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Fiir Nuschin

Drei Jahr ist eine kurze Zeit,

Und, Gott! das Feld ist gar zu weit.
Wenn man einen Fingerzeig nur hat,
LBt sich’s schon eher weiter fiihlen.

Schiiler, in J.W. von Goethe, ‘Faust Teil 1’



Abstract

We calculate the bottomonium spectrum in the framework of non-relativistic Lattice QCD
beyond the quenched approximation. The NRQCD Lagrangian includes spin-independent
interactions of order m;v* and myv* as well as spin-dependent terms up to order m;v®,
where my, is the b-quark mass and v its average velocity. Propagators are evaluated on
gauge configurations with two degenerate flavours of dynamical Wilson fermions which
naturally may be identified with the up and down quarks. We use lattices of extent
16 x 32 at f = 5.6 corresponding to a resolution of somewhat less than 0.1 fin and a
box size of approximately 1.4 fm. The analysis includes samples at three values of the
sea-quark mass ranging from m,/2 to m,, m, being the mass of the strange quark.

We extract ground states and radial excitations for S- and P-wave mesons employing po-
tential model wave functions in the smearing procedure. The light quark mass dependence
of radial and spin splittings is studied and we perform ‘chiral’ extrapolations to m,/3.
Our strategy in studying sea-quark effects is to compare the extrapolated results with
those obtained from a quenched simulation at equal lattice spacing. Our quenched data
for the gross level structure is in clear disagreement with the experimental spectrum which
confirms previous studies. Switching on dynamical quarks shifts the data points closer to
experiment. The effect is however rather small, so that the accuracy does not suffice to
‘measure’ the number of active flavours in the sea that enter T dynamics. Compared to
an earlier NRQCD simulation of bottomonium using staggered dynamical configurations
we have managed to reduce the statistical error on spin splittings substantially which
permits us to detect very small vacuum polarisation effects. We find that spin splittings
remain unaffected by the inclusion of dynamical quarks within errors of a few MeV.
Based on the spectrum results we estimate the strong coupling constant in full QCD from
the perturbative expansion of the plaquette in the coupling ap. We obtain disparate
ap values from the 1P-1S and 2S-1S splittings. They approach each other in the ny =2
theory and fully merge after extrapolation to three flavours. Conversion to the MS-scheme
and subsequent evolution to the Z mass scale yield ag—,‘?g(mz) = 0.1118(26).
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Chapter 1

Introduction

QCD colour dynamics is very peculiar. The interaction of two colour charges ap-
proaches the Coulomb law at short distances with a weak coupling constant as a
consequence of the one gluon exchange. At larger distances, the gluon starts branching,
which leads to a remarkable and totally counterintuitive phenomenon known as anti-
screening [1, 2, 3]. This behaviour carries the seed of another outstanding property of
Quantum Chromodynamics (QCD): when the distance becomes comparable to a certain
scale, the branchings of gluons become so intensive that it makes no sense to speak of
individual gluons. Rather, an adequate terminology is that of chromoelectric and chro-
momagnetic fields. It is conjectured that a specific organisation of the QCD vacuum
squeezes the chromoelectric field into flux tubes — thus a dual Meissner effect would
ensure colour confinement, which provides a dynamical explanation of the experimentally
well established fact that neither quarks nor gluons are asymptotic states [4, 5].

Because of asymptotic freedom, the quark-gluon interaction is accessible to perturbative
methods in the high energy domain, where one can successfully calculate the cross-sections
of many short distance processes. The original, and perhaps one of the most powerful
tests of QCD is the breaking of Bjorken scaling in deep inelastic lepton-hadron scattering
[6]. However, perturbation theory does not apply at the confinement scale due to the
increase of the coupling. To some extent this also spoils predictions of hard scattering

. processes that have to be connected to initial and final state hadrons. Thus the infra-red

behaviour of QCD prevents us from testing the theory to a precision that is achieved in
the electroweak sector. Even worse, one may consider it embarrassing that we are still
not able to decide whether the observed spectrum of hadronic bound states can indeed
be deduced from QCD.

As a consequence, much effort has been put into the development of adequate non-
perturbative calculation tools. Quite recently, a breakthrough was achieved in under-
standing the infra-red dynamics in a theory which might be considered a relative of
QCD: in N = 2 supersymmetric Yang-Mills theory it was analytically shown that mag-
netic monopoles do condense in the strong coupling regime, thus providing the basis for
the dual superconducter scenario [7, 8]. In QCD, the method of sum rules (Shifman-
Vainshtein-Zakharov sum rules) attempts to connect the strongly and weakly interacting
sectors by expansion of correlation functions in the vacuum condensates and subsequent
matching via dispersion relations [9, 10, 11]. Application of sum rules, however, involves
the introduction of various approximations and heuristic procedures that are motivated
by an intuition of the underlying physics and are not always rigorous consequences of
QOCD. The implications of symmetry have been successfully formulated in the effective
field theory language both in the limit of small quark masses, where the dynamics of
the Goldstone bosons is solely determined by chiral symmetry, as well as in the heavy
quark regime. But to improve accuracy one has to cope with an increasing number of new
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parameters (the low energy constants in Chiral Perturbation Theory [12, 13, 14]) which
limit the predictive power to some extent.

The formulation of QCD on a space-time grid is free of any uncontrolled approximations
and heuristic assumptions. Since Wilson’s seminal paper in 1974 [15], Lattice Gauge
Theory (LGT) has grown into a powerful computational tool which promises ~ with time
— to produce the most accurate results for a significant part of hadronic observables. The
lattice approach is remarkable in that it preserves local gauge invariance but abandons
Poincaré invariance, which is only restored in the continuum limit. Asymptotic freedom
provides a candidate ultraviolet fixed point at g = 0, g being the bare lattice coupling,
and thus yields the possibility of such a limit. Indeed, for SU(2) and SU(3) gauge groups
(with Wilson’s action) in four dimensions there is much evidence for the absence of any
bulk phase transition and it is widely believed that at weak coupling, a continuum limit
with static quark confinement exists as a consequence of the analytic continuation of
confinement at strong couplings.

The standard approach in LGT starts off with the Euclidean path integral and regularises
it on (mostly) hypercubic lattices of some extent, L and spacing, a !. The functional
integrals become finite dimensional partition functions of a statistical mechanics system
and may be numerically computed by well established Monte Carlo techniques. This
implies the sampling of field configurations according to the path integral measure and
the subsequent estimation of operator expectation values by sample averages. Because
of the procedure’s stochastic nature, predictions carry statistical errors and become more
precise with increasing sample size. Clearly, in order for a simulation result to be of
relevance for continuum physics, the volume has to be large compared to the typical size
of the system under investigation and the lattice spacing must be small enough to resolve
the important physical length scales.

In recent years, improving the approach to the continuum limit has been at the cen-
ter of theoretical and numerical investigations. New methods have been built around
Symanzik’s early idea of including additional operators into the action to systematically
remove remaining cut-off effects up to a given power of the lattice spacing. Perturbative
improvement, however, is known to be inefficient as long as one sticks to bare lattice
expansions, and practical progress only came from the fruitful phenomenological recipe
of tadpole renormalisation [18]. To overcome the shortcomings of perturbation theory
completely, rather involved techniques have been developed to compute the additional
couplings entering the classically improved action non-perturbatively via numerical simu-
lation [19]. A more ambitious program is to construct an almost perfect action in which all
terms of O(a®") are absent[20, 21, 22]. Unfortunately, it is still difficult to make decisive
statements about the efficiency of improvement, even in the quenched approximation [23].
Concerning dynamical fermions, simulations of improved actions have only been started
very recently [24, 25], so it will be a few years before enough data can be generated to
determine the advantages and disadvantages of different approaches.

'In the past few years there has been rising interest in anisotropic lattices with a; <« a,. Such an
asymmetric choice becomes particularly important when dealing with improved actions on coarse grids.
The technique was successfully applied to the computation of the glueball spectrum which suffers from
low signal/noise on symmetric lattices, see for example [16, 17].

The discretisation of fermionic degrees of freedom is complicated by the notorious ‘doub-
ling’ problem, i.e. the sixteenfold replication of fermion species, coming in pairs of left-
handed and right-handed states, in four dimensions, when using the naive lattice Dirac
operator. A natural escape, proposed by WILSON [26], is to add a dimension-five term to
the action which decouples 15 doublers in the continuum limit leaving a single physical
fermion. As a consequence of the Nielsen-Ninomiya no-go theorem [27], the Wilson term
breaks chiral symmetry leading to an additive renormalisation of the quark mass.

A further technical problem which has important implications originates from the Grass-
mann nature of the fermions. Up to now, no direct way exists to handle such anticom-
muting field variables numerically. Fortunately, there is no need to do so, since quark
fields enter the QCD Lagrangian in a quadratic form and hence, can be integrated out
analytically leading to an effective bosonic theory. This bosonic theory is non-local, due
to the fermion determinant multiplying the exponential of the gauge field action, and
therefore its simulation is much more costly. For this reason it has been common to
study a simplified theory in which the fermion determinant is set to a constant. In the
perturbative language this quenched or valence approximation amounts to throwing away
internal quark loops while keeping the valence quarks that propagate in a purely gluonic
background.

Today’s lattice calculations are able to give precise results for hadronic bound states
within this approximation. High statistics lattice studies of quenched QCD on large
physical volumes and fine grained-grids predict the spectrum of light hadrons within a
few percent accuracy in the chiral and continuum limits. Whereas the GF11 data repro-
duced the physical spectrum within errors [28], recent results by CP-PACS [29, 30] reveal
clear discrepancies between the quenched prediction and experiment. They suggest that
dynamical quark effects on light hadron masses and matrix elements lie within a 10 to
20% range. The inclusion of quarks into the Lagrangian, however, increases the CPU
requirements by a factor of 102 — 10%. Therefore, a comprehensive study of the infinite
volume continuum limit in full lattice QCD remains a task for the upcoming TERAcom-

- puters. Nevertheless, vacuum polarisation effects may already show up in simulations on

intermediate volumes on the edge of the scaling regime. This surely is a reasonable ex-
pectation for quantities with inherent sea-quark dependence such as the 7N o-term, the
7'-mass or the spin content of the nucleon. The heavy quark sector, however, may turn
out to become of equal importance in this context. One reason is that low-lying quarko-
nium levels for instance, can be computed with high precision and are much less sensitive
to extrapolations in the dynamical quark mass than quantities entirely built up of light
quarks. A second argument applies to the particular case of treating the heavy quarks in
the framework of an effective non-relativistic formulation of QCD. The effective theory is
valid only in a range of cut-off values. It is tuned so as to reproduce QCD within this
range and does not require (nor allow) an extrapolation to the continuum limit. Present
resolutions of full QCD lattices lie within this scaling window. Hence it is hoped that
vacuum polarisation effects may be isolated more safely in heavy quark systems though
one expects their size to be smaller than in the quantities mentioned above.

Bound states of heavy quarks have attracted considerable interest in the experimental
and theoretical study of electroweak interactions. The investigation of their decays allows
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one to narrow the constraints on the less-known elements of the Cabibbo-Kobayashi-
Maskawa matrix, whose precise knowledge is needed for a stringent test of the Standard
Model of particle physics and the possible detection of ‘new physics’. The principal
uncertainty attached to theoretical estimates of form factors or decay constants is due to
the difficulty in quantifying the non-perturbative QCD effects. These may be tackled by
lattice simulations of QCD (31, 32]. Prior to facing the full complexity of weak matrix
elements, of course, the capability of such an approach can be assessed by computing the
mass spectrum. The role of lattice simulations for systems involving heavy quarks, the
b quark to be specific, is thus twofold: first, they predict unmeasured quantities such as
the B meson decay constant, the mixing parameter By and the masses of baryons and
mesons containing the b quark; second, they serve to test the validity of other approaches
like Heavy Quark Effective Theory (HQET) [33, 34, 35, 36, 37, 38].

Much activity has been in heavy-light systems. Another area of investigation has concen-
trated on heavy-heavy bound states which have been ignored by the lattice community
for a long time. The physics of QQ systems received new interest since it had been refor-
mulated in the modern language of effective field theory. The study of heavy quarkonia
benefits from several advantages [39]: first, we have a far more detailed understanding of
the internal structure of QQ mesons than we do for other hadrons from potential models,
which give us control over systematic errors that arise in simulations. Second, quarkonia
are smaller than hadrons containing light quarks, making it unlikely that the finite volume
of the lattice has much of an effect upon simulation results. A further advantage comes
from the observation that the lowest radial and orbital angular momentum splittings are
independent of the heavy quark mass to a very good approximation.

There is a drawback, however: the direct simulation of heavy quark dynamics on the
lattice employing the standard Wilson action suffers from serious discretisation errors.
Currently typical values of the inverse lattice spacing are in the range of 2-4 GeV which
is still below the b mass. To circumvent this problem, the non-relativistic effective theory
for QCD (NRQCD) has been successfully applied in the past few years 2. The NRQCD
Lagrangian is written as a series of operators expanded in powers of the mean-squared
heavy-quark velocity v*, Lyrqen = Y, ¢i(9%)0i(mqu®"), where the coefficients ¢; are
obtained by perturbative matching with QCD. The lattice version of NRQCD [42, 43]
allows one to simulate heavy quarks with lattice spacing errors of O(pa), where p is a
typical momentum of order Agcp, rather than the usual O(mga) for Wilson-type heavy
quarks. This makes lattice NRQCD a promising technique to simulate systems containing
a b-quark 3.

?There are several alternative methods (which are mostly applied to heavy-light systems): An obvious
way to avoid large discretisation errors is to perform the simulation around the charm mass, which is
considered to be sufficiently light, and then extrapolate to the bottom scale. Of course, lattice artefacts
are still sizable for charm if the standard Wilson action is employed. They may be further reduced
by using improved actions, most notably the Sheikholeslami-Wohlert action [40], which remove leading
finite-a errors. A method that can be viewed as an ‘interpolation’ between the Wilson-type and the
non-relativistic action has been developed by the Fermilab group [41]. None of these methods (including
NRQCD for bottom) is entirely satisfactory, but they provide complementary information about the
heavy-quark system.

3Applying NRQCD to charmonium turns out to be difficult. Each order of relativistic corrections is

5

Calculations of the spectrum of the bb system have been performed using the quenched
approximation by [46, 47, 48]. So far, there has only been one analysis of the T with
dynamical quarks: DAVIES ET.AL. [49, 50] applied an O(myv*) correct NRQCD action to
gauge fields incorporating the effects of two dynamical staggered fermions. It was found
that the experimentally known spin-independent spectrum could not be reproduced using
the quenched approximation, whereas the data with 2 dynamical fermions agrees much
better. These measurements were pushed to high statistics (4% statistical errors) in
[49, 50] and exploited to obtain precision measurements of the strong coupling constant,
a,. Quenching was concluded to be the largest source of uncertainty in this calculation.
The dependence of the splittings on the dynamical quark mass was estimated, using just
two mass values, to be of the same order as the statistical error. No simulation applying
NRQCD to dynamical Wilson fermions exists so far

In the spin-dependent sector the emerging picture is much less clear. The P-fine structure
in the unquenched theory, obtained with the O(myv*)-correct action, was found to be in
very good agreement with experiment whereas the quenched results, using the same action,
predict much smaller splittings. However, recent results of [48, 51, 44] (all of which use
the quenched approximation) have exposed the sensitivity of the spin-dependent splittings
to the details of the action: several improvements, such as the inclusion of higher order
spin-dependent terms in the NRQCD expansion, the addition of lattice-artefact correcting
terms of O(a?) [48, 44] as well as an improved phenomenological estimate of the coefficients
¢; [44, 52] were found to have sizable effects of O(10—20%) for these splittings. Thus, there
has recently been strong support in favour of using the O(mv®)-correct NRQCD action
where, to highest order, all spin-dependent corrections are added, as well as for the use of
the mean-link Landau-gauge tadpole scheme to estimate the perturbative coeflicients ¢;.
The effects of these improvements for dynamical configurations have not been studied.

In this thesis we attempt to address many of the open issues pin-pointed above. We
study in detail the bb spectrum on unquenched gauge field configurations, which have
been generated within the SESAM project, and present a new lattice estimate for the

. strong coupling constant agg(mz) based on these spectrum results.

SESAM aims to investigate Sea-Quark Effects on Spectrum And Matrix elements [53, 54,
55]. The project involves a large scale Hybrid Monte Carlo simulation of lattice QCD with
dynamical Wilson fermions. Our computational platform has been the massively parallel
APE100/QH2 with 256 nodes and an approximate peak performance of 13 Gflops. A
full QCD simulation with Wilson fermions is particularly expensive, since the fermion
propagator carries more degrees of freedom than in the staggered formulation. Hence it
is a difficult task to choose simulation parameters in such a way that possible sea-quark
effects are not masked by large systematic errors. SESAM was guided in this choice by
early exploratory studies by GUPTA ET.AL. [56, 57]. Within the limited compute power of
a pre-Tflops machine it is reasonable to accumulate significant statistics at a single value of
the gauge coupling rather than to attempt a scaling analysis. Quenched simulations tell us

expected to be only 30% smaller than the previous one. Higher-order terms may contribute as much as
60% to spin splittings as demonstrated by TROTTIER [44]. In addition the lower charm mass requires
rather coarse lattices for the effective theory to work, 8 < 5.85 in the quenched approximation [45]. This
limit implies that we cannot treat charmonium appropriately on a dynamical Wilson lattice with g = 5.6.
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that scaling sets in at a lattice spacing of a = 0.1 fm. This corresponds to a bare coupling
of # = 5.6 in the full theory. The mass parameter is constrained by the requirement that
finite volume effects remain tolerable. The condition m, L > 4 limits the smallest m, /m,
ratio to approximately 0.69. SESAM generated samples with four different quark masses,
each sample containing 5000 trajectories. The overall computational effort has reached
100 TFlops-h.

The plan of the thesis is as follows:

Hunting for Sea-Quarks

We start with a brief introduction into the subject of lattice regularised Quantum Chromo-
dynamics to provide basic notations. Some aspects of the Hybrid Monte Carlo algorithm
and its QCD implementation are discussed. We quote the relevant simulation parameters
of SESAM’s HMC runs, but refer to [58] for a detailed presentation of various algorithmic
improvements and a study of autocorrelation times. Finally we point to some results ob-
tained so far from the study of the static quark-antiquark potential and the light hadron
spectrum.

Heavy Quarkonium and NRQCD

Chapter 3 introduces the non-relativistic effective theory for QQ bound states. We de-
scribe those aspects that are relevant to the calculation of the bottomonium spectrum,
but do not touch the NRQCD factorisation approach.

Lattice-Regularised NRQCD

The discretised version of the NRQCD Lagrangian is formulated in Chapter 4. We de-
velop the evolution equation of the heavy quark propagator, construct correlation func-
tions for S- and P-wave mesons and present our choice of smearing functions. NRQCD
and QCD are matched both perturbatively and non-perturbatively. We discuss the sim-
plified matching procedure which is usually applied to get around a laborious one-loop
calculation.

Bottomonium Spectroscopy

Using SESAM'’s large sample of dynamical Wilson-fermion gauge configurations we study
both the spin-independent as well as the spin-dependent spectrum of the Y. Our strategy
in searching for sea-quark effects will be to compare our final dynamical results to that
of a quenched simulation at equivalent lattice spacing. Thus we hope to consolidate that
unquenching brings the spin-independent splittings into good agreement with experiment.
As an important new feature we can also study the dependence of mass-splittings on the
light sea-quark mass. Following the recent suggestions of [48, 44] we have implemented the
NRQCD action including spin-dependent corrections of @(m,v®) and we remove tadpoles
using the mean link calculated in Landau gauge. With these ingredients we hope to clarify
the effect of unquenching in the spin-dependent splittings.

Investigation of Systematic Errors

In Chapter 6 we turn to an analysis of systematic errors different to those stemming from
quenching. We quantify the heavy-quark mass dependence of radial level splittings and
spin splittings in heavy quarkonium. Furthermore we study their sensitivity to changes
of the non-relativistic action in two respects: the convergence of the velocity expansion is
examined by comparing leading order and next-to-leading order results and we test the
influence of the tadpole improvement factor by switching from the Landau mean-link to
the plaquette prescription.

The Strong Coupling Constant in Unquenched QCD

The accurate determination of the lattice spacing from the bottomonium spectrum can
be used in a simple way to estimate the strong coupling constant. Starting with the per-
turbative expansion of the average plaquette, one calculates the plaquette coupling both
in the quenched approximation and in the ny = 2 theory. This data is then extrapolated
in the number of flavours and converted to the MS scheme of dimensional regularisation.
g computed within the framework of Lattice NRQCD belongs to the most accurate de-
terminations of the strong coupling constant. We can improve on existing error estimates
by an explicit study of the sea-quark mass dependence.

Part of the results presented here have been published prior to this thesis in Refs. [59,
55, 60, 61, 62, 63, 31].
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Chapter 2

Hunting for Sea-Quarks

In this introductory chapter we give a brief outline of SESAM collaboration’s lattice
investigation of QCD with dynamical quarks. The project involves a detailed study of
Sea-quark Effects on Spectroscopic quantities And, more general, QCD Matrix elements.
It may be considered a ‘second generation’ Hybrid Monte Carlo simulation of Wilson
fermions, in the sense that by improvements of algorithms and increased compute power
we have been able to generate a sufficient sample of decorrelated gauge field configurations
on reasonable lattices. Section 2.1 recalls the basic concept of lattice regularised QCD
and supplies notation and formulae as a background for later chapters. Necessarily, the
presentation will be very brief. Detailed introductions into the subject of lattice field
theory may be found in [64, 65, 66, 67, 68]. At their core, lattice calculations involve
numerical simulations, i.e. stochastic sampling procedures to generate background field
configurations. The standard algorithm for simulating QCD is the Hybrid Monte Carlo
algorithm (HMC). We outline SESAM’s HMC simulation in Section 2.2 and close the
chapter with some remarks on important results obtained so far.

The technical issues slightly touched on here are discussed in much more detail in Refs.
(69, 58].

2.1 Euclidean Lattice QCD

The formulation of lattice gauge theory (LGT) is generally based on the functional integral
representation of Green’s functions in Euclidean space-time '. The restriction to the
Euclidean metric is an algorithmic issue rather than a fundamental one. The integrand of
the Minkowski path integral is complex and thus causes strong oscillations which cannot
be treated with standard simulation techniques. The QCD action in Minkowski space-
time reads

S&IJ)D = Z/d"x U, (z) ('i'Y(”M)Du T mq) Wy(z) - /d45'3 %TT [Fu (@) F* (2)] | (2.1)

where the sum is over quark flavours and Dirac as well as colour indices have been sup-
pressed. We define the covariant derivative through D), = 8, +igA,(z), Au(v) = Aj(z)T°.
The normalisation of the Lie Algebra basis is chosen to be Tr(7'*T") = §%°/2. The field
strength tensor is

igF, = [D,, D] = ig (8,4, — 8,A, + ig[A,, A]) . (2.2)

!There are attempts to tackle the QCD binding problem of the Kogut-Susskind lattice Hamiltonian
applying the coupled cluster expansion. Up to now, these are restricted to simplified theories and even
then the result is still inconclusive [70, 71, 72, 73].
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After Wick rotating to Euclidean times,
z? - —i114 Dy — iD4, Fo; — iFy; (23)

the path integral weight exp(iS{(y,) becomes a real Boltzmann factor exp(—Sgep) and
can be interpreted, if correctly normalised, as a probability density. The Euclidean action
reads

Seo=% [#'2 0@ (D4 my) Wy(o) + [tta PP, (24)

and the hermitian Dirac matrices are defined as

W=y W=~ - ke

Because of the Euclidean formalism, processes in real time are not directly accessible,
whereas static quantities like energies of states or particle decay constants can be success-
fully calculated. These are obtained by evaluating the Euclidean two-point function

Clar) = - [ (DAWDTDUO*2)O0)e (2.6)

where O is a composite field with appropriate transformation properties for the state under
consideration. For an action that is Euclidean invariant and leads to reflection positive
expectation values, the axioms by OSTERWALDER and SCHRADER (74, 75] guarantee the
existence of a Hilbert space 7{ with positive norm and a hermitian bounded Hamiltonian
H defined on H, with the lowest eigenstate having zero energy. Then the correlation
function (2.6) equals the time ordered vacuum expectation value

Clas) = (OIT [0'(z0)O(0)] [0) (2.7)
= (0] Ote~=H|0) (2.8)
0|Ote=A 5|0y, (2.9)

which may be analytically continued back to Minkowski space. In order to obtain the
spectral decomposition, we insert a complete set of energy eigenstates in C(z4), assuming
a finite volume V/,

0|0le=HO) = (0|Ote =M Zlm 2131,.v<"|@’°) (2.10)
2 Z; n|O[0)[2< T (2.11)

If the lowest state excited from the vacuum by the operator o corresponds to a stable
particle, there is no need to rotate back to Minkowski space-time. The energies or masses,
as well as the creation amplitudes, can be read off directly from the exponential decay of
the Euclidean correlation function Eq.(2.11).

To give the functional integral a mathematical meaning, we discretise QCD on a finite
hypercubic lattice with lattice spacing a, spatial extent Lg = aNg and temporal extent
Ly = aNyp. The lattice excludes momenta larger than 27/a and thus provides a non-
perturbative regularisation.
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Discretising the gluon field

To maintain local gauge invariance the lattice gauge field is defined as the set of SU(3)
parallel transporters along the links between neighbouring grid points

{Us = U(z,z + aft)|(z, p) € lattice} . (2.12)

Here (z, 1) denotes the link that connects z with « + afi, i being the unit vector in
p-direction. The link variable, U, € SU(3), is given in the fundamental representation
and maps the spinor fields at point = + afi onto parallel fields at point . Link variables
are related to the continuum vector potential via the path-ordered integral

U= P exp [—ig/ dzA,,(z)] ~ 1+ iagA,u(z + gﬂ) + 0(a?) . (2.13)

ztaj

Since the curvature associated with the connection A, is derived from the parallel trans-
port along an infinitesimal closed path, it is obvious that the lattice analogue will be the
product of link variables around an elementary square or plaquette,

Usg = Us wUsiapoUl 05 UL, ~ 1+ iga’F, — —--a"F,';’, +1a®L,, +ia*M,, + O(a®) .
(2.14)

From Eq.(2.14) one obtains the Wilson gauge action as

SYul=8)’ (1--2& TrU,,,,) /d% “Tr(F,F,) + 0(a?), (2.15)

T,u>v

where 3 = 6/g*. There is nothing special of using the plaquette in the construction of
the action. Any other Wilson loop can be chosen provided it has the correct classical
continuum limit. The advantages of small loops are typically smaller discretisation errors
and higher computational speed.

Discretising the fermion field

The discretisation of the fermionic action 2,
ST /d4:c ¥ (y"Dy+m) ¥, (2.16)

is greatly complicated as a consequence of the Nielsen-Ninomiya theorem [27]. The lattice
theory lacks chiral symmetries: Under a set of rather mild assumptions which are transla-
tion invariance, locality and hermiticity of the underlying Hamiltonian, the theorem tells
us that there are always pairs of left-handed and right-handed fields belonging to the same
representation of the gauge group.

2We consider only one flavour to simplify notation.
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Replacing the covariant derivative by a symmetric difference is the most local choice which
preserves the anti-hermitian nature of the continuum operator v D,. One obtains the
so-called ‘naive’ fermion action,

; 1 7
S?alve i 20, Z a*¥ 'Y(B) (Uz:,#‘l’a:«i-nﬁ ™ Uzt~aﬂ.#wz“‘/7) P Za“m\II,,‘I’z . (2‘17)
Em %

which represents 2¢ degenerate fermions in d dimensions instead of only one. This is
obvious from the free fermion propagator

15 v sin(k,)
o (am)2 + E“ sin’*(k,)

G(k) has poles near the 16 corners of the Brillouin zone, i.e. if each component of &, is
either 0 or .

G(k) (2.18)

A prominent way to escape the consequences of the no-go theorem is to break chiral
symmetry explicitly right from the start, and aim to recover it only in the continuum limit.
Wilson [26] suggested adding a second-order derivative term to the naively discretised
action,

P
S ==Y a* Ty (VewParas — 200 + Ul ¥ap) - (2.19)
z,pu

Such a term implies that the doublers pick up an effective mass m + 2r/a~%, so that for
finite Wilson parameter, r one expects them to decouple from the theory leaving a single
physical fermion. Usually the field normalisations are changed to bring the action into a
particularly simple form:

a®? (am +4r)' 20, ¥, **(am +4r)'* T, - T, . (2.20)

Including the gauge field part, we arrive at the Wilson action

S = S +5p"+8y
= Y+ ¥.M,0, (2.21)
oy S
with the fermion matrix,
4
Mgy =62y — K‘Z [(T — Y Weubstapy + (T + 'Y(B)) —apud2- “ﬂ"’] i s,

p=1

We have suppressed Dirac and colour indices in Eq.(2.22) and introduced the hopping
parameter

1
= 2am+8r

(2.23)
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In numerical simulations one almost always sets r = 1. This is in the range of values
where the lattice theory satisfies reflection positivity. Furthermore there are no doublers
then in the free field limit. Eq.(2.23) defines the bare quark mass as

e Al
M= T i 26,

with ma = 0 at K = k. = 1/8r for the free theory. In the interacting theory one may stick
do this definition with the proviso that the critical hopping parameter, k., now depends on
the lattice spacing as a consequence of the explicit breaking of chiral symmetry. Another
severe drawback of Wilson fermions are discretisation errors linear in a rather than O(a?)
for the naive action 3.

(2.24)

The quenched approximation
To complete the definition of the theory one has to specify an integration measure

[dU)[d¥][d¥] = HdU,,,Hd\IJ quf, ; (2.25)

where link variables are integrated with the invariant group measure. Then the expecta-
tion value of an arbitrary function of the field variables, O(¥, ¥, U) is given by

[ldu) [dT][d¥]e S50 O(F, ¥, u)
JlaU)[a¥][dw]eSaeb

Since the action is quadratic in the fermion fields the Grassmann variables can be inte-
grated out,

(O(2,9,0)) = (2.26)

/ [dF][d¥]e ST +5F) < det(M[U))™ , (2.27)

assuming degenerate flavours. If we choose as an example the function O(V, ¥,U) =

U, ¥y, ...V, ¥, F[U], we arrive at the following form of the expectation value Eq.(2.26)

(O(¥,%,U)) =
JlaU)det(M[U))"r e FIUIE,,, .., itinin MIULS, MIUL,,
[[dU)det(M[U])"seS"

In the quenched or valence approximation the quark determinant is set to a constant,
detM[U] = const, which amounts to neglecting the effects of vacuum polarisation since in
perturbation theory the expansion of the determinant generates the closed fermion loops.
Quenching reduces the computational costs by several orders of magnitude, because the
gauge field updating can be done with the pure gauge action. However, it induces an
uncontrolled uncertainty on lattice predictions.
In this thesis we go beyond the quenched approximation and deal with gauge field configu-
rations that include two degenerate flavours of dynamical quarks. The restriction to pairs
of equal-mass fermions is necessary to guarantee the positivity of the quark determinant.

U -1
z3x3 [ ]z,.z,. .(2.28)

3An alternative method to fix the doubling problem is the Kogut-Susskind staggered formulation
which reduces the 16 fermion species to four by spin-diagonalisation. Staggered fermions have O(a?)
errors and retain a residual axial symmetry.
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2.2 HMC Simulation Set-Up

The Hybrid Monte Carlo (HMC) algorithm by DUANE ET.AL. [76] has become the stan-
dard tool for practical simulations of full QCD. Detailed discussions of its implementation
and characteristics are presented in [58, 77]. SESAM has performed a large-scale HMC
simulation of QCD with two degenerate flavours of dynamical Wilson quarks. We have
generated lattices of extent 16° x 32 at four different quark masses corresponding to
hopping parameters, x = 0.1560, 0.1565, 0.1570, 0.1575. The computational cost of an un-
quenched simulation only allowed us to study a single value of the bare lattice coupling:
B = 5.6 is appropriate to realise resolutions of a ~ 0.1 fm which is at the onset of the
scaling regime in the quenched approximation. The choice of these parameters was guided
by early exploratory studies of dynamical Wilson fermions by GUPTA ET.AL. [56, 57].
The time consuming part of the HMC is the repeated inversion of the Wilson fermion
matrix. It has been accelerated using two different preconditioning techniques: Conven-
tional even-odd decomposition of the fermion matrix [78] was applied in the first stage of
the simulation. Later it was replaced by the locally lexicographic SSOR. preconditioner
[79, 80] which has been shown to offer up to a factor of 2 less computational costs. The
use of the chronological start vector guess as proposed in [81] further helps to reduce the
inversion time.

Time step size and number of molecular dynamics steps have been chosen so as to guar-
antee an acceptance rate > 70%. Individual trajectory lengths nyg are varied by numbers
uniformly distributed in the range #24/fiq around a fixed value fing as recommended in
Ref. [82]. The relevant parameters of the HMC runs are summarised in Table 2.1.

For each k value Markov chains with 5000 trajectories have been generated. To control
the statistical quality, SESAM has carefully studied the autocorrelation of the time series.
Table 2.2, taken from [58], contains estimates of the integrated autocorrelation times

T ) am)
with
CA(t) = ((A(3) — (A)) (A(i +1) - (4))) (2.30)

for the plaquette, the pseudoscalar and the vector mass. For these quantities 7iy is
of O(10) or less. Since we cannot afford to skip too many trajectories we choose an
average separation of 25 between measurements.and arrive at a number of 200 decorrelated
configurations.

Metacomputing resources

The computer experiment has been realised on the special purpose machines APE
Quadrics QH2 at IfHH/DESY Zeuthen and the Universitiat Bielefeld. It is a single user
SIMD computer with a peak performance of 12.8 GFlops. The HMC implementation
achieves a sustained rate of about 60%. We have stored all generated trajectories on the
data archive at ZAM/FZ Jiilich to enable a detailed post-production analysis. The overall
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B=56n;=2VxT =16 x 32

K 0.1560 0.1565 0.1570 0.1575
Algorithm ofe SSOR ofe SSOR of/e SSOR
Nmd 10020 10020 100+£20 100£20 100420 71412
Mesg 6 7 8 9 1 3
#ofiter.  85(3)  89(6)  168(5) 125(3) 317(12) 150(6)
acc. rate[%] 85 84 80 76 73
# of traj. 5000 5000 1500 3500 3000 2000
# of confs. 200 200 200 200

Table 2.1. Simulation parameters of SESAM’s HMC runs. nyq is the number of molec-
ular dynamics steps, n.s; denotes the order of the polynomial start vector guess. Also
listed are the average number of BiCGStab iterations and the average acceptance rate.

k= 0.156 k= 0.157 x = 0.1575
observable  tyc  Fint IMc Tt tme Tt

(GRTYU, ) 2500 3(1) 3000 4(1) 2500 7(1)
sl

m! 2500 11(1) 2500 13(1) 1700 19(2)
mss 2500 1.8(0.1) 2500 2.6(0.2) 1700 3.6(0.3)
ms 2500 6(0.5) 2500 8(1) 1700 10(1)
mss 2500 1.6(0.1) 2500 2.3(0.2) 1700 3.4(0.3)

Table 2.2. Integrated HMC autocorrelation times 7y for the plaquette, the pseudoscalar
and the vector mass [55, 58]. The superscript sl denotes smeared source and local sink
whereas ss indicates smearing at both source and sink. tyc is the length of the underlying
time series. This table has been taken from [58].
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compute effort has been around 300 days on the QH2 corresponding to 100 TFlops-h. The
computation of the heavy quarkonium spectrum on these configurations have been mostly
carried out on the Connection Machines CM5 at the Bergische Universitat Wuppertal and
the Universitit Erlangen.

2.3 Sea-Quark Signals

It is a plausible expectation that vacuum polarisation effects show up primarily in quan-
tities containing light quarks, in particular if these quantities are inherently sea-quark
dependent. Consequently SESAM has focussed on the light hadronic sector. This, on the
other hand, makes the study of heavy quarkonium an important complementary investi-
gation. It is remarkable that simulations of bottomonium have been among the first to
present evidence for dynamical quark effects.

Before we enter the details of the heavy quarkonium analysis in the following chapters,
we here briefly touch on some of SESAM’s results mainly from the light quark sector.
Extended discussions of the project may be found in [62, 55].

The calculation of the static quark-antiquark potential is the ‘classic’ lattice experiment
and has also been the first one performed on the dynamical configurations [83]. An exciting
property of full QCD, which is not shared by the quenched approximation is the breaking
of the colour string that connects quark and antiquark once the separation becomes large
enough to produce a meson from the vacuum. As a sign of string breaking in the potential
one expects the linear rising part to flatten out eventually. The SESAM data does not
exhibit such behaviour up to distances of » ~ 1.4 fm. A likely explanation for this result
has been pointed out by GUSKEN [62]: the Wilson loop operator used to compute the
potential has insufficient overlap with the state of two static-light mesons which results
from string breaking. Very recent observations of the phenomenon in SU(2) Higgs models
strongly point in this direction [84, 85]. Except from string breaking SESAM clearly
observes the effect of dynamical flavours in the Coulomb coefficient which is increased by
more than 10%.

The analysis of the light hadron spectrum faces the problem that, due to the restriction
to 2 dynamical flavours, the light and strange quarks cannot be treated on equal foot-
ing. It is natural to identify the sea-quarks with the (degenerate) up and down quarks
whereas the strange sector is to be handled in a semi-quenched way. SESAM has pro-
posed simultaneous fits to a set of hadron masses that allow access to arbitrary points in
the plane spanned by the sea-quark and valence quark mass parameters. Unfortunately,
the analysis does not reveal a significant unquenching effect in the light hadron sector.
Due to the considerable variation of hadron masses under chiral extrapolation, we are
not able to overcome the well-known shortcomings of quenched calculations, namely the
underestimation of the X' — K* and N — A spin splittings.

A somewhat puzzling result has been obtained for the quark masses. SESAM’s values for
the light and strange quarks are

mist(2 GeV) = 2.7(2)MeV (2.31)
mEt(2 GeV) = 140(20)MeV . (2.32)
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Figure 2.1. Dependence of the lattice scale on the quantity used to fix it. The lower
plot includes two values of a! from m,. The one with the smaller error bars is taken
from a linear chiral extrapolation whereas the second belongs to a quadratic fit.
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The light quark mass is much smaller than in the quenched approximation whereas the
strange is compatible within errors. Our dynamical result for the ratio, m®¥=¢ /mlieht ~
52 differs significantly from chiral perturbation theory estimates [86] and sum rule results
[87].

As a consequence of quenching, lattice spacings determined from different quantities will
differ. It is therefore expected that the dependence of a=*
be smoothed out once dynamical quarks are switched on. In Figure 2.1 we compare lattice
spacings obtained from a series of quantities that probe different momentum scales. We
observe a significant variation in the quenched case. Scales from the nucleon and the P-S
bottomonium splitting differ by 50%. The situation looks much better for the unquenched
data. Within errors no dependence is seen. Unfortunately, however, these errors are quite
large for the nucleon (and the quadratically extrapolated p-meson) due to the chiral
extrapolation.

2.4 Summary

To nail down vacuum polarisation effects, very accurate simulations and refined analysis
methods are needed. We have drawn an outline of SESAM’s lattice QCD simulation
involving dynamical Wilson quarks. The detailed knowledge of autocorrelation times
is essential to provide reliable estimates of physical quantities. We have discussed an
(incomplete) list of results obtained so far, which mainly concerned the light hadron sector.
In the following we turn to the bound-state problem of heavy quarks and investigate in
detail the effect of vacuum polarisation on energy splittings in this system.

<

on the choice of observable will
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Chapter 3
Heavy Quarkonium and NRQCD

'We provide the background for later investigations with a discussion of theoretical
approaches to the heavy quarkonium bound-state problem. There is a revived
interest in the physics of QQ systems since it has been formulated in the modern language
of effective field theory. In this chapter we will recall the power counting rules for non-
relativistic QCD and describe the next-to-leading order Lagrangian.

3.1 Approaches to the Q@ Bound-State Problem

After the discovery of the J/¥ in 1974 had opened the door to heavy flavour physics
[88, 89], followed by the observation of the analogous bound state made up of bottom
quarks three years later [90], considerable effort was invested in studying the ‘hydrogen
atoms’ of the strong interactions. Very early, APPELQUIST and POLITZER [91] were led
by the idea of asymptotic freedom to the suggestion that heavy quarks would form non-
relativistic positronium-like bound states. However, neither charm nor bottom quarks are
heavy enough to form a weakly coupled Coulombic system tractable in PT as positronium
is in electrodynamics. The top is special because of its large ¢ — b+ W™ decay rate which
is expected to prevent toponium from forming [92]. Quarkonia therefore have to be
described non-perturbatively. Without the simplicity of a Coulombic state, the binding
of two heavy quarks instead of one heavy and one light quark adds complications by

- introducing additional energy scales besides the heavy quark mass, mg and the low-

energy scale, Agcp. These additional scales are the typical heavy-quark momentum in
the rest frame, mgu, which is the scale for the inverse quarkonium size, as well as the
kinetic energy, mqu?® describing the splittings between radial excitations and between
orbital angular momentum excitations in the spectrum. Here, v is the average velocity of
the constituents. To quantify the different scales, we note that

My —myy = my —my = 600MeV

My, — My & My, —my ~400MeV . (3.1)
The average, 500 MeV provides an estimate of mgv®. The heavy mass, mq is taken to
be half the mass of the lowest energy level and mqu is obtained as the geometric mean

of mg and mgu® (Table 3.1). For toponium - assuming the top quark were stable - it is
reasonable to estimate level splittings from a purely Coulombic potential

4 1./ 1
W:N_as( /r) - . (3.2)
3008 mgu
Then the difference between the ground state and the first excitation is

: al
B -E=m. (3.3)
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cé b |t ete™
M 1.5 GeV | 4.7 GeV | 175 GeV | 0.5 MeV
M 0.9 GeV | 1.5 GeV | 16 GeV | 3.6 keV
Mvy? 0.5 GeV [ 0.5 GeV | 1.5 GeV | 25eV
v? 0.3 0.1 0.009 5.107°
a(mg)/m 0.1 0.07 0.04 2,051

Table 3.1. Scales in quarkonium and positronium and the expansion parameters of the
non-relativistic approximation [93, 94].

For m; = 175 GeV this splitting is approximately 1.5 GeV corresponding to v =~ 0.09. Low
quark velocities have two important implications: first, the bound state will be dominantly
QQ as the radiation of a low-energy gluon from a quark is suppressed !. Second, the gluon
exchange will appear instantaneous as the gluon kinetic energy is larger by a factor 1/v
compared to the quark kinetic energy [42]. Both features taken together suggest a non-
relativistic quark-model picture of heavy-quark bound states. In the infinite-mass limit
the spin interaction vanishes and one is left with a static central potential. A good
description of the observed cé and bb spectra can be obtained using a potential that is
Coulombic at short distances and confining at large separations, the Cornell potential [95]

¥ir)= —%% +or. (3.4)

However, other choices work equally well like the RICHARDSON potential [96], the MAR-
TIN potential [97] or the potential of BUCHMULLER and TYE [98] which satisfies the
asymptotic properties of (3.4) but includes the effects of two-loop running at small dis-
tances. Even a logarithmic form manages to work, although it has no motivation from
QCD [99]. The reason is that the T and ¥ families of resonances probe a quark-antiquark
distance of 0.1 - 0.8 fm and all the above potentials can be made to agree in this range
by a proper choice of parameters, although they may differ significantly for shorter and
larger separations 2.

Although the usefulness of the potential model picture is undoubted, it misses the link
to QCD. A much more involved and computationally demanding approach is to extract
the instantaneous QQ potential in lattice QCD and subsequently use it in a Schrédinger
equation to compute the spectrum. Precise lattice simulations have been performed by
BALI and SCHILLING [101, 102]. This technique is, of course, not restricted to the central
potential. The complete set of spin-dependent interactions (EICHTEN and FEINBERG
[103]) is accessible to the lattice method by expressing the additional potentials as corre-
lation functions of the chromofields in the presence of Wilson loops [104, 105]. A thorough
investigation is presented in Refs. [106, 107].

In the following we pursue a third approach which, in contrast to the ones mentioned
above, allows for a direct computation of QQ bound states from QCD cast into the form
of an equivalent non-relativistic effective theory. The effective theory is realised as a sys-
tematic expansion in the heavy-quark velocity about the non-relativistic limit. According

IThe virial theorem applied to a Coulombic potential implies v ~ as(mqv).
2For a recent review of the history of the heavy-quark potential see [100]
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to the estimates in Table 3.1, such an expansion seems well justified for bottomonium
and may still yield good results for charmonium. It does not invoke the existence of a
potential and can in principle be fully matched to QCD.

3.2 Non-Relativistic Effective Theory of Heavy
Quarkonium
Extracting the quarkonium spectrum on the lattice from the QCD Lagrangian itself would

involve the full range of scales in Table 3.1 which are well separated when the velocity is
small. The grid size L and the lattice resolution a would have to fulfill

1
»>— D@, (3.5)
TnQ’U TTLQ

L>»

>

mQ’U2
which is beyond present computing capabilities. On the other hand, the situation of well
separated scales can be used to get rid of the major obstacle, the heavy-quark mass mg,
by integrating out all momentum modes larger than a suitable cut-off A.. Given that the
physics of the meson is dominated by momenta of order mguv, a physically sensible choice
is

mou < Ac < mg . (3.6)

The result of such a renormalisation group transformation is a non-local effective theory.
However, it is crucial that the effects of modes of order mg can be reproduced by local
interactions among the lower-momentum modes realised as an infinite series in the heavy-
quark velocity, v2. Relativistic intermediate states are highly virtual and cannot propagate
large distances. Thus they are point-like on the scale of the quarkonium structure. The
additional interactions come with couplings that depend on the cut-off. These couplings
have to be tuned in order that observables computed in the effective theory match those
computed in QCD. At tree level, the velocity expansion can be obtained by a Foldy-
Wouthuysen-Tani transformation, generalised to the non-abelian case, that decouples the
quark and antiquark fields in the Lagrangian [108],

U — exp(—17 - D/2mq) V¥ , (3.7)

where D is the spatial covariant derivative. The terms generated this way are bilinear in
the quark fields. In addition, the cut-off theory includes quartic and higher-order terms.
The easiest way to derive the general non-relativistic Lagrangian is to use the effective
field theory strategy [93]:

(a) Identify the low-energy degrees of freedom.

(b) Identify the symmetries of the original Lagrangian that can be maintained in the
cut-off theory.

(c) Write down the most general Lagrangian that is consistent with the symmetries
including all operators required to achieve a specified accuracy.

(d) Calculate the coefficients of these operators by matching low-energy observables in
the effective theory with those in the full theory.
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The resulting Lagrangian defines the effective theory of the low-energy sector of systems
containing two heavy quarks and is called Non-Relativistic QCD (NRQCD). The approach
was first introduced by CASWELL and LEPAGE [109] to handle bound states in QED
and has been formulated in QCD by THACKER ET.AL. [42, 39, 43]. Combined with the
methods of perturbative factorisation, it provides a tool to calculate inclusive quarkonium
production cross sections as a double expansion in v? and ag (BoDWIN, BRAATEN and
LEPAGE [110]). The rest of this section will be devoted to the derivation of the NRQCD-
Lagrangian in the continuum, based on the velocity-scaling rules quoted in [43].

3.2.1 Low-Energy Degrees of Freedom and Symmetries

The degrees of freedom relevant for the low-energy QQ sector are the heavy quark and
antiquark fields, v and x, which are Pauli-spinors representing the upper and lower com-
ponents of the Dirac-spinor, ¥ = (¢, x). Further, we have the gauge field A, and the
Dirac fields for the light quarks. The Lagrangian should have the following symmetries

(i) SU(3) gauge symmetry
(ii) rotation symmetry
(iii) charge conjugation

Cyp = —ioyx", Cx =ioy*. (3.8)

(iv) parity
Phx,t) = p(—x,1), Px(x,t) = —x(-x,1). (3.9)
The NRQCD Lagrangian is formulated in the heavy-quark rest frame and therefore ne-

cessarily breaks Lorentz symmetry down to its rotational subgroup. The lattice regulator
introduced in the next chapter reduces this symmetry further to the cubic group.

3.2.2 Velocity-Scaling Rules

The rules of power counting in NRQCD, also denoted as velocity-scaling rules, have been
established in [43]. We follow the arguments given there.

The magnitude of the quark and antiquark fields is estimated from the expectation value
of the number operator in a quarkonium state which is close to 1,

(H|/d3z Yiy| Hy~1, (H|H)=1. (3.10)

We assume the quarkonium size to be ~ 1/mgu. The quark has to be localised within
this region

ﬁ“”ﬁiﬁw’: [¥] ~ (mv)? . (3.11)
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Operator | Magnitude

P (mqv)g quark annihilation operator
X (mQu)% antiquark creation operator
D, mqv? time derivative

D mqu spatial derivative

g¢ mqv? scalar potential

gA mou® vector potential

gE myhv® chromoelectric field

gB mgv* chromomagnetic field

Table 3.2. Estimates of magnitude of the degrees of freedom in NRQCD in terms of
the heavy-quark mass, mg and the velocity, v. The important content here is the scaling
with v. The factors of mg just follow from dimensional analysis.

The kinetic energy operator scales like mgv?. Eq.(3.10) then implies the following estimate
for the spatial covariant derivative

2
(H| [d% zp'-Rﬂlzl H) ~mgv® = [D]~mgu. (3.12)
2mgq

The scaling of the time component of the covariant derivative follows from the last equa-
tion if one invokes the lowest-order field equation,

; D?
(ZDo it '2111—0) 'l/) =0 ) (313)

therefore [Dy] = [D?/2mg] ~ mgv® as one would have expected. Estimates for the gauge
fields can be obtained from the field equations for ¢ and Ag in the Coulomb gauge,

V2

(i&o —gAy + ) P = 0, (3.14)
ZMQ

VigAy+ iy = 0, (3.15)

neglecting the vector potential. Eq.(3.14) requires gA, to scale like V2/2mg, i.e. [gAg] ~
mqu®. Eq.(3.15) suggests that g? ~ v. Finally, one considers the equation of motion for
the Coulomb-gauge vector potential

s 9
(2 — V?) gA ~ 8,VgAy — ;’g_ww , (3.16)
Q
providing the scaling rule [gA] ~ anvs. The scaling of the chromoelectric and chromo-
magnetic fields then follows from
gE=-VgAp+..., gB=VxgA+... . (3.17)

Table 3.2 summarises the velocity scaling properties obtained by the above heuristic con-
siderations. They will be used as a guide in the construction of the effective Lagrangian.
Whether they hold non-perturbatively has to be checked in the simulation.
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3.2.3 The NRQCD Lagrangian at Next-To-Leading Order

We will build up the effective Lagrangian including spin-independent interactions that
scale like mgu? and spin-dependent terms of order mgv®, i.e. next-to-leading order in
both cases. The NRQCD Lagrangian takes the form

Lnrqep = Lg+ L+ Lo+ Lg ., (3.18)

where £, and L, are the light quark and gluon parts of the QCD Lagrangian that remain
unchanged, and Lq, Ly denote the heavy quark and antiquark parts in the effective
theory®. Interaction terms within Lg are ordered according to the powers of v* they
carry,

Lo=LY+LP+LY+..., (3.19)

and similar for the antiquark Lagrangian. The leading order contribution is the La-
grangian of a Schrodinger field theory

: D?
LY =yt (zDg i 5—) P, (3.20)
THQ

The overall scale in minimal NRQCD is thus vas We will, however, divide out a factor
m‘“év coming from the spinors and talk about the Lagrangian of order mquv®. The next
order adds 4 bilinear terms

1 2
£d = g9 (D)'y
mg

+o-2 9! (D-E-E-D)y
tig
+c3;—%¢fa-(D xE—Ex D)y
Q
tei-Lyts . By (3.21)
mq

We have not included a term 1/mgy! D2 in £Y), although it contributes to this order
and has the right symmetry properties. Higher powers in the time derivative will spoil
the simple numerical calculation of quark propagators to be discussed below. However,
employing the lowest-order equation of motion one can replace each factor of iDy by
—D?/2mg after a suitable redefinition of the quark field.

The bilinear interactions Eq.(3.21) are not the whole story. There are, of course, quartic
and higher-order terms that account for Green's functions with a larger number of external
legs. The generic form of the four-quark contact interaction is

contact. G Z ¢TT]X (XtT "p) (322)

3We hawe not indicated those higher dimension gluon field operators that result from integrating out
the relativistic degrees of freedom analogous to the Euler-Heisenberg effective Lagrangian in QED. They
have no relevance for the Q@Q bound state problem.
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coupling | ¢ C2 C3 Cq fl‘ f f3
tree level [ 1/8 -1/8 -1/8 1/2 1/8 -3/64 -1/8

Table 3.3. Tree level values of the NRQCD couplings ¢; and f;,

where Tj is a spin-colour matrix. The couplings d; have imaginary parts that determine
the decay rates. Since for the T the latter are 10* times smaller than the excitation
energies, we may safely neglect all interactions leading to quark-antiquark annihilation in
the study of spectral quantities and work with a Lagrangian that strictly conserves the
numbers of heavy quarks and antiquarks. Among the terms of order mqv® we take into
account only the spin dependent ones. This way we consider spin splittings at next-to-
leading order corresponding to an accuracy on the few percent level from naive power
counting [43].

£ = gy {Dd-B}y
+fz—-~1/;f{D2 F-DxE-ExD)}y

+f3m—%¢f5 ‘Ex Ey. (3.23)

The NRQCD Lagrangian coincides with the Lagrangian of the Heavy Quark Effective
Theory (HQET). The difference between both effective theories lies in the power counting
schemes. This is particularly obvious in the lowest-order part £?). Whereas operators in
HQET may be ordered by dimension and therefore the static case yields a sensible limit,
in NRQCD Dy and D? are of equal order which reflects the balancing of kinetic energy
against potential energy. The static limit is inappropriate for heavy quarkonium. This
further implies that NRQCD only shares heavy quark spin symmetry with HQET, but
breaks flavour symmetry already at leading order.

The higher dimension operators in Lnyrqep introduce new coupling constants. Item (d)
of the recipe requires that they have to be tuned so that predictions in the effective
theory match those of the underlying QCD. The tree level values given in Table 3.3 are
provided by the Foldy-Wouthuysen-Tani transformation (see Appendix A). Generally,
these coefficients depend on the cut-off, A, and the coupling, ag(mg). The estimates of
as in Table 3.1 suggest that bottomonium really is perturbative at the b-quark scale.
Therefore the matching may be done perturbatively by calculating low-energy scattering
processes. The final choice of couplings will be discussed in 4.5, after the lattice cut-off
will have been introduced.

3.2.4 The NRQCD Lagrangian in Fuclidean Space-Time

In view of the lattice formulation to be introduced in the next chapter we Wick-rotate the
coordinates, momenta and fields to obtain the NRQCD Lagrangian in Euclidean space-
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time. This is accomplished by the following assignments

o =l = daly, =il (3.24)
=iy, = = -, @2)
that imply
8?5) =0 = —ig)" = ‘iafm (3.26)
Oy =0 = 8" =8l (3.27)
Ay =AM =" LA =il (3.28)
Aa =4 = "AMsl Al (3.29)
The rotation of the field strength tensor is determined from that of the covariant derivative
igFy = [Di,D{”] = —i [D§, D{*] = —i (igFy") , (3.30)
ioR®" = D", Di"] = [Df, D] = gk (331
The chromoelectric field therefore transforms like E{® = FJ = —iFy? = —iE, and

the chromomagnetic field remains unaltered. The non-relativistic heavy quark Lagrangian
in Fuclidean space-time now reads

(5 _
Ly’ =

;b'[—D,,mLLD2

211LQ
+ 9 3.B- 9 D.E-E D)+ 7 (DxE-ExD)+ - (D
2mg 8mg, 8mg, 8m})

+

1 ig? 39
D2 0 . Sy 2 5. o
8m3Q{ , 96 B}+8m:éa (ExE)+64m4Q{D,a (DxE-ExD)}

+ higher orders ] Y. (3.32)

The antiquark Lagrangian is readily obtained as the charge conjugate of (3.32). With
Cy) = —iopx* and CKoC™! = —03 K0, we have
Lo=xKax = -x'Kbx, (3.33)
hence
® _
Ly =

1
2 [ - Dy— —D?
2mg

A ig g - 1 p2ye
o R g D.-E-E.D (DXE-ExD) - —(D
2mQU 8my) i " 8m2,(7 (D - Sm%( )

1 19" 39 .
———{D? g5 -B} - —5-(ExE DG - (DXxE-ExD
8m3Q{ 48F B} 8m§26 ke )+64m4Q{ St % By

+ higher orders ] X5 (3.34)
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3.3 Summary

We have introduced the NRQCD Lagrangian at next-to-leading order, i.e. with spin-
independent interactions of order O(myv?) and O(myv*) and spin-dependent terms up
to order myv®. We anticipate that the non-relativistic theory is well suited for a non-
perturbative treatment using a lattice regulator, since the heavy quark mass no longer
appears as a dynamical scale. In the next chapter we shall discretise the above Lagrangian
on a hypercubic lattice.

o
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Chapter 4
Lattice-Regularised NRQCD

In this chapter we formulate the lattice regularised version of NRQCD. The lattice
spacing provides the cut-off which is required for the definition of the effective the-
ory. As discussed in the previous chapter, a consistent choice requires amg ~ 1 which
limits the resolution of lattices suited for NRQCD spectroscopy. In Section 4.1 we in-
troduce the basic lattice operators that are building blocks of the discretised action. We
subsequently develop the evolution equation of the heavy-quark propagator and discuss
various approximations. Hereafter, meson correlation functions are constructed both for
S- and P-wave states. In Section 4.4 we present our choice of wave function smearing as a
crucial technical ingredient for extraction of excited-state signals. The chapter concludes
with a discussion of the matching procedure to relate the effective theory and QCD. We
shall apply a simple recipe known as tadpole renormalisation to circumvent a compli-
cated perturbative calculation. This leaves us with two parameters, the bare coupling
and heavy-quark mass, which are fixed through experimental input.

4.1 Basic Lattice Operators
The improved version of non-relativistic QCD for use in lattice simulations has been

developed by LEPAGE ET.AL [43]. We repeat the main steps of their construction. To
discretise the non-relativistic Lagrangian we define the following finite-difference operators

aA};”"/’x = Uz,p¢z+aﬁ — e, (4.1)
aA}._)% = 1/’: e U},va["”‘/}z—nﬂ /] (42)
e g
ap = Laprap) 43)
3 3
A('-’) = ZA$+)A$—) - ZAS—)AS+) : (44)
i | =k

As before, a denotes the lattice spacing, Uy, the link variable at z in p-direction and
the fermionic degrees of freedom.

Invoking the connection of the link variable to the gluon field Eq.(2.13), we can relate the
lattice difference operators with the continuum covariant derivatives

1 £ 1 ] (aD )n

AL = 3 (ePx —1) = = n§:1ﬁ - (4.5)
s 1 —aDy 1 Em: (ﬁl)n_l n

Af‘ ) = ; (1 — L, ) = ‘(; nl "(GD#) ) (46)

n=1
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y s (aD )2n+1
A sl LR 4.7
£ a§(2n+1)" Ll
HAG) 0 (_1)m>1 n4m :
APAT = 5 Z o g (aD,) no summation over f . (4.8)
nm=

It can immediately be checked that the symmetric difference and the Laplacian reproduce
their continuum counterparts up to O(a?):

A D, +0(a?),
AP = D?40(@?). (4.9)

Expansions 4.5-4.8 can be used to remove leading cut-off effects on a classical level. We
have, for instance,

2
a
A® =D, + EDi + O(a?) . (4.10)
To remove the cubic term we observe that
) A(=) _ 3 2
ANABDAC) = D3+ 0(a?), (4.11)

so that an improved derivative can be defined as

o 2
AP = At %AL—‘-)ALHALJ =D, +0(a?). (4.12)
Analogously
el m—1
T £y +m
SR M e
n,m=1
2, @ 4 4
= D+ 35D!+0(), (4.13)
hence
uf 2 2
e % 3 (Ag“‘)AE”) +0(a"). (4.14)
i=1

Field strength tensor

A symmetric representation of the field strength tensor on the lattice is the cloverleaf
operator that is defined on the grid points

) 1 1

1
wz = m 2% (Mw/,m = M ) T gc‘\g Tr Muv,z] (4.15)

pv,z
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Figure 4.1. Cloverleaf representation of the lattice field strength tensor.

and

M;w,:c = Z Ua L& (416)
(@,B) v

The sum covers the four plaquettes in the pr-plane surrounding the space-time point z as
indicated in Figure 4.1. The field strength tensor defined this way carries discretisation
errors of O(a?). It will prove useful to introduce an improved version of F}f) which is
correct through order a*:

- B i o
Flo) = Sl - [Ux’”p( )

ws = ol

e gl I MRS V)] T

pv,ztaj T—afi,p” pvz—ap

4.2 Quark Propagator Evolution

The Lagrangian Eq.(3.32) yields the following Schrédinger evolution equation of the heavy
quark propagator

D2
G (z,y) = (—ig/h e 6£) G(z,y) , (4.18)
271’LQ
where §£ includes the relativistic corrections. The solution to the initial value problem
G(2,Y)|esmys = 8 (x ~ ¥) (4.19)

is given by

2

G(z,y) =T exp [/44 dt (—igA4 + . 51:)} Blx—y). (4.20)

2mg

Temporal discretisation

We will compute G with a simple, fully explicit integration scheme in a single pass through
the lattice. This is a big advantage compared to the iterative solution of the boundary
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value problem in the relativistic theory. On a discrete time axis with lattice spacing a,
Eq.(4.20) induces the following recursion formula

2
i, o ) ( [—z'gm gl az:]) 7 (4.21)
Q

with the lattice gluon field evaluated at mid-link. As an immediate consequence of the
Baker-Campbell-Hausdorff formula, we have for sufficiently small lattice spacing

exp(aX)...exp(aXy) —-exp( ZX1+ aZZ[Xl, ,,.]+R(a)> (4.22)
I<m

with the rest vanishing like lim, o e >R(a) = 0. Using Eq.(4.22) we obtain a simplified
evolution equation

D2 2
G(x, x4 + a;y) = exp (Zm—q) exp (_a_%é) Ut 4€XP (—E%E> exp (ZD ) G(x,24;9) .
(4.23)

Note that by the symmetric choice in Eq.(4.23), the commutators in Eq.(4.22) vanish and
the error introduced in the Lagrangian is due to double commutators that are at least of
order v® for spin-independent terms and of order v® for spin-dependent ones. With the
same reasoning one can neglect quadratic terms in 6L

§
exp _gc 5 1 E (4.24)
2 2
Finally et us replace the remaining exponentials by a fixed power
i 1
exp (a—) o (1 Vi ) . (4.25)
4711Q 4an

This way we introduce an error that has to be corrected for by adding a term
a(D?)’ /(32nmb), so that

ClD2 L a DZ a (D2)2 n .
ep (4 q) ¥ (1+H (4mq +%1emg)) +0(v") . (4.26)

Spatial discretisation

We adopt the notation that is widely used in the Lattice NRQCD literature and denote
the lowest-order discretisation of the kinetic term by Hy,

A®

0 ST

4.2
TG (4.27)

k)
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the corrected version, including the compensation of the leading temporal discretisation
error, by Hy,

The continuum operators belonging to the relativistic corrections of order va4 are easily
transcribed using the formulae Eqgs.(4.1)-(4.4) or their improved versions

A2))2

i = —cl( 3) . (4.29)
8mg

% % 02_% (A®) . E© — B©) . A®)) (4.30)
8myg

Ve = —csio (A(i)XE(C) E(C)XA(*)), (4.31)
8mQ

= I _z.BO
Vi = — - B . 4.32
4 C42mQ¢7 ( )

Difference operators act on all fields to their right. Finite-a corrections have been in-
cluded in the spin-dependent terms only, since they can be of the same order as O(mgv®)
relativistic corrections. Note that we have redefined the coefficients ¢;, so that they equal
one at tree level. The chromoelectrlc and chromomagnetlc ﬁelds are defined in analogy to
their continuum counterparts: E = = F and B = —Lexis F .J . Finally the O(mgv®)
corrections are

¥ —cs—g—s{A(z),&-B“)}, (4.33)
39

Vo = —cog 49 {A®, G (AW x E© — E© x AH)} | (4.34)
ig®

e HiwE .EO x B | 4.35

7 c78mQ X ( )

With these transcriptions we arrive at a heavy quark evolution that is consistently discre-
tised: all remaining cut-off effects are moved to higher orders in the effective Lagrangian:

~ n ir
aH, aH,
Greptay = (1 o qn") (1 = gzckvk) uff (1 - ‘ZCM) (1 - —“) G
T b=l

(4.36)

The use of Eq.(4.36) as it stands will be rather costly in practice. The complete set of
relativistic correction terms is twice applied which slows down the evolution significantly.
Therefore we have implemented a modified version in the actual simulation:

aHp\" aHy\" >
0 1o Z
Gxzetay = (1 Y "2_,”_) Uz'A (1 it W) (1 o e C"V") Gx.n;y £ (4.37)
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The modifications are: (i) in the first factor Hy is replaced by Ho; (i) 0£ is applied only
once and commuted with the last factor; (ii) the finite a corrections are moved from H,
into 6L:

a* AW
Va' = ;
8 Cg 24mQ ) (4 38)
a(A®))?
Vi —Cg———i— )
i 5 16nmg, ’ o

2
where AW = Y0 (AEHAE»))

Numerical stability

The forward time integration scheme becomes unstable if the temporal lattice spacing is
too large. Consider the lowest-order, free field limit of Eq.(4.37),

A(2) =
Gxagtay = | 1+ QnT;;ee Gxagy - (4.40)

For n = 1, the von Neumann analysis leads to an amplification factor of

i 4 : - ap;
f=laals gsmi' (3—) , (4.41)

which implies the stability criterion

4 L A ap;
2mga i}z_llsmz (7)

This is the well-known result for the diffusion equation with diffusion coeflicient D =
a/2mq and equal temporal and spatial discretisation steps. Eq.(4.42) constrains the mass
to amg > 3. To study quarks with smaller masses one might either reduce the temporal
lattice spacing or improve the integration scheme. By choosing n > 1 in Eq.(4.40) one
obtains a better approximation of the exponential and the mass constraint is weakened to
amg > 3/n. This amounts to an effective reduction of the time step which is incomplete,
however, since the gauge fields are not evaluated on the intermediate points.

12
2mqa

< (4.42)

4.3 Building up Meson Correlation Functions

We proceed by constructing two-point functions from quark propagators through a generic
time-slice operator !

=) Pyt 0 By, Pina - (4.43)

X1,X2

UIn the following we will mainly use ¢ instead of z4 for the time coordinate.

4.3 Building up Meson Correlation Functions 35

Q

(sc)

I'e 5

iy il

Figure 4.2. Sketch of quark lines for a general non-local flavour non-singlet meson two-
point function.

h is the heavy quark spinor, 2 a 4-by-4 spin matrix and ® smears the quark fields over
the lattice to increase the overlap with a certain radial or orbital momentum state. In
the non-relativistic theory, h really is a Pauli spinor hence

5 (0x) 1B (Vi)

X1,X2

3w F By s Yat (4.44)

X1,X2

il

H(1)

where T! = ()3 is now a 2-by-2 matrix in spin space. We use the decomposition of
the relativistic spinor as in 3.2.1, i.e. 1 annihilates a quark state whereas y creates
an antiquark state. The opposite holds for the hermitian-conjugate fields. An obvious
advantage of heavy quarkonium is that potential models can provide very accurate wave
functions as input for the smearing function ®. With 4.44 we compute the two-point

~ correlator

Il

<H(t)Ht(t0)> Z <X1mx1t F' ‘I’f(’f,x, Ypaxat ’/—,by,tn q)gr,nr‘yz Ly X6by1lo>

Z <X4':mx1t deyllu>rup sl <1/)ﬁaxzt Pt >‘I>§,’f,);, 70

= Z Gaanll Sby1to F1 (I’S:xk,z(z Gﬁax;t,‘ybyzlo (I)yanc,;z Ly

Z G«belt aayltu q)snalk,z(: Gﬁaxstnbyz to q)y’n -;2 F (4‘45)

The last expression can be simplified using the translational invariance of the quark prop-
agator,

Il

Il

<H(t)f1t(t0)> = Z 'I‘[‘C®, [ ik 1"1 (I)S:lk,zq zet s q)glslc’);z I\]
X1,X2,Y1,¥2
= Z Tr I"f (i) (sk) G Q(ac)‘ r
B Gl "I‘Yl‘o x1—x2 xaty1-yat,yito ~ y1-y2
X1,X2,¥2
k
= L3 Z Trc@" [G’?lt"hlo Ft ®)(tﬂxlxz zet,hw] 3 (4'46)
X1,X2
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non-relativistic lowest continuum lattice operator

notation irrep irrep r

150 ot A;+ il

::Sl 1—_ TI:(‘ZE o;

Py 1= Ty A
3Py 0t AT Y Ao
zPl  laaka T;V:é A,-O'j — Aja.-
Pz 2++ E k> A,'U,' = AJ‘O'J'
TZQ(IE) A,‘Uj SE AJ'U.'

Table 4.1. Spin operators for different lattice irreducible representations.

with the initial antiquark position, yy, fixed. The source-smeared propagator reads

Gl ™ 3, OF iy U (4.47)
z

It is obtained directly from the NRQCD evolution by replacing the delta function source
with the extended source ®¢°.

4.4 Smearing Technique

Since we are not only interested in ground states but in one or two radially excited levels,
special care has to be taken in choosing the spatial distribution of quark and antiquark
fields in the hadron operator as given by the smearing function, ®. Fortunately, we have
a detailed picture of what the wave function of a heavy-heavy bound state should look
like from the study of non-relativistic quark models, which is a considerable advantage
compared to light hadron calculations. Richardson potential wave functions, for example,
have proven successful in earlier simulations [47]. Even simple hydrogen wave functions
have been applied in charmonium spectroscopy and are the natural choice for heavy-light
systems.

Here, we will pursue a somewhat more refined strategy to obtain adequate smearing
functions: We use Schrédunger wave functions computed from a radial potential which is
extracted from a lattice simulation. We benefit from a recent lattice determination of the
bb potential including relativistic corrections [107, 106, 111]. The authors start from the
O(v*) effective Breit-Fermi Hamiltonian [112, 113], which in the center-of-mass frame of
the quark and antiquark, has the form

(R oA
H = i;Z [mi =+ '2“”: = é;? 4 WA (V‘)(T) e Va('l’))
+Vo(r) + Vsp(r, L, 81, S2) + Vup(r, p) . (4.48)

It contains the central potential of Cornell type:

Vo(r) = Ve + o7 — ; ] (4.49)
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spin-dependent interactions with spin-orbit, tensor and spin-spin structure:
VSD('I‘, L, Sl, Sz) = Vl,s(T) + VT(’I‘) + VSS(T) % (450)

velocity-dependent potentials, Vy-p, and V, as part of the Darwin term. We have to

refer the reader to Refs. [107, 106, 111] for a detailed description of the form of these

potentials as well as their computation from Wilson loop expectation values with colour

field insertions. Following [111], we numerically integrate the radial Schrodinger equation®
d*gga(r)

gz = Fr Bl a,m,0)gp(r) (4.51)

for definite radial quantum number and angular momentum , where

{t+1
F(r,BE,l,a,m,0) = (Lz) -m (E‘ —or+ g) ; (4.52)
r T
The term —a/r contains the Coulomb term of the central potential, the 1/r contribution
to the Darwin interaction, and the leading 1/r contribution from Vy p:

i 12m?e + 3h — 4o

12m? i

We leave m and o as free parameters which are determined by a fit to the experimental
spectrum. The contributions of the terms not coming from the central potential are
fixed to the lattice values found in [111]. The Coulomb coefficient, e is that of the
quenched simulation in [111] augmented by 20% to take into account the different running
at short distances observed in [83]. Figs. (4.3) and (4.4) display the solutions of (4.51)
corresponding to the three smallest eigenvalues with L = 0 and the two lowest L = 1
states, respectively.
The continuum wave functions are converted to the lattice using the scales obtained from
SESAM’s p masses for each hopping parameter. We average correlators over different
polarisations corresponding to the cartesian projections of wave functions

= ggi(r) T 1 Bi(r)y s geA(r)z (4.54)

o o N

Note, that the finite-difference operators included in Table 4.1 for the P states are only
applied in the case of d-function smearing.
Contrary to gauge-invariant smearing procedures like iterative WUPPERTAL smearing
[114, 115], the use of wave functions as described above requires a fixed gauge. The
appropriate choice is Coulomb gauge which minimises the spatial gluon field. The config-
urations are numerically fixed to that gauge using the algorithm described in [116]. We
benefit from an efficient parallel implementation on the Connection Machine CM5 which
is discussed in [117, 118] 3.

%In Ref. [111] the Numerov method is applied to integrate the differential equation. It introduces step
size errors of O((Ar)®). The analytic expression for the regular solution in the limit r — 0 provides the
starting point for the integration. We thank A. Wachter for the kind donation of these routines.

3We thank H. Suman, who kindly provided the gauge fixing routines.
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Figure 4.3. Normalised radial eigenfunctions for S-wave bb bound states.
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Figure 4.4. Normalised radial eigenfunctions for P-wave bb bound states .
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For each wave function a separate quark propagator has to be calculated since the fastest
way to implement source smearing is to use ® as the start vector for the evolution of
Gyp. Sink smearing is realised by convoluting the local antiquark propagator with the
smearing function and combining it with G7 according to the given Dirac structure.
The convolution is efficiently computed via a parallelised version of the FFT algorithm?.
It is reasonable to use the same smearing function for states that differ only in spin
orientation: spin-interactions are relativistic corrections and will not change the wave
function significantly. Nevertheless, we are left with as many as 13 propagators to evolve:
four different smearings for S states using the ground state, the first and second excited
state wave functions as well as the delta function (local operator); nine smearings for P
states including the ground state, the first excitation and the local propagator for each
polarisation. All cross correlators are calculated resulting in the following 4-by-4 matrix
of correlation functions in the case of S states ( 3-by-3 for P states)

G

1 g

Ces) = | al) (21) (al2) (o) | ° o
@) (1) (312) (31)

where the type of smearing is indicated by indices sc and sk that may have the values [ for
® = §, 1 for the ground state wave function ® = &) etc. . Clearly, one is restricted to
a small number of levels compared to the potential model approach. A reliable estimate
of the second radial excitation turns out to be rather hard, for obvious reasons: first, the
correlation function will eventually be dominated by the ground state; second, the signal
to noise exponentially decreases with the energy difference.

4.5 Matching NRQCD and QCD

 The couplings in the NRQCD Lagrangian have to be adjusted in order that predictions

for low-energy observables in the effective theory match those of QCD. In lowest order
NRQCD there are two parameters: the bare gauge coupling, ¢ and the bare heavy quark
mass, mgq. The v*-improved Lagrangian adds the five couplings ¢y, . ..cs. Finally, in the
O(mqgu®) accurate form we have to cope with 11 couplings.

An obvious way to fix the unknown parameters is by non-perturbatively matching the
two theories: for a number of bound states require the mass calculated in NRQCD to
equal that predicted by QCD. To make things easier, the latter is usually replaced by the
experimental mass. However, as we include more interaction terms to improve accuracy
non-perturbative matching clearly will spoil the predictive power of the method. This is
avoided if the matching is done perturbatively. The use of PT may be justified if the heavy
quark mass which serves as the cut-off is large enough. Perturbative matching proceeds
by computing physical observables, like scattering amplitudes, between asymptotic Q,Q
and gluon states both in QCD and NRQCD. The result is expanded in powers of p/mg
and the couplings are tuned so that the series coincide to the desired order.

4We make use of the CMSSL library routines supplied for the CMFortran compiler.
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In Lattice NRQCD we combine the perturbative and non-perturbative matching tech-
niques: while g and Mg = amg are fixed using level splittings of onium states and the
kinetic mass of the ground state respectively, the remaining parameters, ¢; are determined
perturbatively. However, perturbative series in the bare lattice coupling are known to be
poorly convergent. A large renormalisation is needed to connect g to some physical cou-

pling. This is due to tadpole contributions caused by the nonlinear mapping of the lattice

gauge field onto the continuum, as was anticipated by PARisi [119] and worked out in
detail by LEPAGE and MACKENZIE (18, 120].

4.5.1 Tadpole Improvement

The naive connection between the link variable and the continuum gauge field,

Usp = 14 iagA, (x " gu) ; (4.56)
suggests that higher order corrections vanish as powers of the lattice spacing which is not
true in the quantum theory. For instance, the tadpole contribution to the link expectation
value, (A, A,) is suppressed only by g* (i.e. (Ina)~! and not a) as the quadratic divergence
cancels two powers of the lattice spacing. This correction is large at intermediate a
and leads to a vacuum expectation value of the link variable in Landau gauge which is
considerably smaller than 1. A simple way to account for the bulk of the effect is to divide
every link by a mean-field parameter up, a number between 0 and 1, that contains the
averaged ultraviolet modes

Uz,p - Uz.p/uo . (457)

Practically, up is measured in the simulation . Its definition is, of course, not unique. °

A simple, gauge invariant prescription uses the plaquette value

s “/(%Tr Uy) . (4.58)

A better motivated choice is to calculate ug directly from the single link expectation value
in Landau gauge

1
ul = (gfn UJie - (4.59)

Landau gauge maximises (Tr U,), i.e. pushes it as close to 1 as possible, and thus isolates
the gauge-independent tadpole contribution. A recent NRQCD lattice calculation of the
hyperfine splitting in ¢, b¢ and bb bound states over a variety of lattice spacings suggests
that this choice improves the scaling behaviour of spectroscopic quantities [121, 44]. This
view is also endorsed in Refs. [51, 122] where the authors have studied the scaling be-
haviour in the quenched bb spectrum using three values of the coupling (4 = 5.7, 6.0, 6.2),
an O(myw*)-correct action and the plaquette tadpole value (defined below). They find

50ther choices than those discussed here are based upon extended Wilson loops or the critical hopping
parameter for Wilson quarks [18].
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Ug k=0.156 k=0.157 k=0.1575 quenched

u = {/(%1} Uw) 08688  0.8695 0.8697 0.8778
uf = (3Tr Ui 0.8499  0.8519 0.8529 0.8608

Table 4.2. Comparison of tadpole schemes for different gauge field samples.

the spin-independent spectrum to display insignificant scaling violations whereas the hy-
perfine splittings do not scale that well. This is attributed partly to O(a?) errors in the
B field ¢ arising in the term o - B but partly also to the choice of plaquette tadpole
improvement not capturing the tadpole effects sufficiently well. Additionally, two more
arguments in favour of u{ are given in [52): firstly, the static potential shows less viola-
tion of rotational invariance using a uf-tadpole improved gluonic action and, secondly, the
non-perturbative determination of the clover coefficient csw for Sheikholeslami-Wohlert
quarks [19] is in good agreement with the uf-tadpole improved perturbative result. On a
fine lattice, a ~ 0.1fm, u{ and uf differ by about 2%, Table 4.2. Note, however that ug
weights the field strength tensor with four powers,

E—-E/uf, B-B/u} (4.60)

so that, naively, using uf instead of uf may change the hyperfine splittings by as much
as 8%.

The tadpole-improved operators may be considered an efficient starting point for a per-
turbative expansion of the couplings ¢;,

ci(g, Mg) = +clg® +..., (4.61)

in the sense that radiative corrections are now expected to be small. This has been
demonstrated for those terms in the NRQCD action which contribute to the heavy quark

" self-energy by MORNINGSTAR [123]. Therefore we feel justified to neglect the higher order

corrections: all calculations presented in the following have been obtained with tadpole
improvement and tree-level values ¢; = 1. We are then left with only two parameters, g
and Mg, which are the ones in the QCD Lagrangian.

4.5.2 Setting the Scale

The lattice spacing is fixed using the lowest radial and orbital angular momentum split-
tings in the bottomonium system. Empirically, they are independent of the the heavy
quark mass to a very good approximation which allows for a determination of a~! without
carefully tuning the bare b-quark mass. Invoking a phenomenological assumption for the
typical momentum transfer within bb bound states, one may conclude that these splittings
are insensitive to vacuum polarisation effects too. These statements will be numerically
validated in later chapters.

Swhich was obtained fom the unimproved field strength tensor, Eq.(4.15).
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state JPC mass

T(iS) 1~ 9460.37 £ 0.21 MeV
XW(IP) 0+t 9859.8 + 1.3 MeV
xn(1P) 1+t 9891.9 + 0.7 MeV
X(1P) 2+ 9913.2 + 0.6 MeV
T(28) 17— 10023.304 0.31 MeV

Table 4.3. Experimental masses used in the lattice scale determination.

Practically, we will use the average of two spacings to convert lattice data into physical
units:

= ) —m(Y) 0.5629 GeV
1 235 s 135 = m( he
s 4 am(235;) —am(13S;)  am(235;) — am(13S;) ’ (4.62)
18 p Xo) —m(T) 0.4398 GeV
Pp-15) = ) -m() 4 |
fodk L am(13P) —am(13S;)  am(13P) — am(135;) ’ (4.63)
where
1
X =g (52 + 3xw1 + Xe0) (4.64)

is the spin-averaged triplet-P state”. Table 4.3 summarises the relevant experimental data

4.5.3 Fixing the Bare Quark Mass

It is not possible to convert simulation energies directly into hadron masses as the heavy
quark mass term has been discarded from the Lagrangian. To quote absolute meson
masses the energy shift needs to be known. It may be computed by tuning the bare quark
mass, Mg until the kinetic energy of a meson equals its experimental value. The kinetic
mass My, is defined through the non-relativistic dispersion relation

(ap)® _ ., ((ap)’)?
aFE(p) = aE(0) + —Ci—=+.... 4.
) = aB(0) + 52—, (o (165)
Practically, one determines My, by fitting Eq. (4.65) to a set of finite momentum corre-
lators. For a relativistic theory C; = 1, but in NRQCD one expects deviations from this
of O(v?). To fix the correct bare b-quark mass one adjusts M, until my,(Y) = 9.46 GeV
within statistical errors.

4.5.4 The NRQCD Scaling Window

Since NRQCD is an effective theory, trying to remove the cut-off will cause the couplings
in the Lagrangian to diverge, reflecting the non-renormalisability. Therefore, no contin-
uum extrapolation can be done for Lattice NRQCD. But, of course, the essential idea

"For charmonium one would prefer to use the spin-averaged S state, too. In the case of bb, however,
the singlet state, 1, has not yet been observed experimentally.
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0.1 1.0 10.0 100.0

a7l [Gev]

Figure 4.5. Approximate scaling windows for charmonium, bottomonium and hypothet-
ical toponium. The interval limits come from the estimates in Table 3.1 and thus have to
be taken cum grano salis.

in formulating an effective theory is, that physical results up to a given accuracy can be
obtained at fixed cut-off, provided the Lagrangian is carefully calibrated. The range of
admissible values of the cut-off, i.e. the range of validity of the effective theory, depends
on the specific heavy quark system one is considering. This is indicated in Figure 4.5 for
charmonium, bottomonium and hypothetical toponium. Within these intervals the cou-
plings are expected to change only mildly with the cut-off whereas at the right margins
they start to blow up and more and more terms would be needed to compensate for the
lack of relativistic modes, rendering the theory useless. The left interval limit is set by
increasing discretisation errors. We have argued above that a reasonable and practical
procedure is to stay with tree-level couplings once the tadpole improvement has been
applied. We may argue further that we really measure continuum quantities if this choice
is a good approximation in the whole interval of possible cut-offs. In this case there is no
need to tune the couplings at all and one would observe that — within reasonable accuracy
— results in physical units are independent of the lattice spacing. For charmonium and
bottomonium, scaling is expected to show up in the following windows

c 56<B<58, (4.66)
bb 58<pB<6.5, (4.67)
where we have simply related lattice spacings to quenched J-values. These numbers imply

that our 8 = 5.6 dynamical lattices are well suited for bottomonium spectroscopy but too
fine to treat the charm quark.
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4.6 Summary

In this chapter we have outlined the formulation of non-relativistic QCD suited for nu-
merical simulations on a lattice. We reviewed the discretisation of the next-to-leading
order NRQCD Lagrangian which - from naive power counting - is expected to yield both
radial and spin splittings with an accuracy below 10%. An advantage of NRQCD is that
quark propagators can be obtained from a fully explicit integration scheme allowing for a
fast computation. We have discussed in some detail the smearing procedure that involves
potential model wave functions. A proper choice is crucial to achieve clean signals for
excited states. Finally, we have covered the simplified matching procedure between QCD
and NRQCD based on the recipe of tadpole improvement.

o
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Chapter 5

Bottomonium Spectroscopy

In this chapter we present the details of our NRQCD simulation of bottomonium. The
investigation of dynamical quark effects will be of primary interest. It is accomplished
by a direct comparison of unquenched data with results obtained in the quenched approx-
imation on lattices of similar spacing. From the study of the light hadron spectrum [124]
we anticipate that the effect of vacuum polarisation is likely to be small within the range
of quark masses considered here, so that high statistical precision seems to be mandatory.
Section 5.1 provides detailed information on parameters used in our NRQCD runs. As
an illustration of the signal quality obtained for non-relativistic propagators, we give
some examples of effective mass plots in Section 5.2. We then turn to a discussion of
error analysis which involves the blocking of measurements in Monte Carlo time and the
binning of propagators computed from different source points, Section 5.3. Hereafter,
results for S- and P-wave mesons are presented including radial excitations as well as
spin splittings. With three dynamical quark masses at our disposal we can reliably study
the dependence of these states on the light quark mass. In Section 5.5 we determine the
lattice scale and give numbers in physical units. Finally, we compute the T and 7, kinetic
masses from the non-relativistic dispersion relation.

5.1 Simulation Set-Up

Our investigation involves several NRQCD runs whose parameters are listed in Table
5.1. The lattice volume is fixed to 16 x 32 in all simulations. With a gauge coupling
of # = 5.6 the SESAM lattices realise a physical box of about 1.2-1.4 fm in the spatial
direction (depending on the physical quantity used to set the scale) which guarantees
negligible finite volume effects on the bottomonium ground state and the first radial and
angular momentum excitation. Hence the box size is not a primary issue here and we
do not investigate its effect within this study." We use SESAM lattices at three different
quark masses corresponding to hopping parameters x = 0.1560, 0.1570,0.1575 and ratios
my/m, = 0.839(4),0.755(7),0.69(1). This enables us to calculate the sea-quark mass
dependence of bottomonium splittings and to perform a ‘chiral’ extrapolation.

Evidence of an unquenching effect can be obtained from a direct comparison of full QCD
and quenched simulations at the same lattice spacing. To this end, quenched configura-
tions with 8 = 6.0 are generated using the hybrid over-relaxation algorithm [126, 127].
Over-relaxation steps are randomly mixed with Cabibbo-Marinari pseudo-heatbath steps
where the latter have a probability of 1/5 [128, 129]. The lattices are thermalised with
2000 sweeps and we perform measurements on configurations separated by 250 sweeps.?

The study of dynamical quark effects in the quarkonium spectrum and the dependence of

'Higher bb excitations have larger extensions and certainly will feel the boundary. An analysis of finite
volume effects therefore will be valuable to judge how the 3S and 2P states are affected by the box size.
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ng B & M, TR action n ng./nl, nf/ng
2 56 01560 1.7 ul O(mp®) 2 206/206  4/4
2 56 01570 1.7 uf O(mp®) 2 192/192 13/8
2 56 01575 1.6 uf O(mp®) 2 203/203  4/0
2 56 01575 1.7 ul O(mp®) 2 203/203  12/12
2 56 01575 1.7 ul O(mp®) 3 203/0 4/0
2 56 01578 1.7 uf O(mp®) 5 203/0 4/0
2 56 01575 1.8 uf O(mp®) 2 203/0 4/0
2 56 01575 19 uf O(mp®) 2 203/0 4/0
2 56 01575 2.0 ul O(mp®) 2 203/0 4/0
0 60 L7 ul O(mp®) 2 811/520 4/4
0 6.0 1.7 uy O(mp®) 2 150/0 4/0
0 6.0 1.7 u) O(mup?) 2 350/150 4/4

Table 5.1. NRQCD run parameters. We separately quote sample size and number of
source points for S- and P-state measurements. TR denotes the tadpole renormalisa-
tion scheme and n is the stabilisation parameter appearing in the propagator evolution
equation.

spectral quantities on the sea-quark mass are the main objectives for the present investi-
gation. Therefore we have accumulated large statistics - several thousand measurements
of L = 0 and L = 1 states for each sample - using the O(m;v°) action in the Landau
mean-link tadpole scheme with a fixed bare heavy quark mass, M, = 1.7. The latter value
of the b-quark mass was found to yield the correct kinetic T mass in a quenched calcula-
tion by DAVIES ET.AL.[47]. We will demonstrate in Section 5.6 that it is also adequate
for the unquenched samples, so that a costly tuning is avoided.

The dependence on the bare b-quark mass, Mp, is investigated in a series of smaller runs
at fixed k = 0.1575 with restriction to S states only. The bare mass parameter is varied in
the range 1.6 < M < 2.0. To estimate the relevance of relativistic corrections, we repeat
the quenched simulation with fewer measurements applying the NRQCD action of order
myv!. Additional runs are performed with the plaquette tadpole prescription and with
different choices of the stabilisation parameter, n that appears in the evolution equation.
The parameters of these investigations of systematic errors are also included in Table 5.1,
although their discussion is postponed until Chapter 6.

All simulations involve gauge fields that have been fixed to Coulomb gauge, as mentioned
in the previous chapter. ‘

Due to the fact that low-lying bb bound states have a tiny spatial extent, one may exploit
gauge configurations more than once by starting the quark propagator evolution at differ-
ent source points separated in space and time. Note, that we do not use a multi-source,
but evolve each starting point separately. Simultaneous evolution of different spatial ori-
gins by using Z(2) noise has also proven to work, though with somewhat larger errors
on radially excited levels [51]. In the quenched runs we restrict ourselves to 4 source

The TxL simulation at x = 0.1575 [125, 55] yields the possibility for such an investigation.
?We thank G. Bali for providing the SU(3) program.
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Figure 5.1. 35, effective masses from correlators with smearing combinations sc/sk =
1,1,2 involving 2496 measurements on the sample at k = 0.1570.

points located at {(1,1,1,1),(1,1,1,17),(9,9,9,1),(9,9,9,17)} as new configurations can
be generated with comparatively little effort. About three times as many origins are used
for ny = 2 lattices. Below we give evidence that using many sources really does improve
statistics. For the T and 7, we calculate a 4 x 4 matrix of correlators with four differ-
ent smearings at source and sink, sc/sk = [,1,2,3, corresponding to a point source (1),

~ the ground state (1), the first (2) and second (3) excited states, respectively. For the

L = 1 states we restrict ourselves to the ground state and the first excitation as signals
deteriorate. Correlators with momenta up to |p| = 2 are also calculated.

5.2 Signal Quality

To illustrate the quality of our data we display in Figures 5.1 and 5.2 effective masses,
defined by Mg = In(C(T)/C(T + 1)), for the triplet-S and singlet-P state arranged as
a 3 X 3 matrix according to the nine smearing combinations with sc/sk = 1,1,2. We
always average over all possible polarisations. C'(T") denotes the meson correlator at time
T = t/a. Note that smeared-local *S; correlators rise sharply for (sc, sk) = (2,1),(3,1)
indicating the sudden decay of the dominant excited state to the ground state. T'he change
in sign is caused by negative values of the correlation function that may occur for hadron
operators with mixed smearing. Although we have not tuned the smearing functions, we
generally find good plateaus for ground and excited states. For L = 0 the radially excited
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Figure 5.2. 1'P; effective masses from correlators with smearing combinations sc/sk =
[,1,2 involving 2436 measurements on the sample at £ = 0.1575.

correlators remain in the first and second excitation for about ten time steps which is
apparent from Figures 5.3 and 5.4. Signal/noise stays constant for 3S; and 'Sy ground
states whereas it decays exponentially in time for excited states with a rate determined
by the excitation energy [130]. P-state signals are much noisier and vanish from time slice
15 to 20 onwards.

5.3 Data Analysis

The standard way to obtain masses and amplitudes of a hadron correlation function is to
fit the measured data to a suitable exponential ansatz invoking the spectral representation
Eq.(2.10). We employ two different fitting procedures: The first is a simultaneous fit of
many hadron correlators to a multi-exponential function. The second involves the ratio
of hadron correlators and fits it to a single exponential. These methods will be discussed
in detail below. In either case the maximum likelihood estimate of the model function
Cmedel( 4. F;) which depends on a set of amplitudes, 4; and energies, F; is obtained by
minimising

X%' = Z Z (C o Cmodel)“T1 ;T;.MT: (C Cmodel),,'l‘, ) (5.1)

s1,82=1 T1,T2=Thnin
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Figure 5.3. Effective masses of *S; correlators with smeared source and local sink.
Circles, triangles and squares correspond to (1,1), (2,1) and (3,1) respectively.

Indices Ti,T, label time slices, whereas indices sj, s, denote different radial channels.
The covariance matrix, K accounts for correlations between data on different time slices
obtained from the same sample of gauge configurations. The sample itself is used to
determine the covariance matrix for quantities that are directly measured on single con-
figurations like hadron correlation functions:

Nmeas—1
1 - k
Ko7y 00m = T § : (Cfﬂ'x b - C-uTl) (szT: i O,,T,) ’ (5'2)

where C,p is the sample average
C_'.!T s C_fT 3 (53)

The inverse in Eq.(5.1) is computed by singular value decomposition and the minimisation
is done using the Levenberg-Marquardt algorithm [131]. In practice, our samples are large
enough to fulfil nyeas > 10 (neors nr+1) with ny being the fit range. Therefore the inverse
of the covariance matrix generally will exist and x% as given in Eq.(5.1) provides a reliable
goodness-of-fit estimator [132, 133].

Statistical errors on fit parameters are computed by the bootstrap method [134] which
may be outlined as follows:
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Figure 5.4. Effective masses of 1S, correlators with smeared source and local sink. The
labeling is that of Figure 5.3.

Consider a quantity O, e.g. a meson correlation function on a specified time slice,
that has been measured on a number of gauge configurations. From the original sam-
ple S© = {Ok = 1,...,7meas}, the algorithm generates npoo bootstrap samples
56 = {0(')|k =1,...,meas})? = 1, ., Mboot, by drawing 7imeas elements from S with
uniform plobablhty. Fits are then performed on each bootstrap sample separately and
yield distributions of parameters that will become Gaussian provided npoe is sufficiently
large. The result of a x? fit will be quoted as the parameter values obtained on the original
sample supplied with an error that corresponds to the 68% confidence interval around the
average value of the bootstrap distribution. This choice is not necessarily symmetric with
respect to the fit value, though it will nearly be so for the number of bootstraps we use.?
Error estimates on secondary quantities like ratios of correlation functions are more in-
volved since Eq.(5.2) does not apply and a Gaussian error propagation may yield unreli-
ably large error estimates. Instead, the covariance matrix is calculated on each bootstrap
via a subbootstrap (or subjackknife)

1 Ngubboot—1

(i)
Ty =

(B - (Br)®) ((Rp) - Rn)®) . (59)
Nsubboot — 1 k=0
Here, Ry denotes the value of some ratio of correlators, i is the bootstrap index and k

labels the elements in the subbootstrap sample.

3[t may be considered an advantage of the bootstrap compared to the jackknife [135] that a confidence
interval is provided which does not rely on the assumption of a normal distribution.
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Figure 5.5. Effective masses of 'P, correlators with smeared source and local sink.
Circles correspond to (1,1), triangles to (2,1).

Following [47], we make use of vector fits to extract spectroscopic quantities from meson
correlators. A vector of correlators is simultaneously fitted to a sum of exponentials,

Nexp

CSC’Sk Z bsc ske—uEkT ) (5'5)

~ where we choose the subsets {[sc,sk]|sc = 1,2,3 ,sk = I}, {[sc,sk]|sc =,2,3 ,sk = [},

{[sc,sk]|sc = 1,2 ,sk = I} and {[sc,sk]|sc = 1,2 ,sk = sc}. The number of exponentials
will be 1y, = 2,3. Alternatively one may fit a matrix of correlators, e.g.

11 12 oo k ks _k_ ks
Cz' Cr o E : ajay  aja; e—aBT (5.6)
c; C# = ajatt: 1alak*

For quarkonium the coefficients can be chosen to be real because of charge conjugation
symmetry. We generally find that matrix fits are rather unstable.

5.3.1 Bootstrap Distribution

Figure 5.6 shows the bootstrap distribution of the 3S; ground state energy as obtained
from a simultaneous fit of two smeared-local correlators to a sum of two exponentials.
The number of bootstrap samples is increased from 50 to 1000. As is expected from the
central limit theorem, the distribution approaches a Gaussian shape. We observe that
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Figure 5.6. Bootstrap distribution of the fit parameter aE; relative to the average value.
The data is taken from a 3S; two-exponential fit to (1,1) and (2,I) correlators using the
configurations with k = 0.1575. The bootstrap sample size is varied from 50 to 1000. The
line indicates the fit value on the original sample.
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0.1575, 203 configurations; lhs: %S, single exponential fit to (1,1), range [20,30], rhs: ' P,
single exponential fit to (1,I), range [10,30]. Circles denote bootstrap errors, triangles
naive errors obtained by the criterion §x* = 1. Errors are estimated from a subbootstrap
sample of size 200.

the error is perfectly stable for npee > 200. Hence, we find it reasonable to choose a
bootstrap ensemble of 300 samples throughout the analysis.

5.3.2 Blocking in MC Time

The results of the autocorrelation analysis of the HMC time series [58] have been sum-
marised in Chapter 2. We were led to the conclusion that a MC time separation of about
25 trajectories between subsequent measurements would be adequate for hadronic observ-
ables. A simple way to estimate the correlation within the Markov chain is a standard
blocking procedure. This is less involved than the direct computation of integrated auto-
correlation times and is applicable with smaller statistics. Gauge field configurations are
chronologically ordered and the data is binned into blocks of successive measurements.
Fits are then performed on the blocked data. We restrict ourselves to single exponential
fits, as two-exponential fits become unstable with increasing block size 4. In Figure 5.7
we plot the error of the fit result for the ground state energy as a function of block size
for both the triplet-S and singlet-P states. The data has been taken from the x = 0.1575
sample and the source point for propagator evolution was (1,1,1,1). The error of the
error is estimated from a subbootstrap within each bootstrap. We find no variation in the
fit error although the block size is varied significantly. This confirms the result of a similar
analysis in the light sector which applies the analogue jackknife procedure [124] and indi-
cates that the dynamical configurations are indeed decorrelated with respect to hadronic
observables. The comparison of the bootstrap error with the naive error obtained from
a single fit by the criterion dx? = 1 reveals that the latter generally underestimates the
true error. However, this difference is not much pronounced for the one-exponential fits
considered here. The limited number of configurations in the unquenched case prevents
going to large block sizes. In particular, the fit to the P state becomes unstable rather

4We include measurements for one source point only.
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Figure 5.9. Change in the error of the ground state fit result when binning several source
points. lhs: single exponential fit to (1,1) correlator; rhs: two-exponential fit to (1,1) and
(2)1) correlators. The error is computed from a subbootstrap based on 200 bootstrap
samples.

early and can not be pushed further than block size three. Higher statistics are available
in the quenched case, so that we reach blocks of size nine. Figure 5.8 shows that for the
quenched data, too, there is no change in error when blocking configurations. Note, that
the naive error is reliable for the S ground state but not for the P wave.

5.3.3 Binning of Source Points

Taking advantage of the smallness of the bottomonium system, we exploit configurations
more than once by starting the propagator evolution both at different spatial origins
and on different time slices. We apply a similar procedure as in the previous subsec-
tion to investigate whether one really ends up with independent measurements this way:
results on different source points are binned and fits are performed on the averaged
data. In Figure 5.9 we plot the error of the S, ground state energy for unquenched

Figure 5.10. Same as Figure 5.9 for the ' P, correlator.

(k = 0.1575) data comparing single exponential and two-exponential fits. We include
four sources, {(1,1,1,1),(9,9,9,1),(1,1,1,17),(9,9,9,17)} and either average over all of
these (# binned sources = 4), split them in two sets, or do not average at all. We do not
observe a significant change of the fit error on the number of binned sources, indicating
that measurements are indeed independent. The same conclusion can be drawn in the
case of P waves as shown in Figure 5.10. Practically, our fits turn out to be very sta-
ble even when binning all available sources. This is the case for results presented in the
following.

5.4 Simulation Results

5.4.1 Radial and Orbital Angular Momentum Excitations

We use the multi-exponential fit ansatz to extract the ground state as well as radial
excitations and orbital angular momentum levels. Keeping a fixed upper limit of the fit
interval, Tinax, the lower limit is varied and the goodness of fit is monitored by the Q
value, i.e. the probability that fluctuations in adequately modelled data will generate a
x? greater than that of the fit.> Our decision on final results is based on the requirements
of stability and a reasonable value of Q which is as usual desired to be larger than 0.1.
Notice from Table 5.2, that two-exponential fits to S-state correlators are perfectly stable
for a very large range of Tpin. The Q value increases sharply until it reaches a plateau.
Smaller values of the goodness of fit such as for 'P; do not necessarily rule out a fit,
since the x?/dof is still reasonable and here, too, results are fairly stable, Table 5.4. The
amplitudes bf, ., Eq. (5.5), measure the overlap between the correlators constructed from
our wave functions and the energy eigenstates. Table 5.3 quotes negative overlaps of the
(2,]) correlator with the ground state due to the unsymmetric smearing at source and sink.

5Q is related to the incomplete gamma function through

—

dof x? _ (%% o :
_,_)5__) ( 2d°f2 ) = ety f = yyduf/Z ldy_ (5.7)
2°2 rs (55) Jx2/2

Q=0q(

1
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nexp Tmin Tmax aE1 G,E2 aEg I X2 / dOf Q
2 2 30 0.3605'00010 (G4397o0wie 450.8/52 0.000
(LD,(2]) 4 30 0.3585'0%08 (6116+0008 74.4/48  0.009
6 30 0.358510008 ( poggrovotr 42.0/44  0.559
8 30  0.3584+0%0 ( 5gg5+o0Ts 36.9/40  0.609
10 30 0.3584+000 () 59qq+0.0008 30.0/36  0.749 Nexp T Tuax % b b
12 30 0.3584%0%0 ( 5930+o0us 27.6/32  0.687 2 2 30 1 0533070081 (004270005
14 30 0.3584+0.0008 () 5ogg+0s 27.2/28  0.507 (1)),2,) 2 0.1658100099 () §942+0.0050
3 6 25 0.3587100006 () 5g5greon ] 49%08  30.1/31 0,515 4 30 1 052497001 (1891000
(LD,(2]) 7 25 0.358610005 (595010000 1424038 300/29 0.413 2 013700098 () 6463400058
8 25  0.3588%0000T (5860 17018 256/27  (0.541 6 30 1 05243700 _( (231000
10 25  0.3588100%07 (586810080 100102  234/23 0437 2 01257001 qgi7iemmes
3 4 25 0.361710%1 (6059709 (0 85617001%  308.3/54 0.000 8 30 1 052137001 0 (26+0007
L),(2]) 5 25 0.360010%0% (595800 (787700 1181/51 0,000 2 0.1412100% (G680
30 6 25 0.3507+008 () 5g4FOUK0 (75074003 52 0/48  (.321 10 30 1 0.5023100088 ) (235+0 00
7 25 0.3594'0008 (5030400088 (771940035 48 4/45  (.336 2 01412400778 () 6029+ 0381
8 25 1 0.350412.90%% 0.595312:00%0 0.827610:0%1° | 45.9/42 0.315 12 30 1 0.5289T0%ET —DI02407 20
9 25  0.3591%09908 () 5g04+000ss () 734640018  39.6/39  (.444 2 0123310080 () 5993+o0ss
+0.0062 -2 -+0.0033
Table 5.2. Examples of simultaneous multi-exponential fits to smeared-local and local- i ; 8'?323;3;2‘,’:: 006229%333'3357
local 3S; correlators. The data belongs to k = 0.1575 and is based on a total of 12 x 203 : - 0.0665 029670 1005
= 2436 measurements. Table 5.3. Amplitudes for 33, two-exponential fits to (1,1) and (2,1) correlators.

The relative magnitude of non-diagonal to diagonal amplitudes indicates that smearing
functions are well chosen.

Results for radial and orbital splittings that are used in further analysis are taken from
two-exponential fits to (1,1) and (2,1) correlators. These have the cleanest signals and
exhibit very stable fits. The complete results for each hopping parameter and the quenched
simulation are contained in Table 5.5. In addition, Figures 5.11-5.13 present the fitted
values as a function of T\, together with the selected final number. Note that our choice
does not correspond to the smallest Ty, with acceptable x?, but to a value which is well
inside the plateau and thus carries somewhat larger errors. These errors then cover the
systematic uncertainty from varying the fit interval.

A drawback of using smeared-local correlators is the potential danger of overestimating Nexp  Tin  Timax aky aky aBy  x*/dof Q

energy levels, since they usually approximate the asymptotic value from above. It has been 4 307 0540970508 - 1072157007 232.0/48 0.000
observed that the radial 2S-18 splittings are particularly sensitive to such a shift [136]. We 5 30 0-53041'%1(3)553 0‘7209f§1§i§§ 71.7/46  0.009
therefore repeat the analysis using two-exponential fits to (1,1) and (2,2) correlators. Sink 6 30 05299&%:«; 0'7172&:3{32 71.2/44  0.006
smearing produces noisier signals but does not necessarily induce larger errors on the fitted ; gg gg;ﬁ;g&‘::i g;igg;zz;:: gi%:g gggg
parameters as a consequence of a better decorrelation of the data. This is reflected by : ~0.0057 - —0.0206 : :

the smeared-smeared results included into Table 5.5: ground state energies carry similar Table 5.4. Simultaneous two-exponential fits to two smeared-local ' P; correlators.
errors as the corresponding smeared-local numbers. The excited state, however, comes

with significantly larger errors. A careful inspection of these results reveals that the
smeared-smeared and smeared-local data are consistent. The worst case is a shift by one
standard deviation.

We have also applied vector fits involving two correlators but three exponentials. The
third exponential accounts for contamination from higher radial excitations and provides
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a more reliable 2S state. Examples of such fits have been added to Table 5.2. We have
not encountered any discrepancies with the two-exponential results: ground state and first
excited state energies generally agree within errors. These fits also provide an estimate
of the second excited state which, however, is not reliable since no correlator with a good
overlap with 3S has been used. Including the (3,1) turns out to be difficult. We have

not succeeded in obtaining fit results that are stable on more than three subsequent Ty,

values using (1,1),(2,1) and (3,1) correlators at the same time. The situation is significantly
improved if we exchange (1,1) for the local-local correlator. Three-exponential fits to this
set perform much better, see once more Table 5.2. Again we observe complete agreement
of the result for 2S with previous fits, whereas now a more reliable estimate of the second
excitation is achieved. Notice also, that the ground state comes out slightly higher as
a consequence of replacing the (1,1) correlator. Results of three-exponential fits for all
r-values and the quenched approximation are collected in Table 5.6. Clearly, 3S states
extracted this way have to be treated with care: The fitting uncertainty is more severe
and a fourth exponential is not taken into account. In addition the potential model wave
functions point at sizable finite-volume effects for the second radial excitation on a 1.4 fm
lattice.

We have already mentioned that matrix fits have not been sufficiently stable, so we do
not quote any results here.

For illustration of the quality of the two-exponential fits we plot in Figure 5.14 the effective
amplitude e*®TCr together with the lowest-order functional form

BT . Cp = Ay + Age B BT (5.8)

with parameters taken from the fit.
We summarise the final results for radial and orbital angular momentum energy levels in
Table 5.7.

5.4.2 Extrapolation in the Sea-Quark Mass

GRINSTEIN and ROTHSTEIN [137] have calculated the pion mass dependence of radial
and orbital splittings in quarkonia up to order m} from a chiral Lagrangian. In lowest
order they find a linear dependence on the quark mass, which may be parametrised as
(see Ref. [138])

aAE = aAFE, + constant - Z (-;% Besna, (5.9)
T

u,d,s
Inside an Y the typical momentum transfer, py is between 0.5 and 1 GeV, i.e. my, m; K
pr < m.. This indicates that the physically relevant number of dynamical quark flavours
is n?"ys = 3. The effect of heavy quark vacuum polarisation is thus likely to be negligible.
Assuming this, we have restricted the flavour sum in (5.9) to the light quarks only. The
second important issue concerns the value of my to which energy splittings are to be
extrapolated. Phenomenologically, one expects little variation as a function of dynamical
quark mass and, since all light quarks are substantially smaller than py, it has been
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Figure 5.11. Fitted S, ground state (left column) and first radial excitation (right
column) as a function of the lower limit of the fit range, Ty,i,. We applied a two-exponential
fit involving correlators (1,1) and (2,1). The upper limit of the fit range is fixed t0 Tinax = 30
for k = 0.1575,0.1570 and Tyax = 31 for k = 0.1560 and the quenched sample. Note
that the excited state in the quenched background drops to the ground state very early
restricting the plateau to four or five points and indicating that smearing is less efficient
in this case.
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Figure 5.13. Same as Fig. 5.11 for singlet-P correlator. P state signals rapidly vanish

Figure 5.12. Same as Figure 5.11 for singlet-S correlator. The data looks very similar
into noise. Note the change in scale compared to Figures 5.11 and 5.12.

to the previous plot as a consequence of the strong correlation between Sy and *S;.
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state range x°/dof al} aly by 1 b2 ba a2

& = 0.1575

IS0 s —1 [10,30] 38.1/36 0.3448(6) 0.582(10) 0.564(6) 0.126(28) 0.010(3) 0.591(38)
15y s —s [9,30] 40.8/38 0.3446(6) 0.586(19) 0.750(8)  0.048(41) 0.000(2) 0.586(98)
35 s—1 [9,30] 31.9/38 0.3584(6) 0.590(8) 0.522(5) 0.127(23) -0.024(4) 0.581(26)
35, s —5 [9,30] 41.0/38 0.3581(7) 0.597(24) 0.742(9) 0.054(46) 0.001(2) 0.600(123)
1P s—1 [6,30] 71.2/44 0.530(5) 0.717(14) 0.652(39) 0.119(71) 0.107(13) 0.621(29)
1P s—s [6,30] 56.5/44 0.535(10) 0.687(34) 0.613(112) -0.093(162) 0.017(19) 0.323(38)
K = 0.1570

TSy s —1 [10,30] 41.3/36 0.3464(5) 0.588(11) 0.543(5) 0.106(26) -0.006(4) 0.553(41)
150 s —s [7,30] 53.8/42 0.3467(6) 0.587(15) 0.747(8)  0.024(26) -0.000(1) 0.489(57)
38 s—1 [10,30] 48.7/36 0.3606(6) 0.601(10) 0.503(5)  0.124(29) -0.039(4) 0.573(40)
35, s —s [8,30] 37.3/40 0.3606(6) 0.604(20) 0.734(8) 0.069(40) 0.002(2) 0.540(85)
P s—1 [5,30] 44.8/46 0.536(6) 0.745(13) 0.601(42) 0.165(79) 0.087(11) 0.640(27)
1P s—s [4,30] 55.6/48 0.532(8) 0.801(37) 0.521(45) 0.091(99) 0.032(10) 0.450(49)
K = 0.1560

TSy s—1 [0,31] 66.9/40 0.3492(8) 0.625(19) 0.525(10) 0.061(38) -0.017(5) 0.588(68)
1Sy s—s [6,31] 76.1/46 0.3483(8) 0.610(23) 0.736(13) 0.001(35) -0.000(2) 0.516(75)
35,51 [0,31] 55.3/40 0.3652(9) 0.631(20) 0.491(10) 0.069(38) -0.052(6) 0.565(66)
36, s—s [6,31] 73.8/46 0.3643(9) 0.623(28) 0.731(13) 0.008(41) 0.002(3) 0.523(89)
1P s—1 [4,31] 57.8/50 0.549(7) 0.792(14) 0.578(40) 0.229(75) 0.070(11) 0.705(27)
1P s—s [4,31] 74.9/50 0.553(11) 0.786(38) 0.562(70) 0.052(146) 0.006(14) 0.463(52)
quenched g = 6.0

TSy s—1 [10,31] 43.2/38 0.3309(4) 0.582(12) 0.516(4) 0.111(23) -0.028(3) 0.582(47)
18y s —s [8,31] 45.4/42 0.3306(3) 0.576(12) 0.758(5) 0.047(20) 0.002(1) 0.534(55)
38, s—1 [10,31] 44.7/38 0.3438(4) 0.589(12) 0.481(4) 0.126(23) -0.056(3) 0.566(47)
35,5 —s [8,31] 41.4/42 0.3433(4) 0.585(15) 0.747(5)  0.064(24) 0.006(1) 0.531(61)
1P s—1 [8,31] 33.2/42 0.508(6) 0.720(25) 0.564(51) 0.273(146) 0.077(13) 0.646(81)
1P s—s [5,31] 56.9/48 0.509(6) 0.732(27) 0.538(41) 0.140(83) 0.014(8) 0.473(46)

Table 5.5. Fit results from two-exponential fits of 1Sy, *S; and ' P, correlators. s — 1
denotes fits to (1,1) and (2,1), s — s denotes fits to (1,1) and (2,2). The errors have been
computed from 300 bootstraps. Since the bootstrap distribution turns out to be nearly

symmetric in most cases, we quote just one error.
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state range x2/dof aF aFy aFEs

x = 0.1576

TS, [6,25] 515/48 0.3456(7)  0.581(5) 0.755(25)
35,  [6,25] 52.0/48 0.3597(8) 0.594(5) 0.760(22)
K =0.1570

TS, [6,25] 86.9/48 0.3478(6) 0.595(7) 0.770(29)
35, [8,25] 68.1/42 0.3607(8) 0.602(8) 0.827(53)
K = 0.1560

TS, [5,25] 73.8/51 0.3500(9) 0.624(8) 0837(31)
35, [5,25] 72.5/51 0.3662(11) 0.643(8) 0.873(37)
quenched 3 = 6.0

TSy [7,25] 51.9/45 03304(d) 0579(5) 0.750(31)
35, [7,25] 71.1/45 0.3436(4) 0.503(5) 0.781(33)

two-exponential fit. The fit range

Table 5.6. Results from simultaneous three-exponential fits to (1,1),(2,1) and (3,1) corre-
lators. The errors have been computed from 300 bootstraps.

n,=2,ﬁ=5.6 TL/ZO,,BZG.O

Level x=0.1575 k=0.1570 & = 0.1560

175, 0.3448(6) 0.3464(5) 0.3492(8)  0.3309(4)

215, 0.582(10)  0.588(11)  0.625(19)  0.582(12)
318, 0.755(25)  0.770(29)  0.837(31)  0.750(31)

185 0.3584(6) 0.3606(6)  0.3652(9)  0.3438(4)

235, 0.590(8)  0.601(10)  0.631(20)  0.589(12)

335, 0.760(22)  0.827(53)  0.873(37)  0.781(33)

1'P, 0.530(5)  0.536(6)  0.549(7)  0.508(6)

2'P 0.717(14)  0.745(13)  0.792(14)  0.720(25)

Table 5.7. Final results for radial and orbital angular momentum splittings in lattice
units, obtained from two-exponential fits to smeared-local correlators. The 3S states have

been taken from three-exponential fits and include the local-local correlator.
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R: Ky ks(K) 5, (EK*) Ks(P)
0.158507(44) 0.158462(42) 0.15654(11) 0.15561(14) 0.15563(14)

Table 5.8. Hopping parameter values in the light and strange sector [124].

argued that the effect of three unequal mass quarks may be adequately reproduced by.
three degenerate light flavours of average mass [139],

i m :
Mef = 3 (mu + mg + m,) ~ ?B é (5.10)

Hence we choose to extrapolate linearly to ameg according to
aAE = aAEo +c-amyg . (5.11)

A ‘chiral limit’ at m,/3 and not beyond represents a major advantage of working with the
T system. Unquenching effects, though probably less important than in light hadrons,
can be nailed down more reliably due to the relative insensitivity to the m; — m, mass
difference.
In this context we point out that there is an uncertainty in the strange quark mass
stemming from the fact that we have generated only two (degenerate) dynamical flavours.
These are identified with the up and down quarks, so that, effectively, m, is defined
in the two-flavour theory in a ‘partially quenched’ way only. A consistent approach
to analyse this ‘partially quenched’ data has been presented in Ref.[140, 141], where
hadronic correlators with valence quark content both equal to and different from that of
the underlying sea quark are considered in order to determine the light quark masses.
In Table 5.8 we list the hopping parameter values belonging to the chiral limit, x., the
non-strange quark mass, x; and the strange quark mass, k, obtained from the analysis of
the light hadron spectrum [142]. Note the disagreement of x, determined using the kaon
mass as input with the corresponding value calculated from the K* or ® mesons. Here,
we choose the average of these, &g, corresponding to

Mg = %M, = é <Ri, = ch) ~ 0.0159 . (5.12)
This is somewhat smaller than our lightest sea-quark mass My(x = 0.1575) ~ 0.0202.
The results of the uncorrelated linear fits are shown in Figure 5.15. Fit parameters are
listed in Table 5.9 together with the energy splittings at the effective and the light quark
mass. No significant deviation from the linear parameterisation is apparent in the data.
We find the difference between AE(m,/3) and AEy, which may be taken as an upper
limit of the uncertainty in meg, to vary from 4 to 14%. In this context it is illustrative
to compare the dependence on the sea-quark mass calculated here with the one found in
the light hadron sector. There it is customary to fix the lattice scale through the p-meson
mass 5. In Figure 5.16 we compare the quark-mass extrapolations of the bottomonium
1'P; — 135, splitting and the p-meson. The slope in the light vector meson mass turns

SObviously, in the full theory the p-mass is a poor choice. The nucleon mass should be preferred,
though it is subject to larger statistical errors.
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Figure 5.15. Extrapolation of splittings between ground states and radial as well as
orbital angular momentum excitations in dynamical quark mass to the relevant effective
quark mass m,/3. Filled circles are the measured data, open triangles mark the extrapo-
lated values at ameg.



66 Chapter 5. Bottomonium Spectroscopy

splitting ~ AE, ¢ AE(m,/3) AE(my)
215, — 118, 0.209(21) 1.2(7) 0.229(10) 0.212(19)
315, — 1Sy 0.354(43) 2.6(1.5) 0.394(27)  0.359(41)
235, - 135, 0.209(18) 1.1(7)  0.226(9)  0.211(17)
335, — 1351 0.332(41) 3.5(1.3) 0.388(27)  0.339(39)
1'P —13S; 0.163(9) 0.4(3) 0.170(5)  0.164(8)
2'p —1'P 0.152(24) 1.8(7)  0.181(15)  0.156(23)

Table 5.9. Radial level splittings extrapolated to m,/3 and the light quark mass m.

0.55
0.50
0.45
0.40
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0.15 . ' : : : :
001 002 003 004 005 006

M,

Figure 5.16. Variation with sea-quark mass: The p-meson is compared to the 1' P, —135;-
splitting. The dotted line corresponds to a quadratic fit, the dashed-dotted line to a linear
fit and open triangles mark the extrapolated values at k). The data is taken from [124].
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Tmin Tmax AE A XQ/dOf Q
10 30 0.0135%9%0 0.9909+%012 20.3/19 0.379
12 30/ 0.013570001° ((:004 241008 90.0/17 * 0:272
14 30 0.013413%00  0.9907*2%%7 19.6/15 0.186
16 30 0.0134r200r  (.9905t2002% 19.0/13 0.123
18 30 0.01357%%0 0.9907+3 14.6/11 0.204
20 30 - 0.0135%%0%0  0.9918 7% | 14.1/9 0.118
22 30 0.0134%0%02 (.9880*0%  B8.6/7 0.282
24 30, .10:0132122% .0.0848 2%, . .6.0/5, ,.0:305

Table 5.10. Example of a ratio fit of the S hyperfine splitting, AE = AE(1%3.S; — 1'Sy);
K = 0.1575, 2436 measurements.

out to be 10 times larger for the P — S splitting. In contrast to the heavy quark data
which are perfectly fitted by a linear ansatz, the linear fit to the p-meson yields a x?/dof
of 1.5/2 which may indicate a contribution of a quadratic term. The 3-parameter fit,
also included in Figure 5.16, reveals the sensitivity to the kind of chiral extrapolation. It
results in large errors on the fit parameters. Other T splittings have bigger slopes than
P — S, yet small compared to the corresponding variation of light hadron masses. We
note that the analysis of a 243 x 48 lattice by the T, L Collaboration [143] points at sizable
finite-volume effects at x = 0.1575. On the larger lattice the p-mass is reduced by 3%
which will further increase the slope in Figure 5.16.

As a consequence we move on safe ground by fixing the lattice spacing through the low-
lying bottomonium splittings. Following Ref. [47] we will use the average spacing obtained
from the 1¥P—1%5; and 2°5, 135, splittings. We can’t use the ' P; level directly since spin
singlets have not been observed experimentally up to now. Hence, before we determine
the lattice scale we treat the spin splittings in the next section.

' 5.4.3 Spin Splittings

It will be difficult to resolve spin splittings with separate fits applying the multi-
exponential ansatz since this method yields errors on the P ground states of the order of
0.005 in lattice units (Table 5.5) which is the expected magnitude of the spin splittings.
To circumvent this problem we can make use of the strong correlation between meson
operators of equal orbital angular momentum to significantly reduce statistical errors.
This is achieved by a fit to the ratio of two correlators which directly gives the level
splitting. Throughout we will choose a single exponential ansatz. Contamination from
excited states can be estimated by an extended model function.

Ratio fit

1
—L = Aexp(-AET), (5.13)
Cr
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Figure 5.17. Dependence of the fit result for the energy splitting AE(13S; — 115)
on the lower limit of the fit range, Ty, The upper limit is fixed to Tyax = 30 for
k= 0.1575,0.1570 and to Tyax = 31 for £ = 0.1560 and the quenched case. The splitting
is obtained from a single exponential fit to the ratio of correlators Cp(13Sy)/Cr(1'Sy).
Open circles indicate smeared-local data, filled circles smeared-smeared data. The solid
line represents the selected value, the dashed line its lo-band.

Extended ratio fit

: 1+ Asexp(—AET)

Cq
=L — Avexp(— AElzT)l + Asexp(—AEST) (5.14)

02
In Figure 5.17 we plot the T}, dependence of the fit result for the 139, — 115 splitting. We
show the result from both the smeared-local and smeared-smeared correlators, although
we shall use only the smeared-smeared data. The fit is absolutely stable for Ty > 10—12
(see also Table 5.10). Note that the total scale in Figure 5.17 is around 5 MeV! The
corrected ratio fit confirms the single exponential ansatz. As is obvious from Table 5.11
the additional terms are zero within errors and the splitting § Ey, is consistent with 6 E.
For the fine structure in the L = 1 sector we compute the energy difference of each *P,
state relative to the singlet P. In Figures 5.18-5.20 we show Tjyis plots for AE(* P —* B),
AE('P, -3 P)) and AE(3P, ! P,), respectively. Again, our final choice of fitted values
is such that the statistical error encompasses the systematic uncertainty due to the fit
interval. Here, the discrepancy between fits to (1,1) and (1, 1) correlators is much more
pronounced than for the S hyperfine splitting. Deviating from [60], where we quoted
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range AE), AFE, AE,
[10,30] 0.01346(25) -0.000(70) -0.000(73)
[12,30] 0.01346(55) 0.001(85) 0.001(41)
[14,30] 0.01344(71) 0.00(47)  0.00(48)

Table 5.11. Example of extended ratio fits for the S hyperfine splitting based on the
same data sample as in Table 5.10.
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Figure 5.18. T, dependence of the fit result for AE(1' P, — 1* By). Open circles indicate
smeared-local data, filled circles smeared-smeared data.
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with fitted numbers that have not yet reached their plateau value. Splittings relative to E? Ej
the spin-averaged triplet P are obtained as follows: 0.00a0 9.0000
x = 0.1560 quenched f§ =6.0
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SpP = §( ‘P1)+§( 3P1)+§(P1 ) (5.15)

Results in lattice units at fixed sea-quark mass and from the quenched approximation are
summarised in Tables 5.12 and 5.13. We proceed as for the radial and orbital splittings
and extrapolate the unquenched data linearly in the light quark mass to M, = M,/3,
Figure 5.21. Considering the error bars it is obvious that the slope is consistent with zero
except for 3S; —1 Sy, see Table 5.14.
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Table 5.12. Results obtained from fitting a single exponential to the ratio of two corre- e
lators.
splitting ~ AE, c AE(M,/3) AE(M,)
PP - 135, 0.163(9) 043(27) 0.170(5) 0.164(8)
135, — 1S, 0.01168(23) 0.086(8) 0.01304(12) 0.01185(22)
e el il 1P, —1'P 0.0022(10)  0.029(26) 0.0027(6)  0.0023(10)
1P—1°P,  0.0024(5) 00021(5) 0.0018(3)  0.0020(4) o ol s o G
1P 1°P, 0.0099(10) 0.0096(11) 0.0087(10)  0.0098(5) o g ARk R )
13P—1'P, -0.0003(7) 0.012(21) -0.0001(4)  -0.0003(6)

Table 5.13. Spin splittings relative to the spin-averaged *P level for fixed sea-quark

mass as well as in the quenched approximation. Table 5.14. Spin splittings extrapolated to the effective quark mass meg/3 and the light

quark mass.
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Splitting a '[GeV] Average a '[GeV] Rsp Rpp

ng=0,=60 T -T 229(11) 2.49(7) 1.49(10) 0.67(11)
-1  268(9)

% = 0.1560 T T 2.19(18) 4.25(10) 1.44(10) 0.77(18)
x-7 2.38(8)

K = 0.1570 T-T 2.34(9) 2.42(6) 1.37(7)  0.70(16)
x—7T 2.50(8)

k= 0.1575 T —-T 243(8) 2.50(6) 1.35(6)  0.68(12)
x—-7T 2.57(7) )

m,/3 T -T 249(10) 2.54(6) 1.33(6) 0.66(12)

x-T  259(7)

Table 5.15. Determination of the lattice spacing from the 2%, — 133, and 1*°P — 135,
splittings. We use the average value to convert our results to physical units. Rsp is to be
compared to the experimental value of 1.28.

5.5 Physical Results

To convert the splittings computed in the previous section into physical units we have to
determine the lattice spacing, a. This presents an easier task in heavy quarkonium than
it does in the light hadron sector. It has already been mentioned that the dependence
on the sea-quark mass is much less severe for the lowest radial and orbital bottomonium
splittings than for the p-meson or the nucleon. In addition, these are insensitive to the
heavy quark mass. In the absence of an experimental number for the singlet states in
bottomonium we shall here use the 285, — 135, and 13P — 138; splittings,

4 0.5629GeV o 0.4398GeV
& aE(23.S'1) T GE(13SI)'M./3 k = aE(3I_’) =5 aE(13.S'1)|M,/3 g

a (5.16)

Results for lattice spacings are summarised in Table 5.15. Note that the average spacing
for B = 5.6, ny = 2 at My = M,/3 agrees well with the quenched one at 8 = 6.0, so that
we can directly compare our results in both theories. In Table 5.16 we list the results in
physical units. We have used the average a ! to obtain these numbers and thus distribute
the mismatch between both determinations on S and P states.

Gross level structure

Figure 5.22 summarises our results for two and zero flavours from Table 5.16. 1t is obvious
that the gross level structure, i.e. the radial and orbital angular momentum splittings,
computed on quenched configurations disagrees with experiment. This is as expected
since the coupling constant will run incorrectly between the scales dominating the L = 0
and L = 1 bound states. There is no effective coupling that gives the correct answer for
both the 1P and 2S states within the quenched approximation.

The ny = 2 lattice results are in much closer agreement with the experimental data. This
is also evident from Table 5.15 which shows that the lattice spacings from the 25 — 15
and the 1S — 1P splittings do not agree in the quenched theory whereas they coincide

10.75
U A S
10.25 g5 | =R 4
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Simulation Result [GeV| Experiment|144]
Splitting ng=2,8=56,m/3 n;=0,0=6.0
215, — 115, 0.581(21) 0.625(21)
315, — 115, 1.00(7) 1.04(8)
28, — 135, 0.575(14) 0.610(21) 0.5629
PS5 P8 0.99(6) 1.09(9) 0.895
1'P, — 138, 0.431(10) 0.407(12)
2P, — 1P, 0.459(40) 0.528(66)
1P — 135, 0.431(10) 0.408(12) 0.4398
%5, — 115, 0.0331(9) 0.0315(9)
1P, — 1P, 0.0068(16) 0.0089(8)
1'P, — 1°P, 0.0048(12) 0.0040(15)
1'P, - 1°R, 0.0225(27) 0.0234(15)
P, — 1P 0.0071(9) 0.0079(7) 0.0130
1P - 1°P, 0.0045(10) 0.0050(10) 0.0083
1P - 1R, 0.0222(26) 0.0244(13) 0.040
1P -1'R -0.0003(10) 0.0010(7)

Table 5.16. Overview of our results in physical units. The scale is set by the average
P — S and 2S — 18 splitting.

Figure 5.22. Bottomonium spectrum - radial and orbital angular momentum split-
tings. The *S, ground state is fixed to the experimental T energy. Open symbols denote
quenched results, filled symbols ny = 2 results at my = m,/3. Solid lines mark the exper-
imental values, dashed lines the position of the spin-averaged * P; states, which are nearly
identical with the singlet-P estimates.
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Figure 5.23. The ratio Rgp = 23S; — 135, /13P — 13S, in bottomonium as a function of
the number of dynamical flavours.

when two dynamical quarks are switched on. The ratio of these splittings is plotted in
Figure 5.23 as a function of the number of dynamical flavours. Whereas the quenched
result is off the experimental number by 1-2 o, we find a ratio for ny = 2 which is nicely
consisterxt with it. Note, however, that this value moved up by one standard deviation
compared to our previous estimate with smaller statistics [60] which may hint at three
active flavours rather than two. Figure 5.23 includes the ratio Rgp that one obtains by
extrapolation to ny = 3. Like the two-flavour result it is in agreement with experiment.

To summarise: in the radial and orbital splittings we observe a clear trend towards ex-
periment., once the vacuum polarisation is partly included. The effect is at the level of
one or two standard deviations.

Spin Splittings

We do not observe any significant impact of unquenching on the spin-dependent splittings.
In particular, the P fine structure seems to be largely underestimated for both ny = 0 and
ny = 2 as shown in Figure 5.24. The S hyperfine splitting, too, remains constant within
errors. From a perturbative viewpoint this is perhaps not too unexpected if one recognises
that SES AM’s investigation of the static quark potential [83] finds unquenching to induce
only a small increase of about 10% in the Coulomb coefficient.

We note that the ratio Rpp = AE(13P, — 1°P)/AE(13P; — 13P,) is in agreement with
the experimental value 0.66, Figure 5.25. A similar result was obtained in [48], where Rpp
has been found to change from 1.11(26) to 0.56(19) when next-to-leading spin-dependent
relativistic corrections are included. There is another interesting observation: from po-
tential models one expects that spin-orbit and tensor contributions sum up to zero leading
to degeneracy between spin-averaged ®P and singlet P states

E(n3P)= E(n'P) . (5.17)
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Figure 5.24. Bottomonium spectrum - P fine structure. Open symbols denote quenched
results, filled symbols ny = 2 results at my = m,/3. Solid lines mark experimental values
for triplet P and the spin average of these since the hy has not been observed. Note that
the unquenched ' P; data point agrees with ®P as predicted by potential models.

Figure 5.24 reveals that the unquenched ! P, result confirms this expectation whereas the
quenched singlet P state is smaller than 3P.

It is reasonable to assume that the spin splittings are much more sensitive to the details
of the quark action than radial and orbital splittings. Therefore, we will attempt to
disentangle the different systematic uncertainties in the next chapter.

Wilson versus Kogut-Susskind Staggered Quarks

We compare our spectrum results with an earlier NRQCD calculation of bottomonium
on unquenched gauge field configurations. DAvIES ET.AL. [50] have been the first to
include the effects of dynamical quarks applying the Kogut-Susskind staggered discreti-
sation. They analysed HEMCGC configurations with am = 0.01,0.025 using an NRQCD
action of O(myv?) and chose uy = uf. The bare b-quark mass was M, = 1.8 which a
posteriori turned out to be slightly too large [138]. Since the statistics for am, = 0.025
was lower than for am, = 0.01, however, there was no lever-arm for an extrapolation in
the dynamical quark mass.

In Figure 5.26 we compare the gross level structure obtained in [50] with our results.
There is excellent agreement for 25-1S and 1P-1S. Both simulations also give consistent
3S and 2P energies, although within large errors.

The situation is much less clear for the P fine structure as shown in Figure 5.27. Our
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Figure 5.25. The ratio Rpp = A(1°P, — 13P,)/A(1*P, — 13 R) in bottomonium as a
function of the number of dynamical flavours. The experimental number (.66 is indicated
by the dashed line.
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Figure 5.26. Comparison of radial and orbital splittings from simulations using con-
figurations with dynamical quarks. Filled circles label our results at m, = m,/3. Open
triangles denote results by DAVIES ET.AL. [50] obtained on HEMCGC ny = 2 staggered
configuration with amg = 0.01,3 = 5.6.
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Figure 5.27. Comparison of the P fine structure from simulations using configurations
with dynamical quarks. Same labeling as in Figure 5.26.

results have smaller errors than the staggered data. We are thus able to reveal a discrep-
ancy between both simulations: whereas the staggered data reproduce the experimental
spin splittings quite well, the Wilson result underestimates them considerably. However,
no firm conclusion about the fermion formulation can be drawn from Figure 5.27 since
the difference in the NRQCD actions do affect the spin splittings. The investigation of
systematic errors in the next chapter indicates that the larger splittings obtained with the
staggered configurations are more likely due to the lower-order action than to different
fermionic discretisation schemes.

5.6 Kinetic Mass

As discussed in Section 4.5.3 we can study the non-relativistic dispersion relation for
mesons at small finite momentum to determine the bare lattice b-quark mass, M;,. At
first sight this seems to be a laborious iterative procedure, especially in the presence of
dynamical flavours: choose a value of Mj, calculate the spectrum on background fields with
different sea-quark content, do the chiral extrapolation, determine the lattice spacing and
the kinetic Y mass in physical units and, finally, readjust the bare quark mass. However,
it may be inferred from phenomenology and is demonstrated in the next chapter that such
fine tuning is not needed in practice. Results presented so far have been obtained entirely
with a single value M}, = 1.70. It has to be checked whether this choice is appropriate.
We apply two different parameterisations of the dispersion relation to obtain the kinetic
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Figure 5.28. Effective masses belonging to the ratio of finite-momentum correlators to
the zero-momentum correlator. Open circles indicate smeared-local data, filled circles
smeared-smeared data.

mass
B@)-BO) = 5E (5.18)
Bp) - B0) = P @) (5.19)

R 1 5
2mk;n 8mkin

In a relativistic theory my, equals the rest mass and ¢; = 1. The non-relativistic ap-
proximation will reproduce this value up to corrections of O(v?). We choose to extract
the splitting between finite-momentum and zero-momentum correlators from single expo-
nential ratio fits

_ on(T)

= o) = Ae(@E®)-aEONT 4 corrections (5.20)

(1)

¢

We have computed correlators with momenta |p| = 1, v/2,4/3,2 in units of 27/16a and
averaged over all possible polarisations. Figure 5.28 presents effective mass plots for
the ratio in Eq. (5.20). Both (1,l) and (1,1) smearings are shown. The results are
summarised in Table 5.17. In most cases smeared-smeared correlators give splittings that
are smaller than smeared-local ones by about one standard deviation. Only the former
are used to determine My;,. We have tried correlated and uncorrelated fits of the kinetic
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state |p| smeared - local smeared - smeared
range x>/dof aFByy, range x2/dof aFy,

x=10.1575
115, 1 [15,30] 6.0/14 0.02059(12) [17,30] 11.4/12 0.02037(i4)
115, vZ  [15,30] 9.9/14 0.04101(27) [17,30] 15.0/12 0.04056(37)
115, V3 [15,30] 13.3/14 0.06119(54) [15,30] 16.5/14 0.06027(78)
115, 2 (15,30] 7.5/14 0.08169(66) [17,30] 8.3/12 0.08132(108)
135, 1 (15,30] 6.0/14 0.02048(13) [17,30] 12.2/12 0.02022(21)
185, VvZ  [15,30] 8.1/14 0.04077(30) [17,30] 15.8/12 0.04019(47)
135, V3 [15,30] 9.0/14 0.06100(63) [15,30] 16.8/14 0.05969(96)
138, 2 [15,30] 6.7/14 0.08134(78) [17,30] 8.6/12 0.08066(119)
Kk = 0.1570
175, 1 (15,30] 5.4/14 0.02063(11) [i6,30] 11.6/13 0.02047(14)
115, V2 [15,30] 3.7/14 0.04129(25) [17,30] 7.3/12 0.04088(37)
115, V3 [15,30] 4.8/14 0.06189(61) [17,30] 4.9/12 0.06134(84)
118, 2 [15,30] 7.5/14 0.08175(62) [16,30] 12.1/13 0.08107(83)
%5, 1 [15,30] 3.1/14 0.02045(13) [16,30] 12.9/13 0.02024(20)
135, VZ  [15,30] 32/14 0.04092(33) [17,30] 8.3/12 0.04040(49)
188 V3 [15,30] 59/14 0.06136(72) [17,30] 6.1/12 0.06055(113)
138 2 [15,30] 4.0/14 0.08090(75) [16,30] 13.5/13 0.07960(116)
K = 0.1560
115, 1 [15,31] 15.6/15 0.02037(19) [16,31] 11.2/14 0.01999(22)
118, VZ  [15,31] 19.6/15 0.04051(46) [15,31] 8.7/15 0.03950(52)
115, V3 [15,31] 25.6/15 0.06051(108) [15,31] 11.3/15 0.05889(133)
115, 2 [15,31] 18.1/15 0.08082(106) [15,31] 15.7/15 0.07952(121)
%5, i (15,31] 14.8/15 0.02023(24) [10,31] 10.3/20 0.01959(23)
138, VZ  [15,31] 14.2/15 0.04005(62) [10,31] 11.8/20 0.03894(63)
135, V3 [15,31] 15.7/15 0.05987(129) [10,31] 17.3/20 0.05839(126)
138 2 (15,31] 12.7/15 0.08134(116) [10,31] 14.8/20 0.07894(102)
quenched g =6.0
115, 1 [20,31] 14.0/10 0.02056(11) [15,31] 13.0/15 0.02026(12)
118, VZ  [20,31] 14.6/10 0.04141(27) [15,31] 13.3/15 0.04075(30)
115, V3 [20,31] 17.5/10 0.06304(68) [15,31] 16.8/15 0.06178(61)
115, 2 [20,31] 16.9/10 0.08075(75) [15,31] 15.5/15 0.07972(67)
1°5, 1 [17,31] 11.6/13 0.02040(12) [15,31] 15.3/15 0.02007(15)
138, V2 [17,31] 14.8/13 0.04084(31) [15,31] 13.6/15 0.04040(34)
135, V3 [17,31] 20.6/13 0.06160(65) [15,31] 17.5/15 0.06148(75)
135, 2 (17,31] 18.1/13 0.08045(68) [15,31] 16.5/15 0.07897(81)

Table 5.17. Results of ratio fits of finite-momentum correlators for singlet-S and triplet-S
states.
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Figure 5.29. Correlated two-parameter fits of the non-relativistic dispersion relation for
35, according to Eq.(5.19). The kinetic energy is plotted versus (2m/16)%|n|* with n =
(1,0,0),(0,1,0),(0,0,1),(1,1,0), (1,0,1),(0,1,1), (1, 1,1), (2,0,0), (0,2,0), (0,0,2). Note
the large x* for the quenched data.

energy Fyn(p) = E(p) — E(0). The results in Table 5.18 show that the kinetic masses
from different types of fits coincide within errors. The coefficient ¢; is consistent with
1, though with large uncertainties. The slight discrepancy for k = 0.1560 surely is due
to the lower statistics of this sample. The x? values do not prefer one of the functional
forms BEq.(5.18) or Eq.(5.19). Within our samples the lowest order dispersion relation
already works perfectly well. Note however, that the x? values in the quenched case are
very large. This is true both for the one- and the two-parameter fits and it is surprising
that even though the action contains NLO relativistic corrections the quadratic ansatz
seems to be not quite adequate.  Finally we give the values of the kinetic T and 1,
masses from the correlated two-parameter fits to smeared-smeared data in Table 5.19. To
convert to physical units we have used the average lattice spacing, a™! = 2.54(6)GeV,
at the effective dynamical quark mass, Table 5.15. As expected, the quenched number
coincides with the experimental mass within errors. Remember that the bare heavy quark
mass parameter was tuned to the T in Ref.[47]. It turns out that M, = 1.7 remains valid
in the unquenched case. The kinetic masses hit the experimental line in Figure 5.30 for
k = 0.1575,0.1570. The sample with the heaviest sea-quark gives a meson mass that
is slightly too high, but the important observation is the insensitivity with respect to
changes in m,. We shall investigate in the next chapter the variation of radial and orbital
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state  Npar x?/dof Min 1
U C U C U C
&= 0.1575

TR 0.82/3 1.6/3 3.832(39) 3.821(36)
G i 0.65/2 1/2  3.813(40) 3.814(39) 0.86(1.2) 0.78(1.1)
S 0.89/3 1.7/3  3.800(33) 3.789(28)
15 2 0.65/2 1.2/2 3.782(30) 3.787(29) 0.84(1.1) 0.65(1.0)
& = 0.1570
s N 1.1/3 3.7/3 3.825(40) 3.804(36)
5 2 0.19/2 0.24/2 3.785(37) 3.790(34) 1.87(97)  1.79(97)
15 0.7/3 12.3/3 © 3.776(27) 3.763(25)
8 2 0.14/2 0.17/2 3.754(26) 3.756(25) 1.05(77)  1.02(76)
& = 0.1560
o 1 0.95/3 1.4/3 3.935(51) 3.918(46)
85 2 0.41/2 1/2 3.957(55) 3.927(49) -0.97(1.1) -0.60(1.0)
Loy 0.82/3 2.5/3 3.881(49) 3.863(44)
18 2 0.64/2 1.9/2 3.861(43) 3.853(40) 0.98(1.28) 1.08(1.21)
quenched = 6.0
SR 6.3/3 20/3 3.837(32) 3.828(25)

2 5.7/2 14/2  3.812(26) 3.832(25) 1.13(67)  1.57(66)
LS 7.5/3 26/3  3.804(24) 3.779(20)

2 6.3/2 14/2  3.777(20) 3.790(20) 1.25(54)  1.70(52)

Table 5.18. Linear and quadratic fits of the non-relativistic dispersion relation based on
smeared-smeared finite-momentum data. (C)orrelated and (U)ncorrelated fits work out
equally well.

K state My, [GeV]
0.1575 %5,  0.68(27)
1S, 9.62(26)
0.1570 351 9.63(24)
15, 9.54(24)
01560 %S,  9.97(28)
1S, 9.78(26)
quenched *S;  9.52(26)
1S, 9.42(26)

Table 5.19. T and 7, kinetic masses in physical units. Lattice numbers from correlated
two-parameter fits have been converted into physical units using a™* = 2.54(6)GeV for
n; = 2 data and a™! = 2.49(7)GeV in the quenched case.
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Figure 5.30. T kinetic mass in physical units as a function of the sea-quark mass.

splittings with Mi;,. We find no visible dependence within a large range of quark masses
confirming the experimental observation. Therefore the iterative procedure outlined above
is not necessary in practice.

5.7 Summary

We have presented a detailed study of dynamical quark effects in bb bound states. We
computed radial and orbital angular momentum splittings as well as spin-splittings from
a next-to-leading order lattice NRQCD action. With improved smearing techniques clean
signals for ground and excited states have been obtained.

We have studied the light quark mass and flavour dependence of the bb spectrum. All
quantities were linearly extrapolated to m,/3. We are helped in these extrapolations by
the fact that m,/3 is very close to our lightest sea-quark mass so that the extrapolated
values are easily consistent within errors with the values at k = 0.1575. The lattice
spacing has been determined after ‘chiral extrapolation’ with an error of 2-3%, which
accounts for the statistical and systematic (fitting) uncertainties.

Comparing to the quenched calculation at similar lattice spacing we find a small un-
quenching effect in the radial and orbital splittings which can be quantified by the ratio
Rsp = 23.5; — 138, /1P — 135, determined to be 1.33(6) with two dynamical flavours and
1.49(10) for the quenched case, the experimental value being 1.28.

We have succeeded in determining spin splittings with an accuracy of a few MeV. This
allows us to discover even very small vacuum polarisation effects. However, we do not
observe any sign of unquenching here. A reasonable expectation is that these quantities are
very sensitive to the details of the NRQCD action. Large systematic errors possibly hide
unquenching effects. This is clearly indicated by results presented in the next chapter. It
seems likely that the spin-dependent sector will come out correctly only if the coefficients
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Figure 5.31. Comparison between the NRQCD results for the bb spectrum and the
bottomonium energies obtained in Ref. [107] from the O(v?®) corrected lattice heavy
quark potential.
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Figure 5.32. NRQCD results for the P fine structure (filled circles) versus the O(v?)
corrected lattice heavy quark potential (open circles).
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in the action, in particular cq4, are adjusted more accurately.”

We have chosen smearing functions that are Schrédinger wave functions calculated from
a lattice potential. We conclude this chapter with a comparison of the NRQCD spectrum
to the energy eigenvalues belonging to these wave functions as given in Ref. [107]. The
authors fix the b-quark mass and the value of the string tension by minimising the squared
differences between their potential model predictions and experimental states including
all observed bottomonium resonances below the BB threshold:

vk =452 MeV , my =4.72 GeV . (5.21)

Here, k£ denotes the string tension. Note from Figure 5.31 that radial and orbital splittings
from the potential model are somewhat smaller than the NRQCD results, in particular the
2S-18. If one would freeze the average of the 2°S; — 13S; and 13P — 135, splittings to its
experimental value, as we have done in the NRQCD simulation, the potential model would
predict larger splittings and the 2P mass would come out to be significantly heavier than
experiment, but closer to the NRQCD result [107]. The P fine structure that is obtained
from both approaches is in surprisingly good agreement, Figure 5.32.

<

"Work in this direction has recently been started by TROTTIER and LEPAGE [145]. The authors
have considered the feasibility to compute operator coeflicients from numerical simulations deep in the
perturbative region.
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Chapter 6

Investigation of Systematic Errors

So far we have been concentrating on the study of vacuum polarisation effects. The
results quoted in Chapter 5 are subject to various systematic uncertainties which will
be explored in this chapter. Most of these are specific to the non-relativistic treatment
of the heavy quarks. We start off with investigating the dependence of quarkonium level
splittings on the heavy quark mass in Section 6.1. Moreover, we study their sensitivity to
changes of the non-relativistic action. Two issues are tackled in this respect: we examine
the convergence of the velocity expansion by comparing leading order and next-to-leading
order results in Section 6.2 and test the effect of changing the tadpole factor, Section
6.3. A final topic will be the systematic error in the propagator calculation due to the
temporal discretisation. Unfortunately, our data does not allow for a study of the cut-off
dependence. Hence we may only refer to other groups’ results on quenched configurations
to give an idea of the scaling behaviour.

6.1 Dependence on the Heavy Quark Mass

It was shown in Section 5.6, that the bare heavy quark mass M, = 1.7 leads to kinetic T
masses which are in reasonable agreement, with experiment. Remember, we did not tune
this parameter, but simply adopted the value adequate in the quenched approximation.
In fact, a precise adjustment of M, is unnecessary because radial and orbital guarkonium
splittings are largely unaffected by changes of the heavy quark mass. Here, we explicitly
calculate the dependence of the 25-1S radial splittings as well as the S hyperfine splitting
on the bare mass parameter to verify the above statement on unquenched configurations.
We have computed S-state mesons on the gauge field sample containing the lightest sea
quark choosing four additional quark masses: M, = 1.6,1.8,1.9,2.0. Quark propagators
have been obtained with the NLO NRQCD action and the tadpole factor uf. Each
set contains 800 measurements which is sufficient to allow for stable two-exponential
fits. Following the lines of Section 5.4, we use smeared-local correlators to extract radial
splittings and ratios of smeared-smeared correlators for the hyperfine splittings. The
lower limit of the fit range is varied until masses run into plateaus, the upper limit is
fixed to the lattice time extent. Table 6.1 lists the results in lattice units. A significant
Mg-dependence is observed for the ground states only, especially the pseudoscalar, Figure
6.1. Excited states remain constant within errors and so do the radial splittings. The
hyperfine splitting, on the other hand, exhibits a decrease with 1/M3, consistent with the
perturbative formula

32ra(mg)
3
9mg

AEy = [p(0)|* . (6.1)

The strong dependence on quark mass shown in Figure 6.2 suggests that it has to be
tuned carefully in order to get the spin splittings right. For each bare quark mass we have
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Mg 1.6 1 1.8 1.9 2.0
196 0.3577(9) 0.3584(6) 0.3597(8) 0.3600(8) 0.3599(8)
2551 0.602(11) 0.590(8) 0.599(10) 0.597(10) 0.594(9)
235, —138; 0.244(11) 0.232(8) 0.239(10) 0.237(10) 0.234(9)
118 0.3433(8) 0.3448(6) 0.3461(8) 0.3468(8) 0.3470(8)
215, 0.598(11) 0.582(10) 0.594(9) 0.592(10) 0.589(9)
218, — 118, 0.255(11) 0.237(10) 0.248(9) 0.245(9) 0.242(9)
135, — 115, 0.01379(23) 0.01346(11) 0.01304(24) 0.01273(24) 0.01244(23)

Table 6.1. Radial and hyperfine splittings for S states as a function of the bare heavy
quark mass. All results are obtained on the sample with the lightest dynamical quark
mass, k = 0.1575. With exception of column three (Mg = 1.7), fit ranges have been
uniformly chosen to be [8,31] for 1Sy, 3S; two-exponential fits and [18,31] for %5, /*S,
ratio fits.

6.2 Convergence of the Velocity Expansion
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Figure 6.1. Heavy quark mass dependence of T and 1, levels according to Table 6.1.
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Figure 6.2. S hyperfine splitting as a function of the inverse bare heavy quark mass.

Mg 16 17 18 1.9 2.0
My, 3.60(9) 3.84(5) 3.99(10) 4.19(10) 4.36(8)

Table 6.2. Results for the T kinetic energy for various values of the bare heavy quark
mass.

computed the kinetic T mass which is found to vary by 20% over the range Mg = 1.6—2.0,
Table 6.2 and Figure 6.3. This causes the 25-18 splitting to change by less than 10% as
can be seen from Figure 6.4 Let us refer back to Figure 5.30 to note that M,;, needs to
be lowered by at most 2-5% to reproduce the experimental T mass exactly. Such a small
change will increase the S hyperfine splitting by about 5% whereas the radial S splitting
will be affected on the 1-2% level only. For the latter we therefore conclude that the
systematic uncertainty due to a slight offset in the kinetic T mass is negligible compared
to statistical errors.

6.2 Convergence of the Velocity Expansion

A central issue are systematic errors arising from higher order relativistic terms that have
been neglected. The velocity expansion is a useful tool only if it converges sufficiently fast
so that one is not forced to go beyond next-to-leading order.

Our Lagrangian includes spin-independent interaction terms of O(mv?) and O(myv?).
The next order will therefore introduce corrections which are v*x kinetic energy, i.e. ~
0.01 x 500 MeV ~ 5 MeV. This presents a 1% error for radial and orbital splittings.
Spin splittings would be affected on a 10% level, however. Naively one expects that the
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Table 6.3. Comparison of quenched T and 1, energies obtained with the Q(myv?) and
0.270 1 O(myv®) actions. Lower order results involve 600 measurements and fit ranges [8,31] for
38,18y two-exponential fits and [18,31] for 3S; /Sy ratio fits. In both cases simulation
" 0.250 H%— | parameters are 8 = 6.0, M, = 1.7 with tadpole factor u}.
S 0230 *# + 1
n | inclusion of spin-dependent O(m;v®) terms reduces the relativistic errors by another factor
N 0.210 | of v? to around 1% for spin splittings also. Table 6.3 compares results for the leading
0.190 | i order and next-to-leading order action. As in the previous section, we restrict ourselves to
! the S-wave mesons, but use quenched configurations. The lower order calculation involves
0.170 } . 4 4 x 150 quenched measurements at 3 = 6.0, M, = 1.7 and uf.
0.150 . ! . i 1 1 From Table 6.3 and Figure 6.5 we realise that not only the radial splittings, but also the

Figure 6.4. Dependence of 235, — 13S; radial splitting on the kinetic mass.

energy levels themselves remain unaffected by the additional terms. The ratio fit however

s Sy et reveals a 15% decrease of the hyperfine splitting when switching on the O(mv®) inter-
Myin actions, which is even more than expected from simple power counting. This confirms a

similar result reported by MANKE ET.AL. [48, 146], who observed a 10% effect in the
bb hyperfine splitting using the plaquette tadpole prescription. These authors also find
a rather severe shift, due to the O(mv®) terms, of about 30% in the P fine structure of
bottomonium. The effect of next-to-leading order spin-dependent interactions for char-
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Figure 6.6. Dependence of the S hyperfine splitting on the order of the NRQCD ex-
pansion and the choice of tadpole factor. Compared to the plaquette prescription the
splitting increases by about 15% if ul is used. The effect of including spin-dependent
O(myv®) terms pushes it down again, surprisingly by the same amount.

monium has been investigated by TROTTIER [44] and is found to be as large as 60%. All
studies therefore come to the conclusion that the first three terms in the velocity expan-
sion for the hyperfine splitting are oscillating in sign with a sizable next-to-leading order
contribution. Obviously, the use of an O(m;v%)-correct action is mandatory to arrive at
meaningful results for the spin-splittings in the T system.

6.3 Tadpole Scheme Dependence

In addition to the order of the NRQCD expansion, the spin splittings and in particular the
S hyperfime splitting will be sensitive to a change of the tadpole renormalisation scheme.
One expects them to vary as 1/ug, since the clover discretisation of the chromomagnetic
field contains four link variables. If tadpole improvement is switched off completely (uo =
1), the spin splittings are badly underestimated by a factor of ~ 1/2 [47]. Smaller, but
significant changes are expected when different definitions of uy are used: the ratio of ug
with the plaquette prescription to that computed from the mean-link in Landau gauge is
roughly 10%, see Table 4.2.

To study the influence of ug in more detail, we repeat the propagator calculation with
the lower-order action (O(myv?)) in the quenched approximation choosing this time uf
as the tadpole factor. We perform 1400 measurements on S-wave mesons and 600 on P
states. Table 6.4 lists the fitted numbers together with results of DAVIES ET.AL. [47]
and MANKE ET.AL. [48]. Figure 6.6 confirms the naive expectation that changing uo
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level /splitting fit result [lattice units]

this simulation Ref. [47] Ref. [48]
115, 0.4418(4) 0.4415(3) _ 0.4416(3)
215, 0.687(13) 0.678(8)  0.679(22)
138, 0.4544(5) 0.4537(5)  0.4539(3)
238, 0.697(17) 0.686(8)  0.681(20)
1P, 0.631(9) 0.627(3)  0.635(7)
21p, 0.839(26) 0.823(14)
138, —11S,  0.01239(14)  0.01237(14) 0.01227(11)
18P, — 1%, 0.0159(14) 0.0147(17)  0.0143(34)
132, —1%P,  0.0070(10) 0.0078(15)  0.0078(11)
1°P, — 1P, 0.0089(9) 0.0069(12)  0.0070(13)
13, —1P  0.0041(5) 0.0042(5)  0.0045(5)
1P—1°P,  0.0029(6) 0.0036(8)  0.0036(6)
1P—13%P,  0.0118(10) 0.0105(10)  0.0120(17)
1P-1'p 0.0011(5) 0.0008(8)

Table 6.4. Simulation results computed with the O(myv*) action and the plaquette
tadpole prescription. We compare our results with those of DAVIES ET.AL. (third column)
and MANKE ET.AL. (last column). Each simulation uses quenched configurations at § =
6.0 and a heavy quark mass of M, = 1.7.

from u{’ to the Landau mean-link value affects the hyperfine splitting quite strongly. u}
produces an increase of about 15% in the opposite direction as adding the higher order
relativistic corrections. This result is also found by SHAKESPEARE and TROTTIER [121]
who systematically study tadpole renormalisation and relativistic corrections in c¢, b¢ and
bb.

We would like to point out that Table 6.4 also serves as a check of the implementation of
the NRQCD code since the results listed have all been obtained on quenched configurations
at f = 6.0 and with the same NRQCD run parameters. We find a remarkable agreement,
in particular for the S hyperfine splitting. As we have seen, this quantity is quite sensitive
to changes of the action, but can be safely extracted through ratio fits. In addition
this comparison explicitly shows that the gauge fixing does not affect the results, since
the authors of Ref. [48] do not fix the gauge and apply a completely different smearing
technique than we do.

6.4 Stability of the Quark Propagator Solution

The stabilisation parameter in that part of the evolution equation which involves the

lowest-order action
aHo it
3 e 6.2
( 271) , (6.2)

has been fixed to n = 2 so far. This is the minimal choice when using a bare mass of
My = 1.7, Eq. (4.42). Here, we estimate the systematic error due to such a small value
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n 1150 2150 1351 2351 1331—1150
2 0.3448(6) 0.584(8) 0.3584(6) 0.596(8) 0.01345(15)
3 0.3418(9) 0.593(10) 0.3559(9) 0.597(11) 0.01356(25)
5 0.3396(8) 0.591(10) 0.3539(9) 0.595(10) 0.01368(25)

Table 6.5. Y and n, levels for different values of the parameter n on the sample with
k = 0.1575, 812 measurements. Fit ranges are equally chosen to be [8,31] for 58, 8
two-exponential fits and [18,31] for *S, /'S, ratio fits.

of n. Table 6.5 lists results for two additional values, n = 3,5. They are graphically
represented in Figures 6.7 and 6.8.

Ground states are measured accurately enough to exhibit a decrease with n. This is
taking place on a scale which is encompassed by the statistical error of the corresponding
radial excitation. We thus arrive at a similar statement as in the previous section: for the
physically relevant quantities, the mass splittings, no change is observed within errors and
the choice of the minimal parameter, n = 2 turns out to be adequate. Further evidence
for this conclusion comes from the hyperfine splitting. It remains constant within errors
of less than 5%. »

6.5 Scaling

As discussed in Chapter 4 no continuum extrapolation can be done for Lattice NRQCD.
Physical, i.e. continuum results may be obtained at a fixed cut-off if the appropriate
operators necessary to achieve a desired accuracy are included into the action. One
then has to demonstrate that the spectrum is independent of the lattice spacing within
a certain window to prove that the matching to QCD is properly done. For the non-
relativistic b-quarks considered here, discretisation errors are likely to be larger than in
the light hadron spectrum, although these are not determined by the heavy-quark mass,
but by the typical momentum exchanged between the quarks inside the bound state. The
improvement of the NRQCD Lagrangian is thus a central issue and its efficiency has to be
checked explicitly by simulating at different values of 5. Unfortunately we cannot perform
this check for the dynamical Wilson data, since we are restricted to a single value of the
lattice spacing. There exists, however, a scaling analysis in the quenched approximation
which may serve as a rough estimate of finite-a errors even for the unquenched data.
DAVIES ET.AL. [51] have studied the bottomonium spectrum on three quenched lattices
with spacings in the range 0.05 fm to 0.15 fm. They find good scaling in the ratio of radial
and orbital bb splittings to the p mass if the latter is computed from a tadpole-improved
clover action. Also ratios of splittings within the Y system do not exhibit any dependence
on the lattice spacing. This is different for spin splittings. The authors of [51] observe a
clear a-dependence in the hyperfine splitting, T — 7, which they parametrise as

13851115, e 138; — 115,

235, — 135, \ 23S, — 135
A similar slope has been obtained for the P fine structure, albeit with large errors. In
agreement with the S hyperfine splitting adding discretisation corrections increases the

> (1—(0.8 GeV)*a®) . (6.3)
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Figure 6.7. Dependence of T and 7, levels on the parameter n.
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Figure 6.8. Dependence of the hyperfine splitting on the parameter n.

splittings and thus acts in the opposite direction to the relativistic corrections.
These results are quite encouraging with respect to the radial and orbital splittings.
They also confirm the conclusion that the spin-dependent quantities have to be treated
with much greater care. Clearly, dynamical Wilson fermions introduce additional scaling
violations, so that we end up with results that are subject to quite different finite-a errors:
e O(a) from dynamical Wilson fermions,
e O(a®) from the Wilson gauge action,
e O(a?) from the valence NRQCD quarks.
Eventually, it will be necessary to perform simulations at different lattice spacings to
reveal the influence of O(a) errors from the quark part of the action.

6.6 Summary

We have investigated different sources of systematic uncertainties in the calculation of the
bb spectrumn. Tuning the quark mass parameter is common to any lattice QCD approach.
In the heavy quark system, however, radial and orbital angular momentum splittings are
insensitive to variations in the constituent’s mass. This was explicitly checked on the
unquenched sample with x = 0.1575. We concluded that the error induced by a small
offset in the Y mass is negligible compared to the statistical errors. The hyperfine splitting
on the other hand, strongly depends on the b-quark mass, as is anticipated by perturbation
theory, and thus requires a precise determination of the kinetic mass. It is plausible that
an insufficient tuning of M, in part explains the inconclusive result for quenching effects
in the spin splittings. We have estimated the systematic error arising due to two different
choices of the tadpole improvement factor uy; whereas spin-independent quantities remain
unaffected by changes in ug, the hyperfine splitting increases when using the Landau
mean-link prescription. Interestingly, we find this effect to be of the same magnitude as,
but of opposite direction to switching on the spin-dependent O(m;v®) corrections. Our
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results confirm that the next-to-leading order terms in the action are indispensable for
calculating the hyperfine splittings. Note, however, that unknown radiative corrections
from lower order terms, e.g. O(ag) contributions to ¢4 beyond tadpole improvement can
produce effects of the same size as the additional terms, so we do not really perform a
complete next-order simulation. As expected, the determination of the lattice spacing a !
(as used, for example, in the analysis of as , Chapter 7) remains unaffected by changing
tadpole schemes or including O(m;v®) terms. Finally, we have studied the accuracy of the
propagator evolution with respect to the iteration parameter, n. Though ground states
reveal a small decrease with increasing n, the splittings, including the hyperfine splitting,
remain unaltered. This justifies the use of n = 2 in the simulation.
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Chapter 7

The Strong Coupling Constant
in Unquenched QCD

he determination of Standard Model parameters presents a major task and challenge

for the lattice formulation of QCD. The obvious strategy to compute the strong
coupling constant in particular, is to define ag within a hadronic scheme and evolve
it non-perturbatively to high energies. Once the perturbative running of the coupling is
identified, one may determine the corresponding A parameter and then switch to any other
perturbative scheme to calculate scattering processes. This provides a connection between
the low-energy regime of hadronic bound states and high-energy jet physics verifying that
one and the same theory describes both phenomena. The tools to realise these steps exist
and have been applied to the pure gauge sector [147]. But dynamical fermions render the
calculations rather expensive so that a treatment of QCD is still lacking.
In this chapter we follow a short-cut to determine the strong coupling constant in QCD
based on the spectrum results for bb bound states. The method is similar to those em-
ployed in determinations of ag from high-energy processes as it relies on the validity of
the perturbative expansion.

7.1 Introduction

The strong need for a precise knowledge of the (QCD coupling constant is motivated by
the following considerations[148|:

(1) Compared to the electroweak couplings, & and sin?©y,, which have been determined
experimentally with a precision of about 0.1%, the strong coupling is presently known
only to about 5%. A main limitation on Standard Model tests at LEP for example,
is set by the relative inaccuracy of a;. The same holds for attempts to constrain Grand
Unified models from the convergence of the Standard Model couplings at a GUT scale. (2)
The determination of e, from processes which probe perturbative and non-perturbative
phenomena yields a fundamental test of QCD. Obviously, such a test is only meaningful
if the values of the coupling under consideration are given with similar accuracy. (3) A
precise study of the variation of the coupling with momentum over a wide Q* range will
provide evidence for the QCD S-function and constrain models with additional coloured
particles, such as light gluinos.

Most determinations of ay rely on perturbation theory, where it is common to use the
modified minimal subtraction scheme (MS) of dimensional regularisation. One usually
chooses the mass of the Z boson, my, as a reference scale because of the large amount of
data that has been taken in ete™ annihilation at the Z resonance. However, it has to be
remembered that ogg is a rather ‘unnatural’ choice which is only defined operationally
in perturbation theory. In many cases the dominant source of uncertainty originates
from theoretical systematic errors that are generally difficult to estimate. Extracting a,
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from a perturbative expansion necessarily requires the truncation at a rather low order
and thus introduces a significant dependence on the renormalisation scale. It has been
demonstrated that this dependence is weakened by an appropriate resummation of the
leading and next-to-leading logarithms. But still, one should bear in mind that the nature
of the perturbation series is unknown and that the non-perturbative contribution is a priori
unclear.

As the formulation of QCD requires a non-perturbative regularisation, it is desirable to
define the running coupling non-perturbatively and calculate it in a numerical simulation
(reviews are given in [149, 150, 151]). The basic ingredients in such a calculation are:

(a) A non-perturbative definition of a renormalised coupling which can be accurately
measured on the lattice and is easily accessible to perturbative calculations.

(b) A precise determination of a reference scale. This is obtained by comparing a
computed hadron mass to its experimental value.

(c) An accurate match to perturbation theory and a proper continuum extrapolation.

Two main directions have been followed: the first one actually studies the running of the
coupling with momentum; the second estimates agg at relatively low energy and assumes
the applicability of perturbative renormalisation group running to evolve the coupling to
mg.

Direct studies of the running coupling

An intuitive definition of a non-perturbative coupling uses the force F(r), felt by a static
quark-antiquark pair at separation r,

cul@) = gr'F0), a=1, Cr=j. ()
The force is obtained as the derivative of the static potential, V(r) which is calculated
from the large-time limit of Wilson loops with spatial extent r. To control perturbative
errors when matching to other schemes it is desirable to reach energy scales of order
10 GeV corresponding to very small quark-antiquark separations. Resolving such small
distances, on the other hand, requires a small lattice spacing. Finally, the box size L
has to be kept big enough to avoid finite volume effects. Therefore one ends up with the
following approximate constraints [151]

L>1/0.4GeV > 1/q~1/10 GeV > a, (7.2)

where the string tension is chosen as the confinement scale. (7.2) implies that the number
of lattice points in each dimension needs to be much larger than about 25 which is not in
reach of present simulations. The interquark force is nevertheless useful to compute the
running of the coupling provided one carefully corrects for lattice artefacts. Practically,
the 1/r ansatz for the static potential stemming from the continuum one-gluon exchange
is replaced by the Fourier transform of the lattice gluon propagator. Simulations have
been performed in the pure gauge theory. They cover an energy range of a few GeV
[152, 153, 102]. Present unquenched lattices are too coarse for this method, however.
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A sophisticated approach has been suggested in Refs.[154, 155] where a box-size dependent
renormalised coupling is introduced. It is based on the Schrodinger functional which is
the partition function on a finite volume with periodic boundary conditions in the spatial
directions and Dirichlet boundary conditions in the time direction. The coupling is defined
- in a rather exotic way - as the derivative of the free energy of the gauge field in the
box with respect to a parameter characterising the (abelian) boundary field'. This choice
has various practical advantages like small finite-a errors and quark-mass independence.
A coupling that runs with the volume allows for a scale variation by several orders of
magnitude which is impossible for a single-lattice technique. Furthermore, there is a
well-controlled extrapolation to the continuum limit. Once the coupling has been evolved
non-perturbatively to high energies, one can safely convert to the MS scheme. This
technique was first applied to the O(3) o-model [154] and subsequently to SU(2) gauge
theory [158] and SU(3) gauge theory [147]. So far, it has been restricted to the pure gauge
sector. Once such simulations become available with dynamical fermions included, they
should yield the most accurate lattice results on g with an uncertainty below 1%.

Short-cut approach

The above methods have not yet been applied to the unquenched theory. To obtain
estimates of agg in QCD one may take a short-cut which defines a renormalised coupling
through short distance lattice quantities like small Wilson loops or Creutz ratios [159,
160, 18]. The idea is to measure a physical scale from a quarkonium splitting at a given
bare coupling and obtain a value of a suitably defined renormalised coupling at that scale
by comparing the measured value of the plaquette, for instance, with its perturbative
expansion. This procedure will be applied in the following sections to obtain a value of
a%(mz) from our simulation with dynamical Wilson fermions.

7.2 The Coupling Constant from the Plaquette

7.2.1 Definition of the Coupling

We determine the coupling by matching the perturbative expansion of the plaquette to
the numerical Monte Carlo result as proposed by LEPAGE and MACKENZIE [18]. The 1x 1
Wilson loop is the smallest gauge-invariant object in pure lattice gauge theory. Therefore,
on the lattice it is expected to be a suitable ultraviolet quantity with negligible non-
perturbative contamination. Assuming that the leading non-perturbative contribution is
due to the gluon condensate [138],

7l'CI.4
6Wu = —~3—6~(a5F'2) ~—9- 10_5 ) (73)

one estimates a 0.02%-correction to —In Wy, for (asF?) = 0.042 GeV* and an inverse
lattice spacing of a™! = 2.5 GeV. The irrelevance of non-perturbative parts is also

1 An alternative definition is based on the ratio of correlations of Polyakov loops where the gauge field
obeys twisted boundary conditions [156, 157].
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supported numerically. The authors of Refs. [50, 49, 138] directly compare the couplings
determined from the four smallest Wilson loops. They find complete consistency once
the values are evolved to a common scale. In [18] the logarithm of the plaquette is used
instead of the plaquette itself, since its expansion is better behaved:

1 4 41
~In(zRT0) = —3’1av (%) 1~ (1.1870 + 0.0249 ns) ay + O(a?)] . (7.4)

ay is a physically motivated coupling defined via the static QQ-potential [161]

o)) = --CR'V(@),  Cr=4/3. (1.5)

The coefficient of ny here is specific to Wilson fermions. By a slight modification of
Eq.(7.4) DAVIES ET.AL. [50] introduced a coupling ap, which is directly related to the
plaquette and coincides with oy through second order

il 4m 3.41
—In{zRTx0) = — e
T e i ( a

(7.6)
It just amounts to a shift of truncation errors in ay to the conversion into standard
couplings later on. The scale 3.41/a is the average gluon momentum in the first-order
contribution to —In Wy, as described in [162, 18] .

7.2.2 Setting the Lattice Scale

An accurate way to fix the lattice spacing is through the Sommer scale, ry which is
computed from the static potential at intermediate quark-antiquark separations [164]. It
is the proper choice when comparing different lattice calculations and — unlike the string
tension — also applies to full QCD. However, it is not directly accessible to experiment.
Therefore, in the light hadron sector one generally prefers the scale set by the p-meson
mass, though the p is not stable in the presence of dynamical quarks and, more important,
the extrapolation to the chiral limit introduces large errors as pointed out in Section 5.4.
An alternative choice would be the pion decay constant. Here, an additional systematic
uncertainty arises because of the renormalisation factor Z4.

2¢g* = 3.41/a corresponds to the momentum scale which is characteristic to the plaquette. It is
proposed in [18, 163] that for a quantity whose first order contribution has the form

/e
avia) [ dasta), (7.1)
—n/a
the typical scale should be computed as

e daf(g)In(g)

(7.8)
e d'af(q)

In(¢*) =

)[1— (11870 +0.0249 nf) ap] , ap(q) = av(q) + O(a}) -
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B ny M, —In(lRTr0) of(34) 4L [GeV]
e
5.6) 02, /3 0.5570 0.1677  8.84(44) 8.48(46)
2 M, 0.5546 0.1668  9.16(83) 9.09(101)
60 0 oo 0.5214 0.1518  9.13(50) 7.82(54)

Table 7.1. Results for ap (3.41/a) extracted from the measured plaquette value.

Much better suited are the low-lying onium splittings, especially the 1P-1S and, less
accurate, the 25-1S splittings. In the previous chapters we gave numerical evidence for
the phenomenological assumption that they are quite insensitive to the mass of the light
quarks and for the empirical observation that they depend very little on the heavy-quark
mass.

7.2.3 Numerical Results

In Table 7.1 we summarise the couplings, ap obtained from Eq.(7.6) as well as the scales
determined from the 1P-1S (y — S) and 2S-1S (Y’ — T) splittings. In the unquenched
case we quote values both for My, = M,/3 and M, = M, to expose the systematic effect
connected to the finite and degenerate sea-quark mass. Note that the plagquette values
have been linearly extrapolated in M,. We do not quote an error on — ln(%?RTrD) and
0‘1(:’ )(3.41 /a) in Table 7.1 since it is negligible compared to the uncertainty in the scale.
Subsequently these couplings are evolved to a common scale using the universal two-loop
[ function

a(p) = a(w) + aP(u) + 0(a?) (7.9)
where
1 iy (p0) 2 Lo sl 2 _g{(ﬁ@
aW(p) = m’ a®(p) = (a( )(“)) by In (a(l)(n)) . (7.10)
Here we follow [165] and define
bt Il S
t(n) = el (;ﬁ) N = gy (7.11)

where the scheme-independent coefficients of the g-function are
2 38
,@0=11—§nf, ﬂ] :102‘—?7'” (712)

Choosing p = 9.0 GeV and po = 3.41/a we end up with the numbers listed in Table
7.2. The error in the evolution is negligible as the momentum range is very small. For
instance, using just the one-loop evolution results in a deviation much less than 1%.
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Splitting a(}(,’) (9.0GeV) al? (9.0 GeV) ol (9.0GeV)

M,=M,/3 My=M, M,=M/3 M,=M,
X —T  0.1524(25) 0.1669(24) 0.1676(43) 0.1752(41) 0.1764(74)
T —T  01457(28)  0.1649(25) 0.1672(53) 0.1766(47) 0.1805(97)

Table 7.2. Plaquette couplings at the reference scale p = 9.0 GeV. The last two columns
are the result of an extrapolation in the flavour number.
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Figure 7.1. The plaquette coupling ap as a function of the number of dynamical flavours.
Filled circles denote values extracted from the X — S splitting, open circles are chosen for
values extracted from the Y' — Y splitting. The triangles result from an extrapolation
in the inverse flavour number. Error bars include statistical errors as well as systematic
errors stemming from O(v*) corrections and the tadpole improvement uncertainty.
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7.2.4 Flavour Extrapolation

The plaquette couplings in the quenched and unquenched theory can now be extrapolated
to the active number of light quark flavours which is expected to be ny = 3 in the case
of the low-lying bb bound states. Guided by the perturbative evolution, we extrapolate
ap' linearly in ny, rather than ap itself. The dependence on n; is plotted in Figure
7.1. Obviously the mismatch between ap-values obtained from different splittings in the
quenched approximation disappears, once the dynamical quarks are switched on. This
is a reformulation of our spectrum results in terms of the coupling constant. Note that
the possibility of extrapolating in the number of dynamical flavours is quite a progress
compared to the earliest lattice determinations of ag. These were solely based on quenched
data and thus yielded results which are 20% smaller than obtained for the ‘correct’ ny.
This deviation was perturbatively compensated by evolving down to gy (compare Chapter
5), switching to ny = 3 and evolving back to the plaquette energy scale 3. Corrections
obtained this way are as large as 15-20%. Clearly, it would be a further step forward if
one actually had simulation results with ny > 2 so that even the extrapolation could be
avoided.

7.3 Conversion to the MS-Scheme

To make the connection with the MS-scheme one invokes
(ng) ( —5/6) _ (nf) z (ng) 2
o’ (e7°Q) = ap” (Q) |1+ ~ap’ + Calng)ap+...| , (7.14)

where the scale factor e~%/® is chosen to eliminate the n s dependence in the second-order

coefficient of the expansion [162]. The two-loop coeflicient C has been calculated by
LiscHER and WEISZ in the quenched theory, C5 = 0.96, ny = 0 [166, 167]. Following
Ref. [138], we use this value also in the unquenched calculation and take the whole size
of the quenched two-loop contribution as an error estimate for the ap — ag5 conversion.
The couplings are evolved to the Z mass applying third-order perturbative evolution, i.e.
the next order is included in Eq.(7.9),

o = o) s (585 ) m () -] - o0 (1- 5]
(7.15)

with

B2 i 5033 325 , )
e Sy - S r A
by @), , Ba 3 857 9 ny + 7 ny (7.16)

3Since we fix the lattice spacing by setting the T splittings, which probe momentum scales gy ~
0.5 — 1 GeV, to their correct physical values, the coupling is given its correct value at gy (see [138]):

o (gr) = P (gx) = af (ar) - (7.13)
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ny x—7T -7
p[GeV] anyg(n) ogs()
3 3.01 0.1998(53) 0.2016(61)
3 1.30 0.3153(141) 0.3202(165)
4 1.30 0.3150(141) 0.3198(165)
4 4.10 0.2033(55) 0.2051(63)
5 4.10 0.2032(55) 0.2051(63)
5 91.00 0.1118(16)  0.1124(18)

Table 7.3. Evolution of agg and matching at the heavy-quark thresholds for My = M, /3.

Splitting ags (1.3 GeV) ajs (4.1 GeV) ays (91.2 GeV)
My=M/3 M,=M, M,=M,/3 M,=M, M,=M/3 M,=M,
Y—T  0.315(14) 0.319(26) 0.2033(55) 0.205(10) 0.1118(16) 0.1123(29)
T T  0320(015) 0.334(37) 0.2051(58) 0.211(13) 0.1124(18) 0.1139(39)

Table 7.4. MS coupling at the heavy-quark thresholds and the Z pole.

We perform the matching at the heavy-quark thresholds m. = 1.3 GeV and my = 4.1
GeV. According to Ref. [165] the coupling in the theory with ny flavours is related to the
coupling in the ny — 1 theory through

o™ () =

i 1 e m,
oD i) — - (@) In (E)

+ota (@)’ () [(l () - S (22) - Z] hiow, Wi

and its inverse reads
o™ D (py) =

1 2 m,
a("’)(#m) of 5 (a("')) In (ﬁi)

il 3 me\\2 57. (m 7
_2 o) Mg L e e R NI 7.18
+33 (@) (pen) [(ln (um)) + (Mh) + 8} i (7.18)

Table 7.3 lists the values of aqzg (for the data at My = M,/3) at the individual steps of
the evolution starting at p = e75/%.9GeV ~ 3.91GeV. First, the coupling is evolved down
to the charm mass, then one switches to n; = 4 and runs upward again. The final value
at the Z scale is quite insensitive to the location of the matching points when third-order
evolution is applied. This becomes apparent from Figure 7.2 where we have varied the
b-threshold from three to five GeV. A similar result emerges if the charm threshold is
changed.

In Table 7.4 we compare the results obtained with M, = M,/3 and M, = M, The
difference between central values is taken as an estimate of the error due to the dynamical
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Figure 7.2. Dependence of as—)s(mz) on the choice of the b-threshold for third-order evo-
lution. Obviously the final result is unaffected within comfortable ranges of the matching
point.

valence quarks scale aglq(mz) reference

NRQCD Xo— L 0.1174(24) DAVIES ET.AL. [138]
TI Clover Xxo—T  0.1159(30) FNAL/SCRI [139]
Wilson Xe—J/¥ 0.111(6)  WINGATE ET.AL. [168]
Wilson X.—J/¥ 0112(5)  AOKI ET.AL. [169]

Table 7.5. Previous lattice estimates of a!(;_;(mz) from the short-cut method, all of which
use configurations with ny = 2 staggered fermions.

quark mass. The largest systematic error is introduced by the unknown ny dependence of
the two-loop coefficient C5 in the conversion formula (7.14). It produces an uncertainty
of 40.002 on a%(mz). We thus arrive at our final results

0.1118 (16)(5)(20) x-T

a4g5 (m2) :{ 0.1124 (18)(15)(20) Y’ -7 (749

The first error includes the statistical uncertainty and the systematic errors due to the
influence of relativistic corrections and changes in uy on the lattice scale. The second
error quantifies the sea-quark mass dependence and the last one the truncation error in
the conversion.

7.4 Discussion

How does our result compare to other lattice estimates? In Figure 7.3 we have collected
data from different groups that have applied the same short-cut method to calculate the
strong coupling constant, but have determined the lattice scale in different ways. The
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corresponding references are listed in Table 7.5. Our analysis closely parallels the calcula-
tion by DAVIES ET.AL. [138]. Therefore the first two data points are directly comparable.
Both use the 1P-1S and 2S-1S bottomonium splittings calculated in NRQCD to set the
scale (in Figure 7.3 only results from 1P-1S are shown since these are more accurate). The
NRQCD simulations differ slightly in the choice of action. It has been O(myv*)-accurate
in Ref.[138] and was tadpole improved with the average plaquette prescription whereas we
have included the O(m;v®) spin-dependent terms and used ug from the link expectation
value in Landau gauge. Systematic effects due to higher orders in the velocity expansion
and due to ug are included in the quoted errors. The most important difference between
both simulations is the choice of dynamical fermions. The authors of Ref.[138] used two
flavours of staggered quarks whereas SESAM includes Wilson quarks. The configurations
with dynamical staggered quarks have been generated by HEMCGC [170]. It is a bit wor-
rying that we cannot confirm the staggered result but obtain a value of a;—:)s—(mz) which is
smaller by two standard deviations. There is some controversy about the correct way to
determine the lattice scale in an unquenched simulation. Whereas SESAM’s strategy is
to set @' in the chiral limit, one may also think of a~! as a function of M. A priori it is
conceivable that the value of ap would be larger if it were determined on each ensemble
and then extrapolated in m,. However, as we have pointed out several times, we observe
a very mild dependence of the 1P-1S splitting on the quark mass, so that different ex-
trapolation methods do not produce a big effect. Another objection is that it would be
inconsistent to apply the perturbative formula valid in the chiral limit to lattice data at
a finite, rather large quark mass. A closer comparison reveals that we see a smaller ap
to start with, Figure 7.4. We have evolved our data to p = 8.2 GeV which is the scale
used in Ref.[138]. There is a clear discrepancy at ny = 2 (and consequently at n; = 3)
which is somewhat smoothed by the logarithmic evolution to mz, so that we end up with
a mismatch of two o instead of three or four. Obviously, the distinct ap results originate
from a difference between staggered and Wilson plaquette values which is larger than
expected from perturbation theory, while the scales in both simulations are comparable.
Unfortunately, this issue has not yet been resolved.

Recently there has been some progress concerning the neglected n; dependence in the
conversion formula Eq.(7.14). ALLES ET.AL [171] have calculated the expansion of the
average plaquette in QCD with Wilson fermions up to third order, albeit for finite quark
masses, see Appendix B. A similar result in the chiral limit could be combined with the
known two-loop relation between the lattice coupling and the MS coupling to reduce the
perturbative uncertainty.

The third data point in Figure 7.3 has been taken from Ref.[139]. The author used a
result for a=! from the T 1P-1S splitting computed by the SCRI group on the same
ny = 2 staggered dynamical configurations as in Ref.[138], however with a tadpole im-
proved clover action. The corresponding ap was then combined with a quenched clover
result from the Fermilab group to perform the flavour extrapolation. a% obtained this
way is nicely consistent both with the SESAM point and the result by DAVIES ET.AL..
The remaining two measurements are based on charmonium. WINGATE ET.AL. [168]
calculated heavy Wilson fermions in a quenched and a dynamical gauge field background.
Once more, the staggered configurations of HEMCGC have been used. This result carries
significantly larger errors mainly because of rather noisy P-wave data. A similar analysis
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Figure 7.3. Comparison of results for a%(mz) that have been obtained by the same

technique, but from different sets of data. Numbers extracted from the bottomonium
spectrum have filled symbols, those from charmonium have open symbols. References are
given in Table 7.5.

involving two flavours of dynamical staggered quarks on a somewhat larger lattice and
smaller lattice spacing has been performed by Aoki ET.AL. [169]. Both charmonium
values are in agreement.

7.5 Summary

(5)

panded in powers of ap. The only inputs needed a]:lg the measured value of the plaquette
and the scale at which ap is determined. The latter is taken from the bottomonium
1P-1S and 2S-18 splittings. Our result turns out to be somewhat smaller than previous
estimates within NRQCD. In particular, ap computed with configurations including dy-
namical Wilson quarks differs from the value obtained in the staggered background by
approximately three standard deviations leading to a discrepancy in a%(mz) of two o.
The problem can be traced back to a deviation between the staggered and Wilson pla-
quette expectation values which is not balanced by a shift in the lattice scale. Our result
for the MS coupling is

We have estimated the strong coupling constant ay %(myz) from the average plaquette ex-

o

) (mz) = 0.1118(16)(5)(20) , (7.20)
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Figure 7.4. A comparison between ap extracted from the 1P-1S bottomonium split-
ting in a dynamical staggered (filled circles) and a dynamical Wilson background (filled
triangles).

where the first error includes the statistical uncertainty and the systematic errors induced
by the NRQCD expansion. The second estimates the uncertainty from the sea-quark
mass dependence and the final error is due to the truncation of the ap — agzg conversion
formula. All lattice calculations prefer values of as that are lower than the world average.
In particular, the precise bb data would clearly exclude a value of 0.122 as obtained from 7
decays. We are however not able to make such a statement until the apparent discrepancy
between the NRQCD results has been understood.

g
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Chapter 8

Summary

ilson’s original motivation to formulate QCD on a space-time lattice was to study

the confinement phenomenon. Still, the primary goal is to provide a precise test of
QCD in the low-energy regime of the strong interaction, with the calculation of hadronic
spectra in a prominent place. Lattice simulations aim to quantify the non-perturbative
inputs that are necessary for the determination of fundamental Standard Model para-
meters and thus contribute to the eventual verification or falsification of the theory. In
view of the substantial effort which has been invested both in theoretical research and
the development of more and more powerful computing facilities during the last 20 years,
it is important to point out that progress too has been steady and substantial. It is not
too keen to state that the quenched approximation has been solved for those quantities
which are easily accessible by the lattice method and that realistic simulations of the full
theory are well under way.
In this thesis we have studied bb bound states below the B-meson threshold within the
framework of Lattice NRQCD beyond the quenched approximation. We briefly outlined
the generation of gauge field configurations with dynamical quark content as part of
SESAM'’s program to investigate sea-quark effects in spectral quantities and matrix ele-
ments. The project involves a large-scale lattice simulation of Wilson’s QCD action for
both the gauge part and the fermionic interaction. From a physical viewpoint Wilson
fermions represent a more natural discretisation than Kogut-Susskind staggered fermions
since they preserve flavour symmetry. Numerically, they are more expensive, however,
as more degrees of freedom are involved and chiral symmetry is explicitly broken, even
in the absence of a quark mass term. Performing a detailed analysis of autocorrelation
times, SESAM has demonstrated that statistically significant samples of configurations
can be obtained on modest volumes and intermediate quark masses with a total effort of
0(100) Tflopsh. Our analysis of the Y system involves three different dynamical quark
masses in the range m,/2 to m.
We have made use of the non-relativistic limit of the QCD Lagrangian to get around
the problem of large discretisation effects present for heavy quarks at today’s lattice
resolutions. For small quark velocities, v quark and antiquark fields decouple and the
b-quark mass, m; remains as a constant in the action which can be discarded. Thus one
may simulate ‘directly at the b mass’ while discretisation errors are O(pa) only. Lattice
NRQCD combines the lattice regulator idea with the successful concept of effective field
theories. Irrelevant operators enter the action which are suppressed by powers of v
We have employed NRQCD at next-to-leading order, i.e. including spin-independent
operators of O(myv?),0(myv?) and spin-dependent terms of O(myv?) and O(m,v°). From
naive power counting one then expects to keep systematic errors of radial and orbital
angular momentum splittings as well as spin splittings below 10%. However, the matching
is incomplete. We rely on the recipe of tadpole improvement to account for the bulk of loop
contributions and otherwise stick to tree-level couplings. Whereas in lattice simulations of
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light quarks one is almost always restricted to the ground-state energy, heavy quarkonia
offer the possibility to extract radial and orbital excitations, too, since their wave functions
can be estimated quite accurately. We have employed Schrédinger wave functions obtained
from a lattice heavy-quark potential to construct meson operators that project on radial
and orbital states. Without tuning the smearing functions these operators yielded clean
signals.

As an important improvement compared to existing NRQCD simulations we have been
able to study the sea-quark mass dependence of bottomonium level splittings and have
performed a ‘chiral extrapolation’ to set the lattice scale at the effective mass of m,/3.
We have chosen to use an average a~' from the 2°S; — 135, and 13P — 135, splittings.
These were found to depend very little on the dynamical (light) quark mass. Our strategy
in searching for vacuum polarisation effects then has been to compare the extrapolated
dynamical results with those of a quenched simulation at nearly equal lattice spacing. Our
quenched data for the gross level structure is in clear disagreement with the experimental
spectrum which confirms previous studies. Switching on dynamical quarks shifts the data
points closer to experiment, so that both splittings, 235, — 125, and 13P—12$; lead to one
and the same lattice spacing. The effect is however rather small, so that the statistical
accuracy does not suffice to ‘measure’ the number of active flavours in the sea that enter
bottomonium dynamics. On the other hand the 35S and 2P levels hint at three active
flavours but they have sizable errors and may be significantly affected by finite volume
effects.

Results for spin splittings are somewhat puzzling. Compared to an earlier NRQCD simula-
tion (with staggered dynamical configurations) we have managed to reduce the statistical
error on these quantities by more than a factor of two. This permits us to detect very
small vacuum polarisation effects. The spin splittings however remain unaffected by the
inclusion of dynamical quarks within errors of a few MeV. In particular, the experimen-
tally known P fine structure is largely underestimated for both ny = 0 and ny = 2.
A reasonable explanation is that spin splittings are much more sensitive to the details
of the NRQCD action so that vacuum polarisation is likely to be covered under sizable
systematic errors.

The latter have been investigated in a series of lower-statistics runs. We explicitly checked
that radial splittings remain largely untouched by a variation of the bare heavy-quark
mass. The S hyperfine splitting, on the other hand, exhibits a strong Mg dependence.
We have estimated the effect of different choices of the tadpole improvement factor w,.
Again there is no visible change in the radial splittings, but the S hyperfine splitting
is shown to increase using the Landau mean-link prescription. This increase is nearly
compensated by the inclusion of O(myv®) relativistic corrections which have the same
magnitude but carry opposite sign.

Based on the spectroscopic results we have given a lattice estimate of the strong coupling
constant in full QCD. The determination of «s utilises the perturbative expansion of the
plaquette in the coupling ap and thus in many ways parallels the procedure applied in
high-energy physics. The ‘measured’ plaquette value is the analogue of some jet cross
section or decay rate. The only input from the bottomonium calculation is the lattice
scale a~! from either the 13P — 135, or 235, — 13 splitting. We find disparate ap values
from these two splittings in the quenched approximation. They approach each other in the
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ny = 2 theory and fully merge after extrapolation to three flavours. Yet our statistics is
not high enough to unambiguously determine the number of active flavours that dominate
T dynamics. The characteristic momentum scale of the plaquette of approximately 9
GeV is considered large enough for perturbation theory to be reliable. Therefore one may
safely convert to the MS-scheme and evolve to the reference scale my. Our final result is

all(mz) = 0.1118(26).



114

Chapter 8. Summary

115

Appendix A

The Non-Relativistic Lagrangian
at Tree Level

We explicitly perform the Foldy-Wouthuysen transformation to decouple the upper and
lower components of the Dirac spinor which is natural in a cut-off theory that excludes
relativistic @ and @ states. The calculation is carried out in Minkowski space but the
index on gamma matrices will be suppressed: * = 1f,,,. We closely follow the notation
in [172].

The heavy quark part of the relativistic Lagrangian is

L(z) = Vq (iY" Dy —mq) ¥q (A1)

with the covariant derivative defined as D, = 8, + igA, and A, = APT®. Now we
distinguish between even operators that do not mix upper and lower spinor components
and odd operators which do:

L=V} (E+0-9"mg) ¥q, (A2)
where
0 =i"D;, E=1iD,. (A.3)
Now we transform the spinor field with a unitary operator
U, =e¥g, (A.4)
with A = —y°(0/2mg antihermitian. The Lagrangian becomes
Lo=Vle*Ke W, =T K'V, . (A5)

Here we have introduced the abbreviation K = € + O —4"mg. K’ can be evalnated using
the commutator expansion

2 1
A —A_—_ — ; A6
e*Ke ZR![A, K)n (A.6)

n=0
The commutators [4, KJ(,) are recursively defined through:
4Kl =K,  [4Klw= 44 Ko (A7)

The commutators have the general form

i 1 : ')'0 24 '70
o, i+1 211 2i+2 T e il
[A,K](Ziﬂ) okl [mgo i 7712Qi+10 X (2mq)*H+! [0’51(2"1‘-1) (A-8)
A K |- oy Lowny L (0,€] (A.9)
(A4, ](2j) (=1) mg-1 mg‘ (2mg)¥ ' @) i
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with 4,5 = 0,1,2,.... According to the velocity-scaling rules, [4, K ](i) contains terms of
order mgv’, va“rl and mgqu*t?. We restrict ourselves to the non-relativistic Lagrangian
of order 7nqu®. Therefore we have to include [4, K Jgy for i =1,...,4, the first two terms
in [A, K] 5 and the first term in [4, K]

('=E'+ 0 —1"mq (A.10)
with

£ = £~7—002 [0,£] ’ S [0,€)
2 (2) Q 384 4 (4)

ZmQ
6
1441115 0° + O(mgv®) (A.11)
5 1
o0 = _%[o,e]m— gm—zoﬂ i, (0,&] s + 0 + O(mgv") .
(A.12)

Now we repeat the transformation, yielding

0 0
" _ el T /2 8 "o i ! o i
E"=¢ _%0 +0(mgv®), 0’—‘%5[0x5](1)+0(mqv)- (A.13)

In a final step all odd terms up to order mqv” are removed and the Lagrangian then reads
o mi "
L = V' K" ¥y
‘I,’(:)’f [gm +O"_ ’YOmQ] \I,gl
vo! [£7 = 4°mg + O(mgv")] ¥4 (A.14)

We can now express the operators in £” in terms of the chromoelectric and chromomag-
netic fields. Only those operators are considered that really enter the evolution equation
later on. These are spin-independent interaction terms including O(mgv?*) and spin-
dependent interactions including O(mgu®).

0 = (i’7'Di)(in"¥' D;)
= —1;® (5,;]' i ieijkak)D,-Dj
= _]12 ® (l)2 - ieg,-kdk(iga.-Aj = ngiAj))
= -1,® (D*+g¢-B) . (A.15)

Here we have defined the B field as

Il

Bk €kij (—-a,'Aj = lgA,A])
= _%eki]’ [6,-Aj - (?jA,' = igAl-Aj = igAjA.']

1
= _Eeki].pij (A.16)
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o' = (@ -D)*
= 1,® (D*+4-B)’
= 1,0 (D' +g{é-B,D*} +¢*(d- B)?) (A.17)

[0,[0,€]] = [i7°¥'Ds, [iv"y D;,iDy]

—97"Y DiFjo + gFj0’y' D;

1, ® g (D;Fy — FyD;) + 15 ® g (i€ijxoxDi Fjo — Fjoi€jinorDy)

= L1, ® g (D,'E,' o E;D,') + 1, ® ] (ifijkaDiEj - EjiejikUkD,')

= 1,0¢(D-E-E-D)+1,8i95(D x E—E x D) (A.18)

Il

Il

[0, = ¢*¥+4'FyFy
= —1, ® g* (E:E; + i€;ix 0, B Ey)
= -1, ®¢* (E*+if-E x E) (A.19)

oF = ]12®((D2)3+{(D2)2,g(a-B)}+D2 (o - B)D? + {D?, ¢%(0 - B)?}
+g(o - B)D?g(0 - B) + ¢*(c - B)*) (A.20)

The chromoelectric field has been defined as

We finally arrive at separate Lagrangians for quark and antiquark fields. Defining

\pqz(;’:) P Fies (A.22)
we find
Lo = Y![-mg
+1D0+—D2
2mq
0B — =D =D DxE-ExD)+ 0?
+2mQ 8mQ( r quo( )* 8m; ( )

3zg

io
2 o Y ISR E—- DG - DxE-ExD
g D%,07 B} = 55 (B D) - G (05D » )

+ higher orders |4 , (A.23)



118 Appendix A. The Non-Relativistic Lagrangian at Tree Level

and for the antiquark fields

Ly = x'[mq
Jrz'D,,—LDz
2mgq

g . g ig ” i S
O D-E—-E-D)— (DXxE-~ExD)— —(D
ZmQG sz( i 8mZQU( =5 ey SmE( )

I i ig* 3ig
L P o B} B i D% - DXxE-ExD
877%{ o }+8m%a x Bl 64m6{ o (REN x Dy}
+ higher orders ] x . (A.24)

The heavy quark mass can now be eliminated from (A.23) and (A.24) by rescaling the
quark and antiquark fields, respectively.

%
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Appendix B

Collection of Perturbative Expansions

B.1 Expansion of the average plaquette in the bare
lattice coupling

The expansion of the average plaquette up to order g* in the bare lattice coupling has
been known for a long time. For the pure gauge theory, SU(N), it was computed by
DIGIACOMO ET.AL. in Refs. [173, 174]. The calculation of the leading-order fermionic
contribution in the chiral limit for Kogut-Susskind and Wilson discretisation were carried
out in [175, 176]. ALLES ET.AL. added the third-order coefficient in pure SU(N) [177, 171].
We consider the expansion

1
(I—NReTrD)zclgz+czg4+c;;g° Fna s (B.1)
and distinguish the pure gauge and fermionic contributions to the coefficients ¢; = ¢/ +c{ :
N?—1
d = ——
1 8N )
it
= 2 %
& (N?=1) <w1_128N2) )
. 2 w w3
with
w; = 0.00561069297 ,
wy = 0.0023152583(50) ,
wy = 0.002265487(17)
wy = 0.000794223(19) . (B.3)
c{ = 0,
N% -1
o) wison = —6.92020-107* % ny,
4 (N?2=1)
O} staggerea = —6.12401-107* LN— ng . (B.4)

For massive Wilson fermions the quark contribution has recently been computed up to
third order [171]:

(V-1
C£,Wilson i hz N g,

2
n ny
C;,Wilson = (Nz S 1) (h‘SOnf a7 h:!l NIZ + hgz——N) ) (B5)
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P 0.1560 0.1575
hy x 10°  -1.957882(14) -2.017993(24)
hgo X 10°  -0.256620(43) -0.270560(43)
hg x 10°  0.306132(22)  0.322111(22)
hap x 10°  0.0327854(66) 0.034772(11)

Table B.1. Parametrisation of c{ for Wilson r = 1.

and the constants are listed in Table B.1 for k = 0.1560 and s = 0.1575.

B.2 Expansion of —In(3ReTr0) in ay
From (B.1) we obtain
—ln(%Re'ﬁD) = ¢ (dmap) + (cz + ) (dman)® + ... . (B.6)

To arrive at the equivalent expansion in ay we need to know the perturbative series of
the static potential in the bare lattice coupling [178] (we now set N = 3).

- 35 oan(z) ) -

2
dgv (B.7)
3 ¢?

Ml

where d has an ny dependent piece which is different between Wilson and staggered

31 —66Inmn 1 10 — 12In7
_ (31-66lr o 10— 12In7 B.8
d 3( 14dn? +P) a ™ ( 14dx? “’") ’ o
p = 0.1699956
pl‘WilﬂDn = 0.0068870
piressered — (0026248 . s

Using Eq-(B.7) we trade ¢* for g in Eq.(B.6)and obtain the following expansions

4" (iﬂ) [1 - (1.1870 + 0.0703n)) ay + O(ad)] staggered

43" .,(ﬂ [1—(1.1870 4 0.0249 nf) ay + O(ey)] Wilson

(B.10)

1
~In(5 ReTr0)

- ln(% ReTr0)
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B.3 Relation between a5 and the bare lattice coup-
ling in QCD with Wilson fermions
The expansion of agg in the bare lattice coupling ay is known to two loops. It has been

calculated by LUsCHER and WEISZ [167, 166] in pure SU(3) and extended to QCD with
Wilson fermions by CHRISTOU ET.AL. [179}:

aggs (1) = ap + dy (ap) af + ds (ap) @ . .. (B.11)
dy(ap) = . N % In (ap) — o= + kN — k
KA s T W nidl | Al
AU W % gt 0 0 I
== on nlap IN 1 3 nlap 2 | Ny
= df (ap) + df (ap) (B.12)
dy(ap) = d2(ap)— A 34N? - N—— In (au)
2 \Qp) = ap\ap a2 3N i
3n? k
+oys — kst kaN 2y [i-ksN]
= dy2 (ay,)——llNzln(au) ? k3+k4N2
: 1272 8N?
1
f . gl2
+2ddd! +df* + { 5 (N 3 N> In (ap) — ~ +k6N]
= dj+dj (B.13)

In (B.12) we have separated gluonic and fermionic contributions. The numerical result
for the constants is

ki = 2.13573007

ky = 0.08414443(8)
ks = 2.8626216
ks = 1.2491158
ks = 0.10924(22)
ks = 0.14033(26)
(B.14)
Inverting (B.11) we obtain the bare coupling expanded in the renormalised conpling:
ag = o (1) — dy (ap) adgg (1) + (241 (ape) — ds (ap)) aggs (1) + - .- (B.15)
O
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