacting thermal equilibrium state
in a finite spatial volume V by means of the well-known analytic continuation of the
co-cycle Wh(t). It is shown that

ωVβ,h(A) =
ωβ(AWh(iβ))
ωβ(Wh(iβ))

, supp A ⊂ O ,

is a well-defined state on the algebra of observables, where ωβ is the KMS state of the
free theory and O ⊂ R×V. This state fulfills the

• KMS property in the case 0 < β < ∞,

• ground state property in the case β = ∞.

by construction, in agreement to the results in quantum statistical mechanics [Ara73,
BKR78].

In order to obtain an interacting KMS state on the whole space R3 we perform the
adiabatic (or thermodynamic) limit, in which the cutoff h is set to a constant function
onR3. The corresponding limiting state

ωVβ = lim
h→1

ωVβ,h

is shown exist in the case of a massive theory, both for the vacuum (β = +∞) and
the thermal equilibrium case (0 < β < ∞). We are able to show convergence due to
the good spatial cluster properties of the free vacuum and free thermal equilibrium
state, respectively. This is the first proof of existence of an interacting thermal equilib-
rium state in relativistic QFT, to our best knowledge. Furthermore we show how the
thermostatic observables of the interacting theory can be obtained within this limit.
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1. Quantization of the Free Scalar Field

The functional approach to QFT in which perturbative algebraic quantum field theory
(pAQFT) is formulated has been proposed and developed during the last decade in
a series of papers by Brunetti, Dütsch, Fredenhagen, Lauridsen-Ribeiro and Rejzner,
starting from [BF00, DF00, DF01]. It aims to unify fundamental aspects of very different
approaches to QFT, like

• the Haag-Kastler axiomatic approach to QFT on curved spacetimes

• constructive (non-perturbative) approaches to interacting QFTs

• the path-integral approach to perturbative QFTs

among others. The most important feature of this framework is, in the context of this
work, the possibility to

• construct the observables of QFT with either the free or interacting dynamics in
an explicit and state-independent manner

• separate the short-distance (UV) and the long-range (IR) behavior of the theory;
this amounts to separating the purely algebraic aspects and the properties of the
state of the theory

• treat the arising objects in a mathematically rigorous way.

The mathematical notions and methods used in this framework differ from the so-
called canonical quantization procedure which can be found in standard textbooks, like
[Wei96, Ryd96]. One of the goals within this work is to identify the quantities, which
have turned out to be useful in the canonical approach and to derive them from first
principles.

This chapter is intended to set up all the necessary tools that have been developed
within the functional approach to QFT in the case of the free field. It is in particular
important to characterize the singularity structure of the arising objects that will be
used in perturbation theory in free theory. A special emphasis will be put on the state
spaces of either classical (section 1.3.3) and quantum field theory (section 1.5). In the
very first section we fix some geometric notions and sign conventions.

1.1. Minkowski Spacetime and Geometric Preliminaries

The description of physics of (quantum) fields in absence of interactions with the gravi-
tational field, i.e. in situations where the influence of gravitational effects on the system

11



1. Quantization of the Free Scalar Field

is negligible, is usually done with Minkowski spacetime as the background manifold.
The application of this approximation to systems with high energies has been extraor-
dinarily successful and an incorporation of curvature effects in accelerator-based ex-
periments has not been of relevance so far.

We begin with the definition of important geometrical features of Minkowski space-
time and Lorentzian geometry, largely to fix the conventions and notations.

Definition 1.1.1 (Minkowski spacetime).
We equip R4 with a metric tensor η, defined by ηµν = η(eµ, eν) = diag(1,−1,−1,−1) in the
global Cartesian coordinates eµ ofR4. The tuple M := (R4, η) is called Minkowski spacetime.

Due to the simple structure of the manifold M we may always identify points x ∈ M
with their image in the global chart given by the standard basis of R4, i.e. we identify
x = xµeµ with xµ. Moreover the tangent TM and the cotangent bundle T∗M over M
are given by the trivial bundlesR4 ×R4.

The Lorentzian signature of the metric tensor η induces important geometrical rela-
tions for points in M, summarized in the next definition.

Definition 1.1.2 (Causal relations in M).
A C∞-curve γ : R ⊃ I → M is called timelike / lightlike / causal / spacelike, if η(γ̇µ, γ̇ν) is
positive / null / non-negative / negative along the curve.
Two bounded sets O1,O2 ⊂ M are called timelike / lightlike / causal to each other, if all the
points in O1 and O2 can be connected by timelike / lightlike / timelike or lightlike curves. They
are spacelike, if no points from O1 and O2 can be connected by a causal curve.
A three-dimensional smooth submanifold Σ is called a Cauchy surface for M, if every inex-
tendible causal curve intersects Σ exactly once.
For a bounded region O ⊂ M we define the causal past and future J±(O) and the past and
future domain of dependence D±(O) by

J±(O) =
{

x ∈ M : ∃ causal

{
future directed

past directed
curve γ from some y ∈ O to x

}

D±(O) =
{

x ∈ M : All causal

{
past inextendible

future inextendible
curves γ through x intersect O

}
.

The past and future lightcone V±(O) emerging from O is the boundary of J±(O). An
alternative notation is O1 & O2, if O1 ⊂ J+(O2). The symbols V, J, D denote the unions of
the respective past and future sets.

A standard example of a Cauchy surface of M is {0} ×R3 and an associated foliation
of M is given by ∪t∈R{t} × Σ, making M a globally hyperbolic spacetime.

An important aspect for physical systems, which will be formulated on M, is the
following. Since M is a maximally symmetric spacetime (it has 10 smooth and global
Killing vector fields) there is no reason for the laws that govern the dynamics of some
physical system to depend explicitly on the choice of some local coordinates of M.
Physically this amounts to an observer-independent formulation of the theory, as every
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1.2. The Configuration Space and Functionals

set of local coordinates can be interpreted as the reference frame of some observer in
M.

In order to formulate this idea in precise mathematical terms, we will use the concept
of isometries of M.

Definition 1.1.3 (Poincaré transformations).
The symmetry group of M, i.e. the group of diffeomorphisms of M that leaves the Minkowski
length functional `(x, y) = η(x− y, x− y) invariant is called the group of Poincaré transfor-
mations P. P decomposes into four connected components and the identity component P↑+ will
be mostly used in the following. The action of any element p ∈ P↑+ can be written as

(px)µ = Λµ
νxν + aµ, det(Λµ

ν) = 1, Λ0
0 ≥ 1.

Finally, for every p ∈ P we can find an element p̂ ∈ P↑+, such that p = u ◦ p̂ with u ∈
{P, T, P ◦ T}, where T is the time inversion and P is the spatial reflection operator.

A last convention concerns the Fourier transformation of functions and distributions.

Definition 1.1.4 (Fourier Transformation).
The Fourier transform f̂ and inverse Fourier transform of a function f ∈ D are defined by

f̂ (p) =
∫

f (x)eiηµν pµxν
dx, f (x) =

1
(2π)4

∫
f̂ (p)e−iηµν pµxν

dp .

The map f 7→ f̂ extends by 〈T| f 〉 7→
〈

T̂
∣∣ f 〉 :=

〈
T
∣∣∣ f̂〉 to the space of distributions T ∈ D′.

1.2. The Configuration Space and Functionals

The quest of quantizing the theory of the scalar field starts with the discussion of the
functional approach to classical field theory in this section. Although the treatment
of classical field theory may seem distant to the topic of this thesis, which is the con-
struction of the interacting KMS states in perturbative QFT, it will display many crucial
concepts that are exploited in the subsequent chapters.

One of the heavily used concepts is the off-shell functional approach to field theory,
which is discussed in this section. The main intent is to give a better understanding
to this notion and to familiarize the reader with the use of functionals and functional
derivatives in field theory.

To this end, we will introduce the configuration space of the theory of the real scalar
field, which is the theory of interest in this thesis and the following associations are
helpful for a physical understanding:

configuration φ : pure state in classical field theory
real-valued functional F : observable with possible values inR

value F(φ) ∈ R : outcome of the measurement of F in φ

It is important that we do not implement any dynamics in the configuration space
from the beginning. It turns out that, mathematically, it is very convenient to use the
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1. Quantization of the Free Scalar Field

space of configurations, which do not obey any equation of motion. This applies es-
pecially to field theory, since the solution space of the theory is infinite dimensional.
It is not even a vector space in the case of non-linear equations of motion. Moreover,
the idea to pass from a theory described by some equation of motion to another theory
described by another equation of motion, as it will be done in perturbative approaches,
can be implemented in an easier fashion in such a setting.

1.2.1. Off-Shell Configuration Space

We start off with the case of classical free theory, though the idea of working off-shell
will endure throughout the rest of the work. For a detailed introduction and interpreta-
tion of the formalism we refer to the books of deWitt [DeW03] (note, he calls the space
of configurations the space of histories) and the chapter by Brunetti and Fredenhagen
in [BF09].

Definition 1.2.1 (Configuration Space E).
The space of off-shell configurations of a real scalar field over M consists of all real-valued
smooth functions, E = C∞(M,R). An important subspace, the space of smooth functions with
compact support in M is denoted by D. Both vector spaces are endowed with their standard
locally convex topologies.

The space E has very nice properties, both from the point of view of differential geom-
etry and functional analysis. In this work, only the latter aspect will play an important
role. For a detailed treatment of these structures we refer to [BFR12].

The observables of the theory are seen as functionals over E , i.e. maps F : E → R, as
indicated in the beginning of the section. This attitude is in a nearly complete analogy to
the algebraic approach to Lagrangian mechanics, where the observables are functionals
on the path space P ⊂ C∞(R, Q) of some finite dimensional configuration space Q. The
paths in P are usually taken to be solutions to an Euler-Lagrange equation obtained
from an action functional, which distinguishes a specific model in the theory.

The fundamental difference in the mathematical treatment of fields on M is that paths
in the corresponding path space take values in the function space Q = C∞(Σ,R), which
is infinite dimensional. Many structural results of classical mechanics do unfortunately
not generalize in an easy way to the case of infinite dimensional configuration spaces.
Nevertheless a large amount of tools have been developed, which will be partly intro-
duced in the next sections.

1.2.2. Observables as Functionals

In order to illustrate the different kinds of functionals which will be important in later
parts of this work, we present some special functionals over E that carry an intu-
itive physical interpretation. They will in addition be used to elucidate some of the
functional-analytic concepts for general functionals on E in the future discussions.
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1.2. The Configuration Space and Functionals

Example 1.2.2 (Polynomial functionals).
The space of polynomial functionals Fpol is the vector space, generated by elements

F : E → R, F(φ) :=
〈
t
∣∣φ⊗n〉 = ∫

t(x1, . . . , xn)φ(x1) · · · φ(xn)dx1 · · ·dxn, (1.1)

where t is a distribution of compact support: t ∈ E ′(Mn), which is, without loss of gen-
erality, totally symmetric. 〈·|·〉 denotes the dual pairing between E ′(Mn) and E(Mn).
The space Fpol contains the following interesting functionals:

• the smeared linear field Φg: With n = 1 and t = g ∈ D we obtain

Φg(φ) :=
∫

g(x)φ(x)dx =
∫

g(x)Φx(φ)dx (1.2)

where Φx(φ) = φ(x) is the linear field at a point x ∈ M (considered as a limiting
case, in which t = δx ∈ E ′),

• n-fold products of the linear field: For t(x1, . . . , xn) = g1(x1) · · · gn(xn):

Φg1 · · ·Φgn(φ) :=
∫

g1(x1) · · · gn(xn)φ(x1) · · · φ(xn)dx1 · · ·dxn

with gk ∈ D, k = 1, . . . , n,

• the smeared field monomials Φn
g : The functionals

Φn
g(φ) :=

∫
g(x)φ(x)n dx =

∫
g(x)Φn

x(φ)dx, Φn
x(φ) = φ(x)n (1.3)

with t(x1, . . . , xn) = g(x1)δ(x1− x2) · · · δ(xn−1− xn) and g ∈ D will be important
for interacting field theories, since they serve as interactions,

• the smeared stress-energy tensor:

Tµν
f (φ) :=

∫
f (x)

(
∂µφ(x)∂νφ(x)− 1

2
ηµν

(
∂µφ(x)∂µφ(x)−m2φ(x)2))dx,

• non-locally smeared fields: t = g ∈ D(Mn), where g is totally symmetric:

Ng(φ) =
∫

g(x1, . . . , xn)φ(x1) · · · φ(xn)dx1 · · ·dxn.

From the mathematical point of view it is desirable to find the exponentiated linear
fields or Weyl fields

ei
∫

g(x)φ(x)dx = eiΦg , g ∈ D

in the formalism, too. They can be used to generate the well-known Weyl algebra (with
suitably chosen product and equations of motion), for which many structural results
are known. The Weyl fields can be seen as a generalization of functionals of the form
(1.1) with infinitely many summands (with an appropriate convergence criterion). We
discuss the Weyl algebra intensively in the appendix A.2. ♦
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1. Quantization of the Free Scalar Field

One of the nice features of the functional formalism of classical and quantum field
theory is the possibility to include non-polynomial observables into the framework.
The need for such objects arises in many applications to systems with complex geome-
tries, e.g. in condensed matter systems and also in toy models like the sine- or sinh-
Gordon models.

Hence we will characterize functionals directly by suitable differentiability and sin-
gularity constraints, rather than using Fpol in order to obtain all the structures we will
need to develop classical and quantum field theory. We begin with the definition of a
differential calculus on the space of functionals.

Definition 1.2.3 (Functional derivatives).
A functional F : E → C is called smooth, if all its functional derivatives (or Gâteaux deriva-
tives) at every φ ∈ E :

F(n)(φ)[ψ1, . . . , ψn] :=
∂n

∂λ1 · · · ∂λn

∣∣∣
λ1=···=λn=0

F

(
φ +

n

∑
k=1

λkψk

)

exist as jointly continuous maps from E × E⊗n toC. This implies, that for fixed φ ∈ E , F(n)(φ)

is a distribution of compact support on Mn for every n ∈ N. This fact is used to write the n-th
functional derivative as

F(n)(φ)[ψ1, . . . , ψn] ≡
〈

F(n)(φ)
∣∣∣ψ1 ⊗ · · · ⊗ ψk

〉
where 〈·|·〉 denotes dual pairing between E ′(Mn) and E(Mn).

This differential calculus possesses important properties which are well-known from
calculus onRn, such as:

• Fundamental theorem of calculus:

F(φ + ψ)− F(φ) =
∫ 1

0

〈
F(1)(φ + tψ)

∣∣∣ψ〉dt

• Taylor’s formula (with remainder):

F(φ + ψ)− F(φ) =
n

∑
k=1

1
k!

〈
F(k)(φ)

∣∣∣ψ⊗k
〉
+
∫ 1

0

(1− t)n

n!

〈
F(n+1)(φ + tψ)

∣∣∣ψ⊗(n+1)
〉

dt

• Commutativity, Leibniz formula:

(F · G)(n)(φ)[ψ⊗n] =
n

∑
k=0

(
n
k

)〈
F(k)(φ)

∣∣∣ψ⊗k
〉 〈

G(n−k)(φ)
∣∣∣ψ⊗(n−k)

〉
for smooth functionals F, G. In the example of a polynomial F of the form (1.1), a short
calculation shows

F(k)(φ)[x1, . . . , xk] =
n!

(n− k)!

∫
t(x1, . . . , xk, y1, . . . , yn−k)φ(y1) · · · φ(yn−k)dy1 · · ·dyn−k,

(1.4)
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1.2. The Configuration Space and Functionals

where F(k)(φ)[x1, . . . , xk] denotes the distribution kernel of the k-th derivative:

F(k)(φ)[ψ1, . . . , ψk] =
∫

F(k)(φ)[x1, . . . , xk]ψ(x1) · · ·ψ(xk)dx1 · · ·dxk.

In particular, every polynomial functional is smooth.
In the next step we want to define the spacetime support of a functional. To this end

we extend the notion of the support from the case of distributions, i.e. linear functionals
over a function space, to the case of non-linear functionals.

Definition 1.2.4 (Support of a functional).
The support supp(F) of a functional F is defined as the closed set of points x ∈ M, such that for
all neighborhoods Ux of x there exist configurations φ, ψ ∈ E , with the properties supp ψ ⊂ Ux

and

F(φ + ψ) 6= F(φ) .

It has been shown [BFR12] that the support of a smooth functional can be characterized
by its first derivatives:

supp F =
⋃

φ∈E
supp F(1)(φ) .

where supp F(1)(φ) is understood in the sense of distributional support. Note that this
notion has some peculiar features, e.g. the unit functional

1(φ) = 1

has vanishing support. In the following we will only deal with the space of smooth,
compactly supported functionals denoted by F0.

In a last step we identify important subspaces of F0, which are distinguished by
the singularity structure of the functionals. To characterize the singularity structure
of a smooth functional, we use the concept of a wavefront set of a distribution with
compact support. This concept originated from microlocal analysis [Hör90] and plays
a major role in QFT on curved spacetimes since the mid 90’s, thanks to a seminal work
by Radzikowski [Rad96]. A discussion on this topic can be found after definition 1.4.2.

Definition 1.2.5 (Spaces of smooth functionals).
The following subspaces of smooth and compactly supported functionalsF0 will be used through-
out the work:

• regular functionals: Freg = {F ∈ F0 : F(n)(φ) ∈ D(Mn) ∀φ ∈ E}

• microcausal functionals: Fµc = {F ∈ F0 : WF(F(n)(φ)) ⊂ Ξn ∀φ ∈ E} with

Ξn =

{
(x1, . . . , xn|k1, . . . , kn) ∈ Ṫ∗Mn :

n

∑
i=1

ki = 0

}

where Ṫ∗Mn is the cotangent bundle of Mn with the zero section removed.
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1. Quantization of the Free Scalar Field

• local functionals:

Floc = {F ∈ Fµc : supp F(n)(φ) ⊂ diag(Mn), ∀φ ∈ E , n > 1},

where diag(Mn) = {(x, . . . , x) ∈ Mn : x ∈ M} is the (thin) diagonal of Mn.

In the literature on QFT on curved spacetimes another definition of microcausal func-
tionals has to be used, since cotangent vectors at different points in a curved manifold
cannot be added. A suitable replacement is stated in [BDF09, BFR12] and yields, if
applied to the Minkowski spacetime, a weaker condition.

One readily sees that in the case of the polynomial functionals we can translate the
different conditions in definition 1.2.5 to the compactly supported distribution t ∈
E ′(Mn) due to (1.4), which define the generating elements in (1.1). For such a func-
tional F(φ) = 〈t|φ⊗n〉 with t ∈ E ′(Mn) we find

• F ∈ Freg, if t ∈ D(Mn)

• F ∈ Fµc, if t ∈ E ′Ξn
(Mn) = {s ∈ E ′(Mn) : WF(s) ⊂ Ξn}

• F ∈ Floc, if there exists a g ∈ D(M), such that t(x1, . . . , xn) = g(x1)δ(x1 −
x2) · · · δ(xn−1 − xn).

Considering the particular examples in example 1.2.2, we find that the linear field Φg

is regular and local (actually, if a functional is regular and local, then it is linear or
constant). The smeared field monomials Φn

g and stress-energy tensor Tµν
f provide an

example for local functionals, while the non-locally smeared fields Ng, the n-fold prod-
ucts of the linear field and the Weyl fields are regular.

1.2.3. Poincaré Transformations on Functionals

In this section the representations of the Poincaré group on different function and func-
tional spaces will be discussed. The notions of Poincaré covariance and invariance will
play an important role in the construction of models in relativistic field theories.

Definition 1.2.6 (Representations of P↑+).
Let p ∈ P↑+, O1 ⊂ M and pO1 ⊂ O2, then

αp : E ⊃ E(O2)→ E(O1) ⊂ E , αp(φ)(x) = φ(px)

defines a (contravariant) action of P↑+ on E . The dual map

αp : F0(O1)→ F0(O2), αp(F)(φ) = F(αpφ)

defines a (covariant) action of P↑+ on the space of functionals.
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1.3. Classical Field Theory

The action αp is compatible with the canonical action on D in the following sense. Any
compactly supported function f ∈ D can be identified as a linear functional φ 7→ 〈 f |φ〉
in F0. For this functional it holds

αp 〈 f |φ〉 = 〈 f |αpφ〉 lin.
= 〈αp f |φ〉 , (αp f )(x) =

{
f (p−1x) x ∈ pO1

0 else
.

The words contravariant and covariant are to be understood in a categorical sense,
i.e. the arrows in the respective actions are reversed (contravariant) or point in the same
direction (covariant) as the arrow p : O1 → O2, as illustrated in the diagram:

E(O1) O1 D(O1)

E(O2) O2 D(O2)

F0(O1)

F0(O2)
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...................
............

αp

.....................................................................................................................................
.....
.......
.....

p

.....................................................................................................................................
.....
.......
.....

αp

.................................................................................................................................. ................................................................................................................... ............

.................................................................................................................................. ................................................................................................................... ............

........................................................................................ ............
⊂

........................................................................................ ............
⊂

.....................................................................................................................................
.....
.......
.....

αp

For a polynomial (1.1) we find that αp acts as

αpF(φ) =
〈
t
∣∣(αpφ)⊗n〉 = 〈αpt

∣∣φ⊗n〉 , αpt(x1, . . . , xn) = t(p−1x1, . . . , p−1xn)

which is in agreement with the canonical action of P↑+ on E ′. As an application of the
notion of Poincaré-covariance we define invariant differential operators, which in turn
determine P↑+-invariant dynamics for the system.

Definition 1.2.7 (Wave or D’Alembertian operator, Klein-Gordon operator).
Let P : E → E be a linear, second order partial differential operator on M with smooth coeffi-
cients. We say, that P is invariant under P↑+, if P commutes with αp: P ◦ αp = αp ◦ P for all
p ∈ P↑+. In this case, P can be written as

Pφ =
(

ηµν∂µ∂ν︸ ︷︷ ︸
=�

+m2)φ, ηµν = (ηµν)
−1, m2 ∈ R.

The linear operator P = �+ m2 is called the Klein-Gordon operator, which reduces to the
wave operator or D’Alembertian operator in the case m2 = 0.

1.3. Classical Field Theory

After the introduction in the calculus of functionals we proceed to the formulation of
classical field theory. As a starting point we define the notion of an action functional.
The action functional distinguishes a particular model in the theory of the scalar field
and induces the equations of motion for the system due to the principle of stationary
action.

The most important part in this discussion is the characterization of the full solution
space of the free theory by means of advanced and retarded Green’s functions and the
emergence of the principle of finite speed of information propagation.
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1. Quantization of the Free Scalar Field

1.3.1. Actions and the Solution Space

The traditional approach to obtain an action is to integrate a Lagrangian functional over
a fixed time interval. This idea is modified a little bit in this setting. On the one hand we
want to implement the relativistic structure of M of the theory, but distinguishing a time
interval does not comply with the Poincaré-symmetry. On the other hand it has been
noticed by Stückelberg that solving the fixed-time initial value problem that arises from
the Euler-Lagrange equations in interacting quantum field theories yields additional
singularities, even after renormalization [Stü51]. See section 3.1 for a discussion.

In order to circumvent these problems we will define the action by an integration of
the Lagrangian density functional against a test function with compact support. This
allows to find a P↑+-covariant action, that is smoothly cut off at large distances by the
test function.

Definition 1.3.1 (Actions).
An action S is a map S : D → Floc, f 7→ S[ f ] with the properties

• f 7→ S[ f ] is linear and S[ f ] is real: S[ f ]∗ = S[ f ∗].

• supp S[ f ] ⊂ supp f

• Poincaré symmetry: αpS[ f ] = S[αp f ] for all p ∈ P↑+.

We will consider two actions S1 and S2 to be equivalent, if

supp (S1[ f ]− S2[ f ]) ⊂ supp d f ∀ f ∈ D,

i.e. if both actions differ by a boundary term.

The case in which S comes from a Lagrangian density fits in here as follows: Let L be a
functional of the linear fields Φx and its derivative ∂µΦx (see example 1.2.2). The action
SL induced by L is defined to be

SL[ f ](φ) =
∫

f (x)L(Φx, ∂µΦx)(φ)dx =
∫

f (x)L(φ(x), ∂µφ(x))dx. (1.5)

From this picture it is clear that the introduction of a “cut-off” function f is essential to
define the action SL[ f ] as a functional over E . In this way the action SL is P↑+-covariant
rather than P↑+-invariant, since f changes under the action of αp.

The corresponding Euler-Lagrange equations for a given Lagrangian L

∂µ
δL(φ, ∂µφ)

δ∂µφ(x)
−

δL(φ, ∂µφ)

δφ(x)
= 0 (1.6)

are clearly independent of any choice of a cutoff function. The question arises, whether
one can obtain the Euler-Lagrange equations (1.6) in the present formalism and, in a
more general case, the principle of least action for an arbitrary action S. The answer is:
locally, yes.
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1.3. Classical Field Theory

Definition 1.3.2 (Euler-Lagrange operator and local solutions).
Let S be an action and O ⊂ M be bounded. Fix f ∈ D such that f = 1 on O. The Euler-
Lagrange operator for S is defined by

δELS : E → D′, 〈δELS(φ0)|h〉 :=
〈

δS[ f ](φ0)

δφ

∣∣∣∣h〉 , ∀h ∈ D(O) .

A local solution or on-shell configuration φ0 is a locally stationary point of S, i.e. ∀h ∈ D(O):
〈δELS(φ0)|h〉 = 0.

The Euler-Lagrange operator δELS is independent of the cutoff function f due to the
condition that f = 1 on the region O, where δELS(φ) is tested. The Euler-Lagrange
equation δELS[ f ](φ0) = 0 is, in general, a non-linear differential equation for φ0.

Note, that in the above definition the choice of O ⊂ M was arbitrary, thus the lo-
cal equation of motion δELS(φ) = 0 has to hold everywhere in M. Configurations φ0

which satisfy the Euler-Lagrange equation on the whole spacetime M are called global
solutions.

If we apply definition 1.3.2 to actions which are induced by Lagrangians L as in (1.5),
a quick calculation shows that

δELSL(φ0) =
∫

f (x)︸︷︷︸
=1 on supp h

h(x)
δL(φ, ∂µφ)

δφ

∣∣∣
φ=φ0

dx

= −
∫

h(x)
(

∂µ
δL(φ0, ∂µφ0)

δ∂µφ(x)
−

δL(φ0, ∂µφ0)

δφ(x)

)
dx = 0 ,

i.e. local solutions φ0 obey (1.6) in the region O.
We want to restrict the attention to the case of the free Klein-Gordon field now. Thus

we look at actions S that are quadratic in the field φ and are induced by a very specific
Lagrangian density:

L0(Φx, ∂µΦx) =
1
2

ηµν(∂µΦx) · (∂νΦx)−
m2

2
Φ2

x

←→ SL0 [ f ](φ) =
1
2

∫
f (x)

(
ηµν∂µφ(x)∂νφ(x)−m2φ(x)2)dx

= −1
2

∫
f (x)φ(x)

(
�+ m2) φ(x)dx (1.7)

It is well-known that in case of the linear Euler-Lagrange equations induced by the
quadratic action L0, that is the Klein-Gordon equation:(

∂µ
δL0

δ∂µφ(x)
− δL0

δφ(x)

)
φ=φ0

= Pφ0(x), P = �x + m2

the complete solution space can be characterized. This is done by solving the initial
value problem on a Cauchy surface Σ of M, i.e.

δELS(φ) = 0, φ�Σ = u0, ∂x0 φ�Σ = u1 (1.8)
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1. Quantization of the Free Scalar Field

for f ∈ D(M) and u0, u1 ∈ D(Σ) and is also called the Cauchy problem for an action
S (or for its Euler-Lagrange differential operator respectively). For the Klein-Gordon
field it holds the following theorem.

Theorem 1 (Fundamental solutions for the Klein-Gordon equation [BF09]).
Let P = �+ m2 be the Klein-Gordon operator on M. There exist unique advanced Ga and
retarded fundamental solutions Gr to P with the properties

Ga : D(M)→ E(M) : Ga(P f ) = f = P(Ga( f )), supp Ga( f ) ⊂ V−(supp f )

Gr : D(M)→ E(M) : Gr(P f ) = f = P(Gr( f )), supp Gr( f ) ⊂ V+(supp f )

for all f ∈ D(M). Since P is formally self-adjoint, i.e. 〈P f |g〉 = 〈 f |Pg〉, it holds 〈Gr( f )|g〉 =
〈 f |Ga(g)〉 in D(M).

Due to the simple form of the differential operator P, we can explicitly express the
fundamental solutions. This is done by representing Gr, Ga as bi-distributions Gr,a :
D′ ⊗ D′ → C via the identification Gr( f , g) ≡ 〈Gr( f )|g〉 (using the same symbols).
Then

Gr( f , g) = lim
ε↓0

−1
(2π)4

∫ f̂ (−p)ĝ(p)
(p0 + iε)2 − p2 −m2 dp, p = (p1, p2, p3) (1.9)

and Ga( f , g) = Gr(g, f ). The support properties translate into

supp Gr ⊂ {(x, y) ∈ M×M : y ∈ J+(x)}, supp Ga ⊂ {(x, y) ∈ M×M : y ∈ J−(x)}

The existence of the fundamental solutions is sufficient to completely solve the Cauchy
problem (1.8) for the Klein-Gordon operator by means of the causal commutator func-
tion.

Definition 1.3.3 (Causal commutator function Gc).
The causal commutator function Gc for the Klein-Gordon operator P on M is defined by Gc =

Gr − Ga.

It is well-known that Gc characterizes the space of solutions to the Klein-Gordon equa-
tions with compactly supported Cauchy data [BF09]. This means:

• Let E sc
P

1 be the space of solutions to the Cauchy problem (1.8). For every φ ∈ E sc
P

there is a compactly supported function f ∈ D, such that φ = Gc( f ). The Cauchy
data of φ are recovered by u0 = Gc( f )�Σ and u1 = (∂x0 Gc( f ))�Σ,

• For every f ∈ D, such that Gc( f ) = 0 there is a g ∈ D with f = Pg, i.e. ker(Gc) =

PD.

1The notation E sc
P indicates that the solutions φ ∈ E sc

P to P have spacelike compact support. A region
O ⊂ M is called spacelike compact, if O ⊂ ⋃

K⊂M D(K), where K runs over all compact subsets in M
and D is the domain of dependence, see definition 1.1.2.
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1.3. Classical Field Theory

From the support and adjointness properties of the advanced and retarded fundamen-
tals solutions it follows directly that

supp Gc( f ) ⊂ J(supp f ), 〈Gc( f )|g〉 = − 〈 f |Gc(g)〉 , f , g ∈ D

and

supp Gc = {(x, y) ∈ M×M : y ∈ J(x)}, Gc( f , g) = −Gc(g, f )

for the associated bi-distribution. The explicit form of Gc follows from (1.9)

Gc( f , g) =
1

(2π)3

∫
f̂ (−p)ĝ(p)ε(p0)δ(p2

0 − p2 −m2) dp, ε(p0) =
p0

|p0|

Gc(x, y) =
1

(2π)3

∫
e−iη(p,x−y)ε(p0)δ(p2

0 − p2 −m2) dp. (1.10)

The choice of Gc as the characterizing function for the solution space has a further ad-
vantage, namely we obtain a very important result on the finiteness of the propagation
speed of information. Let φ be a solution to P with compact Cauchy data u0, u1 ∈ D(Σ).
Then there is a f ∈ D with φ = Gc( f ) and

supp φ = supp Gc( f ) ⊂ J(K), K = supp u0 ∪ supp u1.

This implies, that initial data propagate in M with a finite speed, at most with the speed
of light. It is a consequence of the hyperbolic nature of SL0 , meaning that δELSL0 is
given by a hyperbolic partial differential operator. This feature is extremely important
in classical and quantum field theory. It incorporates the validity of the fundamental
principle of special relativity in the respective theories, namely it excludes superluminal
motion and information exchange.

For later use we need a generalization to the statements in definition 1.3.3 that in-
volves smooth functions with timelike compact support. The support of f is called
timelike compact, if there are two Cauchy surfaces Σ± such that Σ− is in the causal past
and Σ+ is in the causal future of supp( f ). We find that the properties of Gc carry over
to a slightly more general situation.
Proposition 1.3.4.
Gc extends to a map Gc : Etc → E , where Etc is the space of smooth functions with timelike
compact support and it holds the following:

• Let EP be the space of smooth solutions to P. For every φ ∈ EP there exists a function
f ∈ Etc, such that φ = Gc( f ) and the smooth Cauchy data u0, u1 ∈ C∞(Σ).

• For every f ∈ Etc, such that Gc( f ) = 0 there is a g ∈ Etc with f = Pg, i.e. ker(Gc) =

PEtc.

Let us summarize the structure. We begun with the space of smooth functions E
and constructed a well-behaved solution space to the Euler-Lagrange equations for the
action SL0 , with a Lagrangian L0 that is quadratic. This solutions space in E is con-
structed as the space of solutions with compact Cauchy data. It is characterized by the
causal commutator function Gc and we have found that information, which is carried
by solutions to the theory, can propagate at most with the speed of light in M.
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1. Quantization of the Free Scalar Field

1.3.2. Functional Formalism of Classical Field Theory

In this section we want to lift the results of the previous discussion to the level of observ-
ables. The most important feature in this context will be the principle of finite speed of
information propagation. The manifestation of this principle at the level of observables
can be formulated as follows: Observables whose support is contained in spacelike
separated regions of M must be represented within independent subsystems of the
full theory. See [BF09] for more details on the general formulation of independent sub-
systems. In classical field theory that is described by Poisson algebras of observables,
as it will be done in this work, independent subsystems can be realized by mutually
Poisson commuting Poisson subalgebras.

We begin by stating physically motivated axioms which should be fulfilled by any
classical field theory complying with the principles of special relativity. The formula-
tion of these axioms is done in the spirit of the Haag-Kastler axioms in QFT, using nets
of algebras.

Definition 1.3.5 (Axioms of locally covariant classical field theory).
The theory of a classical scalar field is described by a net of unital Poisson ∗-algebras {Acl(O) ≡
(Acl(O), {·, ·}) : O ⊂ M} with the following properties:

CFT1: Isotony: For every isometry P↑+ 3 p1 : O1 → O2 there is a unital ∗-homomorphism
αp1 : Acl(O1)→ Acl(O2) and for every further isometry P↑+ 3 p2 : O2 ⊃ p1O1 → O3

it holds αp1◦p2 = αp1 ◦ αp2 .

CFT2: Einstein causality: IfO1 andO2 are spacelike separated, then {Acl(O1),Acl(O2)} =
0.

CFT3: Time-slice axiom: Let p : O1 → O2. If pO1 contains a Cauchy surface for O2, then
αp : Acl(O1) → Acl(O2) is surjective. It follows that in particular Acl(Σε) = Acl(M)

for any ε-neighborhood Σε of a Cauchy surface Σ of M.

The ε-neighborhood Σε of Σ in the axiom CFT3 is called a time-slice for M. We see
that the main object in classical field theory is a space of observables, that is endowed
with a Poisson and an involutive structure.

In the following we construct the classical field theory as Poisson ∗-algebras of func-
tionals A ∈ Fµc over E . Fµc contains a lot of physically interesting observables, some of
them are given in example 1.2.2, and this space turns out to be stable under deformation
quantization. We begin with the definition of the Poisson bracket on Fµc.

Definition 1.3.6 (Poisson bracket).
Let Gc the the causal commutator function, induced by the Klein-Gordon operator P in definition
1.3.3. The bi-linear map

{·, ·}Gc : Fµc ×Fµc 3 A× B 7→ {A, B}Gc(·) =
〈

iGc

∣∣∣∣δA(·)
δφ
⊗ δB(·)

δφ

〉
∈ Fµc

(1.11)

is called the Poisson bracket of the classical field theory governed by the action SL0 in (1.7).
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1.3. Classical Field Theory

The proof, that {·, ·}Gc fulfills all properties of a Poisson bracket is found in [BFR12] (in
the more general context of Peierls brackets, see also section 2.1).

The Poisson bracket can now be used to define a Poisson ∗-algebra, which will serve
as the classical algebra of observables.

Definition 1.3.7 (Poisson ∗-algebra of off-shell observables, Local net).
The vector space Fµc, endowed with

• the pointwise product · of functionals (A · B)(φ) = A(φ)B(φ)

• the canonical involution A∗(φ) = A(φ)∗

• the Poisson bracket {·, ·}Gc from definition 1.3.6

forms a unital Poisson ∗-algebra. That is, (Fµc, ·) is a unital, commutative and associative
∗-algebra and

• {·, ·}Gc is bi-linear, anti-symmetric and obeys the Jacobi identity,

• {·, ·}Gc is a derivation in the right argument: {A, B ·C}Gc = {A, B}Gc ·C+ B · {A, C}Gc ,

• {·, ·}Gc is compatible with the involution: {A, B}∗Gc
= {A∗, B∗}Gc .

We call the triplet Acl = (Fµc, ·, {·, ·}Gc) the classical algebra of off-shell observables of
the free scalar field. The local net is obtained by the restricted algebras Acl(O) = {A ∈ Acl :
supp A ⊂ O}.

Here the use of the factor i in (1.11) is crucial, since iGc is real-valued. That makes
{·, ·}Gc compatible with the canonical involution on Fµc.

A nice aspect of this construction is that we have the quasi-local algebra of (off-shell)
observables Acl = Acl(M) directly available. In the general situation in which there is
only a net Acl(O) at our disposal, the quasi-local algebra is obtained by the inductive
limit

Acl(M) = lim
O↗M

Acl(O)

with the help of axiom CFT1. With this limiting construction the quasi-local algebra
consists of equivalence classes of sequences in the union of all Acl(O). This abstract
setting can be avoided here.

The resulting net of Poisson ∗-algebras {Acl(O) : O ⊂ M} is not endowed with any
dynamical structure yet, justifying the term off-shell algebra. It is called kinematical
algebra sometimes, pointing out, that Acl carries a kinematical (relativistic) structure.
This can be used to show, that the first two axioms of classical field theory in definition
1.3.5 are satisfied.

Proposition 1.3.8 ([BFR12]).
The net of Poisson ∗-algebras Acl(O) from definition 1.3.7 fulfills the axioms CFT1 and CFT2.
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1. Quantization of the Free Scalar Field

In order to implement the dynamics induced by the quadratic action SL0 in (1.7), we
use a basic technique known in the algebraic approach: we divide Acl by a suitable
ideal IP that is obtained by the Euler-Lagrange equations of the action. To ensure that
the resulting quotient space is a Poisson ∗-algebra we have to make sure, that IP is a
Poisson ∗-ideal in Acl.

The identification of the correct ideal follows from the following idea. In the canon-
ical approach (or on-shell approach), the observables of the theory are constructed as
functionals over the solution space ( i.e. functionals over EP from proposition 1.3.4). EP

has a natural embedding ι : EP → E into E . The dual map

ι∗ : Fµc → Fµc

∣∣∣
EP

is the restriction of microcausal functional to the solution space. The map ι∗ has a non-
trivial kernel, given by

ker(ι∗) = {F ∈ Fµc : F(φ) = 0 if φ ∈ EP}.

It turns out that ker(ι∗) has exactly the properties of a Poisson ∗-ideal. This is shown by
the following argument: Let φ ∈ EP and define φt = φ + itGc(A(1)(φ)), where we use
the notation Gc : D → EP here. From proposition 1.3.4 it is clear that Gc(A(1)) ∈ EP, i.e.
we have a family φt of solutions to P with φ0 = φ. This implies that I(φt) = 0 for all
t ∈ R for any I ∈ IP and

0 =
d
dt

I(φt)
∣∣∣
t=0

= i
〈

Gc

∣∣∣A(1)(φ)⊗ I(1)(φ)
〉
= {A, I}(φ)

which implies the claim. From now on we denote the Poisson ∗-ideal ker(ι∗) by IP. It
motivates the following definition:

Definition 1.3.9 (On-shell functionals).
The quotient

F P
µc =

Fµc
/
IP

, AP
cl = (F P

µc, ·, {·, ·}Gc)

is called the space of on-shell functionals and the corresponding Poisson ∗-algebra AP
cl is termed

the classical algebra of on-shell observables of the free scalar field.

We want to discuss this notion within the example of polynomial functionals.

Example 1.3.10 (On-shell polynomial functionals).
Let F be a generating element of the space of polynomial functionals Fpol, i.e. F(φ) =

〈t|φ⊗n〉with t ∈ E ′Ξn
(Mn), see below definition 1.2.5. The null class of Fpol with respect

to the ideal IP is given by

[0] =

{
F ∈ Fpol : F(φ) =

N

∑
n=1

〈
tn
∣∣φ⊗n〉 = 0 if Pφ = 0

}
.
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Now we use the fact that for every φ ∈ EP there is a f ∈ Etc, such that φ = Gc( f ).
Thus the condition for [0] can be characterized by distributions tn ∈ E ′Ξn

(Mn) for which
G⊗n

c (tn) = 0, i.e. those which lie in the kernel of G⊗n
c for n ∈ N. Using the second

property in 1.3.3 (which can be generalized to compactly supported distributions with
appropriate wavefront sets) we can deduce that distributions tn ∈ E ′Ξn

(Mn), which are
contained in the kernel of Gc can be written as

tn(x1, . . . , xn) = Pxj un(x1, . . . , xn), Pxj = �xj + m2, un ∈ E ′Ξn
(Mn)

for some j ∈ {1, . . . , n}. This can be used to determine the equivalence class of any
polynomial functional:

[F] = F + I, I(φ) =
N

∑
n=1

〈
Pxj(n)un

∣∣∣φ⊗n
〉

, un ∈ E ′Ξn
, j(n) ∈ {1, . . . , n} ,

where Pxj(n)un can be symmetrized if one restricts the attention to symmetric distribu-
tions. This agrees with the equivalence classes defined in other algebraic approaches to
free field theory [Haa92]. ♦

Proposition 1.3.11 ([Dim80]).
The net of local Poisson ∗-algebras AP

cl(O) fulfills all of the axioms of locally covariant classical
field theory in definition 1.3.5.

We conclude the section with a summary of all the ingredients to the off-shell ap-
proach to classical field theory. We started with the definition of a suitable space of
observables Fµc, which contains functionals over E with a certain singularity structure
for which the Poisson bracket {·, ·}Gc induced by the free action SL0 , is well-defined.
The Poisson ∗-algebra Acl was shown to comply with the principles of special relativ-
ity, since it fulfilled CFT1 and CFT2. In a last step we endowed Acl with a dynamics
induced by the free action by dividing by the ideal IP.

This concludes the discussion on the algebraic properties of classical field theory.
Many of the presented structures will appear again in the quantization of the classical
field theory, which is carried out in the framework of deformation quantization. A key
idea behind this procedure is to equip the space Fµc with a non-commutative associa-
tive product ?, which is compatible with both the principles of special relativity and
quantum mechanics. In doing so, we obtain a very nice interpretation of the theory:
The space of observables is the same in classical and quantum field theory! Therefore
the physical interpretation of, say the energy or angular momentum functional, is stable
under quantization. A few functionals of physical relevance have been were denoted
in example 1.2.2.

The algebraic characterization of classical field theory by means of nets of Poisson
∗-algebras puts us in the very comfortable position concerning the space of states of
classical field theory, since the construction of Acl was carried out completely state-
independent. The fruits of our labor will be harvested in the following section.

27



1. Quantization of the Free Scalar Field

1.3.3. States in Classical Field Theory

In this section we discuss the space of states in classical field theory. Many notions con-
cerning the general structure of the state space of quantum field theory appear already
at the classical level akin to the case of the algebra of observables. After an introduction
to the basic notions of states on Acl we discuss the example of the classical KMS state,
whose historical background was highlighted in the introduction of this thesis.

The general concept of a state of a physical system refers to the idea of a prepara-
tion of a given ensemble of systems. The prescription how to prepare every system
in this ensemble of systems is denoted by ω and is called a state of the system. The
outcomes of measurements in the ensemble will then follow a probability distribution.
This means that the values of the observable A ∈ Acl vary in the individual systems
and the probability to find A with value a is pa(A) ≥ 0. Thus the relevant quantities
which characterize a state are the expectation values of the observables, i.e. the average
values of A when picking a system from the ensemble at random, as well as higher sta-
tistical momenta. If the prepared ensemble (the state) is denoted by ω, this expectation
value shall be denoted by ω(A) ∈ R.

The concept of states can be realized, under some assumptions on the system, by
Borel measures on the phase space of the physical system. For example, in classical
mechanics (with configuration space Q and phase space T∗Q) states on the algebra of
bounded functions on T∗Q are given by Borel probability measures µ on T∗Q. The ex-
pectation value of an observable A in the ensemble of systems ωµ described by measure
µ on T∗Q is

ωµ(A) =
∫

T∗Q
A dµ .

The case in which the ensemble is prepared in an optimal way, i.e. the uncertainty of
the predictions of all possible measurements is minimal, corresponds to a pure state
of the system. In classical mechanics this minimum is zero and is achieved by states
induced from a Dirac measure µ(q,p) on T∗Q. That is the state defined by

ωµ(q,p)(A) =
∫

T∗Q
A dµ(q,p) = A(q, p) .

We want to generalize the concept of a state to an algebraic notion, i.e. rather than
obtaining states by Borel measures on a phase space, we characterize a state by its
expectation values on Acl. Following this line of thought, we see a state as a map
A 7→ ω(A) which is, by abuse of notation, denoted by ω : Acl → C. Clearly, this
map should be linear. It is crucial that this map describes a probability distribution.
This idea can be translated into a condition on the linear functional ω: For this we
look at the characteristic functions χK for finite regions K in the phase space T∗Q. The
probability that the ensemble described by µ is prepared with the values (q, p) ∈ K is
given by

µ(K) = ωµ(χK) =
∫

T∗Q
χK dµ, χK(q, p) =

{
1 (q, p) ∈ K

0 (q, p) /∈ K
.
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The indicator functions χK are projection operators on the algebra, i.e. χ2
K = χK = χ∗K.

The property of being a probability distribution can be rephrased into the condition:
0 ≤ ω(χK) ≤ 1 for all K ⊂ T∗Q and ω(χT∗Q) = ω(1) = 1. Since the first condition
is still dependent on the regions K ⊂ T∗Q, we replace it with a sufficient condition,
namely positivity: ω(A) ≥ 0 if A is a non-negative function. In the case of complex-
valued functions, we can write the non-negative ones as A = B∗ · B.

The discussion above motivates the following definition of states.

Definition 1.3.12 (States inAcl).
A state over Acl is a linear functional ω over Acl, which is normalized ω(1) = 1 and positive:
For A∗ = A > 0 the property ω(A) ≥ 0 holds or, anticipating the quantum condition of
positivity,

ω(A∗ · A) ≥ 0 ∀A ∈ Acl.

A state is called pure, if the decomposition

ω(A) = λω1(A) + (1− λ)ω2(A), λ ∈ (0, 1)

into two other states yields only the trivial solution ω = ω1 = ω2. Otherwise, ω is called
mixed. The convex cone of all states over Acl is denoted by S(Acl).

Note that the above states are defined on an algebra, which is “too large”, since it con-
tains unphysical off-shell configurations. Though the question arises whether we can
obtain states on the algebra of on-shell functionals from elements of S(Acl). This can
be answered with the help of the canonical surjection ι∗ : Acl → AP

cl that was used to
defined the ideal IP in definition 1.3.9.

A state ω ∈ S(AP
cl) is said to be induced by a state ω̂ over AP

cl if

ω = ω̂ ◦ ι∗

Since ker ι∗ is non-trivial, this relation can not be inverted, i.e. not every state in S(Acl)

is induced by an on-shell state. If we restrict the attention to states ω ∈ S(Acl) which
vanish on ker(ι∗) = IP, then the map can be inverted. This means that we have a
bijection between the spaces S(AP

cl) and {ω ∈ S(Acl) : ω(I) = 0 ∀I ∈ IP}. A state ω

in the latter set will also be called compatible with the dynamics induced by IP.
The most important class of states in the functional formalism is given by evaluation

functionals.

Definition 1.3.13 (Evaluation functionals).
Linear functionals evψ over Acl, which are given by

evψ(A) = A(ψ), ψ ∈ E

are called evaluation functionals. They are normalized and positive, hence they form a subset of
S(Acl). They are pure states.
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1. Quantization of the Free Scalar Field

Due to form of evψ, it is evident that ωψ is compatible with the dynamics induced by
IP if

ωψ(I) = I(ψ) !
= 0 ∀I ∈ IP .

It follows from the definition of IP that those functionals have to be evaluations on
solutions to the differential operator P, i.e. ψ ∈ EP.

We end the discussion of the classical state space by two example states, which can be
derived from the classical KMS condition. For a detailed introduction and derivation
of the KMS condition and the properties of KMS states, which are generalizations of
Gibbs states, see [Haa92].

Definition 1.3.14 (Classical KMS States [AGGL76]).
The KMS condition for a Poisson algebra Acl with time-evolution αt is a relation between the
functions

FA,B(t) = ω(A · αt(B))−ω(A)ω(B), and GA,B(t) = ω({A, αt(B)}).

A state ωβ is called a KMS state for αt on Acl with inverse temperature β = (kBT)−1, if

GA,B(t) = −β
d
dt

FA,B(t) ∀A, B ∈ Acl. (1.12)

In the limit β→ ∞, we obtain the ground state condition d
dt FA,B(t) = 0.

Example 1.3.15 (Classical, quasi-free KMS-state).
First, we consider the Poisson ∗-subalgebra of Acl which consists only of polynomial
and regular functionals. A quasi-free state is a state, which is determined by the two-
point function (with respect to the linear field Φ f ):

Wω( f , g) = ω(Φ f ·Φg) f , g ∈ D.

The distribution Wω determines the expectation value for an arbitrary A ∈ Apol by the
formula

ω(A) = ev0(eΓω A), Γω A =
∫

Wω(x, y)
δ2A

δφ(x)δφ(y)
dx dy. (1.13)

The positivity condition on ω translates into the condition: Wω( f ∗, f ) ≥ 0 for all f ∈ D.
Combining the KMS condition with the ansatz (1.13) we obtain the following differen-
tial equation for the two-point function

iGc(x, y) = −β
∂

∂y0 Wβ(x, y) . (1.14)

We assume at this point that ωβ (and thus Wβ) is translation invariant (as Gc is, too),
hence we can assume that

Wβ(x, y) =
1

(2π)4

∫
Ŵβ(p)e−iη(p,x−y) dp
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up to a constant coming from the one-point function ω(Φx)2, which we assume to be
zero. The differential equation on Wβ transforms into

Ĝc(p) = βp0Ŵβ(p)

which can be solved by inserting Gc from (1.10)

Wβ(x, y) =
1

(2π)3β

∫
e−iη(p,x−y) δ(p2

0 − p2 −m2)

|p0|
dp

=
1

2π2β

∫ ∞

m

sin
(√

ω2 −m2 |x− y|
)

cos
(
ω(x0 − y0)

)
√

ω2 −m2 |x− y|
dω.

The positivity condition for Wβ( f ∗, f ) is implied by the positivity of the measure Ŵβ(p).
Moreover Wβ is compatible with the dynamics, i.e. it annihilates the ideal IP, since Wβ

is a weak bi-solution to P.
In the limit of vanishing mass we can directly compute the integral (using translation

invariance):

Wβ(x, 0) =
1

8πβ |x|
(
ε(x0 + |x|)− ε(x0 − |x|)

)
=

 1
4πβ|x|

∣∣x0
∣∣ < |x|

0 else
.

By equation (1.14) it is clear that the wavefront sets of Wβ and Gc coincide for β 6=
0. Unfortunately, we see that WF(Wβ) and Ξ2 can add up to the zero section, thus
Hörmanders theorem of multiplication can not be applied to define ωβ by means of
(1.13) for an arbitrary A ∈ Fµc (see definition 1.4.2 and below). Moreover, by a direct
computation one encounters UV-divergences, e.g. for local observables.

This shows that there is no KMS-state for β 6= 0, if we choose Fµc as the space of
observables. This problem is known as the Rayleigh-Jeans (UV-)catastrophe of classical
field theory at finite temperature, which has been explained in the introduction. The in-
terpretation of this fact is that classical field theory can only be an effective description,
which is valid in a certain range of energies i.e. for observables, which are insensitive
to high momenta. As a matter of fact this was one of the reasons to develop quantum
mechanics and quantum field theory in the first place. It turns out, that this problem
does not occur in QFT as the two-point function there will not obey a Rayleigh-Jeans
momentum distribution (the particular form of Ŵβ), but a Planck distribution, as we
will show in the section 1.5.

Wω does, however, define a KMS-state through (1.13) on Freg, which in turn lacks
many interesting observables like the energy density and other characteristic quantities.

The ground state condition in definition 1.3.14 (the limit β → ∞) has a better be-
havior. A quasi-free ground state, which is in addition translation invariant fulfills the
following condition

∂

∂y0 W∞(x, y) = 0 =
∂

∂x0 W∞(x, y), ω∞(Φx) = 0

2Since the state is assumed to be translation invariant, ω(Φx) must be a constant.
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1. Quantization of the Free Scalar Field

setting again the one-point function to zero. The only solution to the wave-equation
with these Cauchy data is W∞ = 0, resulting in the state ω∞(A) = A(0) for A ∈
Fµc. This is the classical, translation invariant ground state with vanishing one-point
function defining the vacuum state for the classical field theory. However, unlike in
quantum theory, where the vacuum state plays a pivotal role, the classical vacuum state
has no interesting features, e.g. its expectation value and higher statistical momenta
vanish on all polynomials besides the constant. ♦

1.4. Formal Deformation Quantization

This section is concerned with the quantization of the theory of the real scalar field
in the framework of the functional approach to quantum field theory. The impor-
tant guideline for this procedure will be, as it is stressed throughout this thesis, state-
independence. A method that works very well with both the functional framework
and the algebraic approach to QFT is formal deformation quantization. It exhibits ex-
tensive conceptual power and is at the same time a very explicit method to implement
a non-commutative structure in the space of functionals Fµc.

After a short review on the idea of formal deformation quantization we construct
the quantum algebra of observables of the real scalar field in the off-shell functional
approach. We define the action of the symmetry group P↑+ of M and show that the
corresponding net of ∗-algebras fulfills the Haag-Kastler axioms of QFT, after going
“on-shell”. A considerable part will be spent on the discussion on the space of quantum
states of the free scalar field. There the vacuum and KMS state are presented in an
explicit form and crucial properties are highlighted, which will become important in
the subsequent construction of the interacting KMS state.

1.4.1. The Idea behind Formal Deformation Quantization

The concept of formal deformation quantization as we use it here has its roots in the
question: What is the quantization of a general classical system? There are many pro-
posals to answer this question, such as canonical quantization, the path integral ap-
proach or geometric quantization. Whereas the first two are usually considered in the
physics community due to a certain simplicity of the framework, these methods un-
fortunately have little conceptual power and only a limited amount of observables is
quantized.

Geometric quantization, on the other hand, has a well-motivated conceptual basis,
which takes the Lie-algebraic foundation of classical theory serious and constructs a
quantum theory by representing the classical observables as suitable sections on a line
bundle over the classical phase space. This procedure has problems in the explicit con-
struction of non-trivial models due to the involved representation-theoretical aspects.
We do not go into detail here and refer to standard textbooks, e.g. [Woo97].

This work is concerned with the deformation quantization approach to quantization.
One of the foundations to this approach is an observation which dates back to Groe-
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1.4. Formal Deformation Quantization

newold and van-Hove in the middle of the last century. The authors showed that clas-
sical mechanics has no straightforward quantization in the following sense. We view
classical mechanics overRn as a Poisson-algebra Acl = (Pol(R2n), ·, {·, ·}), where Pol is
the space of polynomial functions and {·, ·} comes from the standard symplectic form
over Rn, making Acl a Lie-algebra, in particular. Quantum mechanics over Rn can be
seen as the Lie-algebra A, generated by {pi, xj : i, j = 1, . . . , n} obeying the canonical
commutation relations

[xi, pj] = ih̄{xi, pj} = ih̄δij,

It can be realized by the canonical quantization:

xi ∈ S ′(Rn), xi( f ) = xi · f , pi ∈ S ′(Rn), pi( f ) =
h̄
i

∂ f
∂xi

with S(Rn)3 as the Hilbert space. A natural definition of the quantization of Acl in this
language would be an injective Lie-algebra homomorphism

Q : Acl → A .

The theorem of Groenewold and van-Hove states that there is no such map. Moreover,
it can be shown that there is no unital, associative algebra Acl, such that there is a Lie-
algebra isomorphism Q : Acl → A [Wal07].

At this point, formal deformation quantization sets in. What if the map Q can be
realized not as a strict Lie-algebra isomorphism, but up to “quantum corrections”? This
means, for the above case of quantum mechanics, that

Q(A · B) = A · B + O(h̄), Q({A, B}) = h̄
i
[A, B] + O(h̄2), A, B ∈ Acl. (1.15)

This seminal idea was taken serious in [BFF+77], where deformation quantization was
first investigated. The concept is introduced as follows. Define the space of formal
power series in h̄. That is, for a vector space V, the space V[[h̄]] which consists of
sequences (vn ∈ V : n ∈ N) seen as formal sums

v = v0 + v1h̄ + v2h̄2 + . . . , vn ∈ V,

where we do not impose any convergence conditions on the sum. V[[h̄]] carries a natu-
ral vector space structure.

The quantum algebra A is defined as the algebra of formal power series of classical
observables, e.g. A = (Pol(R2n)[[h̄]], ?) with a ?-product

? : A×A→ A, A ? B =
∞

∑
n=0

h̄nCn(A, B) (1.16)

3The space S is the space of rapidly decaying functions or Schwartz functions.
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where the Cn are bi-R[[h̄]]-linear. That implies that the n-th order term of the ?-product
A ? B of A = (An), B = (Bn) is given by

(A ? B)n = ∑
k,l,m∈N0

k+l+m=n

Ck(Al , Bm) ,

i.e. only finitely many elements of the formal power series A and B contribute to each
summand in A ? B. This feature lies at the very heart of the the theory of formal defor-
mation quantization.

A further condition on the ?-product which sounds quite innocent at first, but has
very deep impact on the arising theory, is associativity of the product. It can be ex-
pressed in terms of the maps Cn:

k

∑
l=0

Cl(A1, Ck−l(A2, A3)) =
k

∑
l=0

Cl(Ck−l(A1, A2), A3) ∀A1, A2, A3 ∈ A .

It is sufficient to evaluate the maps Cn on elements of order h̄0 in this context. The
enormous impact of this condition is due to its non-linear structure and it turns out
that it is very restrictive in the following sense: In the case of quantum mechanics (i.e.
R2n) all associative ?-products are equivalent (the notion of equivalence is introduced
in the next section).

Then, the quantization map Q : Acl → A, A 7→ Q(A) = Ah̄0 is well-defined and in-
deed a Lie-algebra homomorphism, up to higher powers in h̄. For a detailed treatment
of this matter we refer to [Wal07].

There are many advantages of deformation quantization, one of which is that the
quantization of general systems, which may have a very complicated phase space, is
possible. It has been shown by Kontsevich in [Kon03], that every (finite-dimensional)
Poisson-manifold admits a formal deformation quantization by means of ?-products of
the form (1.16).

The success of the ?-deformation approach in quantum mechanics posed the ques-
tion whether these methods could also be applied to field theoretical systems which
are described by infinite-dimensional Poisson-algebras, such as the classical algebra of
off-shell observables in definition 1.3.7. In a work of Dito [Dit90] this issue was ad-
dressed and solved for the free field. He also showed a relation of this approach to
the path-integral approach to quantum field theory. In a series of papers starting from
[DF00, BF00] the authors Brunetti, Dütsch, Fredenhagen developed a quantum field
theoretical framework, based on deformation quantization, that includes special and
general covariance (in non-trivial spacetime backgrounds) and can be used for the per-
turbative construction of interacting theories. For a review we refer the reader to the
book [BF09].

1.4.2. Deformation Quantization of Classical Field Theory

In analogy to quantum mechanics we define the space of formal power series over the
space of classical observables.
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1.4. Formal Deformation Quantization

Definition 1.4.1 (Formal power series of functionals).
The space of quantum observables is defined to be the space of formal power series Fµc[[h̄]] of
Fµc. The classical observables are embedded by Fµc 3 A 7→ Ah̄0 ∈ Fµc[[h̄]].

A crucial task in the deformation quantization of classical field theory is to specify a
?-product or equivalently a set of bi-linear maps Cn in (1.16) such that the arising the-
ory has all the required properties. Moreover, as specified in the introduction, this is
required to be done with the help of a state-independent prescription.

A way to bring together the ideas of deformation quantization and the algebraic ap-
proach to quantum physics was proposed by Dütsch and Fredenhagen in [DF00]. A
crucial ingredient is the definition of a suitable ?-product on Fµc[[h̄]]. This product is
motivated by Wick’s theorem for normal ordered operators. We state it here in a form
that serves well for the subsequent constructions.

Theorem 2 ([BF00]).
LetH be the Fock space with respect to a quasi-free state

∆+( f , g) = ω(ϕ f ϕg) =
∫

f (x)g(y)ω(ϕ(x)ϕ(y))dx dy

of the free Klein-Gordon field ϕ and A, B ∈ Freg ∩ Fpol be regular and polynomial. Moreover
let :·: be the normal ordering of operators on H with respect to the creation and annihilation
operators on H. Then :A(ϕ):, :B(ϕ): and the operator product :A(ϕ): :B(ϕ): exist as operator
valued functionals on (a dense subspace of)H and

:A(ϕ): :B(ϕ):

=
∞

∑
n=0

1
n!

∫
∆+(x1, y1) · · ·∆+(xn, yn) :

δn A(ϕ)

δφ(x1) · · · δφ(xn)

δnB(ϕ)

δφ(y1) · · · δφ(yn)
: dX dY,

where the sum extends only over finitely many terms, due to A and B being polynomials. Here
dX = dx1 · · ·dxn.

This version of Wick’s theorem expresses how the product of two normal ordered op-
erators can be written in terms of a sum of normal ordered operators. In addition the
multiplication formula holds on every Hilbert space associated to a quasi-free state over
the algebra of the free field. For details on the construction of such a Fock space, see
section A.2 in the appendix. The algebraic structure of Wick’s theorem is now distilled
in the ?-product over the space of functionals: For A, B ∈ Freg ∩ Fpol we define

Fpol ∩ Freg 3 A ? B =
∞

∑
n=0

1
n!

〈
∆⊗n
+

∣∣∣A(n) ⊗ B(n)
〉
= m ◦ exp(Γ+)(A⊗ B)

Γ+ =
∫

∆+(x, y)
δ

δφ(x)
⊗ δ

δφ(y)
dx dy, m(A⊗ B)(φ) = A(φ)B(φ)

The ?-product is well-defined since the functional derivatives of A and B are compactly
supported functions and the sum extends again only over finitely many terms.

We will now use ? in order to build a non-commutative algebra on the space of all
functionals, such that Wick’s theorem holds. Since ∆+ is not symmetric, the resulting
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1. Quantization of the Free Scalar Field

product ? is non-commutative. This is the crucial step in quantizing the free classical
field theory. First of all we will need some constraints on ∆+ in order to get a well-
behaved algebra with suitable physical properties.

Definition 1.4.2 (Hadamard two-point functions).
Let H+ be the set of all distributions ∆+ ∈ D′ ⊗D′, such that for all f , g ∈ D the following
conditions hold:

H1: Commutator: ∆+( f , g) − ∆+(g, f ) = 1
i Gc( f , g) with Gc from definition 1.3.3 for all

f , g ∈ D,

H2: Hermiticity: ∆+( f , g)∗ = ∆+(g∗, f ∗),

H3: Microlocal spectrum condition or Hadamard condition:

WF(∆+) ⊂ Λ+ = {(x, y|kx, ky) ∈WF(Gc) : k0
x > 0}

= {(x, y|kx, ky) ∈ Ṫ∗M2 : η(x− y, x− y) = 0, kx + ky = 0, kx ‖ (x− y), k0
x > 0},

H4: Equation of motion: ∆+(P f , g) = 0 = ∆+( f , Pg) for the Klein-Gordon operator P
with mass parameter m2 ≥ 0,

H5: Positivity: ∆+( f ∗, f ) ≥ 0.

The set H+ is called the set of Hadamard two-point functions for the Klein-Gordon operator P
on Minkowski spacetime M.

We will define the ?-product on the space Fµc[[h̄]] of formal power series in h̄ with
coefficients in Fµc. Note that in the definition of Hadamard two-point functions H+

we already “pulled out” a h̄ from ∆+, meaning h̄∆+( f , g) = ω(ϕ f ϕg) in the notation of
theorem 2. In this way we obtain a natural definition of ? as a product on formal power
series.

Definition 1.4.3 (?-product).
Let ∆+ be a Hadamard two-point function. The following product

(A ? B)(φ) :=
∞

∑
n=0

h̄n

n!

〈
∆⊗n
+

∣∣∣A(n)(φ)⊗ B(n)(φ)
〉

=
∞

∑
n=0

h̄n

n!

∫
∆+(x1, y1) · · ·∆+(xn, yn)A(n)(φ)[x1, . . . , xn]B(n)(φ)[y1, . . . , yn]dX dY

(1.17)

is called the ?-product with respect to ∆+ on Fµc[[h̄]].

The product ? is non-commutative since its antisymmetric part in lowest order (given
by Gc) is non-vanishing. The associativity of ? can be easily shown by using the commu-
tativity of the functional derivatives on Fµc. Here the off-shell viewpoint is extremely
helpful, since the latter statement is hard to prove for functionals over the solution
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space EP. Due to the Hermiticity property H2 of ∆+ ∈ H+, (Fµc[[h̄]], ?) becomes a
∗-algebra with the canonical involution, given by complex conjugation.

The Hadamard property H3 of ∆+ is important for the well-definedness of ?. It im-
plies that the result of the following pointwise multiplication of distributions

(D′ ⊗D′)⊗n × E ′(Mn)⊗ E ′(Mn)
·−→ E ′(M2n)

(∆⊗n
+ , A(n) ⊗ B(n))

·7−→ ∆⊗n
+ · A(n)(φ)B(n)(φ)

appearing in the integrand of equation (1.17) defines a distribution of compact support.
This is ensured by the multiplication theorem of Hörmander, since the condition

{0} /∈WF(∆⊗n
+ )⊕WF(A(n)(φ)⊗ B(n)(φ))

is fulfilled for every φ ∈ E . See [Hör90] for more details on the multiplication theorem
and e.g. [Kel10] for a proof of the above statement. The multiplication theorem gives in
addition information on the wavefront set of the resulting product, namely

WF
〈

∆⊗n
+

∣∣∣A(n)(φ)⊗ B(n)(φ)
〉(m)

⊂ Ξm ∀A, B ∈ Fµc, φ ∈ E

Therefore ? : Fµc[[h̄]] × Fµc[[h̄]] → Fµc[[h̄]] and the resulting algebra (Fµc[[h̄]], ?) is
closed under ?.

With the above choice of the set of admissible two-point functions, we conclude the
definition of the non-commutative ∗-algebra, which is the quantum algebra of observ-
ables, induced by the selection of a ∆+ ∈ H+.

Definition 1.4.4 (∗-algebra of off-shell observables).
For a fixed ∆+ ∈ H+, the algebra of off-shell observables A(O), associated to a region O ⊆ M
is defined to be

A(O) :=
({

A ∈ Fµc[[h̄]] : supp(F) ⊂ O
}

, ?
)

.

In the case O = M we abbreviate A(M) = A. The canonical involution for functionals
F∗(φ) = F(φ) turns A into a ∗-algebra. We identify the following subspaces:

• Regular observables: Areg(O) = {A ∈ A(O) : A ∈ Freg[[h̄]]}, which is a ∗-
subalgebra of A(O)

• Local observables: Aloc(O) = {A ∈ A(O) : A ∈ Floc[[h̄]]}, which is only a vector
subspace of A(O)

• Polynomial observables: Apol(O) = {A ∈ Fpol ∩ Fµc : supp A ⊂ O} is also a
∗-subalgebra of A(O).

Remark 1.4.5.
In the definition of the polynomial observables, the functionals were not taken to be
formal power series in h̄. This is due to the fact, that for polynomial functionals the
sum in the ?-product (1.17) has only finitely many terms. Therefore we obtain a h̄-
convergent ?-closed subalgebra of A in which we are allowed to set h̄ = 1 in (1.17),
which is implicitly assumed in Apol from here on. ♦
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From a mathematical point of view, the huge algebraAmay seem a bit singular for a
nice topology. This is indeed true to some extent. The space of microcausal functionals
can be endowed with the initial topology, induced by the mappings

A 7→ A(n)(φ) ∈ E ′Ξn
(Mn) = {t ∈ E ′(Mn) : WF(t) ⊂ Ξn} φ ∈ E , n ∈ N

where the images of the maps carry the Hörmander topology. This resulting topology
for Fµc has, unfortunately, not many good features, see [BFR12] for more details on
the topological structure. The reason why we allow for such singular elements in our
algebra anyhow, can be simply be put in the following statement: The interesting in-
teractions in QFT are not regular, they are non-linear local functionals V ∈ Aloc. To see
why regular interactions fail to describe local QFTs see section 2.3.

The deformation quantization for the classical off-shell algebra of observables Acl

from definition 1.3.7 is complete and the quantization map

Q : Acl → A, Q(A) = Ah̄0

fulfills the appropriate correspondence properties (1.15) due to the commutator condi-
tion H1.

In a next step, we verify that the quantization has actually been done in a state-
independent way, as announced in the beginning. For this we show, that the algebraic
structure of A is independent of the Hadamard two-point function ∆+ ∈ H+. This
statement can be formulated in a precise way by using the notion of equivalent prod-
ucts.

Definition 1.4.6 (Equivalent ?-products).
Two ?-products ?1 and ?2 on Fµc[[h̄]] are called equivalent, if there exists a formal power series
of linear maps U = 1+ ∑∞

n=1 h̄nUn with Un : Fµc → Fµc such that

A ?1 B = U−1 (U(A) ?2 U(B)) , U(A)∗ = U(A∗), U(1) = 1 ∀A, B ∈ A .

The map U provides a ∗-isomorphism between (Fµc[[h̄]], ?1) and (Fµc[[h̄]], ?2).

Thus, two equivalent ?-products are merely two different ways to describe the same
algebra. We find, that all deformation quantizations of the (off-shell) classical algebra
of the free theory are equivalent. That implies that the algebraic structure of A is inde-
pendent of the particular choice of ∆+ ∈ H+.

Proposition 1.4.7.
Let Ai = (Fµc[[h̄]], ?i) be two ∗-algebras arising by using two Hadamard two-point functions
∆i
+ ∈ H+ for i = 1, 2. Then A1 is isomorphic to A2.

PROOF. We construct the isomorphism explicitly. Let ∆i
+, i = 1, 2 be two Hadamard

two-point functions, then

∆1
+(x, y)− ∆2

+(x, y) = w1(x, y)− w2(x, y) = u(x, y), u ∈ C∞(M×M),
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where the wi are the state-dependent terms in the Hadamard condition. The wi and u
are smooth by condition H3 and due to the Hermiticity condition real-valued. The map

U : Fµc → Fµc, U = eh̄
∫

u(x,y) δ2
δφ(x)δφ(y) dx dy

intertwines ?1 and ?2, i.e.

A ?2 B = U−1(UA ?1 UB) ∀A, B ∈ Fµc.

and fulfills the conditions from definition 1.4.6. The proof of the last statement is a
consequence of the product rule for functional derivatives, see [Kel10] for a proof in
terms of a co-product rule. �

The fact that all algebras of observablesA arising from a Hadamard two-point function
∆+ ∈ H+ are isomorphic can be used further to define an algebra, which is manifestly
independent of the Hadamard two-point function ∆+. The construction, which uses
specific sections over the bundle of algebras (A∆+)∆+∈H+ is found in [FR12].

1.4.3. Axioms of Quantum Field Theory

Concluding the construction of the algebra of off-shell observables of the free scalar
field we state the Haag-Kastler axioms for a quantum field theory.

Definition 1.4.8 (Haag-Kastler Axioms of QFT).
] The theory of a scalar field is described by a net of unital ∗-algebras {A(O) : O ⊂ M} with
the following properties:

QFT1: Isotony: For every isometry P↑+ 3 p1 : O1 → O2 there is a unital ∗-homomorphism
αp : A(O1) → A(O2) and for every further isometry P↑+ 3 p2 : O2 ⊃ pO1 → O3 it
holds αp1◦p2 = αp1 ◦ αp2 .

QFT2: Einstein causality: If O1 and O2 are spacelike separated, then [A(O1),A(O2)] = 0.

QFT3: Time-slice axiom: Let p : O1 → O2. If pO1 contains a Cauchy surface for O2, then
αp : A(O1) → A(O2) is surjective. It follows that in particular A(Σε) = A(M) for
any ε-neighborhood Σε of a Cauchy surface Σ of M.

The net of off-shell algebras {A(O) : O ⊂ M} satisfies the first two axioms of defini-
tion 1.4.8, which are the kinematical ones [BF09]. For the time-slice axiom, which is a
statement concerning the dynamics, we will have to include dynamics in A.

The preferred method to do this will be the identification of a two-sided ∗-ideal, simi-
lar to the case of classical field theory in definition 1.3.9. Thanks to condition H4 for the
Hadamard two-point functions we find that the classical ideal IP is in fact a two-sided
ideal in A. For this let I ∈ IP and ψ ∈ EP. The functional derivative I(n)(ψ)[h⊗n] of I at
ψ ∈ EP vanishes if h is a solution to P. This follows from definition 1.2.3. The maps〈

∆⊗n
+

∣∣∣A(n)(ψ)⊗ ·
〉

: E ′Ξn
→ C
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can be seen, by H4, as the limit of a sequences hn of solutions to P in the Hörmander
topology for ψ ∈ EP. It follows:

(A ? I)(ψ) =
∞

∑
n=0

h̄n

n!

〈
∆⊗n
+

∣∣∣A(n)(ψ)⊗ I(n)(ψ)
〉

H4
= A(ψ) · I(ψ) ∈ IP

for all ψ ∈ EP, i.e. IP is a left ideal. The right-ideal property follows by the same
argument and so does the ∗-ideal property. We arrive at:

Definition 1.4.9 (On-shell algebraAos).
The algebra Aos(O) of on-shell observables in O is given by ∗-algebra of formal power series
of on-shell functionals F P

µc in h̄ with the product ?: Aos(O) = ({A ∈ F P
µc[[h̄]] : supp A ⊂

O}, ?).

The associated net {Aos(O) : O ⊂ M} fulfills all of the Haag-Kastler axioms 1.4.8. A
detailed proof of the time-slice axiom is found in [CF09].

This concludes the treatment of the algebra of observables in the free theory of the
scalar field. After an introduction to the ideas of formal deformation quantization we
defined the notion of Hadamard two-point functions. We showed that all elements
∆+ ∈ H+ can be used to equip Fµc[[h̄]] with non-commutative, associative products
which obey certain physically motivated properties. Furthermore all the arising al-
gebras are shown to be equivalent. In the last step we introduced dynamics into the
algebra of off-shell observables in a very similar procedure as in classical free theory,
namely by going over to the quotient algebra Aos with respect to the ideal IP.

1.5. States in Quantum Field Theory

The state space of quantum theories exhibits a distinguishing feature (in comparison to
classical theories) besides the non-commutative product on the algebraic side: The pure
states of quantum systems are in one-to-one correspondence with normalized vectors
in a Hilbert space, which is a linear space. In particular for every normalized vector ψ

in the Hilbert space there is a pure state ωψ of the quantum system. That implies that
e.g. the sum ψ̂ = 1√

2
(ψ1 + ψ2) of any two normalized vectors ψ1, ψ2 can be identified

with a pure state ωψ̂ again. This feature is called superposition principle and implies
many interesting effects of quantum theory. Classical theories are shown to lack this
attribute.

Due to the state-independence of the algebra of observables A we are in the same
comfortable situation as in classical field theory, as it comes to the discussion of the
state space. After the introduction of the concept of states in formal deformation quan-
tization we establish a link between states in axiomatic approaches and the states in
formal deformation quantization. We then present a method to obtain states in the
our framework, which are close to classical states (coherent states). We close the sec-
tion with a detailed discussion on the two very important states in relativistic QFT, the
quasi-free vacuum and the KMS state.
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1.5.1. States in Formal Deformation Quantization

The way of defining states which is discussed here is similar to the one used in classical
field theory (section 1.3.3), namely we look at positive linear functionals over the alge-
bra of observables. The above-mentioned distinguishing feature of the superposition
principle is not directly visible at this stage, since only the convex sums of such states
result again in states: only “classical combinations” of states are present at first sight.
We come back to this point later on.

The algebra of observables A has been constructed as formal power series of func-
tional spaces, i.e. A = (Fµc[[h̄]], ?). Looking at linear functionals ω : A → C, it was
found that such functionals are no suitable candidates for states due to possible conver-
gence issues. In our case it is more natural to look at linear functionals ω : A → C[[h̄]].
The notion of normalization can be directly extended to those functionals, the condition
of positivity for states has to be reconsidered, though.

An appropriate notion for positivity of linear functionals with values inC[[h̄]] is mo-
tivated and discussed in [BW98, Wal07]. It is shown, that a meaningful definition of
positivity can be achieved by demanding that the first non-vanishing coefficient of the
formal power series of complex numbers ω(A∗ ? A) shall be real and positive, i.e. there
exists a k ∈ N0 such that

ω(A∗ ? A) =
∞

∑
n=0

h̄nan, an = 0 for n < k and ak > 0 . (1.18)

For the purposes of this work it is sufficient to work only with states over A that are
induced by states over Apol.

Definition 1.5.1 (States overApol).
A linear functional ω : Apol → C[[h̄]] is called a state, if it is normalized: ω(1) = 1 and
positive ω(A∗ ? A) ≥ 0. The set of all states over Apol is denoted by S(Apol).

A straightforward calculation shows that every state ω over Apol induces a normal-
ized linear functional, that fulfills (1.18) by

ω̃ : A → C[[h̄]], ω̃(A) =
∞

∑
n=0

h̄nω(An)

for A 3 A = (An)n∈N. Hence the set of states S(A) over A is defined as the set of all
induced states from S(Apol).

Similar to the issue in classical field theory the state space over A and over Aos are
not in one-to-one correspondence, see the discussion below definition 1.3.12. Following
those ideas, we will restrict the attention to states over S(A) which annihilate the ideal
IP. For those states we have a one-to-one correspondence to S(Aos).

An important class of states over A is given by evaluation functionals, which we
know from the classical state space. At this point, the positivity condition (H5) of the
Hadamard two-point function ∆+ ∈ H+ is crucial. It is actually the only point in the
construction, where this property is used.
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Proposition 1.5.2.
For a Hadamard two-point function ∆+ all evaluation functionals evψ with ψ ∈ E are states.

PROOF. The linearity and normalization condition is trivial for the evaluation function-
als. We look at the formal power series

evψ(A∗ ? A) =
∞

∑
n=0

h̄n

n!

〈
∆⊗n
+

∣∣∣A(n)(ψ)∗ ⊗ A(n)(ψ)
〉

.

The positivity condition (H5) together with stability of this condition under tensor
products yields 〈

∆⊗n
+

∣∣ f ∗ ⊗ f
〉
≥ 0 f ∈ D(Mn).

By a continuity argument one shows, that the non-negativity extends to evaluations
over E ′Ξn

⊗ E ′Ξn
. Hence, every summand is a positive number. This implies both that

the evaluation functional is formally positive, as well as positive for convergent subal-
gebras. �

Unlike in the classical case, evaluation functionals are, in general, not pure states. The
question, whether evψ is intimately related to the question, whether the quasi-free state
determined by ∆+ is pure. A discussion on the level of the Weyl algebra is found in
section A.2 of the appendix.

The evaluation states can be considered as coherent states of the algebra. The reason
is the following: Consider the on-shell algebra Aos and the evaluation functional evψ

with a solution ψ ∈ E . The state evψ is a quasi-free state for the subalgebra of A,
generated by the linear field Φ f and the expectation value of Φx inAos at a point x ∈ M,
i.e. the one-point function is given by

evψ(Φx) = ψ(x) .

Hence, evψ is a quasi-free state with non-vanishing one-point function. This character-
izes a coherent state with respect to the quasi-free state ∆+ defining ? in Aos.

A very important notion related to states is the GNS representation. For this manner
let A be an abstract ∗-algebra over C. It is well-known [Haa92] that states can be used
to construct a representation of the algebra A on a certain Hilbert space.

The GNS construction relies on the fact, that the state ω ∈ S(A) induces a sesquilin-
ear form (A|B)ω = ω(A∗B) on A, seen as a vector space. The degeneracy space of (·|·)ω

is the Gelfand ideal Iω = {A ∈ A : ω(A∗A) = 0} of A. Due to the Cauchy-Schwarz
inequality for (·|·)ω, Iω is a left-ideal in A. The quotient

Hω = A
/
Iω

is a pre-Hilbert space with respect to (·|·)ω and its completion yields the Hilbert space
H̄ω of the system in the state ω. The GNS representation πω is obtained by left multi-
plication

πω(A)[B] = [AB], [B] ∈ Hω
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on the dense subspace Hω. The cyclic GNS vacuum vector is given by [1] = Ωω. It
holds the following theorem:

Theorem 3 (Uniqueness of the GNS representation [GN43, Seg47]).
Let π be a ∗-representation of A on a Hilbert space H, such that there is a vector Ω ∈ H which
is cyclic for A and it holds ω(A) = (Ω|π(A)Ω). Then π is unitarily equivalent to the GNS
representation πω.

In physical terms this means that the description of the theory in a fixed Hilbert space
can be used to obtain all predictions of the theory (in terms of expectation values of ob-
servables) once the state of the system is fixed. For the treatment of different states and
state independent features of the theory the algebraic approach is superior though. In
the case of formal power series of algebras a similar formalism is introduced in [BW98].

At this point we rediscover the linear structure of the space of states. Every algebraic
state ω on the algebra of observables A induces a Hilbert space H̄ω and every vector
ψ ∈ H̄ω defines an algebraic state over A by

ωψ(A) = (ψ, πω(A)ψ)

in return. Hence a superposition of two states, as described in the beginning of this
section, can be achieved for the elements of H̄ω on each GNS Hilbert space separately.

1.5.2. Symmetries and States

The symmetries of Minkowski spacetime, namely the elements of the group P↑+, play
a decisive role in the determination of the properties of the system. It was shown in
section section 1.2.3 that the natural action of P↑+ on the space of functionals induces a
∗-homomorphism

αp : A(O) = (Fµc(O)[[h̄]], ?) −→ (Fµc(pO)[[h̄]], ?p) ∼= A(pO) .

This implies that the algebraic structure of A is invariant under P↑+. However, the
particular realization ofA, that specified by the Hadamard two-point function ∆+ is not
invariant. We introduce the notion of an algebra, which is invariant under a symmetry
transformation.

Definition 1.5.3 (Invariant algebras).
A ?-product given by a Hadamard two-point function ∆+ is called invariant under p ∈ P↑+, if

αp(A ? B) = αp(A) ? αp(B) ∀A, B ∈ A .

The corresponding algebraA = (Fµc[[h̄]], ?) is called invariant under p ∈ P↑+, if ? is invariant
under p.

The condition of p-invariance can be linked to the Hadamard two-point function: The
product ? is p-invariant, iff ∆+(αp f , αpg) = ∆+( f , g) for all f , g ∈ D(M). It follows
in particular that αp acts on a p-invariant quasi-local algebra A as an automorphism.

43



1. Quantization of the Free Scalar Field

These properties trivially extend to algebras, which are invariant under subgroups of
P↑+.

On algebras which are invariant under a symmetry p we may ask whether there exist
states, which are also invariant under p.

Definition 1.5.4 (Invariant states).
Let A be invariant under p ∈ P↑+. A state ω ∈ S(A) is called p-invariant, if

ω(αp(A)) = ω(A) ∀A ∈ A.

An evaluation functional evψ over A is invariant under p, if αpψ = ψ, see definition 1.2.6 for
the contravariant action αp of P↑+ on E .

Invariant states on a general ∗-algebra A can be used to construct a representation of the
respective symmetry on the GNS Hilbert space. The unitary operator Uω(p), defined
by

Uω(p)AΩω = πω(αp(A))Ωω

is easily shown to define a unitary representation of the automorphism αp onHω, which
extends to the full Hilbert space.

A very important class of symmetries is the subgroup of spacetime translations. For
any translation invariant state we obtain a four parameter group of unitaries Uω(x)
with x ∈ M. Assuming that the maps

x 7→ Fω
A,B(x) = ω(A ? αx(B))

are continuous we can infer that the unitaries Uω(x) act strongly continuous on H̄ω and
by using the Stone von-Neumann theorem we know, that there is a dense subspace of
the GNS Hilbert space, on which the self-adjoint generators

Pω = (P0
ω, . . . , P3

ω), Uω(x) = eiηµνxµPµ
ω

are defined. The Pµ
ω are interpreted as the components of the 4-momentum operator

and ηµνPµ
ωPν

ω is the total mass, associated to the systems in the ensemble ω.
In the case of algebras A obtained by deformation quantization, A is translation in-

variant, if ∆+ is translation invariant. In the search for a translation invariant state we
consider the set of evaluation functionals. An evaluation functional evψ is translation
invariant, iff

evψ(αx(A)) = A(αxψ) = evψ(A) = A(ψ), ∀A ∈ A.

with the contravariant action αx from definition 1.2.6. Hence, ψ has to be a constant
function. Since evψ must also be compatible with the dynamics, Pψ = 0 has to hold at
the same time. If m 6= 0 the only solution is the evaluation at ψ = 0. In the massless
case, there is no restriction.

We close the section on the states of the algebra of the scalar field by the two most
important states in free relativistic systems. The first state is the famous vacuum state.
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Example 1.5.5 (Quasi-free vacuum state).
The existence of a vacuum state in a relativistic quantum field theory is a very important
fact and is deeply connected to the stability of the theory. This needs some explanation,
which is carried out only to a small extent here. A vacuum state or ground state is
defined to be the preparation of the system with lowest possible total energy (the ex-
istence of such a state is not guaranteed by the axioms). In addition to that one often
requires that the vacuum state is P↑+-invariant to obtain a unique vacuum.

In relativistic QFT “lowest possible energy” is an ambiguous notion, since energy
and spatial momentum are mixed by P↑+-transformations, hence are observer depen-
dent. A relativistic criterion is given by the relativistic spectrum condition: Let ω be a
translation invariant state on A. Then it is called a vacuum state, if the joint spectrum
of Pω fulfills

spec(Pω) ⊂ J+(0) ≡ J+.

This is a generalization of the non-relativistic spectrum condition P0
ω = Eω > 0 and it

is implied by the condition

supp(F̂ω
A,B) ⊂ J+ ∀A, B ∈ A with Fω

A,B(x) = ω(Aαx(B))

if the Fω
A,B(x) exist as tempered distributions over M and where αx denotes the action

of the translation group and F̂ω
A,B means the Fourier transformation (in the sense of

distributions).
The construction of a vacuum state in the case of the algebra A of the free scalar

field is done by cutting off the negative energies in the causal commutator function Gc

(1.10) by a step function in momentum space. Let ∆+(x, y) = Dvac
+ (x − y) on account

of translation invariance and

Dvac
+ ( f ) =

1
(2π)3

∫
f̂ (−p)θ(p0)δ(p2 −m2)dp, f ∈ D(M).

It is clear, that Dvac
+ (αp f ) = Dvac

+ ( f ), thus the corresponding ?-product is P↑+-invariant.
The other properties of definition 1.4.2 are easy to see, e.g. since Dvac

+ is given by the
Fourier transform of a positive measure it follows, that ∆+ is a distribution of positive
type, i.e. ∆+( f ∗, f ) ≥ 0 for all f ∈ D.

The vacuum state is defined as the evaluation functional ev0 in the P↑+-invariant alge-
bra that is defined by Dvac

+ . To show that this is a vacuum state, consider the expectation
value

ev0(A ? αx(B)) =
∞

∑
n=0

h̄n

n!

〈
((1⊗ αx)∆+)

⊗n
∣∣∣A(n)(0)⊗ B(n)(0)

〉
=

∞

∑
n=0

h̄n

n!

∫
D̂vac

+ (p1) · · · D̂vac
+ (pn)an(−p1, . . . ,−pn)bn(p1, . . . , pn)e−iη(x,∑n

k=1 pk) dP ,

where the an, bn are the Fourier transforms of the A(n)(0), B(n)(0) respectively. For this
particular state, one obtains for the distribution F̂evψ

A,B(q) in n-th order in h̄, up to factors
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of 2π∫
D̂vac

+ (p1) · · · D̂vac
+ (pn)an(−p1, . . .− pn)bn(p1, . . . , pn)δ(q−

n

∑
k=1

pk)dp1 · · ·dpn .

Due to the fact that D̂vac
+ has support in Hm = {p ∈ M : η(p, p) = m2} (which coincides

with the forward lightcone in the case m = 0) one sees, that the support of F̂evψ

A,B is
contained in Hm + Hm + · · · + Hm ⊂ J+ for m ≥ 0 at every order in h̄. It follows,
that the evaluation functional ev0 on the algebra A (with ? given by Dvac

+ ) is a Poincaré
invariant vacuum state. The state is induced by ev0 in the massive case (m > 0) on
the on-shell algebra Aos. In the massless case there are several vacuum states since
constant functions are also solutions to �. The uniqueness of the massive vacuum has
been established under very general assumptions in [Seg62]. ♦

A second class of important translation invariant states on A is given by KMS states
with inverse temperatures β = 1

kBT > 0.

Definition 1.5.6 (KMS state with inverse temperature β).
Let αt be a one-parameter group of automorphisms of A. A linear functional ω is called a KMS
state with inverse temperature β if the function

Fω
A,B(t) = ω(Aαt(B))

has an analytic continuation into the strip Sβ = {z ∈ C : 0 < =(z) < β} and is continuous
on the boundary, such that Fω

A,B(iβ) = Fω
B,A for all A, B ∈ A.

KMS states are generalized Gibbs states and exhibit lots of features that justifies to
call them thermal equilibrium states. We will use both terms synonymously here. The
origin and properties of the KMS states are thoroughly discussed in [Haa92] and will
not be repeated here.

Example 1.5.7 (Quasi-free, homogeneous KMS state).
Similar to the vacuum case, we begin the construction of the free KMS state with
the choice of a suitable Hadamard two-point function ∆+. In this case we choose
∆+(x, y) = Dβ

+(x− y), where

Dβ
+( f ) =

1
(2π)3

∫
f̂ (−p)

ε(p0)δ(p2 −m2)

1− e−βp0 dp, β =
1

kBT
> 0. (1.19)

Clearly Dβ
+ and thus ? is invariant under translations in M and rotations in R3 (for

a fixed time), but not under Lorentz-boosts. As in the case of the vacuum state, Dβ
+

induces a Hadamard two-point function.
We consider the evaluation at ψ = 0, ev0, and study the function

t 7→ Fβ
A,B(t) = ev0(A ? αt(B))
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for time-translations αt only. We verify, that Fβ
A,B extends analytically to the strip 0 <

=(t) < β and

ev0(A ? αt(B))
∣∣∣
t=iβ

= ev0(B ? A) ,

following the calculation in the previous example and replacing the support property
of Dvac

+ by the KMS property of Dβ
+: Dβ

+( f , αiβg) = Dβ
+(g, f ) for f , g ∈ D. This proves,

that ev0 defines a KMS state over A with ? given by Dβ
+. Moreover, the state ev0 fulfills

also the relativistic KMS condition that has been established in [BB94]. The function

x 7→ Fβ
A,B = ev0(A ? αx(B))

can be shown to have an analytic continuation into the tube-shaped domain

{z ∈ C4 : =(z) ∈ J+(0) ∩ J−(βe0)} .

Again this follows from the fact, that Dβ
+ has this property.

Furthermore, the quasi-free quantum KMS state, determined by ev0 on the algebra
generated by Dβ

+, is superior to its classical counterpart, which was studied in exam-
ple 1.3.15. It exists on all functionals A ∈ A, thus the quantization has removed the
singularities, that appeared in the classical theory. ♦
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2. The Theory of the Interacting Scalar
Field in the Perturbative Approach

The content of this chapter addresses the mathematical treatment of interactions and
the construction of non-linear classical and quantum field theories in a perturbative
manner. The use of interacting models is imperative from a physical point of view,
since models in free theory are not able to predict well-known observations from high-
energy physics like particle creation and annihilation, scattering or thermalization.

This does not imply, that models in free theory are obsolete, quite the contrary! Many
aspects of the rich phenomenology of interacting field theories can be very well approx-
imated by using notions from the linearized theory. This led amongst other reasons to
the success of interacting quantum field theories in describing the fundamental forces
of nature and their interactions with matter and in many other interesting systems.

The interacting scalar field is one of the simplest relativistic field theories in many
ways, which contains models that are used e.g. in high-energy physics. In the standard
model of particle physics the Higgs field is actually described by a scalar field with
quartic self-interaction and couplings to both bosons and fermions of the electroweak
sector [Group12]. It induces an additional mass term for the fields it is coupled to,
as it remains in a ground state with non-vanishing vacuum expectation value (Higgs
mechanism).

The emphasis of the present approach lies on the covariant and state-independent
construction of the interacting observables. This is essential for the further discussion
concerning the UV-divergences that appear due to very singular nature of pointwise
interactions in quantum field theoretical models and the IR divergences that are to be
expected from the effects of the finite temperature of the system which was touched on
in the introduction.

After introducing the geometric ideas of causal perturbation theory in the setting
of classical field theory we proceed to define time-ordered products and the formal
S-matrix. These objects are crucial for the construction of the algebra of interacting
observables. After showing the state-independence of the construction, we discuss the
translation of two particular realizations of the algebra of interacting observables in
section 2.3.2. This leads to two important connections: On the one hand the principle
of perturbative agreement, introduced by Hollands and Wald in [HW05]. On the other
hand we draw the connection to the so-called thermal mass [LB00] which arises by
representing the same interaction term in the algebra of Wick polynomials, induced by
the vacuum and the KMS Hadamard two point function.
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2.1. Classical Field Theory

To start with a perturbative treatment of pointwise interactions in classical field theory
is presented according to the framework of locally covariant field theory [DF03, BFR12].
One of the reasons to present perturbation theory already at the level of classical field
theory is that the formalism that is developed here has a very similar form to causal
perturbation theory. Thus the geometric nature can be pointed out very well without
the usual UV divergences of perturbative QFT.

2.1.1. Configuration Space Picture

Conforming to the ideas in the discussion of the free classical field theory (section 1.3)
we start with solving the Euler-Lagrange equations for non-linear actions S. In this
work we will only deal with actions which can be written as

S[ f ] = SL0 [ f ]−V[ f ], SL0 [ f ](φ) = −1
2

∫
f (x)φ(x)

(
�+ m2) φ(x)dx , (2.1)

where SL0 is the free action, considered in (1.7) and V denotes an interaction term. The
possible interactions are restricted as follows:

Definition 2.1.1 (Interactions).
An interaction V a map V : D → Floc ∩ Fpol, satisfying the axioms of definition 1.3.1. In
addition we consider only functionals that do not contain derivative couplings.

Any interaction V hence may be written as

V[ f ](φ) =
∫

f (x)V(Φx)dx, V(Φx) =
λn+1

n!

N

∑
n≥3

Φn
x

in the notation of (1.3). The λn ∈ R are called coupling constants. Consequently, the
full action (2.1) reads S = SL0 −V = SL0−V .

The construction of local solutions demands solving the non-linear Euler-Lagrange
equations

0 = δEL(SL0−V )(φ)(x) = Pφ(x) + V (1)(Φx(φ))︸ ︷︷ ︸
≡V ′(φ(x))

= Pφ(x) +
N−1

∑
n≥2

λn

n!
φ(x)n (2.2)

in a region O ⊂ M. We may choose O to be causally complete: D(O) = O, where D
is the domain of dependence, see definition 1.1.2. This makes O a (flat) spacetime in
its own right and there always exists a Cauchy surface Σ for M, such that O ∩ Σ = ΣO
is a Cauchy surface for O. The geometrical situation is depicted in figure 2, where a
double cone are used as region O. We assume, that (2.2) is well-posed, meaning that
the Cauchy problem

δELSL0−V (φ) = 0 on O, φ�Σ = u0, ∂x0 φ�Σ = u1 (2.3)
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Σ+

Σ−

Σ

supp(g)

O

Σ ∩O

Figure 2.: The geometrical situation in the scattering setting.

has a unique solution φ with

supp(φ) ⊂ J(K), K = supp u0 ∪ supp u1 ⊂ ΣO .

Here u0, u1 ∈ D(ΣO), where ΣO a Cauchy surface for O. For sufficiently small Cauchy
data (where small is meant with respect to certain Sobolev norms) the Cauchy problem
is, in fact, well-posed, see [Hör90].

The quest of constructing solutions to (2.2) by means of methods from scattering
theory takes a slightly different approach. To make things precise let us cut off the
interaction V in M with a test function g ∈ D, such that g = 1 on O and supp(g)
is located between two Cauchy surfaces Σ±, one in the future and one in the past of
supp(g), see figure 2. Let us denote the modified interaction by

Vg =
∫
Vg(Φx)dx, Vg(Φx) = g(x)V(Φx) =


V(Φx) x ∈ O
0 x later than Σ+

0 Σ− later than x

.

Denote the space of smooth solutions to (2.2) with interaction Vg and compact Cauchy
data in ΣO by EVg . Then for every ψ ∈ EVg there exist unique solutions to the free EOMs
Pφin/out = 0 such that

φin, φout ∈ E sc
P : ψ(x) =

{
φout(x) x later than Σ+

φin(x) Σ− later than x

with the same Cauchy data as ψ. Due to the well-posedness of the free and interacting
Cauchy problem we know that the maps

rVg : E sc
P → EVg , φin 7→ ψ, aVg : E sc

P → EVg , φout 7→ ψ

are bijections of the respective solution spaces.
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2. The Theory of the Interacting Scalar Field in the Perturbative Approach

For intuitive reasons we focus the discussion in the following to the retarded Møller
map rVg . Its dual map determines a bijection of functional spaces:

RVg : F (EVg)→ F (E sc
P ), RVg A = A ◦ rVg (2.4)

with the retardation property: RVg A = A, if supp g is later than supp A. We calculate
RVg in a Taylor expansion around g = 0:

RVg A =
∞

∑
n=0

1
n!
Rn(g⊗n|A), Rn(g⊗n|A) =

dn

dλn

∣∣∣
λ=0

A ◦ rλVg

It was shown in [DF00] that the Rn are given by

Rn(g⊗n|A) = n!
∫

ρr(x1) · · · ρr(xn)A dx1 · · ·dxn (2.5)

where

ρr(y) =
∫ δSVg

δφ(x)
Gr(x, y)

δ

δφ(y)
dx =

∫
g(x)V ′(φ(x))Gr(x, y)

δ

δφ(y)
dx.

Notice, that this formula makes sense only, if the respective derivatives of the involved
functionals are interpreted as restrictions from functional derivatives of functionals
over E .

In this way we obtain the retarded Møller operator RVg as a formal power series in
the interaction V , or in g respectively. The question, whether the sum in (2.4) converges
to a functional or whether RVg can be constructed by other than perturbative means
is discussed in a series of papers, starting with [BFR12] and we will not discuss the
question in this work.

2.1.2. Functional Approach

As we pointed out in the last section, the functional derivatives that were used to de-
fined the Møller map RVg must be seen as restrictions of functional derivatives on E .
Hence it is quite natural to extend this formalism to the off-shell picture, which has
been established in section 1.3.2. It is therefore essential to define a Poisson bracket
for the commutative algebra (Fµc, ·), which comes from the full action S and coincides
with {·, ·}Gc from definition 1.3.6 in the case of V = 0.

Definition 2.1.2 (Linearized Euler-Lagrange operator).
The linearized Euler-Lagrange operator δ2

EL for an action S around a background configuration
ψ ∈ E is defined by

δ2
ELS(ψ) ∈ D′(O)⊗D′(O) :

〈
δ2

ELS(ψ)
∣∣h1 ⊗ h2

〉
=

δ2S[ f ](ψ)
δφ2

∣∣∣
f=1

[h1 ⊗ h2]

where f = 1 on O.
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2.1. Classical Field Theory

Since S[ f ] is local, the distribution δ2
ELS(ψ) has support only on the diagonal and can

therefore be identified with a differential operator Plin(ψ) : E → D′.
For the action we are interested in, i.e. SL0−Vg we obtain

δ2
ELSL0−Vg(ψ)[h1 ⊗ h2] = −

∫
h1(x)

(
P + g(x)V ′′(ψ(x))

)︸ ︷︷ ︸
Plin(ψ)

h2(x)dx (2.6)

The linearized Euler-Lagrange operator Plin(ψ) : E → E is normal hyperbolic for all
ψ ∈ E , hence we can use the following theorem that guarantees the existence and
uniqueness of advanced and retarded fundamental solutions to Plin(ψ).

Theorem 4 ([BF09]).
Let Plin(ψ) be the normal hyperbolic linear partial differential operator from (2.6). Then there
exist advanced and retarded fundamental solutions to Plin(ψ) for ψ and their difference

Gc,Vg(ψ) : D → E

satisfies the same properties as Gc in definition 1.3.3 and below. Gc,Vg(ψ) is called the causal
commutator function for the action S and the background ψ ∈ E .

As in the case of free theory, we define the Poisson structure on the algebra of off-shell
observables by Gc,Vg . The difference in this case is, that the Poisson structure is non-
constant due to the fact, that Gc,Vg depends on the background configuration.

Definition 2.1.3 (Peierls bracket).
Let Gc,Vg be the causal commutator function with respect to the action SL0−Vg . The map given
by

{·, ·}Gc,Vg
: Fµc ×Fµc → Fµc, {A, B}Gc,Vg

(φ) =
〈

iGc,Vg(φ)
∣∣∣A(1)(φ)⊗ B(1)(φ)

〉
is the Peierls bracket for the algebra of classical observables (Fµc, ·) governed by the action
SL0−Vg .

The bracket {·, ·}Gc,Vg
endows the commutative algebra (Fµc, ·) with a Poisson structure,

as in the case of free theory. The well-definedness of the bi-linear map {·, ·}Gc,Vg
can be

established due to the fact, that WF Gc,Vg(φ) = WF Gc for all φ ∈ E , since both P and
Plin have the same principal symbol, see [BF09, Hör90]. Then the arguments for all
algebraic properties of the Peierls bracket go along the same lines as for {·, ·}Gc besides
the Jacobi identity, for which a proof can be found in [DF03]. Keeping in mind, that
due to the cutoff procedure for V , we have to restrict the support of the observables of
the interacting theory to the region O ⊂ M on which g was chosen to be constant. We
arrive at:

Definition 2.1.4 (Poisson ∗-algebra of off-shell observables).
The tripletAVg

cl (O) =
(
Fµc(O), ·, {·, ·}Gc,Vg

)
forms a unital Poisson ∗-algebra for D 3 g = 1

on O. It is called the local Poisson ∗-algebra of off-shell observables in the region O with
respect to the action SL0−Vg .
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2. The Theory of the Interacting Scalar Field in the Perturbative Approach

Moreover {AVg
cl (O) : O ⊂ M} forms a net of local Poisson ∗-algebras, if the O are causally

complete. It satisfies the axioms Isotony (CFT1) and Einstein causality (CFT2) from definition
1.3.5.

The proof of the statements is to a large extent the same as in the case of the quadratic
action in section 1.3.2 and can be found in [BF09].

One of the main features of the off-shell formalism of classical field theory and the use
of Peierls bracket becomes apparent, if one changes the action S. Though the general
formalism can be used to relate any kind of interactions (also non-local ones), we will
focus on the relation between SL0 and SL0−Vg here.

Theorem 5 ([DF03]).
Let S1 and S2 be two actions and {·, ·}1,2 their associated Peierls brackets. Then the retarded
Møller map r12 : ES2 → ES1 , which is constructed in the same way as above, induces a Poisson
∗-isomorphism via (2.4):

{R12(A),R12(B)}2 = R12 ({A, B}1) , R12(A) = A ◦ r12

for all A, B in the algebra AS1
cl . Speaking in terms of Hamiltonian mechanics, R12 is a canonical

transformation.

Notice, that the theorem is proven by purely algebraic properties of the map RVg and
does not rely on the expansion as a formal power series.

At this point the off-shell nature of the formulation of the theory is utterly important:
Without it such a straightforward construction of the Peierls bracket and the Møller
map could not be done. In this sense, changing the dynamics of the system is done best
in a formalism, which is constructed independent of the concrete dynamics (AVg

cl de-
pends only on the linearized Euler-Lagrange equations) and allows for implementing
the dynamics in a secondary step.

The last theorem is applied for the present situation now: For the quadratic action
SL0 , the linearized Euler-Lagrange operator Plin coincides with the Klein-Gordon op-
erator P, thus the Peierls bracket reduces to the previous Poisson bracket, defined in
section 1.3.2. The above theorem allows now to represent the (local) algebra of off-shell
observables AVg

cl , induced by the full action SL0−Vg explicitly by objects in the free the-
ory Acl (in a formal power series in g!). This approach is very close to the interaction
picture of quantum mechanics, in which unitary operators can be used to represent
interacting observables by observables of the free theory.

Since RVg : AVg
cl → Acl is a canonical transformation, the physical interpretation of the

observable A is stable under the mapping RVg . For example, the smeared interacting
field Φ f is represented in Acl by

RVg(Φ f )(φ) = ∑
n≥0

∫
ρr(x1) · · · ρr(xn)Φ f (φ)dx1 · · ·dxn

= Φ f (φ) +
∫

g(x)V ′(φ(x))Gr(x, y) f (y)dx dy
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2.2. Quantum Field Theory and Renormalization

which is nothing but an off-shell Yang-Feldmann approach to interacting fields, see e.g.
[YF50] or [DF04] for an overview.

In addition to the above properties we want to mention that the construction of the
algebra of interacting polynomials AVg

cl ∩ Fpol can be done, using the so-called factor-
ization property [DF03]. That is

AVg
cl (O) =

∨{
RVg(A) : A ∈ Fpol, supp A ⊂ O

}
(2.7)

where ∨ means the generated algebra. In this way the properties of the algebra of
interacting polynomial observables can be studied by looking at the generators RVg(A)

only. This will be of importance in the quantum theory where the analogue of the
Møller map RVg fails to be invertible in general. In this case, the RHS of (2.7) defines
the interacting theory.

In the end we mention that ideals IP and

IVg = {A ∈ AVg
cl : A(φ) = 0 if φ ∈ EVg}

are intertwined by RVg almost by construction. A complete proof of this fact is out of
the scope of this work, it is announced to be published in [BFLR]. Using this fact it is
obvious that the on-shell algebra of the interacting scalar field

AVg
cl
/
IVg

= R−1
Vg

(
AP

cl

)
is isomorphic to AVg

cl and that the representation induced by RVg is compatible with the
ideal of the equations of motion. The above quotient algebra fulfills then the time-slice
axiom CFT3 from definition 1.3.5.

2.2. Quantum Field Theory and Renormalization

This section will be concerned with the translation of the methods which were used to
construct the interacting classical field theory to quantum field theory. The procedure
that is being used in this work is causal perturbation theory. The general idea in this
approach, as the name suggests, is to define the perturbed theory in such a way, that
Einstein causality (definition 1.4.8) of the interacting theory is preserved in the whole
process.

The ansatz is to derive a quantized analogue RVg of the Møller map RVg in order
to obtain a representation of the interacting quantum theory by objects from the free
quantum theory, in the sense of formal power series in the interaction. However it
turns out to be quite evolved to identify the domain of this map, we will restrict the
attention mostly to algebras, which are generated by a certain set of image points of the
map.

We stress at this point, that there are two different notions of formal power series
in the forthcoming sections, which are independent of each other. The first one is the
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2. The Theory of the Interacting Scalar Field in the Perturbative Approach

identification of quantum observables as formal power series in h̄, coming from the
viewpoint of deformation quantization, see section 1.4. The use of formal power series
in h̄ could be avoided by restricting the attention to polynomial observables Apol (see
definition 1.4.4), where all observables are given by convergent power series in h̄. In
those cases we are allowed to set h̄ ≈ 6.626× 10−34 Js or to choose a system of units in
which h̄ = 1.

The other notion of formal power series comes into the formalism by the definition
of the interacting observables by the Taylor expansion of RVg (and its quantum counter-
part) around g = 0. In the realm of interacting quantum theories with local interactions,
the use of formal power series can unfortunately not be avoided in the construction, yet.

The central object in the construction of interacting quantum theory will be the time-
ordered product for functionals. The time-ordered product eases the perturbative ex-
pansion of the retarded Møller map even at the level of classical theory (see (2.5)) and
is essential in our approach to perturbative QFT.

2.2.1. Time-Ordered Product on Regular Functionals

In this part the goal is to define a time-ordered product in the free quantum theory, de-
scribed in the functional off-shell approach of section 1.4. The main idea is to construct
this product in similar form to the ?-product, i.e. as a functional differential operator
on the space of off-shell functionals. In order to omit the difficulties in the definition
of such a product – at least in the beginning – we restrict ourselves in this section to
regular functionals A ∈ Areg first. The extension to more singular functionals will be
dealt with in the next section. The defining property of a time-ordered product ·T is
that for any two functionals A, B ∈ Areg it holds

A ·T B =

{
A ? B if supp(A) later than supp(B)

B ? B if supp(B) later than supp(A)
.

It is obvious that the defining property of ·T is intimately tied to the choice of ∆+ ∈
H+, which yields ? in definition 1.4.3. Due to the structure of ?, we can derive ·T by
evaluating the defining property in lowest orders in h̄, or equivalently by evaluating
them at linear functionals:

Φ f ·T Φg = Φ f ·Φg +

{
∆+( f , g) supp( f ) later than supp(g)

∆+(g, f ) supp(g) later than supp( f )
.

This relation can be solved by introducing the Feynman propagator ∆F for ∆+ by

∆F( f , g) =
∫ (

θ(x0 − y0)∆+(x, y) + θ(y0 − x0)∆+(y, x)
)

f (x)g(y)dx dy. (2.8)

where θ is the Heaviside step function. The pointwise product of the distributions θ

and ∆+ is well-defined for all ∆+ ∈ H+ by Hörmanders theorem [Hör90], since the
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2.2. Quantum Field Theory and Renormalization

wavefront sets

WF(∆+) = {(x, y|kx, ky) ∈ Ṫ∗M2 : x ∈ V(y), kx + ky = 0, kx ‖ (x− y), k0
x > 0}

WF(θ) = {(x, y|kx, ky) ∈ Ṫ∗M2 : x0 − y0 = 0, kx + ky = 0, kx ‖ e0}, e0 = (1, 0, 0, 0)

cannot add up to the zero section: All covectors (in the x-component) of WF(∆+) are on
the boundary of the forward lightcone, where the covectors of WF(θ) (where θ is seen
as a bi-distribution) are parallel to the e0-axis, so that they can never add up to zero for
non-zero covectors. The wavefront set of the Feynman-propagator is, however, worse
than the one of ∆+ due to the multiplication with θ, namely

WF(∆F) = {(x, y|kx, ky) ∈ Ṫ∗M2 : η(x− y, x− y) = 0, kx + ky = 0, kx ‖ (x− y),

kx ∈ V± for (x− y) ∈ V± and kx ∈ Ṫ∗x M for x = y} (2.9)

The fact, that the WF(∆F) is not one-sided like WF(∆+) creates the obstruction in defin-
ing time-ordered product for more singular functionals, since the pointwise multipli-
cation of ∆F with itself can not be uniquely defined as a distribution in D′(M2). This
problem is avoided in the case of regular functionals.
Definition 2.2.1 (Time-ordered product).
The time-ordered product ·T for the algebra of regular functionals Areg with ?-product defined
by ∆+ ∈ H+ is the bi-linear map

·T : Areg ×Areg → Areg, (A ·T B) =
∞

∑
n=0

h̄n

n!

〈
∆⊗n

F

∣∣∣A(n)(φ)⊗ B(n)(φ)
〉

(2.10)

Due to the fact that ∆F( f , g) = ∆F(g, f ), ·T is a symmetric product.

In the case of symmetric products like ·T is, there exists a so-called generating functional
for the products. A generating functional is a map S0 : Areg → Areg, such that

A1 ·T · · · ·T An =
1
in

dn

dλ1 · · ·dλn

∣∣∣
λ1=...=λn=0

S0

(
i

n

∑
k=1

λk Ak

)
, ∀n ∈ N

In the case of ·T it is given by the time-ordered exponential

S0(A) = exp·T (iA) =
∞

∑
n=0

in

n!
A ·T · · · ·T A︸ ︷︷ ︸

n times

. (2.11)

which has to be read in the sense of formal power series. A convenient way to deal
with n-fold time-ordered products which will turn up quite often in the following, is to
view them as linear maps

0Tn : A⊗n
reg → Areg, 0Tn(A1 ⊗ · · · ⊗ An) = A1 ·T · · · ·T An . (2.12)

In this way, the generating functional for ·T can be written in terms of 0T by

S0(A) =
∞

∑
n=0

in

n!
0Tn(A⊗n)

and due to the fact, that S0 can only be defined in the sense of formal power series in its
argument, the definition of S0 is equivalent to the specification of the sequence of maps
{0Tn : n ∈ N} in (2.12).
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2. The Theory of the Interacting Scalar Field in the Perturbative Approach

2.2.2. Time-Ordered Product on Local Functionals, Renormalization

One way to define time-ordered products of physical interactions, i.e. local functionals
inAloc, is to apply a renormalization to ·T . To see what goes wrong, if we tried to naively
apply the definition 2.2.1 to a non-linear local functionals, consider e.g. the quadratic
monomial Φ2

f (see (1.3) in example 1.2.2):

Φ2
f ·T Φ2

g = Φ2
f ·Φ2

g + 4h̄
〈
Φ f ·Φg · ∆F1

∣∣ f ⊗ g
〉
+ 2h̄2

∫
∆F(x, y)2 f (x)g(y)dx dy

The last term is ill-defined as a distribution due to the bad wavefront set properties of
∆F.

In order to formulate the renormalization problem, one defines the time-ordered
product for local functionals with disjoint support. For example, let x 6= y, then we
can define

Φ2
x ·T Φ2

y =

{
Φ2

x ·Φ2
y + 4h̄Φx ·Φy∆+(x, y) + 2h̄2∆+(x, y)2 x /∈ J−(y)

Φ2
x ·Φ2

y + 4h̄Φx ·Φy∆+(y, x) + 2h̄2∆+(y, x)2 y /∈ J−(x)

which has a straightforward extension to the case of smeared fields with test-functions
with disjoint support. Notice, that for spacelike x, y the upper and lower line agree,
since Gc vanishes for spacelike separated points, leaving only the symmetric part of
∆+. It remains to find an extension of the above functional to the four dimensional
submanifold x = y of M2, the total diagonal. It turns out that, that this extension is
ambiguous, i.e. there exists a freedom in renormalizing ·T .

To start the quest to defining time-ordered products for all local functionals, we sum-
marize the above argument in terms of the maps 0Tn from (2.12): For local functionals
A1, . . . , An ∈ Aloc with pairwise disjoint support the map

0Tn : A⊗n
loc → A, 0Tn(A1 ⊗ · · · ⊗ An) = A1 ·T . . . ·T An

is well-defined for every n ∈ N. This is easily shown, since we can find a permutation
π of {1, . . . , n}, such that

supp(Aπ(1)) & supp(Aπ(2)) & . . . & supp(Aπ(n))

With this permutation we define

0Tn(A1 ⊗ · · · ⊗ An) = Aπ(1) ? · · · ? Aπ(n)

which has the desired properties, see [BF00] for more details. The most important prop-
erty is the causal factorization: If the supports of Ak+1, . . . , An are later than the sup-
ports of A1, . . . , Ak, then

0Tn(A1 ⊗ · · · ⊗ An) =
0Tk(A1 ⊗ · · · ⊗ Ak) ?

0Tn−k(Ak+1 ⊗ · · · ⊗ An). (2.13)

This property can be used in many further steps and is the basic ingredient of causal
perturbation theory, which has been first exploited by the authors Epstein and Glaser
in [EG73].

58



2.2. Quantum Field Theory and Renormalization

The next step is to formulate the goal of the procedure, namely to give conditions that
the time-ordered products should obey. Possible sets of axioms have been discussed in
many works [HW01, HW02, HW03, DF00, BDF09] in slightly different settings. We use
the following:

Definition 2.2.2 (Axioms of time-ordered products).
Let {Tn : n ∈ N} be a sequence of linear maps T : A⊗n

loc → A. The Tn are called time-ordered
products, if they satisfy

T1: Initial conditions: T0 = 0 and T1(A) = A

T2: Symmetry: Tn(A1 ⊗ . . .⊗ An) = Tn(Aπ(1) ⊗ . . .⊗ Aπ(n)) for every permutation π of
{1, . . . , n}

T3: Unitarity: Let I = (I1, . . . , Ik) be a partition of {1, . . . , n} into k pairwise disjoint subsets,
then

Tn(A1 ⊗ . . .⊗ An)
∗ = ∑

I
(−1)n+kT|I1|

(⊗
j∈I1

A∗j
)
? · · · ? T|Ik |

(⊗
j∈Ik

A∗j
)

where the sum runs over all such partitions I.

T4: Causal factorization: If the supports of A1, . . . , Ak are in the causal future of the sup-
ports of Ak+1,. . . ,An, then

Tn(A1 ⊗ . . .⊗ An) = Tk(A1 ⊗ . . .⊗ Ak) ? Tn−k(Ak+1 ⊗ . . .⊗ An)

T5: φ-independence or product rule:

δ

δφ
Tn (A1 ⊗ · · · ⊗ An) =

n

∑
k=1

Tn

(
A1 ⊗ · · · ⊗

δAk

δφ
⊗ · · · ⊗ An

)

T6: P↑+-invariance: αpTn(A1 ⊗ · · · ⊗ An) = Tn(αp(A1)⊗ · · · ⊗ αp(An))

The renormalized time-ordered product between two local functionals T(A⊗ B) may
be written as A ·T B again for convenience. It has been shown in [FR11] that ·T is actually
a binary operation on a suitable subspace of Aloc.

There exist many explicit solutions Tn in the literature, e.g. using causal splitting of
distributions [EG73, Sch89], extensions of distributions [BF00] or dimensional regular-
ization + minimal subtraction [Kel10]. We do not want to go into the details of those
constructions here.

We can rephrase the above axioms in a handier way in terms of generating functional
S , which define the Tn in the same way as S0 in (2.11) for the 0T. We will call the
generating functional S formal S-matrix. The origin of the name is discussed below.

Definition 2.2.3 (Axioms of formal S-matrices).
Let S : Aloc → A be analytic in the neighborhood of the origin, in particular all derivatives

Tn(A⊗n) :=
1
in

dn

dλn

∣∣∣
λ=0
S(λA)

exist as functionals in A. Then S is called a formal S-matrix, if it fulfills
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2. The Theory of the Interacting Scalar Field in the Perturbative Approach

S1: Initial condition: S(0) = 1 and d
i dλ

∣∣
λ=0S(λA) = A concerning the formal power series

in the argument. S = 1+ O(h̄) in h̄ for the series in h̄.

S2: Unitarity: S(A)∗ = S(A∗)?−1

S3: Causal factorization: For A, B, C in Aloc with supp A later than supp C it holds 4

S(A + B + C) = S(A + B) ? S(B)?−1 ? S(B + C) (2.14)

S4: φ-independence:

δ

iδφ
S(A) = T1

(
δA
δφ

)
·T S (A)

S5: P↑+-invariance: αpS(A) = S(αp(A))

Any such map S defines in this way a sequence of time-ordered products

Tn(A1 ⊗ · · · ⊗ An) =
dn

dλ1 · · ·dλn

∣∣∣
λ1=...=λn=0

S
(

n

∑
k=1

λk Ak

)

which obeys the properties from definition 2.2.2.

The name formal S-matrix has its origins in the quantum mechanical scattering the-
ory. There the S-matrix of the interacting system is the operator S(Vg) : Hin → Hout

which is obtained by the same analysis as in the classical case 2.1 for interaction V that
has been localized with g ∈ D. This S-matrix can be expanded around g = 0 resulting
in Dyson’s series, i.e. the time-ordered exponential of the interaction V . For interactions
V that have good decay properties, the physical S-matrix is assumed in the limit g→ 1,
the adiabatic limit. This issue is discussed in section 3.

The adjective formal indicates that in this case the analogy is not complete in this
setting: S(Vg) is not an operator on the Hilbert space of the free theory. It is rather
its algebraic pendant on the level of off-shell functionals. In a representation π of the
algebra Aos (the on-shell algebra of observables) on a Hilbert space, it is expected that
the representative of the formal S-matrix π(S(Vg)) tends to the physical S-matrix S(V)
in the adiabatic in the case the latter one exists. The convergence has been proven only
in the case of the vacuum representation and massive fields (under certain renormal-
ization constraints) so far, see [EG76, BS75].

In addition the formal S-matrix S(Vg) is, unlike in many cases in QM, only available
via a formal power series in the interaction V. The construction of S-matrices of non-
linear relativistic quantum field theories in four dimensions has unfortunately not been
successful so far. The topic of constructive QFT is despite its very interesting and in
many ways complementary approach omitted here, see [BLS11] for an overview.

One of the nice features of the axiomatic approach to time-ordered products and the
formal S-matrix is that it can be used to define the interacting theory independent of

4This condition is more general than T4, which is obtained by setting B = 0.
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some particular regularization scheme. Moreover it can be used to show, that every
such regularization scheme is equivalent, up to finite renormalizations. The meaning
of that statement can be made precise with the help of the renormalization group intro-
duced by Stückelberg and Petermann [SP53, BDF09].

Definition 2.2.4 (Renormalization group in the sense of Stückelberg and Petermann).
Let Z be the set of maps Z : Aloc → Aloc, which are analytic in the neighborhood of the origin
and obey

Z1: Starting element: Z(0) = 0 and d
i dλ Z(λA) = A and Z(A) = A + O(h̄) for all A ∈

Aloc

Z2: Additivity: Z(A+ B+C) = Z(A+ B)−Z(B)+ Z(B+C) if supp(A)∩ supp(C) =
∅

Z3: φ-independence: δ
δφ Z = 0 for all A ∈ Aloc

Z4: P↑+-invariance: αpZ(A) = Z(αp(A)).

The set Z forms a group with respect to composition.

Using the group Z it is possible to formulate the main theorem of renormalization,
which has been proven in [BDF09].

Theorem 6 (Main theorem of renormalization).
Let S be a formal S-matrix. Then S ◦ Z is again a formal S-matrix. Moreover for any two
formal S-matrices S1 and S2 there exists a Z ∈ Z , such that S1 = S2 ◦ Z.

This shows, that all regularization schemes the can be used to derive a formal S-matrix
S(Vg) (for the localized interaction Vg) fulfilling the axioms of definition 2.2.3 are equiv-
alent up to a renormalization group transformation Z ∈ Z of the interaction.

Unfortunately Z does not respect the linear dependence of the interaction Vg on the
cutoff g, i.e. Vg =

∫
g(x)V(Φx)dx, see definition 2.1.1 for the notation. This is the

reason why a generalized action is introduced as a map S : D → Floc which is additive
in the sense of R2, rather than linear as in definition 1.3.1. See [BDF09] for the further
constructions. We do not engage in this discussion here.

In the subsequent part of this chapter we are going to construct the interacting quan-
tum field theory with localized interaction Vg. The main ingredient is the formal S-
matrix and its descendant the relative S-matrix. It is evident from the previous dis-
cussion that there is an ambiguity in the definition of the time-ordered products. This
freedom must be fixed in order to obtain unique predictions of the resulting theory. At
this point the so-called renormalizable interactions play a pivotal role in the discus-
sion. In the case of the scalar field, a renormalizable, local interaction consists only of
the terms

Vg =
λ3

3!
Φ3

g +
λ4

4!
Φ4

g .

in the notation of equation (1.3).
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2. The Theory of the Interacting Scalar Field in the Perturbative Approach

It has been shown that for renormalizable interactions the image of Z is finite dimen-
sional, i.e. the freedom in extending the time-ordered products can be parametrized
by finitely many numbers. For a discussion of this fact within this setting we refer to
[DF04].

If one fixes the degree of perturbation theory to say n, i.e. one disregards all contribu-
tions to the time-ordered products, which are of order O(gn+1), then a renormalizable
theory is predictive after the fixing of finitely many numbers. These numbers have to
be determined by experimental data for e.g. the masses and the interaction strength of
the respective objects in the theory. We refer to [IZ12] for a more detailed discussion to
this topic.

In the following it is always assumed, that the time-ordered products Tn are fixed
– or are fixable – to an arbitrary high degree in n, such that we may take the formal
S-matrix as a fundamental ingredient to the construction of the theory.

2.3. Algebra of Interacting Observables

The aim of this section is to construct a quantum field theory in terms of a Haag-Kastler
net of ∗-algebras (see 1.4.8) {AVg(O) : O ⊂ M} whose elements obey equations of
motion, which are induced by the action SL0−Vg .

We will start with defining the observables of the interacting theory with interaction
Vg very similar to the case of classical field theory in section 2.1, namely by an analogue
of the classical Møller map RVg . In the definition of the interacting observables the
formal S-matrix of the interaction will play a pivotal role, however the definition of
the time-ordered products and hence the formal S-matrix of the interaction depends to
large extent on the chosen Hadamard two-point function ∆+ ∈ H+.

Thence we show in a second step that the interacting theory, i.e. the net of ∗-algebras
{AVg(O) : O ⊂ M} generated by the interacting observables is in fact independent of
the choice of ∆+. This is interpreted as the state independence of the interacting theory.

The question concerning the thermal equilibrium state will be discussed after the
notion of the algebra of interacting observables is fixed. This concludes the disentan-
glement of the UV and IR regime of the theory that was mentioned in the introduction.
The UV divergences that are present in the canonical approaches to perturbative QFT
in [Ryd96, Wei96] correspond to using the unrenormalized time-ordered products 0Tn

in perturbation theory.
With a fixed choice of renormalized time-ordered products Tn or equivalently of the

renormalized formal S-matrix S of the theory, there will no UV divergences arise at all
in this formalism. Moreover every two different ways to renormalize the time-ordered
products can be converted into each other by elements of the Stückelberg-Petermann
renormalization group Z .

A novel aspect in this manner is the discussion on the influence of the background
state on which the perturbative expansion is centered. Although the interacting theo-
ries are equivalent in the sense of ∗-algebras, they are not equal since the isomorphism
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between the two algebras is not the identity map in general. This implies in particular
that the corresponding quantum interaction functionals V, represented in two different
algebras of free fields differ in general by a lower order term. This is interpreted as the
influence of the background state on the perturbative expansion of the theory.

A discussion of this fact is done in the example of the (classical) Φ4
x-interaction term

in the case of the vacuum and finite temperature Hadamard two-point function that
define the algebra of Wick-polynomials of the free theory. We find that both terms
agree up to a mass term (and a constant which is neglected), which does not vanish
even if the mass of the free theory is set to m = 0.

The IR divergences that are mentioned in the introduction correspond to using an ill-
defined state on the algebra of interacting observables in our framework. Consequently
the IR problem is reduced to a sole discussion on states of the interacting theory. A
detailed analysis of the state space in pAQFT is done in sections 2.4 and chapter 4.

2.3.1. Interacting Observables in a Bounded Region

The method underlying the construction was already pointed out in classical field the-
ory where the factorization property of classical observables yielded

AVg
cl (O) =

∨{
RVg(A) : A ∈ Fpol, supp(A) ⊂ O

}
.

While a direct construction of the LHS in quantum theory will not be available for local
interactions it is the goal to use the RHS to define the quantum algebra of interacting
observables. For this a corresponding linear map to RVg has to be constructed. This is
achieved by invoking the so-called relative S-matrices.

The allowed interactions V of the theory are the same as in classical field theory,
namely polynomials in the linear field Φx, as described in definition 2.1.1. The polyno-
mials will be cut off with a test-function g ∈ D and we identify the functionals

SVg [ f ]
∣∣∣

f=1
= V[ f ]

∣∣∣
f=1

=
∫

g(x)V(Φx)dx ≡ Vg ∈ Floc ∩ Fpol

where S is the action functional and the subscript indicates the Lagrangian density of
the action (see definition 1.3.1 and below).

We keep the interaction polynomial V fixed during this construction, though modifi-
cations of the cutoff function g ∈ D of V will play an important role in the discussion.

Definition 2.3.1 (Relative S-matrix).
For two local functionals A, B ∈ Aloc ∩Apol, the relative S-matrix between B and A is defined
by

SB(A) = S(B)?−1 ? S(B + A)

where S is the formal S-matrix from 2.2.3. We will only be interested in the case, where B is the
interaction Vg and define the relative S-matrix for the interaction Vg by

Sg(A) := SVg(A) = S(Vg)
?−1 ? S(Vg + A) , (2.15)
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2. The Theory of the Interacting Scalar Field in the Perturbative Approach

where the shorthand subscript g in Sg(A) will always refer to the interaction functional Vg,
unless stated otherwise.

The following properties of the relative S-matrix are found to be equivalent [EG73] to
the causal factorization property (2.14) of the formal S-matrix and play a leading role in
the future discussion:

R1 Causal factorization:

Sg(A + B) = Sg(A) ? Sg(B) if supp(A) & supp(B) (2.16)

R2 Retardation:

Sg+g′(A) = Sg(A) if supp(g′) & supp(A). (2.17)

The property (2.17) displays that Sg(A) indeed only depends on the restriction of g to
the past of supp A, i.e. it is, in particular, independent of the behavior of g in the future
of its support. Thus it holds Sg(A) = S(A) in the case that supp(g) & supp(A).

It follows directly from the causal factorization property of Sg, that the elements
Sg(A) and Sg(B) commute, if the supports of A and B are spacelike separated, since in
this case supp(A) & supp(B) and supp(B) & supp(A) at the same time, thus

Sg(A + B) = Sg(A) ? Sg(B) = Sg(B) ? Sg(A).

Consequently all quantities which are derived from Sg(A) and Sg(B) as functional
derivatives will mutually commute, if A, B have spacelike separated support. This
property will guarantee the Einstein causality (QFT2) property for algebras ?-generated
by the relative S-matrices and its functional derivatives. The following definition is a
result of this argument.

Definition 2.3.2 (Off-shell algebra of retarded interacting observables).
The space of test functions g ∈ D with g ≡ 1 in O is denoted by DO. For every g ∈ DO the
algebra AVg(O) is defined as the algebra that is ?-generated by the functionals SVg(A) with
supp A ⊂ O. AVg(O) is called the retarded off-shell algebra of interacting observables in
the region O.

Proposition 2.3.3.
The ∗-algebraAVg(O) satisfies Einstein causality (QFT2) from definition 1.4.8 and its algebraic
structure is independent of the choice of g.

PROOF. The Einstein causality [AVg(O1),AVg(O2)]? = 0 for spacelike separatedO1,O2

follows immediately from the causal factorization property R1 of the generators, which
has already been discussed.

The independence of g ∈ DO can be seen by the following argument: Let g1, g2 ∈ DO,
then there exist test-functions g± ∈ D such that g1 − g2 = g+ + g− and supp(g±) ∩
J∓(O) = ∅. Using causal factorization we obtain

Sg1(A) = Sg2+g++g−(A)
R2
= Sg2+g−(A) .
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Here we need another important property that follows from the causal factorization of
the formal S-matrix:

SB+C(A) = SB(C)−1 ? SB(A) ? SB(C) if supp(A) & supp(C) . (2.18)

This has the following consequence for the above formula:

Sg1(A) = Sg2+g−(A) = Sg2(Vg−)
−1 ? Sg2(A) ? Sg2(Vg−)

i.e. both generators are unitarily equivalent with the unitary Sg2(Vg−). This implies that
the generated algebras are also unitarily equivalent, hence isomorphic. �

The algebraAVg(O) is given as a formal power series of elements inA(J−(O)) in the
following sense: Every element A ∈ AλVg(O) is a formal power series in the parameter
λ and every coefficient in this series is a functional inA(J−(O)). The support statement
follows from the fact, that the generators Sg(A) depend only the projection of g onto
J−(O), which is expressed in (2.17).

2.3.2. Influence from the Free Theory, Thermal Mass

It is important to notice at this point that the interacting algebra AVg(O) does not only
depend on the choice of the interaction Vg, but two different choices of ?-products in
the free theory will lead to possibly different interacting algebrasAVg(O). We relate the
generators Sg(A) that are defined for a ?-product ?1 to the ones defined for ?2, where
the ?-products are defined by ∆1

+, ∆2
+, respectively.

Due to Hadamard condition H3 from definition 1.4.2 we know that there exists a
real-valued smooth function u ∈ E(M×M), such that ∆2

+ − ∆1
+ = u and in the proof

of proposition 1.4.7 we showed that

U : Fµc → Fµc, U = eh̄
∫

u(x,y) δ2
δφ(x)δφ(y) dx dy

is an isomorphism U : (Fµc[[h̄]], ?1)→ (Fµc[[h̄]], ?2). It is clear that any state ω defined
on (Fµc[[h̄]], ?1) is transformed under U to a state ω ◦U−1 to a state on (Fµc[[h̄]], ?2).
The action of U can be seen as changing the background state of the free theory.

The time-ordered products behave under U in a very similar way. For the regular
functionals U extends to an isomorphism

U : (Fµc[[h̄]], ·T,1)→ (Fµc[[h̄]], ·T,2)

where ·T,i are time-ordered products with Feynman propagators ∆i
F that differ by the

same smooth function u as their two-point functions ∆i
+, i.e. ∆2

F − ∆1
F = u. Moreover it

is important that U : Floc → Floc. This holds due to

δk

δφk (UA)(φ) =
∞

∑
n=1

h̄n

n!

〈
u⊗n

∣∣∣A(2n+k)(φ)
〉

,
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2. The Theory of the Interacting Scalar Field in the Perturbative Approach

thus supp(UA)(k)(φ) ⊂ diag(Mk). It is obvious that U will map polynomials into
polynomials.

Consequently the renormalized time-ordered products Tn change under the action of
U as follows

UT1
n(A1 ⊗ · · · An) = T2

n(UA1 ⊗ · · ·UAn)

where T1
n and T2

n obey the unitarity (T3) and causal factorization rule (T4) of definition
2.2.2 with the respective ?-products ?1 and ?2. Equivalently it holds for the formal
S-matrices and relative S-matrices

US1(A) = S2(UA), US1
Vg
(A) = S2

UVg
(UA)

We deduce that the action of U on the interacting algebra AVg(O) fulfills

U
(
S1
Vg
(A) ?1 S1

Vg
(B)
)
= S2

UVg
(UA) ?2 S2

UVg
(UB) .

This implies that U extends to a ∗-homomorphism U : AVg(O) → AUVg(O). Thence U
is almost an element of the renormalization group, it fulfills all the axioms in definition
2.2.4 except that it does start with the identity in the h̄-expansions. It modifies the inter-
action at tree level and thus has physical significance, this why we discuss it separately
to the renormalization group.

From a state space point of view the map U alters the asymptotic behavior of the
background state, thus influences the perturbative expansion. This can be easily seen
by the different asymptotics of the massless and massive vacuum two-point function
Dvac

+ . A similar phenomenon can be observed if considers the Dvac
+ and Dβ

+ which is
discussed in an instant. Thus it is crucial to specify from which realization of the free
theory, i.e. from which ?-product, the generators SVg(A) ≡ Sg(A) emerge. A particular
example is a system with quartic interaction

Vg =
λ

4!
Φ4

g =
λ

4!

∫
g(x)Φ4

x dx

defined within the algebra with vacuum two-point function Dvac
+ from example 1.5.5

and KMS two-point function Dβ
+ from example 1.5.7. The field monomials Φn

g are de-
fined in example 1.2.2. We denote

uβ(x− y) = Dβ
+(x− y)− Dvac

+ (x− y) =
1

(2π)3

∫
δ(p2 −m2)

eβ|p0| − 1
e−ip(x−y) dp

exploiting the translation invariance of both two-point functions and Uβ is the corre-
sponding isomorphism. The full action functional reads

SL0−Vg [ f ] =
1
2

∫
f (x)

(
ηµν(∂µΦx)(∂νΦx)−m2Φ2

x
)
− f (x)g(x)

λ

4!
Φ4

x dx
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where f = 1 on the region of interest, that is O ⊂ M, on which also g = 1. The free
part SL0 is invariant under the action of any such transformation U (i.e. for general
u = ∆2

+ − ∆1
+)

USL0 [ f ](φ) =
−1
2

∫
f (x)δ(x− y)

(
�x + m2) u(x, y)dx = 0

since u is a smooth bi-solution to P = �+ m2. The interaction term changes though:

UβVg = Vg + h̄
〈

uβ

∣∣∣V (2)
g

〉
+

h̄2

2

〈
u⊗2

β

∣∣∣V (4)
g

〉
.

The term in order h̄2 can be neglected for the discussion since it is proportional to the
constant functional 1, the term in order h̄1 yields

〈
uβ

∣∣∣V (2)
g

〉
=

λuβ(0)
4

∫
g(x)Φ2

x dx

where the prefactor is given by

uβ(0) =
1

(2π)3

∫ 1
ωp

1
eβωp − 1

d3 p =
1

2π2β2 F(βm),

F(y) =
∫ ∞

y

√
x2 − y2

ex − 1
dx, F(0) =

π2

6
, F(y) ∼

√
πy
2

e−y, as y→ ∞ .

The additional term that arises from the action of U on Vg can be absorbed into the free
part L0

UβSL0−Vg [ f ] = SL0−UβVg [ f ]

=
1
2

∫
f (x)

(
ηµν(∂µΦx)(∂νΦx)− m̂2Φ2

x
)
− g(x) f (x)

λ

4!
Φ4

x dx

with a modified mass term (if βm > 0 and λ > 0):

m̂2

2
=

m2

2
+ λuβ(0) =

m2

2
+

λ

4
h̄

2π2β2 F(βm) .

The additional term is often called “thermal mass” in the literature, see e.g. [LB00]. It is
used mainly in massless theories, where m2 = 0 and λ > 0 such that

m̂2 =
λh̄

24β2

replaces the absent mass term.
In order to implement this idea, we will have to require an additional constraint on

the renormalized time-ordered products: namely the principle of “perturbative agree-
ment” which was introduced by Hollands and Wald in [HW05].
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T7: Principle of perturbative agreement: If the local interaction is given by a mass
term Vg = λ2

2

∫
g(x)Φ2

x dx then the perturbative expansions agree with the modi-
fied free action, i.e. the map

Aλ 3 A 7→ RVg(A) ∈ A

is an injective ∗-homomorphism, whereAλ is the ∗-algebra generated by the same
Hadamard two-point function ∆+ in which m2 is replaced by m2 + λ2

It has not been shown that time-ordered products T can be defined in such a way that
T7 can always be fulfilled. If this is not the case, then both theories do not coincide, but
the observables are related by the action of an element of the renormalization group Z .

In addition one has to be careful with modification of the free theory by a term that
depends on the interaction strength λ which serves as the formal expansion parameter,
since it is not evident that the elements of the arising interacting theory are formal
power series in the interaction (i.e. in λ) any more. This is due to the fact that the two-
point function and the Feynman propagator of the free theory contain inverse powers
of the mass. This has already been remarked in [Alt90]. In order to revise the ill-defined
power series expansions in the massless theory, a number of resummation techniques
have been proposed, see [LB00, NS84].

2.3.3. Interacting Local Nets (Off-Shell)

A crucial question at this point is, whether one can define a net of algebras {AVg(O) :
O ⊂ M} that satisfies the isotony property. This is not quite straightforward, since
AVg(O) depends explicitly on a cutoff g ∈ DO. To avoid this one defines the local net of
interacting algebras as a bundle over all g ∈ DO. This removes the explicit dependence
on the choice g ∈ DO. This was established in [DF00].

Definition 2.3.4 (Bundle of algebras).
Let BV(O) be the bundle of algebras

BV(O) :=
⋃

g∈DO
{g} ×A .

A section over BV(O) is denoted by A = g 7→ (A)g ∈ A(O). The space of sections Γ(BV(O))
over BV(O) is endowed with fiberwise algebra operations of A, in particular with the product

(A ? B)g = (A)g ? (B)g .

The sections over the bundle exhibit an algebra structure such that it is natural to look
for the algebra of interacting observables within the space of sections. The are distin-
guished by a very important feature: Constructions of the same interacting observable
with different cutoffs led to unitarily equivalent results. That is now required for the
net of interacting local algebras.
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Definition 2.3.5 (Local net of interacting algebras).
The net local of algebras AV(O) consists of covariant constant sections over BV(O), i.e.
elements

g 7→ (A)g ∈ Γ(BV(O)) : Ug,g′ ? (A)g = (A)g′ ? Ug,g′ ∀Ug,g′ ∈ U(g, g′)

where U(g, g′) denotes the set of all unitaries in A that obey

Ug,g′ ? Sg(A) = Sg′(A) ? Ug,g′ ∀g, g′ ∈ DO . (2.19)

AV(O) is equipped with a covariant action of P↑+: For p : O1 → O2 define

αVp : AV(O1)→ AV(O2) : g 7→
(

αVp (A)
)

g
:= g 7→ αp(A)αp(g) .

Proposition 2.3.6.
The net {AV(O) : O ⊂ M} fulfills the isotony axiom, as well as Einstein causality. The
generators Sg(A), seen as maps g 7→ Sg(A) are elements of AV(O) by construction.

PROOF. The isotony property follows mainly from the fact that every p : O1 → O2 acts
in a contravariant way the on the spaces DO:

αp : DO2 → DO1 , g 7→ αpg = g ◦ p ∈ Dp−1O2

for g ∈ DO2 with the contravariant action αp from definition 1.2.6.
For every two isometric embeddings p1, p2 ∈ P↑+ that are compatible with each other

it holds (
αVp1◦p2

(A)
)

g
= αp1 ◦ αp2 (A)αp1◦αp2 (g) =

(
αVp1

(
αVp2

(A)
)

αp2 (·)

)
g

.

The definition is compatible with the fiberwise ?-multiplication and involution on the
BV(O) and with the notion of covariant constant sections. That is for any g, g′ ∈ DO it
holds(

αVp A
)

g′
= Ug,g′ ?

(
αVp A

)
g
? U−1

g,g′ = Ug,g′ ? (αpA)αp(g) ? U−1
g,g′

= αp

(
Uαp(g),αp(g′)

)
? αp (A)αp(g) αp ?

(
U−1

αp(g),αp(g′)

)
= αp

(
U·,αp(g′) ? A ? U−1

·,αp(g′)

)
αp(g)

=
(

αVp

(
U·,αp(g′) ? A ? U−1

·,αp(g′)

))
g

where the property

αpUαp(g),αp(g′) = Ug,g′ (2.20)

together with αp ◦ αp = 1was used. The property (2.20) follows from the P↑+-invariance
of S and the defining equation (2.19). Thus αVp A is again a covariant constant section
and yields a ∗-homomorphism AV(O)→ AV(pO). �
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The concept of covariant constant section in BV(O) implements the following idea: The
generated interacting algebra of observables AVg(O) was shown to be independent of
the choice of g ∈ DO due to the fact that the generators Sg(A) could be converted into
each other for two different choices g, g′ ∈ DO by using the unitaries Ug,g′ = Sg′(Vg−)

in the notation of the last proof. Thus if an observable was constructed by some Sg(A)

with a special choice of g, all other possible constructions with different test-functions
g′ ∈ DO could be derived from the original one. The covariant constant section in
BV(O) behave just in the same way by definition.

Since the local net of algebras {AV(O) : O ⊂ M} is manifestly independent of the
cutoff g that defined the generators Sg(A) it is possible to obtain the global algebra
AV(M) by a direct limit (or inductive limit). The covariant action αVp leads to an auto-
morphic action on AV(M).

For the generators Sg(A) from definition 2.3.2 the homomorphisms αVp act by(
αVp S·(A)

)
g
= αpSαpg(A) = Sg (αp(A)) . (2.21)

This formula will play an important role in the discussion of the interacting dynamics
in section 3.2 which is induced by the one-parameter group of automorphisms that are
the time-translations αVt for t ∈ R.

The definition of the interacting algebra of off-shell observables is inspired by the
factorization property (2.7) of the interacting classical field theory. Due to the fact, that
a construction of the full interacting theory (i.e. the potential LHS of (2.7) in the quan-
tized case) is unavailable at the moment, the above procedure defines full interacting
theory, whereas in the classical case both sides of the equation could be independently
constructed and compared.

2.3.4. Interacting Local Nets (On-Shell)

It remains to show the validity of the time-slice axiom QFT. However AV(O) is mod-
eled over the off-shell algebraA, thus an exploitation of the time-slice axiom within the
free theory can not be used in AV(O). If one constructs the interacting theory over the
on-shell algebra of the free theory Aos though, the time-slice axiom for AV(O) can be
proven.

Proposition 2.3.7 (On-shell algebra [CF09]).
LetAos be the on-shell algebra of the free scalar field from definition 1.4.9. The algebra generated
by the sections g 7→ Sg(A) with A ∈ Aloc ∩Aos(O) satisfies the axioms QFT1 - QFT3. It is
called the on-shell algebra of the interacting scalar field with interaction Vg and is denoted
by AVos(O)

The question arises, whether we can identify observables in AV(O) from the free
theory, such as the interacting quantum field or its energy density. This was possible
in the classical theory due to the ∗-homomorphism RVg between the theories, the (re-
tarded) Møller map (2.4). The corresponding counterpart in QFT will be the linear part
of the relative S-matrix with respect to the observable.
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2.3. Algebra of Interacting Observables

Definition 2.3.8 (Quantum Møller map).
The linear part of relative S-matrix Sg(A) with respect to the observable A defines the quantum
Møller mapRVg . It is a linear mapRVg : Aloc → A given by

RVg(A) =
1
i

d
dλ

∣∣∣
λ=0
Sg(λA) = S(Vg)

?−1 1
i

d
dλ

∣∣∣
λ=0
S(Vg + λA)

= S(Vg)
?−1 ?

(
S(Vg) ·T A

)
,

where the time-ordered product S(Vg) ·T A is understood in the following sense (cf. definition
2.2.3):

S(Vg) ·T A =
∞

∑
n=0

in

n!
Tn+1((Vg)

⊗n ⊗ A) .

The functional RVg(A) is called the retarded, interacting observable A with respect to the
interaction Vg and g 7→ RVg defines a covariant constant section in AV .

The structural properties R1 and R2 of the relative S-matrix are passed down to the
quantum Møller mapR as follows:

R’1 Causal factorization: If supp(A) & supp(B), then A ·T,V B = RVg(A) ?RVg(B),
where ·T,V denotes the interacting time-ordered product:

A ·T,V B =
1
i2

d2

dλ dκ

∣∣∣
λ=κ=0

Sg(λA + κB)

between local functionals A, B ∈ Aloc.

R’2 Retardation: If supp(g′) & supp(A) then it holds RVg+g′
(A) = RVg(A); in partic-

ularRVg(A) = A if supp(g) & supp(A).

From the factorization property (2.7) in the classical theory it seems natural identify
interacting observables by the inverse of the quantum Møller map. Unfortunately the
map RVg is not surjective, i.e. RVg is only invertible on a suitable subspace DT that is
found in [Rej11]. This space is not stable under ?-multiplication thusRVg(A) ?RVg(B)
may have no inverse and naively applying the inverse map

R−1
Vg
(A) = S(−Vg) ·T

(
S(Vg) ? A

)
leads to additional UV-divergences even after renormalization of the time-ordered prod-
ucts ·T .

This prevents a complete description of the full interacting theory by the introduction
of interacting products

A ?Vg B := R−1
Vg

(
RVg(A) ?RVg(B)

)
, A ·T,V B := A ·T B (2.22)

where the interacting observables are simply the same functionals A ∈ Fµc[[h̄]] and
only the product changed again. The latter products exist for the regular functionals
Freg (and a regular interaction), which sadly does not suffice to construct interesting
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2. The Theory of the Interacting Scalar Field in the Perturbative Approach

models in QFT. Notice that a hypothetical algebra with product ?Vg could always be
represented on the algebra of free fields A with a representation given by RVg by defi-
nition of ?Vg .

The properties of the quantum Møller map shows it shares many features with the
classical Møller map RVg . In fact, by looking at the first order contribution of RVg in h̄
one finds the classical Møller map as the classical limit h̄→ 0 ofRVg . Using

A ·T B = A · B + h̄
〈

∆F

∣∣∣A(1) ⊗ B(1)
〉
+ O(h̄2)

A ? B = A · B + h̄
〈

∆+

∣∣∣A(1) ⊗ B(1)
〉
+ O(h̄2)

and reinserting a h̄−1 into the interaction Vg one finds 5

lim
h̄→0
Rh̄−1Vg

(A)

= A +
〈

i(∆F − ∆+)︸ ︷︷ ︸
Gr

∣∣∣V (1)
g ⊗ A(1)

〉
+
〈

Gr

∣∣∣V (1)
g ⊗

〈
Gr

∣∣∣V (1)
g ⊗ A(1)

〉 〉
+ O((Vg)

3)

There are two interesting results appearing in the classical limit analysis: First of all,
the classical limit of Rh̄−1Vg

(A) exists although there is an inverse power of h̄ in the
interaction. Such a statement is not true e.g. for the generators of the interacting algebra
Sh̄−1Vg

(A). The well-defined classical limit of the quantum Møller map is assumed due
to the fact that no pointwise products appear in the expansion of RVg and the factors h̄
in front of the two-point functions ∆+ and Feynman propagators ∆F in (1.17) and (2.10)
canceling the negative powers.

Moreover, the cancellation of the higher order contributions (in h̄) to Rh̄−1Vg
is such

that the classical Møller map RVg is assumed in the limit. To prove this one has to
calculate the above limit to all orders in Vg. This can conveniently done using a graph-
ical expansion of the S-matrix in terms of Feynman diagrams, see e.g. [Kel10] for a
nice derivation of the diagrammatic expansion. In the classical limit, only the “tree-
diagrams” remain in the expansion, i.e. the loops that correspond to pointwise powers
of ∆F and ∆+ disappear.

2.3.5. Comparison to the Path-Integral Approach

A connection to the path-integral formalism can be drawn at this point. The idea be-
hind the path-integral approach is to formulate both the free and interacting quantum
field theory in terms of classical fields over a measure space. The assertion is, that
there exists an oscillating Gaussian measure DF with covariance ∆F on the space of all
configurations E

DF(ϕ) =
1
N e

i
h̄SL0 (ϕ) dϕ

5The physical S-matrix of the system is given by the time-ordered exponential of ih̄−1SL[1] in the case
of convergent series in h̄. This implies that not every object in perturbation theory has a well defined
classical limit, e.g. the formal S-matrix S(h̄−1Vg) itself.
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2.3. Algebra of Interacting Observables

such that the functional Fourier transformation of this measure

Z0(φ, f ) =
∫

ei〈ϕ| f 〉DF(φ− ϕ), f ∈ D

leads to the generating functional Z0 of the free time-ordered products of the quantum
fields in the sense that

δnZ0(φ)

inδ f (x1) · · · δ f (xn)

∣∣∣
f=0

= 0Tn(Φx1 ⊗ · · · ⊗Φxn)(φ)

where the 0Tn denotes the unrenormalized time-ordered products from definition 2.2.1.
For the free scalar field the generating functional can actually be calculated, for on-shell
configurations φ ∈ EP:

Z0(φ, f ) = e−
1
2 ∆F( f , f )+i〈φ| f 〉 = S(Φ f )(φ) .

where S is the formal S-matrix that has been defined in the previous section. The path-
integral approach has to be modified though, as it comes to non-linear functionals,
where normal-ordering has to be taken into account. This is already incorporated in the
functional approach to QFT, such that the RHS yields the correct generating functional
of time-ordered products.

This becomes important as one wants to define the interacting time-ordered products
of linear field with respect to the interaction V by the famous Feynman-Kac formula

Z(φ, f ) =
∫

ei〈ϕ| f 〉e−
i
h̄SV (ϕ)DF(φ− ϕ) =

1
N

∫
ei〈ϕ| f 〉e

i
h̄SL0−V (ϕ) dϕ

This is, by the above identification, given by

Z(φ, f ) = S
(

1
h̄
V + Φ f

)
(φ) .

This formula coincide with the relative S-matrix (of Φ f under the interaction h̄−1V) that
is defined in definition 2.3.1 up to the factor S(h̄−1V). Moreover the interacting field,
that is the first derivative with respect to the linear field

δ

iδ f (x)
Z(φ, f = 0) =

∫
δ

iδ f (x)

∣∣∣
f=0

ei〈ϕ| f 〉e−
i
h̄SV (ϕ)DF(φ− ϕ)

=
∫

ϕ(x)e−
i
h̄SV (ϕ)DF(φ− ϕ) =

1
N

∫
ϕ(x)e

i
h̄SL0−V (ϕ) dϕ

=
δ

iδ f (x)

∣∣∣
f=0
S
(

h̄−1V + Φ f

)
(φ) =

(
S
(

h̄−1V
)
·T Φx

)
(φ)

coincides with the quantum Møller map up to the same factor.
There are several comments to mention at this point. First of all, the inverse factor

h̄−1 is not explicitly written in the relative S-matrix Sg(A) that was used to define the
interacting theory. This is done simply for convenience, and a reinsertion of h̄−1 was
shown to result in formal power series in h̄ for the interacting observables, that are
identified with the quantum Møller mapRh̄−1V .

73



2. The Theory of the Interacting Scalar Field in the Perturbative Approach

A second point concerns the factor S(V) by that the path integral generating func-
tional differs from the relative S-matrix. This is strongly connected to the adiabatic limit
of the whole framework. It is known that for the vacuum expectation values of the
time-ordered products in the massive theory, it holds the Gell-Mann and Low formula

lim
g→1

ωvac(Sg(Φx)) =
ωvac(S(V) ·T Φx)

ωvac (S(V))
=

δ

iδ f (x)
ωvac(Z(φ, f ))

∣∣∣
φ=0= f

.

due to the cluster properties of the massive vacuum state. This is actually not true in
general, a discussion on that issue can be found in [Düt97, DF01].

The major difference between both approaches is that the path-integral approach
computes the interacting fields under a interaction that is manifestly non-vanishing
everywhere, whereas the relative S-matrix (or the quantum Møller map, respectively)
computes the interacting fields under a compactly supported interaction Vg, such that
the fields coincide with the free fields in the past of the support of Vg.

It is to be expected that both approaches yield the same interacting fields in the adia-
batic limit g→ 1.

As indicated in the above lines, the path-integral approach intends to define the in-
teracting time-ordered products for a infinitely extended interaction V. The question
whether such a path-integral approach can be made rigorous is highly doubtful and
lead to a manifestly non-local description of the interacting QFT. This is in particular
problematic if one wants to discuss the issue of IR divergences if the propagators are
replaced by their finite temperature counterparts, as described in the introduction.

Thus it seems that a more modest approach such as causal perturbation theory is
better suited in the quest for a rigorous description of perturbative QFT.

2.4. States in pAQFT

The present section deals with the state space of the interacting theory. In the first part
it is shown that every state on the algebra of free field can be lifted to a state on the
interacting algebra.

After that we show how one can relate states on both the free and interacting theory
with a similar method that was used to related free and interacting observables, namely
by using the quantum Møller map RVg . This yields a relation between states on AVg

and states onAwhich coincide in the past of supp(g). Clearly as we want to remove the
spatial cutoff g from the system this description will make sense only for those states,
which tend to the free ones in the asymptotic past in an appropriate sense.

This leads to a highly state depended description of the interacting theory. In the case
of the vacuum state there exists a well-established method, the Haag-Ruelle scattering
theory, see [Haa92], which can be applied to interacting vacuum state of the scalar in
the presence of a mass gap.

The case for the KMS state is even worse. Buchholz and Bros [BB02] investigated
the asymptotics of an interacting KMS state with quartic interaction in timelike direc-
tions and came to the conclusion that it did not converge to the KMS state of the free
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theory. The asymptotic state was shown to be quasi-free (in the leading order in time)
but its two-point function did not exhibit a mass-shell contribution ∼ δ(p2 − m2) in
momentum space as in the case of free theory.

This indicates that the scattering setting will not be the appropriate framework to
perform a construction of the interacting KMS state. A novel approach to this issue is
presented in chapter 4.

2.4.1. States on Formal Power Series of Algebras

A first fact with which has to be dealt with is that the interacting observables are actu-
ally formal power series in the interaction Vg of elements in A. Since we defined the
formal S-matrix only for polynomial interactions (see definition 2.1.1) we omit the dis-
cussion of the power series in h̄ here, although the formal S-matrices may as well be
defined for formal power series of polynomials.

The fact that AVg(O) is a formal power series in Vg can be made clearer by inserting
a number λ in front of the interaction: AλVg(O) is then a formal power series in λ with
values in A. This is done purely for the cause of clarity and shall not interpreted as a
modification of the interaction in the subsequent discussion.

We will adjust the positivity criterion of states in order to respect thatAλVg is a formal
power series in the formal parameter λ. There is however a difference in the treatment
of the formal parameter λ to h̄: In the case of convergence in λ we may want to consider
also coupling constants λ which are negative.

A good positivity criterion is found in [DF99] and will be presented now. By assump-
tion we have Vg ∈ Apol and we assume that A ∈ Apol. Then a linear functional on the
algebra of observables is a map

ω : AλVg → C[[λ]], ω(A∗ ? A) =
∞

∑
n=0

anλn . (2.23)

It is clear that this functional should be normalized and formally positive with respect
to the formal expansion as in definition 1.5.1. Since λ might be negative in a convergent
case we demand in addition that the first non-vanishing coefficient, say ak with k ∈ N0,
in (2.23) is of even order: k ∈ 2N0. In this case, the first non-vanishing term akλk of the
series is positive even though λ < 0.

Definition 2.4.1 (States in the interacting theory).
A normalized linear functional ω : AλVg(O)→ C[[λ]] is called a state, if it is formally positive
in λ in the following sense:

ω(A∗ ? A) =
∞

∑
n=k

anλn ak > 0, k ∈ 2N0

The space of states on AVg(O) is denoted by S(AVg(O)).

In case that one defines the formal S-matrix for formal power series of interactions in h̄,
one then assumes that every coefficient in the series in definition 2.4.1 is also a formal
power series in h̄ and that ak with k ∈ 2N0 is formally positive in h̄.
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2. The Theory of the Interacting Scalar Field in the Perturbative Approach

This definition implies an important property that is related to the predictability of
the interacting theory. The predictions of the theory are, according to the discussion on
states in section 1.3.3, expectation values of observables in a state ω that are interpreted
as outcomes of measurements of ensembles of systems that are prepared in the state ω.

Clearly physical measurements produce numbers and not formal power series. At
this point the concept of perturbation theory comes into play: The interaction is by as-
sumption very small, thus the truncated theory, i.e. the computation of expectation val-
ues up to a fixed degree λN in the interaction is expected to give a good approximation
to the physical system. The validity of this statement is to be proven in the experiment
which shows stunning agreement even in low orders, e.g. in quantum electrodynamics.

From a conceptual point of view it is important that the notions that have been in-
troduced do not lose their meaning in the case of truncation. The (modified) formal
positivity of a state ω on AλVg which is truncated at order N in λ gives the condition

ω(A∗ ? A) = a′2kλ2k +
N

∑
n=2k+1

a′nλn = λ2k

(
a2k +

2k−N

∑
n=1

a′2k+nλn

)
> 0 , a2k > 0, k ∈ N.

This condition can always be fulfilled, if |λ| is chosen small enough, since the condition
is equivalent to

p(λ) =

(
a2k +

2k−N

∑
n=1

a′2k+nλn

)
> 0 .

The continuity of the polynomial p at λ = 0 and p(0) = a2k′ > 0 ensure that p(λ) > 0
in a neighborhood of λ = 0. Thus any state in the sense of definition 2.4.1 is positive, if
the series is truncated at some order.

Since AVg(O) takes its values in a subalgebra A in every order in the interaction we
obtain lots of states on AVg(O) by simply using states in S(A) (definition 1.5.1).

Proposition 2.4.2.
Let ω be a state on A. Then

ω : AλVg(O)→ C[[λ, h̄]], ω(A) =
∞

∑
n=0

ω(an)λ
n, A =

∞

∑
n=0

anλn, an ∈ A

is a state on AVg(O).

PROOF. The formal positivity in h̄ is evident, since (formal) positivity is preserved un-
der the restriction from A to AVg . For the formal positivity in the interaction we have
to show that

ω(SλVg(A)∗ ? SλVg(A)) =
∞

∑
n=k0

anλn, ak0 > 0, k0 ∈ 2N0

We start by denoting the formal power series SλVg(A) = ∑∞
s=0 snλn. Then

an =
n

∑
k=0

ω(s∗k ? sn−k)

The claim follows from the next proposition:
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Proposition 2.4.3.
Let ω be a state over A[[λ]] and A[[λ]] 3 A = ∑∞

n=0 anλn. The first non-vanishing term
of ω(A∗A) is of even order 2N if and only if ω(a∗nan) = 0 for all n = 0, . . . , N − 1 and
ω(a∗NaN) > 0, then

The direction⇒ is trivial. For the other direction we use the Cauchy-Schwarz inequal-
ity for states over A:

|ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B) A, B ∈ A .

Assume ω(a∗nan) = 0 for all n = 0, . . . , N − 1. Then for A ∈ A[[λ]] as in the proposition

ω(A∗A) =
∞

∑
n=0

λn
n

∑
k=0

ω(a∗k an−k) .

Every term of odd order in the series up to 2N − 1 vanishes due to∣∣∣∣∣2m−1

∑
k=0

ω(a∗k a2m−1−k)

∣∣∣∣∣
2

=

∣∣∣∣∣m−1

∑
k=0

ω(a∗k am−1−k + a∗m−1−kak)

∣∣∣∣∣
2

≤
m−1

∑
k=0

∣∣ω(a∗k am−1−k + a∗m−1−kak)
∣∣2 ≤ m−1

∑
k=0

2ω(a∗k ak)ω(a∗m−1−kam−1−k) = 0

for m = 0, . . . , N − 1. Moreover every term of even order up to order 2N − 2 vanishes

2m

∑
k=0

ω(a∗k a2m−k) = ω(a∗ma∗m) +
m−1

∑
k=0

ω(a∗k am−1−k + a∗m−1−kak)︸ ︷︷ ︸
=0

m = 0, . . . , N − 1

and by inserting m = 2N in the last equation on sees, that ∑2m
k=0 ω(a∗k a2m−k) > 0 by

assumption. This proves the intermediary proposition.
Hence, to prove the first proposition one has to check, that

ω(s∗n ? sn) ≥ 0 ∀n ∈ N

which is trivial since sn ∈ A and ω is a state on A. �

We see that the existence of states on the interacting algebra of local observables is
shown quite easily. In particular the important class of evaluation functionals evφ with
φ ∈ E can be used to study some explicit examples of states on AVg(O).

2.4.2. States and Symmetries

In this section the notion of spacetime symmetries is studied on states over the algebra
of interacting observables. States that are invariant under symmetries play an impor-
tant role in QFT, as was already mentioned in the section 1.5. For example in translation
invariant states we can define energy and momentum operators of the system (via the
GNS-representation). The homogeneous KMS states (example 1.5.7) and the vacuum
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state (example 1.5.5) were important examples of translation invariant states on the al-
gebra of the free scalar field A.

Since the formal S-matrix is P↑+-invariant (definition 2.2.3) it is clear, that the algebra
of interacting observablesAV(O), seen as sections, inherits the symmetry properties of
the ?-product:(

αVp (A ? B)
)

g
= (αp(A ? B))αpg = (αp(A) ?p αp(B))αpg =

(
αVp (A)

)
g
?p
(

αVp (B)
)

g

with the contravariant action αp from definition 1.2.6. Choosing a p-invariant ? in A
yields a p-covariant algebra AV(O) and a p-invariant algebra AV(M).

Hence we can always obtain an explicit P↑+-covariant interacting algebra by using
the vacuum two-point function from 1.5.5 as ∆+ in A. Interacting algebras modeled on
different free algebras A are shown to be equivalent (in the sense of ?-products) to the
one defined by Dvac

+ .
The question whether there are invariant states on the interacting algebra is not so

easy to answer. We saw that the free states can be restricted to AVg(O) leading to g-
depended states. The local net of interacting algebras algebra AV(O) and in particular
the global algebra have however a different structure, see definition 2.3.5. A state over
the global algebra AV(M) has to be considered as a section:

ω : AλV(M)→ C[[λ, h̄]], ω(A) = g 7→ ω((A)g)

which is normalized and positive on the algebra of sections. Every state over A(M)

is a state over AV(M) since the normalization and positivity properties are trivially
inherited due the fiberwise operations on the bundle AV(M). The action of P↑+ on a
state ω is given by(

(αVp )
∗ω
)
(A) = ω(αVp (A)) = g 7→ ω

(
αp(A)αpg

)
= g 7→ (α∗pω)

(
(A)αp(g)

)
.

We exemplarily discuss the case of translation invariance. As already mentioned we
can choose the interacting algebra to be translation invariant by using a translation
invariant Hadamard two-point function for ? in A and in addition we can chose a
translation invariant state over A, e.g. the vacuum state ωvac from example 1.5.5.

ωvac yields a state onAV(M) as discussed above, however the action αVp with p ∈ P↑+
does not leave ωvac invariant:(

(αVp )
∗ωvac

)
(A) = g 7→ ωvac(Aαp(g)), A ∈ AV(M)

6= g 7→ ωvac(Ag) .

This comes with no surprise since the P↑+-invariance of the theory was explicitly broken
by g. For the algebra of observables there was a way around since any observable has
support in a finite region O ⊂ M and g ∈ DO had only to be chosen such that it is
constant on O. This is one of the reasons why the removal the g-dependence on the
level of algebras was possible.
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For states the notions change. The standard way of defining a state on AV would be
to define it on a fiber, i.e. by giving a prescription to obtain the (formal power series
of) numbers ω((A)g) for all A ∈ AVg . Then, in order to obtain an invariant state, one
has to send g to a constant function (the adiabatic limit). The question whether this
sequence will converge can not be answered with the same amount of generality as in
the case of the algebras.

In case of the vacuum state a lot of properties concerning the adiabatic limit are al-
ready known in the literature which will be summarized in the end of section 3.1. In
the case of the KMS state (example 1.5.7) only few properties have been explored up to
now. In particular a proof of existence is not worked out so far.

2.4.3. Induced States

The quantum Møller map can also provide an identification of interacting states with
states on the algebra of free field, similar to the identification of observables which
was discussed in section 2.3.4. To illustrate this, let us discuss the issue for a regular
interaction V ∈ Areg first. There the interacting algebra can be considered as the algebra
of functionals Freg[[h̄]] with the interacting ?-product

A ?V B = R−1
V (RV(A) ?RV(B)) , A, B ∈ Freg[[h̄]] .

In this caseRV provides an isomorphism

RV : AV
reg = (Freg[[h̄]], ?V)→

∨
?

{RV(A) : A ∈ Freg[[h̄]]} ⊂ Areg .

Thus any state ω on the free algebra of observables Areg can be transported to a state
on AV

reg byRV .

Definition 2.4.4 (Induced states).
By dualityRV induces a map

R∗V : S(Areg)→ S(AV
reg), R∗V(ω) = ωV := ω ◦ RV .

The state ωV = R∗V(ω) is called the interacting state induced by ω.

This can be used to define the Wightman functions of a local field A ∈ Aloc(O) with
respect to an interacting state ωV : Let such a A be of the form

A f (φ) =
∫

f (x)φ(x)k dx, f ∈ D, supp f ⊂ O, k ∈ N

The n-point Wightman-function of A f for an interacting state ωV is given by

WA
n ( f1, . . . , fn) := ωV(A f1 ?V · · · ?V A fn) ≡ ω(RV(A f1) ? · · · ?RV(A fn)) (2.24)

and in addition the interacting time-ordered expectation values are computed using
(2.22)

TA
n ( f1, . . . , fn) := ωV(A f1 ·T,V · · · ·T,V A fn) = ω ◦ RV

(
A f1 ·T · · · ·T A fn

)
= ω

(
S(V)?−1 ?

(
S(V) ·T A f1 ·T · · · ·T A fn

))
(2.25)
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This expressions are in agreement with other approaches to perturbative QFT, see e.g.
[Ste93].

In the case of local and polynomial interactions Vg which induce relativistic interact-
ing algebras AVg(O), the map RVg is not invertible, as we have already mentioned in
section 2.3.4. Since the interacting ?-product ?Vg is not available, RVg cannot be an iso-
morphism of algebras. Nevertheless we can use the equations (2.24) and (2.25) to define
the corresponding expectation values WA

n and TA
n for local functional interactions Vg.
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In the last chapter it was shown that while removing the cutoff dependence of the alge-
bra of observables was possible in general, the issue of the adiabatic limit for the states
is more tricky. Due to the seminal works of Epstein and Glaser [EG73] and Blanchard
and Seneor [BS75] an explicit construction of the limit g → const. for the vacuum state
is available which yields the existence of an interacting vacuum state on AV(M), for
more information see the end of section 3.1.

It was also argued that the scattering approach is very likely to be the wrong ap-
proach to show the existence of a KMS state due to the fact that long-range correlations
of the interacting KMS state spoil an asymptotic description by the KMS state of the
free theory. Therefore another approach will developed in section 3.2 which has a close
relationship to the so-called canonical approach to perturbative QFT. For this we give a
short synopsis of this approach and indicate the main issue within this canonical frame-
work.

We then formulate a new approach to construct the dynamics of the algebra of inter-
acting observables in section 3.2 which brings together both the ideas of the canonical
approach and the mathematical rigor that underlies the approach of pAQFT and / or
causal perturbation theory. This will ultimately lead to the definition of the interact-
ing KMS state by means of standard arguments from quantum statistical mechanics in
chapter 4.

3.1. The Interaction Picture in QFT and the Adiabatic Limit

The construction of the interacting algebra of observables AVg(O) that has been pre-
sented in the previous section was derived rather straightforwardly, once one renor-
malized the time-ordered products. Moreover it is quite concrete: the interacting ob-
servables are functionals in A which can be explicitly computed in terms of ∆+ and
∆F.

It arises the question how the present approach is related to the canonical approach
to perturbative QFT, i.e. the use of the interacting picture and Dyson’s series. This
question is rather tricky, since the interaction picture has been shown not to exist in
relativistic QFT. This is the famous Haag’s theorem [Haa55] which was one of the main
inspirations to developed the algebraic approach to QFT in the first place.

In order to show the relation to the still widely used canonical approach we state
a formal derivation of Dyson’s series in order to highlight similarities in the rigorous
approach that follows.
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3. The Adiabatic Limit

Consider a representation π of the algebra of the free scalar field on a Fock space
H, e.g. the representation induced by the vacuum state, see example 1.5.5. The con-
struction by means of the GNS representation is found in section 1.5. The canonical
fixed time quantum fields ϕ(t0,x) and ϕ̇(t0,x) at t0 ∈ R are given by the operator valued
distributions

D(Σ) 3 f 7→ ϕ(t0, f ) =
∫

f (x)π
(

Φ(t0,x)

)
d3x =

∫
f (x)ϕ(t0, x)d3x

on the Cauchy surface Σ = {t0}×R3, where ϕ(t,x) is the linear free field functional (1.2)
in the on-shell algebra Aos and ϕ̇ is the time derivative of ϕ. These fields are subject to
the canonical commutation relations (CCR) (at fixed time), i.e.

[ϕ(t0,x), ϕ(t0,y)] = 0 = [ϕ̇(t0,x), ϕ̇(t0,y)], [ϕ(t0,x), ϕ̇(t0,y)] = δ(x− y)

which follow directly from the properties of the causal commutator function Gc (1.10),
when restricted to a Cauchy surface. The translations act by mutually commuting uni-
tary operators U(t) and T(x) on H and in particular the subgroup of time-translations
induces the free dynamics by

t 7→ ϕ(t, x) = Ut0(t)ϕ(t0, x)Ut0(t)
−1,

d
dt

∣∣∣
t=t0

ϕ(t, x) = i[H0, ϕ(t0, x)] .

Here H0 is the Hamiltonian of the free field.
It is assumed, that there exists another one-parameter group of unitary operators

Vt0(t) on H commuting with the spatial translations T(x), such the interacting dynam-
ics for the fields is determined by

t 7→ ϕV(t, x) = Vt0(t)ϕ(t0, x)Vt0(t)
−1, Vt0(t0) = 1 .

Here ϕV stands for the interacting field. Since the equal time CCR are still valid for the
fields, the observables of the interacting theory and the free theory can be identified at
t0. The generators of both time-evolutions are assumed to be related by

d
dt

∣∣∣
t=t0

ϕV(t, x)− d
dt

∣∣∣
t=t0

ϕ(t, x) = i[V, ϕ(t0, x)]

where the interaction V is given by a local observable, restricted to Σ:

V =
N

∑
n=3

λn

n!

∫
ϕ(t0, x)n d3x . (3.1)

It implies that the full dynamics is generated by the commutator of H = H0 + V. The
interacting field ϕV(t, x) can be related to the free field ϕ(t, x) at time t > t0 with the
help of the unitary

Wt0(t) = Vt0(t)Ut0(t)
−1 =

∞

∑
n=0

in
∫

t0≤t1≤t2≤···≤tn≤t

Vt1 · · ·Vtn dtn · · ·dtn (3.2)

Wt0(t)
−1 = Ut0(t)Vt0(t)

−1 =
∞

∑
n=0

(−i)n
∫

t0≤t1≤t2≤···≤tn≤t

Vtn · · ·Vt1 dtn · · ·dtn

Vt = Ut0(t)VUt0(t)
−1 =

N

∑
n=3

1
n!

∫
ϕ(t, x)n d3x
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3.1. The Interaction Picture in QFT and the Adiabatic Limit

where W is a formal power series in the interaction V. The power series expansion is
derived from the differential equation

d
dt

Wt0(t) = iWt0(t)Vt, Wt0(t0) = 1 .

For this operator it holds Wt0(t1)Wt1(t) = Wt0(t) for t0 < t1 < t. The series for W is
called the Dyson’s series.

Thence the interacting field can be written in terms of the free field at time t > t0 by
Wt0(t):

ϕV(t, x) = Wt0(t)ϕ(t, x)Wt0(t)
−1 .

This is the interaction picture of QM extrapolated to the case of the algebra generated
by the CCR for the time-zero quantum fields.

The problem of giving mathematical rigor to the formulas above appear in man-
ifold ways. The first one concerns the definition of the integrand of the interaction
Hamiltonian density in (3.1). In order to obtain a well-defined interaction operator, a
normal-ordering prescription has to be applied to V, but this has to be done in a state-
independent manner. This problem has been solved in [HW02].

The next problem is to restrict the normal-ordered interaction density to a Cauchy
surface (here {t0} ×R3). It has been shown that a restriction of operator-valued dis-
tributions over M to operator-valued distributions over Σ is not possible for normal-
ordered polynomials of degree larger than one. This problem causes serious trou-
ble in the perturbative expansions of the interacting dynamics: There arise additional
UV-divergences in the theory even after renormalization of the time-ordered products.
These singularities are called Stückelberg divergences and were discovered in the treat-
ment of QED [Stü51].

Lastly the convergence of the integral in (3.1) is not established. This is intimately re-
lated to Haag’s theorem [Haa55, HW57], which shows that under the assumptions that
Vt0 commutes with the free spatial translations, then the interaction V must coincide
with H0 up to a constant. Phrased differently: Under the assumption that Vt0 actually
implements a non-trivial interaction, then there is no translation invariant eigenstate
to H0 + V on the Fock space H. This can be circumvented by either only considering
the generators of the time-translations δV(ϕ(t0, x)) = i[V, ϕ(t0, x)]. There one cannot
proceed to construct the interacting theory by means of Vt0(t) though.

Another way to look at the last problem is in the scattering setting of perturbative
QFT. There the interacting and the free systems are assumed to coincide at t0 → −∞,
i.e. we shift the Cauchy surface Σ to t0 → −∞ and replace the operators Wt0(t) by
W−∞(t), which yields

ϕV(t, x) = W−∞(t)ϕ(t, x)W−∞(t)−1 .

Using a formal time-ordering operator T, this expression can be rewritten in terms of
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3. The Adiabatic Limit

the (physical) S-matrix of the system S(V) = limt→∞ W−∞(t)−1:

ϕV(t, x) = W−∞(+∞)W+∞(t)︸ ︷︷ ︸
=W−∞(t)

ϕ(t, x)W−∞(t)−1 = W−∞(∞)
(

W+∞(t)ϕ(t, x)W−∞(t)−1
)

= W−∞(∞)T
(

W−∞(∞)−1ϕ(t,x)

)
= S(V)−1T (ϕ(t, x)S(V)) (3.3)

where T denotes the time-ordering for operator-valued functions6 and the physical S-
matrix is defined by

S(V) = W−∞(+∞)−1 = Te−i
∫ ∞
−∞ Vt dt .

This does not solve the problem in general, but shifts it to the question of how fast
the interacting fields converge to the free fields in the asymptotic region. This leads to
the famous LSZ asymptotic conditions [LSZ57], which could be proven to hold in the
Haag-Ruelle scattering theory [Haa58, Rue62].

It was Bogoliubov in [BS80] who recognized that the formal expansions of (3.3) agree
to those using the formal S-matrix S(−Vg) (definition 2.2.3), or the respective quantum
Møller mapR−Vg (definition 2.3.8) in the limit:

S(V) = lim
g→1

π
(
S(−Vg)

)
(3.4)

ϕV(t, x) = lim
g→1

1
i

d
dλ

∣∣∣
λ=0

π
(
S−g(λΦ(t,x))

)
= lim

g→1
π
(
R−Vg(Φ(t,x))

)
. (3.5)

The sign that appears in front of the interaction is due to the change of the Hamiltonian
and Lagrangian picture, in which the interaction picks up a minus sign.

The above argumentation in (3.4) and (3.5) is very formal though, since both sides of
the equations are ill-defined (in general). However, the RHS gives a starting point for
the mathematical discussion. The limit as g tends to a constant function is called the
adiabatic limit and can be made precise by the following sequence: Let {gn ∈ DBn , n =

2, . . .} be a sequence of test functions gn(x) = g1(n−1x) where g1 equals unity on the
Euclidean ball B1 in M. Then limn→∞ gn = 1 in the topology of E .

The question whether the limiting procedure in (3.5) can be made rigorous has been
discussed in [EG73, EG76, BS75] and more recently in [BF00, Sch89]. Until today there
have been three kinds of limiting notions introduced:

• The operator S(Vg) tends to a unitary operator on H as g → 1: the strong adia-
batic limit

• The expectation values of (products of) interacting fields (in fixed state) converge
to numbers as g→ 1: the weak adiabatic limit

• The Haag-Kastler net of algebras, generated by the Sg(A), or by the RVg respec-
tively, tends to a Haag-Kastler net of algebras as g→ 1: algebraic adiabatic limit

6The relation between the formal time-ordering operator T for operators on a Hilbert space and the time-
ordered product of off-shell functionals is elucidated in remark 3.2.2.
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3.2. The Interacting System in a Time-Slice

The following results concerning the adiabatic limit in relativistic QFTs have been es-
tablished in the literature:

• In the case of the vacuum representation of the scalar field with mass m2 > 0 the
strong adiabatic limit exists under further renormalization constraints (i.e. condi-
tions on the formal S-matrix, that guarantee a suitable wave-function and mass
renormalization). This is worked out in the famous papers of Epstein and Glaser
[EG73, EG76].

• Furthermore it is known, that the strong adiabatic limit of the formal S-matrix of
QED does not exist in the adiabatic limit due to infrared divergences. A method
to circumvent the IR divergences, in order to obtain physical predictions of the
theory, is the introduction of so-called inclusive cross sections [JR54, YFS61].

• Again in the vacuum representation, the weak adiabatic limit of the scalar field
with mass m2 > 0 and also for theories with massless particles such as QED or the
massless scalar field with polynomial interaction of even type exist for operator
and time-ordered products of the interacting fields. [EG73, EG76, BS75].

• Steinmann proved in [Ste95] that if the KMS states exists on the algebra AV (in
the adiabatic limit) and fulfills a certain cluster property in spacelike directions,
then the KMS state is unique. An existence proof is not available so far.

• The algebraic adiabatic limit of the interacting theory was shown to exist for all
interactions and m2 ∈ R in [BF00] and crucial parts of the construction have al-
ready been presented in definition 2.3.5 and below.

There is also a drawback in the algebraic adiabatic limit framework, though. Due to the
fact that it is state-independently constructed, it does not guarantee the existence of in-
teresting states over the algebra of interacting observables, namely translation invariant
states or even a vacuum state.

This will be compensated in chapter 4 where the translation invariant KMS and the
vacuum state will be explicitly constructed on the interacting algebra.

3.2. The Interacting System in a Time-Slice

The non-existence of the interaction picture created a big problem for rigorous ap-
proaches to a perturbative treatment of relativistic QFT. A way to circumvent Haag’s
theorem and to derive the interacting theory in a perturbative manner was presented
in section 2.3 and is called causal perturbation theory. Due to its geometric geomet-
ric construction, it could even be generalized to systems in a curved background, see
[BF00, BF09].

On the other hand, there is a huge amount of mathematical well-established tech-
niques emerging from the perturbation theory of Hamiltonian or Liouvillean dynamics,
which is a part of the theory of dynamical systems. This approach gives a very precise
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3. The Adiabatic Limit

meaning to the interaction picture of quantum mechanics. The most frequently stud-
ied systems are dynamical systems of C∗- or W∗-algebras (von-Neumann algebras), see
[BR02b] or [DJP03] for more information.

The question whether there is common framework to accommodate both the struc-
tures from the Hamiltonian treatment and the geometric constructions in Lagrangian
QFT appears to be very natural. A satisfactory answer to this issue has not been given
though.

An approach to answering is developed within this section. The first step in this man-
ner is to take the validity of the time-slice axiom (QFT3) for the on-shell algebra AVos of
the interacting theory [CF09] more seriously. It suggests that instead of constructing the
algebra of interacting observables in an arbitrary region O ⊂ M it suffices to construct
it in a time-slice of M, i.e. a neighborhood of a Cauchy surface.

More concretely we are going to construct the algebra of observables contained in
a region O ⊂ Σε, where Σε is a neighborhood of a Cauchy surface. In that algebra a
modified Hamiltonian dynamical system approach is possible. To this avail choose the
following cover of M:

M = M+ ∪ Σε ∪M−, M± = (±ε,±∞)×R3, Σε = (−ε, ε)×R3 .

The “time-slice” Σε is an ε-neighborhood of the Cauchy surface Σ = {0} × R3. A
corresponding partition of unity over M is given by

χ + χ− + χ+ = 1, supp(χ±) ⊂ (±ε,±∞),

supp(χ) ⊂ (−2ε, 2ε), χ(t) = 1 for |t| < ε .

A two-dimensional representation of this situation is given in figure 3. The interaction
Lagrangian Vg is split using the partition of unity

Vg = Vgχ+ + Vgχ + Vgχ−

and the causal factorization of the relative S-matrices Sg(A) for A ⊂ Aos(O) yields

Sg(A) = Sg(χ++χ+χ−)(A)
(2.17)
= Sg(χ+χ−)(A)

(2.18)
= Sgχ(Vgχ−)

−1 ? Sgχ(A) ? Sgχ−(Vgχ−) .

Since the relative S-matrix is a unitary in Aos it is evident that the algebras generated
by the relative S-matrices Sgχ(A) with supp(A) ⊂ O andAVos(O) coincide. This is great
news concerning the adiabatic limit. Whereas the generator Sg(A) does not assume a
limit in Aos as g→ 1, the limit of the new generator can be given explicitly:

lim
g→1
S(gχ)(A) = Sχ(A) ∈ Aos ,

since it dependeds only on the projection of gχ onto J−(O) in the first place. But
C(O) = supp(χ) ∩ J−(O) is compact, see figure 3. This implies that for a sequence

86



3.2. The Interacting System in a Time-Slice

O

supp(χ+)

supp(χ)

supp(χ−)

x0 = 2ε

x0 = ε

x0 = −ε

x0 = −2ε

C(O)Σε

Figure 3.: The cover of M (projected onto the x0− x1 plane) and the associated partition
of unity. In addition the dependence region C(O) of Sgχ(A) is drawn as the
shaded region.

of test functions gn which equal unity on a (Euclidean) ball of radius n the above limit
is assumed after finitely many elements of the sequence.

With this insight we see that the algebra of interacting observables in O ⊂ Σε can be
constructed by formal power series of elements of the free theory in a compact region
located in a slightly larger time-slice C(O) ⊂ Σ2ε.

This will now be exploited to perform a perturbative Hamiltonian description of the
interacting system similar to the ideas of the previous section. We will, by abuse of
notation, denote the sub-group of translations in P↑+ on A by αt (and the interacting
time-translations by αVt likewise) in this section. By the translation invariance of the
S-matrix (definition 2.2.3) we find that the free time-translations act on the generators
Sχ(A) as

αtSχ(A) = Sαtχ(αt(A)), (αtχ)(x0) = χ(x0 − t) .

The covariant action of the time-translations for the algebra of interacting observables
has been defined by

αVt Sχ(A) = Sχ(αt(A))

in (2.21). Following the ideas from the previous section we construct a unitary W(t)
which intertwines both time-translations, see (3.2). This amounts to

αVt (Sχ(A)) = W(t) ? αt(Sχ(A)) ? W(t)?−1 . (3.6)

Solving for W(t) in this equation requires the introduction of a spatial cutoff which is
denoted by h ∈ D(R3) with h = 1 in a neighborhood of the biggest spatial extent of
O ⊂ Σε. The solution of (3.6) where χ is replaced by hχ will be denoted by Wh(t).
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3. The Adiabatic Limit

Moreover one uses that the difference of the time-shifted interaction with the original
expression can be written as

(αtχ)− χ = ρ+t − ρ−t , supp(ρ±t ) ∩ J∓(O) = ∅ .

Let δ > 0 be such that O+ t ⊂ Σε for all |t| < δ. Such a δ can always be found by
choosing an appropriate O. We find

αtShχ(A) = Shαt(χ)(αt(A)) = Sh(χ+ρ+t +ρ−t )
(αt(A))

(2.17)
= Sh(χ+ρ−t )

(αt(A))

(2.18)
= Shχ(Vhρ−t

)?−1︸ ︷︷ ︸
=Wh(t)?−1

? Shχ(αt(A))︸ ︷︷ ︸
αVt (Shχ(A))

? Shχ(Vhρ−t
)

Wh(t) = Shχ(Vhρ−t
) (3.7)

for all t with |t| < δ. Since Vhρt is real, Wh(t) a unitary in Aos. By (2.17) one sees that
Wh(t) depends on the projection of h onto J− supp(ρ−t ). Therefore the limit h → 1 of
Wh(t) is not assumed in Aos. Its adjoint action is still defined through the LHS of (3.6).

Due to the defining equation (3.6) Wh(t) fulfills a co-cycle relation:

Proposition 3.2.1.
The map t 7→Wh(t) satisfies

Wh(t + s) = Wh(t) ? αt(Wh(s)) (3.8)

for t, s with |t| , |s| < δ. It follows that t 7→Wh(t) can be uniquely extended to any t ∈ R.

PROOF. Let Θ− = θ(−t), where θ is the Heaviside step function on R. Then ρ−t =

Θ−(αt(χ)− χ) and for t, s sufficiently small we have

ρ−t+s = Θ−(αt+s(χ)− χ) = Θ−(αt(χ)− χ) + Θ−(αt+s(χ)− αt(χ)) = ρ−t + αt(ρ
−
s ) .

We then find

Wh(t)?−1 ? Wh(t + s) = Shχ(Vhρ−t
)?−1 ? Shχ(Vhρ−t +hαt(ρ

−
s )
) = Shχ+hρ−t

(Vhαt(ρ
−
s )
).

Using χ + ρ−t = αt(χ)− ρ+t and the fact that the support of ρ+t lies in the causal future
of αt(ρ−s ), the factorization rule (2.17) yields for the RHS:

Shαt(χ)+hρ+t
(Vhαt(ρ

−
s )
) = Shαt(χ)(Vhαt(ρ

−
s )
) = αt

(
Shχ(Vhρ−s

)
)
= αt(Wh(s)) .

This shows the first claim. For the second claim we write

R 3 t =
n

∑
k=1

tk, |tk| < δ (3.9)

Then Wh(t) with t ∈ R is defined by recursively using (3.8):

Wh(t) = Wh(t1) ? αt1(Wh(t2)) ? αt1+t2(Wh(t3)) ? · · · ? αt−tn(Wh(tn))

= Wh(t1) ?
n−1

∏
k=1
?

αt1+···+tk(Wh(tk+1)) .
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3.2. The Interacting System in a Time-Slice

This shows the existence of Wh(t). For the uniqueness consider another sum t =

∑m
k=1 sm with |sm| < δ leading to a possibly different co-cycle

W1
h (t) = Wh(s1) ? αs1(Wh(s2)) ? αs1+s2(Wh(s3)) ? · · · ? αt−sm(Wh(sn)) .

From the above two expansions we construct a third one

t =
n

∑
i=1

m

∑
j=1

uij, 2uij = ti + sj,
∣∣uij
∣∣ < δ ,

which is strictly finer than the above two, defining a third unitary W3
h (t). The strategy

now is to prove that any refinement of a fixed partition of t results in the same co-cycle
Wh(t), thereby showing that Wh(t) and W1

h (t) both coincide with W2
h (t), thus with each

other.
For this consider a refinement of the initial partition t = ∑n

k=1 tk, given by

t =
n

∑
k=1

tk +
m

∑
k=1

vk, |vk| < δ,
m

∑
k=1

vk = 0 .

Without loss of generality we choose an ordering of the vk such that the partial sums

|V`| < δ, where V` =
`

∑
k=1

vk . (3.10)

This can be done recursively: Let {v′1, . . . , v′n ∈ (−δ, δ), ∑m
k=1 v′k = 0} be the unordered

partition. Take a positive element out of it and call it v1 > 0. Then there must exist an
element v′n0

< 0, since all terms add up to zero. Define v2 = v′n0
. Clearly |v1 + v2| < δ.

If v1 + v2 ≷ 0 then there must exist an element v′n1
≶ 0 in the remaining partition.

Define this one as v3 = v′n1
. Again |v1 + v2 + v3| < δ. Proceed in the same way until

(3.10) is accomplished.
For the co-cycle W ′h(t) defined by the refined partition of t it holds

W ′h(t) =Wh(t1)αt1(Wh(t2))αt1+t2(Wh(t3)) · · · α∑n−1
k=1 tk

(Wh(tn))×

× αt

(
Wh(v1)αv1(Wh(v2)) · · · α∑m−1

k=1 vk
(Wh(vm))

)
=Wh(t)αt

(
Wh(v1)αv1(Wh(v2)) · · · α∑m−1

k=1 vk
(Wh(vm))

)
where in the last line we inserted the unitary Wh(t) defined by the initial partition. Due
to (3.10) we find

Wh(v1)αv1(Wh(v2)) · · · α∑m−1
k=1 vk

(Wh(vm)) = Wh(v1 + v2︸ ︷︷ ︸
V2

)αv1+v2+v3Wh(v3) · · ·

= Wh(v1 + v2 + v3︸ ︷︷ ︸
V3

)αv1+v2+v3Wh(v4) · · · = Wh

(
n

∑
k=1

vn

)
= Wh(0) = 1 .

This proves the claim. �
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The co-cycle can computed explicitly in terms of a formal power series in its generator
Kh, by applying standard methods from [BR02b]. Using (3.8) one can derive a differen-
tial equation for Wh:

d
i dt

Wh(t) =
d

i ds

∣∣∣
s=0

Wh(t + s) = Wh(t) ? αt

(
d

i ds

∣∣∣
s=0

Wh(s)
)

,
d

i ds

∣∣∣
s=0

Wh(s) =: Kh

(3.11)

Since Wh(t) is of the form (3.7) we find for Kh:

Kh = S(Vhχ)
?−1 ?

d
i dλ

∣∣∣
λ=0
S
(
Vhχ − λVhΘ−χ̇

)
= −RVhχ

(VhΘ−χ̇) (3.12)

in the notation of definition 2.3.8. For this we used the fact that

d
dt

∣∣∣
t=0

ρ−t (x0) =
d
dt

∣∣∣
t=0

θ(−x0)(χ(x0 − t)− χ(x0)) = −θ(−x0)χ̇(x0) = −Θ−(x0)χ̇(x0)

where χ̇ means the first derivative of χ. The differential equation (3.11) can be solved
(in the sense of formal power series in the generator) by

Wh(t)− 1 = i
∫ t

0
Wh(s) ? αs(Kh)ds

= i
∫ t

0
αs(Kh)ds + i2

∫
0≤t1≤t2≤t

Wh(t1) ? αt1(Kh) ? αt2(Kh)dt1 dt2 = · · ·

=
∞

∑
n=1

in
∫

0≤t1≤···≤tn≤t

αt1(Kh) ? · · · ? αtn(Kh)dt1 · · ·dtn (3.13)

for t > 0. By a change of coordinates one finds

Wh(t) =
∞

∑
n=0

(it)n
∫

0≤s1≤···≤sn≤1

αts1(Kh) ? · · · ? αtsn(Kh)ds1 · · ·dsn

which is valid for all t ∈ R.
The above proof of the extension of Wh(t) from infinitesimal t to arbitrary values

could have been done in a simpler way by defining Wh(t) for any t ∈ R by the RHS of
equation (3.13). The method in the proof does not use any formal power series expan-
sion or differentiability condition on Wh(t) though.

The inverse Wh(t)?−1 is computed along the same lines as above:

Wh(t)?−1 =
∞

∑
n=0

(−it)n
∫

0≤s1≤···≤sn≤1

αtsn(Kh) ? · · · ? αts1(Kh)ds1 · · ·dsn .

Note that the ordering in the integrand is reversed to the ordering in Wh(t).

Remark 3.2.2.
A very important comment at this point concerns the “time-ordered” products in the
above perturbative expansion of the co-cycle Wh(t). They are very different compared
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3.2. The Interacting System in a Time-Slice

to the time-ordered products that are introduced in section 2.2. The time-ordered prod-
uct of pAQFT which is denoted by ·T is defined as a binary operation on local functional
in the off-shell setting. It is shown that a binary product for smeared Wick-polynomials

A f ·T Ag =
∫

f (x)g(y)

{
Ax ? Ay x0 > y0

Ay ? Ax y0 > x0
dx dy

becomes meaningless for operator-valued distributions on the Hilbert space of the free
theory. This is intimately related to the fact, that higher-order Wick polynomials cannot
be restricted to spacelike hypersurfaces. In the book of Scharf [Sch89] this is called the
incorrect splitting of distributions.

Yet another notion of time-ordering is sometimes used in order to simplify the nota-
tion the above co-cycle expansion. There one introduces a time-ordering operator for
operator valued (or algebra-valued functions). Let t 7→ At be function with values in an
algebra A. Moreover let π be a permutation of {1, . . . , n} such that tπ(1) ≤ · · · ≤ tπ(n).
Then the time-ordering operator is a map

Tn : Rn → A, Tn(t1, . . . , tn) = Atπ(n) · · · Atπ(1) .

An inverse time-ordering operator T̂ can be defined in a similar way. In this notation
we find

Wh(t) =
∞

∑
n=0

in

n!
T̂n

∫ t

0
· · ·

∫ t

0
αt1(Kh) ? · · · ? αtn(Kh)dt1 · · ·dtn = T̂ exp

i
∫ t

0 αs(Kh)ds
?

where T̂ is the direct sum of the T̂n. An equivalent formula can be found for the inverse
Wh(t)?−1. This notation is used in the corresponding publication in [FL]. We do not
intend to use the time-ordering symbols in this work to avoid confusion. ♦

A closer look on the generator

−Kh = RVhχ

(
VhΘ−χ̇

)
=
∫
RVhχ

(V(Φx))Θ−(x0)χ̇(x0)h(x)dx0 d3x

reveals that it is the image of the interaction Lagrangian V under the quantum Møller
mapRVg . Loosely speaking it can be considered as the interaction Lagrangian VhΘ−χ̇ in
the interaction picture (with interaction Vhχ). In additionRVhχ

(V(Φx)) is not arbitrarily
smeared in the time-component, but with the test-function that integrates to one:

Θ−χ̇ ∈ D(R),
∫ ∞

−∞
Θ−(t)χ̇(t)dt = 1 .

Thus the generator Kh is a time-average over the interval in the negative real axis where
χ is non-constant, see figure 4.

The full interacting dynamics on AVos

αVt (A) = Wh(t) ? αt(A) ? Wh(t)?−1
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3. The Adiabatic Limit

t = 0

χ

Θ−χ̇

Figure 4.: The cutoff function χ as a dashed line. The first derivative of χ for t < 0, i.e.
Θ−χ̇ as solid line.

can be explicitly calculated by either multiplying the formal power series of Wh(t) with
its inverse or by using

αVt (A)− αt(A) =
(

αVt ◦ α−t − 1
)

αt(A) = (Ad? (Wh(t))− 1) αt(A)

where Ad? is the adjoint action with respect to the ?-product and expanding the bracket
in the following fashion

(
Ad? (Wh(t))− 1

)
(B) = i

∫ t

0

d
i ds

Ad? (Wh(s)) (B)ds

=i
∫ t

0
Wh(s)αs(Kh)BWh(s)?−1 −Wh(s)Bαs(Kh)Wh(s)?−1 ds

=i
∫ t

0
Ad? (Wh(s)) [αs(Kh), B]? ds

=i
∫ t

0
[αs(Kh), B]? ds + i2

∫
0≤t1≤t2≤t

Ad? (Wh(t1)) [αt1(Kh), [αt2(Kh), B]?]? dt1 dt2

= · · · =
∞

∑
n=1

in
∫

0≤t1≤···≤tn≤t

[
αt1(Kh), [αt2(Kh), . . . , [αtn(Kh), B]? . . .]?

]
?

dt1 · · ·dtn .

Inserting the above ansatz in the result yields

αVt (A) =αt(A)+

+
∞

∑
n=1

in
∫

0≤t1≤···≤tn≤t

[
αt1(Kh), [αt2(Kh), . . . , [αtn(Kh), αt(A)]? . . .]?

]
?

dt1 · · ·dtn .

which is a well-known formula in quantum statistical mechanics and dynamical sys-
tems. It is noteworthy that such a formula has not been shown to hold in QFT due to
the severe UV-divergences that appear, if one restricts the attention to observables on a
Cauchy surface Σ, as indicated in 3.1.

A formal comparison of the present situation with the canonical approach from sec-
tion 3.1 is obtained in the limit, where χ tends to the characteristic function of [−ε, ε]
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3.2. The Interacting System in a Time-Slice

and ε is very small. In this limit the quantum Møller map tends to the identity mapping:

Kh = −RVhχ

(
VhΘ−χ̇

)
−→ −VhΘ−χ̇ −→ −

∫
V(Φx)h(x)δ(x0 + ε)dx

since the region in which Kh is different from the RHS of the last equation, that is
supp(hχ) ∩ J−(supp Θ−χ̇), tends to zero. Finally as ε → 0 we find that the genera-
tor of Wh(t) tends to the spatially smeared fixed-time interaction term (with t0 = 0
here).

Kh −→ −
∫
V(ϕ(0,x))h(x)d3x (3.14)

which should generate the interacting dynamics in the latter section, see equation (3.1).
Notice that the shape of the interaction, apart from the spatial cutoff h, is exactly the
same, only the sign has changed due to the change of Hamiltonian and Lagrangian
picture.

As already mentioned in the last section, such a limiting procedure leads to very
singular objects whose mathematical description is status is not clear. In particular
the RHS of (3.14) is neither an operator on the Hilbert space of the free theory nor an
element of the off-shell algebra of free theory A.

Thus the present approach can be interpreted as a regularization of the treatment of
interacting dynamics that has a clear-cut connection to the covariant approach which
is described in section 2.3. It yields a well-defined unitary co-cycle Wh(t) ∈ Aos with a
generator Kh ∈ Aos which is the time-averaged, spatially smeared interaction (3.12).

The price that is to pay is that the description of the interacting system is only avail-
able in terms of formal power series in the interaction. In case that an interacting theory
was defined in a non-perturbative fashion using either relative S-matrices or a unitary
co-cycle Wh(t) that solves (3.8), then the present framework can still be used to relate
both approaches. This is true thanks to the time-slice axiom.

Let us summarize the previous accomplishments: We presented a novel way to con-
struct the interacting theory – by means of the interacting dynamics αVt – in a time-slice
Σε. The validity of the time-slice axiom QFT3 in pAQFT (see proposition 2.3.7) guaran-
teed that the on-shell algebra of the interacting scalar field AVos(O) can be constructed
by elements in AVos(O) such that O ⊂ Σε and O ⊂ D(O), where D denotes the domain
of dependence (see definition 1.1.2).

A co-cycle Wh, relating both the free and the interacting dynamics, has been con-
structed as a formal power series in the interaction Vhχ by using Dyson’s series. Here
the interaction V has been cut off in spatial directions by a test function h ∈ D that is
set to constant value one in a neighborhood of the biggest spatial extent of O ⊂ Σε. If
we fix this region to the ball Br = {x ∈ R3 : |x| ≤ r}, i.e. h = 1 in a neighborhood of Br,
then the interacting dynamics of the real scalar field with interaction V is determined
by

αVt (A) = Wh(t) ? αt(A) ? Wh(t)?−1 ∀A ∈ Aos, supp A ⊂ R× Br .
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3. The Adiabatic Limit

Thus the perturbative description of the interacting system is achieved with in the
“space-slice”R× Br in a perturbative way, as we announced in the introduction.

In the adiabatic limit, where h is replaced by the constant function on R3, we know
that the adjoint action of the Wh on αt(A) tends to αVt (A), however Wh alone does not
define a unitary element in Aos anymore.

This approach provides a new tool for the study of perturbatively constructed QFTs
in Minkowski spacetime. A first example that demonstrates the strength of it will be
shown in the next chapter, where the existence of both the interacting vacuum and
interacting KMS states can be shown for the interacting algebras of observables. Fur-
thermore a solid connection between the mathematically thoroughly studied field of
C∗-dynamical systems and the treatment of interacting relativistic QFTs, which cannot
described by normable algebras, is established.
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Perturbative QFT

In this chapter we finally construct the promised KMS state for the interacting dynam-
ics. This will be done by exploiting the existence of a co-cycle Wh that intertwines the
interacting dynamics αVt with the free one.

The course of action is as follows: In the first section of this chapter we present an
outline of the (convergent) perturbation theory of C∗-dynamical systems, which high-
lights the construction of an interacting KMS state by means of a co-cycle. This area of
mathematical physics has been thoroughly studied in the past and standard references
are [BR02a, BR02b, AJP06].

The second section is concerned with the immediate application of this method to
the interacting system, consisting of a relativistic scalar quantum field in the space-slice
R× Br. We establish that, for a given KMS state ωβ with respect to the free dynamics
αt, the linear functional

A 7→ ωVβ,h(A) =
ωβ(A ? Wh(iβ))

ωβ(Wh(iβ))
(4.1)

defines an interacting KMS state with respect to the interaction V. This fact follows
almost immediately from the Araki’s analysis for C∗-dynamical systems [Ara73].

The third section is concerned with the question, whether the KMS states (4.1) still
exist in the limit as the spatial cutoff h tends to the constant function. A first important
result in this direction is a sufficient condition for the existence of the the state ωVβ,h in
terms of the connected correlation functions of the respective free state ωβ in section
4.3.2.

An extensive analysis of the algebra of observables as well as the massive vacuum
and massive KMS state reveals that the interacting KMS state with inverse temperature
0 < β < ∞ and β = +∞ (the vacuum state) fulfill the condition from section 4.3.2.
The proofs of the statements are found in section 4.3.3 for the vacuum case and in sec-
tion 4.3.4 for the thermal equilibrium case, in which it is also shown that the limiting
functionals maintain the symmetries of their respective free counterparts.

In the last section we define the thermostatic observables of the interacting theory at
finite temperature in a finite spatial volume and show their existence in the adiabatic
limit.
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4. Existence of a KMS-State in Perturbative QFT

4.1. Motivation in C∗-Dynamical Systems

The basic object that we will work with is an abstract C∗-algebra A, as the name C∗-
dynamical systems suggests. This is interpreted as the algebra of observables of some
physical system, e.g. the Weyl algebra of the scalar field (see section A.2 of the ap-
pendix).

Definition 4.1.1 (C∗-dynamical system).
A C∗-dynamical system is a C∗-algebra A with a strongly continuous one-parameter group
of automorphisms αt on A. αt is called implemented, if there exists a unital ∗-representation
π : A→ H and strongly continuous one-parameter group of unitaries U(t) onH such that

π(αt(A)) = U(t)π(A)U(t)−1 ∀A ∈ A .

The conditions on the dynamics are very restrictive, in particular that strong continuity
of αt. The conditions can be significantly weakened (see [DJP03]), but we don’t want to
go into detail here.

Now we want to look at a system whose dynamics is perturbed in the following
sense. To each dynamics αt we can associate a generator δ

αt(A) = etδ A .

The most prominent case is, if αt is obtained by a Hamiltonian H ∈ A, then δ(A) =

i[H, A]. Consider a perturbed dynamics

αP
t (A) = eδP(A), δP(A) = δ(A) + i[P, A] .

In this case both dynamics can be intertwined by a co-cycle W(t). The following theo-
rem is taken from [BR02b].

Theorem 7 (Perturbed dynamical systems).
Let P ∈ A be a self-adjoint. The map

t 7→ αP
t (A) =

∞

∑
n=0

in
∫

0≤t1≤···≤tn<t

[αt1(P), [αt2(P), · · · [αtn(P), αt(A)]] · · · ]dt1 · · ·dtn

defines a strongly continuous one-parameter group of automorphisms on A with generator δP =

δ + i[P, ·]. The unitary co-cycles defined by

A 3W(t) =
∞

∑
n=0

(it)n
∫

0≤s1≤···≤sn≤1

αts1(P) · · · αtsn(P)ds1 · · ·dsn

intertwine the one-parameter groups αt and αP
t , i.e. αP

t (A) = W(t)αt(A)W(t)−1.

We find that in particular if the dynamics αt is induced by a Hamiltonian H, then the
new dynamics αP

t is induced by H + P. The co-cycle W(t) will now be used to construct
a KMS state for αP

t out of a KMS state for αt.
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4.2. The Case of Local Interactions with Spatial Cutoff

Theorem 8 (Perturbed KMS states).
Let ωβ be a KMS state on A with inverse temperature β with respect to αt. Then the function

t 7→ ωβ(AW(t))

has an analytic continuation into the strip {z ∈ C : 0 < =(z) < β} for every A ∈ A and the
linear functional

A 7→ ωP
β (A) =

ωβ(AW(iβ))
ωβ(W(iβ))

defines a KMS state on A with respect to αP
t .

The last theorem goes back to the work of Araki [Ara73] though it could be generalized
to the case in which αt acts only σ-weakly continuous on a von-Neumann algebra and
the perturbation is an essentially self-adjoint operator, affiliated with the von-Neumann
algebra [DJP03].

This result will give a guideline to the construction of the interacting KMS state. We
have already completed half of the work, since we found the co-cycle Wh(t) analogous
to the one in theorem 7. Now we set forth to prove an analogue to theorem 8.

4.2. The Case of Local Interactions with Spatial Cutoff

The outcome of section 3.2 can be summarized as follows: Let h ∈ D(R3) such that
h = 1 in a neighborhood of the Euclidean ball Br ⊂ R3 with radius r. Furthermore let
O ⊂ Σε be an open subset of the time-slice Σε such that O ⊂ R× Br. An illustration of
this setting is given in figure 5. Then the interacting dynamics αVt , defined by

αVt (SVhχ
(A)) = SVhχ

(αt(A)), supp(A) ⊂ O

is intertwined with the free dynamics αt by the co-cycle

Wh(t) =
∞

∑
n=0

(it)n
∫
sn

αts1(Kh) ? · · · ? αtsn(Kh)ds1 · · ·dsn

sn = {(s1, . . . , sn) ∈ Rn : 0 ≤ s1 ≤ · · · ≤ sn ≤ 1}, Kh = −RVhχ
(VhΘ−χ̇) .

The intertwining relation

αVt (A) = Wh(t) ? αt(A) ? Wh(t)?−1

was shown to hold in a neighborhood of t = 0 at first, but due to the group law it
holds for all on-shell functionals A ∈ Aos with supp(A) ⊂ R × Br. The method to
determine the interacting dynamics αVt and the co-cycle Wh (for a given interaction V)
that is shown above depends only on the cutoff functions h and χ, but is, in particular,
state-independent.
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Σε

t

x

R× Br

O

supp(Kh)
2ε

supp(h)

Figure 5.: The time-slice Σε and the space-slice R× Br as shaded regions. The support
of the generator Kh of Wh is marked as the streaked area.

Using these concepts we will approach the task to prove a version of theorem 8 within
this framework, which is achieved in the end of this section. However, this will only
be an intermediary result, since the perturbed KMS state that is obtained in this way, is
restricted to a system with a finite spatial extent Br. From the spacetime point of view
this means that the interacting state is defined on the algebra of observables which are
restricted to the “space-slice” R × Br, see figure 5. The construction of the adiabatic
limit of the state ωVβ,h – the state that is obtained as h tends to the constant function on
R3 – needs more evolved methods due to possible convergence issues. It is postponed
to the next section.

We start from the homogeneous KMS state ωβ with inverse temperature β for the
free dynamics αt. This state has been explicitly discussed in example 1.5.7. The ?-
product and the (unrenormalized) time-ordered product ·T on Aos are obtained by the
translation invariant Hadamard two-point function ∆+ and Feynman propagator ∆F

∆+(x, y) = Dβ
+(x− y), ∆F(x, y) = Dβ

F(x− y)

where Dβ
+ is given in (1.19) and Dβ

F = Dβ
+ + iGa with the advanced fundamental solu-

tion from theorem 1. This leads to the well-known form of the Feynman propagator Dβ
F

at finite temperature:

Dβ
F(x) = lim

ε→0

i
(2π)4

∫ ( 1
p2 −m2 + iε

+ 2πi
δ(p2 −m2)

eβ|p0| − 1

)
e−iηµν pµxν

dp (4.2)

The homogeneous KMS state ωβ on Aos is simply the evaluation at φ = 0. 7

7Actually, any Hadamard two-point function ∆+, that fulfills the KMS condition (definition 1.5.6), will
result in an interacting KMS state using the following procedure.
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4.2. The Case of Local Interactions with Spatial Cutoff

We prove an important proposition which concerns the analytic extension of the cor-
relation functions of the observables A1, . . . , An in ωβ. In C∗-algebraic setting a similar
theorem is known to hold as a pure consequence of KMS condition [BR02b]. An exten-
sion to algebras of unbounded operators has not been worked out to such an amount
of generality, to our best knowledge.

Proposition 4.2.1.
Let ωβ and ? be as above. Then for every A1, . . . , An ∈ Aos the functions

(t1, . . . , tn) 7→ ωβ(αt1(A1) ? · · · ? αtn(An)) (4.3)

have an analytic continuation into

Tn
β = {(z1, . . . zn) ∈ Cn : −β < =(zi − zj) < 0 ∀1 ≤ i < j ≤ n} .

and

ωβ(αt1(A1) · · · αtk(Ak)αtk+1+iβ(Ak+1) · · · αtn+iβ(An))

=ωβ(αtk+1(Ak+1) · · · αtn(An)αt1(A1) · · · αtk(Ak))

for all k ∈ {1, . . . , n}.

PROOF. A multiple product of observables can be written as

(A1 ? · · · ? An)(φ) = ∏
1≤i<j≤n

eΓij
+(A1 ⊗ · · · ⊗ An)

∣∣∣
φ1⊗···⊗φn=φ⊗n

Γij
+ =

∫
Dβ

+(x− y)
δ

δφi(x)
⊗ δ

δφj(y)
dx dy

using the Leibniz rule of differential calculus on functionals (see section 1.2.2 and 1.4).
The time-translations αx(A) on Aos are simply given by αt(A)(φ) = A(αtφ) where

αt(φ)(x) = φ(x0 + t, x) conforming with the notation in definition 1.2.6. Thus, the
expectation value in (4.3) can be written as

ωβ(αt1(A1) ? · · · ? αtn(An)) = (αt1(A1) ? · · · ? αtn(An)) (φ = 0)

= ∏
1≤i<j≤n

eΓij
+(αt1(A1)⊗ · · · ⊗ αtn(An))

∣∣∣
φ1⊗···⊗φn=0

= ∏
1≤i<j≤n

eΓij
+(ti ,tj)(A1 ⊗ · · · ⊗ An)

∣∣∣
φ1⊗···⊗φn=0

Γij
+(ti, tj) =

∫
Dβ

+(x0 − y0 + (ti − tj), x− y)
δ

δφi(x)
⊗ δ

δφj(y)
dx dy .

As t 7→ Dβ
+(t, x) has an analytic continuation into −Sβ = {z ∈ C : −β < =(z) < 0},

the function

(t, t′) 7→ eΓij
+(t,t

′)(A1 ⊗ · · · ⊗ An)
∣∣∣
φ1⊗···⊗φn=0
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has an analytic continuation to {(z1, z2) ∈ C
2 : −β < =(z1 − z2) < 0} for every

A1, . . . , An ∈ Aos. Thus for the full expectation value we obtain that

(t1, . . . , tn) 7→ ∏
1≤i<j≤n

eΓij
2 (ti ,tj)(A1 ⊗ · · · ⊗ An)

∣∣∣
φ1⊗···⊗φn=0

has an extension into

Tn
β = {(z1, . . . , zn) ∈ Cn : −β < =(zi − zj) < 0 ∀1 ≤ i < j ≤ n} .

The KMS conditions for the expectation values

ωβ(αt1(A1) · · · αtn(An)) = ∏
1≤i<j≤n

eΓij
2 (ti ,tj)(A1 ⊗ · · · ⊗ An)

∣∣∣
φ1⊗···⊗φn=0

follow directly from the fact that Γij
2 (ti, tj + iβ) = Γji

2 (tj, ti) for ti, tj ∈ R. �

The interacting KMS state ωVβ,h for the interacting dynamics αVt with respect to the
cut off interaction Vhχ is be obtained by applying the proof of theorem 8 from the last
section to this situation.
Proposition 4.2.2.
Given a KMS state ωβ on Aos with respect to the free time-evolution αt, then following state-
ments hold:

• The linear functional A 7→ ωβ(A ? Wh(t)) has an analytic continuation into the strip
Sβ and is bounded on the boundary for all functionals A with supp(A) ⊂ O.

• A KMS state for the interacting dynamics αVt for observables contained in the space-slice
R× Br is given by the formula

ωVβ,h(A) =
ωβ(A ? Wh(iβ))

ωβ(Wh(iβ))
, (4.4)

where h ∈ D(R3) with h(x) = 1 for x ∈ Br.

PROOF. The proof uses the ideas which are already present in the original work by
Araki [Ara73]. To show that the analytic continuation of ωβ(A ?Wh(t)) is well-defined,
it is useful to construct a unitary operator intertwining the dynamics at different times.
For this, consider

Uh(t, s) = Wh(t)?−1 ? Wh(s) .

Due to equation (3.11) the Uh fulfill, for fixed t ∈ R, the following differential equation

1
i

d
ds

Uh(t, s) = Wh(t)?−1 ? Wh(s) ? αs(Kh) = Uh(t, s) ? αs(Kh) .

With the initial condition Uh(t, t) = 1 one obtains the power series expansion

Uh(t, s) =
∞

∑
n=0

(−i)n
∫

s≤t1≤···≤tn≤t

αt1(Kh) ? · · · ? αtn(Kh)dt1 · · ·dtn

100



4.2. The Case of Local Interactions with Spatial Cutoff

for t > s similar to Wh(t) in (3.13). This can be rewritten as

Uh(t, s) =
∞

∑
n=0

(−i(t− s))n
∫
sn

αs+u1(t−s)(Kh) ? · · · ? αs+un(t−s)(Kh)du1 · · ·dun ,

where sn denotes the unit simplex

sn = {(u1, . . . , un) ∈ Rn : 0 ≤ u1 ≤ . . . ≤ un ≤ 1} .

We will discuss the analytic continuation of the following expression, which constitutes
the numerator of ωVβ,h(A ? αt(B)):

GA,B(t, s) = ωβ(A ? αVt (B) ? Wh(s)) = ωβ(A ? Wh(t) ? αt(B) ? Wh(t)?−1 ? Wh(s))

= ωβ (A ? Wh(t) ? αt(B) ? Uh(t, s)) .

The power series expansion of GA,B(t, s) in the generator Kh yields

GA,B(t, s) = ωβ (A ? Wh(t) ? αt(B) ? Uh(t, s))

=
∞

∑
n=0

n

∑
k=0

(it)n−k(is− it)k
∫
sn−k

du1 · · ·dun−k

∫
sk

dv1 · · ·dvk×

×ωβ

(
A ? αu1t(Kh) ? · · · ? αun−kt(Kh) ? αt(B) ? αs+v1(t−s)(Kh) ? · · · ? αs+vk(t−s)(Kh)

)
.

Using proposition 4.2.1 we infer that the domain of analyticity of the integrand is given
by Tn+2

β which can be recast in the form

Tn+2
β = {(z1, . . . , zn+2) ∈ Cn+2 : 0 < =(z2) < · · · < =(zn+2) < β, =(z1) = 0}

in our case, that is the first variable having vanishing imaginary part. This is due to the
factor A in front the expectation value GA,B. We conclude that

ωβ

(
A ? αu1t(Kh) ? · · · ? αun−kt(Kh) ? αt(B) ? αs+v1(t−s)(Kh) ? · · · ? αs+vk(t−s)(Kh)

)
has an analytic continuation into

0 < u1=(t) < . . . < un−k=(t) < =(t) <
< =(s) + v1=(t− s) < · · · < =(s) + vn=(t− s) < β .

Hence GA,B(t, s) can be analytically continued into the simplex {(z1, z2) ∈ C2 : 0 <

=(z1) < =(z2) < β} due to the conditions on the integration variables. Moreover
GA,B(t, s) remains bounded on the boundaries of the simplex and fulfills the KMS prop-
erty: The function t 7→ GA,B(t, iβ)

GA,B(t, iβ) = ωβ(A ? αVt (B) ? Wh(iβ))

admits an extension to values 0 < =(t) < β for all A, B ∈ Aos(R× Br) and

GA,B(iβ, iβ) = ωβ(A ? αViβ(B) ? Wh(iβ)) = ωβ(A ? Wh(iβ) ? αiβ(B))

= ωβ(B ? A ? Wh(iβ))
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holds using the KMS condition for ωβ.
It remains to show that the functional is formally positive in h̄ and V (see definition

2.4.1). For this let us denote 2γ = β:

A 7→ ωβ(A∗ ? A ? Wh(iβ)) = ωβ(A∗ ? A ? Wh(iγ) ? αiγ(Wh(iγ)))

=ωβ

(
α−iγ(Wh(iγ)) ? A∗ ? A ? Wh(iγ)

)
= ωβ (Wh(iγ)∗ ? A∗ ? A ? Wh(iγ))

= ωβ(B∗ ? B)

where B = A ? Wh(iγ). In this computation the analytically continued co-cycle Wh(iγ)
and the KMS condition for ωβ was used. The formal positivity in h̄ is directly inherited
from the formal positivity of ωβ and the formal positivity in V comes from the fact, that
B∗ ? B is a square of formal power series in V.

In order to obtain a normalized functional, hence a state, one has to divide by the
factor ωβ(Wh(iβ)) and arrives at the claim. �

This is a first, non-trivial step towards the final goal. The interacting KMS state ωVβ,h on
R× Br was constructed in a very simple fashion by using a well-known construction
from quantum statistical mechanics and – what was in particular important – without
invoking observables at asymptotic times or their correlations, respectively. What is
maybe more astonishing is the fact that the construction makes heavy use of the cor-
relation functions of the interaction functional V (or more precisely its image under
the quantum Møller map) at Euclidean times. This aspect has not appeared in such a
prominent role in the hitherto publications on constructions of interacting KMS states,
except in the realm of Euclidean QFTs, of course.

A subtlety in the definition of ωVβ,h

ωVβ,h(Shχ(A)) =
ωβ(Shχ(A) ? Wh(iβ))

ωβ(Wh(iβ))
, supp(A) ⊂ O (4.5)

is the possible dependence of the state on the choice of χ. In section 3.2, equation (3.7),
the co-cycle Wh(t) was defined by

Wh(t) ≡Whχ(t) = Shχ(Vhρ−t
), ρt = Θ−(αt(χ)− χ) , (4.6)

thus the co-cycle exhibits a manifest dependence on the values of χ. Nevertheless it
holds the following:

Proposition 4.2.3.
Let χi ∈ D(R), such that χi(t) = 1 for |t| < ε and supp(χi) ⊂ (−2ε, 2ε) for i = 1, 2. Then,
for i = 1, 2, the states ωVβ,hχi

, defined by equation (4.5) with Whχi defined by (4.6) coincide.

PROOF. We begin with calculating a relation between the two co-cycles Whχ1 , Whχ2 first.
To this avail, denote χ1−χ2 = σ++σ−with supp(σ±) ⊂ J±(Σε). Due to equation (2.18)
we know that

Shχ2(A) = V ? Shχ1(A) ? V?−1, V = Shχ2(Vhσ−), supp(A) ⊂ Σε × Br
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4.3. Removing the Spatial Cutoff

where h = 1 on Br. Here, Br ⊂ R3 is the open Euclidean ball with radius r. This allows
us to relate the co-cycles, induced by equation (4.6) with χ2, with the one induced by
χ1:

αVt (Shχ2(A)) = Shχ2(αt(A)) = V ? Shχ1(αt(A)) ? V?−1

= V ? Whχ1(t)αt(Shχ1(A)) ? Whχ1(t)
?−1 ? V?−1

= V ? Whχ1(t) ? αt(V?−1)︸ ︷︷ ︸
:=Whχ2 (t)

?αt(Shχ2(A)) ? αt(V) ? Whχ1(t)
?−1 ? V?−1

The definition of Whχ2(t) is unique, up to elements that commute with all elements in
Aos((−ε, ε)× Br). This is removed in the adiabatic limit h→ 1, where Whχ2 is, however,
not unitary in A anymore.

The state ωVβ,hχ2
is defined by equation (4.5) with Whχ2 inserted. Looking at the nu-

merator we find that

ωβ(Shχ2(A) ? Whχ2(iβ)) = ωβ

(
V ? Shχ1(A) ? V−1 ? V ? Whχ1(iβ) ? αiβ(V?−1)

)
= ωβ

(
Shχ1(A) ? Whχ1(iβ)

)
due to the KMS condition. This implies the statement. �

4.3. Removing the Spatial Cutoff

This section is devoted to porving the existence of the adiabatic limit of the interacting
KMS state, i.e. the limit h → 1 for the state ωVβ,h. Once such a state is shown to exist
on all observables in the time-slice Σε, the time-slice axiom implies that we can derive
the expectation values of all observables A ∈ AVos(O) for all O ⊂ M. An algorithm to
achieve this derivation is found in [CF09].

One of the major advantages of the time-slice approach will be exploited also for
this manner: The behavior of the theory in timelike directions is irrelevant in order to
construct the interacting KMS state, for it is only the spacelike decay of the correlation
functions (with Euclidean time arguments) on which a full control is needed.

This is, at least in the case of KMS states, superior to the canonical way to proving
existence of an interacting state, which is to estimate the perturbative expansions of the
induced state (see section 2.4.3) as the cutoff g of the interaction functional Vg tends to
the constant function on M.

It is known that in massive theories the vacuum state exhibits a decay in all space-
time directions is sufficient to guarantee the existence of the interacting state, which is
exploited in the proof by Epstein and Glaser [EG73].

We will show that interacting, massive theories admit KMS states with inverse tem-
perature 0 < β < ∞ and vacuum states (KMS states with β = +∞) due to the exponen-
tial decay of the correlation functions of the respective free states in spatial directions,
thereby obtaining an alternative proof for the existence of the vacuum state.
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4.3.1. Connected Correlation Functions

In order to obtain more control on the perturbative expansions of the interacting state

ωVβ,h(A) =
ωβ(A ? Wh(iβ)

ωβ(Wh(iβ))
(4.7)

we show a convenient reformulation of (4.7) in terms of the connected8 correlation func-
tions of the free theory that will play an important role in the discussion on the spatial
cluster properties.

Before proving the proposition we introduce the notion of the connected part of a
state ω on some algebra A. Consider the tensor algebra TA over A

TA =
∞⊕

n=0

A⊗n

in which the tensor-powers of A⊗n are understood in tensor powers of the vector space
A. The space of linear functionals on TA carries an associative product:

(νµ)(A1 ⊗ · · · ⊗ An) = ∑
I⊂{1,...,n}

ν

(⊗
i∈I

Ai

)
µ

⊗
j∈Ic

Aj

 (4.8)

where Ic is the complement of I in {1, . . . , n}. The unit element with respect to this
product is 1(A1 ⊗ · · · ⊗ An) = δn0. Let m denote the canonical linear map m : TA→ A,
m(A1 ⊗ . . .⊗ An) = A1 · · · An. Then the connected part ωc : TA → C of ω : A → C is
defined by

ω ◦m = eωc
=

∞

∑
n=0

1
n!
(ωc)n

in the sense of the products of linear functionals. The formula for the inverse is given:

ωc = log (ω ◦m) =
∞

∑
n=1

(−1)n

n
(ω ◦m− 1)n

with the condition ωc(1) = 0. Taking the k-th power of ωc one obtains

(ωc)k(A1 ⊗ · · · ⊗ An) = ∑
I1,...,Ik⊂{1,...,n}

k

∏
j=1

ωc

⊗
i∈Ij

Ai


with pairwise disjoint sets {Ij ⊂ {1, . . . , n} : j = 1, . . . , k} such that

⋃k
j=1 = {1, . . . , k}

by iteration of (4.8). The contributions in which one of the Ij is empty vanishes due to
ωc(1) = 0. This allows to rewrite the sum as a sum over partitions of {1, . . . , n} into k
subsets (where each partition occurs k! times):

(ωc)k(A1 ⊗ · · · ⊗ An) = k! ∑
{I1,...,Ik}∈

Partk{1,...,n}

n

∏
k=1

ωc

(⊗
i∈Ik

Ai

)

8Many authors use the term truncated correlation functions in this context.
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Thus one obtains the (recursive) formula for ωc

ω(A1 · · · An) =(ω ◦m)(A1 ⊗ · · · ⊗ An) = eωc
(A1 ⊗ · · · ⊗ An)

=
n

∑
k=1

∑
{I1,...,Ik}∈

Partk{1,...,n}

n

∏
k=1

ωc

(⊗
i∈I

Ai

)
= ∑

P∈Part{1,...,n}
∏
I∈P

ωc

(⊗
i∈I

Ai

)

which is found in the literature. A simple consequence of this definition is the formula

ωc(exp⊗(A)) = ln
(

ω(eA)
)

, A ∈ A

which will be of use later on.
The following proposition was first proven by [BKR78] in the C∗-algebraic setting.

Proposition 4.3.1.
The expectation values ωVβ,h(A) can be written in terms of the connected correlation functions:

ωVβ,h(A) =
∞

∑
n=0

∫
βsn

∫
R3n

h(x1) · · · h(xn)×

×ωc
β (A⊗Vh(u1, x1)⊗ · · · ⊗Vh(un, xn))dx1 · · ·dxn du1 · · ·dun (4.9)

where βsn = {(u1, . . . , un) ∈ Rn : 0 ≤ u1 ≤ · · · ≤ un ≤ β} and

Vh(u, x) =
∫

Θ−(t)χ̇(t)αiu

(
RVhχ

(V (Φt,x))
)

dt .

Here, ωc
β denotes the connected part of the state ωβ.

PROOF. The proof of formula (4.9) goes along the same lines as the original proof in
[BKR78] and is only sketched here. For this we introduce the following expansions in
the interaction h:

ωVβ,λh(A) =
∞

∑
n=0

λnΩn(A) , ωβ(A ? Wλh(iβ)) =
∞

∑
n=0

λnνn(A) .

The coefficients νn are indeed all known from the above construction of Wh(t):

νn(A) = (−1)n
∫

βsn

ωβ(A ? αiu1(Kh) ? · · · ? αiun(Kh))du1 · · ·dun, ν0(A) = ωβ(A) .

By definition of the interacting states ωVβ,h it holds

ωβ(A ? Wλh(iβ)) = ωβ(Wλh(iβ))ω
V
β,λh(A) ,

thus by comparing the coefficients of the expansions on both sides on gets

νn(A) =
n

∑
k=0

νk(1)Ωn−k(A), Ωn(A) = νn(A)−
n

∑
k=1

νk(1)Ωn−k(A) .

By induction it is then shown that

Ωn(A) = (−1)n
∫

βsn

ωc
β (A⊗ αiu1(Kh)⊗ · · · ⊗ αiun(Kh))du1 · · ·dun .

The claim follows by inserting (3.12) in the formal power series expansion of ωVβ,h. �
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4. Existence of a KMS-State in Perturbative QFT

4.3.2. Condition on the Correlation Functions

The last proposition allows us to formulate the problem in a feasible manner: We want
to show that expectation values ωVβ,h(A) with A ∈ Aos(R× Br) which are determined
by (4.9) converge as h→ 1 in the sense of formal power series in V.

A first step to formulate a condition that ensures the existence of such a limit is done
by the following observation: The generators of the co-cycle Wh

−Kh = RVhχ
(VhΘ−χ̇) = S(Vhχ)

?−1 ?
(
S(Vhχ) ·T VhΘ−χ̇

)
are (formal power series of) elements of the free theory A(B) where B is a region con-
taining (

supp(χ)× supp(h)
)
∩ J−

(
supp(Θ−χ̇)× supp(h)

)
,

see figure 3. Hence we can replace

RVhχ
(VhΘ−χ̇) −→ RVχ

(VhΘ−χ̇) = S(Vχ)
?−1 ?

(
S(Vχ) ·T VhΘ−χ̇

)
=: −K′h (4.10)

and still obtain a well-defined generator K′h which has support in the compact set(
supp(χ)×R3) ∩ J−

(
supp(Θ−χ̇)× supp(h)

)
.

The latter generator has the advantage that it is a linear functional of h. In particular
we only have to control the decay behavior of the connected correlation functions in
order to prove the existence of the adiabatic limit. We rewrite the expectation value
with the new generator (interpreted as a partial adiabatic limit of ωV

β,h):

ωVβ,h(A) =
∞

∑
n=0

∫
βsn

∫
R3n

h(x1) · · · h(xn) ωc
β (A⊗V(u1, x1)⊗ · · · ⊗V(un, xn))dX dU

V(u, x) =
∫

Θ−(t)χ̇(t)αiu
(
RVχ

(V(Φt,x))
)

dt . (4.11)

The notation for V has to be taken with care, since αiu(RVχ
(VhΘ−χ̇)) is – as an alge-

braic object – not well-defined since there are no analytic elements in the algebra of
observables (analytic elements cannot have compact support, see [Haa92]). However,
the expectation values of time-translations in imaginary directions of the respective ele-
ments in the KMS state ωβ are well-defined in their domain of analyticity βsn, as proven
in proposition 4.2.2.

The latter result will now be used to formulate a condition on the connected expecta-
tion values that guarantees the existence of the adiabatic limit.

Proposition 4.3.2.
Let ωVβ,h be the interacting KMS state for αVt for the interaction Vχ, defined by

ωVβ,h(A) =
∞

∑
n=0

∫
βsn

∫
R3n

h(x1) · · · h(xn)ω
c
β (A⊗V(u1, x1)⊗ · · · ⊗V(un, xn))dX dU .
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Let (hn)n∈N be a sequence of test functions with the following properties

hn(x) = 1 for |x| < n, |hn(x)| ≤ 1 ∀x ∈ R3, n ∈ N .

If the functions

Fn(u1, x1; · · · ; un, xn) = ωc
β (A0 ⊗ αiu1,x1(A1)⊗ · · · ⊗ αiun,xn(An))

are contained in the space L1(βsn ×R3n) for all Ai ∈ Aos with i = 0, . . . , n, n ∈ N and
0 < β ≤ +∞, then the limit

lim
n→∞

ωVβ,hn
(A) = ωVβ (A) A ∈ Aos

exists and defines a state over Aos.

PROOF. Due to proposition 4.3.1 we know that the expectation values of the interacting
state can be written in terms of the connected correlation functions

ωVβ,h(A) =
∞

∑
n=0

(−1)n
∫

βsn

ωc
β

(
A⊗ αiu1(K

′
h)⊗ · · · ⊗ αiun(K

′
h)
)

dU .

in the sense of formal power series in V by proposition 4.3.1. The n-th term of this series
can be obtained by the composition law of formal power series. To this end let K′(j)

h be
the j-th term in the formal power series of K′h in V. Then[

ωVβ,h(A)
]

n
= ∑

k∈N
∑

`∈Nk+1

|`|=n

(−1)k
∫

βsk

ωc
β

(
A(`0) ⊗ αiu1(K

′(`1)
h )⊗ · · · ⊗ αiuk(K

′(`k)
h )

)
dU .

By inserting the K′h from (4.10), using the form (4.11) and abbreviating the `-th term of
V by V(`), we obtain[

ωVβ,h(A)
]

n
= ∑

k∈N
∑

`∈Nk+1

|`|=n

∫
βsk

∫
R3k

h(x1) · · · h(xk)×

×ωc
β

(
A(`0) ⊗V(u1, x1)

(`1) ⊗ · · · ⊗V(uk, xk)
(`k)
)

dx1 · · ·dxk du1 · · ·duk .

But again due to (4.11) the V(u, x)(`j) can be written as

V(u, x)(`j) = αiu,x

(∫
Θ−(t)χ̇(t)R(`j)

Vχ
(V(Φt,0))dt

)
=: αiu,x(R(`j))

where R(`j) ∈ Aos(B) where B is an open neighborhood of [−ε, 0]× J−. The notation
αiu,x(R) is also formal in the same sense as explained above. Using these results in the
initial formula for the interacting state, we find[

ωVβ,h(A)
]

n
= ∑

k∈N
∑

`∈Nk+1

|`|=n

Ωh
`

Ωh
` =

∫
βsk

∫
R3k

h(x1) · · · h(xk)ω
c
β

(
A(`0) ⊗ αiu1,x1(R(`1))⊗ · · · ⊗ αiuk ,xk(R(`k))

)
dX dU.
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Hence the integrand is, for a fixed partition ` of {1, . . . , n} and up to the factors h(x), a
function of the form

Fk(u1, x1; · · · ; uk, xk) = ωc
β (A0 ⊗ αiu1,x1(A1)⊗ · · · ⊗ αiuk ,xk(Ak))

with Ai ∈ Aos for i = 0, . . . , n. Thus it suffices to show the assertion for this func-
tion. The claim will now be proven by the theorem on dominated convergence. The
integrand can, by assumption, be majorized by

|hn(x1) · · · hn(xk)Fk(u1, x1; . . . ; uk, xk)| ≤ ‖Fk‖L1 ,

hence we can switch the limit and the integration and obtain

ωVβ (A) = lim
k→∞

∞

∑
n=0

∫
βsn

∫
R3n

hk(x1) · · · hk(xn)×ωc
β (A⊗V(u1, x1)⊗ · · · ⊗V(un, xn))dX dU

=
∞

∑
n=0

∫
βsn

∫
R3n

ωc
β (A⊗V(u1, x1)⊗ · · · ⊗V(un, xn))dX dU

=
∞

∑
n=0

∑
k∈N

∑
`∈Nk+1

|`|=n

∫
βsk

∫
R3k

ωc
β

(
A(`0) ⊗ αiu1,x1(R(`1))⊗ · · · ⊗ αiuk ,xk(R(`k))

)
dX dU.

with

R =
∫

Θ−(t)χ̇(t)RVχ
(V(Φt,0))dt . (4.12)

�

We remark that the functional R is slightly more singular than a microcausal functional
in the sense of 1.2.5. Its first term in the formal power series in V

R(1) =
∫

Θ−(t)χ̇(t)V(Φt,0)

exhibits already a non-trivial wavefront set, which is not possible for a microcausal
functional. In general, the wavefront set of these functionals are given by

WF
δnR(`)

δφn (φ) ⊂
{
(x1, . . . , xn|p1, . . . , pn) ∈ Ṫ∗Mn : (p1, . . . pn) /∈ (J+)n ∪ (J−)n} .

This is, in fact, very close to the standard definition of microcausal functionals in the
more general pAQFT-approach on curved spacetimes [BF09]. In particular, all struc-
tural results on the algebra of observables extend to this more singular class of func-
tionals.

4.3.3. Proof for the Vacuum State

Using the result of proposition 4.3.2 it remains to show that the connected correlation
functions (with imaginary time arguments) of the KMS state of the free theory are inte-
grable. The strategy to prove this statement takes a detour to the vacuum state. We will
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show that the free massive vacuum state will have an the mentioned property, thereby
giving an alternative proof of the existence of a vacuum state for interacting massive
theory to [EG73].

The proof that will be shown in the end of this section will make use of these two in-
termediary results: The first one concerns the singular directions of functional deriva-
tives that appear in the expansion of the truncated vacuum expectation values.

Proposition 4.3.3.
Define for A0, . . . , An ∈ A the compactly supported distribution

Ψ(x1, . . . , xk, y1, . . . , yk) =
k

∏
l=1

δ2

δφi(l)(xl)δφj(l)(yl)
(A0 ⊗ · · · ⊗ An)

∣∣∣
φ0⊗···⊗φn=0

where i, j : {1, . . . , k} → {0, . . . , n} such that i(l) < j(l) for all l ∈ {1, . . . , k}. Then

(p1, . . . , pk) 7→ Ψ̂(−p1, . . . ,−pk, p1, . . . pk)

is rapidly decreasing inside the k-fold product of either the forward lightcone (J+)k or the back-
ward lightcone (J−)k.

PROOF. Using the tensor product rule for wavefront sets (see [Hör90]) and the fact
that the functionals Ai are microcausal (see definition 1.2.5) one finds that Ψ̂(−P, P) is
rapidly decaying in every direction, except the cone defined by{

(p1, . . . , pk) ∈ Ṫ∗Mk : ∑
l=1,...,k
i(l)=m

pl − ∑
l=1,...,k
r(l)=m

pl = 0, m = 0, . . . , n
}

Assume that all of the momenta lie either inside the forward or backward lightcone.
Taking the first condition (m = 0) we see that that {l ∈ {1, . . . , k} : r(l) = 0} = ∅. Since
all the momenta are contained in J+ or J− this implies

∑
l=1,...,k
s(l)=0

pl = ∑
l=1,...,k
r(l)=0

pl = 0 =⇒ pl = 0 ∀l ∈ {1, . . . , k} : s(l) = 0 .

But the set {l ∈ {1, . . . , k} : s(l) = 0} contains in particular indices {l ∈ {1, . . . , k} :
r(l) = 1}. This information can be put into the next wavefront set condition m = 1
which yields

∑
l=1,...,k
s(l)=1

pl − ∑
l=1,...,k
r(l)=1

pl

︸ ︷︷ ︸
=0

= 0 =⇒ pl = 0 ∀l ∈ {1, . . . , k} : s(l) = 1

again since all the directions are contained in one of the lightcones J+, J−. This can be
iterated until m = n with the result that all momenta {pl : l = 1, . . . , k} vanish. Note
that the same statement holds for functionals which are restricted to a point in space,
but are smeared in time, such as the generator R of W in the adiabatic limit, see (4.12).�
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The second property that we will need in the following shows that the vacuum two-
point function with imaginary time-arguments decays exponentially, if there is a non-
vanishing mass.

Proposition 4.3.4.
Let f ∈ D(R4) with supp( f ) ⊂ BR. Then the function

I f (x0, x) =
∫

e−i(p0x0−px)θ(p0)δ(p2 −m2) f̂ (p0, p)dp

has an analytic continuation into the lower half plane C− ×R3 and for m > 0 it holds∣∣I f (−ix0, x)
∣∣ ≤ c e−mr, r =

√
x2

0 + x2 .

uniform for r > 2R + δ with δ > 0.

PROOF. The domain of analyticity of I f is obvious by the fact that

I f (−ix0, x) =
∫ eipx−x0

√
p2+m2

2
√

p2 + m2
f̂
(√

p2 + m2, p
)

d3 p

decays exponentially when m2 ≥ 0. Using the identity

1
2π

∫ eikx

k2 + ω2 dk =
e−ωx

2ω
, x, ω > 0

we can rewrite the following integral

I f (−ix0, x) =
∫ eipx−x0

√
p2+m2

2
√

p2 + m2
f̂
(√

p2 + m2, p
)

d3 p

=
1

2π

∫ ei ∑i pixi

p2
0 + p2 + m2

f̂
(√

p2 + m2, p
)

dp0 d3 p

With loss of generality we choose the coordinates x = nr cos(α) and x0 = r sin(α) with
n = (1, 0, 0) and 0 < 2α < π. The following change in the momentum variables is
helpful:

k0 = p0 sin(α) + p1 cos(α), k1 = p0 cos(α) + p1 sin(α), k2/3 = p2/3 .

The integral is of the form

I f (−ix0, x) =
1

2π

∫ eik0r f̂ (ω(ki), p(ki))

k2
0 + k2

1 + k2
2 + k2

3 + m2
dk =

1
2π

∫ eik0r f̂ (ω(ki), p(ki))

k2
0 + k2

1 + Ω2
dk,

ω(ki)
2 = (k0 cos(α)− k1 sin(α))2 + Ω2, p1(ki) = k0 cos(α)− k1 sin(α)

with the abbreviation Ω2 = k2
2 + k2

3 + m2. We replace the integration in the k0-variable
by replacing contour integration in upper half plane. By Paley-Wiener theorem [Str03]
we know that for (ω, p) in the upper half plane C4

+:∣∣∣ f̂ (ω, p)
∣∣∣ ≤ c eR

√
|ω|2+|p|2
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thus the integrand will exponentially decay for r > R. The contour integral yields

1
2π

∫
C

eizr

z2 + k2
1 + Ω2

f̂ (ω, p)dz ,

where the dependence of ω and p on the variables k0 = z and ki is suppressed in the
notation of f̂ . We see that the integrand has a pole at

z = i
√

k2
1 + Ω2 = i

√
k2 + m2 .

The principal square root in ω(z, ki) has a branch cut on the negative real axis, we get a
branch cut along the vertical axis, starting from

z = k1 tan(α) + i
Ω

cos(α)
.

Thus we choose a contour that avoids both the pole and the branch cut, see figure 6

=(k0) = 0
C

i
√

k2
1 + Ω2

i
√

k2
1+Ω2

cos(α)

k1 tan(α)

Figure 6.: The integration contour C. The semicircle has to be extended to infinite size
and the orientation is positive.

such that the contour integral vanishes due to the exponential decay of the integrand:

0 =
1

2π

∫
C

eizr

z2 + k2
1 + Ω2

f̂ (ω, p)dz

= I f (x0, x) +
1

2π

∮
pole

eizr

z2 + k2
1 + Ω2

f̂ (ω, p)dz

+
1

2π

∫
branch

eizr

z2 + k2
1 + Ω2

f̂ (ω, p)dz .
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The pole contour can be calculated using the residue theorem

1
2π

∮
z=i
√

k2
1+Ω2

eizr

z2 + k2
1 + Ω2

f̂ (ω, p)dz

= i Resz=i
√

k2
1+Ω2

eizr f̂ (ω, p)(
z− i

√
k2

1 + Ω2
) (

z + i
√

k2
1 + Ω2

)
=

e−r
√

k2+m2 f̂ (ω, p)

2
√

k2 + m2

∣∣∣
k0=i
√

k2+m2
,

thus the full pole contribution to I is

Ipole(−ix0, x) =
∫ e−r

√
k2+m2 f̂ (ω, p)

2
√

k2 + m2

∣∣∣
k0=i
√

k2+m2
d3k .

The branch cut contributes with

∫ ∞

Ω

eirk1 tan(α)e−
rτ

cos(α)

z(τ)2 + k2
1 + Ω2

(
f̂ (ω, p)

∣∣
k0=z(τ)+iε − f̂ (ω, p)

∣∣
k0=z(τ)−iε

)
dτ

where z(τ) = k1 tan(α) + i τ
cos(α) . The arguments of f̂ in this parametrization of the

branch cut are given as

ω(k0 = z(τ), ki) = ±i
√

τ2 −Ω2

p1(k0 = z(τ), ki) = iτ

i.e. f̂ does not depend on k1 on the branch cut. We invoke the k1-integration to find

∫ ∫ ∞

Ω

eirk1 tan(α)e−
rτ

cos(α)

z(τ)2 + k2
1 + Ω2

( f̂ (ω, p)+ − f̂ (ω, p)−)dτ dk1 .

We replace the k1-integration by a contour-integration along a semi-circle in the upper
half plane, where the integrand falls off exponentially for r > R:

∫
C

∫ ∞

Ω

eirw tan(α)e−
rτ

cos(α)

z(τ)2 + w2 + Ω2 ( f̂ (ω, p)+ − f̂ (ω, p)−)dτ dw .

The fact that f̂ does not depend on k1 on the branch cut implies that the only contribu-
tion to the integral comes from the poles of the integrand, which are located at

wpole = −iτ sin(α)± cos(α)
√

τ2 −Ω2 .

Since by assumption 0 < 2α < π, the poles lie in the lower half plane, thus the full
contour integral vanishes. Moreover the integrand falls off exponentially in the upper
half place, such that the branch cut does not contribute to I f at all.
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Thus we have I f (−ix0, x) = Ipole(−ix0, x) and this contribution can be estimated by

∣∣I f (−ix0, x)
∣∣ =

∣∣∣∣∣∣
∫ e−r

√
k2+m2 f̂ (ω(k), p(k))

2
√

k2 + m2

∣∣∣
k0=i
√

k2+m2
d3k

∣∣∣∣∣∣
≤ c

∫ e−r
√

k2+m2eR
√
|ω(k)|2+|p1(k)|2+k2

2+k2
3

2
√

k2 + m2
d3k .

The square root can be estimated(
|ω(ki)|2 + |p1(ki)|2

) ∣∣∣
k0=i
√

k2+m2
+ k2

2 + k2
3

=

∣∣∣∣sin(α)
√

k2 + m2 − ik1 cos(α)
∣∣∣∣2 + ∣∣∣∣i cos(α)

√
k2 + m2 − k1 sin(α)

∣∣∣∣2 + k2
2 + k2

3

≤ 4(k2 + m2) .

This implies that the integral decays exponentially in |x| = r uniformly in r as r >

2R + δ with δ > 0:

∣∣I f (−ix0, x)
∣∣ ≤ c

∫ e−r
√

k2+m2e2R
√

k2+m2

2
√

k2 + m2
d3k ≤ c e−(r−2R)m

∫ e−(r−2R)(
√

k2+m2−m)

2
√

k2 + m2
d3k

≤ c e−(r−2R)m
∫ e−δ(

√
k2+m2−m)

2
√

k2 + m2
d3k︸ ︷︷ ︸

<∞

.

This proves the claim. �

Finally we can present the proof of the following theorem about the integrability of
the connected correlation functions of the vacuum state. This in turn imply the exis-
tence of the adiabatic limit of the interacting vacuum state due to proposition 4.3.2. To
this end, we fix the algebra Aos to be given by a ?-product induced by the vacuum
Hadamard two-point function (4.13) and the state to be the evaluation at φ = 0.

Theorem 9.
Let ωvac be the vacuum state of the free Klein-Gordon field with mass m > 0 induced by the
translation invariant two-point function

∆+(x, y) = Dvac
+ (x− y), Dvac

+ (x) =
1

(2π)3

∫
θ(p0)δ(p2 −m2)e−iηµν pµxν

dp . (4.13)

Then the connected correlation functions

Fvac
n (u1, x1; · · · ; un, xn) = ωc

vac (A0 ⊗ αiu1,x1(A1)⊗ · · · ⊗ αiun,xn(An))

for A0, . . . , An ∈ A are contained in L1(s∞
n ×R3n), where

s∞
n = lim

β→∞
βsn = {(u1, . . . , un) ∈ Rn : 0 < u1 ≤ · · · ≤ un} .
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PROOF. The connected correlation functions ωc
vac can be written in terms of the func-

tional differential operator Γij
2 from the proof of Proposition 4.2.1, where the KMS two-

point function Dβ
+ has to be replaced by Dvac

+ . The correlation function ωvac itself ca be
written as

ωvac(A0 ⊗ A1 ⊗ · · · ⊗ An) = ∏
0≤i<j≤n

eΓij
2 (A0 ⊗ · · · ⊗ An)

∣∣∣
φ0⊗···⊗φn=0

.

Here the product of exponentials can be rewritten as

∏
0≤i<j≤n

eΓij
2 = ∏

0≤i<j≤n

∞

∑
m=0

(Γij
2 )

m

m!
= ∑

l=(lij)i<j
lij∈N0

∏
i<j

(Γij
2 )

lij

lij!

which reads in terms of a graphical expansion

∑
l=(lij)i<j

lij∈N0

∏
i<j

(Γij
2 )

lij

lij!
= ∑

G∈Gn+1

ΓG, ΓG = ∏
i<j

(Γij
2 )

lij

lij!

where Gn denotes the set of all graphs G with n vertices and lij are the number of lines
joining the vertices i and j. Rewriting the products of exponentials in another way and
using a similar argument as above one finds

∏
0≤i<j≤n

eΓij
2 = ∏

0≤i<j≤n

(
eΓij

2 − 1 + 1
)
= ∑

G∈Gn+1

∏
G′∈[G]

∏
i<j

(
(Γij

2 )
lij

lij!

)
(4.14)

where [G] denotes the set of connected components of G. The connected correlation
functions can be consequently written as

ωc
vac(A0 ⊗ · · · ⊗ An) = ∑

G∈Gc
n+1

∏
i<j

(
(Γij

2 )
lij

lij!

)
(A0 ⊗ · · · ⊗ An)

∣∣∣
φ0⊗···⊗φn=0

where Gc
n denotes only the connected graphs with n vertices. The last equation can be

verified by showing that the recursion formula for the connected correlation functions
pick out exactly the connected components in the graphical expansion on the RHS of
(4.14).

Then the functions Fvac
n can be written as

Fvac
n (u1, x1; · · · ; un, xn) = ωc

vac (A0 ⊗ αiu1,x1(A1)⊗ · · · ⊗ αiun,xn(An))

= ∑
G∈Gc

n+1

∏
i<j

(
(Γij

2 )
lij

lij!

)
(A0 ⊗ · · · ⊗ αiun,xn(An))

∣∣∣
φ0⊗···⊗φn=0

=: ∑
G∈Gc

n+1

1
Symm(G)

Fvac
n,G(u1, x1; · · · ; un, xn)

Fvac
n,G(u1, x1; · · · ; un, xn) = ∏

i<j
(Γij

2 )
lij(A0 ⊗ αiu1,x1(An)⊗ · · · ⊗ αiun,xn(An))

∣∣∣
φ0⊗···⊗φn=0
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similar to the terminology of the proof of Lemma 4.2.1. The source and range of the
line l is denoted with s(l) and r(l) respectively here and X, Y contain all points which
are connected by the lines l ∈ E(G). The last line defined the contribution of G to Fvac

n
and Symm(G) is the symmetry factor of G. Instead of indexing all vertices we can also
index the graph G by all its edges l ∈ E(G). The contribution of a fixed, connected
graph G can be calculated to:

Fvac
n,G(u1, z1; · · · ; un, zn)

=
∫

∏
l∈E(G)

Dvac
+ (xl − yl)

δ2

δφs(l)(xl)δφr(l)(yl)
(A0 ⊗ · · · ⊗ αiun,zn(An))

∣∣∣
φ0⊗···⊗φn=0

dX dY

=
∫

∏
l∈E(G)

Dvac
+ (x̄l − ȳl) Ψ(X, Y)dX dY

with the abbreviations x̄l = (x0
l + ius(l), xl + zs(l)) and ȳl = (y0

l + iur(l), yl + zr(l)) and
the functional derivatives

Ψ(X, Y) = ∏
l∈E(G)

δ2

δφs(l)(xl)δφr(l)(yl)
(A0 ⊗ · · · ⊗ An)

∣∣∣
φ0⊗···⊗φn=0

.

The Fvac
n,G can be written as integrals in momentum space

Fvac
n,G(U, Z) =

∫
∏

l∈E(G)

e−p0
l (ur(l)−us(l))+ipl(zs(l)−zr(l))D̂vac

+ (pl)Ψ̂(−P, P)dP

=
∫

∏
l∈E(G)

(
e−ωpl (ur(l)−us(l))+ipl(zs(l)−zr(l))

1
2ωpl

)
Ψ̂(−P, P)

∣∣∣
p0

l =ωpl

dP

where ωpl
=
√

p2
l + m2. By proposition 4.3.3 we know that Ψ̂(−P, P) is rapidly de-

creasing in the forward lightcone and since supp D̂vac
+ ⊂ Hm with

Hm = {p ∈ M : p2
0 − p2 = m2} ⊂ J+

the above integral converges absolutely since by assumption ur(l)− us(l) > 0. Therefore
we can make use of proposition 4.3.4 and obtain the estimate

∣∣Fvac
n,G(u1, . . . , un, x1, . . . , xn)

∣∣ ≤ c e−mr, r2 = ∑
l∈G

(
ur(l) − us(l)

)2
+
∣∣∣xr(l) − xs(l)

∣∣∣2 .

Since the graph G is connected, i.e. every vertex can be reached from (u0, x0) = 0, we
can use

r =

√
∑
l∈G

(
ur(l) − us(l)

)2
+
∣∣∣xr(l) − xs(l)

∣∣∣2 ≥ √∑
i<j

(uj − ui)2 +
∣∣xj − xi

∣∣2
≥ max

i∈{1,...,n}
ui + |xi| ≥

√
1
n

n

∑
i=1

u2
i + |xi|2 =

1√
n

√
n

∑
i=1

u2
i + |xi|2
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which yields

∣∣Fvac
n,G(u1, . . . , un, x1, . . . , xn)

∣∣ ≤ c′e−
m√

n re , r2
e =

n

∑
i=1

u2
i + |xi|2 .

This shows that Fvac
n,G actually decays exponentially in every variable (ui, xi), instead of

only in the difference variables. Consequently also the summed expression

Fvac
n (u1, . . . , un, x1, . . . , xn) = ∑

G∈Gc
n+1

1
Symm(G)

Fvac
n,G(u1, . . . , un, x1, . . . , xn)

is exponentially decaying in its variables and is thus integrable over s∞
n ×R3n. �

Using the analytic properties of the free vacuum state ωvac we know that, for all
A ∈ A with supp(A) ⊂ R× Br the function t 7→ ωvac(A ? Wh(t)) admits an analytic
extension to the full upper half plane, using the first point proposition 4.2.1 for the
limiting case β→ +∞. In particular the linear functional

ωVvac,h(A) =
ωvac(A ? Wh(i∞))

ωvac(Wh(i∞))

=
∞

∑
n=0

(−1)n
∫
s∞

n

ωc
vac (A⊗ αiu1(Kh)⊗ · · · ⊗ αiun(Kh))du1 · · ·dun

exists and is positive. The last theorem implies that the adiabatic limit

ωVvac(A) = lim
h→1

ωVvac,h(A) =
∞

∑
n=0

∫
s∞

n

∫
R3n

ωc
vac (A⊗ αiu1,x1(R)⊗ · · · ⊗ αiun,xn(R))dU dX

R =
∫
RVχ

(
V(Φ(t,0))

)
Θ−(t)χ̇(t)dt

exists. Moreover, we find that the function

t 7→ ωVvac(A ? αVt (B)) =
ωvac(A ? W1(t) ? αt(B) ? U1(t, i∞))

ωvac(W1(i∞))

has an analytic continuation into the whole upper half plane. Moreover the state ωV is
P↑+-invariant as a consequence of the P↑+-invariance of the chosen ?-product and free
vacuum state ωvac = ev0. Thus ωVβ is a P↑+-invariant ground state.

4.3.4. Proof for the KMS State

In order to show that the quasi-free KMS state for 0 < β < ∞ and m > 0 fulfills the
integrability condition from Proposition 4.3.2 we first have to state a slightly modified
version of Proposition 4.3.4.

Proposition 4.3.5.
Let f ∈ D′(R4) with supp( f ) ⊂ BR ⊂ M. Then the function

Ib
f (x0, x) =

∫
eiηµν pµxν

e−bωp f̂ (−ωp, p)dp, ωp =
√

p2 + m2, b > 0

116



4.3. Removing the Spatial Cutoff

has an analytic continuation into the lower half plane C− ×R3 and for m > 0 it holds∣∣∣Ib
f (−iu, x)

∣∣∣ ≤ c e−mr, r =
√

u2 + x2, u ≥ 0 .

uniform for r ≥ 2R.

PROOF. The proof of Proposition 4.3.5 is very similar to the proof of Proposition 4.3.4.
A difference in this version is that here f̂ is not of rapid decrease since f ∈ D′. f̂ is a
polynomially bounded function, which increases exponentially in imaginary directions
by another version of the Paley-Wiener theorem. The convergence of the integral is
assured by the exponential e−bωp . We begin by rewriting

Ib
f (−iu, x) =

1
2π

∫ eik0re−bω f̂ (−ω, p)
k2

0 + k2 + m2
dk0 dk, r =

√
u2 + |x|2

where

ω(ki) =
√
(k0 cos(α)− k1 sin(α))2 + k2

2 + k2
3 + m2

p(ki) = (k0 cos(α)− k1 sin(α), k2, k3) .

and 0 < 2α < π. By choosing an integration contour C as in figure 6 for k0 we see that
Ib

f can be calculated using the residue theorem (the contribution from the branch cut
vanishes again):

Ib
f (−iu, x) =

∫ e−r
√

k2+m2e−bω(k) f̂ (−ω(k), p(k))

2
√

k2 + m2

∣∣∣
k0=i
√

k2+m2
dk

ω(k) =
√

k2 + m2 sin(α)− ik1 cos(α), p1(k) = i
√

k2 + m2 cos(α)− k1 sin(α) .

We apply the exponential estimate from the Paley-Wiener theorem (with supp( f ) ⊂
BR) ∣∣∣ f̂ (ω, p)

∣∣∣ ≤ c eR
√
|ω|2+|p|2

to establish ∣∣∣Ib
f (−iu, x)

∣∣∣ ≤ c
∫ e(2R−b−r)

√
k2+m2

2
√

k2 + m2
dk

≤ c e−m(r−2R+b)
∫ e−(r−2R+b)(

√
k2+m2−m)

2
√

k2 + m2
dk︸ ︷︷ ︸

≤∞

.

Thus ∣∣∣Ib
f (−iu, x)

∣∣∣ ≤ c e−m(r−2R+b), r =
√

u2 + |x|2

uniformly for r ≥ 2R. �
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Now the main theorem of this work can be proven which shows, that the KMS state
of perturbatively constructed massive scalar field theories exists. The proof of this fact
is very similar to the case of the vacuum, as far as the perturbative expansions are
concerned. A main difference arises in the investigation of the decay behavior due to
the fact that the KMS state has contributions from positive and negative energies. The
KMS condition and the exponential decay of the negative energy part turn out to be
crucial to show the convergence of the state in the adiabatic limit.

Theorem 10.
Let ωβ be the KMS state of the free Klein-Gordon field with mass m > 0 and inverse temperature
0 < β < ∞, induced by the translation invariant Hadamard two-point function

∆+(x, y) = Dβ
+(x− y), Dβ

+(x) =
1

(2π)3

∫
ε(p0)δ(p2 −m2)

1− e−βp0
e−iηµν pµxν

dp . (4.15)

Then the connected correlation functions

Fβ
n (u1, x1; . . . ; un, xn) = ωc

β (A0 ⊗ αiu1,x1(A1)⊗ · · · ⊗ αiun,xn(An))

for A0, . . . , An ∈ A are contained in L1(βsn ×R3n) with βsn from proposition 4.3.1.

PROOF. We proceed in the same manner as for the vacuum state. To this end we write

Fβ
n (u1, x1; . . . ; un, xn) = ωc

β (A0 ⊗ αiu1,x1(A1)⊗ · · · ⊗ αiun,xn(An))

= ∑
G∈Gc

n+1

1
Symm(G)

Fβ
n,G(u1, x1; . . . ; un, xn)

Fβ
n,G(u1, x1; . . . ; un, xn) = ∏

i<j
(Γij

2 )
lij (A0 ⊗ αiu1,x1(A1)⊗ · · · ⊗ αiun,xn(An))

∣∣∣
φ0⊗···⊗φn=0

where the Γij
2 are the functional differential operators from the proof of proposition

4.2.1. The differential operator is now re-written in terms of the vacuum two-point
function

Γij
+ =

∫
Dβ

+(x0 − y0, x− y)
δ2

δφi(x)δφj(y)
dx dy

By switching to a product over the lines l ∈ E(G) of the graph G we find

Fβ
n,G(U, Z) =

∫
∏

l∈E(G)

ep0
l (us(l)−ur(l))+ipl(zs(l)−zr(l))D̂β

+(pl)Ψ̂(−P, P)dP

=
∫

∏
l∈E(G)

eipl(zs(l)−zr(l)) (λ+(pl) + λ−(pl))

2ωl
(
1− e−βωl

) Ψ̂(−P, P)dP

λ+(pl) = eωl(us(l)−ur(l))δ(p0
l −ωl), λ−(pl) = e−βωl eωl(ur(l)−us(l))δ(p0

l + ωl)

with ωl ≡ ωpl in analogy to the calculation for the vacuum state. The difference here is
that D̂β

+ is not supported purely in the forward lightcone, it has positive and negative
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mass-shell part λ±. The functional derivatives are, again, given by

Ψ(X, Y) = ∏
l∈E(G)

δ2

δφs(l)(xl)δφr(l)(yl)
(A0 ⊗ · · · ⊗ An)

∣∣∣
φ0⊗···⊗φn=0

. (4.16)

Due to the fact, that the integration momenta pl can lie in both the forward and back-
ward lightcone, we cannot use the same argumentation as in the case of the vacuum
state. In order to prove the convergence of the integral we will show that all negative
energy parts λ− are actually exponentially decreasing.

To this end, we use the KMS condition in the original function

Fβ
n (u1, x1; . . . ; un, xn) = ωc

β (A0 ⊗ αiu1,x1(A1)⊗ · · · ⊗ αiun,xn(An))

together with the identification (u0, x0) = 0 to rearrange the time-translations in imag-
inary directions:

ωc
β (A0 ⊗ αiu1,x1(A1)⊗ · · · ⊗ αiun,xn(An))

=ωc
β

(
αium,xm(Am)⊗ · · · ⊗ αiun,xn(An)⊗ αiβ(A0)⊗ αi(u1+β),x1

(A1)⊗ · · ·

· · · ⊗ αi(um−1+β),xm−1
(Am−1)

)
.

The equality holds irrespective of the choice m ∈ {1, . . . , n}. The non-trivial point is
made now: There exists an m ∈ {1, . . . , n} such that um − um−1 ≥ β

n+1 . We simply
rename all of the variables to

Fβ
n,G(U, X) = F′βn,G(V, Y) = ωc

β

(
αiv0,y0

(B0)⊗ αiv1,y1
(B1)⊗ · · · ⊗ αivn,yn

(Bn)
)

where B0 = Am, B1 = Am+1, . . . , Bn = Am−1, v0
...

vn−m

 =

um
...

un

 ,

vn−m+1
...

vn

 =

 u0 + β
...

um−1 + β

 (4.17)

and the similar relabeling is done for the spatial variables yi with respect to xi. Now
the analogous derivation for F′ yields

F′βn,G(v0, y0; . . . ; vn, yn) =
∫

∏
l∈E(G)

eipl(ys(l)−yr(l)) (λ+(pl) + λ−(pl))

2ωl
(
1− e−βωl

) Ψ̂B(−P, P)dP

λ+(pl) = eωl(vs(l)−vr(l))δ(p0
l −ωl), λ−(pl) = eωl(vr(l)−vs(l)−β)δ(p0

l + ωl)

where now v0 ≤ v1 ≤ . . . ≤ vn and ΨB is the functional derivative from equation (4.16)
in which the (Ai) are replaced by (Bi).

We expand the products of the sum of λ± by replacing every line l ∈ E(G) by either a
line l+ or l−, to which we associate the factors λ±, and summing over all possibilities to
distribute pluses and minuses on all lines in G. This is done by introducing a function

ε : E(G)→ {+,−}
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4. Existence of a KMS-State in Perturbative QFT

that associates signs to all the lines in the graph. Denoting E±(G) = {l ∈ G : ε(l) = ±}
we find

F′βn,G(v0, y0; . . . ; vn, yn)

=∑
ε

∫
∏

l+∈E+(G)

 eipl+
(ys(l+)−yr(l+))

2ωl+

(
1− e−βωl+

)λ+(pl+)

×
× ∏

l−∈E−(G)

 eipl− (ys(l−)−yr(l−))

2ωl−

(
1− e−βωl−

)λ−(pl−)

 Ψ̂B(−P, P)dP.

Now we estimate the largest difference between the vi

max
i<j

(vj − vi) = vn−1 − v0 = β + um−1 − um = β− (um − um−1) ≤
β

n + 1︸ ︷︷ ︸
=:cβ

< β .

Thus we rewrite

e−ωl− βeωl− (vr(l−)−vs(l−)) = e−ωl− (β−cβ)eωl− (vr(l−)−vs(l−)−cβ) = e−ωl−
nβ

n+1 eωl− (vr(l−)−vs(l−)−cβ)︸ ︷︷ ︸
≤1

which shows the claim, that the integrand of F′βn decays fast in the momentum variables
associated to lines l−. The remaining integration variables (those associated to l+) are
located in the forward lightcone, due to the form of λ+. Thus the argument, shown in
the discussion of the vacuum state, can be applied to those variables. This implies that

∏
l−∈E−(G)

eωl− (vr(l−)−vs(l−)−β)Ψ̂B(−P, P)
∣∣∣

p0
l+
=ωl+ , p0

l−
=−ωl−

is rapidly decreasing in all spatial momenta P = (p1, . . . , pE(G)). We use the geometric
series

1
1− e−βω

=
∞

∑
n=0

e−βnω

to rewrite the integrand

∑
ε

∏
l+∈E+(G)

1
2ωl+

eipl+
(ys(l+)−yr(l+))−ωl+ (vr(l+)−vs(l+))

1− e−βωl+
×

× ∏
l−∈E−(G)

1
2ωl−

eipl− (ys(l−)−yr(l−))−ωl− (cβ−(vr(l)−vs(l)))e−ωl−
nβ

n+1

1− e−βωl−

= ∑
ε

∑
n∈N|E(G)|

0

∏
l+∈E+(G)

1
2ωl+

eipl+
(ys(l+)−yr(l+))−ωl+ (vr(l+)−vs(l+)+βnl+ )×

× ∏
l−∈E−(G)

1
2ωl−

eipl− (ys(l−)−yr(l−))−ωl− (cβ−(vr(l)−vs(l))+βnl− )e−ωl−
nβ

n+1 .
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4.3. Removing the Spatial Cutoff

Hence the function F′ is of the form

F′βn,G(v0, y0; . . . ; vn, yn)

= ∑
ε

∑
n∈N|E(G)|

0

∫
∏

l+∈E+(G)

1
2ωl+

eipl+
(ys(l+)−yr(l+))e−ωl+ (vr(l+)−vs(l+)+βnl+ )×

× ∏
l−∈E−(G)

1
2ωl−

eipl− (ys(l−)−yr(l−))e−ωl− (cβ−(vr(l)−vs(l))+βnl− ) Ξ(P)dP

Ξ(P) = ∏
l−∈E−(G)

e−ωl−
nβ

n+1 Ψ̂B(−P, P)
∣∣∣

p0
l+
=ωl+ , p0

l−
=−ωl−

.

By the above argumentation, Ξ(P) is rapidly decreasing in all its variables. Fixing the
sign-function ε and a multi-index n, we can use Proposition 4.3.4 for the positive ener-
gies and Proposition 4.3.5 for the negative energies to find the estimate

F′βn,G,ε,n(v0, y0; . . . , vnyn) ≤ c ∏
l∈E(G)

e−m
√
|x∂l |2+(βnl)2

where x∂l = xr(l) − xs(l). In this estimate we used the fact, that the vi range only over a
finite intervall and the differences

cβ − (vr(l) − vs(l)) ≥ 0

are bounded from below by zero. The sum over nl yields

∞

∑
n=0

e−m
√

q2+(βn)2
= ∑

βn<q
e−m
√

q2+(βn)2
+ ∑

βn≥q
e−m
√

q2+(βn)2

≤ q
β

e−mq +
e−mq

1− e−mβ
≤ c′ e−mq

for q > 0. This implies that

F′βn,G,ε(V, Y) = ∑
n∈NE(G)

F′βn,G,ε,n(V, Y) ≤ cc′ ∏
i<j

e−m
√
|xj−xi|2 ≤ c′′e−

m√
n re , re =

√
n

∑
k=0
|xk|2

by the same means as in the case of the vacuum state. The exponential decay for Fβ
n,G,

i.e. ∣∣∣Fβ
n,G(u1, . . . , un, x1, . . . , xn)

∣∣∣ ≤ c′ e−
m√

n re , r2 =
n

∑
k=1

x2
k ,

follows by the simple coordinate change in equation (4.17), thus Fβ
n,G decays exponen-

tially in all its variables. The same decay properties hold for Fβ
n , which is the sum over

all connected graphs of Fβ
n,G divided by the symmetry factor of G. This proves the as-

sertion. �
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4. Existence of a KMS-State in Perturbative QFT

As in the vacuum case we can exploit the analytic properties of the KMS state ωβ to
show that the limiting state obeys the KMS condition by using proposition 4.2.1. We
find an explicit formula for the adiabatic limit of the state ωVβ,h

ωVβ (A) = lim
h→1

ωVβ,h(A) =
∞

∑
n=0

∫
βsn

∫
R3n

ωc
β (A⊗ αiu1,x1(R)⊗ · · · ⊗ αiun,xn(R))dU dX

R =
∫
RVχ

(
V(Φ(t,0))

)
Θ−(t)χ̇(t)dt

exists, defines a state on A, and the function

t 7→ ωVβ (A ? αVt (B)) =
ωβ(A ? W1(t) ? αt(B) ? U1(t, iβ))

ωβ(W1(iβ))

has an analytic continuation into the strip Sβ and is continuous on the boundary with
the value

ωVβ (A ? αVt+iβ(B)) = ωVβ (α
V
t (B) ? A) .

In order to prove these statements one has simply to replace the limiting KMS state ωVβ
with the ones on the finite volume ωVβ,h in the proof of proposition 4.2.2. Since the aris-
ing integrands are absolutely integrable, we can exchange the limits in the integrations
and obtain the desired statements. In particular we find that, due to the fact that the
free KMS state is invariant under all spacetime translations and spatial rotations, so is
the interacting state ωVβ in the adiabatic limit.

4.4. Thermostatics

In the last section we provided a construction of the interacting KMS state, in particular
we gave prescription to calculate the expectation values of interacting observables in
this state as a formal power series in the interaction. In this section how thermostatic
quantities can be derived within this framework using the partition function.

In order to find the connection of the present approach to the well-known thermo-
static notions in Hamiltonian dynamical systems, we will make a quick detour into this
framework.

4.4.1. Analogy in Hamiltonian Dynamical Systems

Assume that the algebra of observables A is given by a ∗-subalgebra of B(H) whereH is
the Hilbert space of the theory. Moreover, we have a free αt and an interacting dynamics
αV

t on A, which are generated by the self-adjoint Hamiltonians H0 and H0 + V.
Assume further that there exist two Gibbs states associated to both dynamics, i.e. the

self-adjoint operators

e−βH0 and e−β(H0+V)
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4.4. Thermostatics

are trace class. Then the co-cycle

W(t) = e−itH0eit(H0+V)

intertwines the free and interacting dynamics and

ωV
β (A) =

Tr
(

e−β(H0+V)A
)

Tr
(
e−β(H0+V)

) =
Tr
(
e−βH0 AW(iβ)

)
Tr
(
e−βH0W(iβ)

) =
ωβ(AW(iβ))
ωβ(W(iβ))

.

This brief overview should remind us on the background of the constructions in the
last section. The free and interacting partition function of the thermal equilibrium are
given by

Z(β) = Tr e−βH0 , ZV(β) = Tr e−β(H0+V) .

From the partition function Z(β) we can derive the mean energy 〈E〉β and the mean
free energy 〈F〉β of the free system

〈E〉β = − ∂

∂β
ln Z(β) =

Tr H0e−βH0

Tr eβH0
= ωβ(H0)

〈F〉β = − 1
β

ln Z(β)

and for the interacting system correspondingly.
Since we do not have access to the partition function in our formalism, we will use

the co-cycle W(iβ) for our calculations. This allows the calculation of the differences

δE = 〈E〉Vβ − 〈E〉β = − ∂

∂β
ln

ZV(β)

Z(β)

δF = 〈F〉Vβ − 〈F〉β = − 1
β

ln
ZV(β)

Z(β)
.

only. In both cases the relative partition function

ZV(β) =
ZV(β)

Z(β)
=

Tr e−β(H0+V)

Tr e−βH0
=

Tr e−βH0e−β(H0+V)eβH0

Tr e−βH0
= ωβ(W(iβ))

can be expressed by means of the co-cycle and the free Gibbs state ωβ. The mean energy
and the mean free energy are related by the entropy

S = βkB(〈E〉β − 〈F〉β) = −kB Tr($ ln $), $ =
e−βH0

Tr e−βH0

The same relation holds for the entropy SV of the interacting system and thus for the en-
tropy difference δS, too. This is the starting point for our discussion on the thermostatic
observables in the pAQFT setting.
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4. Existence of a KMS-State in Perturbative QFT

4.4.2. Thermostatic Observables in pAQFT

The relative partition function between the free and interacting system (with interaction
V) in a finite volume V is defined by

ZVh (β) = ωβ(Wh(iβ)) .

Here the test-function h ∈ D(R3) is chosen to be equal to one one the volume V ⊂ R3.
Since we want to deal with the infinitely extended system in the end, we will only be
interested in the intensive quantities, i.e. in the (free) energy density or entropy density.

Definition 4.4.1 (Thermostatic Observables).
The difference of the mean energy densities δE and mean free energy densities δF of the free and
interacting thermal equilibrium state (with interaction V) is defined to be

δF = − lim
h→1

1
β

lnZVh (β)∫
h(x)dx

, δE = − lim
h→1

∂

∂β

lnZVh (β)∫
h(x)dx

.

The difference of the entropy densities is given by δS = βkB(δE− δF).

A first comment concerns well-definedness of the logarithm of the relative partition
function ZVh (β): The composition of ln and ZVh is defines again a formal power series
in the interaction V, since ZλV

h (β) = 1 +O(λ), due to fact that Wh(iβ) also starts with
the identity.

The respective quantities at finite volume, e.g. the difference of the free energy-
densities

− 1
β

lnZVh (β)∫
h(x)dx

approximates the correct quantity, if h approaches the characteristic function of the vol-
ume V. The focus here is, however, put on the adiabatic limit h→ 1 of the quantities.

Proposition 4.4.2.
Let hn be a sequence of test-functions of the following form:

0 ≤ hn(x) ≤ 1 ∀x ∈ R3, hn(x) =

{
1 |x| < n

0 |x| > n + 1
.

The the adiabatic limit

lim
h→1

lnZVh (β)∫
h(x)dx

:= lim
n→∞

lnZVhn
(β)∫

hn(x)dx

exists and is smooth in β.
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4.4. Thermostatics

PROOF. To start with we use equation (3.12) for the perturbative expansion of Wh(iβ)
and a relation to the connected part of ωβ from proposition 4.3.1:

ZVh (β) =
∞

∑
n=0

(−1)n
∫

βsn

ωβ

(
αiu1(K

′
h) ? · · · ? αiun(K

′
h)
)

du1 · · ·dun

=
∞

∑
n=0

(−1)n
∫

βsn

exp(ωc
β)
(
αiu1(K

′
h)⊗ · · · ⊗ αiun(K

′
h)
)

du1 · · ·dun

= exp

(
∞

∑
n=0

(−1)n
∫

βsn

ωc
β

(
αiu1(K

′
h)⊗ · · · ⊗ αiun(K

′
h)
)

du1 · · ·dun

)
.

Thus the logarithm of the expression is given by

ln
(
ZVh (β)

)
=

∞

∑
n=0

(−1)n
∫

βsn

ωc
β

(
αiu1(K

′
h)⊗ · · · ⊗ αiun(K

′
h)
)

du1 · · ·dun

=
∞

∑
n=0

∫
βsn

∫
R3n

h(x1) · · · h(xn)×

×ωc
β (Vh(u1, x1)⊗ · · · ⊗Vh(un, xn))dx1 · · ·dxn du1 · · ·dun .

using the notation of proposition 4.3.1. As in the case of the adiabatic limit of the inter-
acting state we replace the Vh by a partial adiabatic limit

V(u, x) = −
∫

χ̇(t)Θ−(t)αiu,x
(
RVχ

(V(Φt,0))
)

dt = −αiu,x(R) .

See section 4.3.2 for more information. Thus the remaining expression that is to be
analyzed is

Im =
∫

βsn

∫
R3n

hm(x1) · · · hm(xn)ωc
β (V(u1, x1)⊗ · · · ⊗V(un, xn))∫

hm(x)dx
dx1 · · ·dxn du1 · · ·dun .

Using the translation invariance of the connected correlation function, we can write

ωc
β (V(u1, x1)⊗ · · · ⊗V(un, xn)) = ωc

β (V(u1, 0)⊗V(u2, y2)⊗ · · · ⊗V(un, yn))

where yj = xj − x1. Relabeling integration coordinates we find

Im =
∫

βsn

∫
R3n

hm(x1)∏n
i=2 hm(x1 + xi)∫

hm(x)dx
×

×ωc
β (V(u1, 0)⊗V(u2, x2)⊗ · · · ⊗V(un, xn))dx1 · · ·dxn du1 · · ·dun . (4.18)

We estimate the contribution in the x1-variable for large m:

Vol(Bm−|x̂|)

Vol(Bm+1)
≤
∫

hm(x1)∏n
i=2 hm(xi + x1)dx1∫
hm(x)dx

≤ 1
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4. Existence of a KMS-State in Perturbative QFT

where x̂ is the longest vector of all {x2, . . . , xn} The upper bound is quickly established
by taking the suprema of the shifted hm, while for the lower bound we used∫

hm(x1)∏n
i=2 hm(xi + x1)dx1∫
hm(x)dx

≥
∫

hm(x1)∏n
i=2 hm(xi + x1)dx1

Vol(Bm+1)

≥
∫

Bm
∏n

i=2 hm(xi + x1)dx1

Vol(Bm+1)
≥

Vol(Bm−|x̂|)

Vol(Bm+1)
m→∞−→ 1

where in the last line we assumed that m was larger than 2 |x̂|. We thus obtain

lim
m→∞

∫
hm(x1)∏n

i=2 hm(xi + x1)dx1∫
hm(x)dx

= 1

by the squeeze theorem. Since the integrand is an element of L1(βsn ×R3(n−1) due to
theorem 10 we can exchange integration and limits and use the pointwise convergence
of the integrand to show

lim
m→∞

Im =
∫

βsn

∫
R3(n−1)

ωc
β (V(u1, 0)⊗V(u2, x2)⊗ · · · ⊗V(un, xn))dx2 · · ·dxn du1 · · ·dun .

The point, in which the argument of the connected correlation function is put to zero (or
some other, fixed value) is irrelevant due to translation invariance of ωc

β. The differen-
tiability of the quotient is due to the fact, that derivative in β give, at most, polynomials
in the arguments of the integrand, where the connected correlation function decay ex-
ponentially. �

The thermostatic observables of the interacting theory are usually derived in the Eu-
clidean version of the respective QFT, see e.g. [LB00]. The present method allows a
more direct approach to thermostatic observables in the spirit of quantum statistical
mechanics. In order to show that both approaches result in the same results, we present
an explicit example in perturbation theory in the next section.

We remark that the form of the adiabatic limit, i.e. the choice of the sequence of
test-functions hn is related to the van-Hove thermodynamic limit in quantum statistical
mechanics. The concept which was introduced by van-Hove and extensively used in
the book of Ruelle [Rue69] and at its core is the idea, that the adiabatic (or thermody-
namic) limit can only exist, if the “boundary terms” are negligible in the limit of large
volumes.

4.4.3. Free Energy in Lowest Nontrivial Order

In this section we want to give an example calculation within our framework. To this
avail, we choose the difference of the free energies δF as the observable. We assume
that a renormalization of the time-ordered product has been done to a sufficiently high
order, such that distributions of the form

∆F(x− y)4
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4.4. Thermostatics

are well defined and exhibit the appropriate properties (see definition 2.2.2). The inter-
action is chosen to be a quartic interaction

V(Φx) =
λ

4!
Φ4

x .

The expansion of δF in the interaction is given by

δF = − 1
β

lim
h→1

lnZh(β)∫
h(x)dx

= − 1
β

∞

∑
n=1

λn ∑
k∈N

∑
`∈Nk

|l|=n

Ω`

Ω` =
∫

βsk

∫
R3(k−1)

ωc
β(V

(`1)(u1, 0)⊗ · · · ⊗V(`k)(uk, xk))dx1 · · ·dxk−1 du1 · · ·duk−1

V(u, x) =
∫

αiu
(
RVχ (V(Φt,x)

)
χ̇−(t)dt

The term in first order vanishes, since the interaction has vanishing expectation value:

ωc
β(V

(1)(u, x)) =
∫

ωβ(αiu (V(Φt,x))) χ̇(t)Θ−(t)dt = 0 .

The second order term contributes with

−βδF(2) =
∫ β

0
ωc

β(V
(2)(u, 0))du +

∫
βs2

∫
R3

ωc
β(V

(1)(u1, 0)⊗V(1)(u2, x))dx du1 du2

= βωβ

(
R(2)
Vχ

(
Vδ0χ̇−

))
+

β

2

∫ β

0

∫
R3

ωβ

(
R(1)
Vχ
(Vδ0χ̇−) ? αiu

(
R(1)
Vχ
(Vδxχ̇−)

))
dx du

where χ̇− = χ̇Θ− and δx(y) = δ(y− x) and where we used translation invariance of
ωc

β. The quantum Møller map of V in first second order reads

R(1)
Vχ
(Vδ0χ̇−) = Vδ0χ̇− R(2)

Vχ
(Vδ0χ̇−) = i

(
Vχ ·T Vδ0χ̇− − Vχ ? Vδ0χ̇−

)
which gives

−βδF(2) = iβ ωβ

(
Vχ ·T Vδ0χ̇− − Vχ ? Vδ0χ̇−

)
+

β

2

∫ β

0

∫
R3

ωβ

(
Vδ0χ̇− ? αiuVδxχ̇−

)
dx du .

(4.19)
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4. Existence of a KMS-State in Perturbative QFT

Since the time-ordered product has been renormalized, n-fold products pointwise prod-
ucts of the Feynman propagator have been defined, thus we can write the first term as

iβλ2h̄4
∫

dt1

∫
dt2

∫
dx
(

∆F(t1 − t2, x)4 − ∆+(t1 − t2, x)4
)

χ(t1)χ̇
−(t2)

= iβλ2h̄4
∫

dt
∫

dx
(

∆−(t, x)4 − ∆+(t, x)4
)

θ(−t)
∫

dτ χ(τ + t)χ̇−(τ)

= iβλ2h̄4
∫ 0

−∞
dt
∫

dx
(∫ β

0
du

d
du

∆+(t− iu, x)4
) ∫

dτ χ(τ + t)χ̇−(τ)

= βλ2h̄4
∫ 0

−∞
dt
∫

dx
(∫ β

0
du

d
dt

∆+(t− iu, x)4
) ∫

dτ χ(τ + t)χ̇−(τ)

p.i.
= βλ2h̄4

∫
dx
∫ β

0
du ∆+(−iu, x)4

∫ 0

−∞
dτχ(τ)χ̇−(τ)︸ ︷︷ ︸∫ 0

−∞ dτ d
dτ χ(τ)2=1

− βλ2h̄4
∫ 0

−∞
dt
∫

dx
∫ β

0
du ∆+(t− iu, x)4

∫
dτχ̇(τ + t)χ̇−(τ)︸ ︷︷ ︸

X(t)

The first term after partial integration is the Euclidean contribution to δF(2) and the
second term can be compared with the second contribution in equation (4.19):

β

2

∫ β

0

∫
R3

ωβ

(
Vδ0χ̇− ? αiuVδxχ̇−

)
dx du

=
βλ2h̄4

2

∫ β

0
du
∫

dt1

∫
dt2

∫
dx ∆+(t1 − t2 − iu,−x)4 χ̇−(t1)χ̇

−(t2)

=
βλ2h̄4

2

∫ β

0
du
∫

dt
∫

dx ∆+(t− iu, x)4
∫

dτ χ̇−(τ + t)χ̇−(τ)

Combining both (non-Euclidean) contributions we get

βλ2h̄4
∫
R

dt
∫
R3

dx f (t, x)X(t), f (t) =
1
2

∫ β

0
du ε(t)∆+(t− iu, x)4

with the sign function ε. However X is an even function since

X(−t) =
∫

dτ χ̇(τ − t)χ̇−(τ) =
∫

dτ χ̇(τ)χ̇−(τ + t) = X(t)

and f (t, x) is odd in t due to

f (−t, x) = −1
2

∫ β

0
du ε(t)∆+(−t− iu, x)4 KMS

= −1
2

∫ β

0
du ε(t)∆+(t− i(u + β), x)4

= −1
2

∫ β

0
dv ε(t)∆+(t− iv, x)4 = − f (t, x) .

Thus the integration ∫
dt f (t, x)X(t) = 0
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vanishes, hence there is no non-Euclidean contribution. The result

δF(2) = −λ2h̄4
∫
R3

dx
∫ β

0
du ∆+(−iu, x)4 = −λ2

∫
R3

dx
∫ β

0
du ωβ

(
Φ4
−iu,x

4!
?

Φ4
0,0

4!

)

is independent of the choice of the time-slice cut-off function χ, as we have expected
from proposition 4.2.3. It coincides with results that are found in the literature, see e.g.
[Lai13].

We remark that one often finds interactions, which are not normal-ordered in the cal-
culations in the literature. Then, so-called tadpole graphs appear in the expansions,
which are graphs that contain lines that end at their starting point. The use of these
“classical interactions” is, however, unsatisfactory from a conceptual point of view,
since they are not elements of the algebra of free fields A. The contributions can be
seen from the more general point of view that is proposed in this thesis, as the influ-
ence of the free theory, which is described in more detail in section 2.3.2.

129





Conclusion

Summary

In this thesis the algebraic approach to perturbative QFT (pAQFT) was used to investi-
gate the long known IR (or pinching) divergences appearing in the perturbative expan-
sions in thermal equilibrium states. The state-independent perturbative analysis of the
interacting QFT within the framework of pAQFT displayed the absence of any singu-
larities in the theory of the scalar field, which is described by the algebra of observables.

The source of the IR problem of QFT at finite temperature was traced back to the
perturbative expansions of the KMS state of the interacting theory. In the hitherto con-
structions in Thermo Field Dynamics and the Schwinger-Keldysh contour approach
[LvW87, MNU84] and also in the framework of the causal perturbation theory [Ste95]
the interacting state was perturbatively expanded around the free state in the asymp-
totic past, complying with the principles of scattering theory. Certainly this method is
meaningful only in the case that the interacting state converges to the free one in the
respective asymptotic region, as it is shown e.g. for the interacting (massive) vacuum
state [Haa58, Rue62].

In a remarkable work the authors Bros and Buchholz [BB02] casted serious doubts
on this ansatz by showing that the interacting state does not behave as its free coun-
terpart at timelike infinity. The asymptotic dynamics exhibits a strong imprint of the
interaction, indicating that the scattering approach may be problematic.

Consequently, another path was chosen in this thesis using ideas from quantum sta-
tistical mechanics, where interacting KMS states can be constructed at a finite time in a
Hamiltonian approach. In order to implement these ideas, the gap between the causal
perturbation theory, whose emphasis lies in the relativistic covariance of the theory,
and quantum statistical mechanics, in which a time-direction is distinguished through
a one-parameter group of automorphisms αt, had to be filled.

This goal is achieved in section 3.2 with the help of the time-slice axiom, which was
shown to be valid in perturbatively constructed quantum field theories in causal per-
turbation theory [CF09]. This allowed the description of the interacting theory at any
given region O ⊂ M in terms of observables which are restricted to a time-slice Σε,
see figure 1. We then showed how the interacting dynamics can be expressed in terms
of the free one by a co-cycle Wh(t) in the algebra of the free field, as long as the inter-
action had a finite spatial extent. This illuminates how a treatment of the interacting
relativistic system can be realized in terms of quantum dynamical systems. Moreover
the Stückelberg divergences [Stü51] that arise in the canonical description of QFTs (in
terms of fixed time quantum fields) are avoided through the use of small, but finitely
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extended time-slices.
The construction of the KMS state for the interacting system with finite spatial extent

was done in section 4.2 by using a well-known method established by Araki in [Ara73],
that used an analytic continuation of the co-cycle Wh. The adiabatic limit in which the
cutoff of the interaction is removed, reduced to the limit of infinite spatial extent of the
system in our case. The existence of this limit is established in the case of massive scalar
field in section 4.3 using the exponential decay of the connected part of the free KMS
state in spatial directions.

In the proof of existence the non-zero mass of the theory is indispensable, since the
correlation functions of massless theories exhibit a too slow decay at spatial infinity. The
consequences of this have been observed in many applications of the massless theories
at finite temperature and is sometimes referred to as the IR problem of perturbative
QFT at finite temperature, see e.g. [Alt90].

Outlook

It is evident from the last part of the summary that more information on the behavior of
the massless theory is desirable, especially since many models in high-energy physics
use massless fields (such as QED and QCD).

One way do deal with the bad IR behavior of the theory is to introduce a non-zero
auxiliary mass term into the free theory and which is removed in the interaction term. It
is clear that an additional mass term in the free theory will drastically alter the asymp-
totic behavior of the theory in a way that yields convergent expectation values. In order
to obtain the the correct interacting theory back in the end, conditions have to be put
on the time-ordered products. We expect that this procedure exhibits many similar-
ities to the method of Lowenstein and Zimmermann [LZ75, Low76]. They show the
absence of IR singularities in the (time-ordered) vacuum expectation values of theories
that contain massless fields by the introduction of auxiliary masses for theses fields,
together with a specific renormalization procedure, which is called BPHZL due to its
close connection to the BPHZ framework.

An extension of their results to the case of QFT at finite temperature would be a
worthwhile result that would shed new light on the methods that used in the literature,
which involve the shift of the thermal mass term into the free theory [LB00, BP90].

Another interesting question is whether the asymptotic behavior of the KMS state
ωVβ in timelike directions coincides with the asymptotics of the interacting KMS state
which was found in [BB02].

In a more general context the timelike asymptotics of ωVβ is important to characterize
its stability properties under further perturbations. See [HKTP74, Haa92, BR02b] for
an extensive discussion. As it was shown in [BKR78], an important condition in this
respect is the cluster property in time:

lim
t→±∞

ωβ(A ? αt(B)) = ωβ(A)ωβ(B) ∀A, B ∈ A .
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If this condition holds true, then the asymptotic (retarded) expansion of ωVβ and the
time-slice expansion coincide in the C∗-algebraic setting. A thorough investigation in
the present setting, containing algebras of unbounded operators, would be highly in-
teresting. If a similar result holds true also in the pAQFT framework, then the equiv-
alence of the expansion at asymptotic times and the time-slice construction would be
established.

In addition, the present formalism provides the tools to further study spontaneous
symmetry breaking in perturbatively constructed QFTs, e.g. the breaking of theZ2 sym-
metry Φ → −Φ in models with m2 < 0 and quartic self-interaction. A discussion on
this topic has taken place only at the level of effective, non-local actions, see e.g. [DJ74],
or in axiomatic settings, e.g. in [Haa92].

In the pAQFT approach, the symmetry is called spontaneously broken, if the alge-
bra of observables A is represented on a Hilbert space, in which the automorphism
Φ → −Φ is not unitarily implemented. This holds in representations induced by non-
invariant states.

In our case such non-invariant states arise as evaluation functionals evφ on non-trivial
background configurations φ, e.g. at the one of the minima of the potential

V =
λ

4!
φ4 +

m2

2
φ2, λ > 0, m2 < 0 .

The results of this work can serve as a starting point of an detailed analysis of the
spontaneous breaking of the Z2 symmetry for the interacting ground and KMS states.
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A. Weyl Algebra at Finite Temperature
and Purification

This chapter is intended to give an overview on the intimate relationship between the
theory of C∗- and von-Neumann-algebras with KMS states in quantum physics. It is
one of the examples in the history of science, where two areas of research come into
contact which were disjointly investigated for a long time and whose collaboration re-
sulted into deep insights and lots of fascinating structures for both fields. For further
historical remarks and detailed introductions in both subjects it referred to the text-
books of Bratteli/Robinson [BR02a, BR02b] and Haag [Haa92].

In the beginning we introduce some elements of the theory of von-Neumann algebras
and Tomita-Takesaki modular theory. After that we discuss the algebras of bounded
operators that appear in relativistic quantum theory: the Weyl-algebras. The Weyl-
algebra of the free field is constructed in the deformation quantization setting and the
relation between Weyl-algebras arising from different ?-products is discussed.

In a subsequent section the special case of the Weyl algebra at finite temperature is
considered and its modular structure is highlighted. Using the modular conjugation of
the theory we construct the purification of the system, that is we enlarge the algebra
of observables in such a way, that the KMS state extends to a pure state on the larger
algebra. This is in close connection to the purification map, introduced by Woronowicz
[Wor72, Wor73]. Both the enlarged algebra and the state are given in a very explicit way
and the purity of the state is proven by the Kay-Wald criterion [KW91].

The enlarged algebra, together with the purified KMS state marks the starting point
of the Thermo Field Dynamics treatment of QFT at finite temperature, see e.g. [Oji81,
KMMS09]. In the language of the off-shell functional approach to QFT, Thermo Field
Dynamics can thus be seen as an off-shell extension to the algebra of observables A. A
full treatment of this extension in the present formalism seemed, however, to go to far
for this thesis.

A.1. Prelude in Mathematics: Tomita-Takesaki Modular
Theory

A crucial question after the first developments of quantum physics was, how the ob-
jects that were used in the description of quantum systems, namely linear operators on
Hilbert spaces, could be systematically investigated. Due to complications that arise in
the general treatment of unbounded operators on Hilbert spaces the main focus was to
classify the structures in spaces of bounded operators at first.
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The operations that are of main importance in the use of operators in quantum theory
were identified to be: An involution ∗, mapping an operator to its adjoint, which can be
used to single out the observables (self-adjoint operators). Moreover the algebra struc-
ture of the operators must not be neglected, since it is the non-commutative product
structure that lies at the very heart of quantum theory.

Thus a natural candidate to study is the ∗-algebra of all bounded operators B(H) (or
suitable subsets of B(H)) on a Hilbert space H with scalar product (·|·). An impor-
tant ingredient for the mathematical study of this space is the operator norm ‖A‖ of a
bounded operator. It is defined by

‖A‖ = sup
ψ∈H

(ψ|ψ)=1

|(ψ|Aψ)| .

The algebra B(H) has many different topologies, there are three of them that turned
out to be important in quantum theory. These are

• the norm or uniform topology, which is induced by the operator norm ‖A‖

• the strong operator topology, which is induced by the family of seminorms
ps

ψ(A) =
√
(Aψ|Aψ) with ψ ∈ H

• the weak operator topology, which is induced by the family of seminorms
pw

ψ,φ = |(φ|Aψ)| with ψ, φ ∈ H.

Using the first topology leads to the notion of C∗-algebras and the continuous func-
tional calculus for self-adjoint operators.

The latter (weak and strong operator) topologies provide the starting point in the
construction and discussion of von-Neumann-algebras and the weak operator topol-
ogy yields an extension of the functional calculus, that allows the definition of Borel
functions of self-adjoint operators.

From a physical point of view the weak operator topology could also be seen as the
most natural one: The matrix-elements (φ|Aψ) of self-adjoint operators A are inter-
preted as predictions of measurements in quantum theory.

Definition A.1.1 (Von-Neumann-algebras).
LetH be a Hilbert space and B(H) be the set of bounded linear operators onH. A self-adjoint,
unital subset M ⊂ B(H) is called a von-Neumann-algebra, if M is closed in the weak operator
topology.

Thus every von-Neumann-algebra is, in particular, a C∗-algebra.

Definition A.1.2 (Commutant).
Let M be a subset of B(H). The commutant M′ of M is defined by

M′ = {A ∈ B(H) : [A, B] = 0, ∀B ∈M}.

The double commutant is given by iteration: M′′ = (M′)′.
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Theorem 11 (Von-Neumann double commutant theorem [vN29, MvN43]).
Let M be a self-adjoint, unital subset of B(H). Then

• M is a von-Neumann-algebra, iff M′′ = M

• M′ is a von-Neumann-algebra

• M′′ is the smallest von-Neumann-algebra, which contains M.

Theorem 12 (GNS theorem [GN43, Seg47]).
Let A be a C∗-algebra and ω a state on A. There exists a Hilbert space Hω, a vector Ωω ∈ Hω

and a ∗-representation πω : A→ B(Hω), such that

ω(A) = (Ωω|πω(A)Ωω) , πω(A)Ωω
dense
⊂ Hω. (A.1)

The triplet (πω,Hω, Ωω) associated to A and ω is unique, up to unitary equivalence. Further-
more the following statements are equivalent:

• ω is a pure state, i.e. for states ω1, ω2 over A the equation ω = λω1 + (1− λ)ω2 with
0 < λ < 1 implies ω1 = ω2 = ω

• πω is an irreducible representation

• πω(A)′ = {λ1 : λ ∈ C} =⇒ πω(A)′′ = B(Hω).

The vector Ωω is called the implementing vector of ω or the GNS vacuum and the latter
property of Ωω in (A.1) is called cyclicity.

There is an explicit way of constructing a representation (Hω, πω, Ωω) from a given
state ω over the algebra A, the GNS construction. It can be found in section 1.5. The
above theorem is a refinement of theorem 3 that is valid in this formulation only in the
case of C∗-algebras. It allows the classification of quantum states into pure and mixed
states. That will be important in the next section, where a purification of a mixed state
is discussed.

We turn the focus now on the discussion of cyclic and separating vectors in a given
von-Neumann-algebra M. To define this, let M ⊂ B(H) be a von-Neumann-algebra
acting onH. A vector ψ ∈ H is called separating for M, if

∀A ∈M : AΩ = 0 ⇒ A = 0 .

Then there exists a conjugate linear (unbounded) operator S onH, the Tomita operator,
which is the closure of the densely defined operator

SAΩ = A∗Ω ∀A ∈M .

We identify S with its closure and make use of the unique polar decomposition of S, i.e.
a positive linear (unbounded) operator ∆ = S∗S and a conjugate linear operator J and
onH, such that

S = J∆1/2 = ∆−1/2 J .
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Here J is called the modular conjugation and ∆ is the modular operator for M and Ω.
The following relations for J and ∆ hold [BR02a]:

J = J−1 = J∗, JΩ = Ω,

∆ = ∆∗, ∆ > 0, ∆Ω = Ω .

It was a deep insight of Tomita that the above constructed operators J and ∆ can be
used to characterize the commutant of M and to show a relation between the separating
vector Ω and KMS states. This finding remained unpublished though and it was due to
Takesaki [Tak70] to publish the theorem and find the interesting applications, for which
it is named Tomita-Takesaki theorem.

Theorem 13 (Tomita-Takesaki).
Let M be a von-Neumann-algebra with cyclic and separating vector Ω and J, ∆ as above. Then

JMJ = M′ and αt(A) := ∆−it/β A∆it/β

is a one-parameter group of automorphisms of M and for M′ for every β ∈ R.

Actually the introduction of the factor β−1 in αt was not necessary for the result, never-
theless it turns out to be useful for the formulation of an important consequence of the
theorem.

Proposition A.1.3.
For every β ∈ R the algebraic state ωΩ over M given by ωΩ(A) = (Ω|AΩ) is a β-KMS state
with respect to the modular group αt with inverse temperature β ∈ R.

PROOF. Let A, B ∈M, then(
Ω
∣∣Aαiβ(B)Ω

)
= (A∗Ω|∆BΩ) = (∆1/2 A∗Ω|∆1/2BΩ)︸ ︷︷ ︸

(JSA∗Ω|JSBΩ)

= (JAΩ|JB∗Ω) = (AΩ|B∗Ω)∗

= (Ω|BAΩ) .

Thus ωΩ fulfills the static KMS condition with respect to to αt. This implies the dynamic
KMS condition given in definition 1.5.6. �

The Tomita-Takesaki theorem shows that every cyclic and separating vector Ω for a
von-Neumann-algebra M yields a one-parameter group of automorphisms on M and
an associated KMS state. The converse statement hold true as well, since every KMS
state on a C∗-algebra is implemented by a separating vector. Thus results and methods
that are developed for von-Neumann-algebras and for quantum systems with a KMS
state can be compared with the help of this theorem and many new structures have
been found by using this duality. The theorem had also a great impact on other aspects
of quantum field theory, for a review on this issue see, e.g. [Bor00].
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A.2. Weyl Algebra at Finite Temperature and Purification

In this section we want to study the Weyl-algebra of QFT. Unfortunately the term Weyl-
algebra is used to denote very different objects in the literature. In this work we mean
by Weyl algebra the ∗-algebra that is generated by exponentiated linear quantum fields.

To explain this in more detail we consider the free scalar field ϕ f that fulfills the
canonical commutation relations (CCR)

[ϕ f , ϕg] = iGc( f , g), f , g ∈ D

on M. ϕ f can be seen as representative of the linear field Φ f ∈ A on a Hilbert space. A
quick calculation shows that its exponential W f = exp(iϕ f ) will fulfill the relation

W f Wg = e−
i
2 Gc( f ,g)W f+g ,

which is known as the CCR in exponentiated form. This observation can be used to
establish a connection between the mathematically rigorous results from the last sec-
tion and relativistic quantum theory. While the free fields ϕ f can only be described by
unbounded operators, their exponentiated counterparts W f are bounded unitary oper-
ators (if f is real-valued). Thus the generated algebra will have many nice mathematical
features that more general algebras including unbounded operators lack.

Moreover there is no need to choose a positive part ∆+ of Gc in order to construct
the quantum algebra (which is generated by the W f ), unlike in the approach of section
1.4. This is a consequence of the regularity of the regarded objects: All elements of this
algebra can be described by regular functionals.

We begin with some general aspects of the Weyl algebra, associated to the linear field.
Afterwards it will be shown how to realize the Weyl algebra by ?-exponentials within
the algebra of the free scalar field A, the vacuum and KMS state will be discussed
and a purification of the KMS state will exhibit some interesting features that will be
important in Thermo Field Dynamics.

A.2.1. General Properties of the Weyl Algebra

We now discuss some very general aspects of the Weyl algebra associated to the linear
field and the classification of its state space. For that we will construct a Hilbert space
representation of the Weyl algebra and make use a key result of Kay and Wald [KW91]
to find a characterizing property for a state to be pure or mixed.

Definition A.2.1 (Weyl algebra associated to a symplectic vector space).
Let (L, σ) be a real symplectic vector space, i.e. σ is a real bi-linear form, which is anti-symmetric
and non-degenerate. The Weyl algebra W(L, σ) associated to (L, σ) is the ∗-algebra generated
by elements {W f : f ∈ L} obeying the following relations

W∗f = W− f , W0 = 1, W f Wg = eiσ( f ,g)W f+g. (A.2)

There exists a (unique) C∗-norm ‖·‖ for every W(L, σ), hence W(L, σ) = W(L, σ)
‖·‖

is a
C∗-algebra.
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Proposition A.2.2.
Let µ be a positive, symmetric bi-linear form on L. If µ dominates σ in the sense, that

σ( f , g)2 ≤ µ( f , f )µ(g, g), ∀ f , g ∈ L, (A.3)

then the linear functional ωµ on W(L, σ) defined by

ωµ(W f ) = e−
1
2 µ( f , f )

is a state. Moreover it uniquely extends to a state over W(L, σ). States of this form are called
quasi-free states.

The proof of the statement can be found in [Pet90]. It relies on the fact, that the inequal-
ity (A.3) implies positivity of the bi-linear form µ− iσ over C · L. Then[

µ( fi, f j)− iσ( fi, f j)
]

i,j=1,...,N

defines a positive semi-definite matrix. Moreover semi-positivity is preserved under
the element-wise multiplication of matrices (or the Hadamard product).

Due to the positivity condition on µ and the non-degeneracy of σ it follows, that
every such µ defines an inner product on L, which we denote by (·|·)µ. The completion

L
µ of L with respect to the norm associated to (·|·)µ is a real Hilbert space.
In order to construct a (complex) Hilbert space on which a representation of W(L, σ)

can be defined and which contains a vector, that implements the state ωµ, we are going
to complexify the real vector space L

µ by using the real bi-linear forms µ and σ.
On L

µ we can always construct the bounded, linear operator κ : Lµ → L
µ with the

properties

( f |κg)µ = σ( f , g), κ∗ = −κ, ‖κ‖µ ≤ 1.

The operator κ can be used to define a complex structure over L
µ. This is done as

follows: We obtain the operator I by the polar decomposition κ = I |κ|. The properties
of κ imply the relations I |κ| = |κ| I and I2 = −1. A complex structure over Lµ is then
introduced by

(a + ib) f := a f − bI f , ∀ f ∈ L
µ, a, b ∈ R

The resulting complex vector space is denoted by L
µ
C. It is equipped with a complex

scalar product

( f |g)
C
= µ( f , g)− iσ( f , g), f , g ∈ L

µ
C.

It is clear, that this construction does not lead to a complex Hilbert space yet, since (·|·)
C

may be degenerate on L
µ
C. Consequently the quotient

H1 := L
µ
C

/
ker (·|·)

C
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defines a complex Hilbert space. It is well-known [BR02a] that the GNS representation
of W(L, σ) induced by a quasi-free state ωµ is isomorphic to the Weyl algebra, generated
by the Weyl operators associate to the linear field ϕ f in the bosonic Fock space

H =
∞⊕

n=0

n⊗
symm.

H1,

on which the Weyl operators are obtained using the canonical ladder operators on H.
The space H1 is called the one-particle Hilbert space9, associated to the state ωµ. The
degeneracy space ker (·|·)µ is also known as the Gelfand ideal of the state ωµ, when
extended to the algebra of the free field, see section 1.5.

The operator κ is of further use for a characterization of pure states:

Proposition A.2.3 ([KW91]).
Let ωµ be a state on W(L, σ), given as in definition A.2.1. Then ωµ is a pure state, if and only
if κ2 = −1.

A.2.2. Weyl Algebra in the Functional Formalism

In the following we want to apply the theory, which has been developed in the above
section to concrete examples in the functional formalism of QFT. At first we are going
to introduce the Weyl algebra as a ∗-subalgebra of the algebra of observables A in the
deformation quantization setting, that was introduced in section 1.4.

Therefore let ? be given by an admissible two-point function ∆+ ∈ H+, see definition
1.4.2 for details. For convenience we introduce symbols for the (anti-) symmetric part
of ∆+

∆+( f , g) = ∆1( f , g) + iGc( f , g)

∆1( f , g) =
1
2

(
∆+( f , g) + ∆+(g, f )︸ ︷︷ ︸

=∆+( f ,g)

)
, Gc( f , g) =

1
2i

(
∆+( f , g)− ∆+(g, f )

)

In the case of real-valued test functions f , g, both ∆1( f , g) and Gc( f , g) are real. We
define the Weyl field functional, associated to the linear field Φ f as the ?-exponential

W f (φ) = exp?(iΦ f (φ)), Φ f (φ) =
∫

f (x)φ(x)dx, f ∈ DR.

It can be shown, that

W f (φ) = exp
[

i
(

Φ f (φ) +
ih̄
2

∆+( f , f )
)]

= e−
h̄
2 ∆1( f , f )e

iΦ f (φ)
·

(W f ? Wg)(φ) = e−ih̄Gc( f ,g)W f+g(φ)

9The one-particle Hilbert space is said to carry a fundamental degree of freedom, if there exists an irre-
ducible representation of the Poincaré group on H1. This is true in the case of the vacuum state of the
(Weyl algebra associated to the) free field.
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by comparing the power series in λ arising on both sides, if we replace f by λ f . We
obtain ∨

?

{W f = exp?(iΦ f ) : f ∈ DR}

as the Weyl algebra, associated to linear scalar field Φ f in A, see example 1.2.2. It is a
∗-subalgebra of A, which is convergent in h̄, i.e. we may associate Planck’s constant to
h̄ in the algebra. An easy calculation shows, that the generators W f satisfy the defining
Weyl relations (A.2) and∨

?

{W f = exp?(iΦ f ) : f ∈ L} = W(L, σ)

with the symplectic space

L = {[ f ]∼ : f ∈ DR, f ∼ g if f − g = Ph for some h ∈ DR}, σ( f , g) = −h̄Gc( f , g).

After fixing the notion of the Weyl algebra, we show the relation between the (canon-
ical) evaluation functionals ev0 (see section 1.5) in the functional formalism and the
quasi-free states from proposition A.2.2. Namely we have

ev0(W f ) = e−
h̄
2 ∆1( f , f ),

i.e. ev0 is a quasi-free state given by the real symmetric bi-linear form µ

µ( f , g) = h̄∆1( f , g).

The positivity of ∆+ as a bi-distribution over D (i.e. the property H5 in 1.4.2) implies
the positivity condition (A.3). We see, that the degeneracy space of (·|·)

C
on the com-

plexified space L
µ
C

ker (·|·)
C
= { f ∈ L

µ
C : ( f ∗| f )

C
= 0}

is exactly given by the Gelfand ideal of ∆+, because

( f ∗| f )
C
= µ( f ∗, f )− iσ( f ∗, f ) = ∆1( f ∗, f ) + iGc( f ∗, f ) = ∆+( f ∗, f ).

Moreover for every solution ψ to P the state evψ, defined by

evψ(W f ) = e−
1
2 µ( f , f )ei

∫
ψ(x) f (x)dx

coincides with a coherent state on the Weyl algebra.
Let ∆+ now be given by the two-point function of the homogeneous KMS state from

example 1.5.7 with inverse temperature β > 0, i.e.

∆+( f , g) =
∫

f (x)Dβ
+(x− y)g(y)dx dy, f , g ∈ DR
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We find, that the symmetric and anti-symmetric part of ∆+ are given by

σ( f , g) =
1

(2π)3
ih̄
2

∫
f̂ (−p)ĝ(p)ε(p0)δ(p2 −m2)dp

µ( f , g) =
1

(2π)3 h̄
∫

f̂ (−p)ĝ(p)
ε(p0)δ(p2 −m2)

2 coth
(

βp0
2

) dp.

On the completion L
µ the operator κ, which is associated to the quasi-free state

ev0(W f ) = e−
h̄
2 ∆1( f , f )

is given by a multiplication operator in momentum space:

(κ f )(x) =
1
i

∫
e−ipx tanh

(
βp0

2

)
f̃ (p)dp.

This is done by a direct comparison of both sides of the defining relation ( f |κg)µ =

σ( f , g). We see immediately, that

(κ2 f )(x) = −
∫

e−ipx tanh2
(

βp0

2

)
f̃ (p)dp = − f (x) +

∫
e−ipx f̂ (p)

cosh2
(

βp0
2

) dp

i.e. κ2 6= −1, unless β = +∞.
We obtain a well-known result, namely that

• the homogeneous KMS state for 0 < β < ∞ is a mixed state

• the vacuum state (β = +∞) is a pure state

over the Weyl algebra of the free scalar field. This result coincides with the physical
intuition of the situation: A mixed state is interpreted as an imperfectly prepared en-
semble of systems and a pure state as a perfectly prepared ensemble. But the thermal
equilibrium states and its generalizations, the KMS states, prescribe a probabilistic dis-
tribution of the systems in the ensemble, whereas the vacuum is by definition a prepa-
ration of the system in the lowest energy state.

A.2.3. Enlarged Weyl Algebra

We want to reconsider the case of finite temperature, i.e. the case 0 < β < ∞. We will
identify W(L, σ) with its GNS representation with respect to the KMS state on the re-
spective Hilbert space. In particular we omit the ?, since the products are now products
of operators on a Hilbert space. It is easy to show that the vector Ωµ that implements the
quasi-free state ωµ, is separating for the Weyl-algebra W(L, σ) and its C∗-completion
W(L, σ). This is a simple consequence of the fact, that the Gelfand ideal is trivial for
any quasi-free KMS state, with the consequence, that the GNS representation is faithful.
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Thus the conditions of the theorem 13 of Tomita-Takesaki are satisfied for the von-
Neumann-algebra M = W(L, σ)′′ ⊃W(L, σ) that is associated to W(L, σ). In particular
there exists a conjugation operator J on the GNS Hilbert space, such that

j : W(L, σ) ⊂M→W(L, σ)′ = M′, j(A) := JAJ. (A.4)

We call the image of the generator W f under j the tilde Weyl field functional W̃ f . Since
J is conjugate linear and satisfies J2 = 1, it holds

W̃ f W̃g = JW f J2Wg J = e−iσ( f ,g)W̃ f+g (A.5)

and W̃ f commutes with W f . The following generated algebra∨
{W f : f ∈ L} ∪ {W̃ f : f ∈ L} = W(L, σ)

∨
W(L, σ)′ ⊂M

∨
M′,

will be called enlarged Weyl algebra. Taking the similar form of Weyl relations of both
generators W f and W̃ f into account, it is convenient to consider the functional

W( f ,g) = W f W̃g = W̃gW f .

The modular conjugation j acts as on the generators by

j(W( f ,g)) = W(g, f )

and the W( f ,g) satisfy the following relations:

W( f1, f2)W(g1,g2) = eiσ( f1,g1)−iσ( f2,g2)W( f1+g1, f2+g2) = eiσ̂[( f1, f2),(g1,g2)]W( f1+ f2,g1+g2)

σ̂[( f1, f2), (g1, g2)] = σ( f1, g1)− σ( f2, g2). (A.6)

Here σ̂ defines a symplectic form on L⊕L. Therefore the enlarged Weyl algebra can be
seen as ∨

{W( f ,g) : f , g ∈ L} = W(L̂, σ̂), L̂ = L⊕ L.

The algebraic state, which is given by the expectation value with respect to Ωµ extends
to a state over the enlarged Weyl algebra as well and has a representation by a symmet-
ric bi-linear form µ̂ on L⊕ L:

ωµ̂(W( f ,g)) = e−
1
2 µ̂[( f ,g),( f ,g)],

µ̂[( f1, f2), (g1, g2)] = µ( f1, g1) + µm( f1, g2) + µm( f2, g1) + µ( f2, g2) (A.7)

where the mixed term µm is given by

µm( f , g) = h̄
∫

f (x)Dβ
+

(
x− y− iβ

2
e0
)

g(y)dx dy

=
h̄

(2π)3

∫
f̂ (−p)ĝ(p)

ε(p0)δ(p2 −m2)

2 sinh
(

βp0
2

) dp (A.8)
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which is symmetric due to the KMS condition. The mixed term µm represents the cor-
relations between the generators of W f and W̃g in the state Ωµ

(
Ωµ

∣∣Φ f JΦg JΩµ

)
= h̄∆m( f , g) =

∫
f (x)∆+

(
x, y +

iβe0

2

)
︸ ︷︷ ︸

Dβ
+

(
x−y− iβ

2 e0

)
g(y)dx dy, f , g ∈ DR

The positivity condition (A.3) is guaranteed by the fact, that µ− iσ is a positive semi-
definite over the complexified space LC:

(µ− iσ)[( f ∗1 , f ∗2 ), ( f1, f2)] = h̄
(

∆+( f ∗1 , f1) + ∆m( f ∗1 , f2) + ∆m( f ∗2 , f1) + ∆+( f ∗2 , f2)
∗
)

= h̄
∫ (∣∣∣ f̂1(p)

∣∣∣2 + f̂1(p)∗ f̂2(p)e−
βp0

2 + f̂1(p) f̂2(p)∗e−
βp0

2 +
∣∣∣ f̂2(p)

∣∣∣2 e−βp0

)
×

× ε(p0)δ(p2 −m2)

1− e−βp0
dp

= h̄
∫ (

f̂1(p) + f2(p)e−
βp0

2

)∗ (
f̂1(p) + f2(p)e−

βp0
2

) ε(p0)δ(p2 −m2)

1− e−βp0
dp ≥ 0.

We are able to find an explicit form of the operator κ, associated to the quasi-free state
ωµ̂. It acts on the completion of the doubled space L̂C. Its action can be written by a
matrix valued multiplication operator in momentum space:

κ(g1, g2)
T =

(
κ11g1 + κ12g2

κ21g1 + κ22g2

)
(

κ̂11(p) κ̂12(p)
κ̂21(p) κ̂22(p)

)
=

1

i sinh
(

βp0
2

)
− cosh

(
βp0

2

)
−1

1 cosh
(

βp0
2

) .

One sees that κ2 = −1, i.e. ωµ̂ is a pure state over the enlarged algebra. The limit
β → +∞ is also possible in this construction. Then the mixed correlations µm vanish
and the resulting state over the enlarged algebra is just the product state of the vacuum
state with itself, which is also pure. This can also be directly computed via

lim
β→+∞

(
κ̂11(p) κ̂12(p)
κ̂21(p) κ̂22(p)

)
=

(
i 0
0 −i

)
.

An interpretation of this construction is available with the following argument: The
mixed nature of the KMS state is interpreted as the impossibility to obtain the full in-
formation of the state via measurements of the observables of the systems, which are
represented by the algebra W(L, σ).

This picture changes, if we include the algebra of “tilde-fields”, i.e. if we allow hypo-
thetical measurements of the enlarged algebra. Then the same state appears to be pure.
However, this procedure is just a mathematical procedure to obtain a pure state, the
tilde-fields are not observables of the system!
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One might think of these tilde fields as observables of the thermal bath, which sur-
rounds the physical system and keeps it in the thermal equilibrium. This idea is flawed
though, since the physical system, which is discussed above, fills the whole Minkowski
spacetime and there is no surrounding thermal bath.

The mathematical construction can be seen as a special case of the purification map,
which has been studied in [Wor72] for case of general C∗-algebras. Let A be a C∗-algebra
and ω a state on A, such that the generated von-Neumann-algebra πω(A)′′ is a factor.
Then, under suitable conditions, there exists a unique extension of ω to a state over

A⊗Ao (A.9)

where Ao is the opposite algebra. We have encountered exactly the same structure here,
since

W(L̂, σ̂) = W(L, σ)⊗W(L, σ)o = W(L, σ)⊗W(L,−σ)

as ∗-algebras.
We close this section with a summary of the algebraic structure of the enlarged Weyl

algebra with respect to the modular conjugation j : A 7→ JAJ which extends to W(L̂, σ̂).
For convenience we identify the weak closure M = W(L, σ)′′ as the algebra of observ-
ables and M̂ = M

∨
M′ as the enlarged algebra. Then

M1 Embedding: The algebra of observables M is a ∗-subalgebra of M̂.

M2 Commutant: The commutant M′ is equal to j(M), i.e. j is a conjugate linear iso-
morphism between the algebra of observables and its commutant.

M3 State: The KMS state ωµ over M extends to a pure state ωµ̂ over M̂, which obeys
ωµ̂(j(Â)) = ωµ̂(Â)∗ for every Â ∈ M̂ and ωµ̂(j(A)A) ≥ 0 for every A ∈M.

The two conditions in M3 are called j-positivity and j-invariance in [Wor72]. With these
conditions, the purification map ωµ 7→ ωµ̂ is actually unique [Wor73].
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[DJP03] J. Dereziński, V. Jakšić and C. A. Pillet, Perturbation theory of W*-
dynamics, Liouvilleans and KMS-states, Reviews in Mathematical Physics
15(05), 447–489 (2003).

[Düt97] M. Dütsch, Slavnov-Taylor identities from the causal point of view, Int. J.
Mod. Phys. A12, 3205–3248 (1997), hep-th/9606105.

[EG73] H. Epstein and V. Glaser, The Role of locality in perturbation theory, An-
nales Poincare Phys. Theor. A19, 211–295 (1973).

151



Bibliography

[EG76] H. Epstein and V. Glaser, Adiabatic Limit in Perturbation Theory, in
Renormalization Theory, edited by G. Velo and A. Wightman, volume 23 of
NATO Advanced Study Institutes Series, pages 193–254, Springer Nether-
lands, 1976.

[ETU57] H. Ezawa, Y. Tomozawa and H. Umezawa, Quantum statistics of fields and
multiple production of mesons, Il Nuovo Cimento 5(4), 810–841 (1957).

[FHS65] R. P. Feynman, A. R. Hibbs and D. F. Styer, Quantum mechanics and path
integrals, volume 2, McGraw-Hill New York, 1965.

[FL] K. Fredenhagen and F. Lindner, Renormalized Hamiltonian Dynamics in
Quantum Field Theory and KMS States, to appear.

[FR11] K. Fredenhagen and K. Rejzner, Batalin-Vilkovisky formalism in perturba-
tive algebraic quantum field theory, (October 2011), 1110.5232.

[FR12] K. Fredenhagen and K. Rejzner, Perturbative algebraic quantum field the-
ory, (2012), 1208.1428.

[GH06] H. Gottschalk and T. Hack, On the unitary transformation between non-
quasifree and quasifree state spaces and its application to quantum field
theory on curved spacetimes, (2006), math-ph/0610041.

[GN43] I. Gelfand and M. Naimark, On the imbedding of normed rings into the
ring of operators in Hilbert space, Matematiceskij sbornik 54(2), 197–217
(1943).

[Group12] J. Beringer et al. (Particle Data Group Collaboration), Review of Particle
Physics, Phys. Rev. D 86, 010001 (2012).

[Haa55] R. Haag, On quantum field theories, Kong. Dan. Vid. Sel. Mat. Fys. Med.
29N12, 1–37 (1955).

[Haa58] R. Haag, Quantum Field Theories with Composite Particles and Asymp-
totic Conditions, Phys. Rev. 112, 669–673 (Oct 1958).

[Haa92] R. Haag, Local Quantum Physics. Fields, Particles, Algebras. Text and
Monographs in Physics, Springer-Verlag Berlin, 1992.

[Hac10] T.-P. Hack, On the Backreaction of Scalar and Spinor Quantum Fields in
Curved Spacetimes, (2010), 1008.1776.

[HHW67] R. Haag, N. Hugenholtz and M. Winnink, On the equilibrium states in
quantum statistical mechanics, Communications in Mathematical Physics
5(3), 215–236 (1967).

[HK64] R. Haag and D. Kastler, An Algebraic Approach to Quantum Field Theory,
Journal of Mathematical Physics 5(7), 848–861 (1964).

152



Bibliography

[HKTP74] R. Haag, D. Kastler and E. Trych-Pohlmeyer, Stability and equilibrium
states, Communications in Mathematical Physics 38(3), 173–193 (1974).

[Hör90] L. Hörmander, The analysis of linear partial differential operators: Dis-
tribution theory and Fourier analysis, Springer Study Edition, Springer-
Verlag, 1990.

[HS62] R. Haag and B. Schroer, Postulates of Quantum Field Theory, Journal of
Mathematical Physics 3(2), 248–256 (1962).

[HW57] D. Hall and A. Wightman, A theorem on invariant analytic
functions with applications to relativistic quantum field theory,
Mat. Fys. Medd. Dan. Vid. Seisk. 31(5) (1957).

[HW01] S. Hollands and R. M. Wald, Local Wick Polynomials and Time Ordered
Products of Quantum Fields in Curved Spacetime, Communications in
Mathematical Physics 223(2), 289–326 (2001), gr-qc/0103074.

[HW02] S. Hollands and R. M. Wald, Existence of local covariant time ordered
products of quantum fields in curved spacetime, Communications in Math-
ematical Physics 231(2), 309–345 (2002), gr-qc/0111108.

[HW03] S. Hollands and R. M. Wald, On the renormalization group in curved
spacetime, Communications in Mathematical Physics 237(1-2), 123–160
(2003), gr-qc/0209029.

[HW05] S. Hollands and R. M. Wald, Conservation of the stress tensor in interacting
quantum field theory in curved spacetimes, Rev.Math.Phys. 17, 227–312
(2005), gr-qc/0404074.

[IZ12] C. Itzykson and J.-B. Zuber, Quantum field theory, Courier Dover Publi-
cations, 2012.

[JR54] J. M. Jauch and F. Rohrlich, The infrared divergence, Helvetica Physica
Acta 27(7), 613–636 (1954).

[Kel65] L. Keldysh, Diagram technique for nonequilibrium processes, Sov. Phys.
JETP 20(4), 1018–1026 (1965).

[Kel10] K. J. Keller, Dimensional Regularization in Position Space and a Forest For-
mula for Regularized Epstein-Glaser Renormalization, (2010), 1006.2148.

[KMMS09] F. C. Khanna, A. P. Malbouisson, J. M. Malbouisson and A. E. Santana,
Thermal quantum field theory: algebraic aspects and applications, World
Scientific Singapore, 2009.

[KMR01] C. Kopper, V. F. Müller and T. Reisz, Temperature independent renormal-
ization of finite temperature field theory, Annales Henri Poincare 2, 387–
402 (2001), hep-th/0003254.

153



Bibliography

[Kon03] M. Kontsevich, Deformation quantization of Poisson manifolds. 1.,
Lett.Math.Phys. 66, 157–216 (2003), q-alg/9709040.

[Kub57] R. Kubo, Statistical-mechanical theory of irreversible processes. I. Gen-
eral theory and simple applications to magnetic and conduction problems,
Journal of the Physical Society of Japan 12(6), 570–586 (1957).

[KW91] B. S. Kay and R. M. Wald, Theorems on the Uniqueness and Thermal Prop-
erties of Stationary, Nonsingular, Quasifree States on Space-Times with a
Bifurcate Killing Horizon, Phys.Rept. 207, 49–136 (1991).

[Lai13] M. Laine, Basics in Thermal Field Theory: A Tutorial on Perturbative Com-
putations, March 2013, http://www.laine.itp.unibe.ch/basics.pdf.

[LB00] M. Le Bellac, Thermal field theory, Cambridge University Press, 2000.

[Low76] J. Lowenstein, Convergence theorems for renormalized Feynman integrals
with zero-mass propagators, Communications in Mathematical Physics
47(1), 53–68 (1976).

[LSZ55] H. Lehmann, K. Symanzik and W. Zimmermann, Zur Formulierung quan-
tisierter Feldtheorien, Il Nuovo Cimento 1(1), 205–225 (1955).

[LSZ57] H. Lehmann, K. Symanzik and W. Zimmermann, On the formulation of
quantized field theories — II, Il Nuovo Cimento 6(2), 319–333 (1957).

[LvW87] N. P. Landsman and C. G. van Weert, Real and Imaginary Time Field The-
ory at Finite Temperature and Density, Phys. Rept. 145, 141 (1987).

[LZ75] J. Lowenstein and W. Zimmermann, On the formulation of theories with
zero-mass propagators, Nuclear Physics B 86(1), 77 – 103 (1975).

[Mat55] T. Matsubara, A New Approach to Quantum-Statistical Mechanics,
Progress of Theoretical Physics 14(4), 351–378 (1955).

[MNU84] H. Matsumoto, Y. Nakano and H. Umezawa, An Equivalence Class Of
Quantum Field Theories At Finite Temperature, J.Math.Phys. 25, 3076–
3085 (1984).

[MOU84] H. Matsumoto, I. Ojima and H. Umezawa, Perturbation and Renormaliza-
tion in Thermo Field Dynamics, Annals Phys. 152, 348 (1984).

[MS59] P. C. Martin and J. Schwinger, Theory of many-particle systems. I, Physical
Review 115(6), 1342 (1959).

[MvN43] F. J. Murray and J. von Neumann, On rings of operators. IV, The Annals
of Mathematics 44(4), 716–808 (1943).

[NRT83] H. Narnhofer, M. Requardt and W. Thirring, Quasi-particles at finite tem-
peratures, Communications in Mathematical Physics 92(2), 247–268 (1983).

154



Bibliography

[NS84] A. J. Niemi and G. W. Semenoff, Thermodynamic calculations in relativistic
finite-temperature quantum field theories, Nuclear Physics B 230(2), 181 –
221 (1984).

[Oji81] I. Ojima, Gauge Fields at Finite Temperatures: Thermo Field Dynamics,
KMS Condition and their Extension to Gauge Theories, Annals Phys. 137,
1 (1981).

[OS73] K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions,
Communications in mathematical physics 31(2), 83–112 (1973).

[Pet90] D. Petz, An Invitation to the Algebra of Canonical Commutation Relations,
Leuven Notes in Mathematical and Theoretical Physics, Cornell University
Press, coronet edition, 1990.

[Rad96] M. J. Radzikowski, Micro-local approach to the Hadamard condition in
quantum field theory on curved space-time, Communications in Mathe-
matical Physics 179, 529–553 (1996).

[Rej11] K. A. Rejzner, Batalin-Vilkovisky formalism in locally covariant field the-
ory, (2011), 1111.5130.

[Rue62] D. Ruelle, On the asymptotic condition in quantum field theory, Helv.
Phys. Acta 35, 147–163 (1962).

[Rue69] D. Ruelle, Statistical Mechanics: Rigorous Results, World Scientific, 1969.

[Ryd96] L. H. Ryder, Quantum Field Theory, Cambridge University Press, 1996.

[Sch61] J. Schwinger, Brownian motion of a quantum oscillator, Journal of Mathe-
matical Physics 2, 407 (1961).

[Sch89] G. Scharf, Finite quantum electrodynamics, Springer-Verlag Berlin, 1989.

[Seg47] I. E. Segal, Irreducible representations of operator algebras, Bulletin of the
American Mathematical Society 53(2), 73–88 (1947).

[Seg62] I. E. Segal, Mathematical characterization of the physical vacuum for a
linear Bose-Einstein field, Illinois Journal of Mathematics 6(3), 500–523
(1962).

[SP53] E. Stückelberg and A. Petermann, Normalization of the constants in the
theory of quanta, Helvetica Physica Acta (Switzerland) 26 (1953).

[Ste93] O. Steinmann, Perturbation theory of Wightman functions, Communica-
tions in Mathematical Physics 152(3), 627–645 (1993).

[Ste95] O. Steinmann, Perturbative quantum field theory at positive temperatures:
An axiomatic approach, Communications in Mathematical Physics 170,
405–416 (1995), hep-th/9405135.

155



Bibliography

[Str03] R. S. Strichartz, Guide to Distribution Theory and Fourier, World Scientific
Publishing Company, 2003.

[Str05] F. Strocchi, Symmetry breaking, Lecture notes in physics, Springer-Verlag
GmbH, 2005.

[Stü51] E. C. G. Stückelberg, Relativistic Quantum Theory for Finite Time Inter-
vals, Phys. Rev. 81, 130–133 (Jan 1951).

[Tak70] M. Takesaki, Tomita’s theory of modular Hilbert algebras and its appli-
cations, in Lecture Notes in Mathematics, volume 128, Springer Berlin
Heidelberg, 1970.

[TU75] Y. Takahasi and H. Umezawa, Thermo field dynamics, Collect.Phenom. 2,
55–80 (1975).

[VH49] L. Van Hove, Quelques propriétés générales de l’intégrale de configuration
d’un système de particules avec interaction, Physica 15(11), 951–961 (1949).

[vN29] J. von Neumann, Zur Algebra der Funktionaloperatoren und Theorie der
normalen Operatoren, J. Math. Ann. 102, 370–427 (1929).

[Wal07] S. Waldmann, Poisson-Geometrie und Deformationsquantisierung: Eine
Einführung, Springer London, Limited, 2007.

[Wal12] S. Waldmann, A Nuclear Weyl Algebra, (2012), 1209.5551.

[Wei96] S. Weinberg, The Quantum Theory of Fields, Number 1 in Quantum theory
of fields, Cambridge University Press, 1996.

[Wei08] S. Weinberg, Cosmology, Cosmology, OUP Oxford, 2008.

[Woo97] N. M. J. Woodhouse, Geometric Quantization, Oxford Mathematical
Monographs, Clarendon Press, 1997.

[Wor72] S. L. Woronowicz, On the purification of factor states, Communications in
Mathematical Physics 28, 221–235 (1972).

[Wor73] S. L. Woronowicz, On the purification map, Communications in Mathe-
matical Physics 30, 55–67 (1973).

[YF50] C. N. Yang and D. Feldman, The S-Matrix in the Heisenberg Representa-
tion, Phys. Rev. 79, 972–978 (Sep 1950).

[YFS61] D. Yennie, S. C. Frautschi and H. Suura, The infrared divergence phenom-
ena and high-energy processes, Annals of Physics 13(3), 379–452 (1961).

[ZJ+02] J. Zinn-Justin et al., Quantum field theory and critical phenomena, volume
142, Clarendon Press Oxford, 2002.

156


