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Abstract

We study the role of the cosmological constant in different theories with finite space-

time. The cosmological constant appears both as an initial condition and as a constant

of integration. In the context of the cosmological constant problem a new model will be

presented. This modification of general relativity generates a small, non-vanishing cosmo-

logical constant, which is radiatively stable. The dynamics of the expansion of the universe

in this model will be analyzed. Eventually, we try to solve the emergent problems con-

cerning the generation of accelerated expansion using a quintessence model of dark energy.

Zusammenfassung

Wir studieren die Rolle der kosmologischen Konstante in verschiedenen Theorien mit

endlicher Raumzeit. Die kosmologische Konstante tritt sowohl als Anfangsbedingung,

als auch als Integrationskonstante auf. Im Kontext des Problems der kosmologischen

Konstante wird ein neues Modell präsentiert. Diese Modifizierung der allgemeinen Rela-

tivitätstheorie generiert eine kleine, nichtverschwindende kosmologische Konstante, welche

stabil gegenüber Strahlungskorrekturen ist. Die Dynamik der Expansion des Univer-

sums wird in diesem Modell untersucht. Schließlich versuchen wir das auftretende Prob-

lem bezüglich der Erzeugung von beschleunigter Expansion mit Hilfe eines Quintessenz-

Modells der Dunklen Energie zu lösen.
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1 Introduction

The cosmological constant problem is a fundamental issue in modern physics [1,2,3]. Ba-

sically it means that we are not able to predict the small, but non-vanishing value of the

cosmological constant using quantum field theory (QFT).

A lot of reviews are covering this subject [3, 4, 5, 6, 7]. The cosmological constant was

originally introduced by Einstein to generate a static solution for our universe. Hubble’s

discovery of the expansion of the universe made Einstein to abandon this idea. But it

is not possible to just drop the cosmological constant because any contribution to the

vacuum energy acts like such a term. From Lorentz invariance one gets that the energy

momentum tensor of the vacuum energy has the following form Tµν = −ρvacgµν . Con-

sidering the Einstein field equations shows that one can define an effective cosmological

constant as Λeff = Λ + 1
M2

Pl
ρvac. In the following a bare cosmological constant refers to

Λ. After the discovery of the accelerated expansion of the universe the concept of non-

vanishing cosmological constant is highly attractive, because this term easily implements

the observed acceleration. But the identification of the cosmological constant with the

vacuum energy, which is well motivated from particle physics, fails. Unfortunately, field

theoretical predictions for the vacuum energy do not match with the measured value for

the cosmological constant at all. The value of the vacuum energy density from cosmolog-

ical observation is ρvac ' 10−48 GeV4 (see [5] for further details). But the field theoretical

calculation yields

ρvac =

∫ λ

0

4πk2dk

(2π)3

1

2

√
k2 + m2 ' λ4

16π2
. (1.1)

This gives, if we trust general relativity up to the Planck scale (λ = MPl) ρvac ' 1072 GeV4.

The ratio of these two numbers gives the famous discrepancy of 120 orders of magnitude.

If we take λQCD as the cutoff for the integral we obtain ρvac ' 10−6 GeV4. Still, 42 orders

of magnitude apart from the desired result. To understand the cosmological constant as a

UV-divergent quantity allows some more insight. These have to be renormalized in QFT.

Their value cannot be predicted, but it must be measured like the quadratically divergent

mass of a scalar field. The bare cosmological constant contribution can be interpreted

as a counterterm for the vacuum energy. In this picture the procedure is the following:

First one regulates ρvac using a cutoff, then one adds Λ to subtract the UV-sensitive con-

tributions from ρvac and finally Λ is tuned such that Λeff agrees with the observed value.
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But these considerations are not perturbatively stable. If one fixes ρvac and Λ up to a

certain order in perturbation theory such that Λeff matches with the observation and then

considers the next order, one has to alter the initial conditions dramatically in order to

save the agreement. Thus the small value of Λeff is radiatively unstable.

The problem gets even worse, if one takes contributions from cosmological phase transi-

tions, e.g. the electroweak phase transition, to the cosmological constant into account.

In principle one can tune the parameters such that these contributions cancel. But the

setup becomes more and more unnatural.

The introduction of supersymmetry has an impact on the cosmological constant problem.

Introducing the superpartners to the standard model particles leads to an equal number

of bosonic and fermionic states. Thus, the vacuum energy contributions from bosons and

fermions cancel exactly, when supersymmety is unbroken. Apparently, supersymmety

must be broken in our universe. For a breaking scale MSUSY one expects a vacuum energy

of order ρvac ∼ M4
SUSY . That we have not seen any supersymmetric particles in the accel-

erator experiments implies MSUSY ∼ TeV or even higher. This yields a vacuum energy,

which is still off by far.

Different ways to understand the cosmological constant are needed than the common as-

sumption that the energy density induced by quantum fluctuations is equivalent to the

cosmological constant. Especially those approaches, which do not consider the determi-

nant of the metric as a dynamical variable, are of main interest for this thesis. In such

theories spacetime is finite and the cosmological constant appears in different contexts,

as we will see in the following. These theories go under the name of unimodular grav-

ity [8, 9, 10,11].

A recent modification of general relativity, proposed by N. Kaloper and A. Padilla [12,13],

called the KP model in the following, will be studied. It offers new perspectives for the

interpretation of the cosmological constant. The most interesting feature of this theory

is that it gets rid of the quantum corrections for the cosmological constant and explains

why it is small in sufficiently large and old universes. For the model it is necessary that

spacetime is finite, i.e. the universe will recollapse in the future. To match the observa-

tions the model has to combine accelerated expansion and finite spacetime. If it is not

possible to accomplish both tasks the presented model seems to be questionable.

Starting from this setup, our own investigations begin in section 5.5. We find that ac-

celerated expansion generated by a bare cosmological constant is not possible in the KP

model. Thus, a dark energy model will be introduced, which generates accelerated ex-

pansion using a scalar field. Subsequently, we build a model in Einstein gravity, which is

compatible with the observed cosmological parameters. To understand the dynamics of

the quintessence model in a closed universe, we solve it numerically. Quintessence is the

dark energy model we use. Considering the KP model in terms of the quintessence model
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suggests that it is possible to generate accelerated expansion with this approach. The

accelerated expansion seems not to stop eventually. This would violate the condition that

spacetime has to be finite for the KP model to be consistent with the observations. Thus,

our considerations and calculations indicate that there is some tension within the model.

But these results are preliminary and have to be confirmed by further considerations.

This work is organized as follows. First some basics of general relativity and cosmology

will be reviewed. In chapter 3 it will be shown, that restricted coordinate invariance is

sufficient to get the theory of general relativity [11]. The cosmological constant appears

in this approach as an initial condition. Unimodular gravity will be introduced in chapter

4 and the corresponding equations of motion are derived with variational methods. The

cosmological constant shows up as an constant of integration in this case. The KP model

is presented in chapter 5. We derive the Friedmann equations in this model and analyze

them. Since accelerated expansion generated by a cosmological constant is not possible,

the quintessence model will be introduced in chapter 6. We construct a model for a

closed universe using quintessence in Einstein gravity and solve it numerically. Finally,

we try to incorporate the dark energy model in the KP model. In the last chapter the

main results will be summarized and we give an outlook on possible further investigations.





2 Standard cosmology

Reformulations and modifications of general relativity (GR) and consequently alternative

cosmologies are an important subject of this thesis. Therefore it is useful to review

some basics of Einstein gravity and Friedmann-Robertson-Walker (FRW) cosmology. The

appearing quantities are introduced to set the stage for this work. The review part is

mostly based on the textbooks [14,15,16].

This work mainly follows the conventions of [15]. In particular we use the mostly plus

sign convention for the metric (−, +, +, +). It is convenient to use natural units, where

the reduced Planck constant ~, the speed of light c and the Boltzmann constant k equal

~ = c = k = 1. (2.1)

Lorentz indices are displayed by small Greek letters, e.g. µ, ν = 0, 1, 2, 3, and spatial

indices by Latin letters, e.g. i, j = 1, 2, 3. In addition, we use the Einstein summation

convention by implicitly summing over repeated indices. The Planck mass is denoted by

mPl and the reduced Planck mass by MPl = mPl√
8π

.

2.1 Basics of general relativity

The equation of motion of a freely falling particle with coordinates ξµ is

d2ξµ

dτ 2
= 0, (2.2)

where dτ is the proper time

dτ 2 = −ηµνdξµdξν (2.3)

and ηµν the Minkowski metric

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (2.4)
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Transforming the equation of motion to an arbitrary coordinate system xµ yields the

geodesic equation
d2xρ

dτ 2
+ Γρ

µνdxµdxν = 0, (2.5)

with the coefficients of the affine connection, called the Christoffel symbols

Γρ
µν =

∂xρ

∂ξα

∂2ξα

∂xµ∂xν
. (2.6)

The proper time, which is equal to the length of a line element in natural units, reads in

an arbitrary coordinate system with coordinates xµ

ds2 = −gµνdxµdxν (2.7)

and the metric tensor

gµν =
∂ξα

∂xµ

∂ξβ

∂xν
ηαβ. (2.8)

The Christoffel symbols can be expressed in terms of the metric

Γρ
µν =

1

2
gρλ(∂µgλν + ∂νgµλ − ∂λgµν). (2.9)

They also appear in the covariant derivative

∇νV
µ = ∂νV

µ + Γµ
νλV

λ, (2.10)

∇νVµ = ∂νVµ − Γλ
µνVλ. (2.11)

Note that the metric tensor gµν is covariantly conserved ∇λgµν = 0.

The Riemann curvature tensor is defined as

Rρ
σµν = ∂µΓρ

νσ − ∂νΓ
ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ (2.12)

and the torsion tensor (which is zero for the connection defined above, since we are

considering general relativity as torsion-free) is

T λ
µν = 2Γλ

[µν]. (2.13)

Both quantities appear in the following commutator

[∇µ,∇ν ]V
ρ = Rρ

σµνV
σ − T λ

µν∇λV
ρ. (2.14)



2.2 Basics of FRW cosmology 15

The contraction of the Riemann tensor is called the Ricci tensor

Rσν = Rλ
σλν (2.15)

and the further contraction with the metric tensor is called the Ricci scalar

R = gσνRσν = Rν
ν . (2.16)

The Riemann tensor has the following symmetries

Rρσµν = Rµνρσ, (2.17)

Rρσµν = −Rσρµν = −Rρσνµ = Rσρνµ, (2.18)

Rρσµν + Rρνσµ + Rρµνσ = 0 (2.19)

and satisfies the Bianchi identities

∇ηRρσµν + ∇νRρσηµ + ∇µRρσνη = 0, (2.20)

∇µ

(
Rµν − 1

2
gµνR

)
= ∇µG

µν = 0. (2.21)

2.2 Basics of FRW cosmology

The assumption that the universe is isotropic and homogeneous is the foundation of this

model. Accordingly, the FRW metric has the form

ds2 = −dt2 + a(t)2

(
dr2

1 − kr2
+ r2

(
dθ2 + sin2 θdφ2

))
(2.22)

and is invariant under the transformations like a → λ−1a, r → λr, k → λ−2k. Thus, we

can choose a normalization such that k takes the discrete values k = (−1, 0, +1). (k = −1

corresponds to an open, k = 0 to a flat and and k = +1 to a closed universe.) For some

applications it is more convenient to use the following normalization

ds2 = −dt2 + a′(t)2

(
dr′2

1 − κr′2
+ r′2

(
dθ2 + sin2 θdφ2

))
. (2.23)

The parameter κ = k
R2

0
describes the geometry of the spacetime, has dimension (length)−2

and can take any value. (κ < 0 corresponds to an open, κ = 0 to a flat and and κ > 0

to a closed universe.) In this convention a′(t) = a(t)
R0

is the dimensionless scale factor and

r′ = R0r the radial coordinate with dimension length. In the following the prime will be

dropped and the normalizations can be distinguished by use of k or κ.



16 2 Standard cosmology

The Einstein field equations yield the dynamics of the universe

M2
PlGµν = M2

Pl

(
Rµν −

1

2
gµνR

)
= Tµν , (2.24)

with a cosmological constant included

M2
Pl

(
Rµν −

1

2
gµνR + Λgµν

)
= Tµν . (2.25)

. Using the FRW metric one can decompose the Einstein field equations and obtains the

Friedmann equations. For this purpose we need to express the Einstein tensor Gµν in

terms of the FRW metric. The Ricci tensor now reads [14]

Rµν =


−3 ä

a
0 0 0

0 2κ+2ȧ2+aä
1−kr2 0 0

0 0 r2 (2(κ + ȧ2) + aä) 0

0 0 0 r2 sin2 θ (2(κ + ȧ2)aä)

 (2.26)

and the Ricci scalar is

R =
6(κ + ȧ2 + aä)

a2
. (2.27)

Consequently the Einstein tensor takes the form

Gµν =


3(κ+ȧ2)

a2 0 0 0

0
−(κ+ȧ2+2aä)

1−κr2 0 0

0 0 −r2 (κ + ȧ2 + 2aä) 0

0 0 0 −r2 sin2 θ (κ + ȧ2 + 2aä)

 . (2.28)

In order to extract the first Friedmann equation consider the (0,0)-component of the

Einstein field equations. This leads to the following relation

M2
Pl

(
3 (κ + ȧ2)

a2

)
= T00. (2.29)

Assume the energy-momentum tensor for a perfect fluid

Tµν = (ρ + p) uµuν + pgµν , (2.30)
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where uµ is the 4-velocity (Choosing the time frame yields uµ = (1, 0, 0, 0).), T00 = ρ the

energy density and p the corresponding pressure. Plugging in gives

H2 =

(
ȧ

a

)2

=
1

3M2
Pl

ρ − κ

a2
, (2.31)

where H is the Hubble-parameter. To derive the second Friedmann equation one needs

to consider the (i,j)-component of the corresponding Einstein field equations

M2
Pl

(
−(κ + ȧ2 + 2aä)

a2

)
gij = pgij (2.32)

⇐⇒ −
(

ȧ

a

)2

− 2
ä

a
=

1

M2
Pl

p +
κ

a2
. (2.33)

Adding the first Friedmann equation (2.31) yields the second Friedmann equation

ä

a
= − 1

6M2
Pl

(ρ + 3p) . (2.34)

If one includes a cosmological constant Λ the Friedmann equations become

H2 =

(
ȧ

a

)2

=
1

3M2
Pl

ρ +
Λ

3
− κ

a2
, (2.35)

ä

a
= − 1

6M2
Pl

(ρ + 3p) +
Λ

3
. (2.36)

Starting from the first Friedmann equation and using the covariant conservation of the

energy-momentum (∇µT
µν = 0 as a consequence of Bianchi identity applied to the Ein-

stein field equations) one gets the second Friedmann equation. In terms of FRW cosmology

one has

− 3a2p =
d

da

(
a3ρ
)

⇐⇒ ρ̇ + 3
ȧ

a
(ρ + p) = 0, (2.37)

which is sometimes called the continuity equation. Imposing an equation of state for a

perfect fluid p = wρ, one finds
ρ̇

ρ
= −3(1 + w)

ȧ

a
. (2.38)

If w is constant, integration gives

ρ ∝ a−3(1+w). (2.39)

The range of values for w is bounded due to the Null Energy Condition (see appendix B).

This implies |w| ≤ 1. Now we discuss the different components of the cosmological fluid.
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• Matter:

ρM ∝ a−3, pM = 0 (2.40)

Collisionless, non-relativistic particles, which have zero pressure (dust). The energy

density falls off due to the expansion of the universe.

• Radiation:

ρR ∝ a−4, pR =
1

3
ρR (2.41)

The energy density falls off due to the expansion of the universe and additionally

due to the redshift.

• Vacuum:

ρΛ ∝ a0, pΛ = −ρΛ (2.42)

The energy density is constant despite the expansion. It tends to dominate the

energy density of an open or flat universe for late times. Anti-de Sitter and de

Sitter space are vacuum dominated solutions.

The first Friedmann equation can be rewritten in terms of the dimensionless density

parameter Ω = ρ
ρc

, where ρc = 3H2M2
Pl is the critical density. Now, the geometry of the

universe is determined by the value of Ω:

Ω < 1 → k = −1 ⇐⇒ κ < 0 (2.43)

Ω = 1 → k = 0 ⇐⇒ κ = 0 (2.44)

Ω > 1 → k = +1 ⇐⇒ κ > 0 (2.45)

One can rewrite the Friedmann equation using the density parameter

Ω − 1 =
κ

H2a2
. (2.46)

To solve the Friedmann equation we need to specify the different components ρi, which

contribute to the total energy density ρ. Knowing the equations of state pi = pi(ρi) and

the spatial curvature κ renders the Friedmann equation solvable. The solution describes

the whole evolution of the scale factor a(t). Assuming that the different components of

the energy density evolve as power laws

ρi = ρi,0a
−ni (2.47)

leads to

wi =
1

3
ni − 1 (2.48)

for the equation-of-state parameters.
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source wi ni

matter 0 3

radiation 1
3

4

curvature −1
3

2

vacuum −1 0

The curvature term can be expressed in a similar way defining ρκ = −3M2
Plκ

a2 and Ωκ =

− κ
H2a2 . The Friedmann equation then becomes

H2 =

(
ȧ

a

)2

=
1

3M2
Pl

∑
i

ρi (2.49)

and if one divides by H2

1 =
∑

i

Ωi ⇐⇒ Ωκ = 1 − Ω. (2.50)

The solution of the Friedmann equation, which is dominated by one fluid, is easily obtained

for the general case ρ ∝ a−n (κ = 0)

ȧ ∝ a1−n
2 , (2.51)

thus

a ∝ t
2
n . (2.52)

This means for matter domination a ∝ t
2
3 and for radiation domination a ∝ t

1
2 .

2.3 Friedmann equations in closed spacetime

To understand the dynamics of the universe, consider the Friedmann equations in Einstein

gravity. These are (2.31) and (2.34), but in this case we use the alternative normalization

(2.22) of the FRW metric
ä

a
= − 1

6M2
Pl

(ρ + 3p) , (2.53)

H2 =

(
ȧ

a

)2

=
1

3M2
Pl

ρ − k

a2
. (2.54)

Because we are interested in the cosmological constant in theories with finite spacetime,

we will analyze the dynamics of a closed universe (k = +1) in full detail. The main

difference to flat and open universes (k = 0, k = −1) is that a recollapse can happen. In

this case the Big Bang is followed by a Big Crunch. We start with the first Friedmann
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equation for a closed universe

H2 =

(
ȧ

a

)2

=
1

3M2
Pl

ρ − 1

a2
. (2.55)

For a Bang/Crunch scenario we need an initially increasing a(t) reaching a maximum,

followed by a decrease. This implies that there is a t0 such that ȧ(t0) = 0 and ä(t0) <

0. The first condition can be satisfied because the two terms on the right-hand-side of

equation (2.55) have opposite signs. This would not be possible in theories with a flat

or open universe. For the second condition we consider the second Friedmann equation,

which contains the second time derivative of the scale factor. Thus the right-hand side

of (2.53) has to be smaller than zero. This is always satisfied, if the fluid component

satisfies p > −ρ
3
. Therefore a Bang/Crunch scenario is not possible, if the theory includes

a cosmological constant, with p = −ρ . After the start of a phase of accelerated expansion

induced by a non-zero positive cosmological constant, it will continue forever even in a

closed universe.

In order to understand the dynamics of a closed universe better, an explicit solution

for a radiation dominated universe will be presented. For such explicit calculations it is

convenient to introduce the conformal time τ , which is defined as

dt = dτa(τ). (2.56)

The second Friedmann equation in conformal time reads

a′2 =

(
da

dτ

)2

=
1

3M2
Pl

ρa4 − ka2. (2.57)

Applying d
dτ

and using ρ̇ + 3H (ρ + p) = 0 (2.37) one gets

a′′ =
1

6M2
Pl

(ρ − 3p) a3 − ka. (2.58)

Alternatively, one can transform the derivatives in the Friedmann equations using con-

formal time and combine them to get the same result

ẋ =
dx

dτ

dτ

dt
=

x′

a(τ)
, (2.59)

ẍ =
d

dt

dx

dt
=

d

dt

(
dx

dτ

dτ

dt

)
=

d

dt

(
x′

a(τ)

)
(2.60)

=
dτ

dt

d

dτ

(
x′

a(τ)

)
=

x′′

a(τ)2
− a′(τ)x′

a(τ)3
. (2.61)
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Equation (2.58) simplifies a lot for radiation domination (p = ρ
3
).

a′′ + ka = 0 (2.62)

For a closed universe (k = 1) the solution simply reads

a(τ) = a0 sin(τ), (2.63)

where a0 is a constant of integration and using the condition a(τ = 0) = 0. Integrating

the defining relation for the conformal time dt = dτa(τ) yields the physical time

t = (1 − cos(τ)) . (2.64)

Combined we get an explicit solution

a(t) = a0 sin

(
arccos

(
1 − t

a0

))
, (2.65)

which is shown in the figure 2.1 and describes a recollapsing universe.

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

t

aHtL

Figure 2.1: Time evolution of the scale factor a(t) in a closed, radiation dominated universe
with a0 = 1





3 General relativity from restricted

coordinate invariance

This chapter presents basically the idea of W. Buchmüller and N. Dragon that invariance

under general coordinate transformations is not necessary to derive the quantities, which

appear in general relativity. Invariance under restricted coordinate transformations is

sufficient [11].

3.1 Constructing the Lagrangian

Consider an infinitesimal coordinate transformation

xµ → x′µ = xµ − εµ ⇐⇒ xµ = x′µ + εµ. (3.1)

This implies

∂xµ

∂x′ν = δµ
ν + ∂νε

µ,
∂x′µ

∂xν
= δµ

ν − ∂νε
µ. (3.2)

The metric tensor transforms as

gµν(x) → g′
µν(x

′). (3.3)

One can find another transformation such that the metric transforms as

gµν(x) → g′
µν(x) = g′

µν(x
′ + ε) = g′

µν(x
′)︸ ︷︷ ︸

= ∂xρ

∂x′µ
∂xσ

∂x′ν gρσ(x)

+ελ∂λgµν(x), (3.4)

g′
µν(x

′) = (δρ
µ + ∂µε

ρ)(δσ
ν + ∂νε

σ)gρσ(x) (3.5)

= gµν(x) + ∂µε
ρgρν(x) + ∂νε

σgµσ(x) + O(ε2). (3.6)

⇒ g′
µν(x) = gµν(x) + ελ∂λgµν(x) + ∂µε

λgλν(x) + ∂νε
λgµλ(x) + O(ε2) (3.7)
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The determinant of the metric denoted by g = det(gµν) transforms under infinitesimal

transformations as

δg = δ det(gµν) = ggµνδgµν , (3.8)

because the following holds for any square matrix

ln(det M) = tr ln M, (3.9)

1

det(M)
δ det(M) = tr(M−1δM) ⇒ δg = g(gµνδgµν) = −g(gµνδg

µν). (3.10)

The last equality is true because gµλgλν = δµ
ν and the variation of the Kronecker delta

vanishes. Therefore one has

δgµν = −gµρgνσδg
ρσ. (3.11)

Now all the pieces can be combined to get the variation of the negative squareroot of the

determinant of the metric

δ
√
−g =

1

2

δg√
−g

=
1

2

√
−ggµνδgµν (3.12)

=
1

2

√
−ggµν(ελ∂λgµν(x) + ∂µε

λgλν(x) + ∂νε
λgµλ(x)) (3.13)

=
1

2

√
−ggµνελ∂λgµν(x) +

√
−g∂λε

λ (3.14)

= ∂λ(
√
−gελ). (3.15)

Under restricted coordinate transformations, which are volume preserving transforma-

tions,
√
−g transforms as a scalar field, namely

δ
√
−g = ελ∂λ

√
−g. (3.16)

This means that restricted coordinate transformations are infinitesimal transformations

with vanishing divergence, i.e. ∂µε
µ(x) = 0. Thus, one can factorize the metric tensor

into a part with fixed determinant and another part, which satisfies the transformation

law

gµν = e2σgµν , det gµν = −1. (3.17)

The tensors, which can be constructed from gµν , are identical to the tensors under general

coordinate transformations. To show this one first has to consider the Christoffel symbols

(2.9), which are defined as

Γρ
µν =

1

2
gρλ(∂µgλν + ∂νgµλ − ∂λgµν), (3.18)
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and transform under infinitesimal coordinate transformations (in analogy to the metric)

like

Γρ
µν(x) → Γ′ρ

µν(x) = Γ′ρ
µν(x

′ + ε) = Γ′ρ
µν(x

′)︸ ︷︷ ︸
= ∂x′ρ

∂xγ
∂xα

∂x′µ
∂xβ

∂x′ν Γγ
αβ+ ∂x′ρ

∂xγ
∂2xγ

∂x′µ∂x′ν

+ελ∂λΓ
ρ
µν(x), (3.19)

Γ′ρ
µν(x

′) = (δρ
γ − ∂γε

ρ)(δα
µ + ∂µε

α)(δβ
ν + ∂νε

β)Γγ
αβ

+ (δρ
γ − ∂γε

ρ)∂µ(δγ
ν + ∂νε

γ)︸ ︷︷ ︸
=∂µ∂νερ+O(ε2)

(3.20)

= Γρ
µν + ∂νε

βΓρ
µβ + ∂µε

αΓρ
αν − ∂γε

ρΓγ
µν + ∂µ∂νε

ρ + O(ε2). (3.21)

⇒ Γ′ρ
µν(x) = Γρ

µν(x) + ελ∂λΓ
ρ
µν(x) + ∂νε

λΓρ
µλ + ∂µε

λΓρ
λν − ∂λε

ρΓλ
µν

+ ∂µ∂νε
ρ + O(ε2) (3.22)

The last term of equation (3.22) vanishes for Γ
µ

µν and in case of restricted coordinate

transformations (∂µε
µ = 0). But in this case the whole tensor Γ

µ

µν vanishes because

Γ
µ

µν =
1

2
gµρ(∂µgρν + ∂νgµρ − ∂ρgµν) =

1

2
gµρ∂νgµρ = ∂ν ln

√
−g︸ ︷︷ ︸

=1

= 0. (3.23)

To construct the Riemann curvature tensor one needs the antisymmetric combination of

the partial derivatives of the Christoffel symbols. The last term of equation (3.22) cancels

then ∂µΓ
ρ

νλ−∂νΓ
ρ

µλ. Thus it transforms as a tensor and can be completed to the Riemann

tensor. It follows that all the important quantities for general relativity can be derived

from gµν .

The most general Lagrangian is

L =
1

2
χ2(Φ)R(g) + L(g, Φ). (3.24)

After rescaling the metric using a conformal transformation (see appendix A) gµν = χ2gµν

one obtains

L =
√
−g

(
1

2
R(g) + 6gµνχ−2∂µχ∂νχ + L(g, Φ)

)
, (3.25)

with L(g, Φ) = χ4L(g, Φ) and the constraint
√
−g = χ4(Φ)

√
−g︸ ︷︷ ︸

=1

= χ4. The Lagrangian

contains the standard Einstein-Hilbert term, a matter term and an additional scalar field.

The constraint can be implemented via a Lagrange multiplier Λ(x). The final Lagrangian
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reads

L =
√
−g

(
1

2
R(g) + LM(g, Φ) − χ−4(Φ)Λ

)
+ Λ, (3.26)

where the new field is absorbed into LM(g, Φ). Varying with respect to Λ gives the

constraint
√
−g = χ4 again and by varying with respect to gµν one obtains the Einstein

field equations.

3.2 The cosmological constant as an initial condition

Define the energy-momentum tensor as

Tµν =
−2√
−g

δSM

δgµν
, (3.27)

with the matter action

SM =

∫
d4x

(√
−g
(
LM(g, Φ) − χ−4(Φ)Λ

)
+ Λ

)
. (3.28)

Hence, general covariance is not ensured due to the last term in the action. The energy-

momentum tensor is not automatically covariantly conserved, but just due to the Einstein

field equations and Bianchi identities (2.21). The matter action transforms under infinites-

imal transformations as a scalar field due to the last term, which breaks the covariance.

This implies

δSM =

∫
d4xεµ∂µΛ (3.29)

=

∫
d4x

(
δSM

δΦ
δΦ +

δSM

δΛ
δΛ − 1

2

√
−gTµνδg

µν

)
. (3.30)

The first two terms vanish because Φ and Λ satisfy equations of motion.

With the following relation

δgµν = −∇µεν −∇νεµ (3.31)

and integration by parts one obtains∫
d4x εµ(∂µΛ +

√
−g∇νTνµ) = 0. (3.32)

For an arbitrary εµ the bracket has to vanish

√
−g∇νTνµ = −∂µΛ. (3.33)
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Because Tνµ is covariantly conserved (∇νTνµ = 0) this means that

Λ = constant. (3.34)

In the case χ2 = 1 the introduced Lagrange multiplier Λ gives a covariantly constant

contribution to the Lagrangian, which can be interpreted as a cosmological constant. The

value of Λ depends on the initial conditions and is not a parameter in the Lagrangian.

This is a consequence of considering a theory with finite spacetime induced by invariance

under restricted coordinate transformations.





4 Unimodular gravity

The aim of this chapter is to derive the equations of motion for unimodular gravity using

the variational calculus. This will be done step by step starting with the variation of the

Einstein-Hilbert action. For simplicity we choose Planck units in this section (MPl = 1).

4.1 Einstein-Hilbert action

The Einstein-Hilbert action reads as follows

S =

∫
d4x

√
−g

(
1

2
R

)
. (4.1)

Variation with respect to the metric tensor gµν yields the following equation

δS =

∫
d4x

(
δ
√
−g

(
1

2
R

)
+
√
−g

(
1

2
(δRµνg

µν + Rµνδg
µν)

))
= 0. (4.2)

The third term has already the desired form, but the first and the second term have to

be analyzed further. The variation of
√
−g is given in equation (3.12) and with (3.11)

follows

δ
√
−g = −1

2

√
−ggµνδg

µν . (4.3)

Before considering the variation of the Ricci tensor it is helpful to find out how the

Riemann tensor transforms under infinitesimal transformations of the Christoffel symbol

Γ → Γ + δΓ,

δRρ
µλν = ∂ν(δΓ

ρ
µλ) − ∂λ(δΓ

ρ
µν) + δΓρ

νσΓσ
λµ + Γρ

νσδΓ
σ
λµ

− δΓρ
λσΓσ

νµ − Γρ
λσδΓ

σ
νµ. (4.4)

With the covariant derivative of δΓ one can show that

δRρ
µλν = ∇ν

(
δΓρ

λµ −∇λ

(
δΓρ

νµ

))
, (4.5)

δRµν = ∇ν

(
δΓλ

λµ −∇λ

(
δΓλ

νµ

))
. (4.6)
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Now, the second term in (4.2) the variation of the action can be reconsidered∫
d4x

√
−gδRµνg

µν =

∫
d4x

√
−g
(
∇ν

(
gµνδΓλ

λµ

)
−∇λ

(
gµνδΓλ

νµ

))
(4.7)

=

∫
d4x

√
−g∇σ

(
gµσδΓλ

λµ − gµνδΓσ
νµ

)
. (4.8)

This is a surface term and vanishes, if the variation of δΓ and δg vanishes at infinity, due

to Gauss’ theorem.

This means we are left with

δS =

∫
d4x

√
−g

(
1

2

(
−1

2
gµνR + Rµν

))
δgµν = 0. (4.9)

⇒ Rµν −
1

2
gµνR = 0 (4.10)

These are the Einstein field equations in vacuum.

4.2 Einstein-Hilbert action including matter

The next step is to include matter. The corresponding action reads

S =

∫
d4x

√
−g

(
1

2
R + LM

)
, with LM(ϕ, g). (4.11)

The variation of the
√
−g and R has been calculated before. The additional term in this

case is

δ
(√

−gLM

)
= −1

2

√
−gTµνδg

µν , (4.12)

with Tµν the energy-momentum tensor, which is defined as (3.27)

Tµν ≡ −2√
−g

δ (
√
−gLM)

δgµν
. (4.13)

⇒ δS =

∫
d4x

√
−g

(
1

2

(
Rµν −

1

2
gµνR − Tµν

))
δgµν = 0 (4.14)

One obtains the Einstein field equations with matter sources.

⇒ Rµν −
1

2
gµνR = Tµν (4.15)



4.3 Variation with fixed determinant 31

4.3 Variation with fixed determinant

In the case of Unimodular Gravity [17] the variation changes because the determinant of

the metric is not a dynamical variable anymore. The restricted coordinate invariance in

this theory implies that the determinant of the metric is fixed and its variation vanishes

δg = −g (gµνδg
µν)︸ ︷︷ ︸

=0

= g (gµνδgµν)︸ ︷︷ ︸
=0

= 0. (4.16)

This means that just the traceless part of the variation with respect to the metric tensor

has to vanish.

4.3.1 Generally covariant formulation

For the same action as before (4.11) this yields

δS =

∫
d4x

√
−g

(
1

2

(
Rµν −

1

2
gµνR − Tµν

))
δgµν . (4.17)

Now, one can split the terms in the bracket into traceless and tracefull parts (T = T µ
µ)

δS =

∫
d4x

√
−g

1

2

((
Rµν −

1

4
gµνR

)
︸ ︷︷ ︸

traceless

−1

4
gµνR −

(
Tµν −

1

4
gµνT

)
︸ ︷︷ ︸

traceless

−1

4
gµνT

) δgµν = 0.

(4.18)

⇒
(

Rµν −
1

4
gµνR

)
=

(
Tµν −

1

4
gµνT

)
(4.19)

These are the traceless Einstein field equations.

4.3.2 Lagrange multiplier formulation

If one starts with the Lagrangian of section 3.1 one gets the same equations of motion

as in 4.3.1. In this case general covariance is broken, due to the last term of the action,

which originates from introducing a Lagrange multiplier. The action is (3.26)

S =

∫
d4x

(√
−g

(
1

2
R + LM −

(
χ−4Λ

)))
+ Λ . (4.20)

The variation yields

δS =

∫
d4x

√
−g

(
1

2

(
Rµν −

1

2
gµνR − Tµν + gµν

(
χ−4Λ

)))
δgµν = 0. (4.21)
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⇒ Rµν −
1

2
gµνR − Tµν + gµν

(
χ−4Λ

)
= 0 (4.22)

If one contracts this equation with the inverse metric gµν implies

(
χ−4Λ

)
=

1

4
R +

1

4
T. (4.23)

Plugging this back into (4.22) gives the same result as the first approach.

⇒
(

Rµν −
1

4
gµνR

)
=

(
Tµν −

1

4
gµνT

)
(4.24)

4.3.3 The cosmological constant as a constant of integration

For unimodular gravity a cosmological constant-like term is automatically included [3].

This can be seen, if one uses the conservation law of the energy-momentum tensor

∇µTµν = 0 (4.25)

and the Bianchi identity (2.21)

∇µ

(
Rµν −

1

2
gµνR

)
= 0 (4.26)

⇐⇒ ∇µ

(
Rµν −

1

4
gµνR

)
= ∇µ

(
1

4
gµνR

)
. (4.27)

If one takes the covariant derivative of the traceless Einstein field equations (4.24) and(
Rµν −

1

4
gµνR

)
=

(
Tµν −

1

4
gµνT

)
, (4.28)

uses (4.25) and (4.27), one obtains

∇µ

(
1

4
gµνR

)
= −∇µ

(
1

4
gµνT

)
(4.29)

⇐⇒ 1

4
gµν∂

µ (R + T ) = 0. (4.30)

⇒ R + T = constant ≡ 4Λ (4.31)

Plugging this back into equation (4.28) yields

Rµν −
1

2
gµνR + Λgµν = Tµν . (4.32)

These are the regular Einstein field equations with a cosmological constant-term included.

In this case the cosmological constant arises as a constant of integration and has nothing
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to do with terms in the action or the vacuum energy. The value is not determined by

this setup. This term arises from the fact that the determinant of the metric is not

a dynamical variable anymore and therefore spacetime is finite. The integral over the

spacetime measure, the worldvolume
∫

d4x
√
−g, remains finite in this setup.
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Now, the KP model proposed by N. Kaloper and A. Padilla is presented [12, 13]. This

proposal contains a mechanism, which is able to predict a small but non-zero cosmolog-

ical constant for our universe. Furthermore we will analyze this model in terms of the

expansion of the universe.

The action of the model reads

S =

∫
d4x

√
−g

(
M2

Pl

2
R − Λ + λ4L

(
λ−2gµν , Φ

))
+ σ

(
Λ

λ4µ4

)
. (5.1)

Matter couples minimally to the conformally rescaled metric g̃µν = λ2gµν . Therefore the

parameter λ sets the mass scale mphys = λm. This follows from considering canonical

kinetic terms (m = bare mass in the Lagrangian)

√
−g̃L =

1

2

√
−g̃
(
g̃µν∂µϕ∂νϕ + m2ϕ2

)
(5.2)

=
1

2
λ4
√
−g
(
λ−2gµν∂µϕ∂νϕ + m2ϕ2

)
(5.3)

=
1

2

√
−g
(
gµν∂µϕ

′∂νϕ
′ + m2

physϕ
′2) , (5.4)

with ϕ = λ−1ϕ′ and mphys ≡ λm. Note that the function σ appears outside of the

integral. The parameter µ is chosen phenomenologically and has mass dimension one. The

cosmological constant-like term Λ has mass dimension four. This is different to ordinary

GR, where Λ comes with a factor M2
Pl in the Einstein-Hilbert action and therefore has

mass dimension two. The whole model is semiclassical. Thus, graviton loops are not

considered.

5.1 Equations of motion

In addition to gµν the parameters Λ and λ are treated as dynamical variables. First,

consider the variation with respect to Λ

δS =

(
−
∫

d4x
√
−g + σ′ δz

δΛ

)
δΛ = 0, (5.5)



36 5 The KP model

where σ′ = δσ(z)
δz

, z = Λ
λ4µ4 and therefore δz

δΛ
= 1

λ4µ4 .

⇒ σ′

λ4µ4
=

∫
d4x

√
−g (5.6)

Now, the variation with respect to λ

δS =

(∫
d4x

δ
(√

−g̃L(g̃µν , Φ)
)

δλ
+ σ′ δz

δλ

)
δλ = 0. (5.7)

⇒
δ
(√

−g̃L(g̃µν , Φ)
)

δg̃µν

δg̃µν

δλ
= −σ′ δz

δλ
, (5.8)

with δz
δλ

= − 4Λ
λ5µ4 , the energy momentum tensor T̃µν = − 2√

−g̃
δSm

δg̃µν and

δg̃µν

δλ
=

δ (λ−2gµν)

δλ
= −2λ−3gµν = −2λ−1g̃µν . (5.9)

⇒
∫

d4xλ4
√
−gT̃ µ

µ = 4Λ
σ′

λ4µ4
(5.10)

⇐⇒
∫

d4x
√
−gT µ

µ = 4Λ
σ′

λ4µ4
(5.11)

where
√
−gλ4L (λ−2gµν , Φ) =

√
−g̃L (g̃µν , Φ) i.e.

√
−g̃ = λ4

√
−g and T µ

µ = λ4T̃ µ
µ.

Equation (5.6) and (5.11) can be combined to

Λ =
1

4
〈Tα

α〉, (5.12)

with the expectation value 〈Q〉 =
R

d4x
√
−gQ

R

d4x
√
−g

is called historic average. Note that this term

is non-local. Together with the equations of motion, which are derived by varying with

respect to gµν

M2
PlGµν = λ4T̃µν − Λgµν , (5.13)

one gets the modified Einstein field equations

M2
PlGµν = Tµν −

1

4
〈Tα

α〉gµν . (5.14)

This is unlike unimodular gravity where one loses one degree of freedom due to the

subtraction of the trace.

In this model constant contributions of the energy-momentum tensor do not contribute

to the field equations, which is shown in the following.

If L = Λ0 + ρvac + ∆L, where Λ is a bare cosmological constant and ρvac the vacuum
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energy, the historic average gives 〈Λ + ρvac〉 = Λ + ρvac.

With the definition

τµν = − 2√
−g

δ

δgµν

∫
d4x

√
−gλ4∆L(λ−2gµν , Φ), (5.15)

one can write Tµν = −(Λ + ρvac)gµν + τµν and thus

Tµν −
1

4
〈Tα

α〉gµν = τµν −
1

4
〈τα

α〉 gµν . (5.16)

Then the Einstein field equations then take the following form

M2
PlGµν = τµν −

1

4
〈τα

α〉gµν . (5.17)

The term on the right-hand side, which includes the historic average of the trace of the

local energy-momentum tensor, can be interpreted as a cosmological constant.

There are some models, which show some similarities to the KP model. The first one is

motivated from string theory and in the low-energy limit the usual effective gravitational

action is divided by the worldvolume [18]. This creates a term in the Einstein field

equations of the model, which is similar to the historic average of the KP model. The

action in Normalized General Relativity (NGR) is constructed by dividing the standard

GR action by the worldvolume [19, 20]. It exhibits a shift symmetry. In contrast to

unimodular gravity, where the cosmological constant is an arbitrary integration constant,

it is possible to fix its value in the framework of NGR.

5.2 Symmetries

The action of the KP model has two approximate symmetries which ensure the cancella-

tions of the vacuum energy contributions. The first one is a scaling symmetry with

λ → Ωλ, gµν → Ω−2gµν , Λ → Ω4Λ. (5.18)

This transformation leaves the matter Lagrangian invariant, but is broken by the gravi-

tational sector. The action (5.1) changes by

δS =
M2

Pl

2
Ω−2

∫
d4
√
−gR =

M2
Pl

2
〈R〉

∫
d4x

√
−g. (5.19)

The second symmetry is a shift symmetry with

Λ → Λ − ελ4m4, L → L + εm4, (5.20)
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such that the action (5.1) changes by

δS = σ

(
Λ

λ4µ4
− ε

m4

µ4

)
− σ

(
Λ

λ4µ4

)
' −εσ′m

4

µ4
. (5.21)

These two symmetries provide naturally a small cosmological constant-like term, because

they protect from large additions. This mechanism will be discussed in 5.4 in full detail.

5.3 Approximation of the historic average

The historic average, which is defined as 〈τα
α〉 =

R

d4x
√
−gτα

α
R

d4x
√
−g

, has to be analyzed to find

the numerical value for the cosmological constant for our universe. In particular it has

to be finite. This implies that the universe needs to be spatially compact, starting in a

Bang and ending in a Crunch (i.e. has a finite lifetime). These two integrals have to be

evaluated ∫
d4x

√
−g ∼ Vol3

∫ tcrunch

tbang

dta3, (5.22)∫
d4x

√
−gτα

α ∼ Vol3

∫ tcrunch

tbang

dt(−ρ + 3p), (5.23)

with the assumption that the universe is homogeneous and with the comoving spatial

volume Vol3. For sources with standard energy conditions |p/ρ| ≤ 1 (see appendix B)

these integrals are regulated by the spacetime singularities. This means we integrate over

a finite time interval. In particular demanding that the universe starts with a Bang and

ends in a Crunch gives a non-zero mass gap. If
∫

d4x
√
−g is finite (5.6) implies that λ is

non-zero. Thus mphys = λm is non-zero, too. The largest contribution of those integrals

will come from the phase close to the turning point, where the universe has its maximal

size. During this phase near the turning point the universe is approximately static with

a constant scale factor a = amax over a time interval ∆t. The turnaround happens at

the time, when the universe has its maximal size and. All timescales are considered as

approximately of the same order of magnitude T ' ∆t ' H−1
age. The curvature of the

universe at that time is |R| ∼ 1
a2
max

∼ H2
age. Using these approximations one finds

∫ T+∆t/2

T−∆t/2

dta3 ' a3
max∆t ∼ a3

max

Hage

∼ 1

H4
age

, (5.24)∫ T+∆t/2

T−∆t/2

dt(−ρ + 3p) ' O(1)a3
maxρage∆t ∼ ρage

H4
age

, (5.25)



5.4 The cosmological constant problem in the KP model 39

with the characteristic energy density of the universe ρage ∼ M2
PlH

2
age (by virtue of the

Friedmann equation). Thus one gets for (5.22) and (5.23)∫
d4x

√
−g ∼ O(1)

Vol3
H4

age

, (5.26)∫
d4x

√
−gτα

α ∼ O(1)
Vol3ρage

H4
age

. (5.27)

Consequently one has for the cosmological constant in this model

Λ =
1

4
〈τα

α〉 ' O(1)ρage ' O(1)M2
PlH

2
age < M2

PlH
2
0 , (5.28)

where H0 is the Hubble parameter today. This gives a small, but non-zero cosmological

constant for our universe today. Further it implies naturally that the value never exceeds

the critical density of the universe today, because the universe will have to grow at least

older than it is now (H−1
0 ' 1010 years) in the Bang/Crunch scenario. The sign is

controlled by the dominant contribution to the cosmological fluid close to the turning

point. For w > 1
3

the cosmological constant term is positive and for w < 1
3

it is negative.

Since the universe must collapse in the future and the universe has to be spatially closed,

our currently observed accelerated expansion must be transient.

5.4 The cosmological constant problem in the KP model

The cosmological constant problem is addressed by use of the two approximate symme-

tries described in chapter 5.2. They appear because of the modifications of the action

in the gravitational sector. In particular, introducing the two global variables and the

corresponding constraints is the key to the creation of these symmetries. The scaling

symmetry is broken by the Einstein-Hilbert term and is therefore approximate just like

the shift symmetry. As stated in the introduction, if one interprets the cosmological con-

stant as a UV-divergent quantity the radiative instability is the main issue. Actually,

the UV-divergence causes the non-locality of the historic average [13]. In supersymmetic

theories or theories featuring conformal symmetry the corresponding symmetry protects

the cosmological constant from higher order loop corrections. In the KP model the shift

symmetry is used to cancel the matter vacuum energy and its quantum corrections. Addi-

tionally, the scaling symmetry ensures that the vacuum energy in every loop order couples

to gravity the same way as the classical contribution. This is necessary in order to make

sure that the cancellation by the shift symmetry works at every loop order. Therefore

the cosmological constant is radiatively stable. The reason that one has a residual small

cosmological constant in the KP model is that the shift symmetry is approximate (5.21),
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with (5.6) one gets δS ' −εm4λ4
∫

d4x
√
−g.

In order to understand better how the cancellation works, consider the mechanism on the

level of the field equations. First note that the action (5.1) is in fact invariant under the

scaling symmetry (5.18). Since the historic average of the right-hand side of (5.14) is zero,

〈R〉 vanishes. The change of the matter Lagrangian under the shift symmetry (5.20) can

be expressed in terms of a variation of the energy-momentum tensor T̃µν → T̃µν − εm4gµν .

The constraints (5.6) and (5.11) have to be modified in order to match with the shifted

energy-momentum tensor

ĝµν = gµν , Λ̂ = Λ
ẑσ′(ẑ)

zσ′(z)
, λ̂4 = λ4σ′(ẑ)

σ′(z)
. (5.29)

Most important is the fact that the metric stays unchanged. Hence a shift of the vacuum

energy, like taking higher loop orders into account, does not change the geometry. Those

shifts will be absorbed by the auxiliary fields λ and Λ, which can be integrated out. This

means that the worldvolume
∫

d4x
√
−g stays fixed and Λ is forced to adjust in this model.

The setup is not spoiled by phase transitions in the early universe and is compatible with

inflation models, in particular Starobinski-like and monomial inflation models [12,13].

5.5 Dynamics of the KP model

After introducing the model and its features in the first part of this chapter, we now ana-

lyze the dynamics of the model. For this purpose we will derive the Friedmann equations

in the KP model and analyze the result.

5.5.1 Friedmann equations

Starting from the action (5.1) one obtains (5.17) by varying with respect to the metric

tensor and using the constraints (see section 5.1)

M2
PlGµν = τµν −

1

4
〈τα

α〉gµν . (5.30)

With the assumption of a FRW-metric (2.23), which reads

ds2 = −dt2 + a(t)2

(
dr2

1 − κr2
+ r2dθ2 + r2 sin2(θ)dφ2

)
, (5.31)

we want to get the Friedmann equations in the KP model. We will use the result for

the Einstein tensor in FRW cosmology (2.28). The procedure is similar to the derivation

presented in chapter 2.2, but we get additional terms including the historic average. First
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we consider the (0,0)-component of the Einstein field equations. This yields the relation

M2
Pl =

(
3(κ + ȧ2)

a2

)
= τ00 +

1

4
〈τα

α〉. (5.32)

Assume the energy-momentum tensor for a perfect fluid for (5.15)

τµν = (ρ + p) uµuν + pgµν , (5.33)

where uµ is the time-like 4-velocity uµ = (1, 0, 0, 0), ρ = ρΛ +ρM,0

(
a0

a

)3
+ρR,0

(
a0

a

)4
and p

the corresponding pressures (see section 2.2). The trace of this energy-momentum tensor

is τα
α = −ρ + 3p and τ00 = ρ. We find(

ȧ

a

)2

=
1

3M2
Pl

(
ρ +

1

4
〈−ρ + 3p〉

)
− κ

a2
. (5.34)

In order to derive the second Friedmann equation in this case, we need to consider the

(i,j)-component of the corresponding Einstein field equations

M2
Pl

(
−(κ + ȧ2 + 2aä)

a2

)
gij = pgij −

1

4
gij〈τα

α〉 (5.35)

⇐⇒ −
(

ȧ

a

)2

− 2
ä

a
=

1

M2
Pl

(
p − 1

4
〈τα

α〉
)

+
κ

a2
. (5.36)

Adding the first Friedmann equation (5.34) yields the second Friedmann equation

ä

a
= − 1

6M2
Pl

(ρ + 3p) +
1

3M2
Pl

(
1

4
〈−ρ + 3p〉

)
. (5.37)

5.5.2 Consistency of the Friedmann equations

In the case of Einstein gravity one can derive the second Friedmann equation from the first

Friedmann equation using conservation of energy-momentum. Covariant conservation of

energy-momentum follows from the Bianchi identity applied to the Einstein field equation.

Since the Einstein equations are modified in the KP case, the consistency of the Friedmann

equation has to be checked. The Einstein equation (5.17) with both indices upstairs reads

M2
PlG

µν = τµν − 1

4
〈τα

α〉gµν . (5.38)

The Bianchi identity ∇νG
µν = 0 (2.21) implies

∇ντ
µν = ∇ν

(
1

4
〈τα

α〉gµν

)
=

1

4
∂µ〈τα

α〉. (5.39)
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Evaluating this modified conservation of energy-momentum gives [15]

∇ντ
µν =

1

4
∂µ〈τα

α〉 (5.40)

⇐⇒ ∂p

∂xν
gµν +

1√
−g

∂

∂xν

(√
−g (ρ + p) uµuν

)
+ Γµ

νλ (p + ρ) uνuλ =
1

4
∂µ〈−ρ + 3p〉.

(5.41)

Using Γµ
00 = 0 and uµ = (1, 0, 0, 0) one finds for µ = 0 that

⇐⇒ −dp

dt
a3 +

d

dt

(
a3 (ρ + p)

)
= −1

4

d

dt
〈−ρ + 3p〉a3 (5.42)

⇐⇒ d

dt

(
a3ρ
)

+ 3a2 d

dt
p = −1

4

d

dt
〈−ρ + 3p〉a3 (5.43)

⇐⇒ d

da

(
a3ρ
)

+ 3a2p = −1

4

d

da
〈−ρ + 3p〉a3. (5.44)

This implies that the continuity equation (2.37) changes in the following way

ρ̇ + 3
ȧ

a
(ρ + p) +

1

4

d

dt
〈−ρ + 3p〉 = 0. (5.45)

For µ = i

∂ip =
1

4
∂i〈−ρ + 3p〉. (5.46)

Now, consider the first Friedmann equation and differentiate with respect to time after

multiplying with a2

2ȧä =
1

3M2
Pl

(
2aȧ

(
ρ +

1

4
〈−ρ + 3p〉

)
+

dρ

dt
a2 +

1

4

d

dt
〈−ρ + 3p〉a2

)
(5.47)

=
1

3M2
Pl

(
ȧ

a

(
2a2ρ + a3 dρ

da

)
+ 2aȧ

1

4

d

dt
〈−ρ + 3p〉 +

1

4
〈−ρ + 3p〉a2

)
(5.48)

=
1

3M2
Pl

(
ȧ

a

(
− ρa2 +

d

da

(
a3ρ
)

︸ ︷︷ ︸
=−3a2p− 1

4
d

da
〈−ρ+3p〉a3

)
+ 2aȧ

1

4
〈−ρ + 3p〉 +

1

4

d

dt
〈−ρ + 3p〉a2

)

(5.49)

=
1

3M2
Pl

(
ȧa

(
− ρ − 3p

)
+ 2aȧ

1

4
〈−ρ + 3p〉 − 1

4

d

da
〈−ρ + 3p〉ȧa2︸ ︷︷ ︸

1
4

d
dt
〈−ρ+3p〉a2

+
1

4

d

dt
〈−ρ + 3p〉a2

)
.

(5.50)

The additional term, appearing because of the time derivative, cancels exactly with the

term originating from the modified covariant conservation of energy-momentum. Thus
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we end up with the second Friedmann equation in the KP model

⇐⇒ ä

a
= − 1

6M2
Pl

(ρ + 3p) +
1

3M2
Pl

(
1

4
〈−ρ + 3p〉

)
. (5.51)

The Friedmann equations are consistent under the assumption of the modified covariant

conservation of energy-momentum (5.40).

5.5.3 Problem concerning accelerated expansion

To check if accelerated expansion (ä > 0) driven by a non-zero cosmological constant is

possible, one has to consider the second Friedmann equation (5.37). For a Λ-dominated

universe one has ρ = ρΛ = const and p = −ρΛ. We find

ä

a
= − 1

6M2
Pl

(ρ + 3p) +
1

3M2
Pl

(
1

4
〈−ρ + 3p〉

)
(5.52)

= − 1

6M2
Pl

(−2ρΛ) +
1

3M2
Pl

(
1

4
〈−4ρΛ〉

)
(5.53)

=
1

3M2
Pl

ρΛ − 1

3M2
Pl

〈ρΛ〉, (5.54)

which exactly cancels because ρΛ is a constant and hence can be pulled out of the historic

average. For matter domination (pM = 0) one gets

ä

a
= − 1

6M2
Pl

ρM +
1

3M2
Pl

(
1

4
〈−ρM〉

)
(5.55)

and for radiation domination (pR = 1
3
ρR)

ä

a
= − 1

3M2
Pl

ρR. (5.56)

This shows that a positive ä is not possible and therefore accelerated expansion cannot

be generated this way. This violates the observation of the accelerated expansion of the

universe and would rule out the model without further modifications. Nevertheless we

need to check other possibilities to generate accelerated expansion of the universe.





6 Quintessence

Quintessence, a certain dark energy model, will be introduced in this chapter. By means

of it we will build a model in Einstein gravity to understand the dynamics in a closed

universe.

6.1 Introducing quintessence

This introduction follows in principle the review [21]. Dark Energy models like quintessence

are another possibility to generate accelerated expansion of the universe. These models

were developed for the case that the cosmological constant vanishes. Especially with the

finding of the previous chapter, where the cosmological constant drops out of the Fried-

mann equation, it is worth to study these models in more detail. Inspired by the theory of

inflation [22, 23], where a scalar field, the inflaton, drives an epoch of accelerated expan-

sion in the early universe, one introduces a scalar field. These arise naturally in particle

physics and act as a candidate for dark energy. Using this idea gives the possibility to

create a late time inflation-like period. Dark energy means in particular that the equation

of state of the cosmological constant

w =
p

ρ
= −1 (6.1)

should be satisfied today, but is time dependent in general and thus can change with the

time evolution.

Quintessence is a scalar field minimally coupled to gravity. In this introduction κ = 0.

The action reads (in FRW background)

S =

∫ √
−g

(
−1

2
gµν∂µϕ∂νϕ − V (ϕ)

)
. (6.2)

The scalar field satisfies the following equation of motion

ϕ̈ + 3Hϕ̇ +
dV

dϕ
= 0, (6.3)
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which can be obtained by varying the action with respect to ϕ. The energy-momentum

tensor Tµν = −2√
−g

δS
δgµν reads

Tµν = ∂µϕ∂νϕ −
(

1

2
∂σϕ∂σϕ + V (ϕ)

)
gµν . (6.4)

This yields the following energy density and pressure in analogy to an ideal fluid

ρ = T00 =
1

2
ϕ̇2 + V (ϕ), (6.5)

p = Tii =
1

2
ϕ̇2 − V (ϕ). (6.6)

The Friedmann equations in this case are given by

H2 =

(
ȧ

a

)2

=
1

3M2
Pl

ρ (6.7)

=
1

3M2
Pl

(
1

2
ϕ̇2 + V (ϕ)

)
(6.8)

(6.9)

and

ä

a
= − 1

6M2
Pl

(ρ + 3p) (6.10)

= − 1

3M2
Pl

(
ϕ̇2 − V (ϕ)

)
. (6.11)

This implies for the equation of state

wϕ =
p

ρ
=

ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ)
. (6.12)

The integrated form of the continuity equation ρ̇+3H(ρ+ p) = 0, which follows from the

conservation of the energy-momentum tensor, reads

ρ = ρ0 exp

(
−
∫

3(1 + wϕ)
da

a

)
, (6.13)

with the integration constant ρ0. Now, one can read off the behavior of the energy density

in terms of the scale factor for different limits. First for the slow roll limit ϕ̇2 � V (ϕ)

one gets wϕ = −1. This implies ρ = constant. In the other limit ϕ̇2 � V (ϕ) one gets

wϕ = 1 and for the energy density ρ ∝ a−6. The range of wϕ is from 1 to -1 and therefore

ρ ∝ a−m, 0 ≤ m ≤ 6. The threshold for accelerated expansion is wϕ < −1
3
.

Now we will discuss a potential, which gives rise to a power law expansion for the scale
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factor [24,25,26]

a(t) ∝ tp. (6.14)

For p > 1 accelerated expansion is generated. This is implemented by the following

potential

V (ϕ) = v

(
−
√

16π

p

ϕ

mPl

)
, (6.15)

where v is a constant. Note that p > 1 is necessary for accelerated expansion.

Another possibility to generate accelerated expansion is an inverse power-law potential.

The original quintessence models [27, 28] used this kind of potential

V (ϕ) =
M4+α

ϕα
, (6.16)

where α is a positive number and M a constant.

6.2 Application to a closed universe

In order to generate accelerated expansion in the KP model, we develop a model using a

scalar field with a quintessence potential. We start in Einstein gravity. The equation of

motion of a scalar field in a expanding background reads

ϕ̈ + 3Hϕ̇ +
dV

dϕ
= 0. (6.17)

The equation, which determines the dynamics of the scale factor, is the first Friedmann

equation (2.31)

H2 =

(
ȧ

a

)2

=
1
2
ϕ̇2 + V (ϕ)

3M2
Pl

− κ

a2
. (6.18)

Note that we are considering a closed universe, which means that κ > 0. The limit for

small a for this system is a curvature dominated closed universe

H2 =

(
ȧ

a

)2

= − κ

a2
. (6.19)

The solution of this system is an imaginary scale factor, which is unphysical. Thus,

we introduce a matter-term in the Friedmann equation, which goes like ρM,0

(
a0

a

)3
and

therefore dominates for small a. This regulates the unphysical behavior. Set the value of

the scale factor today a0 = 1. Then one has for small values of the scale factor a ∝ t
2
3

(see section 2.2).



48 6 Quintessence

The full system now reads

ϕ̈ + 3Hϕ̇ +
dV

dϕ
= 0, (6.20)

H2 =

(
ȧ

a

)2

=
1
2
ϕ̇2 + V (ϕ) +

ρM,0

a3

3M2
Pl

− κ

a2
. (6.21)

For a Bang/Crunch scenario one gets a period of curvature domination for late times.

The curvature term is the only term on the right-hand side of the Friedmann equation

, which is negative and thus can generate the contraction of the universe. But in this

case one runs into the same problem as before. Namely that the scale factor becomes

imaginary. The resolution of this issue is to solve the second Friedmann equation(
ä

a

)
= − 1

6M2
Pl

(ρ + 3p) . (6.22)

6.2.1 Numerical results

The system of equations, which will be solved numerically using Mathematica is

ϕ̈ + 3Hϕ̇ +
dV

dϕ
= 0, (6.23)

H2 =

(
ȧ

a

)2

=
1
2
ϕ̇2 + V (ϕ) +

ρM,0

a3

3
− κ

a2
, (6.24)

V (ϕ) = v exp

(
−
√

2

p
ϕ

)
. (6.25)

Now, we construct a model, which describes our universe in the framework of Einstein

gravity. This means the values of the cosmological parameters today should be approxi-

mately compatible with the Planck-data [29]. A convenient choice is

ΩDE,0 = 0.7, ΩM,0 = 0.301, Ωκ,0 = 0.001 (6.26)

at the time t = 0 (today). To realize this one needs to specify the initial conditions for

solving this system of equations. We choose

ϕ(t = 0) = 1, ϕ̇(t = 0) = 0, a(t = 0) = 1. (6.27)

Additionally we work in Planck units (MPl = 1) and set the Hubble constant today

H0 = 1, which means we are computing in units of Hubble time. In order to obtain the
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mentioned values for the density parameters, consider (6.24) at t = 0

1 =
V (1)

3︸ ︷︷ ︸
=ΩDE,0

+
ρM,0

3︸︷︷︸
=ΩM,0

− κ︸︷︷︸
=−Ωκ,0

. (6.28)

This implies that we have to choose the parameters in the equations as κ = 0.001, ρM,0 =

0.903. For the parameters appearing in the potential v and p we have a certain freedom

of choice. The condition reads V (1) = v exp
(
−
√

2
p

)
= 2.1 and the parameter space is

given by the line in figure 6.1.

0 5 10 15 20
0

5

10

15

20

p

v

Figure 6.1: Parameter space of the parameters p and v of the quintessence potential

The solutions (figures 6.2 and 6.3 on the next page) of the numerical calculations show the

expected properties. There is a transition of the dynamics at p = 1. For p < 1 we get a

recollapsing universe and for p > 1 we get accelerated expansion for large a(t). Note that

the lifetime of the recollapsing universe seems unnaturally large. This could be due to

the fact that the universe is closed, but the curvature parameter κ is very small. Thus, it

takes a large amount of the cosmological time evolution to reach the curvature dominated

epoch and to generate a decreasing scale factor.
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Figure 6.2: Time evolution of the scale factor a(t) and the scalar field ϕ(t) in Einstein
gravity for the parameter values p = 0.5 and v = 15.52
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Figure 6.3: Time evolution of the scale factor a(t) and the scalar field ϕ(t) in Einstein
gravity for the parameter values p = 2 and v = 5.71
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6.3 Using quintessence to test the KP model

After we studied the dynamics of the quintessence model in Einstein gravity, we will use

this model to address the problem concerning accelerated expansion in the KP model.

6.3.1 Friedmann equations for a scalar field

To get the Friedmann equations for a scalar field in the KP model, one has to calculate the

energy-momentum tensor via τµν = − 2√
−g

δ∆S
δgµν with ∆S =

∫
d4x

√
−gλ4∆L (λ−2gµν , ϕ).

The local Lagrangian of a scalar field reads ∆L = −1
2
gµνλ−2∂µϕ∂νϕ−V (ϕ). The variation

leads to

τµν = − 2√
−g

δ∆S

δgµν
(6.29)

= − 2√
−g

((
−1

2
gµν

√
−g

)
λ4

(
−1

2
λ−2gµν∂µϕ∂νϕ − V (ϕ)

)
(6.30)

+
√
−gλ4

(
−1

2
λ−2∂µϕ∂νϕ

))
(6.31)

= λ2∂µϕ∂νϕ +

(
−1

2
λ2∂ρϕ∂ρϕ − λ4V (ϕ)

)
gµν (6.32)

= ∂µϕ
′∂νϕ

′ +

(
−1

2
∂ρϕ′∂ρϕ

′ − λ4V (λ−1ϕ′)

)
gµν , (6.33)

where ϕ = λ−1ϕ′. In the following we will drop the prime. To relate the result to the

energy-momentum tensor of a perfect fluid τµν = (ρ + p)uµuν + pgµν , one needs to do the

following identifications (assuming homogeneity): for the pressure

p = −1

2
∂ρϕ∂ρϕ − λ4V (λ−1ϕ) (6.34)

=
1

2
ϕ̇2 − λ4V (λ−1ϕ), (6.35)

(6.36)

for the energy density

ρ = −1

2
∂ρϕ∂ρϕ + λ4V (λ−1ϕ) (6.37)

=
1

2
ϕ̇2 + λ4V (λ−1ϕ) (6.38)

(6.39)
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and for the 4-velocity

uµ = ∂µϕ
1√

−∂ρϕ∂ρϕ
. (6.40)

This implies for the first Friedmann equation (5.34)

H2 =

(
ȧ

a

)2

=
1

3M2
Pl

(
ρ +

1

4
〈−ρ + 3p〉

)
− κ

a2
(6.41)

=
1

3M2
Pl

(
1

2
ϕ̇2 + λ4V (λ−1ϕ) +

1

4
〈ϕ̇2 − 4λ4V (λ−1ϕ)〉

)
− κ

a2
(6.42)

and for the second (5.37)

ä

a
= − 1

6M2
Pl

(ρ + 3p) +
1

3M2
Pl

(
1

4
〈−ρ + 3p〉

)
(6.43)

= − 1

6M2
Pl

(
2ϕ̇2 − 2λ4V (λ−1ϕ)

)
+

1

3M2
Pl

(
1

4
〈ϕ̇2 − 4λ4V (λ−1ϕ)〉

)
. (6.44)

For example the first Friedmann equation simplifies a lot in the slow roll limit: ϕ̇2 � V (ϕ)

and |ϕ̈| � |3Hϕ̇|, |∂V
∂ϕ

| [22, 30]

(
ȧ

a

)2

=
1

3M2
Pl

(
λ4V (λ−1ϕ) − 〈λ4V (λ−1ϕ)〉

)
− κ

a2
, (6.45)

where 〈λ4V (λ−1ϕ)〉 =
R

d4x
√
−g(λ4V (λ−1ϕ))
R

d4x
√
−g

, p = −λ4V (λ−1ϕ) and ρ = λ4V (λ−1ϕ).

6.3.2 Application to the KP model

Like emphasized before we want to test, if it is possible to generate accelerated expansion

in the KP model using the quintessence model. We derived the first Friedmann equation

for a scalar field (6.41) and with ρ = 1
2
ϕ̇2 + λ4V (λ−1ϕ) +

ρM,0

a3 and p = 1
2
ϕ̇2 − λ4V (λ−1ϕ)

we have(
ȧ

a

)2

=
1

3M2
Pl

(
1

2
ϕ̇2 + λ4V (λ−1ϕ) +

ρM,0

a3
+

1

4
〈ϕ̇2 − 4λ4V (λ−1ϕ) − ρM,0

a3
〉
)
− κ

a2
. (6.46)

In order to do computations in this model we first need to discuss the parameter λ

phenomenologically [13]. From the variation with respect to Λ one gets the following

relation λ = σ′/
(
µ4
∫

d4x
√
−g
)1/4

(see (5.6)). Specifying the cutoff for the vacuum energy

contributions, gives control over λ. It is given by Mphys
UV = λMUV (cf. mphys = λm) and

can be as high as MPl. To get Mphys
UV ' MUV ' MPl the model should be able to provide

λ ∼ O(1). This is satisfied by choosing σ(z) ' exp z, for z > 1. Since σ(z) needs to be an
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odd function, one can take σ(z) ' sinh z. In the simplest case σ(z) = z, i.e. linear, one

gets λ = 1/
(
µ
(∫

d4x
√
−g
)1/4
)

and this implies λ ' Hage/µ with (5.26). If one takes the

cutoff to be MUV ∼ MPl ,then λ has to be very small λ ∼ 10−15 to get mphys ∼ TeV. For

Hage ∼ H0 ∼ 10−33eV this requires an unnatural small value for µ ∼ 10−18eV. In addition,

this setup gets less attractive because it is very sensitive to changes of the cosmological

conditions.

Thus, it is well motivated that λ ∼ O(1) and we choose λ = 1 for simplicity.

6.3.3 Numerical results

Now, in the KP model the system of equations to solve is (MPl = 1)

ϕ̈ + 3Hϕ̇ +
dV

dϕ
= 0, (6.47)

H2 =

(
ȧ

a

)2

=
1

3

(
1

2
ϕ̇2 + V (ϕ) +

ρM,0

a3
+

1

4
〈ϕ̇2 − 4V (ϕ) − ρM,0

a3
〉
)
− κ

a2
, (6.48)

V (ϕ) = v exp

(
−
√

2

p
ϕ

)
. (6.49)

Using the same initial conditions and the same choice for the values of the parameters

ρM,0 and κ as before in the case of Einstein gravity, we get indeed that it is possible to

generate accelerated expansion with the quintessence model for a certain range of the

parameters p and v.

0 2 4 6 8 10

2

4

6

8

10

t @H0
-1D

ΦHtL

0 2 4 6 8 10
0

2

4

6

8

10

12

t @H0
-1D

aHtL

Figure 6.4: Time evolution of the scale factor a(t) and the scalar field ϕ(t) in the KP
model for the parameter values p = 8 and v = 3.46

This result is preliminary because it cannot be reproduced by solving the second Fried-

mann equation, what is necessary for consistency reasons. It indicates that there is some

tension within the model. But if we take this result seriously there is another problem

appearing. For the KP model it is required to have a closed universe such that the world-

volume
∫

d4x
√
−g is finite. Otherwise it would fail to describe our universe and especially
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the matter sector. We observe that accelerated expansion continues forever, once it starts.

If we assume that this holds, it violates the consistency of the model because the world-

volume diverges and therefore spacetime is not finite anymore. The parameter λ goes to

zero in this case. This implies that the theory has no mass gap and no mass scales at all.

Additionally the cosmological constant vanishes.



7 Conclusion

As elaborated in this work theories with finite spacetime show some interesting features

regarding the cosmological constant. Especially the cosmological constant problem is

a huge motivation to think about alternatives to the identification of the cosmological

constant with the vacuum energy. Starting from a theory with restricted coordinate in-

variance (i.e. invariance under volume preserving transformations) one finds that the

cosmological constant appears as an initial condition. Spacetime becomes finite because

the determinant of the metric is not a dynamical variable anymore. The basic idea of

unimodular gravity is that the variation of the determinant of the metric vanishes. The

Einstein field equations become traceless in this theory and the cosmological constant

appears as a constant of integration. Its value is not determined.

The KP model is able to generate a small, but non-vanishing cosmological constant-like

term for sufficiently old and big universes like ours. The critical density of the universe

today is the upper limit for the value of the cosmological constant. This is accomplished

by introducing two new global variables and two constraints in the gravitational sector.

The particle sector i.e., local QFT, is unaffected by these modifications. The term, which

acts as a cosmological constant, is protected by two approximate symmetries and hence

radiatively stable. A shift symmetry gives the possibility to cancel the renormalized vac-

uum energy and a scaling symmetry ensures that the shift symmetry works at all scales

below the cutoff. A small cosmological constant remains because these symmetries are

just approximate. It is identified with the historic average of the trace of the energy-

momentum tensor Λ = 1
4
〈τα

α〉, which is a non-local term. This is due to fact that the

cosmological constant is regarded as a UV-divergent quantity.

A bare cosmological constant never enters the equations of motion in the model. There-

fore, it is not possible to generate accelerated expansion this way. This was our motivation

to introduce a scalar field with a quintessence potential to generate accelerated expan-

sion in this model. This procedure is similar to the mechanism of generating accelerated

expansion in an inflationary epoch of the early universe. If we are able to generate ex-

pansion, which does not stop, this implies that spacetime is not finite anymore. But

this is necessary for the KP model to describe our universe. By means of this approach

we are able to generate accelerated expansion in the KP model for a certain range of

the parameters . Thus, our considerations indicate that there is a problem in the model
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because spacetime does not remain finite. Since the time for working on a master thesis

is limited, it was not possible to bring all calculations to a satisfying end. It remains

to verify the solution of the first Friedmann equation in the KP case using the second

Friedmann equation. The fact that we were not able to do so, could suggest also that

there is some additional issue within model. Considering the KP model gives an attrac-

tive perspective on the cosmological constant, but more time and further thoughts are

needed to verify or exclude it. Even the authors postpone resolving the issues concerning

accelerated expansion to a future publication [13]. This is a hint that our considerations

and preliminary results are pointing in the right direction.

It seems difficult to create a scenario, in which accelerated expansion stops eventually

and a recollapse is possible. There are some models with bouncing cosmologies, which

are able to generate an epoch of accelerated expansion followed by a recollapse. Those

oscillating universes, called ekpyrotic universes [31,32,33], are not finite in lifetime. They

feature a series of Bangs and Crunches. This violates the condition of the KP model that

the worldvolume
∫

d4x
√
−g has to be finite. In future investigations one could try to

implement different potentials for the scalar field, e.g. those arising from inflation. These

could be interesting because inflation has to stop eventually like the epoch of accelerated

expansion in the KP model.

The bottom line of our investigations is that the KP model is questionable. The issues

about the observed accelerated expansion of the universe remain. First, it is not possible

to generate accelerated expansion simply using a bare cosmological constant. Moreover,

if one is able to generate accelerated expansion, which does not stop, like in our model,

the model is ruled out. In summary, the KP model is most interesting in the context of

the cosmological constant problem, but our results do not support its validity.
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A Conformal transformation

An important tool used in chapter 2 is the conformal transformation. This is why it is

explained in detail here (for reference see [34] and [14]).

Consider the following transformation of the metric tensor

gµν = χ2gµν ⇐⇒ gµν = χ−2gµν . (A.1)

This implies that the inverse metric transforms as

gµν = χ−2gµν ⇐⇒ gµν = χ2gµν . (A.2)

The task is to determine how the Ricci scalar transforms under such transformations.

This is important because it appears in the canonical Einstein-Hilbert action. To achieve

this one has to find out how the Christoffel symbols transform. They are defined as given

in equation (2.9). The Christoffel symbols are the coefficients of the connection, which

appears in the covariant derivative of general relativity. To find out how the connection

transforms under conformal transformations, one considers the difference of the covariant

derivatives with respect to the original and to the transformed metric

∇νV
µ = ∂νV

µ + Γµ
νλV

λ, (A.3)

∇νV
µ = ∂νV

µ + Γ
µ

νλV
λ, (A.4)

∇νV
µ −∇νV

µ = (Γµ
νλ − Γ

µ

νλ)︸ ︷︷ ︸
:=δΓµ

νλ

V λ. (A.5)

The covariant derivative of a vector transforms as a tensor. This is why the left-hand side

of equation (A.5) transforms as a tensor and hence the right-hand side has to transform

as a tensor, too. Thus δΓµ
νλ has to transform as a (1,2)-tensor, if its contraction with a

contravariant vector transforms as a (1,1)-tensor. To get the right transformation law one

has to replace the partial derivatives with covariant derivatives and obtains

δΓλ
µν =

1

2
gλρ(∇µgρν + ∇νgµρ −∇ρgµν). (A.6)



60 A Conformal transformation

If one plugs in the transformation for the metric one gets the following result

δΓλ
µν = −χ−1(∇µχδλ

ν + ∇νχδλ
µ −∇ρχgµνg

λρ). (A.7)

The next step is to consider the Riemann tensor, which is defined as

Rλ
µκν = ∂νΓ

λ
µκ − ∂κΓ

λ
µν + Γα

µκΓ
λ
να − Γα

µνΓ
λ
κα. (A.8)

Considering the transformation of the Christoffel symbols, one has to replace the partial

derivatives of δΓ by covariant derivatives to get the right transformation law. Otherwise

the transformed Riemann tensor would not transform as a tensor anymore. This yields the

following transformation, under a transformation of the Chrisoffel symbol like Γ = Γ+δΓ,

R
λ

µκν = Rλ
µκν + ∇ν(δΓ

λ
µκ) −∇κ(Γ

λ
µν)

+ (δΓα
µκ)(δΓ

λ
να) − (δΓα

µν)(δΓ
λ
κα), (A.9)

Rµν = R
λ

µλν = Rλ
µλν + ∇ν(δΓ

λ
µλ) −∇λ(Γ

λ
µν)

+ (δΓα
µλ)(δΓ

λ
να) − (δΓα

µν)(δΓ
λ
λα), (A.10)

with

δΓλ
µλ = −χ−1(∇µχ δλ

λ︸︷︷︸
=d

+∇λχδλ
µ −∇ρχδρ

µ) (A.11)

= −dχ−1∇µχ. (A.12)

One finds for the Ricci scalar

R = gµνRµν = χ2R + d(d − 1)∇µχ∇νχgµν − 2(d − 1)χ∇µ∇νχgµν︸ ︷︷ ︸
surface term

, (A.13)

for d=4

R = χ2R + 12∇µχ∇νχgµν − 6χ∇µ∇νχgµν︸ ︷︷ ︸
surface term

. (A.14)

Due to Gauss’ theorem in curved space-time the surface term can be neglected∫
Ω

d4x
√
−g∇µ(∇µχ) =

∫
Ω

d4x∂µ(
√
−g∇µχ) (A.15)

=

∫
δΩ

dSµ∇µχ. (A.16)
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This term is zero, if ∂µχ vanishes at infinity, which is the case here. This means we are

left with

⇒ R = χ2R + 12∇µχ∇νχgµν (A.17)

= χ2R + 12∂µχ∂νχgµν . (A.18)



B Energy conditions

If one does not specify the energy momentum tensor Tµν any metric will obey the Einstein

equation. But if we are interested in realistic solutions we have to specify the sources of

energy and momentum. That is why energy conditions are imposed [14]. These additional

constraints prevent properties, which are regarded as unphysical. The conditions will be

translated in terms of a energy-momentum tensor for a perfect fluid

Tµν = (ρ + p) uµuν + pgµν . (B.1)

There are several possibilities as

• Weak Energy Condition (WEC):

Tµνt
µtν ≥ 0 for all timelike vectors tµ or ρ ≥ 0 and ρ + p ≥ 0

• Null Energy Condition (NEC):

Tµνl
µlν ≥ 0 for all null vectors lµ or ρ + p ≥ 0

• Dominant Energy Condition (DEC):

Tµνt
µtν ≥ 0 for all timelike vectors tµ and T µνtµ a non-spacelike vector or ρ ≥ |p|

• Null Dominant Energy Condition (NDEC): (the DEC for null vectors)

Tµνl
µlν ≥ 0 for all null vectors lµ and T µνlµ a non-spacelike vector or p = −ρ

• Strong Energy Condition (SEC):

Tµνt
µtν ≥ 1

2
tλλt

σtσ for all timelike vectors tµ or ρ + p ≥ 0 and ρ + 3p ≥ 0

Most classical forms of matter obey the DEC and therefore the less restrictive ones

(WEC, NEC, NDEC).
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