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Abstract

Multiplicities for the semi-inclusive production of each charge state of ⇡± and K±

mesons in deep-inelastic scattering are presented as a function of the kinematic
quantities x, Q2, z and Ph?. The multiplicities were extracted from data collected
by the HERMES experiment at the HERA storage ring using 27.6 GeV electron and
positron beams on a hydrogen or deuterium gas target. These results for identified
hadrons constitute the most precise measurement to date, and will significantly en-
hance our understanding of the proton structure, as well as the fragmentation pro-
cess in deep-inelastic scattering. Furthermore, the 3D binning at an unprecedented
level of precision provides a handle to help disentangle the transverse momentum
structure of both.

The high level of precision coupled with an intermediate energy regime re-
quires a careful study of the complex interaction between the experimental system-
atics, theoretical uncertainties, and the applicability of the factorization theorem
within the standard framework of leading-twist collinear QCD. This is illustrated
by the extraction of the valence quark ratio dv/uv at leading-order in ↵s. These
results show a strong z-dependence below z ⇡ 0.30, which could be interpreted
as evidence for factorization breaking. This evidence weakens somewhat when
isospin invariance of the fragmentation functions is assumed to be broken.

Additionally, the multiplicities for the semi-inclusive production of ⇡0 mesons
in deep-inelastic scattering are presented as a function of z. These multiplicities
were extracted from the same data sample as used for the charged meson results.
The neutral pion multiplicity is the same as the average charged pion multiplicity,
up to z ⇡ 0.70. This is consistent with isospin invariance below z ⇡ 0.70. The
results at high values of z show strong signs of isospin symmetry breaking.
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1 Introduction

The semi-inclusive production of pseudoscalar meson in deep-inelastic scattering
is used in this work to study various properties of the strong interaction. Quantum
chromodynamics (QCD), the quantum field theory that describes the strong inter-
action, is only perturbative at short distance scales, Hard reactions can be described
in perturbative QCD (pQCD) because of the existence of factorization theorems,
which allow for the experimental cross section to be split in parts that are process
dependent but perturbative, and process independent, universal parts that describe
the long-distance physics. These non-perturbative parts are described by param-
eterizations that are constrained by experimental measurements. Examples of the
physics described by these parameterizations are the nucleon structure, and the
functions that described the decay of a free quark into a jet of final state hadrons.

They are described in various frameworks that are derived from pQCD, in the
limit of specific kinematic regimes. A high-precision, multi-dimensional measure-
ment, as presented in this work, allows for the non-perturbative parameterizations
to be better constrained, while simultaneously probing the limits of the aforemen-
tioned frameworks. A pedagogical introduction and motivation, assuming only
basic knowledge of particle physics, is provided in Chapter 2. The rest of the work
provides an explanation of the more intricate theoretical details when needed. This
allows most of the discussion to be read as stand-alone works by someone familiar
with the field.

This work presents multiplicities for the semi-inclusive production of ⇡+, ⇡�,
K+ and K� mesons in deep-inelastic scattering at the HERMES experiment, in
various three-dimensional binnings. The experimental setup of the HERMES ex-
periment is discussed in Chapter 3. These results consitute the most precise mea-
surement in semi-inclusive deep-inelastic scattering to date. The high statistical
precision of the measurement requires a sophisticated extraction procedure to min-
imize the systematic uncertainties. This is explained in detail in Chapter 4.

The main results are presented and discussed in Chapter 5. Chapter 6 illustrates
the degree to which these results will enhance the precision of the parameteriza-
tions of the fragmentation functions in the standard framework of leading-twist
collinear QCD. Through the inclusion of the dependence on the transverse hadron
momentum Ph?, these results reach beyond this collinear framework, and provide

1



a handle to help disentangle the transverse momentum structure of the nucleon and
the fragmentation process. This is briefly discussed in Chapter 7. Next, the applica-
bility of the standard framework of leading-twist collinear QCD for semi-inclusive
deep-inelastic scattering at intermediate energies is tested in Chapter 8. Finally, the
⇡0 multiplicities are extracted and compared to those for the charged pions as a test
for isospin symmetry in Chapter 9.

2



2 Deep Inelastic Scattering

This chapter provides a brief pedagogical overview of the theoretical concepts nec-
essary to situate and understand the rest of this work. The more intricate details are
saved for later chapters, and introduced only at the specific points where they are
needed. This approach makes Chapters 5 to 9 relatively self-contained, allowing
someone with a basic background in the field of hadronic physics to follow the
discussion without having to read the rest of this work.

2.1 Kinematic Variables

The deep-inelastic scattering (DIS) from a lepton l with four-momentum k on a
hadron N with four-momentum P, is the hard scattering reaction,

l + N ! l0 + X, (2.1)

where the nucleon is broken up into several hadrons. In the final state, the scattered
lepton l0 is detected with four-momentum k0, as illustrated in Fig. 2.1. The case
where one or more of the produced hadrons are detected in coincidence with the
scattered lepton is referred to as semi-inclusive DIS (SIDIS).

The four-momentum transfer q is carried by a virtual photon, or a virtual W-
or Z-boson. The measurements for this work were performed at the HERMES
experiment, where a 27.6 GeV positron or electron beam was scattered o↵ a fixed
target. This corresponds to a center-of-mass energy

p
s = 7.26 GeV far below the

Z-boson mass. The variables P and q fully constrain the kinematic dependence of
unpolarized DIS. In fact, for a given beam energy E and target mass M, there are
only two independent variables that the cross section can depend on. These can be
defined in a Lorentz-invariant way as,

Q2 ⌘ �q2, (2.2)

where the minus sign is included so that Q2 is positive. The second scalar is the

3



q

P

k k’

W

L

Ph

ƫƬ

ƫƬ

Figure 2.1: Diagram illustrating the deep-inelastic scattering of a lepton with four-
momentum k o↵ a proton with four-momentum P. In the case of semi-inclusive
deep-inelastic scattering, a hadron with four-momentum Ph is detected in coinci-
dence with the scattered lepton with momentum k0.

Bjorken scaling variable,

x ⌘ Q2

2P · q . (2.3)

Additional useful invariants are,

⌫ ⌘ P · q
M

lab
= E � E0, (2.4)

y ⌘ P · q
p · k

lab
=
⌫

E
, (2.5)

s ⌘ (P + k)2, (2.6)

W2 ⌘ (P + q)2 = M2 + 2M⌫ � Q2. (2.7)

Due to the laboratory-frame identities, ⌫ and y are generally referred to as respec-
tively the energy transfer from the beam to the target, and the fractional beam en-
ergy transfer. s is the squared center-of-mass energy of the experiment, and W2 the
squared invariant mass of the final hadronic state. For elastic scattering, W2 = M2,
and therefore x = 1, while for inelastic scattering, the Bjorken scaling variable
ranges between 0 < x < 1. An event is deep-inelastic if there is enough energy
available for the formation of multiple final state hadrons,

W2 = M2 +
1 � x

x
Q2 � M2. (2.8)

4



A lower bound for the deep-inelastic region is therefore given by approximately
Q2 > 1 GeV2 and W2 > 4 GeV2. In fact, much of the theoretical framework used
to describe DIS and SIDIS is derived in the Bjorken limit, where Q2 ! 1 for fixed
values of x.

The detection of a hadron h in coincidence with the scattered lepton in unpo-
larized DIS adds three more degrees of freedom to the scattering cross section,
corresponding to the three degrees of freedom in the hadron four-momentum Ph

for a given hadron with mass Mh,

z ⌘ P · Ph

P · q
lab
=

Eh

⌫
, (2.9)

Ph? ⌘

����~q ⇥ ~Ph

����
���~q
���
, (2.10)

�h ⌘ arccos
(q̂ ⇥ ~k) · (q̂ ⇥ ~Ph)����q̂ ⇥ ~k

����
����q̂ ⇥ ~Ph

����
, (2.11)

with q̂ ⌘ ~q/|q|. The invariant scaling variable z, ranging between 0 < z < 1, is
equal to the energy fraction transferred to the hadron h in the laboratory frame.
The transverse momentum component Ph?, and the azimuthal angle �h between
the lepton scattering plane and the hadron production plane, are both defined with
respect to the virtual photon momentum in the laboratory frame.

A comprehensive list of the kinematic variables can be found in the front matter
at Page ix.

2.2 Structure Functions and the DIS Cross Section

As explained in the previous section, the inclusive process in Fig. 2.1 can be ex-
pressed as a function x and Q2, for a given beam energy E and target mass M. The
general structure of the inclusive DIS cross section can be derived using only quan-
tum electrodynamics (QED) and general symmetry arguments regarding quantum-
chromodynamics (QCD). Contraction of the two vertices in Fig. 2.1 gives,

d� =
4↵2

s
d3~k0

2
����~k0

���� Q4
Lµ⌫(k, q)Wµ⌫(p, q), (2.12)

The leptonic tensor Lµ⌫ describes the lepton-photon coupling, and can be expressed
as,

Lµ⌫ = 2 ·
h
k0µk⌫k

0
⌫kµ � gµ⌫(~k0~k � m2

l )
i
, (2.13)
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with ml the lepton mass and gµ⌫ the Minkowski metric.
The hadronic tensor Wµ⌫ describes the coupling of the virtual photon to the

hadronic system, and function of P and q. It is Lorentz invariant, and Wµ⌫ = W⌫µ⇤.
Additionally, because of conservation of electromagnetic current, Wµ⌫ = 0. This
only leaves two independent tensor structures for Wµ⌫. Each of these tensors is
multiplied by a scalar structure function F, that only depends on the invariants x
and Q2,

Wµ⌫ = �
 
gµ⌫ �

qµq⌫
q2

!
F1(x,Q2) +

 
Pµ � qµ

P · q
q2

!  
P⌫ � q⌫

P · q
q2

!
1

P · q F2(x,Q2).

(2.14)

Putting Eqs. (2.12) to (2.14) together then results in,

d�
dxdQ2 =

4⇡↵
Q4

"
y2F1(x,Q2) +

 
1 � y

x
� My

2E

!
F2(x,Q2)

#
. (2.15)

It is possible leverage the kinematic dependence of the inclusive cross section in
Eq. (2.15) to measure these structure functions directly.

2.3 Factorization and the Quark-Parton Model

Together, the structure functions F1 and F2 constrain the cross section of the inter-
action of the virtual photon with the nucleon, and as such encode the nucleon struc-
ture in the unpolarized DIS process. To extract the nucleon structure in a process-
independent way, one needs to be able to factorize out the process-dependent hard-
scattering reaction. A first such attempt was made by Bjorken [1] and Feynman [2]
in their parton model, inspired by the results from the results from the DIS experi-
ments at SLAC in the late sixties. This model provided much of the intuitive basis
for modern hadronic physics, and factorization theorems can be thought of as field
theoretic realizations of the parton model.

The quark-parton model (QPM) describes a hadron as an extended object,
made up of partons, and held together by their mutual interactions. While it is
impossible to explicitly compute the structure of the virtual partonic states that
make up the hadron, the scattering of a free parton, for example by an electron, is
assumed to be calculable. This dichotomy mirrors the features of QCD, where it is
impossible to perturbatively calculate long distance behavior (confinement), while
asymptotic freedom allows perturbation theory to be used at short distances.

Consider the example of DIS by a virtual photon exchange at high energies,
depicted in Fig. 2.1. When boosting to the electron-nucleon center-of-mass frame,
two important things happen to the nucleon. It is Lorentz-contracted in the direc-
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Figure 2.2: Diagrammatic illustration of factorization in semi-inclusive deep-
inelastic scattering.

tion of the collision, and its internal interactions are time-dilated. As the center-of-
mass energy increases, the lifetime of any virtual partonic state is therefore length-
ened, while the time it takes the electron to traverse the hadron is shortened. Hence,
the nucleon will be in a single virtual state, characterized by a definite number of
partons, during the interaction, The partons do not interact during this time frame,
and may be thought of as carrying a momentum fraction ⇠ of the nucleon, in the
center-of-mass frame. These arguments motivate a picture where the electrons in-
teract with a parton of definite momentum, rather than the hadron as a whole, as
long as the momentum transfer is very high. Additionally, the scattering reaction
is assumed to occur instantaneously, without the interference of final state interac-
tions that happen on a much longer timescale.

The DIS process at high energies can therefore be treated as the incoherent
scattering o↵ individual partons, as depicted in Fig. 2.2. This allows the cross
section to be written as the sum of probabilities, rather than amplitudes. The parton
distribution function (PDF) fq(⇠) is defined as the probability that a noninteracting
parton of species q with momentum fraction ⇠ is encountered. The DIS cross
section can therefore be written as,

d�
dxdQ2 /

Z 1

0
d⇠

X

q
fq(⇠)

d�̂q(x/⇠,Q2)
dxdQ2 , (2.16)

with �̂ the electron-parton cross section. After the interaction, the parton is on-
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shell,

(⇠P + q)2 = ⇠2M2 + 2⇠P · q � Q2 ⇡ 0, (2.17)

and therefore, as Q � M, ⇠ ⇡ Q2/(2P · q) = x, relating the Bjorken scaling
variable x to the momentum fraction carried by the struck parton. At leading order,
the structure functions F1 and F2 can then be written as,

F1(x) =
1
2

X

q

Z 1

0
d⇠e2

q fq(⇠)�(⇠ � x) =
1
2

X

q
e2

q fq(x), (2.18)

F2(x) =
X

q

Z 1

0
d⇠e2

q⇠ fq(⇠)�(⇠ � x) =
X

q
xe2

q fq(x), (2.19)

where eq refers to the parton charge. The relation 2xF1 = F2, known as the Callan-
Gross relation [3], follows directly from incoherent scattering o↵ spin-1/2 partons.

In the QPM, the PDFs are simple number densities that describe the proton
structure. They are universal (i.e, process-independent) quantities, and therefore
have a predictive power. For example, PDFs measured in DIS can be used to
calculate the cross section for the Drell-Yan process (p+p! l+l̄+X). Factorization
into terms that are perturbative, and terms that are non-perturbative but universal,
allows for high-energetic lepton-hadron processes to be described and calculated
in a consistent way.

2.4 Factorization beyond the Quark-Parton Model

Figure 2.3 shows a compilation of various measurements of F p
2 as a function of Q2

in various x-bins. The QPM prediction that the structure functions be independent
of Q2 is clearly violated, except for a narrow region of 0.1 < x < 0.15. This is not
entirely unexpected, as the previous discussion only used qualitative properties of
QCD.

The problems with the QPM picture can be made apparent when consider-
ing the one-loop QCD corrections to the diagram in Fig. 2.2, which give rise to
collinear singularities in the cross section1, caused by QCD-radiation with very
low transverse momentum kT . Of course, these collinear internal lines should not
belong to the hard graph in the first place. It is therefore natural to introduce a
cuto↵ µF such that radiative corrections with a transverse momentum kT < µF are

1 Besides the collinear divergences, there are also complications due to ultra-violet and soft di-
vergences. The former can be removed by standard counter terms, while the latter automatically
cancel in the sum over all graphs. This implies that factorization does not hold for on the level of an
individual graph. A full treatment is beyond the scope of this work, a pedagogical explanation can
be found in Ref. [10], and a full formal treatment in, e.g., Ref. [11].
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Figure 2.3: The proton structure function F p
2 , as a function of Q2 in bins of fixed

x, measured at the ep-collider experiments ZEUS and H1 [4], and fixed target
experiments for ep-scattering at SLAC [5], and µp-scattering at BCDMS [6], E665
[7] and NMC [8]. The error bars are the statistical and systematic uncertainties
added in quadradure. Some points have been slightly o↵set in Q2 for clarity. The
H1+ZEUS combined binning in x is used in this plot; all other data are rebinned to
the x values of these data. For the purpose of plotting, F p

2 has been multiplied by
2ix , where ix is the number of the x bin, ranging from ix = 1 (x = 0.85) to ix = 24
(x = 0.00005). Figure from [9].

9



PDF

Ʊ̂

k

kT ��ƫF

kT !�ƫF

Figure 2.4: Illustration of the property of factorization in Feynman diagram lan-
guage. An appropriate factorization scale µF exists, for which the perturbative
expansion of the cross section can be rearranged in such away that the collinear
internal lines are absorbed into the PDFs.

absorbed in the PDF. This is represented in Feynman diagram language in Fig. 2.4.
Hence, the property of factorization means that an appropriate factorization scale
µF exists, for which the perturbative expansion of the cross section can be rear-
ranged in such a way that the collinear internal lines are absorbed into fq(⇠)2. In
the case of DIS, the photon virtuality Q constitutes a natural choice for this factor-
ization scale.

The precise way in which the collinear divergences are absorbed in the PDFs,
is referred to as the factorization scheme. The PDFs are therefore only universal
if the same common factorization scheme is used for all processes. The standard
choice is the modified minimal subtraction (MS) scheme [11–14]. In this scheme,
the PDFs retain their probabilistic interpretation when working in the light-cone
gauge. The validity of factorization to all orders in ↵s has been proved for a limited
amount of lepton-hadron processes, including DIS, SIDIS and Drell-Yan (see, e.g.,
Refs. [11, 13]).

As a consequence of factorization, both fq(⇠, µF) and d�̂ depend on µF . Anal-
ogous to the renormalization scale µ for ↵s, the fact that the cross section cannot
depend on the factorization scale gives rise to a set of renormalization group equa-

2 In real calculations, the split is accomplished with the aid of dimensional regularization, which
is more subtle than a simple division of the integral in two parts.
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Figure from [9].

tions,

d
d ln µF

fq(x, µF) =
X

b

Z 1

x

d⇠
⇠

Pqb(x/⇠,↵s(µF)) fb(⇠, µF). (2.20)

Equation (2.20) is known as the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi) equation [16–19]. The splitting functions Pqb(x/⇠) specify the probability
that a quark or gluon of type b and momentum fraction ⇠ is the parent of q with
momentum fraction x. Note the sum over parton flavor indices: the evolution of,
for example, a u-quark (q = u) can involve a gluon (b = g) through the element Pug

of the kernel that describes the gluon splitting into a ūu pair. The scale variation
is a key prediction of pQCD, and it implies that a measurement of the PDFs at an
input scale µ0 automatically constrains their values for at all other scales µF > µ0.

A common interpretation of the DGLAP evolution is that, with increasing res-
olution of the virtual photon, a larger number of quarks and gluons can be resolved.
The fraction of quarks with low x therefore increases, while the number with high
x decreases. Figure 2.5 shows the MSTW2008 PDFs [15], which are determined
at the next-to-next-to leading order (NNLO) in ↵s. The depletion at large x and
increase at small x, are clearly visible in this figure.
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2.5 Semi-inclusive DIS and the Fragmentation Process

Isolated quarks have never been observed in nature, due to the property of confine-
ment in QCD. When a quark or antiquark is ejected from a bound state of quarks
and gluons by the absorption of a high-energy photon, as it separates from the en-
semble, a shower or “jet” of hadrons is produced. This process can be understood
in terms of the Lund string fragmentation model [20–22], which is based on the
original chain-fragmentation model by Field and Feynman [23]. In this model,
the fragmentation process proceeds through the generation of additional quark-
antiquark pairs from the color field, which eventually combine with the original
quark or antiquark and with each other until a configuration of color-singlet multi-
quark states is reached.

Because of the long distance scale of this process, it cannot be calculated per-
turbatively. The concept of factorization in distance scales can be readily extended
to include this hadronization process. In the collinear case, the process can be de-
scribed by the fragmentation functions (FFs) Dh

q(z,Q2), which can be interpreted
as the number density of hadrons h produced by fragmentation of a struck quark
or antiquark q3. The FFs follow from a QCD description of the fragmentation pro-
cess, and as such must follow the same symmetry relations as QCD. This topic is
discussed in Section 8.2.1 and Chapter 9.

The scale dependence of the FFs is calculable in pQCD, and governed by renor-
malization group equations very similar to those for PDFs [14, 24–27]. How-
ever, due to singular behavior of the evolution kernels at low z, as well as hadron
mass e↵ects and other power corrections of the order M/Q, generally referred to
as “higher-twist e↵ects”4, the range of applicability of FFs is intrinsically bound to
z > zmin. A su�cient restriction to avoid these issues is given by z > 0.05 for pions
and z > 0.1 for kaons [29]. This unfortunately prevents the use conservation rules,
such as momentum conservation of the fragmenting parton in the hadronization
process,

X

h

Z 1

0
dzzDh

q(z,Q2) = 1 (2.21)

as a viable constraint in a global fit to determine the FFs.
3 See Chapter 7 for a definition that includes the transverse-momentum dependence.
4 Using the definition of “twist” from Ref. [28].
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2.5.1 The SIDIS Cross Section

The SIDIS cross section for the production of a hadron h,

l + N ! l0 + h + X, (2.22)

is proportional to certain combinations of both PDFs and FFs. It can be written in
terms two structure functions in a way very similar to the DIS case in Eq. (2.15)
[12, 29–32],

d�h

dxdydz
=

2⇡↵2

Q2

"
1 + (1 � y)2

y
2Fh

1(x, z,Q2 +
2(1 � y)

y
Fh

L(x, z,Q2)
#
. (2.23)

It should be noted that Eq. (2.23) only applies to hadron production in the current
fragmentation region, i.e., it only describes the fragmentation of the struck quark
q. This topic is discussed in detail in Chapter 8.

The structure functions Fh
1 and Fh

L are given at LO in ↵s by,

2Fh
1(x, z,Q2) =

X

q
e2

q fq(x,Q2)Dh
q(z,Q2) (2.24)

Fh
L(x, z,Q2) = 0. (2.25)

The diagram in Fig. 2.2 provides a graphical representation of this LO formalism.
At NLO in ↵s, the structure functions are given by,

2Fh
1(x, z,Q2) =

X

q
e2

q

✓
fq(x,Q2)Dh

q(z,Q2) (2.26)

+
↵s(Q2)

2⇡

h
q ⌦C1

qq ⌦ Dh
q (2.27)

+ q ⌦C1
gq ⌦ Dh

g + g ⌦C1
qg ⌦ Dh

q

i
(x, z,Q2)

◆
, (2.28)

Fh
L(x, z,Q2) =

↵s(Q2)
2⇡

X

q
e2

q

h
q ⌦CL

qq ⌦ Dh
q (2.29)

+ q ⌦CL
gq ⌦ Dh

g + g ⌦CL
qg ⌦ Dh

q

i
(x, z,Q2), (2.30)

with ⌦ denoting a standard convolution. The NLO MS coe�cient functions C1,L
ab

can be found in, e.g., Refs. [12, 30–32].

2.5.2 Current Knowledge of FFs

The available knowledge for the PDFs is increasingly precise, where the modern
sets agree extremely well which each other, within their small estimated uncertain-
ties [15, 37, 38]. While evolving rapidly, the parameterizations for the FFs are
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Figure from [9].

much less precisely constrained. The discrepancy in Fig. 2.6 between the results
of the most recent NLO extractions [29, 33–36] provides a first estimate of the un-
certainties involved. The di↵erences for other species of hadrons like kaons and
protons are even larger.

Most extractions, e.g. in Refs. [34–36, 61, 62] are largely constrained by high
statistic measurements from electron-positron elimination into charged hadrons,

e+e� ! q + q̄! h + X (2.31)

from LEP and SLAC [63–67] . A summary of the wealth of available information
from this channel is summarized in Fig. 2.7. While they provide a very clean
access in the sense that the cross sections have no dependence on PDFs, these
data cannot disentangle quark and anti-quark fragmentation as they always refer
to the charge-sum of certain hadron species (e.g., ⇡+ + ⇡�). Additionally, the fast
majority of the electron-positron annihilation data were taken at the mass scale of
the Z-boson, where all electroweak couplings become roughly equal. Therefore
only flavor singlet combinations of FFs can be determined.

In recent years, the database has been expanded with the inclusion of results
for inclusive single-hadron production with high-transverse momentum in proton-
proton collisions at RHIC,

p + p! h + X. (2.32)
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These include measurements of the transverse-momentum spectra of neutral pions
at central rapidities at PHENIX [68], and at forward rapidities with STAR [75],
as well as similar measurements for identified pions and kaons for forward rapidi-
ties at BRAHMS [76]. A selection these results is shown in Fig. 2.8. These data
are particularly sensitive to the gluon fragmentation function through the domi-
nant channel g + g ! g + X, while providing additional information on the flavor
separation of the fragmentation functions.

Factorization of the SIDIS cross section in terms of PDFs and FFs has been
proved to all orders of ↵s (see, e.g., Refs. [11, 13]). The SIDIS process can there-
fore be used to help constrain FFs. The multi-dimensional multiplicities for pseu-
doscalar mesons,

Mh
n(x,Q2, z, Ph?) ⌘ 1

d2�DIS(x,Q2)
dxdQ2

Z 2⇡

0
d�h

d5�h(x,Q2, z, Ph?, �h)
dxdQ2dPh?d�h

, (2.33)

presented in this work, were extracted using the 27.6 GeV lepton beam of the
HERA storage ring at DESY, which operated with electrons or positrons. The
extraction of multiplicities of pions and kaons separately for positive and negative
charge provides sensitivity to the individual quark and antiquark flavors in the frag-
mentation process, (cf. the expression for the SIDIS cross section in Section 2.5.1).
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The data presented here for proton and deuteron targets are the most precise results
for multiplicities currently available at this energy scale. They greatly expand the
global database SIDIS multiplicities, of which a selection is shown in Fig. 2.9. In
particular, the data extend those of an earlier HERMES publication [78]). A very
preliminary version of a subset of these data has already been used in a global
analysis of FFs [29], in addition the available global database discussed in this sec-
tion. The impact these preliminary results had, as well as their di↵erence with the
o�cial HERMES results is discussed in Chapter 6.

It should be noted that, through the inclusion of the dependence on Ph?, these
results reach beyond the standard framework of collinear factorization. The topic
of transverse-momentum dependence of the fragmentation process is discussed in
Chapter 7.
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3 The HERMES Experiment

The HERMES experiment was located at the DESY research center in Hamburg,
Germany. It shared the longitudinally polarized electron or positron beam beam of
the HERA electron-proton collider with the H1 and ZEUS experiments.

It was originally conceived to measure the spin-dependent structure functions
of the proton and neutron, triggered by the observations that only a small fraction
of the nucleon spin can be attributed to the valence quarks by the EMC experiment
[79, 80]. This required an experimental setup with a longitudinal beam and target
polarizations, two novel technological achievements at HERMES. Since the com-
missioning in 1995, the scope of the experiment was expanded to include many
topics in the field of hadron structure, hadron formation and hadronic interactions.

The following chapter provides a brief overview of the experimental setup,
while highlighting those parts that are necessary to understand the results in this
work. A detailed discussion of the HERMES spectrometer can be found in Ref.
[81].

HERA-B

HERMES

ZEUS H1

E

W

S N

Longitudinal Polarimeter

Transverse Polarimeter
p beam

spin rotator

e+/e-  beam

Figure 3.1: Schematic view of the HERA ep-collider.
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3.1 The HERA ep-collider

The HERA facility consists of two independent storage rings with a circumference
of 6.3 km, for leptons1 and protons. Figure 3.1 shows an overview of the facility,
which was decommissioned in 2007. The H1 and ZEUS experiments are located
at the interaction points of both beam lines, while HERMES used only the lepton
beam.

The leptons (protons) were pre-accelerated to 0.45 GeV (0.05 GeV) in the lin-
ear accelerator LINAC II (III), and accelerated further to 14 GEV (40 GeV) in the
DESY II (III) and PETRA storage rings. The final energy of 27.7 GeV (920 GeV)
is reached in the HERA storage ring.

Initial lepton currents reached values up to 50 mA. Interactions with residual
gas in the beam line, as well as with the experiments leads to an exponential de-
crease in the beam current. To optimize the available luminosity, the lepton beam is
therefore when it reaches a current of approximately 10 mA. This corresponds to a
life time of about 12 h to 14 h. In practice, the beam dump was often accomplished
by injecting the HERMES target cell with a high-density unpolarized gas.

The lepton beam is self-polarizing due to the Sokolov-Ternov e↵ect [82]. Small
di↵erences in the spin flip amplitude for the emission of synchrotron radiation leads
to a large transverse spin polarization of the leptons. Depending on the HERA op-
erational conditions, polarization values up to 50 % can be achieved. Spin rotators
[83, 84] positioned at either side of the HERMES spectrometer are used to ob-
tain a longitudinal beam polarization. During the course of the experiment, both
polarization states are provided by changing the field direction of the spin rotators.

3.2 The HERMES Target

The HERMES experiment uses a gas target in order to minimize the impact on the
lifetime of the HERA lepton beam. It is able to operate with polarized hydrogen
and deuteron with a polarization of about 80 %. In addition, it can use a variety of
unpolarized gasses, H2, D2, He, N2, Ne, Kr and Xe.

Gas targets have the benefit of a very low dilution due to undesired materials,
as well as a very high polarization than can be flipped within milliseconds, when
compared to solid targets. The main disadvantage lies in the very low target areal
density of the order of 2 ⇥ 1011 atoms/cm2, compared to 1025 atoms/cm2 for a solid
target.

In order to enhance the target areal density, the gas is injected in a storage cell
collinear to the lepton beam [85, 86]. A schematic view of this storage cell is

1 In this chapter, lepton refers to either a positron or an electron.
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Figure 3.2: Schematic view of the HERMES storage cell.

presented in Fig. 3.2. It is constructed out of a very thin (75 µm) aluminum sheets
to minimize particle interactions. It is 400 mm long and has an elliptical cross
section of 21 ⇥ 8.9 mm2. This shape matches the lepton beam profile. The use
of such a storage cell constrains the gas to spread along the beam line, increases
the areal density by two orders of magnitude. In addition, the storage cell was
cooled to 100 K to reduce the thermal velocity of the target atoms. This reduce
target depolarization due to recombination, while increasing the maximum possible
gas density by a factor of approximately

p
3 compared to room temperature. For

deuteron, target densities of 2 ⇥ 1014 atoms/cm2 have been reached. To suppress
depolarization of the target atoms due to wall collisions, the storage cell was coated
with a layer of Drifilm [87]. The storage cell ends in a 147 mm long extension to
ensure all scattered particles encounter the same amount of target wall material.

Wake field suppressors up- and downstream of the storage cell prevent heating
of the target cell due to beam wake fields, while heating due to synchrotron photons
is avoided by a system of two collimators.

Gas polarization is obtained using an atomic beam source (ABS) which is de-
scribed in detail in Ref. [88]. Up to 2000, a longitudinal polarization was main-
tained by means of a superconducting magnet. This magnet was replaced for the
2002-2005 run by a transverse magnet. In 2006-2007, polarized running was not
possible anymore due to the presence of a recoil detector [89–91]. For unpolarized

20



1

0

2

-1

-2

m

Luminosity

Monitor

Drift

Chambers

FC 1/2

Target Cell
MC 1-3

Hodoscope (H0)
BC 1/2

BC 3/4

TRD

Prop. Chambers

Field Clamps

Septum Plate

Calorimeter

Drift Chambers

Trigger Hodoscope (H1)

0 1 2 3 4 5 6 7 8 9

RICH

Dipole Magnet

e+/e-

Pre-shower Hodoscope (H2)

140 mrad

140 mrad

27.6 GeV

m

Figure 3.3: Side view of the HERMES spectrometer.

runs, as well as the high-density runs mentioned in Section 3.1, the gas was in-
jected with an unpolarized gas feed system (UGFS). The target gas is continuously
monitored by a target gas analyzer (TGA) and a Breit-Rabi polarimeter (BRP) [92].

3.3 The HERMES Spectrometer

The HERMES spectrometer [81] consists of a large dipole magnet for momen-
tum separation, supported by tracking and particle identification detectors. It is a
forward-spectrometer with identical top and bottom parts, and is designed for the
reconstruction of inclusive and semi-inclusive DIS events. Figure 3.3 presents a
side view of the spectrometer.

The beam pipe traverses the center of the spectrometer, providing a natural
definition of the z-axis. The y-axis is pointing upwards, while the x-axis lies in the
horizontal plane, pointing outwards, i.e. away from the HERA center. The origin
is located in the center of the target cell. The spectrometer is therefore mirror-
symmetric in the xz-plane.

The beam pipes are shielded from the 1.5 T m field of the spectrometer magnet
by means of large steel septum plates. The angular acceptance of the spectrometer,
constrained by the spectrometer magnet and the septum plates, is then given by
|✓x| < 170 mrad in the horizontal plane, 40 mrad <

���✓y
��� < 140 mrad in the vertical

plane.
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3.3.1 Track Reconstruction

A system of drift chambers is used to determine the origin, momentum and trajec-
tory for charged particles. The vertex position and polar and azimuthal scattering
angles are constrained by the front chambers (FC1/2). The spectrometer magnet
provides an integrated deflection power of 1.5 T m, causing the charged particle
trajectories to bend in the horizontal plane. The deflected trajectory is measured by
two pairs of drift chambers (BC1/2 and BC3/4), which are installed respectively
in front of, and behind, the ring imaging Čerenkov detector. The deflection an-
gle determines the particle momentum and charge. This HERMES reconstruction
program (HRC) accomplishes this by means of a pattern-matching algorithm [93],
with a resolution of �✓ < 1.8 mrad and �p/p < 2.6 %.

From 2002 to 2005, a transversely polarized target was used. This a↵ected the
momentum reconstruction because the magnetic holding field is not accounted for
in HRC. This is corrected for by the transverse magnet correction (TMC) software.

3.3.2 Particle Identification

A very clean lepton-hadron separation is essential for the reconstruction of inclu-
sive DIS events. Furthermore, semi-inclusive measurements require that di↵erent
hadron types can be identified.

The particle identification (PID) system at HERMES consists of a lead-glass
calorimeter, a pre-shower hodoscope and a transition-radiation detector (TRD) and
a ring imaging Čerenkov detector (RICH). The signals of all four detectors are
combined for the lepton-hadron separation, while hadrons are subsequently iden-
tified with from their signal in the RICH. The PID algorithms are discussed in
Section 4.3.

Lead-glass Calorimeter

The electromagnetic calorimeter, illustrated in Fig. 3.4, Each calorimeter half con-
sists of a 42 ⇥ 10 lead-glass block array, Particles incident on the calorimeter de-
posit part of their energy in form of electromagnetic showers in the material. These
showers are read out by means of photo-multiplier tubes (PMTs).

Electrons and positrons deposit almost their entire energy in the calorimeter
blocks of about 18 radiation lengths. This yields a ratio of deposited energy over
reconstructed momentum E/p ⇡ 1. Hadrons only deposit a fraction of their energy
through ionisation energy loss. The resulting hadron-rejection factor is 100.

Besides lepton-hadron separation, the calorimeter also provides a fast first-level
trigger for scattered leptons, and allows for the determination of the energy of
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real photons originating, e.g., from ⇡0 decay. This feature of the calorimeter is
leveraged in Chapter 9.

The calorimeter energy response for lepton showers is found to be linear in the
range 1 GeV to 30 GeV, with an energy resolution that can be parameterized as
[94],

�(E)
E

[%] =
5.1 ± 1.1p

E [GeV]
+ (2.0 ± 0.5) +

(10.0 ± 2.0)
E [GeV]

. (3.1)

The lepton hit position on the calorimeter surface can be obtained with a resolution
�x = �y ⇡ 7 mm by means of the energy-weighted average of the nine blocks
containing the electromagnetic shower.

Pre-shower Hodoscope

The pre-shower hodoscope H2, illustrated in Fig. 3.4 consists of a scintillator ho-
doscope preceded by two radiation lengths of lead. Hadrons behave as minimum
ionizing particles in this detector, only depositing a small fraction of their energy.
Leptons start their electromagnetic shower in the lead curtain, depositing on aver-
age ten times more energy in the scintillator. It provides a hadron-rejection factor
of 10 at an e�ciency of about 95 %.

Transition Radiation Detector (TRD)

Transition radiation is emitted when charged particles with relativistic energies
traverse the boundary between two media with di↵erent dielectric constants. The
energy of the emitted radiation is proportional to its Lorentz factor � = E/mc [95].
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The radiated energy for hadrons and leptons at the same energy therefore di↵ers
by several orders of magnitude. Due to the low emission probability, the TRD
is composed of six modules, each consisting of a polyethylene fiber radiator and
adjacent proportional wire chamber. Both the hadrons and leptons produce a signal
in the wire chambers, the lepton energy deposition being approximately twice as
large due to the transition radiation. Combining the information of all six modules
with a truncated mean method results in a hadron-rejection factor of over 100 at an
e�ciency of about 90 %.

Ring Imaging Čerenkov Detector (RICH)

Charged particles that traverse a medium with a velocity higher than the speed
of light in the medium emit electromagnetic Čerenkov radiation. The angle with
which this radiation is emitted depends on the refractive index of the radiators and
the velocity of the particle. Di↵erent particles therefore have a di↵erent momen-
tum dependence of the Čerenkov angles ✓c due to their respective masses.

The HERMES RICH detector, shown in Fig. 3.5, leverages this principle to al-
low for the separation of pions, kaons and protons in the momentum range 2.0 GeV
to 15.0 GeV. To cover this range, the detector combines a combination of two rada-
tors: a clear silica aerogel, and a C4F10 gas radiator. The resulting distribution of
the Čerenkov angles is shown in Fig. 3.6. See Ref. [96] for more details.

3.3.3 Trigger and Data Acquisition

The data acquisition system reads out the detector signals when one of the triggers
fire. The trigger to filter out DIS events from the background requires that,

1. There is a coincident signal in the hodoscopes H0, H1 and H2
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Figure 3.6: The hadron identification with the RICH detector leverages the mo-
mentum dependence of the Čerenkov angle ✓ for di↵erent particle masses.
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2. The energy deposition in the calorimeter exceeds a certain threshold. The
values of this threshold are 1.4 GeV for polarized and 3.5 GeV for unpolar-
ized target operation. This signal is typically caused by the scattered beam
particle.

3. A reasonable timing of the signals. This requirement filters out, e.g., particle
showers caused by the proton beam, which travel backwards through the
spectrometer.

Due to the large bunch spacing in HERA, and the relatively low luminosity, the
occurence of multiple simultaneous DIS events in the spectrometer is negligible
[81].
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4 Multiplicity Analysis

Both the proton and deuteron multiplicities are extracted from three di↵erent datasets,
taken in 2000, 2004 and 2005. Some base characteristics are presented in Table 4.1.
The high statistics of these datasets, together with the powerful particle identifica-
tion capabilities of the RICH detector allow in principle for a highly precise mea-
surement of charge and flavor separated SIDIS multiplicities in a multidimensional
binning.

The small size of the statistical uncertainties on the raw measurement leads
to a result that is inherently systematics dominated, complicating the extraction
of the final multiplicities significantly. This requires a sophisticated analysis that
suppresses the systematic uncertainty where possible, while providing a careful
estimate of the remaining systematic uncertainty (Section 4.9).

The final results are corrected RICH misidentification (Section 4.3.2), contam-
ination by charge-symmetric background events (Section 4.4.1), trigger ine�cien-
cies (Section 4.4.2), QED radiative e↵ects, limited acceptance and detector smear-
ing (Section 4.6) and contamination by exclusive vector mesons (Section 4.7). Dur-
ing the entire analysis, all six datasets are treated separately to correctly account
for slightly di↵erent experimental conditions. The data combination occurs only in
the final stages of the multiplicity extraction.

This chapter describes the entire analysis chain from the candidate DIS events
to the fully corrected final multiplicity results.

Target Production Polarization Statistics

H
2000 (e1) unpol. 5.0 ⇥ 106 DIS
2004 (c1) transv. pol. 1.2 ⇥ 106 DIS
2005 (c2) transv. pol. 4.0 ⇥ 106 DIS

D
2000 (e1) long. pol. 5.8 ⇥ 106 DIS
2004 (d2) unpol. 0.8 ⇥ 106 DIS
2005 (d2) unpol. 4.6 ⇥ 106 DIS

Table 4.1: Data productions
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4.1 Data Selection

The data productions in Table 4.1 were chosen because, for each of the productions,
the HERMES spectrometer was running with a consistent and well-understood
setup.

The data collected before 2000 either do not have enough statistics to allow
for the sophisticated correction method described in Section 4.6 (1998-1999), or
lack the precise hadron identification first introduced by the RICH detector (prior
to 1998).

The data collected in 2006-2007, while similar in size to the 2000-2005 data,
have systematic uncertainties that are less well-understood due to major changes in
the spectrometer. A recoil detector was added, resulting in a changed acceptance,
as well as small fringe magnetic fields that were detectable up to the electromag-
netic calorimeter at the back of the spectrometer. It was decided that the small
(factor of two) increase in statistical precision did not warrant the large systematic
complications that would be introduced by these datasets.

Within the chosen data samples, the data has to be selected to ensure absolute
data integrity. This means that, for the entire data sample, the HERMES spec-
trometer was consistently running within normal operational parameters. This was
accomplished using the data collected by the slow control part of the data acquisi-
tion system, that periodically writes out the experimental conditions (target mode,
beam conditions, etc.), combined by the result of several dedicated data quality
studies. The time scale of the data quality, called a burst is defined by the period
of the slow control system.

For this analysis in particular, the following values were checked for each burst:

1. the burst length has to be reasonable

2. the trigger dead time has to be reasonable

3. the beam current has to be reasonable

4. the burst cannot be marked as a bad burst by the data quality experts (this
also ensures that the spectrometer was minimally functional)

5. the particle identification system has to be functioning correctly

6. there cannot be any dead blocks in the calorimeter, preshower hodoscope
and luminosity monitor

7. the TRD has to be functioning correctly

8. the RICH has to be functioning correctly
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1. Trigger method 21

2. Tracking method NOVC

3. Event momentum Ptot < 28 GeV

(a) Event selection

4. Vertex |zvert| < 18 cm
dvert < 0.75 cm

5. Septum plate ysept > 7 cm

6. Front field clamp |x↵c| < 31 cm

7. Rear field clamp |xrfc| < 100 cm
|yrfc| < 54 cm

8. Calorimeter
|xcal| < 175 cm
|ycal| > 30 cm
|ycal| < 108 cm

(b) Track selection

Table 4.2: Experimental cuts

4.2 Experimental Cuts

The cuts in Table 4.2, accept tracks that originate from the target cell (4) and passed
through the fiducial volume of the HERMES spectrometer (5-8). In particular (8)
rejects tracks that passed too close to the edges of the calorimeter, ensuring that
the entire electromagnetic shower is contained in the lead-glass blocks. The event-
level cuts (1-3) ensure data consistency by checking the trigger values and track
reconstruction method.

4.3 Particle Identification

This analysis is made possible by the precise particle identification (PID) capabil-
ities of the HERMES spectrometer. The PID process is split in two parts: lepton-
hadron separation, and hadron type identification. The lepton-hadron separation is
performed combining the signals of four detectors: a lead-glass calorimeter, a pre-
shower hodoscope, a transition-radiation detector (TRD) and a dual-radiator RICH
(ring imaging Čerenkov detector). The hadrons are then further identified as pions,
kaons or protons using the opening angles of the C̆erenkov photons in the RICH.
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See Section 3.3.2 for a description of these detectors.

4.3.1 Lepton-Hadron Separation

Define the conditional probability that a track is a lepton (hadron), given the mo-
mentum p, polar angle ✓ and energy response ~E ⌘ E1, . . . , EN in PID detectors
D1, . . . ,DN can be written as P(l(h) | ~E; p, ✓). The PID value is defined as the log-
arithmic ratio of these conditional probabilities,

PID ⌘ log10

0
BBBB@

P(l | ~E; p, ✓)
P(h | ~E; p, ✓)

1
CCCCA . (4.1)

If the observed particle is more consistent with the lepton (hadron) hypothesis,
the PID value will be positive (negative). This is the basis of the lepton-hadron
separation at HERMES.

Application of Bayes’ theorem on numerator and denominator of Eq. (4.1)
yields,

PID = log10
P(l | p, ✓) · P(~E | l, p)
P(h | p, ✓) · P(~E | h, p)

(4.2)

= log10
P(l | p, ✓)
P(h | p, ✓) + log10

0
BBBBB@
Y

i

PDi(Ei | l, p)
PDi(Ei | h, p)

1
CCCCCA . (4.3)

The first term in Eq. (4.3) is the ratio the prior probabilities P(l(h) | p, ✓) of
having a lepton (hadron) with a given p and ✓. In this case, the prior probabilities
are equivalent to the hadron fluxes �l and �h. Defining the flux factor � as �h/�l,
the first term of Eq. (4.3) can be replaced with,

log10
P(l | p, ✓)
P(h | p, ✓) ⌘ � log10�(p, ✓). (4.4)

More details regarding the flux factor and the iterative approach to its calcula-
tion in HERMES can be found in Ref. [97].

The second term of Eq. (4.3) depends on the probability PD(E | l(h), p) that a
lepton (hadron) with momentum p deposits E in detector D is commonly referred
to as the parent distribution. In principle, these parent distributions could be
determined using various lepton and hadron test-beams. In order to account for
varying running conditions, changes in the PID system and detector aging, the
parent distributions at HERMES have been extracted from their respective data
sample through hard PID cuts on the other detectors.
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Figure 4.1: Result of the lepton-hadron PID algorithm. The large peak corresponds
to identified hadrons, while the smaller peak at positive PID values corresponds to
identified leptons. As can be seen from the right panel, the impact of the flux factor
� is relatively small. Figures from [98] and [99].

Introducing,

PIDD ⌘ log10
PD(E | l, p)
PD(E | h, p)

, (4.5)

and using � from Eq. (4.4), Eq. (4.3) can be rewritten as,

PID =
X

i

PIDDi � log10�. (4.6)

In HERMES, the PID values for the di↵erent detectors are combined in two groups,

PID3 ⌘ PIDcal + PIDpre + PIDRICH, (4.7)

PID5 ⌘ PIDTRD =
X

i

PIDTRDi , (4.8)

where the sum in Eq. (4.8) runs over the six TRD modules.
Using these definitions in Eq. (4.6), the formula for lepton-hadron separation

at HERMES finally becomes,

PID = PID3 + PID5 � log10�. (4.9)

Fig. 4.1 shows the lepton-hadron separation in action. Overall, the lepton identifi-
cation e�ciency at HERMES is 98 %, with a hadron contamination much smaller
than 1 %. The identification of hadrons in coincidence with a scattered lepton has
an e�ciency of 99 % with a lepton contamination smaller than 1 %. See Refs. [97,
100] for a detailed description of the HERMES lepton-hadron PID framework.
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9. Hadron Momentum Ph > 2 GeV
Ph < 15 GeV

10. EVT Quality rQp > 0

Table 4.3: Hadron PID cuts

4.3.2 Determining Hadron Flavor

The opening angle of the Čerenkov photons hitting the PMT matrix in the RICH
detector provides information on the hadron type. An event-level direct ray tracing
algorithm (EVT) simulates the detector response for all possible track hypotheses.
Comparing the likelihoods LH for the observed RICH response to originate from
event hypothesis H determines whether a hadron track is identified as a pion, kaon,
proton, or other (referred to as X). The EVT algorithm is discussed in detail in
Refs. [101, 102].

The momentum dependence of the Čerenkov angles allows for hadron identifi-
cation between 2 GeV (1 GeV for pions) and 15 GeV. This enforces an additional
momentum cut on the hadron tracks. Additionally, checking the EVT quality pa-
rameter rQp, defined as the (logarithmic) ratio of the likelihoods of the two most
likely hypothesis, rejects tracks where the hadron identification result is ambigu-
ous. These cuts are summarized in Table 4.3.

RICH Unfolding

The e�ciency of the hadron identification can be encoded in a set of 3⇥4 matrices
as a function of momentum, particle charge and event topology (number of tracks
in one detector half). These matrices relate the fluxes for the identified particle type
Ih to the true hadron fluxes Th,

0
BBBBBBBBBBBBBBBBBB@

I⇡
IK

Ip

IX

1
CCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBB@

P⇡⇡ P⇡K P⇡p
PK

K PK
K PK

p

Pp
p Pp

K Pp
p

PX
X PX

K PX
p

1
CCCCCCCCCCCCCCCCCCA

·

0
BBBBBBBBBBB@

T⇡
TK

Tp

1
CCCCCCCCCCCA
, (4.10)

with Pi
t the probability that a hadron of true type t is identified as a hadron of type

i. These matrices are extracted from a Monte-Carlo simulation of the detector, by
comparing the results of the PID algorithm with the true particle type. As example,
the matrices for single-track events are shown in Fig. 4.2.
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11. DIS region Q2 > 1 GeV2

12. Exclude resonances W2 > 10 GeV2

13. Good momentum resolution y > 0.1

14. Suppress radiative e↵ects y < 0.85

(a) Event selection

15. Suppress target remnant z > 0.2

16. Exclude exclusive region z < 0.8

(b) Integrated multiplicities

Table 4.4: DIS event selection

Truncating the X row, and inverting the matrix yields the relation,

~T = P�1
trunc · ~I. (4.11)

Each element of P�1
trunc corresponds to the weight with which each identified hadron

is counted as pion, kaon, and proton.
RICH unfolding corrects for most of the hadron identification ine�ciencies,

leaving PID uncertainties of less than 0.5 % for pions and 1.5 % for kaons. These
uncertainties are discussed in detail in Section 4.9.1.

4.4 DIS Event Selection

Events are required to fulfill the kinematic conditions Q2 > 1 GeV2 to select the
DIS region, and W2 > 10 GeV2 to suppress the nucleon resonance region and en-
hance the geometric separation of the fragmenting quark from the target remnant
(see Chapter 8, especially Sections 8.1.2 and 8.1.3). The upper limit on the frac-
tional energy transfer to the target, y < 0.85 excludes the region where the trigger
e�ciencies have not yet reached a plateau as a function of momentum. This upper
y limit also avoids the kinematic region where the radiative corrections to the inclu-
sive cross section become very large. The (redundant) lower limit y > 0.1 excludes
the region where the momentum resolution starts to degrade. Finally, hadrons that
are not explicitly binned in the fractional hadron energy z are constrained to z > 0.2
to suppress contamination of the target remnant, as well as z < 0.8 to exclude the
region where the fractional contribution from exclusive processes becomes sizable.

These cuts are summarized in Table 4.4 and Fig. 4.3.
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Figure 4.3: Born level inclusive cross section as a function of x and Q2. The DIS
cuts at HERMES kinematics introduce an e↵ective correlation between both quan-
tities. The lower y cut is made redundant by the relatively high W2 requirement.
The cross section drops o↵ exponentially as a function of Q2, from red (high) to
blue (low).

4.4.1 Charge Symmetric Background

High-energy leptons from charge-symmetric QED processes, e.g., photon conver-
sion into e+e� pairs or the ⇡0 Dalitz decays ⇡0 ! e+e��, can produce a signature
indistinguishable from that of a DIS event in the spectrometer. This background is
most significant at low Q2. Leveraging the charge symmetry of this background,
it is taken into account by subtracting the number of events with a DIS signature,
where the leading lepton has a charge opposite to that of the beam particles, from
the measured DIS or SIDIS yields. The impact of this correction on the multiplici-
ties is generally much smaller than 1 %, and rises up to 2 % at very low z < 0.2.

4.4.2 Trigger Ine�ciencies

The required DIS trigger combines information from the three hodoscopes and the
calorimeter. The e�ciency of the individual detectors are extracted using special
calibration triggers, yielding an overall e�ciency that ranged from 95 % to 99 %, as
a function of the track momenta and event topology [103]. The events are weighted
with the inverted e�ciency factor, impacting the DIS yield as well as the SIDIS
yields. Because of this, the net impact on the multiplicities was found to be very
small.
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4.5 Kinematic Coverage and Binning

As will be explained in detail in Section 4.6, in order to correct for the limited
detector acceptance in a model-independent way, the inclusive and semi-inclusive
yields extraction should be fully di↵erential in all relevant variables, i.e., Q2 and x
for the DIS yield and Q2, x, z, Ph? and �h for the SIDIS yield.

Because of the shape of the kinematic coverage of the HERMES spectrometer,
a strong correlation between x and Q2 is present (cf. Fig. 4.3), making simulta-
neous binning in both variables unnecessary. A �h binning was omitted as well,
because of limited statistical precision. The impact the implicit integration over �h

is discussed in Section 4.9.2.
The total statistical precision of the datasets constrain the minimum granularity

in the remaining three variables (x, z and Ph? or Q2, z and Ph?). In order to ac-
commodate the widest possible range of use-cases, the multiplicities are extracted
in five di↵erent specialized binnings, defined in Table 4.5. An illustration of how
the kinematic coverage constrains the choice of binning is shown in Fig. 4.4.

The results presented as a function of only one or two kinematic variable are
all integrated versions of their corresponding three dimensional binning.

4.6 Multidimensional Smearing-Unfolding

QED radiative e↵ects, the limited acceptance of the HERMES spectrometer and
the finite detector resolution significantly complicate the interpretation of the ex-
tracted yields in Section 4.5. In order to access the underlying QCD processes from
a measurement, it is crucial to properly account for these e↵ects. For this analysis,
a matrix-based smearing-unfolding technique was used to deconvolute the under-
lying, experiment independent cross sections (colloquially called 4⇡-Born cross
sections) from the experimental e↵ects.

4.6.1 Formalism

To construct the formalism behind the unfolding procedure it is instructive to start
from the end result and construct a measured cross section d�M from a Born-level
cross section d�B. The bin-integrated cross sections �(i) are then given by:

�B(i) ⌘
Z

bin i
dX

d�B

dX
, (4.12)

�M(i) ⌘
Z

bin i
dX

d�M

dX
, (4.13)
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Q

2 [GeV2] > 1
x 0.023–0.085–0.6
z 0.1–0.15–0.2–0.25–0.3–0.4–0.5–0.6–0.7–0.8–1.1
Ph? [GeV] 0.0–0.1–0.3–0.45–0.6–1.2

(a) Three-dimensional binning for the multiplicities as a function of z

Q

2 [GeV2] > 1
x 0.023–0.085–0.6
z 0.1–0.2–0.3–0.4–0.6–0.8–1.1
Ph? [GeV] 0.0–0.1–0.2–0.3–0.4–0.5–0.6–0.7–0.8–1.2

(b) Three-dimensional binning for the multiplicities as a function of Ph? and z

Q

2

[GeV2]
> 1

x 0.023–0.04–0.055–0.075–0.1–0.14–0.2–0.3–0.4–0.6
z 0.1–0.2–0.3–0.4–0.6–0.8–1.1
Ph?
[GeV]

0.0–0.3–0.5–0.7–1.2

(c) Three-dimensional binning for the multiplicities as a function of x and z

Q

2 [GeV2] 1–1.25–1.5–1.75–2.0–2.25–2.5–3.0–5.0–15.0
x 0.023–0.6
z 0.1–0.2–0.3–0.4–0.6–0.8–1.1
Ph? [GeV] 0.0–0.3–0.5–0.7–1.2

(d) Three-dimensional binning for the multiplicities as a function of Q2 and z

Q

2 [GeV2] > 1
x 0.023–0.047–0.075–0.12–0.2–0.35–0.6
z 0.1–0.2–0.25–0.3–0.375–0.475–0.6–0.8–1.1
Ph? [GeV] 0.0–0.15–0.25–0.35–0.45–0.6–0.8–1.2

(e) Three-dimensional binning the multiplicities fully di↵erential in x, z and Ph?

Table 4.5: Overview of the three-dimensional binnings
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Figure 4.4: To optimally construct the specialized three-dimensional binnings,
the semi-inclusive yields were collected in various two-dimensional projections
to study the occurrence of low statistics corners. The K� has the lowest statistics,
and is therefore the limiting factor. These figures show the result of these stud-
ies for the construction of the binning in Table 4.5e. The K� (bottom panels) are
clearly the limiting factor, especially when compared with the ⇡+ (top panels).

38



where X stands for all relevant kinematic variables (e.g., Q2 and x for inclusive
DIS, or Q2, x, z, Ph? and �h in SIDIS). The yields are related to the bin-integrated
cross section by the integrated luminosity L.

QED Radiative E↵ects

QED radiative e↵ects include vertex corrections, and initial- and final-state radia-
tion of real photons by the incoming and/or outgoing lepton. These e↵ect alter the
hard scattering amplitude and therefore mask the true kinematics of the l�⇤ vertex.
It should be noted that these e↵ects distort the SIDIS cross section only through
this prime l�⇤ vertex — the impact of QED radiative e↵ects on hadrons is negli-
gible because of the larger mass and (comparatively) much bigger contribution of
various QCD e↵ects.

The influence of radiative e↵ects on the cross section can be described by the
probability Q(X|X) that an event has the apparent l�⇤ kinematics X provided the
true kinematics were X. This then modifies the cross section,

d�B

dX
=

Z
dX Q(X|X)

d�B

dX
. (4.14)

It is interesting to note at this point that radiation of a real photon, both before
or after the hard vertex, will carry away a fraction of the lepton energy. This leads
to a higher apparent energy transfer ⌫. There are no e↵ects that go in the opposite
direction, and therefore,

⌫ � ⌫. (4.15)

An asymmetric smearing of ⌫ to larger values leads to a smearing of x to lower
values. Elastic events (x = 1) in particular are smeared downwards and therefore
contaminate the inclusive DIS sample.

Limited Acceptance and Detector Smearing

An event with radiatively smeared kinematics X has a certain probability of giving
a signal in the spectrometer due to the limited geometric acceptance and generally
a less than perfect detector e�ciency. This information can be encoded in a proba-
bilistic acceptance function A(X). In addition to the acceptance, the detector also
has a finite resolution R(Y |X), which is the probability that an event with kinemat-
ics X is observed with kinematics Y . The final measured cross section is then given
by,
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d�M

dY
= B(Y) +

Z
dXdXR(Y |X)A(X)Q(X|X)

d�B

dX
, (4.16)

where B represents background contributions that are indistinguishable from the
signal.

The Unfolding Problem as a Linear Matrix Transformation

The bin-integrated cross section is given by,

�M(i) = B(i) +
Z

bin i
dY

Z
dXdXR(Y |X)A(X)Q(X|X)

d�B

dX
, (4.17)

= B(i) +
Z

bin i
dY

X

j

 Z
dX

Z

bin j
dXR(Y |X)A(X)Q(X|X)

d�B

dX

!
. (4.18)

On the last line of Eq. (4.18) the integration over the true kinematics X has been
split up into a sum of integration as the fist step towards a matrix-formulation of
the smearing-unfolding problem.

Multiplying the inner summation with 1 = �B( j)/�B( j) yields,

�M(i) = B(i) +
X

j

 R
bin i dY

R
dX

R
bin j dXR(Y |X)A(X)Q(X|X)

d�B

dX

!
�B( j)

R
bin j dX

d�B

dX

,

(4.19)

=
X

j

S (i, j)�B( j) + B(i), (4.20)

with the smearing matrix S defined as,

S (i, j) ⌘

R
bin i dY

R
dX

R
bin j dXR(Y |X)A(X)Q(X|X)

d�B

dX
R

bin j dX
d�B

dX

. (4.21)

At first sight, this formalism appears to be of limited usefulness, due to the d�B-
dependence of S . However, if the bins can be chosen such that the Born-level cross
section becomes constant within each bin, it can be moved out of the integrals,

Z

bin j
dX f (X)

d�B

dX
⇡ �B( j)

Z

bin j
dX f (X). (4.22)

This implies that in the limit of small bins, the cross section terms in Eq. (4.21) drop
out of the fraction, and the smearing matrix becomes (approximately) independent
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of d�B. This crucial model-independence allows for S to be calculated from a
Monte-Carlo simulation.

A similar reasoning can be used in the case of a flat acceptance, as long as the
bins are large enough so that the amount of smearing is negligible.

Finally, �B can be obtained from �M by inverting the smearing matrix in
Eq. (4.20),

�B( j) =
X

i

S �1( j, i) (�M(i) � B(i)) . (4.23)

For more information regarding unfolding techniques, including a generalized
likelihood-based formulation that can overcome potential complications that arise
with the simple matrix-based approach above in the case of very large smearing at
low statistics, see, e.g., Ref. [104].

Propagating the Covariance Matrix

The error propagation through a simple linear matrix transformation of the form
~y = A · ~x is given by [104],

⌃y = A · ⌃x · AT. (4.24)

Assuming both B and S in Eq. (4.23) are know to an arbitrary precision, the error
propagation of the unfolding reduces to this simple case with A = S �1,

⌃B = S �1 · ⌃M ·
⇣
S �1

⌘T
, (4.25)

with ⌃B and ⌃M the covariance matrices for respectively ~�B and ~�M.
Di↵erent events are statistically independent, resulting in a diagonal ⌃M. The

unfolding procedure corrects for the bin-to-bin smearing by moving events to their
correct bins, resulting in Born-level bins that are statistically correlated. This is
immediately apparent Eq. (4.25): smearing implies a non-diagonal S , translating
in o↵-diagonal elements in ⌃B. When analyzing an unfolded dataset, these corre-
lations have to be accounted for, to correctly retrieve the original statistical power
of the measurement.

4.6.2 Unfolding in Practice

The smearing matrix Eq. (4.21) is calculated from two separate Monte-Carlo simu-
lations, both using the same LEPTO/JETSET [105, 106] event generator. The first
simulation includes QED radiative e↵ects through the RADGEN [107] generator,
and the produced particles were tracked through a GEANT3 [108] model of the

41



HERMES spectrometer. Track reconstruction and data production was done with
the same algorithms used for real data [81].

This first Monte-Carlo simulation contains both the generated and reconstructed
properties needed to calculate the numerator of Eq. (4.21), defined as nh

M, MC(i, j)
for the hadron yields, and nl

M, MC(i, j) for the inclusive yield. Additionally, it also
includes the background events Bh

M, MC(i) and Bl
M, MC(i) generated outside of the

acceptance that migrate into it. This also includes elastic and quasi-elastic events
that smear into the DIS region.

The denominator in Eq. (4.21) is obtained from the second Monte-Carlo sim-
ulation, generated without radiative and instrumental e↵ects These values are re-
ferred to as nh

B, MC( j) and nl
B, MC( j). To summarize,

S h(l)(i, j) =
nh(l)

M, MC(i, j)

nh(l)
B, MC( j)

. (4.26)

The background subtraction in the unfolding requires the measured yields to be
normalized to the Monte Carlo. This is accomplished by multiplying the ratio of
the total inclusive cross section from the reconstructed Monte Carlo over the total
measured inclusive yield,

R ⌘
P

k �
l
M, MC(k)

P
k Nl

M
, (4.27)

with the measured yields N(i). In fact, R = 1/L with L a Monte-Carlo based
estimator of the total integrated luminosity of the data. The HERMES Monte Carlo
is able to reproduce the inclusive cross section with a very high accuracy, and
the normalized yields are therefore a very good estimator of the measured bin-
integrated cross sections,

nh(l)
M (i) = RNh(l)

M (i) ⇡ �h(l)
M (i). (4.28)

Using the unfolding formalism Eq. (4.23) then yields,

~n h(l)
B =

h
S h(l)

i�1 ·
⇣
~n h(l)

M � ~B h(l)
M, MC

⌘
. (4.29)

4.6.3 Importance of a Multi-Dimensional Approach

An earlier publication [109] used a very preliminary version of the x-dependent
kaon multiplicities from the 2000 dataset to perform a leading-order extraction of
the strange-quark parton distribution. When this extraction was repeated with the
results of this work, it became immediately apparent that the input multiplicities
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di↵ered far more than what would be expected from the refinements in the analysis.
This was traced back to the fact that the smearing-unfolding was performed

one-dimensionally as a function of x, as shown in Fig. 4.5. The SIDIS cross
section falls of exponentially as a function of z, and the acceptance function for
SIDIS hadrons is a strongly rising function of z. Because of this, reasoning behind
Eq. (4.22) does not apply anymore when working with z-integrated yields, and the
result becomes strongly dependent on the Monte-Carlo model.

In the limit where the Monte-Carlo cross section would be identical to the real
cross section, this problem would be present, but not noticeable. While the highly
tuned LEPTO/JETSET-based Monte Carlo used for the unfolding reproduces the
measured SIDIS cross section very well, the strong z-dependence of both cross sec-
tion and acceptance function amplify the small di↵erences, leading to a noticeable
discrepancy in Fig. 4.5.

To understand the exact shape of the discrepancy, it should be noted that, start-
ing at medium values of x, the semi-inclusive kaon cross section in the Monte-
Carlo model overshoots the measured cross section at medium-to-high z. The
acceptance function is also a rising function of z, sampling the right side of the
z-range more than the left side in the numerator of Eq. (4.21). The Born-level cross
sections are not weighted by an acceptance function and therefore sample the left
and right side of the z-range equally. This leads to inflated values in the smearing
matrix, and therefore to an inverted smearing matrix with values that are too low.
Application of Eq. (4.23) with values of S �1 systematically too low explains why
the results of the one-dimensional extraction undershoot the results of a proper
three-dimensional extraction, starting from values of x ⇡ 0.1.

The results of the re-evaluation of the strange-quark parton distributions are
expected to be released for publication by the HERMES collaboration in the near
future.

It should be noted that the result of a one-dimensional analysis, as used for
Ref. [109], is in principle not incorrect, as long as the Monte-Carlo dependence
is correctly accounted for in the systematic uncertainty. Of course, in this case
the very large systematic uncertainty would make the results unusable, and the
issue lies in the fact that this uncertainty was overlooked. This potential issue is,
to a lesser extent, also present in a fully di↵erential analysis, and a systematic
uncertainty to account for finite bin width should in all cases be considered. This
is discussed in detail in Sections 4.9.2 and 4.9.3.
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4.6.4 The HERMES E↵ect

Unlike QED radiative e↵ects associated with inelastic processes, which is predom-
inantly radiated in the direction of either the beam lepton (ISR) or the scattered
lepton (FSR), hard photons associated with elastic and quasi-elastic scattering o↵
the target involve a negligible momentum transfer to the target. The reason for this
Compton peak is discussed in detail in Ref. [110]. This implies that the transverse
momentum of the scattered lepton has to be balanced by that of the radiated hard
photon,

(1 � y) sin ✓l0 = y sin ✓�. (4.30)

These e↵ects predominantly occur at large values of apparent y, causing the an-
gle of the high-energy photon with the beam line to be very small. Because of
the mirror-symmetric open geometry of the HERMES spectrometer, these pho-
tons have a high probability of hitting the detector frames surrounding the beam
line in front of the dipole magnet, producing extensive electromagnetic showers.
These showers blast the tracking detectors with a flood of tracks, making track
reconstruction impossible, dropping these type of events from the measured data
sample.

As mentioned before, elastic and quasi-elastic scattering events that get smeared
into the kinematic acceptance are indistinguishable from DIS events, providing a
background to the DIS measurement. On its own, the loss of some of these events
is therefore not a problem. However, due to historical reasons, the GEANT simu-
lation of the spectrometer in the reconstructed Monte Carlo that was used for the
unfolding does not simulate the showering of beam-line photons — these events
are very computationally expensive, especially in the context of SIDIS. Therefore
the tracked Monte-Carlo sample does in fact contain these events, incorrectly sub-
tracting them from the DIS cross section during the unfolding procedure.

This unintentional overcorrection for radiative e↵ects was only discovered af-
ter it artificially introduced a strong nuclear dependence in the ratio R = �L/�T ,
leading to the publication of Ref. [111], and its subsequent retraction in Ref. [110].
Before its retraction, the e↵ect was commonly referred to as the “HERMES e↵ect”.

The relatively high W2 cut of 10 GeV2, chosen to select a clean SIDIS sample
in this work, suppresses the impact of radiative e↵ects, compared to a pure inclu-
sive analysis, where a lower W2 cut of 4 GeV2 is used. Accordingly, the impact of
this “HERMES e↵ect” on the multiplicity analysis is relatively small.

In order to correct for this issue, the missing events are added to the measured
inclusive yield prior to subtracting them again during the unfolding as described in
Eq. (4.23).
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Figure 4.6: The HERMES e↵ect inflation factor h for both proton and deuteron,
as a function of x. The ratios were extracted from two inclusive Monte-Carlo
simulations, as explained in the text. Due to the kinematics of the radiated hard
photon, the necessary inflation is the largest at low x.

The inflation factor h describing the fraction of elastic events that should have
been lost in the reconstructed Monte Carlo, is obtained from two Monte-Carlo
simulations that of elastic and quasi-elastic scattering in HERMES, one without
beam-pipe tracking, and one with beam-pipe tracking,

h(Q2, x) ⌘
�ela

MC, nobpt

�ela
MC, bpt

, (4.31)

with �ela
MC, (no)bpt the observed inclusive cross section, from the Monte-Carlo simu-

lation with beam-pipe tracking enabled (disabled). This factor is shown in Fig. 4.6.
The reconstructed Monte-Carlo sample used for the unfolding yields the frac-

tion of elastic and quasi-elastic events in the measured inclusive sample f ela,

f ela(Q2, x) ⌘
�ela

M, MC

�ela
M, MC + h(Q2, x) · �l

M, MC

, (4.32)

with �l
M, MC (�ela

M, MC) the contribution of the DIS (elastic and quasi-elastic) cross
sections to the total inclusive cross section. In Eq. (4.32), h is used to remove the
unwanted ‘HERMES e↵ect events’ that are not present in the elastic fraction in the
measurement. The fraction is presented as a function of x in Fig. 4.7. It is of the
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order of 1 % to 2 %, rising up to 12 % at low x.
Combining Eq. (4.31) and Eq. (4.32), the measured inclusive yield Nl

M can then
be corrected,

Nl
M, corr(Q

2, x) = NDIS
M + h · Nela

M (4.33)

=
⇣
(1 � f ela) + h · f ela

⌘
· Nl

M. (4.34)

This correction only impacts the multiplicities at low x, as shown on Fig. 4.8. This
is not unexpected, as the kinematics of elastic events with a high-energetic photon
reconstructs as a low x event.

4.7 Contamination by Exclusive Channels

Several exclusive processes have a final state that cannot be distinguished from
semi-inclusive pion and kaon production. These include direct exclusive produc-
tion of pseudoscalar mesons (e.g. �⇤p! ⇡+n), as well as the exclusive production
of vector mesons, that subsequently decay into lighter hadrons (e.g. �⇤p! p⇢0 !
p⇡+⇡�). The cross section for these processes is suppressed by 1/Q4 compared to
the leading behavior of the SIDIS cross section [112].
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This suppression is not very large at the HERMES, where hQ2i ⇠ 2.5 GeV.
Additionally, the invariant mass of the inclusive final state,

M2
X = Q2 1 � z

x
+ M2 � (q � Ph)2, (4.35)

is not very large, especially at high values of z. This severely restricts the amount
of individual channels that contribute to the SIDIS cross section. Hence, in certain
kinematic areas, the cross section for certain individual exclusive channels can
become comparable in size to the total SIDIS cross section.

Direct exclusive production of scalar mesons is restricted to high values of
z because of Eq. (4.35). For typical HERMES kinematics, this corresponds to
z > 0.94, far outside the recommended range of 0.2 < z < 0.8.

The contribution due to the decay of exclusive vector mesons has a very dif-
ferent z-distribution, as the energy of the vector meson is shared by multiple decay
products. The dominant channels at HERMES energies,

lp! lp⇢0 ! lp⇡+⇡�, (4.36)

lp! lp�! lpK+K�, (4.37)

providing a sizable background to the measured pion and kaon yields [112, 113].
The formation of the decay products from exclusive vector mesons does do not

involve the fragmentation of quarks originating from the target nucleon. Therefore,
if not properly accounted for, fragmentation functions extracted from multiplici-
ties that include a significant contribution from these processes may not be process
independent, violating universality. However, especially at larger values for Q2,
these each individual exclusive channel could be treated as a power correction, and
as such they could potentially be be included in a leading-twist analysis. In fact,
there is no way to a priori determine if the subtracted cross section is better-suited
for an interpretation in a leading-twist SIDIS formalism (and vice-versa), espe-
cially because the derivation of the factorization theorem for SIDIS itself requires
the sum over all final states to be complete [112]. At the other hand, at HERMES
kinematics, the contributions of exclusive ⇢0-production to the ⇡+ and ⇡� cross
section becomes dangerously large for higher values of z [114], making the use of
a leading-twist interpretation undesirable in this region.

In light of this discussion, it was decided to present the results in this work
with and without a correction for the exclusive vector meson contribution. In fact,
the comparison of the both versions therefore constitutes a valuable experimental
result in itself.

The exclusive production of ⇢0-, !- and �- mesons can be described in the
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vector meson dominance (VMD) model as the fluctuation of the virtual photon in
a qq̄ pair with compatible quantum numbers. This is discussed in detail in Ref.
[113].

The fraction of final-state hadrons from exclusive production, as well as the
fraction of exclusive events incorrectly counted as SIDIS events, was estimated
as a function of all kinematic variables using a modified PYTHIA 6 Monte-Carlo
generator [115] that incorporates a VMD model tuned to describe exclusive ⇢0

and � production at HERMES [113, 116]. PYTHIA can only simulate proton or
neutron targets, and the values for the deuteron were constructed by combining the
results of both nucleons.

The Monte-Carlo generator for the smearing-unfolding does not include these
contributions. Because the acceptance for exclusive events is not necessarily iden-
tical to that for SIDIS events, the correction is applied prior to the smearing-
unfolding. It was however found that subtracting the vector meson fractions after
unfolding to 4⇡-Born did not significantly alter the results.
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The vector meson fractions are defined as,

f h,vm ⌘
�h,VMD

M, PYTHIA

�h
M, PYTHIA

(4.38)

f l,vm ⌘
�l,VMD

M, PYTHIA

�l
M, PYTHIA

, (4.39)

with �M, PYTHIA the relevant cross sections from PYTHIA. PYTHIA does not sim-
ulate elastic (or quasi-elastic) processes, and therefore the fraction Eq. (4.39) only
pertains to the other contributions to the measured inclusive cross section. The
elastic fraction from Eq. (4.32) can be easily modified to include the vector meson
contribution,

f̃ ela(Q2, x) ⌘ f ela(Q2, x) · 1

1 +
�l,VMD

M, PYTHIA

�l
M, MC

, (4.40)

where �l
M, MC is extracted from the Monte-Carlo sample used for the smearing-

unfolding.
The vector meson subtracted yields are then given by,

Nh
M, corr(Q

2, x, z, Ph?) = (1 � f h,vm) · Nh
M (4.41)

Nl
M, corr(Q

2, x) =
⇣
(1 � f̃ ela) · (1 � f l,vm) + h · f̃ ela

⌘
· Nl

M, (4.42)

where Eq. (4.42) combines the vector meson subtraction with the HERMES e↵ect
correction Eq. (4.34).

Figures 4.9 and 4.10 show the inclusive and SIDIS fractions as a function of
respectively x and z. The bands correspond to a 1� variation in the parametrization
of the exclusive cross sections.

The impact of the vector meson subtraction is presented in Figs. 4.11 to 4.13.
The inclusive and semi-inclusive corrections Eq. (4.41) and Eq. (4.42) mostly can-
cel each other in the multiplicities, and the impact of the correction is therefore
relatively small, with the exception of pions at high z.

Pions originating from ⇢0 decay have relatively high velocity in the center-of-
mass system of the decay. When boosted to the lab frame, this translates into a pion
distribution mostly concentrated at low and high z. At the same time, the SIDIS
cross section drops exponentially as a function of z, yielding a very large fractional
contribution of pions from ⇢0 decay, up to 50 % near z = 1. The mass di↵erence
between �-mesons and kaons is much smaller, leading to a more isotropic decay
distribution and a much less pronounced e↵ect on the multiplicities.

The figures in this work, unless explicitly mentioned, use the vector-meson-
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corrected version of the multiplicities.

4.8 Data Combination and Projections

As already mentioned at the start of this chapter, to account for slight changes in the
experimental conditions, the three datasets on each target are treated as indepen-
dent measurements. The last step in the extraction framework combines measured
normalized yields by means of a weighted average,

nh(l)
B (i) =

P
y wy · nl(h)

B,y (i)
P

y wy
, (4.43)

where the summation runs over the three data productions y. The total integrated
raw inclusive yield provides a measure of the statistical power of each data sample,
and therefore constitutes a good choice for the weight factor wy,

wy ⌘
X

i

Nl
M,y. (4.44)

A similar equation as Eq. (4.43) can be written for the average kinematic variables
in bin i.

The multiplicity Mh
n of hadrons of type h o↵ a target n, defined in Eq. (2.33),

can be expressed in terms of the normalized yields from Section 4.6.2 as,

Mh
n(Q2, x, z, Ph?) =

1
d2nl

B(Q2,x)
dQ2dx

Z 2⇡

0

d5nh
B(x,Q2, z, Ph?, �h)

dQ2dxdzdPh?d�h
d�h, (4.45)
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or in terms of the binned results,

Mh
n(Q2

i , xizi, Ph?,i) =
1

�z(i)�Ph?(i)
nh

B(i)

nl
B(i)
, (4.46)

where indexed kinematic variables (Q2
i , xi, zi, Ph?,i) refer to the average kinematics

in bin i. The main fraction is normalized to the bin width of the semi-inclusive
variables in bin i (respectively �z(i) and �Ph?(i)). A similar normalization factor
for the inclusive variables cancels between the semi-inclusive numerator and the
inclusive denominator.

Using the results from the weighted average Eq. (4.43) in Eq. (4.46) then yields
the three-dimensional multiplicities for both targets in all five binnings.

To obtain the one- and two-dimensional projections, the inclusive and semi-
inclusive normalized yields are integrated separately over the relevant variables,
e.g., both are integrated to project out x, while only the SIDIS yield is integrated
to project out z. The resulting multiplicity is then only di↵erential in the remain-
ing semi-inclusive variables. Therefore, after removal of the relevant �-factors,
Eq. (4.46) is still relevant for the integrated yields.

Define X(i, j) as a bin average kinematic variable in a bin (i, j), where j stands
for the bins that are projected out during the integration, and i for the remainder.
The average kinematic variable X(i) for the projected multiplicity is then given by
weighing X(i, j) with the normalized yields nB(i, j),

X(i) =
P

j nB(i, j) · X(i, j)
P

j nB(i, j)
, (4.47)

where nB is the inclusive yield for inclusive variables, and the semi-inclusive yield
for semi-inclusive variables.

4.9 Systematic Uncertainties

The precise estimation of the systematic uncertainties on the multiplicities is cru-
cial because of the small size of the statistical uncertainties. The extraction method
was designed to optimally avoid a major loss of precision due to systematic lim-
itations. The dominant sources of systematic uncertainties are mostly linked to
limitations on the correction methods, in particular the RICH unfolding from Sec-
tion 4.3.2 and the smearing unfolding from Section 4.6.

Figures 4.14 to 4.17, present a breakdown of the main contributions to the
systematic uncertainty:

1. Azimuthal asymmetries in the unpolarized cross section (blue),
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Figure 4.14: Breakdown of the systematic uncertainty into its major components
as a function of z. The colored bands correspond to the contributions due to the
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uncertainty. Proton and deuteron uncertainties are shown as respectively full and
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2. Finite bin width and Monte-Carlo model-dependence (green),

3. RICH unfolding (orange),

4. Time stability (purple).

The main contributions are discussed in detail in Sections 4.9.1 to 4.9.4. Addi-
tional contributions that were considered, but ultimately found to be of secondary
importance, are discussed in Section 4.9.5.

The systematic uncertainties have a high degree of bin-to-bin correlation. For
the statistical uncertainties, the bin-to-bin correlation due to the unfolding pro-
cedure is exactly known. This is not the case for the systematic uncertainties,
complicating the error propagation during the projection procedure multiplicities.
Treating the systematics as a Gaussian uncertainty would most certainly overesti-
mate (or underestimate) the actual systematic uncertainty.

To evaluate the systematic uncertainties, several reasonable variations of the
multiplicities are compared. The di↵erence between these results is then used to
assign the systematic uncertainty for that particular contribution. This procedure
is repeated for the projected multiplicities (as well as for the derived quantities in
Chapters 5 and 8). Evaluating the systematic uncertainties only at the last possible
stage, rather than using a Gaussian (or linear) error propagation, ensures that the
bin-to-bin correlations of the systematic uncertainties are taken into account.

4.9.1 RICH Unfolding

The EVT algorithm uses a background function B to take into account PMT hits
due to physical particles not tracked by the spectrometer (e.g. from ⇡0 ! ��
decays), as well as well as altered detector behavior due to dead and hot PMTs.
Events with no reconstructed tracks in one of the spectrometer halves allow for
this background to be extracted from the average number of hits in each PMT in
this detector half.

The RICH e�ciency matrices Eq. (4.10) were extracted from a Monte-Carlo
simulation. When applying the EVT algorithm to the results of this simulation, the
background function has to be chosen. The background function extracted from
Monte-Carlo simulations using di↵erent generators (LEPTO/JETSET [105, 106]
or PYTHIA 6 [115]) was found to di↵er from each other. These variations are used
to extract four di↵erent e�ciency matrices in order to determine the systematic
uncertainty on the RICH unfolding:

1. extracted from LEPTO/JETSET with its own background (center/default)

2. extracted from LEPTO/JETSET with the data background
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The bands, and markers are defined in the caption of Fig. 4.14. Generally, the
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Figure 4.17: Breakdown of the systematic uncertainty into its major components
as a function of Q2 in z-slices for pions (top panels) and kaons (bottom panels).
The bands, and markers are defined in the caption of Fig. 4.14. Generally, the
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3. extracted from LEPTO/JETSET with the PYTHIA background

4. extracted from PYTHIA with the LEPTO/JETSET background

The four versions of the RICH e�ciency matrices are presented in Fig. 4.18. Other
variations considered, including changing mirror roughness parameters in the sim-
ulation of the RICH detector, were found to have a negligible impact on the e�-
ciency matrices.

The impact of this systematic uncertainty on the multiplicities, illustrated in
Figs. 4.14 to 4.17, is typically less than 0.5 % for pions and 1.5 % for kaons. For
more information regarding the extraction of the RICH e�ciency matrices, and its
systematic uncertainties, see Ref. [101].

4.9.2 Azimuthal Asymmetries in the Unpolarized Cross Section

Fully di↵erential, the unpolarized semi-inclusive cross section is modulated in the
azimuthal angle �h due to terms in cos �h and cos 2�h [117, 118]. These terms can
be explained by the Cahn [119–121] and the Boer-Mulders [122, 123] e↵ects. The
azimuthal cos �h and cos 2�h modulations have been extracted at HERMES [102].

The multiplicity extraction is not di↵erential in �h, because of statistical con-
straints (cf. Section 4.5). Due to the functional dependence of the acceptance on
�h, this could introduce a systematic Monte-Carlo model dependence in the un-
folded multiplicities, similar to the issues addressed in Section 4.6.3.

The �h modulations of the unpolarized cross section are not included in the
Monte-Carlo simulation, potentially exacerbating the issue. In order to study the
impact of these omissions, an additional extraction was performed, using a Monte-
Carlo simulation where the events are reweighed, on the Born level, with a four-
dimensional parametrization of the cos �h and cos 2�h extracted from HERMES
data (see, e.g., Ref. [101]).

The di↵erence between the results of this second extraction, and the original
results provides a good estimate of the systematic uncertainty introduced by the
azimuthal modulations.

The uncertainty is typically less than 2 %, except for a few bins at higher values
of x (cf. Figs. 4.14 to 4.17). The parametrization used to reweigh the Monte-
Carlo was extracted on a more restricted x-range than used for this work, and the
rising uncertainty at high x is therefore due to extrapolation of the polynomial four-
dimensional parametrization. In fact, these extrapolations are the reason that the
introduction of an additional systematic uncertainty was preferred over a simple
correction.
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4.9.3 Finite Bin Width and Monte-Carlo Model-Dependence

The smearing matrix that is used for the unfolding correction in Section 4.6, can
be extracted from a set of Monte-Carlo simulations if the bin size is small enough
for Eq. (4.22) to be approximately valid.

The finite detector resolution imposes a natural lower limit on the bin size.
Additionally, the dramatic increase in detector smearing near this intrinsic limit
introduces instability issues with the straightforward maximum variance unfolding
technique utilized for the extraction (cf. Ref. [104]). The available statistics in the
dataset further restrict the minimum bin size.

Additionally, background contributions that smear into the observed cross sec-
tion are directly subtracted from the measured yields in Eq. (4.23), providing an
additional source of Monte-Carlo model dependence. This contribution is strongly
suppressed by the presence of extra bins below the z > 0.2 edge (cf. Table 4.5).

The potential impact of any residual model dependence is estimated by scan-
ning over the JETSET parameters which control the Monte-Carlo event generator.
These parameters are determined with a �2-fit to the measured multiplicities [113,
124, 125]. This fit was found to be particular sensitive to a set of nine parameters
which constrain various features of the fragmentation process.

An eigenvector-basis approach to the Hessian method [126] is used to calculate
a complete set of orthogonal nine-parameter vectors in JETSET parameter space
[125]. The intersections of these eigenvectors with the 1�-contour of the �2-fit
provides eighteen sets of JETSET parameters corresponding to the uncertainties in
the Monte-Carlo model.

The average deviation of the baseline multiplicities with those extracted with
each of the eighteen alternate Monte-Carlo model assumptions is taken as a system-
atic uncertainty. This uncertainty is presented in Figs. 4.19 to 4.21. Figures 4.14
to 4.17 compare this uncertainty with the other major contributions to the system-
atic uncertainty.

The Monte-Carlo model-dependence results in a systematic uncertainty up to
3 % to 4 %, with a relative size that is fairly constant for all binnings and projec-
tions.

4.9.4 Time Stability

As mentioned in Section 4.1, both the proton and deuteron samples consist of data
taken over three di↵erent years, between 2000 and 2005. The running conditions
were not exactly identical, e.g., beam conditions and beam charge, di↵erent target
polarization and densities (cf. Table 4.1). Some degree of detector degradation is
also to be expected over the course of five years.
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Figure 4.19: The top panels show the relative deviation (full circles) of the eighteen
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Figure 4.20: The top panels show the relative deviation (full circles) of the eighteen
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baseline multiplicities in various projections for kaons as a function of Ph? in four
z-bins. The final systematic uncertainty, obtained by averaging these deviations,
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in Fig. 4.14.
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The results from the individual years are compared to each other to investigate
if their di↵erences could be explained by statistical fluctuations by means of a
two-tailed t-test1[104]. In this case, the null hypothesis states that the weighted
deviation �y1,y2 between the productions y1 and y2,

�y1,y2 (i) ⌘ My1 (i) � My2 (i)
q
�2

y1 (i) + �2
y2 (i)
, (4.48)

be compatible with zero. When comparing n bins, the t-value for a two-tailed t-test
with (n-1) degrees of freedom is given by,

t =
p

n
�̄y1,y2

�̂y1,y2

, (4.49)

with �̄y1,y2 the mean of Eq. (4.48) for all bins, and �̂y1,y2 the estimator for its uncer-
tainty,

�̂y1,y2 =

vtP
i
⇣
�y1,y2 (i) � �̄y1,y2

⌘2

n � 1
. (4.50)

To identify potential problem regions, the t-test is performed for di↵erent slices
in two-dimensional projections in addition to the full datasets. One of these tests,
comparing the 2000 and 2005 deuteron data, is illustrated in Figs. 4.22 and 4.23.
The di↵erent years were found not to be compatible with each other at the 95 %
confidence level, necessitating the introduction of a systematic uncertainty to ac-
count for time instabilities. The discrepancy are mainly concentrated in the low-
momentum region.

This uncertainty is calculated by taking the weighted average of the relative
deviations �y,

�y(i) ⌘ My(i) � M(i)
M(i)

, (4.51)

with M the average multiplicity from Section 4.8, and My the multiplicity from the
year y, for the bin i. To avoid having the systematic uncertainties be influenced by
statistical fluctuations, these relative deviations are smoothed by means of a three-
dimensional second order polynomial. The systematic uncertainty is then given
by,

syst = M(i)
P

y wy(i)�̃y(i)
P

y wy(i)
, (4.52)

1A simple �2-test is sign-agnostic, and therefore unable to resolve small but systematic shifts
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Figure 4.22: Comparison of the 2000 and 2005 deuteron results for pions as a
function of x in z-slices. The bottom panels show the results of the t-test to test
their statistical compatibility. For agreement within the 95 % confidence level, the
t-value for eight degrees of freedom (nine x bins) has to be smaller than 2.306. This
is clearly not the case for a significant amount of kinematic regions. The datasets
are judged to be not compatible and the introduction of a systematic uncertainty to
account for the time fluctuations has to be introduced.
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Figure 4.23: Comparison of the 2000 and 2005 deuteron results for kaons as a
function of x in z-slices. The bottom panels show the results of the t-test to test
their statistical compatibility. For agreement within the 95 % confidence level, the
t-value for eight degrees of freedom (nine x bins) has to be smaller than 2.306. This
is clearly not the case for a significant amount of kinematic regions. The datasets
are judged to be not compatible and the introduction of a systematic uncertainty to
account for the time fluctuations has to be introduced.
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with �̃ the smoothed relative deviations, and wy(i) as in Eq. (4.43). The size of
this uncertainty is of the order of 2 % of the measured value. Figures 4.14 to 4.17
compare the impact of the time stability systematic to the other major contributions
of the systematic uncertainty.

4.9.5 Minor Contributions

Finite Monte-Carlo Statistics

The Monte-Carlo simulations that are used to calculate the smearing matrices have
a number of simulated events. This will lead nl(h)

M, MC(i, j) and nl(h)
B, MC(i) in Eq. (4.26),

and therefore the smearing matrices themselves, to have a finite statistical uncer-
tainty.

These e↵ects were evaluated by modifying Eq. (4.25) to take into account these
uncertainties. The resulting uncertainties were found to be smaller than 0.01 % for
all bins of all binnings, as well as in all the projections. This is negligible compared
to the other systematic uncertainties.

Exclusive Vector Meson Contribution

The 1� uncertainty on the VMD-fit to the exclusive vector meson cross sections at
HERMES is known. The influence of this uncertainty on the extracted fractions is
shown in Fig. 4.10.

To evaluate the impact of this uncertainty on the vector meson subtracted mul-
tiplicities, the extraction was repeated using exclusive vector meson fractions from
several PYTHIA Monte-Carlo simulations, varying the VMD tune on the 1� band.
In fact, this is how the bands in Fig. 4.10 were obtained.

The correction for contamination by exclusive vector meson production has a
relatively small impact on the multiplicities because it a↵ects both the numerator
and denominator in a similar way. Furthermore, the uncertainty on the fraction is
already relatively small, and therefore the systematic uncertainty connected to the
correction was found to be significantly smaller than 1 %, except for a few bins
at low x and high z, where the impact of the correction is at its largest. Even in
these bins, the major contributions to the systematic uncertainties are compara-
tively much larger.

4.9.6 Comparison with the Statistical Uncertainties

Adding the di↵erent contributions to the systematic in quadrature yields the full
systematic uncertainty. Figures 4.24 to 4.26 compare the systematic uncertainty
to the size of the statistical uncertainty. The systematic uncertainty is typically 1
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to 10 times the size of the statistical uncertainty. This is even the case without
considering the (largely negative) bin-to-bin correlations in the covariance matrix
that increase the e↵ective statistical precision of the result. The size of the system-
atic uncertainty illustrates how the multiplicity extraction pushes the HERMES
spectrometer to its experimental limits. It should be noted again that systematic
uncertainties are highly correlated, and more complicated to interpret than a sim-
ple Gaussian statistical uncertainty. For this reason the systematic uncertainty is
re-evaluated for all projections, as well as the derived quantities presented in the
following chapters (cf. Section 4.8).
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Figure 4.24: The top panels show the ratio of the final systematic uncertainty over
the statistical uncertainty as a function of z. For most of the kinematic space, the
value ranges between 1 to 10. Even with the sophisticated extraction procedure
discussed in this chapter, the systematic uncertainty is dominant. Because of this,
the precision of the results presented in this work is the highest that can be attained
at the HERMES experiment.
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Figure 4.25: The top panels show the ratio of the final systematic uncertainty over
the statistical uncertainty as a function of x in four z-bins for pions. For most of
the kinematic space, the value ranges between 1 to 10. Even with the sophisticated
extraction procedure discussed in this chapter, the systematic uncertainty is dom-
inant. Because of this, the precision of the results presented in this work is the
highest that can be attained at the HERMES experiment.
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Figure 4.26: The top panels show the ratio of the final systematic uncertainty over
the statistical uncertainty as a function of x in four z-bins for kaons. For most of
the kinematic space, the value ranges between 1 to 10. Even with the sophisticated
extraction procedure discussed in this chapter, the systematic uncertainty is dom-
inant. Because of this, the precision of the results presented in this work is the
highest that can be attained at the HERMES experiment.
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5 Hadron Multiplicity Results

This chapter presents the Born-level multiplicities in various one- and two-dimensional
projections. As mentioned in Section 4.7, all the results in this work are cor-
rected for the contamination due to exclusive vector meson production. The im-
pact of these results is discussed in Chapters 6 to 8, in the context of collinear DIS,
transverse-momentum dependence and the limits of the factorization theorem. The
results from this work are published in Ref. [127].

5.1 One-Dimensional Projection versus z

Figure 5.1 presents the Born-level multiplicities as a function of z. The four panels
correspond to ⇡+, ⇡�, K+ and K�. In each of the panels, the data taken with a
hydrogen target (full circles) are compared with those taken on a deuterium target
(empty squares). The statistical error bars are generally too small to be visible. The
systematic uncertainties are given by the error bands. The z-bins for this projection
are defined in Table 4.5a.

The pion results in a one-dimensional projection (top row in Fig. 5.1) show a
good level of agreement with the results of a more older one-dimensional extrac-
tion of pion multiplicities from the (much smaller) pre-2000 dataset at HERMES
published in Ref. [78].

The proton ⇡+ multiplicities are slightly larger than those of the deuteron, the
reverse being true for the ⇡� multiplicities. Additionally, the ⇡+ multiplicities are
significantly larger than the ⇡� multiplicities, with a ⇡+/⇡� ratio for the proton
(deuteron) ranging from 1.2 (1.1) at low z to 2.6 (1.8) at high z.

The fragmentation process u! ⇡�(ūd) requires both a ū- and d-quark from the
vacuum, while u ! ⇡+(ud̄) only requires a d̄-quark from the vacuum. This makes
the former process energetically unfavored, and the latter energetically favored.
The fraction of u-quarks for the proton is larger than for the deuteron. As a result,
the favored fragmentation of a u-quark into a ⇡+ leads to a larger multiplicity for
the proton than for the deuteron. Likewise, the increased fraction of d-quarks in the
neutron, coupled with the favored fragmentation of a d-quark into a ⇡�, explains
the higher ⇡� multiplicities for the deuteron.

The values for the ⇡+/⇡� ratio can be attributed to the dependence of the DIS
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Figure 5.1: Pion and kaon multiplicities o↵ the proton (full circles) and the
deuteron (empty squares), presented as a function of z. Statistical error bars are
too small to be visible. The systematic uncertainties are given by the error bands.
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cross section on the square of the electrical charge of the quarks eq (cf. Eq. (2.16)),

d�l /
X

q
e2

q fq(x) ⌦ �̂. (5.1)

Therefore, the contribution to the cross section from scattering o↵ a u-quark (charge
+2/3) is enhanced by a factor of four compared to the contribution from scattering
o↵ a d-quark (charge �1/3). The combination of this u-quark dominance with en-
ergetically favored and unfavored fragmentation explains why the ⇡+ multiplicities
are larger than the ⇡� multiplicities. Furthermore, at higher values of z, the pro-
duced hadron is automatically closer related to the scattered quark. Consequently,
the ratio of favored-to-unfavored fragmentation rises as a function of z, accounting
for the observed increase in the ⇡+/⇡� ratio.

The proton K+ multiplicities are slightly larger than those of the deuteron. The
K� multiplicities on both targets are consistent with each other. The K+ multiplic-
ity is much larger than the K� multiplicity, with the ratio K+/K� for the proton
(deuteron rising from 1.5 (1.3) at low z to 5.7 (4.6) at high z. The large di↵erence
in size between the K+ and K� multiplicities reveals the K� as a pure sea object,
as it cannot be produced through favored fragmentation of a valence quark.

5.2 The Multiplicity Target Asymmetry

At first sight, the di↵erences between the multiplicities results appear to be not very
significant due to the size of the systematic uncertainty. However, these systematic
uncertainties are highly correlated with each other the systematic uncertainties on
derived quantities, e.g., di↵erences and ratios, should be re-evaluated rather than
propagated (cf. Section 4.9). To illustrate this, it is instructive to consider the
multiplicity target asymmetry,

Ah
d�p ⌘

Mh
d � Mh

p

Mh
d + Mh

p
. (5.2)

The results for this asymmetry in a one-dimensional projection versus z is given
in Fig. 5.2. The sign of the ⇡+ and ⇡� asymmetries reflects the di↵erent valence-
quark structure of both targets, as explained in Section 5.1. The K+ asymmetry is
similar to the ⇡+ asymmetry due to u-quark dominance, while the K� asymmetry
is near zero, suggesting the lower sensitivity to the valence-quark content of the
target discussed above.
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5.3 Two-Dimensional Projections

Figures 5.3 to 5.5 present the multiplicities as a function of Ph?, x and Q2 in four
z-bins. The relevant binnings are defined in Table 4.5b for Ph?, Table 4.5c for
x and Table 4.5d for Q2. The two- and three-dimensional binnings are designed
to optimally leverage the available statistics to provide insights in the correlations
between kinematic variables (cf. Section 4.5. This allows for the separation of
the e↵ects of PDFs and FFs (cf. Chapters 6 and 8). Additionally, these multi-
dimensional results also provide a new handle, useful for the quest to disentangle
the transverse momentum structure of the nucleon from the transverse momentum
that is generated by the fragmentation process. This is discussed in Chapter 7.

In context of the multiplicities extracted as a function of x, it should be noted
that at HERMES kinematics, there exists a strong correlation between x and Q2

(cf. Fig. 4.3.). Within the range of 0.023 < x < 0.6, the value of Q2 rises from
1 GeV2 at low x to 10 GeV2 at high x. The exact shape of the kinematic coverage
should always be taken into account when analyzing these results.

The multiplicities display a strong kinematic dependence on z, while they are
only weakly dependent on x and Q2. This qualitatively agrees the expectation
from standard collinear factorization into universal PDFs and FFs, providing evi-
dence that these assumptions apply for SIDIS at the low energy scales of HERMES,
where hQ2i ⇡ 2.5 GeV2 and hW2i ⇡ 10 GeV2. This is the topic of Chapter 8.

5.4 The Multiplicity Website

The multiplicities are extracted in five di↵erent three-dimensional binnings (cf.
Section 4.5) and various one- and two-dimensional projections, for four particles
on two targets. Additionally, because of the correlations between systematic un-
certainties for di↵erent hadrons and targets, the target asymmetries (discussed in
Section 5.2), the average Ph? distributions and the hadron charge asymmetries
(discussed in Chapter 7, the kaon-to-pion ratios (discussed in Chapter 6) and the
“dv/uv” ⇡± ratio (discussed in Chapter 8) are also provided. All of these results are
extracted in two versions: with and without a correction for the contamination due
to exclusive vector-meson production.

The author has created a dedicated website for the multiplicity results [128],
allowing end-users to easily locate and download the files they are looking for
from the hundreds of tabulated results. This includes a web-based viewer for the
available figures. It also provides an overview and brief explanation of the available
binnings and their ideal usage.
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Figure 5.3: Pion multiplicities (top panels) and kaon multiplicities (bottom panels)
o↵ the proton (full circles) and the deuteron (empty squares), presented as a func-
tion of Ph? in four z-bins. Statistical error bars are too small to be visible. The
systematic uncertainties are given by the error bands.

81



M
u

lt
ip

li
c

it
y

0

1

2

3

0

1

2

3

0

0.5

1

1.5

0

0.5

1

1.5

0

0.2

0.4

0.6

0

0.2

0.4

0.6

-110

0

0.1

0.2

0.3

Bx
-110

0

0.1

0.2

0.3 proton
deuteron
proton
deuteron

+
π

+
π

-
π

-
π

0.2 < z < 0.30.2 < z < 0.3

0.3 < z < 0.40.3 < z < 0.4

0.4 < z < 0.60.4 < z < 0.6

0.6 < z < 0.80.6 < z < 0.8

M
u

lt
ip

li
c

it
y

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0

0.1

0.2

0

0.1

0.2

-110

0

0.05

0.1

Bx
-110

0

0.05

0.1 proton
deuteron
proton
deuteron

+K+K
-

K
-

K0.2 < z < 0.30.2 < z < 0.3

0.3 < z < 0.40.3 < z < 0.4

0.4 < z < 0.60.4 < z < 0.6

0.6 < z < 0.80.6 < z < 0.8
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els) o↵ the proton (full circles) and the deuteron (empty squares), presented as a
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6 Interpretation in Leading-Order
Collinear DIS

A comparison of the multiplicity results with various calculations in the framework
of leading-twist, collinear factorization at leading order (LO) in the strong coupling
↵s, illustrates the degree to which these results will further constrain future extrac-
tions of fragmentation functions (FFs), while highlighting specific weak points in
the current generation of parameterizations [12, 29–32]. Additionally, an intersting
observation in itself is the fact that this kind of LO comparison is at all applicable
at HERMES energies (Q2 ⇠ 2.5 GeV). This phenomenon of precocious scaling is
the topic of Chapter 8.

6.1 Calculating the Multiplicities in Leading-Order

In the framework of leading-twist collinear factorization, the Ph? and �h degree
of freedoms are integrated out of the cross sections. The cross section for semi-
inclusive deep-inelastic production of a hadron d�h is then proportional to certain
combinations of the parton distribution functions (PDFs) in the nucleon with the
FFs describing the formation of the hadron h [12, 29–32]. Similarly, the cross
section for inclusive DIS d�l is proportional to a certain combination of PDFs in
the nucleon. At LO, the cross sections are given by (cf. Eqs. (2.23) to (2.25)),

d3�h

dxdQ2dz
/

X

q
e2

q fq(x,Q2) Dh
q(z,Q2), (6.1)

d�l

dxdQ2 /
X

q
e2

q fq(x,Q2), (6.2)

where the common pre-factors have been omitted for clarity.
Traditionally, when comparing measurements to theoretical predictions, the

data points themselves are “evolved” to a common value in Q2. However, this
approach requires the use of an evolution factor extracted from a theoretical pa-
rameterization, introducting an unnecessary model-dependence. In principle, this
complicates the comparison with several theoretical predictions at once. It is, at
the other hand, straightforward to unambiguously evaluate a theoretical prediction
over the kinematic space covered by the data, especially at LO.

In order to calculate the multiplicities at LO, Eqs. (6.2) and (8.14) are integrated
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over the relevant portion of the kinematic space covered by the data, illustrated in
Fig. 4.3. To calculate the multiplicities as a function of z, this gives

Mh(z) =

P
q e2

q
R 0.6

0.023 dx
R Q2

max(x)
Q2

min(x) dQ2 fq(x,Q2) Dh
q(z,Q2)

P
q e2

q
R 0.6

0.023 dx
R Q2

max(x)
Q2

min(x) dQ2 fq(x,Q2)
, (6.3)

with Q2
min(x) constrained by the Q2 > 1 GeV2 and W2 > 10 GeV2 cuts, and Q2

max(x)
by the y < 0.85 cut,

Q2
min =

8>>><
>>>:

x
1�x

⇣
10 GeV2 � M2

⌘
if > 1 GeV2

1 GeV2 otherwise
(6.4)

Q2
max = 2MEx (6.5)

with M and E the target mass and beam energy. It should be noted that replacing
the integral over Q2 with a parametrization for hQ2(x)i gives results that are nearly
indistinguishable due to the similar Q2-dependence of the numerator and denomi-
nator in Eq. (6.3). The more integral-based approach, as explained in this section,
is superior because it closely mimics the experimental measurement.

Similar to the one-dimensional case, at LO, the multiplicities as a function of
x (or Q2) in various z-bins is given by,

Mh(x, zi) =

P
q e2

q
R Q2

max(x)
Q2

min(x) dQ2
R zi+1

zi
dz fq(x,Q2) Dh

q(z,Q2)

P
q e2

q
R Q2

max(x)
Q2

min(x) dQ2 fq(x,Q2)
, (6.6)

with zi and zi+1 the bin edges of the z-bin with index i.
Unfortunately, the statistical and theoretical uncertainties on the various LO

parameterizations f q
q and Dh

q are typically not available. The calculations in this
chapter are therefore presented without uncertainties. This prevents a precise quan-
tification of the level of agreement between the measurements and the calculations.
The following discussion is therefore fully qualitative.

6.2 Comparison with Leading-Order Calculations

A comparison of the multiplicities as a function of x, for both proton and deuteron
targets, is presented in Fig. 6.1. The LO calculations are performed using Eq. (6.3).
The FFs are taken from three widely used analyses that provide a LO parameteriza-
tion, labeled DSS [29], HKNS [36] and Kretzer [61], together with the PDFs from
CTEQ6L [37]. Additional calculations were performed with the MRST PDFs [38],
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Figure 6.1: Comparison of the pion and kaon multiplicities measured on the proton
(top panels) and deuteron (bottom panels), as a function of z, with LO calculations
using CTEQ6L parton distributions [37] and three compilations of fragmentation
functions [29, 36, 61]. A detailed description of the calculation is given in the text.
Also shown are the values obtained from the HERMES Lund Monte Carlo [124].
Statistical error bars on the experimental points are too small to be visible. The cor-
responding systematic uncertainties are given in Fig. 5.1. Theoretical uncertainties
on the LO calculations are not available.
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yielding results indistinguishable from those with the CTEQ6L PDFs, testament to
the high degree of precision of the current generation of PDFs.

It should be noted that the state-of-the-art DSS analysis included a very pre-
liminary, unreleased version of the HERMES proton data in its database. Due to an
incorrect momentum cut of 2 GeV at the Born level, as well as a less refined anal-
ysis, these unreleased multiplicities di↵er substantially from the o�cial HERMES
results. In fact, because these data introduced an unacceptable level of tension in
the fit, only the fractions between the multiplicities were ultimately used [129].

For ⇡+ and K+ on a proton target, the calculation using DSS results agrees
reasonably well with the multiplicity results. This is not the case for the negatively
charged particles. In particular the calculated K� multiplicities are substantially
lower than the measurement. The discrepancy for the ⇡� disappears at low values
of z.

Section 5.1 explains how the DIS cross section is strongly dominated by scat-
tering o↵ u-quarks. In light of this, the disagreement in the negative sector could be
explained by larger uncertainties on the largely unfavored production of d-, ū- and
s-quarks. Alternatively, the case could be made that, especially for the Q2 range of
this measurement, the calculations and comparisons should be performed at NLO.
The discrepancy could then be attributed to the possibility that NLO processes be
proportionally more important for ⇡� and especially K� production. Such calcula-
tions are beyond the scope of this work, and therefore left to the various theoretical
groups studying the world database of fragmentation data. At the time of writing,
the authors of Ref. [29] are re-evaluating their FF parameterizations using the data
of this work, as well as the recently released BELLE data [130, 131].

The HKNS and Kretzer parameterizations perform relatively well for the pion
data, but are unable to describe the kaon multiplicity measurements. In compari-
son, the DSS results represent the kaon data substantially better. The HKNS and
Kretzer distributions are mostly constrained by results from high-energy e+e� anni-
hilation. This clearly provides insu�cient leverage to properly describe data taken
at much lower energies. This is in contrast with the DSS analysis, that included a
much wider variety of input data.

The predictions for the deuteron target in Fig. 6.1 are show a somewhat better
level of agreement with the various predictions, except for the K� results. Similar
to the K� o↵ the proton, the available LO parameterizations are utterly unable to
describe the K� o↵ the deuteron.

The top panels in Fig. 6.2 show the multiplicity target asymmetry from Sec-
tion 5.2, compared with a LO calculation using the DSS FFs, as a function of z.
What makes this comparison particularly interesting is the fact that the contribu-
tion from scattering o↵ sea-quarks mostly cancels in the asymmetry. This leads to
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a comparison that is strongly sensitive of the fragmentation product from scattering
o↵ the valence quarks. Similar to Fig. 6.1, the ⇡+ and K+ agree very well with the
calculation. The curves increasingly overshoot the ⇡� results as a function of z.
This is not surprising, in light of the better agreement of the parameterization with
the deuteron results. The K� asymmetry results are near-zero, while the calculation
yields a curve not unlike the one for ⇡�. This strongly suggest the need to better
constrain the fragmentation functions in the unfavored sector.

The bottom panels in Fig. 6.2 show the same comparison for pions as a func-
tion of x in four z-bins. The pion multiplicity target asymmetries A⇡d�p results show
no significant x-dependence, and are fairly constant as a function of z. The discrep-
ancy between the calculation and the ⇡� multiplicities is ostensibly only a function
z.

Figures 6.3 and 6.4 present a comparison of a LO calculation using the DSS
and Kretzer FFs with the multiplicities as a function of x and Q2 in four z-bins. The
LO calculations are performed using Eq. (6.6) for the x-dependence, and a analo-
gous relation for the Q2-dependence. The DSS results describe the Q2-dependence
of the HERMES results very well, with the discrepancies between measurement
and calculation solely a function of z. The x-dependence at the other hand di↵ers
substantially at low x, especially so at lower values of z. This could indicate the
need for a full NLO calculation, or given its occurrence at low values of z, some
degree of factorization breaking. This will be discussed in detail in Chapter 8.

Superficially, the Kretzer results performed equally well as the DSS results to
describe the z-dependence of the pion data in Fig. 6.1. The limits of this parameter-
ization become more apparent in its inability to describe the Q2 and x-dependence
for both the pion and kaon multiplicity measurements. A approach beyond solely
considering e+e� data at high energies is therefore a clear requirement for future
parameterizations.

6.3 Strangeness Suppression

A final hadron with high z has a large probability of containing the struck quark.
Because of u-quark dominance, this means that, for z! 1, the K+/⇡+ multiplicity
ratio essentially gives the extra cost of producing an ss̄-pair, compared to a dd̄-pair.
This value is commonly referred to as the strangeness suppression. This K+/⇡+

multiplicity ratio is shown as a function of z in the top panel of Fig. 6.5. The K�/⇡�

ratio is included for completeness.
The multiplicity results indicate a strangeness suppression at HERMES ener-

gies of about 0.3, significantly smaller than the commonly used value of about
0.5. The is apparent from the high-z data in Fig. 6.5, where the data drastically
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Figure 6.3: Comparison of the pion multiplicities (top panels) and kaon multi-
plicities (bottom panels) on the proton, as a function of x in four z-bins, with LO
calculations using CTEQ6L parton distributions [37] and two compilations of frag-
mentation functions [29, 61]. A detailed description of the calculation is given in
the text. Statistical error bars are too small to be visible. The systematic uncertain-
ties are given by the error bands. Theoretical uncertainties on the LO calculations
are not available.
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mentation functions [29, 61]. A detailed description of the calculation is given in
the text. Statistical error bars are too small to be visible. The systematic uncertain-
ties are given by the error bands. Theoretical uncertainties on the LO calculations
are not available.
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undershoots the results of a LO calculation using the DSS FFs.
The same K+/⇡+ multiplicity ratio is presented in Fig. 6.6 (left panels) as a

function of x and Q2 in four z-bins. The results are compatible with a flat x- and
Q2-dependence, illustrating the strength of the u-quark dominance, even at low x
where the sea quarks become more important. The fact that the proton and deuteron
results also agree with each other strengthens this interpretation.

Finally, it is interesting to note that, except the high-z region, the LO calculation
using the DSS parameterization predicts the K+/⇡+ and the K�/⇡� ratio very well,
as function of x, Q2 and z. This might be partially explained by the inclusion of
the very preliminary, unreleased HERMES multiplicities in the DSS analysis (see
Section 6.2).
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Figure 6.6: Comparison of the kaon-to-pion ratio on the proton and deuteron, as a
function of x (top panels) and Q2 (bottom panels) in four z-bins with a LO calcu-
lation using CTEQ6L parton distributions [37] and fragmentation functions from
DSS [29]. The statistical uncertainty is shown by the error bars, while the sys-
tematic uncertainty is given by the error bands. Theoretical uncertainties on the
LO calculations are not available. The LO parametrization predict the x and Q2-
dependence very well up to medium z.
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7 Transverse-Momentum Structure

With the inclusion of the kinematic dependence on Ph?, the multiplicity data reach
beyond the standard collinear factorization, and hence access the transverse-momentum
dependence (TMD) of the nucleon as well as the fragmentation process. The three-
dimensional binning in Ph?, z, and x can be leveraged to constrain parameteriza-
tions in a TMD framework. Additionally, the availability of both pion and kaon
results provides a handle on flavor separation. At the time of writing, these TMDs
are only weakly constrained. The focus of this chapter lies therefore on a qualita-
tive discussion of the Ph?-dependent results.

7.1 Theoretical Background

The cross section for SIDIS hadron production with low transverse momentum,
can be decomposed in terms of a set of structure functions [122, 132, 133]. At
LO, and up to first subleading twist accuracy, these functions factorize into various
combinations of transverse-momentum dependent parton distributions (TMDs) and
fragmentation functions [134, 135], similar to the collinear case [11, 13]. In this
framework, the four-times di↵erential unpolarized SIDIS cross section is given by
[117, 132],

d4�h

dQ2dxdzdP2
h?
/

X

q
e2

q

Z
d2~pT d2~kT�

(2)(~pT � ~kT � ~Ph?/z) fq(x, p2
T )Dh

q(z, k2
T ),

(7.1)

with ~pT and ~kT defined as the transverse momentum of respectively the struck
quark and the fragmenting quark, in a frame where the target nucleon and pro-
duced hadron are collinear. Additional pre-factors irrelevant to the current dis-
cussion have been omitted from Eq. (7.1) for clarity. The pT dependence of fq
encodes the transverse momentum structure of the nucleon. The fragmentation
function Dh

q(z, k2
T ) is a probability density in the transverse momentum of the final-

state hadron h relative to the fragmenting quark k0T = �zkT . Equation (7.1) con-
volutes pT and kT into the observable Ph?. This complicates the extraction of the
unpolarized TMDs significantly.
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At the time of writing, a common approach to unpolarized TMDs is to assume
a Gaussian distribution multiplied with the standard collinear PDFs and FFs [136],

fq(x, p2
T ) =

fq(x)
⇡hp2

T (x)iq
e�p2

T /hp2
T (x)iq , (7.2)

Dh
q(z, k2

T ) =
Dh

q(z)
⇡h(k0T )2(z)iq e�z2k2

T /h(k0T )2(z)iq , (7.3)

with hp2
T (x)iq and h(k0T )2(z)iq the average internal transverse momenta. After inte-

gration, Eq. (7.1) reduces to,

d4�h

dQ2dxdzdP2
h?
/

X

q

fq(x)Dh
q(z)

⇡(z2hp2
T (x)iq + h(k0T )2(z)iq)

e�Ph?/(z2hp2
T (x)iq+h(k0T )2(z)iq). (7.4)

Additionally, if hp2
T iq and h(k0T )2iq are assumed to be independent of respectively

x and z, they can be readily extracted from a P2
h? spectrum in various z-bins by

means of a series of Gaussian fits.

7.2 Results for Transverse-Momentum Dependence

Figure 7.1 presents the pion and kaon multiplicities as a function of Ph? in four z-
bins. The data qualitatively agree with the Gaussian ansatz Eqs. (7.2) to (7.4). The
distribution for negative kaons is markedly wider than for positive kaons. The K�

cannot be produced through favored fragmentation of a valence quark as discussed
in Section 5.1. The extra steps necessary to fragment a valence quark into a K�

lead to additional smearing of the pT contribution to Ph?, explaining the wider
spectrum.

The functional behavior of hPh?i versus x and z can be used to study possible
kinematic dependences of hpT i and hk0T i. As shown in Fig. 7.2, it rises as a function
of z. This is to be expected in light of the �-function in Eq. (7.1). The observed
slope could be used to constrain hpT i, in case the z-dependence of hk0T i can be
safely neglected.

Additionally, the values for hPh?i for kaons are significantly larger than those
for pions, with a point-to-point significance of 2�. The combination of u-quark
dominance and strangeness suppression make the kaon multiplicities (slightly)
more sensitive to scattering o↵ sea-quarks. One could therefore attribute these
higher values for kaons to a higher average pT for sea quarks, consistent with the
explanation for the di↵erence in the observed Sivers amplitudes between pions and
kaons in Ref. [137]. A similar increase in hPh?i for kaons can be observed in
Figs. 7.3 and 7.4 as a function of x and Q2 in four z-bins. hPh?i gently falls as a
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Figure 7.1: Pion multiplicities (top panels) and kaon multiplicities (bottom pan-
els) o↵ the proton (full circle) and the deuteron (empty square), presented as a
function of Ph? in four z-bins. Statistical error bars are too small to be visible.
The systematic uncertainties are given by the error bands. The multiplicity results
are superficially consistent with a Gaussian ansatz for the transverse momentum
dependence of the PDFs and FFs.
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tistical uncertainty is shown by the error bars, while the systematic uncertainty is
given by the error bands.
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Figure 7.3: Average Ph? for the pion multiplicities (top panels) and kaon multiplic-
ities (bottom panels) o↵ the proton (full circle) and the deuteron (empty square),
presented as a function of x in four z-bins. The statistical uncertainty is shown by
the error bars, while the systematic uncertainty is given by the error bands.
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Figure 7.4: Average Ph? for the pion multiplicities (top panels) and kaon multiplic-
ities (bottom panels) o↵ the proton (full circle) and the deuteron (empty square),
presented as a function of Q2 in four z-bins. The statistical uncertainty is shown by
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Figure 7.5: The multiplicity hadron charge asymmetry Ah± ⌘ (Mh+ �Mh�)/(Mh+ +

Mh�) for pions (left panels) and kaons (right panels), presented as a function of
Ph?. The statistical uncertainty is shown by the error bars, while the systematic
uncertainty is given by the error bands. The numerator contains proportionally
more contribution from valence quarks than the denominator, encoding informa-
tion about the shape of the intrinsic quark pT distribution in Ah± .

function of x, corresponding to a slightly falling functional dependence of average
pT . The Q2 dependence is consistent with a constant.

Finally, the multiplicity hadron charge asymmetry Ah±,

Ah± ⌘ (Mh+ � Mh�)/(Mh+ + Mh�), (7.5)

is also available in the database. The numerator in this particular combination of
multiplicities is more sensitive to valence contributions than the denominator. The
results for Ah± are shown in Fig. 7.5 as a function of Ph? in four z-bins.
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8 Precocious Scaling and the Limits
of Factorization

Processes with a hadron in the final state can be described in the standard frame-
work of collinear quantum chromodynamics (QCD), given a hard-scattering reac-
tion. The cross sections can then be expressed in terms of a perturbative hard-
scattering cross section, and certain nonperturbative but universal functions, the
parton distribution functions (PDFs) and fragmentation functions (FFs) [11, 13].
The PDFs encode the inner partonic structure of the hadrons in the initial state,
while the FFs describe the hadronization process after the hard-scattering takes
place. Application of this framework to semi-inclusive deep-inelastic scattering
(SIDIS) yields a cross section proportional to certain combinations of the PDFs
and FFs [12, 29–32],

d�h /
X

q
e2

q fq(x) ⌦ �̂ ⌦ Dh
q(z). (8.1)

Especially at leading order (LO) in the strong coupling ↵s, this framework al-
lows for a suggestive, quark-parton model (QPM)-like interpretation of the dif-
ferent components. Furthermore, because of universality, the results from e+e�

annihilation, Drell-Yan and deep-inelastic scattering can be combined to optimally
constrain each of these parts.

While very successful in its description of high energy reactions, the question
arises how well it performs at intermediate energies (Q ⇠ M). This is especially
relevant in light of ultra-high-precision measurements that will take place at Je↵er-
son Lab after the 12 GeV CEBAF upgrade. Because of their unprecedented pre-
cision and multidimensional nature, the HERMES multiplicity results can be used
to illustrate and estimate the sort of complications that may arise at intermediate
energies.

8.1 Limits of Factorization

8.1.1 Theoretical Interpretation

Once the hard scale Q moves towards Q ⇠ M, Eq. (8.1) is not strictly valid any-
more. Higher order terms in ↵s become larger at these energies, making a LO

102



approach harder to defend. Additionally, the entire framework is only valid as long
as Q is large enough. When this is not the case, higher twist e↵ects, initial and
final-state interactions and target mass e↵ects start to play a larger role. When
properly accounted for, these considerations from the theoretical side do not break
down factorization, but rather demand a more sophisticated treatment. This would
of course invalidate a simple QPM-like interpretation.

8.1.2 Target Remnant Influence in SIDIS Measurements

Experimentally, it is impossible to detect if a given particle is a current particle
(semi-inclusive hadron produced o↵ the struck quark), or part of the target rem-
nant. The process independence necessary for universality requires the FFs to only
correlate to the struck quark. This implies that the fragmentation function can only
depend on the fractional hadron momentum z (given a fixed factorization scale Q).
In principle, the e↵ects of target remnant contamination could be accounted for by
switching to a formalism in terms of “fracture functions” [32, 138], but this would
make the powerful factorized approach Eq. (8.1) impossible. Lacking universality,
the non-perturbative terms of the SIDIS cross section lose their predictive power
across di↵erent lepton-hadron processes. Therefore, a clear experimental separa-
tion of the current and target “jets” appears to be necessary.

An ideal kinematic quantity to study and constrain the contamination by the
target remnant is the center-of-mass frame rapidity (CM-rapidity) ⌘CM,

⌘CM ⌘
1
2

ln
Eh + Phk
Eh � Phk

, (8.2)

with Eh the hadron energy and Phk the longitudinal momentum component of the
hadron in the direction of the virtual photon, in the photon-nucleon center-of-mass
frame. A positive value for ⌘CM indicates that a hadron is moving in the direction
of the virtual photon, while a negative value indicates that the hadron is moving
into the backward hemisphere. Therefore, the sign of ⌘CM is closely related to
the current and target jets. A good separation of both jets in rapidity space would
consequently su�ce as a requirement for uncontaminated current fragmentation.

The range in the invariant mass of the photon-nucleon system, W, covered by
the experiment, determines the maximum hadron momentum Pmax, and accord-
ingly the range in rapidity. For light hadrons, Pmax is given by,

Pmax ⇡ Emax =
W
2
. (8.3)

The maximum CM-rapidity is reached when a hadron with P = Pmax moves along
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the virtual photon direction,

⌘CM,max =
1
2

ln
Emax + Pmax

Emax � Pmax
(8.4)

=
1
2

ln
(Emax + Pmax)(Emax + Pmax)
(Emax � Pmax)(Emax + Pmax)

(8.5)

⇡ 1
2

ln
4P2

max

M2
h

(8.6)

= ln
W
Mh
, (8.7)

with Mh the hadron mass. The W-dependence of the rapidity distributions of SIDIS
hadrons therefore provides access to the phenomenology of target fragmentation.
This can be used to obtain the experimental requirements necessary for a good
jet-separation in rapidity space.

This was studied in detail in the in the µ-scattering experiments E665 [139]
and EMC [140]. It should be noted that, in the E665 results, the CM-rapidity is
commonly referred to as y⇤ instead of ⌘CM.

Figure 8.1 presents the rapidity spectrum for positive hadrons from the E665
experiment, in three bins of W. All three panels show a strong peak in the backward
hemisphere with a FWHM of approximately two units of rapidity. The mid-rapidity
region is completely filled in, and only at higher values of W, a small bump in the
forward direction becomes apparent.

It is instructive to use a chain-fragmentation model [23] to discuss these results.
Such a model forms the basis for the Lund string model [20–22] used by the LEP-
TO/JETSET [106] and PYTHIA [115] Monte-Carlo generators. In these models,
hadron formation is explained by the creation of quark-antiquark pairs following
the initial hard scattering. These final state mesons partition the energy and mo-
mentum of the color force field connecting the struck quark to the target remnant.
In the center-of-mass frame, the target remnant moves into the backward hemi-
sphere while the struck quark moves approximately parallel to the virtual photon,
giving rises to peaks at respectively negative and positive rapidity. The additional
hadrons produced during the fragmentation process lie between these extremes,
and therefore explain the absence of a mid-rapidity gap.

Positive hadrons are more prevalent in the current jet than negative hadrons
due to u-quark dominance. Similarly, the abundance of positive charge in the target
causes the target remnant to be predominantly positively charged. The mid-rapidity
region is filled by additional quark-antiquark pairs, which cannot influence the total
hadronic charge. The hadronic net charge 1/Nµ(dNh+/d⌘CM � dNh�/d⌘CM) there-
fore provides a very clean way to access to the rapidity distribution of the primary
jets. The hadronic net charge measured at E665 from µD- and µXe-scattering is
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Figure 8.1: Normalized CM-rapidity distribution of positive hadrons in three bins
of W from µXe-scattering at E665. The di↵erent markers refer to variants of the
PID procedure not relevant to the current discussion. The target jet (negative rapid-
ity) and current jet (positive rapidity) are hard to distinguish from each other due
large amount of additional hadrons filling the gap between both jets. The situation
becomes slightly better at higher values of W. See also Fig. 8.2. Figure from [139].
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Figure 8.2: Normalized CM-rapidity distribution of the hadronic net charge
1/Nµ(dNh+/d⌘CM � dNh�/d⌘CM) from µD- and µXe-scattering at E665. The
VENUS model predictions not relevant to the current discussion. The sharp peak at
negative rapidity corresponds to the target remnant, while the shallow bump in the
forward hemisphere corresponds to the current hadron. All peaks have a FWHM
of approximately two units of rapidity. Figure from [139].

presented in Fig. 8.2. It features a sharp peak at negative rapidity, and a smaller
peak at positive rapidity. Again, the FWHM of both peaks is two units of rapidity.

Figure 8.3 shows the hadronic net charge spectrum results from EMC, in three
x-bins. This indirectly probes the W-dependence due to the x-dependence of hWi.
The EMC results show a strong target remnant peak in the backward hemisphere.
The current fragmentation peak becomes more prominent in the valence region at
mid-to-high x. This is to be expected, as the sea quarks, and the ū quark in particu-
lar, become more important at low x, and the hadronic net charge cannot be used to
resolve the current fragmentation peak in the absence of u-quark dominance. Sim-
ilar to Figs. 8.1 and 8.2, the FWHM of both peaks is about two units of rapidity.
In the top panel, where hWi ⇠ 17 GeV, a ⌘CM > 0 cut is su�cient to avoid target
remnant contamination. In terms of the commonly used Feynman scaling variable
xF ,

xF ⌘
2PkCM

W
, (8.8)

this requirement becomes xF > 0. For the other panels, a more stringent set of cuts
is necessary to avoid the target remnant.

To summarize, the target remnant and current fragmentation jets are observed
to have a constant FWHM of two units of rapidity The lowest possible rapidity is
reached when the target remnant moves opposite to the virtual photon direction.
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Figure 8.3: Distribution of the hadronic net charge 1/Nµ(dNh+/d⌘CM�dNh�/d⌘CM)
as a function of the CM-rapidity in three di↵erent x regions from µp-scattering at
EMC. The sharp peak at negative rapidity is clearly visible in all three x-bins. The
peak at positive rapidity becomes more prominent in the valence region at mid-to-
high x. All peaks are consistent with a FWHM of two units of rapidity. They move
closer towards each other for smaller values of average W. The tails from both
distributions strongly overlap each other in the bottom panel. Figure from [140].

107



Figure 8.4: Average backward multiplicity as a function of the forward multiplicity
for a central (left panels) and outer CM-rapidity range (right panels) from the E665
experiment, in two bins of W (top and bottom panels). The data are presented for
µD (full circles) and µXe (empty circles), The lines are the results of straight-line
fits. There is a clear correlation in the central rapidity region. The data in the outer
rapidity region is consistent with no correlation for both bins in W. Figure from
[139].

This value is determined by the hadron mass and W, similar to Eq. (8.7). The suf-
ficient requirement that the target and current peaks are separated by four units of
rapidity, or equivalently ⌘CM,max = 4, determines this lower bound on W as a func-
tion of hadron mass. This phenomenological requirement is commonly referred to
as as the Berger criterion [140–142].

The lower bound on W for pions and kaons that follows from this formulation
of the Berger criterion is given by,

⇡! W > 7.6 GeV, (8.9)

K ! W > 27 GeV. (8.10)

Figure 8.4 presents the average backward multiplicity as a function of the for-
ward multiplicity from E665 for the central rapidity region |⌘CM| < 1 (left panels)
and the outer rapidity region |⌘CM| > 1 right panels. The results show a strong
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correlation between the forward and backward multiplicities in the central rapidity
region, while the results are consistent with a flat dependence in the outer rapidity
region. This absence of a correlation for |⌘CM| > 1 provides further evidence for the
notion of independent fragmentation, therefore supporting the phenomenological
approach taken in the derivation of the Berger criterion.

8.1.3 Factorization at Intermediate Energies and Precocious Scaling

The upper limit in W is given by
p

s of the experiment. Scattering the 27.6 GeV
electron/positron beam from HERA o↵ the HERMES target yields,

Wmax,HERMES =
p

s = 7.26 GeV. (8.11)

According to the Berger criterion (cf. Eqs. (8.9) and (8.10)), this upper limit is
slightly below the minimum requirement W > 7.6 GeV needed for an uncontam-
inated pion measurement, and the kaon requirement W > 27 GeV is even more
problematic. It should be noted that, for pions, a restriction of the forward hemi-
sphere to ⌘CM > 0.9 lowers the W-limit to W > 3.16 GeV (W2 > 10 GeV2), which
is the lower limit used in this work. A similar cut for kaons does not exist at HER-
MES energies.

While at first sight problematic, the Berger criterion is a phenomenological
guideline, rather than a hard requirement derived from first principle. When deal-
ing with data at intermediate energies, the possibility of factorization breaking due
to incorrect application of a simplified theoretical framework (Section 8.1.1), or
contamination by the target remnant (Section 8.1.2) should be carefully studied.
The identification of potential problem areas in multi-dimensional kinematic space
provides information about the origin of the issues. This information can then be
used to establish a “safe zone”, where there is no evidence of factorization break-
ing.

Such a test was performed on data taken during the first two years of HERMES
[143]. To examine the accuracy of a factorized LO formalism, including the as-
sumption that the fragmentation functions be perfectly symmetric under an isospin
rotation, the light-sea flavor asymmetry,

d̄(x) � ū(x)
u(x) � d(x)

, (8.12)

was extracted as a function of z in various slices of x.
The extraction procedure is similar to the dv/uv extraction described in Sec-

tion 8.2.2. It requires ⇡+ and ⇡� cross sections (or multiplicities) for a proton and
deuteron target, as well as the unfavored-to-favored fragmentation function ratio.
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Figure 8.5: The distribution (d̄ � ū)/(u � d) as a function of z in five bins of x from
HERMES. The points are fit to a constant for each x-bin. The error bars represent
statistical and systematic uncertainties added in quadrature. Figure from [143].
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The latter was obtained from a fit to a statistically separate data sample. The kine-
matic cuts are similar to those used in Section 4.4, with the exception of the less
restrictive requirement W > 2 GeV and additional cut of xF > 0.25. The lower
cut in W does not significantly change the SIDIS sample because of the small mo-
mentum of the final state hadrons in these additional events. The spectrometer
typically bends low-momentum hadrons out of the acceptance. The stringent cut
of xF > 0.25 is approximately equivalent with the requirement that ⌘CM > 0.9. Ac-
cording to the Berger criterion, the pion sample should therefore be clear of target
remnant contamination.

The results in Fig. 8.5 show no z-dependence within the uncertainties, and con-
sequently no evidence of factorization breaking at intermediate energies. It was
later found that, even with a less restrictive cut of z > 0.2, approximately equiva-
lent to xF > 0, there is no evidence of a significant target remnant contamination
at HERMES. Hence, fifteen years later, there is still no sign of any factorization
breaking at HERMES. The apparent validity of a factorized approach when Q2

is not a very large number, is sometimes referred to as precocious scaling. This
precocious scaling seems to extend down to energy regimes very close to Q ⇠ M,
meaning that Q2 > 1 GeV2 is a su�cient requirement for the standard framework
of leading-twist collinear QCD to be applicable.

After the 12 GeV upgrade, the CLAS12 and SOLID experiments at Je↵erson
Lab will be able to collect data with an unprecedented level of statistical precision.
However, the W-range covered by these experiments will be lower than that in
HERMES (cf. Eq. (8.11)),

Wmax,JLAB =
p

s = 4.8 GeV. (8.13)

This combination of ultra-high-precision at a lower energy range forces a thorough
evaluation of the applicability of a factorized approach. The new HERMES mul-
tiplicity results [127], presented in this work form the most precise SIDIS dataset
currently available. A study of the limits of precocious scaling at HERMES with
these results will hence provide valuable input to help better understand these fu-
ture challenges at Je↵erson Lab.
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8.2 The Applicability of QPM-like Factorization and
dv/uv

In the standard framework of collinear QCD, the semi-inclusive cross section d�h

is given at LO by (cf. Eqs. (2.23) to (2.25)),

d3�h

dxdQ2dz
/

X

q
e2

q fq(x,Q2) Dh
q(z,Q2). (8.14)

where the pre-factors have been omitted for clarity. The factorized dependence
of d�h on the parton distribution functions fq(x,Q2) and fragmentation functions
Dh

q(z,Q2) o↵ers the possibility to extract information about one if the other is
known. For example, the DSS extraction of the FFs [29] uses SIDIS multiplic-
ities in their global fit. The PDFs, which are extracted from inclusive data, are
taken as input using the values obtained from independent global fits of the MRST
[38, 144] and CTEQ [37] groups.

An alternative approach is to extract the PDFs by taking the FFs as input. Given
the current uncertainties in our knowledge of the FFs, however, this approach is
only profitable if symmetries between the FFs can be exploited. These symmetries
are relations whose accuracy is presumed to be better than our knowledge of the
individual FFs. As discussed in Section 8.1, this approach is only applicable in
a regime where factorization holds. It is therefore perfectly suited to search for
any evidence of factorization breaking, and to evaluate the accuracy of commonly
assumed FF symmetries at HERMES kinematics, similar to the approach taken in
Ref. [143].

In this section, various ratios of measured charged-pion yields are used to ac-
cess the PDF combination dv/uv as a function of x and z. This extraction does not
need any additional input by means of explicit FF ratios, unlike the extraction of
the light-sea flavor-asymmetry, making it the more powerful tool in the hunt for
factorization breaking at intermediate energies.

It should be noted that the dv/uv extraction is more sensitive to systematic is-
sues with the underlying data, compared to the (d̄ � ū)/(u � d) extraction from
Ref. [143]. These were not su�ciently known in the early years of HERMES.
This finally changed with the release of the hadron multiplicities presented in this
work, in particular due to the improved pion PID, the multi-dimensional smearing-
unfolding, and the detailed knowledge of the systematic uncertainties and their
correlations (cf. Chapter 4).
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8.2.1 Fragmentation Function Symmetries

The current knowledge of the FFs [29, 35, 36, 61, 62] depends on global fits to
data from various hard-scattering reactions, chiefly e+e�-annihilation from LEP
and SLAC [63–67]. This inescapably limits the number of independent observ-
ables, making it impossible to determine Dh

q(z,Q2) independently for each flavor
q of primary quark and each hadron of type h. To reduce the number of indepen-
dent functions to a manageable set, symmetry relations between the FFs for sim-
ilar hadron types are routinely invoked. Traditionally, the assumptions of charge-
conjugation and isospin-rotation invariance have been made for charged pion pro-
duction, reducing the number of independent FFs to three. However, due to the
intrinsic isospin-symmetry violation (ISV) caused by the di↵erent charge and rest
mass of the light quarks, a small ISV in the FFs is to be expected.

The charge-conjugation symmetry of the current-fragmentation process reduces
the number of independent FFs for charged pion production to six,

D⇡
+

u = D⇡
�

ū ⌘ D1 D⇡
�

d = D⇡
+

d̄ ⌘ D2, (8.15)

D⇡
�

u = D⇡
+

ū ⌘ D3 D⇡
+

d = D⇡
�

d̄ ⌘ D4, (8.16)

D⇡
+

s = D⇡
�

s̄ ⌘ Ds,1 D⇡
�

s = D⇡
+

s̄ ⌘ Ds,2. (8.17)

These three relations represent the traditional grouping of the fragmentation func-
tions into favored Eq. (8.15), unfavored Eq. (8.16) and strange Eq. (8.17). If isospin
symmetry is also imposed, only three independent FFs remain: Dfav = D1 = D2,
Dunf = D3 = D4 and Ds = Ds,1 = Ds,2. Here, and in the rest of this section the
dependence of the FFs on Q2 and z, as well as the dependence of the PDFs on Q2

and x is implicitly assumed, unless noted otherwise.
The topic of ISV in the PDFs, often referred to as “charge-symmetry viola-

tion”1, has been explored for decades. It is estimated to be of order 1 % to 2 %,
although experimental limits allow for values that are several times larger [145,
146]. The possibility of ISV in the FFs was explicitly addressed in the DSS frag-
mentation function fit [29]. As discussed in Section 6.2, this fit included a very
preliminary version of the HERMES multiplicities. It was found to favor a 10 %
ISV in the following FF combination at the input scale of 1 GeV,

D⇡
+

d+d̄

D⇡+u+ū
=

D2 + D4

D1 + D3
= 1.10 at µ0 = 1 GeV, (8.18)

1Charge symmetry is a sub-group of isospin symmetry, which exchanges members of an isospin
doublet, e.g. u and d, or p and n. It is easily confused with charge-conjugation symmetry, and
therefore directly referred to as isospin symmetry in this work.
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with the additional constraint that D⇡
+

ū = D⇡
+

d (D3 = D4). This 10 % e↵ect was ob-
served in both the LO and NLO fits. As noted by the authors, there is no particular
reason for this ratio to be a constant; the available data were simply insu�cient to
fit a more complex function. Other symmetry violating parameters were also ex-
plored, e.g., between the disfavored fragmentation functions D⇡

+

ū and D⇡
+

u , but the
fit was unable to either reveal or exclude other symmetry violations of similar size.
If this result truly reflects a 10 % isospin violation in the fragmentation process, it
is the first direct observation of a partonic ISV, and is considerably larger than the
1 % to 2 % e↵ects seen in hadronic masses [147]. As described in Refs. [145, 146],
10 % partonic ISV e↵ects are not excluded by current data or theoretical estimates,
but are at the upper limit of the calculations. In addition, these calculations are fo-
cused entirely on quantifying ISV e↵ects in the parton distribution functions; there
is little theoretical guidance in the area of fragmentation functions.

In fact, the large isospin violation favored by the DSS fit is driven primarily
by the (very preliminary) HERMES multiplicities, as they were the most accurate
SIDIS results available for identified hadrons. The possibility cannot be neglected
that the e↵ect is, at least in part, caused by an inaccuracy in the SIDIS factorization
assumption that is revealed at this level of precision. The cut 0.2 < z < 0.8 should
suppress the contamination by the target remnant, while avoiding the regions where
semi-exclusive production becomes dominant.

Practical access to the PDFs via SIDIS multiplicities is thus contingent on the
applicability of LO factorization Eq. (8.14), and consequently that the charge-
conjugation symmetry of the FFs within this framework, Eqs. (8.15) to (8.17),
holds to a su�cient degree of accuracy. Furthermore, the relatively unknown ISV
in the FFs might introduce a z-dependence in the results, mimicking the signature
of factorization breaking.

8.2.2 The Pion Yield Di↵erence Ratio and dv/uv

Leveraging the charge-conjugation symmetry relations Eqs. (8.15) to (8.17), one
can define a combination of charged pion cross sections on the proton and deuteron
that results in a near-cancellation of the FFs,

R⇡(z) ⌘ 2

R xmax

xmin
dx(�⇡+d � �⇡

�
d )

R xmax

xmin
dx(�⇡+p � �⇡�p )

� 1 (8.19)

=

R xmax

xmin
dx(�⇡+n � �⇡

�
n )

R xmax

xmin
dx(�⇡+p � �⇡�p )

, (8.20)

with the cross sections implicitly di↵erential in x and z. Invoking the aforemen-
tioned charge-conjugation symmetry relations Eqs. (8.15) to (8.17), and assuming
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isospin symmetry between the proton and neutron PDFs, R⇡ reduces to a simple
form at LO,

R⇡(z)
LO!

R
dxdQ2(uv � 4kdv + (s � s̄)ks)R
dxdQ2(dv � 4kuv + (s � s̄)ks)

, (8.21)

where the integral runs over the full available x- and Q2-range (cf. Fig. 4.3). The
PDFs in Eq. (8.21) depend on x and Q2, and

k(z,Q2) ⌘ D1 � D3

D2 � D4
, (8.22)

ks(z,Q2) ⌘ Ds,1 � Ds,2

D4 � D2
. (8.23)

The Q2 boundaries in Eq. (8.21) are discussed in Section 6.1. Because of the near-
equality of Ds,1 and Ds,2 in Eq. (8.17), and the very small size of (s � s̄) [148], the
impact of the (s � s̄)ks terms in Eq. (8.21) are negligible.

The relation Eq. (8.21) o↵er access to the valence quark PDFs,

4kR⇡ + 1
4k + R⇡

LO!
R

dxdQ2dvR
dxdQ2uv

. (8.24)

Assuming perfect isospin symmetry between the FFs, yields k = 1, removing the
need to explicitly input FFs in the extraction. The uncertainty introduced by this
assumption can be estimated by performing the extraction on multiplicities calcu-
lated with the DSS FFs (cf. Section 6.1), as the DSS extraction favored the ISV in
Eq. (8.18).

If the model assumptions involved in Eq. (8.24) are valid, not only should the
left-hand-side of Eq. (8.24) be independent of z, but the value for the integral over
the full x-range should be close to 1/2. The HERMES coverage in x (0.023 to 0.6)
spans almost the entire region of valence strength, and so the true ratio of valence-
down to valence-up should be recovered. Integrating current LO PDF sets over the
full range in x and Q2 gives a value of, (cf. Fig. 4.3 and Section 6.1)

R 0.6
0.023 dx

R Q2
max(x)

Q2
min(x) dQ2dv(x,Q2)

R 0.6
0.023 dx

R Q2
max(x)

Q2
min(x) dQ2uv(x,Q2)

⇡ 0.42. (8.25)

8.2.3 Results: dv/uv and Factorization Breaking

The measured result for the LO extraction of dv/uv (Eq. (8.24)) is presented as
a function of z in Fig. 8.6. The superimposed dashed curve shows the CTEQ6L
[37] value for Eq. (8.25). The solid blue curve is the result from the extraction
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Figure 8.6: Comparison of (4R⇡ + 1)/(4+R⇡) as a function of z (full circles) with a
LO calculation using CTEQ6L parton distributions [37] with fragmentation func-
tions from DSS [29] (solid curve). Also shown is

R
dxdv/

R
dxuv from CTEQ6L

(dash-dot line). The curves are integrated over the full range 0.023 < x < 0.6, as
well as the corresponding range in Q2 (cf. Section 6.1). The statistical uncertainty
is shown by the error bars, while the systematic uncertainty is given by the error
bands. Theoretical uncertainties on the LO calculations are not available.
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Eq. (8.24) from multiplicities calculated in LO from the DSS FFs in combination
together with PDFs from CTEQ6L (cf. Chapter 6). The z-dependence of this curve
is introduced by incorrectly assuming perfect isospin symmetry in the extraction,
instead of an ISV of 10 %, consistent with Eq. (8.18). This provides a measure for
the ISV-model dependence of the extraction.

Taking into account the systematic uncertainty, the measured result is in agree-
ment with both theory curves, except for the lowest values of z. In particular, the
discrepancy between the result for the lowest z-bin, and the dashed CTEQ6L curve,
is larger than 3�. The more realistic FF symmetry assumption in DSS, shown in
the blue solid curve, lessens this discrepancy somewhat, but even then, this point
strongly hints at problems with the extraction framework at low z.

Figure 8.7 presents the same results as a function of z in six x-bins. The ex-
tracted results deviate significantly at z < 0.3, while the results at mid-to-high z are
consistent with the LO predictions. With the available precision clearly pushed to
the limit in this comparison, it is hard to determine if the discrepancy shows any
x-dependence.

To better resolve the x-dependence, the extraction was repeated as a function
of x in four z-bins. The results from this study are presented in Fig. 8.8. The data
are consistent with a discrepancy at z < 0.3, independent of x.

It is instructive to view these results in light of the discussion regarding the
Berger criterion at HERMES in Section 8.1.3. This discrepancy has to occur at
some point, as the target remnant grows in importance at very low z. The lower
z-cut at 0.2 corresponds to a cut of ⌘CM > 0. At the W-range covered in HER-
MES, this is not su�cient to fully avoid contamination by the target remnant. This
implies that, when performing an extraction that is sensitive enough to the target
remnant, at a high enough level of precision, factorization breaking will occur.
Even in this very sensitive quantity, the only evidence towards factorization break-
ing at HERMES occurs at z < 0.3. In fact, the Berger criterion suggests that, for
pions at HERMES energies, ⌘CM > 0.9 completely avoids the target remnant. This
cut corresponds to approximately z > 0.3, consistent with the observations in this
section. Precocious scaling holds perfectly well for mid-do-high z.

Further evidence for the role of the target remnant in the observed factorization
breaking below z < 0.3 is given by the HERMES tuned Lund (LEPTO/JETSET
[105, 106]) Monte-Carlo generator [124]. The result for the LO extraction of dv/uv

(Eq. (8.24)) from this Monte Carlo as a function of z, is compared to the measured
results in Fig. 8.9. At higher values of z, the Lund model runs out of available phase
space, and therefore automatically breaks factorization. Hence, a z-dependence at
higher values of z is not unexpected. This is not unlike the expected issues for a
measurement in the semi-exclusive region at high values of z, the reason behind the
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Figure 8.7: Comparison of (4R⇡ + 1)/(4 + R⇡) as a function of z in six x-bins (full
circles) with a LO calculation using CTEQ6L parton distributions [37] with frag-
mentation functions from DSS [29] (solid curve). Also shown is

R
dxdv/

R
dxuv

from CTEQ6L (dash-dot line). The curves are integrated over the respective x-
range, as well as the corresponding range in Q2 (cf. Section 6.1). The statistical
uncertainty is shown by the error bars, while the systematic uncertainty is given by
the error bands. Theoretical uncertainties on the LO calculations are not available.
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z < 0.8 requirement for SIDIS at HERMES. At the other hand, because both the
simulation of the DIS process by LEPTO, as well as the simulation of the fragmen-
tation process by JETSET, perfectly obey the charge-conjugation symmetry and
isospin invariance used to derive Eq. (8.24), the z-dependence at lower values of z
has to be caused by the target remnant, which is simulated by JETSET. Therefore,
the Lund model predicts a signature for target remnant contamination in the form
of a strong drop in the results for the LO extraction of dv/uv (Eq. (8.24)) at low z.
While the Monte-Carlo simulation reproduces the measured results rather poorly
in magnitude, both simulation and measurement exhibit this strong slope at low z,
suggesting contamination by the target remnant at z < 0.3.

This measurement pushes the HERMES experiment to its limits, as exemplified
by the size of the systematic uncertainties, especially when compared to the statis-
tical uncertainties. The lesson to be drawn from this is that, to optimally leverage
the ultra-high statistics in future experiments, a sophisticated multi-dimensional
approach has to be taken. Such a fully di↵erential approach with small bin-sizes,
similar to what was done for this work, minimizes the dominant contributions to
the systematic uncertainty, and therefore maximizes the attainable experimental
precision.

Ultimately, rather than rigorously proved, the applicability of factorization at
intermediate energies can only be supported by the absence of experimental evi-
dence for factorization breaking.
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9 Neutral Pion Multiplicities

To constrain the fragmentation functions, data from single-inclusive e+e� annihila-
tion, semi-inclusive deep-inelastic scattering (SIDIS) and single-inclusive hadron
production in hadron-hadron collisions can be used (see e.g., Ref. [29]). The
amount of available observables is insu�cient to determine the FFs independently
for each quark flavor q and hadron h. Symmetry relations between FFs for similar
hadron types can be invoked to reduce this number to a more manageable set. For
example, charge conjugation symmetry is manifest in quantum chromodynamics
(QCD), and therefore automatically applies to the FFs. Typically, the FFs are also
assumed to be invariant under isospin rotations.

Isospin is only an approximate symmetry in QCD, as it is automatically broken
due to the di↵erence in rest-mass of the light quarks. For example, the isospin
symmetry violation in the parton distribution functions (PDFs) is estimated to be
of order 1 % to 2 %, although values several times larger are not excluded [145,
146]. Section 8.2.1 explained how the DSS compilation of FFs [29] favored a 10 %
ISV between the FFs that describe the production of charged pions (see Eq. (8.18)).

The three pions form an isospin triplet state [9],

⇡+ =
���ud̄

E
I3 = 1 (9.1)

⇡0 =
|uūi �

���dd̄
E

2
I3 = 0 (9.2)

⇡� = |dūi I3 = �1, (9.3)

allowing for a more straightforward study of the isopsin symmetry in the FFs. In
the case of perfect isospin invariance, the fragmentation functions describing pion
production obey the relation [149–152],

D⇡
+

q (z,Q2) + D⇡
�

q (z,Q2) = 2D⇡
0

q (z,Q2), (9.4)

for a each quark flavor q. Hence, the SIDIS multiplicity for neutral pions is pre-
dicted to be equal to the average of those for positive and negative pions. Results
from ⌫Ne-scattering at BEBC [153] and µp-scattering at EMC [77] are consistent
with this symmetry assumption. It should be noted that the relation Eq. (9.4) is
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expected to be correct to approximately the 3 % level, due to the mass di↵erence
between ⇡0 and ⇡±,

M⇡0

M⇡±
⇡ 135 MeV

139.6 MeV
⇡ 0.967! 3.3 %. (9.5)

Additionally, pions originating from exclusive ⇢0 production, a process that com-
petes with SIDIS (see Section 4.7), strongly violate this symmetry in the kinematic
regions where they become a dominant contribution to the cross section [112, 114].

Figure 9.1 presents HERMES results from an earlier publication on neutral
pion production [78], which are extracted from the pre-2000 data sample. The top
panel compares the neutral (circles) to the average charged (triangles) multiplic-
ities, and the bottom panel shows the ratio between both. The multiplicities are
consistent with isospin invariance below z ⇠ 0.7. It was suggested that this dis-
crepancy at high z might be explained by radiative smearing, the limited detector
resolution and exclusive processes. The extraction used a simple set of correction
factors to account for the limited acceptance and radiative e↵ects. Contrary to the
smearing-unfolding technique approach, a set of multiplicative corrections does
not account for the convolution between both e↵ects (cf. Section 4.6). This chap-
ter revisits the neutral pion analysis, leveraging the much larger 2000-2005 data
sample, as well as the improved extraction techniques that were developed for the
charged pion and kaon measurements presented in this work.

9.1 Measurement of the ⇡0 Yield

The ⇡0 has a mean life time of ⌧ = (8.52 ± 0.18) ⇥ 10�17 s, It decays with a 98.8 %
branching ratio into a photon pair ⇡0 ! �� [9]. While Chapter 4 forms a good
starting point for the ⇡0 extraction, the event reconstruction procedures, detec-
tion e�ciencies and background corrections di↵er significantly from that for the
charged pions and kaons.

The neutral pion yields for each kinematic bin are measured by means of the
invariant mass M�� spectrum of the two-photon system,

M�� =

s

4E�1 E�2 sin2
 
✓�1�2

2

!
. (9.6)

The requirement that each of these spectra be su�ciently resolved, necessitates a
relatively high amount of events per bin. Furthermore, the detection e�ciency for
measuring the ⇡0 decay photons in coincidence with the scattered lepton is an order
of magnitude smaller than that for the charged pions. The extraction is therefore
performed with a one-dimensional binning in z only, given in Table 9.1. Systematic
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Q

2 [GeV2] > 1
x 0.023–0.6
z 0.1–0.15–0.2–0.25–0.3–0.4–0.5–0.6–0.7–0.8–1.1
Ph? [GeV] 0.0–1.2

Table 9.1: One-dimensional binning versus z for the ⇡0 analysis.

1. Calorimeter position
|xcal| < 125 cm
|ycal| > 33 cm
|ycal| < 105 cm

2. Energy E� > 1 GeV

3. Detector half y�1 · y�2 > 0

Table 9.2: Photon selection

e↵ects due to this one-dimensional binning are expected to be acceptable because
of the weaker dependence of the multiplicities on x, Q2 and Ph?, compared to z.

Neutral particle reconstruction at HERMES is accomplished through the mea-
surement of electromagnetic showers in the lead-glass calorimeters, that have no
associated charged track. This allows for the reconstruction of the energy E� of the
photon candidate, as well as the coordinates (xcal, ycal) of the shower center at the
calorimeter surface (zcal = 747.5 cm) [94]. The photon selection criteria are given
in Table 9.2. For an accurate energy measurement, the entire photon shower has to
be contained inside the calorimeter, requiring more strict cuts than those applied to
charged particles (cf. Table 4.2b). The ⇡0 decay vertex is equal to the primary scat-
tering vertex within the experimental resolution, due to the extremely short decay
length c⌧ = 25.5 nm.

This fully constrains the four-momentum of the detected photon. Applying
Eq. (9.6) to all possible photon pairs yields the invariant mass of the ⇡0 candidates.
In order to avoid discontinuities in the detector acceptance caused by the gap be-
tween both spectrometer halves, only pairs within the same half are considered.
This requirement reduces the background by 50 % at low z, without reducing the
reconstructed ⇡0 yield by more than 0.5 %.

Figure 9.2 shows the two-photon invariant mass spectra for three di↵erent z-
bins. The ⇡0 decay width is much smaller than the observed width of the signal
peak, which is therefore fully caused by the calorimeter resolution. Consequently,
a Gaussian distribution provides a good description of the signal. Taking into ac-
count the combinatorial background, the combination of a Gaussian and Weibull
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distribution,

N⇡
0
�Mp

2⇡�2
exp

0
BBBB@
�(M�� � M)2

2�2

1
CCCCA + P3(M�� � P4)P5 + exp(P6M��), (9.7)

with �M the bin width of the invariant mass histogram, describes the invariant mass
spectrum near the ⇡0 peak even more accurately. The Gaussian parameters N⇡

0 , M
and � correspond to, respectively, the ⇡0 yield, the reconstructed ⇡0 mass and the
calorimeter resolution. The start position of the Weibull distribution, given by P4,
is fixed to 0.0004 GeV. The solid red curve in Fig. 9.2 shows the result of a �2-fit
of Eq. (9.7) to the invariant mass spectrum in three sample z-bins, restricted to the
range 0.06 GeV < M�� < 0.22 GeV. The background estimate is given by the
dashed green curve, while the shaded area indicates the reconstructed ⇡0 yield.

9.2 Corrections

The extraction of Born-level ⇡0 multiplicities mirrors Chapter 4 exactly, except for
the yield reconstruction described in Section 9.1.

The contamination of the charged pion yields due to the exclusive production
of ⇢0 mesons, and their subsequent decay to ⇡+⇡�, strongly violates the isospin
relation 2�⇡0

= �⇡
+
+�⇡�, as there is no similar contribution to the ⇡0 yield [112].

It is therefore necessary to subtract the contribution by exclusive vector mesons
when testing the relation Eq. (9.4).

The dominant exclusive contribution to the ⇡0 yield comes from the ! !
⇡+⇡�⇡0 and ! ! ⇡0� channels The subtraction procedure from Section 4.7 ac-
counts for exclusive ! production. The resulting correction on the ⇡0 cross section
is approximately 1 % to 2 %, never exceeding 5 %.

9.3 Systematic Uncertainties

The extraction of high-precision neutral pion multiplicities was not the primary
goal of this work. A conservative estimate of the systematic uncertainty is there-
fore su�cient, instead of the precisely controlled systematic uncertainties on the
charged pion and kaon multiplicities (cf. Section 4.9). The separate contributions
are described below; addition in quadrature yields a total systematic uncertainty of
about 7.8 %. This is significantly larger than the the systematic uncertainty on the
charged pions, which ranges between 1 % to 4 % as a function of z (see Fig. 5.1).
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Figure 9.2: Invariant mass M�� spectrum of two-photon events in the calorimeter,
for three di↵erent z-bins. The solid red curve is obtained through a �2-fit to the
spectrum, as described in the text. The dashed green curve shows the estimated
background contributions to the spectrum. The shaded area corresponds to the
measured ⇡0 yield.
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9.3.1 Background Subtraction

The measured ⇡0 yields should not strongly depend on the choice of parameteri-
zation to describe the combinatorial background, nor should they depend on the
specific range in M�� that is fit. To verify this, the invariant mass fits were repeated
with two- and three-dimensional polynomials instead of the baseline Weibull distri-
bution. Additionally, the fit range was expanded to 0.05 GeV < M�� < 0.40 GeV.
The resulting variations do not exceed 2 %.

9.3.2 Calorimeter Calibration and Cluster Position

The two-photon invariant mass spectrum is typically found to be centered at M⇡0 =

(133 ± 1) MeV, as is illustrated in Fig. 9.2. This constitutes a 1.5 % di↵erence from
the value M⇡0 = (134.9766 ± 0.0006) MeV provided by the Particle Data Group
[9].

The lead-glass calorimeter blocks are calibrated by means of an iterative proce-
dure, which leverages the relation E/p = 1 between the electron energy deposition
E in the calorimeter, and the electron momentum p from the standard tracking
algorithm [94]. However, the decay photons from SIDIS ⇡0 production carry sub-
stantially less energy than the calibration particles. The position of the ⇡0 invariant
mass peak in SIDIS has been found to change over the calorimeter surface, strongly
correlating to the distribution of the calibration leptons, an artifact of this extrapola-
tion. It should be noted that this problem is absent for ⇡0 from exclusive processes,
which have much higher energies, similar to that of the calibration leptons. Work
to improve the calorimeter precision at lower energies is currently ongoing, includ-
ing a re-evaluation of the photon shower profile and the e↵ects of the lead curtain
in front of preshower hodoscope (cf. Fig. 3.3).

A shift in the calorimeter energy leads to a slight shift in z = E⇡0/⌫, which
changes the measured ⇡0 kinematic distribution. Unfortunately, these issues are
not exactly reproduced by the calorimeter simulation that is used for the HER-
MES Monte-Carlo. Hence, the issue survives the smearing-unfolding correction,
influencing the Born-level multiplicities. To estimate the impact, the extraction
was repeated with a calorimeter energy scaled with factors ranging between 0.95
to 1.05. Additionally, the geometrical z-position of the cluster was also changed
over a range of �20 cm to 20 cm surrounding the standard position. This resulted
in variations of up to 6% in the measured yield. This is the dominant contribution
to the systematic uncertainty.
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9.3.3 Azimuthal Asymmetries in the Unpolarized Cross Section

The approach from Section 4.9.2 cannot be taken here, as, at the time of writing,
there exists no parametrization of the cos � and cos 2� moments for ⇡0 production.
In light of the recent HERMES measurement for the azimuthal modulations of the
unpolarized SIDIS cross section for charged pions and kaons [102], the e↵ects on
the ⇡0 extraction can be assumed to lie between those for the ⇡+ and ⇡�. For ⇡+

in a one-dimensional projection versus z, the systematic uncertainty was be about
1 %, while the value for ⇡� is much smaller (cf. Fig. 4.14). The contribution to the
systematic uncertainty was therefore estimated to be 1 %.

9.3.4 Monte-Carlo Model Dependence

The JETSET parameter scan from Section 4.9.3 is repeated for the ⇡0 extraction,
resulting in a systematic uncertainty of 4 %.

9.3.5 Time Stability

This systematic uncertainty is estimated using the approach from Section 4.9.4. Its
value does not exceed 2 %. It should be noted that a t-test reveals the 2000, 2004
and 2005 samples for both proton and deuteron targets to be (barely) consistent
within a 95 % confidence level.

9.4 Neutral Pion Results

Figures 9.3 and 9.4 present the results of the ⇡0 extraction on respectively a proton
and deuteron target. The neutral pions are shown as full circles. The average
charged multiplicities have been extracted with the one-dimensional ⇡0 binning
described in Table 9.1 (full squares), as well as with the standard three-dimensional
binning described in Table 4.5a (empty squares). The di↵erence between both
results was found to be negligible.

The ratio 2M⇡
0
/(M⇡

+
+ M⇡

�) in the bottom panels is consistent with isospin
invariance in the low-to-mid z-range (z < 0.7). The values range between (1.098 ±
0.018 ± 0.088) at z = 0.22 and (0.841 ± 0.021 ± 0.068) at z = 0.75. The results
below z < 0.7 are consistent with both unity as well as a modest ISV of the order
of 3 % (cf. Eq. (9.5)), without favoring either. At higher z, the multiplicity for
charged pions is larger than for neutral pions. Figure 9.5 compares the new values
for the ratio (full triangles) to those previously published in Ref. [78] (empty stars).
Both measurements agree with each other within their statistical uncertainties. The
additional point at z = 0.88 in Fig. 9.5 shows a large discrepancy from unity, with a
value of (0.507±0.009±0.041). This high-z behavior, observed in both the old and
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Figure 9.3: Neutral (circles) and average charged (squares) pion multiplicities o↵
the proton as a function of z. The average charged multiplicities have been ex-
tracted with the one-dimensional binning described in Table 9.1 (full squares), as
well as with the standard three-dimensional binning described in Table 4.5a (empty
squares). Statistical error bars are too small to be visible. The systematic uncertain-
ties for the neutral (average charged) pions is 7.8 % (2 % to 4 %). The bottom pan-
els show the ratio of neutral to average charged multiplicities 2M⇡

0
/(M⇡

+
+ M⇡

�).
The systematic uncertainty on the ratio is 8 %.

130



M
ul

tip
lic

ity

-110

1

deuteron

/�

(/

�/<)2��(1D extracted)
(/

�/<)2��(3D extracted)

z
0.2 0.4 0.6 0.8

R
at
io

0.6

0.8

1

1.2

1.4

Figure 9.4: Neutral (circles) and average charged (squares) pion multiplicities o↵
the deuteron as a function of z. The average charged multiplicities have been ex-
tracted with the one-dimensional binning described in Table 9.1 (full squares), as
well as with the standard three-dimensional binning described in Table 4.5a (empty
squares). Statistical error bars are too small to be visible. The systematic uncertain-
ties for the neutral (average charged) pions is 7.8 % (2 % to 4 %). The bottom pan-
els show the ratio of neutral to average charged multiplicities 2M⇡
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The systematic uncertainty on the ratio is 8 %.
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Figure 9.5: Comparison of the ratio of neutral to average charged multiplicities
2M⇡

0
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�) for a proton target, presented in this chapter (full triangles), to
those previously published by HERMES in Ref. [78] (empty stars). Also shown
are the new results without the correction for exclusive vector mesons (empty tri-
angles). Statistical error bars on the new points are too small to be visible. The
systematic uncertainty is 8 % for the new points and 6 % for the old points.

new results, can be attributed to a growing contribution from exclusive processes
(cf. Section 4.7). In fact, the highest z-bin (0.8 < z < 1.1) contains the z ⇠ 1
region. The ISV-breaking contribution due to pions from the decay of exclusive ⇢0,
the dominant exclusive channel for this analysis [112, 114], is explicitly subtracted.
The empty triangles on Fig. 9.5 show that, without this correction, the ratio at high
z drops further, yielding (0.731±0.018±0.06) at z = 0.74 and (0.339±0.006±0.27)
at z = 0.88.

It should be noted that, while the statistical precision of the new extraction
has been greatly improved compared to Ref. [78] due to the much larger data
sample used for the extraction, the systematic uncertainty is comparable in size.
An improved calorimeter calibration, for example by using the ⇡0 invariant peak
at lower energies (E ⇠ 2 GeV) as an additional constraint, would strongly enhance
the precision of this measurement.

To conclude, the ratio of neutral to average charged pion multiplicities is con-
sistent with isospin invariance in the typical SIDIS region (0.2 < z < 0.7). Addi-
tionally, the results from the very di↵erent extractions for ⇡0 and ⇡± at HERMES
are shown to be internally consistent with each other.
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