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Abstract

The operation of a free electron laser in the VUV regime puts stringent demands on the
beam quality of an electron linear accelerator. That is why beam diagnostic techniques
have been developed to determine the transverse phase space density and the longitudinal
charge distribution of the electron bunches with the required precision. The transverse
phase space distribution is determined from beam intensity profiles using tomographic
image reconstruction techniques. Measurements at the TESLA Test Facility linac yield
a normalized transverse emittance of ye, = 5.5-107%m und ve, = 9.5 - 10~°m with
a bunch charge of 1nC. The longitudinal bunch charge distribution is determined by
frequency— and time-resolved methods. Fourier- and Hilbert-transform spectroscopy of
coherent transition radiation belong to the former techniques. Longitudinal phase space
rotations to determine the longitudinal bunch charge distribution and streak camera mea-
surement using optical synchrotron radiation are applications of time-resolved methods.
The different techniques yield consistent results and hint at a minimum electron bunch
length of o, = 250 pm.

Zusammenfassung

Der Betrieb eines Freien Elektronen Lasers im ultravioletten Wellenlangenbereich stellt
hohe Anforderungen an die Strahlqualitdt eines Elektronenlinearbeschleunigers. Daher
wurden Strahldiagnoseinstrumente entwickelt, die eine Messung der transversalen Phasen-
raumverteilung und der longitudinalen Ladungsverteilung der Elektronenpakete mit der
erforderlichen Prézision ermoglichen. Die transversale Phasenraumverteilung wird unter
Verwendung von tomographischen Rekonstruktionmethoden aus Strahlintensititsvertei-
lungen bestimmt. Die Messungen an der TESLA Test Anlage ergeben, bei einer Ladung
der Elektronenpakete von 1nC, eine transversale Emittanz von ve, = 5.5+ 10~%m und
¥€, = 9.5:10~% m. Zur Bestimmung der longitudinalen Ladungsverteilung werden frequenz-
und zeitaufgeloste Methoden angewendet. Zur Ersteren gehort die Fourier- und die
Hilbert-Transformations Spektroskopie kohirenter Ubergangsstrahlung. Die Ausnutzung
definierter longitudinaler Phasenraumrotationen zur Bestimmung der Elektronenpaket-
lange und Streak Kamera Messungen optischer Synchrotronstrahlung sind Anwendungen
zeitaufgeloster Methoden. Die verschiedenen Messungen ergeben konsistente Ergebnisse
und weisen auf eine minimale Elektronenpaketliange von o, = 250 um hin.
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Chapter 1

Introduction

Electron-positron colliders are essential instruments to investigate the structure of matter
and the understanding of the fundamental forces in nature. The presently largest col-
lider LEP at CERN stores electrons and positrons with an energy of about 100 GeV per
beam and is energy-limited by synchrotron radiation losses. A possible way to go beyond
the energy limit of storage rings is the concept of two linear accelerators in collision.
The higher center-of-mass energies are necessary to increase the resolution of high energy
physics experiments and to investigate smaller structures of matter. Detailed studies of
the top quark and the Higgs particle, the last missing constituent of the standard model,
will be a major task of a particle physics experiment at a future linear collider. The
detection of supersymmetric particles would hint at a unification of the strong, weak and
electromagnetic interaction and at physics beyond the standard model.

The TESLA collaboration proposes a superconducting linear accelerator design to reach
a center-of-mass energy of 500 GeV in its first stage. The accelerating structures cousist
of nine-cell niobium cavities with a field gradient of 25 MV/m and a quality factor of
10'°. The advantage of the superconducting 1.3 GHz cavities is the high conversion effi-
ciency between the primary and the beam power of about 17%. The perturbing effects
of cavities, like wake fields transforming part of the energy gain into transverse beam
oscillations, are weaker than in conventional, normal-conducting accelerators of higher
frequency. The high quality factor of the superconducting resonators facilitates the ac-
celeration of highly-charged electron bunches of sub-picosecond length to drive an X-ray
free-electron laser based on the principle of self-amplified spontaneous emission (SASE).

The goal of the TESLA Test Facility (TTF) is to validate the technology of superconduct-
ing niobium cavities with the TESLA specifications and to demonstrate the acceleration
of an electron beam of 8 mA average current, up to 8 nC bunch charge, over a macropulse
length of 800 us. The beam of the TTF linac will be used to drive a SASE free-electron
laser in the VUV wavelength regime.

The measurement of the transverse and longitudinal beam quality is a key ingredient of
the TTF experimental program and the achievement of the design beam parameters is
essential for the success of the test facility. Beam diagnostic techniques have been devel-
oped and commissioned to determine the transverse beam emittance, bunch length and
energy spread. The transverse phase space distribution is derived from beam intensity
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profiles using tomographic image reconstruction techniques. The transverse beam inten-
sity distribution is recorded using optical transition radiation. Phase space tomography
produces an image of the entire transverse phase space distribution without making any
assumptions on the charge distribution. The longitudinal charge distribution is measured
with time- and frequency-resolved methods. Streak camera measurements using optical
synchrotron radiation and longitudinal phase space rotations imposed by rf cavities and
a magnetic dipole chicane have been applied to measure the longitudinal bunch charge
distribution. Frequency-resolved techniques using coherent transition radiation detected
by a Martin-Puplett interferometer and a Josephson junction have been developed and
used for bunch length measurements.

Chapter 2

TESLA Test Facility Linac

The TESLA Test Facility (IT'TF) linac can be subdivided in three major sections: the
injector, the main superconducting linear accelerator and the experimental area. A de-
scription of these accelerator sections, including the transverse and longitudinal beam
dynamics, will be outlined.

2.1 Injectors

The TTF linac has been operated with two types of injectors, a thermionic injector
and an rf photo injector. The thermionic gun has been used to produce a high quality
beam of moderate bunch charge to permit a successful operation of the superconducting
accelerating sections. In a second step, an rf gun photo injector has been installed to
produce a high charged, high quality beam such as required for the TESLA collider and
a VUV free electron laser. Both injectors achieve the TTF design average beam current
of 8 mA over a macropulse length of 800 s and a repetition rate of 10 Hz.

2.1.1 Thermionic Injector

The thermionic injector [1] consists of a triode gun with a heated cathode of 8 mm diameter
(on ground potential), a grid (typically —3V voltage) and an anode providing 30kV of
accelerating voltage. The gun produces short electron pulses, o; < 1 ns, of 2.3-10% electrons
by a fast 216.7 MHz modulation of the cathode voltage from 0V to about —100V. The
micropulse repetition is a 1/6 sub-harmonic multiple of the linac accelerating frequency
of 1.3 GHz. The average beam current is 8 mA and extends over a macropulse length of
800 ps. The thermionic injector timing scheme [2] is displayed in Fig. 2.1.

The beam is pre-accelerated by a 1 m long 220kV electro-static column consisting of a
series of field gradient rings separated by glass insulating discs [2]. The 250keV energy
electron pulses are then injected into a copper cavity operating at 216.7 MHz with a
moderate voltage of about 100kV. The so-called “sub-harmonic buncher cavity” is used
for the longitudinal compression of the electron bunches. Following the sub-harmonic
buncher the beam passes a superconducting, 9 cell, 1.3 GHz cavity for further bunching
and acceleration to an energy of at least 10 MeV. The resulting bunch length is o, =
0.5 mm.
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Average Beam Current: 8 mA

(e]
‘ ‘ \ Q=37pC
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Figure 2.1: Bunch timing structure of the TTF thermionic injector. Pulses of 2.3 - 10
electrons are emitted with a repetition rate of 216.7 MHz over a macropulse length of
800 us. The macropulse repetition rate is 10 Hz.

Beam Parameters: The beam parameters at the exit of the capture cavity, predicted
by the PARMELA (3, 2] program are listed in Tab. 2.1 for a 10 MeV beam.

Beam Parameter | Prediction by PARMELA
7 - €ms [107% m] 4.8
o011, 033 [10-6m?] 0.24
012, 034 (1078 m] 0.23
o5 (105 m?] 0.24
ags (1079 53.3

Table 2.1: Design beam parameters of the TTF thermionic injector as determined by the
code PARMELA. The beam energy is £ = 10 MeV and the bunch charge is @ = 37 pC.

The beam parameters are understood as elements of the beam matrix (o-matrix) [4],
which is the covariance matrix of the bunch charge distribution. The diagonal elements
denote the square of the horizontal and vertical rms beam width (011 and o33), the square
of the horizontal and vertical rms angular divergence (012 and 034), the square of the
bunch length (0ss) and the square of the fractional energy deviation (066). The off-
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diagonal elements denote the covariance, hence the coupling, among the respective phase
space coordinates. The beam matrix formalism, which is used throughout this thesis, is
outlined in appendix A.

Bunch Compression:

The 1-cell sub-harmonic buncher cavity is used to compress the longitudinal bunch charge
distribution at a low beam energy of E = 250keV. The buncher cavity induces a head-tail
energy modulation on the bunch, hence a velocity modulation since § = v/c is only about
0.55, where the faster electrons trail the slower electrons. In a following drift section of
2.66 m length, the trailing electrons catch up with the leading electrons and a longitudinal
bunch compression is achieved. The phase of the buncher cavity has to be optimized to
obtain the minimum bunch length within the first cell of the nine-cell capture cavity,
where the beam energy is increased rapidly into the MeV range (§ — 1). The capture
cavity has a non-negligible influence on the optimum bunching because of the low in-
jection energy. Above 10 MeV the longitudinal beam dimension is invariant in a linear
accelerator since 3 = 1.

To evaluate the optimum phase of the sub-harmonic buncher cavity, let us consider one
electron at the head, at the center and at the tail of the bunch. The energy of the electrons
after passing the buncher is

eU
7}") =8 4 = cos(¢(") & ¢o) (2.1)

where 7 denotes the relativistic Lorentz factor, U the accelerating gradient, ¢ the accel-
erating phase and m the electron mass. The index f denotes the final, i the initial beam

20 .

minimum length

m— 85KV

-1 87.5kV

aeas QOkV operating
- 92.5kV range
= G5KV

===+ 97.5kV

[]
LR LT

4
b= e DORIPR

~
"s.-“‘-‘--'-"

95 105 115 125
Buncher Phase [©]

Figure 2.2: Bunch length as a function of the buncher cavity phase for various settings of
the buncher voltage. The initial bunch length is o, = 300 ps [2]. Notice that the buncher
phase yielding the minimum bunch length varies linearly with the voltage.
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energy. The superscript (k) indicates either of the three electrons, ¢g the rf phase of the
center electron. The energy gain yields a particle velocity 8 = v/c of ]

9\ 2 2
o [0 -1 o e rw) 1
/ ()" W+ Ly cos(@®) + 4) '

The particles experience a repelling electromagnetic force as they approach each other.
The longitudinal electric field of a single particle at the longitudinal position (, traveling
with velocity Bc along a straight line is (see appendix C)

41 e 1
T An%e7? (¢ - G)?

where ¢ = z — fict. The single particle electric field is weighted with a Gaussian charge
distribution to describe the space charge forces of the entire particle bunch. Figure 2.2
shows the bunch length in the first cell of the capture cavity as a function of the buncher
cavity phase for different settings of the buncher voltage. The initial bunch length is
o = 300 ps [2]. Higher buncher voltages yield shorter bunches. The minimum obtainable
bunch length, however, is restricted by longitudinal space charge forces, causing the de-
viation from the parabolic characteristic of o, versus ¢y at voltages U < 95kV. At these
operating voltages the minimum achievable bunch length depends linearly on the phase
of the buncher cavity. At voltages U > 95kV, the space charge forces tend to (longitudi-
nally) de-focus the bunch before reaching the capture cavity. The minimum bunch length
is obtained at buncher phases other than indicated by the line of minimum length.

(2.3)

2.1.2 RF Photo Injector

The electron bunches are produced by the photo-electric effect using a UV laser pulse
interacting with a Cs,Te photo cathode. The electron bunch is accelerated rapidly by
strong electromagnetic fields (F e = 35-560MV/m, f = 1.3GHz) in the gun cavity
yielding a beam energy of 4 MeV. The rf power (P &~ 3MW) is fed into the gun cavity
by a side-coupled waveguide. The required focusing is provided by two solenoid coils
surrounding the gun cavity. The primary solenoid focuses the beam envelope close to
the cathode at low beam energies. The secondary solenoid applies further focusing on the
beam at the downstream end of the gun cavity. A third solenoid is used to compensate the
magnetic field on the cathode. An advantage of the twin coil arrangement is the possibility
to correct alignment errors. Figure 2.3 shows a sketch of the 1 1/2 cell, room-temperature
gun cavity. The rapid acceleration, the fringe field focusing and the helical path of the
electrons in the solenoid field counteract the emittance blowup by space charge forces.
The electron beam is then injected into the superconducting capture cavity to increase
the beam energy to 16 MeV [5].

The UV laser of the rf photo injector is driven by a mode-locked Nd:YLF oscillator
(A = 1.47 um) producing a 3ms long output pulse train of 18.5ns spaced bunches. A
Pockels cell selects laser pulses with a repetition rate of 1 MHz and transmits these pulses
into three linear Nd:YLF amplifiers. The pulses of up to 200 pJ energy are frequency
converted twice to green light by a LPO crystal and to UV by a BBO crystal. The UV

2.1 Injectors T

Wave guide
coupler

Laser

/ port

+ Mirror

Photo
cathode

Laser

Primary Secondary
Solenoid Solenoid

Figure 2.3: The 1-1/2-cell rf gun copper cavity surrounded by three solenoid coils. The
rf feed, the photocathode and the UV laser beam is indicated.

beam is sent to the photo cathode in the rf gun to produce the electron bunches [6, 7]. The
design laser pulse length in the resonator is about o, = 10 ps. The frequency conversion
reduces the pulse length by a factor of 2 yielding a UV laser pulse length of o, = 5ps,
262 nm wavelength and up to 25 pJ energy [8]. The Cs;Te photo cathode has a quantum
efficiency of about 0.5 % which is stable over months [9]. The laser pulse energy, focused
onto a spot of 10mm diameter on the cathode, is sufficient to produce bunch charges of
about 10nC [5] well above the design bunch charge of 8 nC. The macropulse length is
800 ps.

Figure 2.4 [7] shows the timing scheme for the two operating modes of the rf gun photo
injector. The collider mode (left) requires a bunch charge of 8 nC at 1 MHz repetition rate
and a FWHM bunch length of 18 ps. The macropulse length is 800 us with a repetition
rate of 10 Hz. The timing parameters are similar to the parameters of a future high energy
physics collider based on the TESLA design. The free electron laser mode (right) requires
a bunch charge of 1nC at 9 MHz repetition rate and a FWHM bunch length of 10 ps.
Macropulses of 800 us length repeat with a rate of 10 Hz. The beam produced in the free
electron laser mode is a high quality, low emittance electron beam to demonstrate the
SASE principle at a VUV free electron laser.

Beam Parameters: The PARMELA [3, 7] program has been used to optimize the gun
parameters to obtain the collider- and free electron laser mode beam parameters at the
exit of the capture cavity. The results are listed in Tab. 2.2.
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o Average Beam Current: 8 mA o Average Beam Current: 9 mA
’ ' | Q=8nC
800 ps Time Time
- - = = = -
100 ms
- — - - = - — = - =
Ipeak= 500 A lpeak= 100 A
1us 0.11 us

S R AT - N
18 ps (FWHM) 800 s 10 ps (FWHM) 800 us

Figure 2.4: Timing structure for the two modes of the TTF photo injector operation.
Left: collider mode. Right: free electron laser mode. Pulses of 5-10'° / 6.3-10° electrons
are emitted with a repetition rate of 1 MHz / 9 MIIz over a macropulse length of 800 ps.
The macropulse repetition rate is 10 Hz.

Beam Parameter | Collider (PARMELA) | FEL (PARMELA)
7Y+ €rms [107¢ m] 15 il

J11, 033 [1076 m2]

= to be determined to be determined
012, 034 [107%m]
055 (1075 m?] 4 4
age [1079) <A1 <4

Table 2.2: Design beam parameters of the TTF photo injector as determined by the code
PARMELA. The beam energy behind the capture cavity is £ = 18.2 MeV and the bunch
charge is @ = 8nC for the collider mode and @ = 1nC for the free electron laser mode.

Emittance Conservation Scheme

The transverse emittance dilution of an electron beam in an rf gun is caused by space
charge forces and effects of the gun rf field. For convenience, the space charge field
of a particle bunch can be separated in linear and higher-order terms. Carlsten [10]
demonstrated that the correlated emittance growth due to the linear part of the transverse
space charge field can be compensated by appropriate linear focusing close to the rf gun.
The phase advance of a longitudinal slice of charge is larger at the center than at the head
of the bunch because of the larger charge density. The result is the opening of a “phase
space fan”, where each longitudinal slice of charge has rotated by a different angle in
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phase space. The projected emittance along the bunch is hence larger than the emittance
of the individual slices [11]. Using a lens of appropriate strength, the front slice of charge
can be made more convergent than the center slice. During the following drift section,
the front slice is focused to a smaller waist than the center slice and is therefore subject
to stronger space charge forces. It experiences a larger phase space rotation and catches
up with the rotation of the center slice. The result is a closure of the phase space fan and
a compensation of the correlated emittance growth.

The residual transverse emittance of the rf gun beam, other than the thermal emittance, is
determined by the following mechanisms which cannot be compensated. Non-linear space
charge forces become non-negligible for tightly focused, divergent and convergent beams.
Non-linearities of radial rf field components in the gun cavity canse an emittance dilution
for large radius beams. Lastly, the time dependence of the accelerating rf field leading
to energy and focusing strength variations over the bunch length, causes a non-reversible
emittance growth [12, 7].

The emittance conservation scheme is based on the focusing of the primary and the
secondary solenoid coil. The strength of the solenoids was adjusted experimentally to
minimize the emittance produced at the end of the injector. Secondly, the focusing in-
fluences the emittance growth caused by non-linear space charge forces, which are strong
for small beam sizes, and by non-linear radial rf fields, which are strong for large beam
sizes. There is a significant dependence of the emittance on the laser spot size at the

|

1

: :Secondary I
Ll

|

t_Solenoid

| Primary
(Solenoid

2»

Beam Envelope [mm]
w

0 1 2 3 4 5 6
Injector Position [m]

Figure 2.5: The normalized beam emittance along the TTF photo injector as predicted
by the PARMELA program.
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photo cathode and on the laser pulse length. A large laser spot yields a large electron
bunch size and therefore a large emittance dilution due to non-linear rf fields but low
space charge forces. A long laser pulse yields a long electron bunch and therefore a large
energy and focusing difference along the electron bunch.

The envelope of the photo injector beam as simulated by the PARMELA [3] program is
shown in Fig. 2.5. The beam is focused by the gun solenoids and the envelope reaches
a maximum in front of the capture cavity at z = 1.3m. The beam is accelerated and
focused in the cavity, z = 1.3m to z = 2.3m, yielding a convergent envelope in the
matching section, z > 2.3 m.

Bunch Compression

The bunch length produced by the rf gun depends on the laser pulse length and the
compression caused by the rf field within the first centimeters of the gun cavity. By
proper choice of the rf phase a velocity modulation can be impressed on the electrons in
the bunch leading to a reduction of its length within the gun cavity. Leading electrons
must see a lower electric field than trailing electrons to obtain pulse compression. Very
short bunches can be obtained at the price of sacrificing a large fraction of the bunch
charge. This, however, is not desirable for the TTF linac because of the peak current
required for the FEL. After passing the capture cavity, the beam energy has increased
to 16 MeV and the longitudinal extension of the charge distribution remains invariant
because B approaches unity.

2.1.3 Matching and Dispersive Section

The beam is transfered from the capture cavity to the first acceleration section of the main
linac through a room-temperature beam line consisting of a quadrupole doublet (Q1-INJ)
and two quadrupole triplets (T1-INJ, T2-INJ). The lattice of the matching section can be
scen in Fig. 2.7 for the beam produced by the thermionic injector and Fig. 2.8 for the beam
produced by the rf gun. A dipole magnet between the capture cavity and the main linac
can be used to deflect the beam into a dispersive section in order to adjust the injector

S bc 2 N

module # 2 module # 1 capture gun
(AE = 160 MeV) (AE = 120 MeV) cavity (AE = 4 MeV)

(AE =10 - 15 MeV)

Figure 2.6: Schematics of the TTF linac showing the injector, the accelerating module
#1, the magnetic bunch compressor, module #2 and the high energy analysis area. The
arrows indicate three diagnostic stations used for emittance measurements. The energy
increase in the accelerating sections is shown.
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parameters to produce a beam of minimum energy spread. Several diagnostic stations
equipped with transition radiation screens are used together with a focusing quadrupole
multiplet, either in the straight section (emittance measurement) or in the dispersive
section (energy profile measurement) to determine the beam parameters experimentally.
The last triplet of the matching section is used to match the beam to the design optics of
the main linac. A schematics of the TTF linac, including the matching and the dispersive
section, is shown in Figure 2.6.

2.2 Linac

2.2.1 General Linac Layout

In its present configuration the main linac consists of two modules of accelerating cavities
(ACC1 and ACC2). The superconducting niobium cavities consist of nine cells with a
resonant frequency of 1.3 GHz. Eight cavities form an accelerating module. The cavities
are installed in a cryostat which serves as vacuum insulation, heat shield and mechani-
cal support structure. The cavities installed in cryostat #1 and #2 achieve an average
gradient of 15MV/m and 20 MV/m respectively with a loaded quality factor of about
Q =2.2-10°. The rf power (about 160 kW per cavity at 20 MV /m) is supplied by a single
klystron and fed into the cavities by coaxial input couplers. After a field filling time of
400 ps, the rf field is kept stable in gradient and phase for 800 us [13]. The cavity electric
fields are measured by a pick-up probe inside the cavity resonator. The field gradient is
proportional to the amplitude of the probe signal and the phase information is obtained
by frequency down-conversion (mixing) of the signal using a frequency-stabilized local
oscillator. Focusing is applied by a superconducting quadrupole doublet (D1-ACC1 and
D1-ACC2) at the end of each rf module.

A magnetic bunch compressor section (BC2) is installed between the two accelerating
modules. The section consists of a quadrupole triplet (T1-BC2), four dipole magnets de-
flecting the beam through a symmetric chicane and a second quadrupole triplet (12-BC2).
Diagnostic stations are used to display either the energy and energy spread of the beam
(screen in the dispersive section of the chicane compressor) or the transverse emittance
(screen in front of module #2) together with the second focusing triplet [14].

Behind the second accelerating module, the beam is passed to the end of the linac through
a room-temperature transfer line. The transfer line has been replaced by a collimation
section [15] and an undulator magnet [16] during the construction period in summer
1999. The experimental area at the end of the linac consist of a quadrupole triplet
(T1-EXP), and several diagnostic stations equipped with transition radiation screens to
perform transverse emittance scans. A spectrometer dipole magnet deflecting the beam
horizontally into a dispersive section is used to produce synchrotron radiation. The TTF
spectrometer, consisting of the dipole magnet and a transition radiation screen, yields a
resolution of AE/E = 2-10~* and allows an absolute determination of the beam energy
with an accuracy of about 1%. Two de-focusing quadrupole magnets in the dispersive
section are used to increase the transverse beam size before sending the beam into the
beam dump.
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Figure 2.7: Horizontal and vertical beam envelopes along the T'TF linac in stage 1. The
design beam parameters of the TTF thermionic injector are matched to the linac FIDA
lattice by the matching quadrupole triplets. The phase advance of the linac lattice is
90°. The accelerating cavities (Eace = 15MV/m) are indicated by the gray boxes, the
quadrupole multiplets by the black lines.

2.2.2 Linac Optics

The linac lattice has a FIDA structure: focusing quadrupole, interleave, de-focusing
quadrupole and an accelerating section. The period length is 12.2 m.

Stage 1: Optics with the Thermionic Injector Beam

Figure 2.7 shows the matching and the linac section. The matching section consists of two
quadrupole triplets T1-INJ and T2-INJ. The linac section is composed of the accelerating
f modules ACC1 and ACC2. Focusing is applied by the superconducting quadrupole
doublets D1-ACC1 and D1-ACC2. A quadrupole doublet (D1-BC2) and a drift section
is located between the rf modules. Behind the second rf module, space is left for a
third accelerating section ACC3. Presently there is a beam line with a room-temperature
quadrupole doublet D1-ACC3. The beam envelope /11 and /033 is computed with the
XBEAM [17] program. The design beam parameters behind the capture cavity (Table
2.1) are matched to the linac lattice by the last two quadrupole triplets. The FIDA lattice
is adjusted to a phase advance of 90° in both planes yielding a symmetric oscillation of
the beam envelopes [18]. Notice the reduction of the beam size due to the energy gain of
the beam. The reduction is due to the fact that the momentum ratio of transverse and
longitudinal momentum is decreased by the acceleration. Additional focusing is applied
by the standing wave cavities [19]. The quadrupole gradients are scaled with beam energy.
The beam is transfered to the end of the linac through a beam line without acceleration.
The bunch compressor chicane was not installed during the operation of the thermionic
injector.

Stage 2: Optics with the RF Gun Beam

Figure 2.8 shows the matching and the linac section operated with the rf gun beam. The
magnetic lattice is identical to the lattice shown in Fig. 2.7 except for the bunch compres-
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Figure 2.8: Horizontal and vertical beam envelopes along the TTF linac in stage 2. The
initial beam parameters used for the presented computation have been determined by
transverse phase space tomography outlined in this report. These parameters are matched
to the linac lattice by the matching quadrupole triplets [21].

sor (BC2) section. The quadrupole doublet D1-BC2 is replaced by two quadrupole triplets
T1-BC2 and T2-BC2 in front of and behind the magnetic chicane, which is not included
in the present computation. The chicane dipole magnets would cause additional vertical
focusing due to the edge focusing of the fringe magnetic dipole fields. The computation of
the linac lattice is based on the first-order beam transfer code COMFORT [20] including
linearized space charge forces (see appendix D). The linac lattice has been developed
[21] by considering a set of constraints. A small beam envelope in the bunch compressor
section is needed to transfer the beam through the narrow gap inside the dipole magnets.
In front of the collimating section (z > 60 m), the envelopes have to be convergent and of
equal horizontal and vertical size to insure the proper functioning of the collimator. The
beam parameters in front of D1INJ,

Y-€ [10°%m] | 5.5 || 7v- €, [107°m] | 9.5
o1 [10'-7 m2] 3.3 || o33 [10_7 mZ] 3.9
012 [10_8 m] 5.2 || o34 [10—8 m] 1:3
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obtained by measurement, have been used. The phase advance of the FIDA lattice is as
close as possible to 90°.

2.2.3 Bunch Compression Scheme

Longitudinal compression of relativistic electron bunches can be obtained by an off-crest
acceleration in a cavity followed by a magnetic chicane bunch compressor. The off-crest
acceleration produces a correlated energy spread in the bunch with the higher energy
electrons trailing the lower energy electrons. The higher energy electrons then travel on
a shorter path through the magnetic chicane than the lower energy electrons yielding
a bunch length reduction. The compressor section and the longitudinal phase space
distributions of the electron bunch along the compressor section is shown in Fig. 2.9.

Off-Crest Acceleration:

The off-crest acceleration in an rf cavity is described by a longitudinal transfer matrix
My

l
My = ( Mlos ]\?ss ) acting on the vector (6) (24)

where [ is the longitudinal position and ¢ the fractional energy deviation of an electron.
Let ®, be the rf phase corresponding to the reference electron located at the center of
the bunch and @ the rf phase of an electron located o, behind the center. If the cavity
operates with a voltage Uy, the energy deviation aé between the two electrons behind
the accelerating section will be

0k = eUpce (cos ® — cos By) + ot (2.5)

where o} denotes the initial energy deviation. For ® = ®,, the Taylor expansion of
Eq. (2.5) yields

: 1
ol = o, — eUpee sin B (& — By) — 5 U cos @ (& — B,)* (2.6)

The fractional energy deviation at the final location is derived by dividing Eq. (2.5) with
the final energy E; = E; + €Uy cos ®g (I denotes the initial beam energy). We obtain

ol at; eUpcc sin @

= = - d — Py) —
Ef  Ei+eUpccos®y Ej+ eUaccos Py ( o)
1 eUpye cos

2 E; + eUpec cos By

2.7)
(@ — 9)* + O((® - ®o)°) .

The transfer matrix elements Mg; and Mgg can be associated with the zeroth and first
order term of Eq. (2.7), hence
—eUyzesin®y 2w

2 R T . o S (2.8)

Mg = ——"———
oy S eUpee c0s Op E; + eUzec cos @y A

where the relation (® — ®,) = 27l/\ has been used. The second order term of the Taylor
expansion (2.7) accounts for the non-linearity of the rf wave within the dimension of
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Figure 2.9: Longitudinal bunch compression by an off-crest acceleration in an rf cavity
followed by a magnetic chicane compressor. The imposed energy-position correlation
(higher energy electrons trailing lower energy electrons) and the dispersion of the chicane
account for the bunch compression. Shown is the evolution of the longitudinal phase space
distribution along the beam line and the rms bunch length along the chicane.
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the particle bunch. This effect can be included into the transfer matrix formalism by

expanding the transfer matrix to
M= (i‘éA_i%_) (2.9)

such that the linear transfer matrix M, forms the upper left square matrix of M,

1 eUpccos®y 27

—— 2.10
2 E; + eUpyeec cos Py A ( )

Sa=

denotes the second order contribution mapping [ on the aé/ E; and Ty = M. M, ex-
pressed in the basis of (I, AE/E,[?), yields a 3 x 3 square matrix and can be used for the
beam matrix formalism outlined in appendix A.

The photo injector is adjusted to produce a beam of minimum energy before injection
into the first accelerating rf module. Then there is no correlation between [ and § and
the longitudinal part of the beam matrix can be expressed as a diagonal matrix as

T55 0 0
ai= [0 S0 (2.11)
00 oz

where the term 0% accounts for the non-linearity of the rf field in the cavity. The beam
matrix is transformed by

oy=M-0;- MT (2.12)
hence
il 0 0 oss 0 0 1 Mg 0
of=| Mss Mes Sa |-| 0 o6 0 |.{ 0 Mg O
0 0 M 0 0 o%) \0 Sy M
Os5 Mes0ss 0
= M65(755 ]\4625055 =5 MGZ Ogg + Siags SAA{6250'35 (213)
0 SaMgsois M50

The inspection of the matrix (2.13) shows that the off-diagonal elements (o) and (0)gs
do not vanish for Mgs # 0, yielding a correlated longitudinal phase space distribution after
an off-crest acceleration in an rf cavity. The bunch length |/gss does not vary during the
off-crest acceleration. The final energy deviation receives contributions from the initial
energy spread MZogs, the initial bunch length MZoss and the non-linear term S%ads
which are added quadratically. Figure 2.9 shows the correlated phase space distribution
yielding an optimum bunch compression in the following chicane section.

Magnetic Chicane

The magnetic chicane consists of four rectangular dipole magnets deflecting the beam in
the horizontal plane. The dipole magnets are of the same strength but the polarity of the
second and third dipole is inverse to the polarity of the first and the fourth. Dipole 1 de-
flects the beam by an angle of o = 18°. After passing the second dipole magnet the beam
axis is transposed 35cm parallel to the axis of the accelerator — magnets 3 and 4 deflect
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Figure 2.10: Left: horizontal dispersion of the magnetic chicane compressor. The max-
imum dispersion is D, = 0.35m in the center of the chicane. Right: longitudinal dis-
persion of the magnetic chicane compressor. The maximum longitudinal dispersion is
A{56 =0.18 m.

the beam back to the axis (see Fig. 2.9). Figure 2.10 shows the horizontal dispersion as a
function of the position inside the bunch compressor. The dispersion is increasing towards
the middle of the compressor reaching a maximum value of D, = 35cm. The transverse
dispersion has to be entirely suppressed behind the compressor to avoid that electrons
of different energy travel on different trajectories through the accelerating module #2
yielding a blow-up of the transverse emittance.

The transfer matrix M¢ of the magnetic chicane is given by
Mc = Mp(a, ) Mp(L1)- Ma(—0t, 1) Mp(Ls)- Mi(—a, ) - Mp(Ly) - Mp(r, ) . (2.14)

where Mg(cv,9) and Mp(L, ) denote the transfer matrices of a rectangular bending
magnet with bending angle o and pole face rotation angle ¥ and a drift space of length
L respectively. The definition of these transfer matrices is given in appendix A. The
longitudinal part of Mc yields

Bl ((1) M ) (2.15)

where the matrix element Mss denotes the longitudinal dispersion of the chicane com-
pressor. Msg is shown as a function of the position in Fig. 2.10. Significant variations
of Mss take place in the second and third dipole magnet. Mss describes the compression
strength of the magnetic chicane since it maps the initial energy spread onto the final
longitudinal position with respect to the reference particle.

The beam matrix (2.13) can be transformed through the magnetic chicane yielding in the
basis of (I, AE/E)

= _ (1 Ms )( Os5 Me5055 | ¢
i ( 0 1 Megsos5 Mgoss + MZo66 + S30% )( Mss 1 ) (2.16)
where
ssl; = 05s(1+ MsgMes)” + oo MEMZ, + 02,52 M2, (2.17)
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Figure 2.11: Lines of constant rms bunch length o, behind the bunch compressor as a
function of the gradient and phase of the rf acceleration in Module #1. The four subplots
depict the optimum phase gradlent settlng for different injector beam parameters. (a)
gl = 1.25mm; ob = 2107, (b) e} = 1.25mm, o} = B-107%. (c)iof = 1.75mm,
0% = 21072, (d) o = 1.75mm, aiE:S 1075

656'/ = 0’55(M65 2 gy AdgsMr,(;) G 066}\’{(?61\156 = (TgssiMss (218)
556|f = MZoss + MZoes + Soi (2.19)

The final bunch length &, therefore is

G, = \/055(1 + MyoMgs)? + 066 M2 MZ; + 025 SAMZ; . (2:20)

The linear contribution of os5 can be minimized by choosing Mpgs such that Mg Megs+1 —
0. The contribution of the initial energy spread ogs to the final bunch length can be
decreased by using stronger accelerating field gradients, hence an higher energy gain,
yielding a smaller Mg. The term o2,S% M2 can be decreased only be choosing a smaller
initial bunch length ,/gss. The latter contribution limits the achievable longitudinal
compression in the magnetic chicane.

Figure 2.11 shows a contour plot of the achievable bunch length as a function of the
gradient and the phase of the rf cavities in front of the magnetic chicane. Injector bunch
lengths of 0! = 1.25 mm and o = 1.75 mm and injector energy spreads of o = 2-10~3 and
0% = 8-107 are considered. The rf de-phasing to obtain optimum bunch compression is
decreasing with increasing field gradient. The vertical lines indicate the nominal operating
gradient of the TTF linac, which is 15 MeV/m. At this field gradient, a bunch length of
(a) o, = 110 pm, (b) o, = 200 pm, (c) o, = 190 pm and (d) g, = 250 um can be obtained.
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Acceleration by RF Module #2

The energy spread at the experimental area can be evaluated by transforming the beam
matrix through the second rf module. We obtain the beam matrix

-0 -0 gs5 056 0 L Res 0
G Rﬁs Res Ua g6 06 0 |.| O Res O (2.21)
0" He 0 0 0?5 0 Uy R
55 Re5G55+ Res0s6
RssﬂserResUss Rs (Res055+ Reass) + Rcs(Rssﬂss+RssUss)+UA055 UAR65055)
200, 00

The final energy spread /g can be expressed in terms of the initial beam parameters
Ge6 = R3s055+ 2Res Resbise + Rises + Uloe (2.22)
Res {055 (1 + Mss Mes)” + 056 Mg MZ, + S3MZ0% )} +
25 oo { 55 (Mos + MgsMss ) + 065 M5 Msg + S5 Misods } +
REo{oss ME + 055 M2, + Shod} + (2.23)
UA{oss(1 + Mso Mes)” + oo M2 M2, + SaMZ0% ) .

The second accelerating module is generally operated at an rf phase ®y = 0° yielding the
maximum energy gain. In this case we obtain Re; = 0 and Eq. (2.23) reduces to

Og6 = Rgs{”ssMgs + 766 Mg + Sﬁags} ik

2.24)
UA{055(1 -+ M56M65) b 065M56M626 + SzM 6(750} (
V/Ges is obtained by scaling the the rms energy deviation behind the magnetic chicane
with Res. The non-linear contribution of the rf acceleration is added quadratically.

A measurement of the longitudinal bunch charge distribution can be performed by rotating
the longitudinal phase space distribution using the magnetic chicane and the second rf
acceleration. In particular, the longitudinal phase space distribution is rotated by /2
transforming a temporal slice in front of the chicane into a slice of constant energy behind
the second rf module. This condition is fulfilled for MsgRes + Res — 0 [22] and Eq. (2.23)
reduces to

. 2
O = 055R§5 & Ui{(l‘ss(l + 1”56M55)2 + 055M526M526 =+ SiMszs(fgs} (225)

~ ossRa. (2.26)

Equation (2.26) is a linear relation between the longitudinal bunch charge distribution
and the bunch energy deviation and is the basis for the bunch length measurement. The

parameters of the second rf module Rgs and Rgg have to fulfill MsgRes + Reg — 0. Details
will be presented in chapter 6.



Chapter 3

Properties of Transition Radiation

3.1 Transition Radiation as a Tool for Beam Diag-
nostics

Transition radiation is emitted whenever a charged particle passes from one dielectric
medium into another. In either medium the charge carries an electromagnetic field dis-
tribution, which changes rapidly at the boundary because of the different permittivities.
In this process, part of the field traveling with the charge is radiated away as transition
radiation. The radiation is emitted both into the forward and the backward hemisphere
of the boundary.

This chapter is dedicated to outline the basic properties of transition radiation, such as the
radiation spectrum, angular distribution, polarization and the radiation source dimension.
Attention will be drawn to optical transition radiation (OTR), 400nm < A < 800 nm,
and far-infrared transition radiation, 0.1 mm < A < 10 mm.

Optical transition radiation can be used to record the transverse and the longitudinal
charge distribution of an electron bunch. The light emitted at the boundary is imaged
onto a CCD. The radial intensity distribution is a direct measure of the transverse bunch
charge distribution. The temporal distribution of the light pulse can be used to determine
the longitudinal bunch charge distribution.

Far-infrared transition radiation is a powerful tool to measure the longitudinal bunch
charge distribution of electron bunches in the pico- and sub-picosecond range. The bunch
length and the radiation wavelength are of equal magnitude and coherent transition ra-
diation is emitted. The coherent transition radiation power spectrum carries information
about the bunch length and the shape of the longitudinal bunch charge distribution.

3.2 Optical Transition Radiation

3.2.1 Ginzburg-Frank Equation

Figure 3.1 shows a bunch of particles in medium 1 with permittivity €; approaching a
boundary to medium 2 with permittivity e,. The particle bunch moves on a straight line
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Figure 3.1: Configuration for the derivation of the Ginzburg-Frank Equation.

with uniform velocity ¥, directed perpendicular to the boundary. The boundary itself
is assumed to be of infinite extent. The radiation energy U emitted into the backward
hemisphere when a single electron of charge —e crosses the boundary between vacuum
(e; = 1) and a medium (e, = €) is described by the Ginzburg-Frank formula

U

Il

o0 2w pm
/ / / dwdg sin@do Uy (w,0) with (3.1)
o Jo Jo ,

&2 B%sin? 6 cos? 0 (e — 1)° (1—ﬁ2+ﬂ\/c—sin20)
A 4‘"3600(1 — % cos? 9)2(1 + fVe — sinz())z(rcosO - Ve— sinzﬂ)2 :

U (w,0) denotes the spectral energy distribution, w the angular frequency and @ the
polar angle of the radiation. The velocity of the electron is given by # = v/c. Note
that U; does not depend on the radiation frequency w. This feature makes transition
radiation an excellent tool for beam imaging, since no frequency-dependent correction for
the emitted radiation power is necessary. For metallic screens we let € — oo, which is a
valid approximation for frequencies well below the plasma frequency of the metal, yielding

 ¥Ka [?sin’ @
" 4mdege (1 — B2 cos? 0)2 i

(3.2)

U (3.3)
Equation (3.3) is the Ginzburg-Frank formula as it is commonly applied to describe tran-
sition radiation for optical beam diagnostics. The derivation of Eq. (3.3) [23] is outlined
in appendix B.

3.2.2 Radiated Energy

The total energy per unit frequency emitted from a metallic screen is determined by
integration of Eq. (3.3) over the solid angle d2 = sin 0dfd¢
dUu

== / d0 d¢ sin U, (0) (3.4)
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Figure 3.2: Energy in the visible range emitted by single particle transition radiation as
a function of the Lorentz factor ~.

g sin® 0 _
2n2epc /0 o (1 - f2cos?f) (3.5)

F (1+8), (-8
g (4 + 3 log 1+ [3)2> . (3.6)

The emitted energy by a single electron in the visible wavelength band 400 — 800 nm is
shown in Fig. 3.2 as a function of the relativistic Lorentz factor . The total radiated en-
ergy is increasing with increasing electron energy, however, the increase is most significant
below y ~ 100. The emitted radiation energy per electron is evaluated by

dUu
U= /W G (3.7
where frequencies in the optical range are taken into account (4.7-10'%1/s > w > 2.4 -
10'51/s). For v = 100, the total emitted radiation energy is U = 0.13eV per electron.
The photon energy corresponding to w = 3.8 - 10" 1/s is E, = hw = 2.5eV, hence the
number of photons can be approximated by 0.05 per electron, i. e. twenty electrons are
needed to produce one photon. A bunch of 5 - 10'° electrons generates therefore 5 - 108
photons in the visible range, a number which is easily detectable with standard CCD
devices [24].

3.2.3 Polarization

The polarization of transition radiation can be understood in terms of its generation
process. Part of the charge field configuration in vacuum is transfered to the radiation
field while the bunch is undergoing transition. The field configuration is polarized in
the so-called “radiation plane”, which is defined by the radiation momentum k and the
direction of particle motion 2. The polarization of the electric field ER emitted with
momentum k is shown in Fig. 3.3.
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Figure 3.3: Polarization of transition radiation.

3.2.4 Angular Distribution

The angular distribution of backward transition radiation is shown in Fig. 3.4. The
maximum energy is radiated at an angle of 8y = 1/(f7). This result is obtained by the
differentiation of the Ginzburg-Frank formula with respect to @ yielding

dU,  p3.(0)  pBlesin2

2l el
W . 47\'35[] (1 —ﬂ2C0520)3 {1 _,B ﬂ sin 9} : (38)

Equation (3.8) vanishes for the maximum energy radiated, hence

— 32 1
Sill2 00 = l—ﬁ-zﬁ‘ = 00 = ﬂ_’y . (39)

No energy is emitted at § = 0, because of the radial polarization of the fields traveling
with the electron bunch. Notice, however, that a significant part of the energy is radiated
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Figure 3.4: Angular distribution of single particle transition radiation.

3.2 Optical Transition Radiation 25

at angles larger than ;. The optical system used for the imaging of optical transition
radiation therefore has to have a larger aperture to collect sufficient intensity.

3.2.5 Oblique Incidence

The transition radiator at the TESLA Test Facility is a thin 40 nm aluminum layer evap-
orated onto a 25 pm Kapton foil stretched in a frame. The foil is mounted at an angle of
45° with respect to the accelerator axis so that the backward lobe of transition radiation
is reflected at 90° out of the vacuum chamber. The theoretical description of transition
radiation has to be extended to describe this situation.

(1) Oblique Incidence

The particle is moving on a straight line with uniform velocity in the zz-plane, as shown by
Fig. 3.5. 1 is the angle between the electron trajectory and the z axis. The derivation of

medium 1 medium 2

Figure 3.5: Coordinates for oblique incidence of the particle bunch. 3 denotes the angle
between the particle velocity ¢ and the z-axis in the zz-plane, m— @ the angle between the
backward lobe of the transition radiation and z. The azimuthal angle of k¥’ (projection of
k in the zy-plane) with respect to the z-axis is denoted by ¢.

the radiation field is more elaborate than for normal incidence. The more general situation
requires the introduction of a polar angle 6 and an azimuthal angle ¢. The “radiation-
plane” which is defined by k and ¥ becomes the preference plane. Radiation polarized
parallel and orthogonal to the radiation plane is denoted by Ej and E, respectively.

(2) Metallic Interface

The formulae describing the spectral energy distribution radiated by a single electron of
charge —e are [25)

I e? Bcostp (sinf — [ cos psinp) 2
Ul = 5 - — (3.10)
dmdege \ (1 — Bsinf cos psinyp)” — f2 cos? O cos?
2 > T 2
g e ( .ﬂ cosz/)c:osﬂs;nqbsmd; ) (3.11)
4mdege \ (1 — Bsin O cos psinip)” — 42 cos? 0 cos? 1)
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where Ul|I and U denote the radiated spectral energy density of the field component
polarized parallel and perpendicular to the radiation plane and § = v/c. The metallic
interface is of infinite permittivity (¢ — o). The Ginzburg-Frank formula (3.3) can be
recovered from Eq. (3.10) and (3.11) for normal incidence 9 = 0. U then agrees with the
Ginzburg-Frank formula, whereas U;- vanishes. Note that transition radiation vanishes
for a grazing incidence angle of ¢ ~ /2.

Figure 3.6 shows the angular distribution of U{I (left column) and Ut (right column) as a
function of the polar angle 6. The beam is incident at an angle of 1) = 45°. The subplots
show the distribution for different azimuthal angles ¢. The lobe is centered at # = 1. The
energy density of U1” is decreasing rapidly for larger azimuthal angles ¢ indicating that
U{l contributes mostly in the reference plane defined by (,Z). Ui, on the other hand,
vanishes for ¢ = 0, rises to the magnitude of Ull at ¢ = 1/v and decreases for larger
azimuthal angles. The angular distribution of Ui contains only a single maximum.

3.3 Far Infrared Transition Radiation

The description of transition radiation in the millimeter- and sub-millimeter wavelength
range needs a modification of the Ginzburg-Frank formula. The size of the transition
boundary is no longer large compared to the transverse extension of the electromagnetic
fields. Diffraction at a transition screen of finite size leads to a widening of the angular
distribution and a reduction of the spectral acceptance of the detection system.

3.3.1 Source Dimension

The transverse source size of transition radiation is the projection of the electromagnetic
fields carried by the charge distribution onto the transition boundary. The Maxwell
equations can be solved using a Fourier transformation of the longitudinal coordinate
¢ = z — ct to the longitudinal wave number &

oo
Bpa(Gr) = [ Bealhyr) exp (k¢ dk (3.12)
—00
while the transverse coordinates are not transformed. This procedure permits a descrip-
tion of the transverse field as a function of the wave number k.

The frequency domain description of the electric and magnetic fields, E,, E, and By
(the other components vanish for reasons of symmetry) is evaluated as the bunch of
charges passes by the observer. A ring charge distribution of radius @ modulated with
a longitudinal distribution whose Fourier transformation is denoted as (k) is evaluated.
The fields have to obey boundary conditions at the surface of the beam pipe with radius b,
which is assumed to be perfectly conducting. The following results can be derived [26, 27]
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Figure 3.6: Transition radiation dU/dQdw as a function of the polar angle # for the oblique
incidence angle of 1 = m/4. The left column shows the polarization component parallel,
the right column orthogonal to the radiation plane. The subplots show dU/dQdw for a
set of azimuthal angles ¢.
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Figure 3.7: Fourier components of the radial electric field rE, as a function of radius for
frequencies between 30 GHz and 3 THz. The field distributions are normalized to 1 at
r=0.
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ka\ Ko (%) kr
+ I | — St —y .

7/ k() \7
and By = ﬂ/cE,.. Iy, Ky, I and K, denote the modified Bessel-functions of zeroth and
first order, 7 the relativistic Lorentz factor. The bunch charge is given by g. Details of

the derivation are outlined in appendix C, where a solution of the problem including a
vacuum chamber of finite conductivity is presented as well. The fields are rising propor-
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tional to Iy and I, inside the ring charge but are decreasing proportional to /<y and I,
outside. The second term denotes the contribution of the cylindrical beam pipe to the
total field configuration. If we assume a line charge distribution (a = 0), the primary
fields will drop with Ko(kr/7) or K;(kr/v), while the beam pipe causes a rise of the
fields with Io(kr/v) or I(kr/7). Notice that the contribution of the vacuum chamber can
be neglected for Fourier components corresponding to the optical range (k ~ 107 1/m),
because it is entirely suppressed by the factor Ky(kb/v). For further considerations, it
is sufficient to consider the radial component of the electric field. The longitudinal elec-
tric field component can be neglected compared to the transverse electric fielcdl, because
E, ~ E,/y. The azimuthal magnetic field is related to the radial electric field by the
factor of 3/c.

Figure 3.7 shows the Fourier components of the radial electric field multiplied with 27
(Jacobian of cylindrical coordinates) for frequencies between 30 GIiz and 3'THz. The ex-
pressions are normalized to 1 at » = 0 to permit a comparison of the radial dependences.
The screens at the TTF linac have a diameter of d = 35mm. The field components
propagating at larger distances from the charge distribution miss the screen and do not
contribute to the radiation. Therefore the radiated energy decreases towards lower fre-
quencies, because an increasing fraction of the field misses the screen. The radius b of the
beam pipe is also of influence; the low frequency field components do not vary significantly
within the beam pipe, hence the minimum acceptance is 7(d/2)?/7b%. The fraction of the
field components contributing to the radiation process can be evaluated by

w f[;m dr2rrE,
[edr2nrE,

(3.15)
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Figure 3.8: Spectral acceptance D(f) of far infrared transition radiation due to the exten-
sion of the electromagnetic fields traveling with the charge, Eq. (3.15), is plotted versus
the frequency of the electric field Fourier component. Four different beam energies are
denoted by the Lorentz factor 7.
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Figure 3.9: The function z - K;(z). The transverse source dimension is defined as 7 -
Ki(z) = 1/e.

The quantity D is plotted versus the frequency of the Fourier component in Fig. 3.8. D(f)
can be interpreted as a spectral acceptance function. It clearly shows the suppression of
transition radiation at low frequencies (f < 3 THz). For high frequency and low electron
energy one gets D(f) a 1, since the electric field traveling with the charge is confined
within the area of the transition radiator.

For a quantitative description of the source dimension we consider

r- By (k) ~ %KI (%) =z- K (z) (3.16)

with & = kr/v. Figure 3.9 shows the function z - K,(z). The transition radiation source
dimension R, is defined by the argument Z where the function x - I;(z) drops to 1/e.

et 1 kR 1.6

K(E)=- = -—=166 = R,=-—1

e 5 k

The transverse dimension of the electromagnetic fields is proportional to the beam energy
7 and the wavelength of the Fourier component (A = 27/k). With increasing Lorentz
factor v the radial electric field amplitude extends to larger radii, which can be under-
stood in terms of the Lorentz transformation of the field. The increase of the radiation
source dimension with respect to the radiation wavelength can be understood in terms of

diffraction.

(3.17)

The transverse extension of the electromagnetic field limits the applicability of the optical
imaging technique for determining the bunch size. For low emittance bunches and large
v factors the transverse field extension may exceed the whole bunch size and then a
meaningful measurement is no longer possible. The transverse beam size o, = a;/./7 is
decreasing proportional to the square root of the beam energy, when the strength of the
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Figure 3.10: Transition radiation field Eq. (3.13) of a uniform charge distribution of radius
a = 230 pm, v = 100 (left) and @ = 83 um, v = 800 (right). The wavelength is 500 nm.
Left: the shape of the uniform charge distribution can be recovered by the electromagnetic
fields. Right: the shape of the uniform charge distribution is smeared out.

magnetic lattice is scaled with 7. The source dimension of transition radiation, on the
other hand, increases proportional to beam energy. It is evident, that transition radiation
of fixed wavelength can be used for the imaging of the transverse charge distribution to
a maximum beam energy only [28], the so-called critical electron energy .. Equating
the radial beam size o, with the source dimensions of the radiation fields R, = 1.667./k

yields
k202 1/3
Je= (-ﬁ) - (3.18)

Assuming A = 500nm (optical transition radiation) and a normalized emittance of 5 -
10~%m, the critical Lorentz factor is 7, = 924 corresponding to an electron beam energy
of about 470 MeV. It is evident that tight focusing of the electron beam on the transition
radiator should be avoided.

The resolution limit of optical transition radiation can be visualized by calculating the
radiation source of a uniform transverse charge distribution of radius a

~ 1
=—{o 13} (3.19)
The field of a ring charge distribution Eq. (3.13) is weighted with Eq. (3.19) and integrated.
The evaluation, shown in Fig. 3.10, is performed numerically on a rectangular grid for two
different beam energies using a normalized beam emittance of 5 10~%m. The transverse
beam widths are @ = 220 um at y = 100 and @ = 80 um at v = 800. The left graph shows
the transverse electric field distribution (A = 500 nm) for v = 100 < 1., the right graph
for v = 800 > ~.. Below . the field distribution is almost identical with the transverse
charge distribution (3.19), above 7. the field distribution is much wider and the charge
distribution cannot be resolved.
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Transition Radiation Screen

Observation Screen

Figure 3.11: Determination of the distance from a point A located on the transition
boundary to a point B on an observation screen. This screen may also be the entrance
aperture of the detection device.

3.3.2 Huygens-Fresnel Principle

The Ginzburg-Frank formula has been derived by solving the Maxwell equations for the
electromagnetic fields traveling with a charge and for the radiation field propagating into
the backward hemisphere of the transition boundary. The transition boundary is assumed
to be of infinite extent to justify the ansatz of plane waves for the radiation field. The
characteristics of the radiation field are derived by the application of boundary condi-
tions, that is the equality of the tangential electric and magnetic field components on
both sides of the boundary, at the time the charge undergoes transition. The Ginzburg-
Frank formula is therefore applicable only if the transition boundary is large compared
to the transverse extension of the electromagnetic fields traveling along with the bunch
charge, as is the case for optical transition radiation.

An alternative way to compute the spectral energy density of transition radiation is based
on the Fresnel-Kirchhoff scalar diffraction theory. The Huygens-Fresnel principle states
that every point on a primary wavefront (which is, here, the field distribution on the
transition boundary) can be considered as a continuous emitter of spherical secondary
wave amplitudes [29]. To describe the directionality of the secondary emissions, an incli-
nation factor (1+cos («))/2 is introduced which has its maximum in the forward direction
normal to the primary wavefront and vanishes for @ = m. The field amplitude at a given
point is determined by the superposition of all secondary wave amplitudes.

The following numerical method is applied to derive the characteristics of transition ra-
diation. The Fourier component of the electric field E, (Eq. 3.14) is evaluated at a point
A = (z,y) on the transition boundary, yielding the value E,. Next, a point B = (£,7) on
an observation screen separated by a distance R from the transition boundary is selected.
The distance r between A and B is (see Fig. 3.11)

r=yR+@E@-8+ -1 (3.20)
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Figure 3.12: Angular distribution of transition radiation as obtained from the Ginzburg-
Frank formula and the numerical recipe using the Huygens-Fresnel principle. Parameters:
v =200, A =2 pm and d = 35mm.

and is converted into a phase difference A¢sp = r/A, where X is the wavelength. The
amplitude of the field at B is

" ; 1 + cos (@) exp(iAdap)
Bp= [ [ B iz dy. ;
it L ey Sy s

The integration is performed over the entire transition radiator yielding the sum of the
secondary wave amplitudes at the observation screen. The radiation intensity pattern is
then derived by calculating the absolute value of the amplitudes squared. The calculation
has to be performed for every Fourier component of Eq. (3.14). The Fresnel-Kirchhoff
diffraction theory is a scalar theory. In case of transition radiation, however, the polar-
ization of the electric field vector has to be taken into account. The electric field of the
secondary wave is polarized in the same direction as the electric field of the bunch charge
at the transition boundary. Before being added at point B, the fields of the secondary
waves are decomposed into their horizontal and vertical polarization components.

Figure 3.12 compares the angular distribution of transition radiation as obtained with
the prediction of the Ginzburg-Frank formula and with the numerical calculation using
the Huygens-Fresnel principle. The Lorentz-factor is y = 200, the radiation wavelength
is A = 2 um and the diameter of the transition radiator is d = 35mm. There is an ex-
cellent agreement between the result of the numerical calculation and the prediction of
the Ginzburg-Frank formula. The conditions for the applicability of the Ginzburg-Frank
formula are fulfilled, because the transition boundary is much larger than the transverse
extension of the electromagnetic fields.

Figure 3.13 shows the angular distribution of transition radiation for different wavelengths.
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Figure 3.13: Computed angular distribution of transition radiation using the Huygens-
Fresnel principle. The prediction of the Ginzburg-Frank formula is indicated by the circles.
The diameter of the transition screen is d = 35 mm.

For wavelengths A < 50 um the opening angle distribution is in good agreement with the
Ginzburg-Frank formula. For larger wavelengths the angular distribution becomes wider
and an interference pattern appears. The deviation of the angular distribution from the
Ginzburg-Frank formula is explainable by diffraction because the electromagnetic field
distribution incident on the transition screen at that wavelength has a greater transverse
extension than the screen itself.

Diffraction of the electromagnetic fields at the boundary yields a suppression of the far-
infrared transition radiation energy density. A parabolic mirror (dys = 100 mm diameter,
fay =200 mm and R = 200 mm) is used to collect the far-infrared radiation and to deliver
it to a detector. The parabolic mirror defines an acceptance angle of 6,,,, = 0.14 rad.
The parts of the radiation field which are missing the parabolic mirror due to diffraction
do not reach the detector and cannot contribute to the measurement. Figure 3.14 shows
an acceptance function indicating the suppression of low frequency field components (f <
3 THz) due to diffraction. The quantity

A(f) - fz;irrz\;rr dr d¢ E:R(krr) (322)

I foT drdprER(k,r)
is evaluated at the given distance R as a function of the radiation frequency f = ke/2m.
Expression (3.22) yields a second spectral acceptance function. It describes the collection
efficiency of the detection system. The metallic screen inserted into the vacuum chamber
can, in a sense, be considered as a high-pass filter for far-infrared transition radiation.
The suppression of low frequencies has to be corrected for when using this radiation for
beam diagnostics.
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Figure 3.14: Fraction of the electromagnetic fields collected by a parabolic mirror at a
distance R = 200 mm from the transition boundary. The maximum acceptance angle is
Omar = 0.14rad. The diameter of the transition screen is d = 35 mm.

3.4 Coherent Transition Radiation

The spectral energy density of transition radiation per unit solid angle is described for a
sufficiently large transition boundary by the Ginzburg-Frank formula (3.3)

o f?*sin%0

" dmdeoe (1 — F2cos20)®

Equation (3.3) yields a proper description of transition radiation in the optical frequency
range (w = 3-10'%s7!) where a bunch of N particles radiates N times the power of a single
particle. However, at frequencies corresponding to the bunch passage time (w = 27/0y,
typically 10'2s~!) the phase relations of the single particle emission processes have to
be considered leading to coherence effects. The situation is depicted in Fig. 3.15. If the
transition radiation wavelength exceeds the bunch length, the individual electrons emit
coherently while at shorter wavelength this phase relation is lost and the interference
effects average out. The coherence can be described analytically by

2 [F?sin’0
ol L By

— Pooshi (3.23)

41r3eoc

where pqw denotes the Fourier transform of the longitudinal part of the charge distri-
bution and pq,‘, the Fourier transform of the transverse part of the charge distribution.
The result can be obtained directly by following the derivation outlined in appendix B
for an extended charge distribution. Eq. (3.23) describes coherent transition radiation
for a bunch of N particles described by a charge distribution p(z,y,2) = p*(2)p" (z,7)
crossing a transition boundary perpendicularly in uniform motion. The latter description
of coherent transition radiation holds for a transition boundary exceeding the transverse
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Figure 3.15: Upper graph: phase relation and the resulting field amplitude for the coherent
radiation process. The wavelength X is larger than the bunch length o,. Lower graph: at
short wavelengths the individual field amplitudes average out.

extension of the electromagnetic fields carried by the charge distribution. In this section
we neglect the finite size of the radiator in order to emphasize coherent transition radi-
ation. It should be kept in mind that the formulae derived in this section have to be
corrected by the spectral acceptance functions Eq. (3.15) and Eq. (3.22).

The example of a three dimensional Gaussian charge distribution

; N 1 £ 2
P(r, ¢,¢) = ZW—S, T exp (— ZTT‘Z> exp (— 2(02) where ¢ =z—wt (3.24)

z

leads to

N2e*  %sin’@ L g
Uy = Teos (1 — P oo 0)° exp| ——3 (az + Fogsinl ) (3.25)

3.4.1 Radiation Power

The spectral energy density depends on the number of particles per bunch squared (N?),
so the emitted radiation power is N times larger (typically N = 10'°) than in the non-
coherent optical regime. The coherent peak power can be evaluated for the collider-mode
and FEL-mode machine parameters. The machine parameters (in autumn 1999) are

“ Collider-mode I FEL-mode

N 510" 6.25 - 10°
E [MeV] 330 330
¢ [ps] 1.8 0.86
o/ [GHz] 885 185
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The single particle spectral energy density at 7 = 660 is U = 8 - 10 eVs. The radiated
coherent energy can be derived using )

dU®P Aw

U=N——— 3.

S (3.26)
where the term Aw/w denotes the frequency band under consideration. Under the as-
sumption of a Gaussian longitudinal bunch charge distribution of variance o, the central
frequency is w = 1/g; and the frequency interval Aw can be evaluated using

/Om dw exp(—w"’af) w10l (3.27)

20 -

The energy radiated in the coherent frequency band amounts to U = 1.6 - 102 J for the
collider-mode and U = 5.1 - 10~*J for the FEL-mode. The peak radiation power is

P=— (3.28)

where the bunch passing time of a Gaussian bunch is assumed to be 6 times the rms
bunch length containing more than 99% of the charges. The peak power radiated by co-
herent transition radiation is P = 1440 MW for the collider-mode and P = 99 MW for the
[FEL-mode. Coherent transition radiation from short and high charged electron bunches
is therefore an extremely intense source of millimeter and sub-millimeter wavelength radi-
ation. Notice that the values quoted for the emitted peak power are reduced by spectral
acceptance functions Eq. (3.15) and Eq. (3.22). The expected peak power radiated out
of the beam pipe is therefore attenuated by a factor of 20 to 80 depending on the beam
energy and radiation wavelength.

3.4.2 Investigation of the Longitudinal and Transverse Form
Factor

An application of coherent transition radiation is the determination of the longitudinal
charge distribution p¥ [30, 31, 32, 33, 34]. The investigation of Eq. 3.23 shows that the
transverse component of the charge distribution has to be minimized. This can be done by
focusing the beam onto the transition radiator, i. e. p” — §(r)/2, hence pl, — 1. The
resulting coherent radiation spectrum depends on the Fourier transform of the longitudinal
charge distribution only (see Eq. 3.23), hence

N2 62

4mieg

|2 Blesin?

Uilw,0) ~ (1 — pB%cos? 0)2 y

lek.. (3.29)

In accordance with the nomenclature in nuclear physics, the Fourier transformation of the
charge distribution is called the bunch form factor. Figure 3.16 shows a set of longitudinal
charge distributions p” and their corresponding coherent power spectra [p%,,|*. The upper
graph depicts three Gaussian longitudinal charge distributions of different rms width and
their corresponding frequency spectra. The shorter the bunch is, the higher frequencies

contribute to the coherent radiation spectrum. The lower graph depicts three different
longitudinal bunch charge distributions of equal rms width but of different shape. In
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Figure 3.16: Upper graph: Gaussian longitudinal charge distributions of different variance
and their corresponding frequency spectra. Lower graph: different longitudinal bunch
charge distributions and their frequency spectra.

frequency domain, the three distributions can be distingnished by the visibility of the
secondary and higher maxima of the spectra. For frequencies lower than the first minimum
it is difficult to distinguish the spectra of the three bunch charge distributions. To a
first approximation, the rms bunch length can be determined from the rms width of the
longitudinal form factor in the range of the central maximum.

Influence of the Transverse Charge Distribution The finite acceptance angle 0.«
of the optical imaging system permits the detector a limited side-view on the bunch
charge distribution. The projected component of the transverse charge distribution has
to be taken into account for the energy density of coherent transition radiation. For a
Gaussian bunch charge distribution we obtain

2
U, ~ N%? exp (-—% (UZ + o2 sin® Hmax)> | (3.30)

The transverse form factor pl,, ~ exp (—w?§%07 sin’ fnay /v?) limits the determination
of the longitudinal form factor pl, ~ exp (~w?c?/v?). If, however, the condition o, >
0o, sin B is fulfilled, the influence of the transverse bunch charge distribution is negligi-
ble. The parabolic mirror at the TESLA Test Facility has a maximum acceptance angle of
Opmaz = 0.14rad, leading to the condition that o, < 3.9mm (Collider-mode, o; = 1.8 ps)
and 0, < 1.8mm (FEL-mode, o; = 0.86 ps). A normalized emittance of € =5-10"%m
leads to a beam size of o, = 91 um (y = 660) which is a lot smaller than the latter

boundaries.
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Figure 3.17: Influence of the transverse form factor on the product form factor deter-
mined during a measurement using coherent transition radiation. Left column: A large
transverse bunch size causes the significant decrease of the transverse form factor towards
higher frequencies and dominates the product of the longitudinal and transverse form fac-
tors. The product form factor is significantly different from its longitudinal part and will
lead to a larger bunch length. Right column: A small transverse beam size (nearly con-
stant transverse form factor) has only little influence on the product of both form factors.
The product form factor correctly represents the longitudinal charge distribution.

The influence of the transverse form factor as described by Eq. (3.30) is shown in Fig. 3.17:
let us assume a Gaussian bunch of ¢, = 500 pm and ¢, = 10 mm (left column). The lon-
gitudinal form factor does not vanish for frequencies below 300 GHz while the transverse
form factor vanishes already at 50 GHz. The spectroscopic measurement of the bunch
form factor, however, cannot distinguish the two and detects their product (or the entire
three-dimensional form factor of the bunch charge distribution). In the present scenario,
the transverse part of the form factor is suppressing the longitudinal part and the prod-
uct pretends a bunch length larger than it actually is. The problem can be solved by
focusing the beam as strongly as possible onto the transition radiator to minimize the
transverse beam dimension. The right column shows the form factors transverse beam
size of o, = 600 um. The product p!,'w . piw is now dominated by the longitudinal form
factor and a bunch length measurement using coherent radiation is possible.
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Transverse Phase Space Tomography

The transverse phase space distribution of an electron beam can be explored by applying
a quadrupole scan in combination with tomographic image reconstruction techniques [35,
36]. For this purpose a set of quadrupoles is used to rotate the phase space distribution in
well-defined angular steps between a reconstruction point 2; before the quadrupoles and
an observation point z; behind the quadrupole magnets. The transverse beam density
distribution at the observation point is recorded by means of optical transition radiation
and a CCD camera. The horizontal and the vertical beam profiles at different phase space
rotation angles allow a reconstruction of the initial horizontal and vertical phase space
distribution at z;.

4.1 Theory of Phase Space Tomography

This section introduces the “filtered backprojection algorithm”, a standard algorithm
for tomographic image reconstruction. The application of the filtered backprojection to
transverse beam dynamics and the procedure of the measurement will be presented. The
steps of the analysis are illustrated by simulation results.

4.1.1 The Radon Transform

Take a two-dimensional Gaussian distribution g(z,y) which is rotated in space around
the z-axis. The rotation by an angle ¢ is described by a 2 x 2 matrix Mp

Mn=< cos ¢ sin¢) ' (4.1)

—sin¢ cos¢

where the coordinates z and y of the distribution g transform according to

(G-

The rotation Mg conserves the area of the initial distribution since det(Mpg) = 1. Hence

/g(u,v) dudv = /g(z,y) dr dy . (4.3)
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Figure 4.1: The Radon transform of a two-dimensional Gaussian distribution. Upper
graph: contour plot of the distribution g(z,y) and the rotated coordinate system (u,v).
The distribution is projected onto the u-axis yielding ps(u). Lower graph: The Radon
transform of the Gaussian distribution. 18 projections are displayed as a function of the
rotation angle @.

The rotated distribution § is then projected onto the u-axis yielding p(u). The projection
is not a simple geometric projection, it has to be understood in terms of an integration
of the distribution § along a “line of projection”. We obtain

() = [ §(u,v)dv (4.4)

or by using an area integral over the entire distribution

B(u) = / §(d, v)6(u - G)diidv . (4.5)
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The rotation can now be included into the projection by inserting Eq. (4.3) into Eq. (4.5)
yielding

po(w) = [ 9@, 1)é(u~zcos ¢ — ysing) drdy, (46)

where @& = x cos ¢ + ysin ¢ has been used. The index denotes the projection angle ¢. The
set of projections py(u), 0 < ¢ < m, is called the Radon transform of the distribution
g(z,y) [37].

Figure 4.1 shows the initial distribution g, the coordinate systems (z,y) and (u, v) coupled
by the rotation matrix Mg and a projection pg(u) at an angle ¢. The Radon transform is
often displayed in a two-dimensional plot where the projections are shown as a function
of the rotation angle.

4.1.2 The Filtered Backprojection Algorithm

The reconstruction gp(z,y) of the initial distribution g(z,y) is obtained formally [38] by
gr(z,y) = /0 pe(zcosd -+ ysing) de (4.7)

where zcos¢ + ysing = u according to Eq. (4.2). The backprojection described by
Eq. (4.7) is illustrated in Fig. 4.2. The profiles of a Gaussian charge distribution, eval-
uated at four rotation angles ¢ (0°, 45°, 90° and 135°) are shown at the fringe of the
lower contour plot (left column). The reconstructed distribution is computed by project-
ing these profiles back through the reconstruction plane at their specific projection angle
each of them yielding a ridge of Gaussian cross-section. The integral sums the contribu-
tions from the individual projections and yields the reconstructed distribution gg. The
star-like, wavy structure at the outer rim of the reconstructed image is due to the limited
number of projections. Increasing the number of projections averages these artifacts out.
Figure 4.3 shows the results of the reconstruction for projections every 20° and 10°. The
Radon transform consisting of 18 projections in equi-angular intervals yields a reconstruc-
tion without noticeable wavy artifacts.

However, even with arbitrarily fine angular subdivision the backprojection described by
Eq. (4.7) is not the exact inverse of the Radon transform. A careful inspection of Fig. 4.2
and Fig. 4.3 shows that the width of the center peak of the reconstructed distribution is
larger than the original width. The problem is further illustrated by Fig. 4.4: suppose
the initial distribution consists of two Gaussian peaks of the same height but of different
width . The projections then contain two Gaussian peaks of different heights. Since the
backprojection is a linear operation, the reconstructed image will have two peaks of differ-
ent heights as well. This deficiency can be cured using a filter which enhances structures
of large curvature corresponding to high “spatial frequencies” f. The projection fig(w)
is convoluted with a spatial filter function w(u) combining a frequency ramp-function
| f] which is cut off at a maximum frequency fe, corresponding to half of the sampling
frequency. The filter function is

w(w) = 5 [ 1) exp(iuf) df (4.8)
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Figure 4.2: The backprojection of a Gaussian distribution. The original distribution is
shown on the left side. The lower left graph illustrates the projections of the distribution
in angular steps of 45°. The graphs on the right side show the backprojection. The profiles
are projected back through the area of reconstruction under their respective projection
angle each of them yielding a ridge of Gaussian cross-section. (The ridge might be thought
of a sheet of paper placed onto the area of reconstruction which is folded such that the
cross-section matches the beam profile.) These backprojections add constructively to
produce the reconstructed image.

We obtain the following expression for the filtered projection ﬁg (u)

Py (u) = /ﬁ,,(u’)w(u —u')du' . (4.9)

The ramp function is responsible for the enhancement of large spatial frequencies [38]. In
Fig. 4.4 it can be observed that the convolution of the projection with the filter function
yields profiles of equal height but of decreased width. A side-effect of the convolution is the
appearance of negative components in the projection ﬁf (u). These negative components
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Figure 4.3: The backprojected Radon transform is shown for a different number of pro-
jections. Left graph: 9 projections. Right graph: 18 projections. The star-like artifacts
at the fringe of the reconstructed image vanish as the number of projections is increased.

p(u)

pF(w

u

u
Figure 4.4: The projection of two Gaussian peaks of different width but equal height
leads to two Gaussians of different width and different height (Upper right graph). Using

a filter function the narrower peak enhances, but does not quite reach the height of the
large peak, because high spatial frequencies are suppressed by the low-pass filter L(f).
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Figure 4.5: The low pass filter L(f) and the filter function w(u) for smoothing parameters
n = 0 (upper and lower left) and 7 = 1 (upper and lower right). The right filter curve
causes a stronger smoothing, because of the suppression of the secondary maxima.

cancel a positive surplus in the fringe of the area of reconstruction which originates from
the backprojected profiles at other angles.

A spatial frequency low-pass filter is introduced because of the discrete sampling of the
projections by the detection device. Let As be the width of the discrete sampling interval,
then the maximum frequency that can be recovered is of the order of 1/2As [38, 39]. A
convenient low-pass filter function is [40]

= 1_7]—!: ) I.”S.fcut

=y g S e
where the parameter f., denotes the cut-off frequency and 7 € [0, 1] the smoothness pa-
rameter. For n = 0 the low-pass is an edge filter which is, in combination with the ramp
function |f|, most sensitive to curvy structures because the high frequency components
are included. For 7 > 0 the higher frequency components are damped, which results in a
smoothing of the reconstructed image. The filter function now becomes

1 Seut
w) = grz [ 11 (1= 1) exo un) (@11)
Jeut
= #/(; f (1 - nﬁ) cos (uf)df (4.12)
which is evaluated by partial integration to
2
w(u) = 2% (x(fourt) = 1¢(fourrs)) (4.13)
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Figure 4.6: The backprojected filtered Radon transform. The reconstructed peak is of the .
same width and height as the original. The blurred reconstruction in the fringe of figure
4.2 is corrected by the negative components of the filtered projections.

Figure 4.7: The reconstruction of the object is shown for 9 (left) and 18 (right) projec-
tions. The star-like, wavy artifacts at the fringe of the reconstructed image vanish for an
increasing number of projections. In contrast to Fig. 4.3, the projection have been filtered
using Eq. (4.13) prior to the reconstruction. The smoothing parameter 7 = 0 has been
used.

where
cmv—l+ui_nq : 0
i = {T ol Zio (4.14)
2cosv _ 2 \siny
() = { = +(11 5)s Z*g. (4.15)
3 ’ =

The function w(u) is shown in Fig. 4.5 for different smoothing parameters n = 0 and
n = 1. In the following 7 = 0 will be used.
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The result of the filtered backprojection for the two-dimensional Gaussian distribution is
shown in Fig. 4.6 and Fig. 4.7. The backprojected and the original image match at the
center of the image. The star-like artifacts disappear for a sufficient number of projections
used for the reconstruction as shown for the reconstructions of projections every 45°, 20°
and 10°.

4.1.3 Discrete Implementation of the Filtered Backprojection
Algorithm

The implementation of the filtered backprojection algorithm is a straight forward dis-
cretization of Eq. (4.7), BEq. (4.9) and Eq. (4.13) [38, 41]. The detecting device samples
the projections of the transverse charge distribution in discrete steps yielding N sampling
points of equal spacing @y = kAu, k = —N/2+ 1,..., N/2. The projections are obtained
at m equally spaced angles ¢; = mj/M, j =0,.., M — 1.

The integral (4.9) is approximated by the sum [38]
N/2
ﬁf;)(kAu) = > Py (nAu)w(n - k|Au) - Au (4.16)
n=—N/2+1
where k = —N/2 +1, ..., N/2. The filter function w(u) evaluated at the sampling points
iix [40] is

b=t L k=0
w(ix) ={ —=f , k#0 and even . (4.17)

—;1,—_,;‘5 , k#0 and odd
The discretization of the backprojection (A.13) leads to

7" M‘l . . .
gr(z,y) = T 2% pg’, [mcos (%) + ysin (W—A;‘;)] - (4.18)
i

The area of reconstruction is approximated by a rectangular grid [z, yn], where [,m =
1..N. At every point (2i),¥m,) the value of u; = zcos (nj/M) + ysin (rrj/M) at a
given ¢; is evaluated. The u; then have to be compared to the measured ;. A linear
interpolation routine is used to get the best estimate for the u; and hence for ﬁf;j (u;) such
that

u

7 (u5) = ((k +1)- A—;) 7 (kAu) + (% e k) 75 ((k + 1)), (4.19)

where k <u/Au<k+1and k=-N/2+1,..,N/2.

The algorithm described above has been implemented as a Matlab [42] code. The convo-
lution and the backprojection routines are linked in C code for faster processing. Figure
4.8 shows the performance of the tomographic image reconstruction using the example
of three asymmetrically arranged Gaussian peaks of different width and height. The
presented simulation covers an angular interval of 180° and calculates 180 projections
with a resolution of 100 pixels in z and y. The pixel-to-pixel agreement, 3>;;(gr(zi, y;) —
9(zi,9;))?/ ij 9(xi,y5))?%, is better than 1%.
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Figure 4.8: Simulation with an asymmetric distribution consisting of three Gaussian peaks
of different height and width. The upper graph shows the initial distribution, the lower
graph the result of the reconstruction. The pixel-to-pixel agreement of the reconstructed
and the original distribution is better than 1%.
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Figure 4.9: Performance of the filtered backprojection algorithm applied to a Radon
transformation covering an angular interval of less than 180°. Shown is the reconstruction
of a two-dimensional Gaussian with 6 projections from 0 to 60° (top), 9 projections from
0 to 90° (middle) and 12 projections from 0 to 120° (bottom). The reconstructed image
is distorted, tilted and contains negative contributions sideways to the maximum.
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4.1.4 Reconstruction Artifacts

The Radon transform has to cover an angular interval of 180° to avoid reconstruction ar-
tifacts. Problems rise if the Radon transform contains a smaller angular interval. Figure
4.9 illustrates the problem. A Gaussian phase space distribution is chosen for graphical
clearness. The distribution is reconstructed according to the algorithm of filtered back-
projection. The angular interval spans 60° (top), 90° (middle) and 120° (bottom). The
contour plots on the right show that the reconstructed image is tilted and distorted. Fur-
thermore, negative contributions next to the maximum appear. In general the negative
contribution of the filtered profiles are needed to cancel the positive surplus of the projec-
tions taken at the other rotation angles. If projections at certain angles are missing this
cancelation cannot occur and negative contributions remain at the sides of the angular
reconstruction interval. The positive surplus at the fringe of the area of reconstruction

—
J

intensity [a.u.]
o
(6]

b
)]
(o)

Figure 4.10: Performance of the filtered backprojection algorithm with a Radon transform
sampled with varying angular spacing. As a result, the Gaussian peak becomes distorted
and the contributions of the backprojected profiles do not cancel in the fringe regions.
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within the angular interval is also not compensated due to the missing negative contribu-
tion. This effect causes the tilt of the reconstructed distribution. i

Figure 4.10 shows artifacts occurring when the projections are not equally spaced. The
Gaussian peak is distorted and non-zero contributions occur in the fringe of the area of
reconstruction.

Hence, a reconstruction free of artifacts is obtained only if the Radon transform covers
an interval of 180° where the individual projections are recorded at a constant angular
spacing. If the latter condition cannot be fulfilled, the artifacts can be avoided by an
interpolation of adjacent profiles.

4.1.5 Application of the Filtered Backprojection Algorithm to
Transverse Beam Dynamics

The task is to determine the transverse phase space distribution p;(z,z',y,7') at a re-
construction point z; of the beam line. z and y denote the spatial coordinates in the
horizontal and vertical plane, ' and y' the horizontal and vertical angular divergence.
Two, or more, quadrupoles are used to rotate the phase space distribution. The detection
device, an optical transition radiation screen and a CCD camera, are located at a position
2y downstream of z;. The setup is shown in Fig. 4.11. Under the assumption of linear
beam dynamics, the phase space coordinates z, z', y and y' are transformed by a 4 x 4
transfer matrix M

=M (4.20)

|Sw HR
LS 88

i

where the indices i and f denote the position z; and z; respectively. The integrated phase
space density is conserved yielding

/ﬂf(-’r;, =, Yy, Yy) dzy dz’y dyg dy’,=/pi(zs, @, i, yi) da; day dy; dy; . (4.21)
The OTR screen projects the four-dimensional phase space distribution onto the spatial
axes z and y yielding a transverse intensity distribution. This distribution can be pro-
jected onto either spatial axis to obtain a transverse beam profile p(z) and ¢(y). These
profiles are identical to a direct projection of the four-dimensional distribution onto the

spatial coordinate axes as presented by Fig. 4.12. The projection of the four-dimensional
phase space distribution onto the horizontal z-axis at the position z is

pilzp) = /pf(zf,:c',,y,,y',) dz’jdy,dy’f = /ﬁ,(z,,x’,)dz',. (4.22)

or by using an integral over the entire phase space distribution

p(ey) = [ r(op,a))o(as — &) diydoy (4.23)

A similar relation holds for the vertical projection ¢,(y). The beam transfer described
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by the matrix M can be included in Eq. (4.23) by
pam(zy) = /ﬁ,-(z:.-,zﬁ)&(x, — Myz; — Myyz)) dz; dz) . (4.24)

Equation (4.24) denotes the Radon transform of a phase space distribution j;(z;, z}) with
respect to a generalized rotation described by the matrix M. Notice that M performs not
only a rotation, but also a shearing of the initial distribution. The filtered backprojection
algorithm is a priori not suited to handle these generalized rotations. A transforma-
tion of the Radon transform p, a(zs) (Eq. (4.24)) to a Radon transform originated from
Cartesian rotations p, 4(u) (compare with Eq. (4.6))

Draldy) = /ﬁ,-(a:,-, 7;)8(z s — x; cos ¢ — x| sin ¢) dx; dz’, . (4.25)

has to be derived to make use of the tomographic image reconstruction. ¢ denotes the
Cartesian rotation angle. The arguments of the é-function have to be compared to perform
the latter transformation. Defining the rotation angle ¢ by

My,

VM + M3,

; My
cos¢p = and sing = —————— (4.26
V M} + M, :

o

T

%/: % M1, 1)

Figure 4.11: The beam line consisting of a quadrupole doublet and an OTR screen for
the quadrupole scan is displayed in the upper graph. The associated phase space before
the first quadrupole magnet and at the screen is shown below. For graphical clearness
Gaussian beams are assumed. The beam transfer matrix M is a function of the quadrupole
gradients generated by the currents I; and I,. The detector, usually a CCD camera to
record the transition radiation intensity, is not shown.
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q(y)

p(x)

Figure 4.12: The transverse intensity distribution on the OTR screen is a two-dimensional
projection of phase space onto the spatial coordinates x and y. The beam profiles obtained
from the projection of the OTR intensity distribution on the z and y axes and from the
projection of the phase space distribution (ps(z, ') and ps(y,y')) on the respective spatial
axes are equal.

Equation (4.24) can be written as

p,,M(z,):/ﬁ,-(x,-,z:») 8| MY +ME, . ¢—z}sing | | dz;dz; (4.27)
v ME A+ ME,
and after simplifying the argument of the §-function

Pen(zg) =——— [ Bz xf)a(””—’
’ VM + MR, TA\YMy+ MG

We arrive at the Cartesian rotation transform by introducing

—; COS p— 1 sin ¢) dz;dz;. (4.28)

i, TR . T

pz.(b(u) == ( Mlgl + MIZZ) pz,M(-Tf) with u= ﬁ . (429)
i1 i2

In other words, the measured intensity profiles are scaled by /M2 +amZ, while the axis of
projection Z is scaled by 1/,/MZ+MZ% to compensate for the distortions introduced by the
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Figure 4.13: A Gaussian phase space distribution is shown as a function of z and z’ in
a three dimensional view and as a contour plot (upper graph). Middle graph: Radon
transform according to relation (4.24). The transport matrix elements are converted to
rotation angles. The quadrupole magnet strength has been chosen such that the angular
intervals of consecutive projections are equal. Bottom graph: the associated Cartesian
Radon transform according to Eq. (4.29).
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beam transfer matrix. A similar derivation holds for the vertical plane, where M), and
M,, are substituted by Mss and Mj, [43, 44]. )

Equation (4.26) defines the Cartesian rotation angle ¢ in terms of the transport matrix
elements. The strength of the quadrupole magnets in the scanning section has to be set
such that the Radon transform spans an angular interval of 180° and that the individual
profiles are taken at a constant angular spacing.

The previous steps are illustrated in Fig. 4.13. The upper graph shows a Gaussian phase
space distribution at the position z;. The middle graph shows the Radon transform
of the Gaussian distribution as obtained from a simulation using the beam line shown
by Fig. 4.11. Equation (4.24) has been applied. Notice the defocusing of the beam as
a function of the phase space rotation angle. The magnetic fields of the quadrupole
magnets have been chosen such that the angular spacing between consecutive projections
is equidistant. The lower plot shows the associated Cartesian Radon transform according
to Eq. (4.29). Each profile is corrected in height and width as described in Eq. (4.29).

4.1.6 Determination of the Beam Parameters

The transverse beam parameters o;;, 1 < 4,5 < 2 and 3 < 4,j < 4, are evaluated
statistically as outlined in appendix A. Starting from the reconstructed phase space
distribution gp we obtain

Oy = /Ci G gr (G, G) dGid¢; (4.30)

where ¢ = (z,2',y,7’). The beam centroid is assumed to be located at the origin of the
coordinate system. The beam emittance is evaluated by

2 = 2
€x = 0110922 — 01y and €y = 033044 — O34 - (431)

4.1.7 Incorporation of Space Charge Effects

The high bunch charges in the TTF linac have a significant influence on the focusing of
the beam, in particular in the low energy section. The space charge forces have to be
included in the beam transfer matrix M of the accelerator section used for the quadrupole
scan. It is sufficient to consider linearized space charge forces by dividing the lattice in
intervals of about 1 mm length. At each point, defocusing lenses with a strength

2N, 1

ke = 4.32
V2r 05 (05 + Uy) o7 ( )
2Nr, ¥

ky = (4.33)

V21 oy (0: + Uy) oy

are added to the magnet lattice. Here, v denotes the Lorentz factor, r. is the classical
electron radius, o;, 0, and o, the rms bunch dimensions. Gaussian shaped bunches are
assumed. The transfer matrix M with space charge defocusing is evaluated in several
iterations [20]:

1. Assume reasonable transverse beam parameters gy, 012, 033 and o34 at the begin-
ning of the accelerator section used for the quadrupole scan.

4.2 Parabola Fit Analysis 57

2. Calculate the beam transfer matrix without space charges and record the beam
dimensions o, o, and o, at every subdivision.

3. Introduce space charge kicks according to formulae (4.32) and (4.33) where the
required beam dimensions are obtained from the previous calculation. Record the
obtained beam dimensions at every subdivision.

4. Repeat step 2 until the result of the beam transfer matrix converges. The calculation
needs approximately 10 iterations.

The beam transfer matrix M is used to calculate the setting of the quadrupole currents
to record beam profiles spaced by equal phase space rotation angles. The filtered back-
projection algorithm is applied to reconstruct the phase space distribution and a set of
reconstructed beam parameters at the beginning of the accelerator section is evaluated.
If the initially assumed and the reconstructed beam parameters do not coincide, the ini-
tial parameters in 1) have to be varied and the procedure has to be iterated until the
reconstructed and the initial beam parameters are self-consistent.

4.2 Parabola Fit Analysis

The transverse emittance and the transverse beam parameters can also be obtained by a
parabola fit analysis. The beam size z,,,; at the measurement point 2y is related to the
beam parameters at the reconstruction point z; by

Bk i &
Trms = Miy oul,, — 2Mu Mz 013, + M7, 03, (4.34)
Pralim Lo
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Figure 4.14: Quality of the parabola fit technique for a Gaussian charge distribution (left)
and the asymmetric charge distribution (right). The reconstructed beam parameters are
shown in the graphs. The input parameters are: € = 1.0-10"%m, o, = 1.0 - 10~%m,
012 = 0m (left graph) and € = 1.8-107°m, 03 = 2.0-10°m, 0yp = 1.0- 10~%m (right
graph).
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where My, and M;, denote the cosine- and sine-like elements of the transfer matrix.
Dividing Eq. (4.34) by M%, yields

2

rms __ Mll
2 2
Mi,  Mi

2
T M "
oul, - 2=t o, + o2l, (4.35)

My

Hence z2,,,/M? depends parabolically on the ratio of My,/Mz. A parabolic fit to the
data yields the beam parameters at the reconstruction point z;. The beam emittance is
then derived by Eq. (4.31). Figure 4.14 shows the quality of the parabola fit technique. A
Gaussian charge distribution yields a perfect parabolic shape and the second-order poly-
nomial fit recovers the initial beam parameters of ¢ = 1 - 10~%m, oy; = 1-10"°m? and
012 = 0m. The parabola fit for an asymmetric charge distribution consisting of three
Gaussians of different height and width does not work well. The initial beam parameters
e=1.8-10"%m, 0y = 2-10"%m? and 0 = 1- 107%m cannot be recovered by the fitting

procedure.

The conclusion is that the parabola fit technique is suitable only for nearly Gaussian
charge distributions but fails for more complicated transverse charge distributions.

Chapter 5

Determination of the Transverse
Beam Parameters

Quadrupole scans using the beam produced by the rf photo injector and the thermionic
injector will be presented in this chapter. The experimental setup, the processing of the
beam intensity profiles, the steps of the tomographic reconstruction and a discussion of
the results will be given.

5.1 Experimental Setup

The experimental setup consists of the optical diagnostics system which is used to record
the transverse beam intensity distributions and the quadrupole scan accelerator section.

Radiation Screens

Precise beam size measurements are performed with transition radiation which is produced
at a screen consisting of a 40 nm thick layer of aluminum evaporated onto a 25 ym thick
Kapton foil. The foil (34.5mm x 28.5mm) is stretched in a metallic frame (50 mm x
40 mm). The screen is mounted at an angle of 45° with respect to the axis of the accelerator
yielding a 90° reflection of the radiation. A transition radiation, a scintillating (Al,0;)
and a calibration screen are mounted on a vertical mover and can be inserted into the
beam pipe.

Camera and Readout

The light is collected by an achromatic lens (f = 100 mm) and focused directly onto the
CCD array of a camera. The light intensity is regulated by gray density filters. The
magnification is V = 0.25 and the resolution is 60 zm [45]. Standard, interlaced CCD
cameras with 512 x 768 pixels of 20 x 20 yum size are used. The images are digitized by a
Macintosh frame grabber system and made available for data processing.

Calibration Screen

The calibration screen [46] is an aluminum sheet with six markers arranged in a rectan-
gular pattern (2 x 3). The distance of neighboring markers is 10 mm. The calibration
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screen is used to convert the pixels of the CCD image to the transverse dimension of the
beam intensity distribution.

Magnetic lattice

The quadrupole scan section consists of two quadrupole magnets which can be powered
separately. The 102mm long magnets are separated by 64 mm. The gradient g is given
as a function of the quadrupole current I by

¢ [T/m] = 0.0039281 + 0.71659 - I [A] . (5.1)

The distance between the second quadrupole and the location of the transition radiation
screen is 1873 mm.

5.2 Measurements with the Photo Injector Beam

The rf gun photo injector produced 20 bunches of 1nC charge at a repetition rate of
1 MHz. The beam energy in the quadrupole scan section was 16 MeV. Space charge
effects have to be taken into account for the evaluation of the beam transfer and during
the tomographic reconstruction by the application of the self-consistency method outlined
in chapter 4. Tomographic measurements using the photo injector beam will be used to
present the steps of the analysis.
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Figure 5.1: Image processing of the acquired beam intensity profiles. Upper left: raw
image. Upper right: background subtracted and X-rays removed. Lower left: noise
reduction by a two dimensional Fourier transform filter. Lower right: Smoothing of the
fringe of the distribution.
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Figure 5.2: Projections belonging to the upper left, lower left and lower right graph of
Figure 5.1.

5.2.1 Data Processing

The post-processing of the beam intensity distributions is shown by Fig. 5.1. The raw im-
age taken by the CCD has a non-zero offset and noise is superimposed (upper left graph).
The subtraction of a background image, taken without beam at the same quadrupole
setting, removes the offset and corrects for damaged pixels on the CCD. The dark current
(electrons accelerated by the strong fields of the rf gun which do not originate from the
photo effect at the cathode) is subtracted by the background picture as well. X-rays, cre-
ated by the beam passing the screen, cause excessive signals of single CCD pixels. These
spikes are removed and replaced by the average of the signals of the neighboring pixels
(upper right graph). A two dimensional Fourier transformation is performed to remove
noise from the image. The contour line including 86% (20;) of the charges is evaluated.
The charges included by the contour line are used for the inverse Fourier transformation
shown by the lower left graph in Fig. 5.1. The high frequency noise is suppressed yielding
a smooth central maximum. The low frequency components, however, become visible in
the fringe of the image. Simulation calculations show that these curvy structures are ar-
tificial and need to be suppressed. An averaging procedure is applied for the pixel signals
with less than 5% of the maximum signal. These signals are replaced with the average of
the 20 next neighbors. The resulting image shows a clear peak rising smoothly from the
background. Figure 5.2 shows the intensity profiles belonging to the upper left, lower left
and lower right graph of Fig. 5.1. The overall shape of the profile does not change, the
noise is reduced significantly.

The beam intensity distributions recorded during the quadrupole scans using the photo
injector beam are shown by Fig. 5.3. The horizontal and the vertical beam profiles are
superimposed on the beam intensity distribution. The second beam spot appearing in
the images of the third row originate from an inhomogeneity of the Pockels cell selecting
the laser pulses sent to the photo cathode. The resulting inhomogeneity of the laser beam
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Figure 5.3: Representative set of beam spots and beam profiles during a quadrupole scan
performed at the TTF photo injector.

is transferred directly to the electron beam yielding a vertical phase space distribution
which differs significantly from a simple Gaussian. The problem of the laser turned out to
be a valuable check for the quality of the tomographic reconstruction as will be presented
in the following section.
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Figure 5.4: Radon transformation of the vertical phase space distribution of the rf gun
beam in the injector section. The corrected beam intensity profiles — see Equation (4.29)
- are plotted as a function of the phase space rotation angle ¢.
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Figure 5.5: Reconstruction of the horizontal phase space distribution from a quadruple
scan performed at the T'TF photo-injector. Upper graph: three dimensional view. Lower
graph: contour plot.

5.2.2 Tomographic Reconstruction

To apply the filtered backprojection algorithm, the beam profiles are corrected in height
and width according to Equation 4.29 and then plotted as a function of the phase space
rotation angle ¢ in Fig. 5.4. For graphical clearness only eight vertical beam profiles are
presented. The double peak is clearly visible in several profiles. For the Radon transform
thirteen profiles covering an angular interval of 130° are recorded. Tt is not possible to
cover a larger angular range with the two quadrupole magnets available. The beam is
defocused such that the intensity on the transition radiation screen does not suffice for a
clear beam image. The data does therefore not cover an angular interval of 180° and the
missing projections are approximated by a linear extrapolation.

Figures 5.5 and 5.6 show a three-dimensional view and a contour plot of the reconstructed
horizontal and vertical phase space distributions of the photo-injector beam (E = 16 MeV,
@ = 1nC). The reconstruction point, shown at the beginning of the beam line in Fig. 2.8,
is located in front of the quadrupole doublet Q1INJ1 behind the capture cavity. A Radon
transformation containing 120 (interpolated) profiles has been generated to obtain the
reconstructed distributions. The horizontal phase space distribution consists of a single
peak and the contour lines are of nearly elliptical shape. A Gaussian charge distribution,
yielding ellipses in phase space, is therefore a good approximation. The vertical phase
space distribution shows the double peak already seen in the direct image in Fig. 5.3.
This result emphasizes the quality of the tomographic reconstruction and shows that the
diagnostic technique is capable to reconstruct complex phase space distributions.
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Figure 5.6: Reconstruction of the vertical phase space distribution from a quadruple scan
performed at the TTF photo-injector. Upper graph: three dimensional view. Lower
graph: contour plot.

5.2.3 Transverse Beam Parameters and Emittance
The transverse beam parameters o1y, 0g9, 012, 033, 044, and o34 are evaluated by applying
Fq. (4.30)

oij = /Ci G px (G G) d¢id¢; where ¢ = (z,7',y,9)

to the reconstructed phase space distribution p;(z,z') and py(y,y’). Charge densities
lower than a threshold value are not considered to prevent reconstruction artifacts from
affecting the evaluation of the beam parameters. The threshold is adjusted dynamically
for every measurement, generally about 95% of the integral charge density distribution is
used to evaluate the beam parameters. The beam emittance €, and ¢, is then determined
using Eq. (4.31)

2 " 2
€ = 01102 — 01y and €, = 033044 — 034 .

Figure 5.7 shows the phase space contour enclosing 39% (lo emittance) and 86% (20
emittance) of the charge density. The measured normalized rms emittances are

v-€6=55-10""m and 7-e=9.5-10"m.
The transverse beam parameters are

33-10"m?® and 0,,=52-10"%m
39-10"m? and 03 =13-10"m.
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Figure 5.7: Contour plot of the reconstructed horizontal phase space density. T'he contour
lines enclosing the area of the 1o and 20 emittance are shown.

5.2.4 Discussion of the Systematic Errors

The accuracy of the emittance measurement is determined by the systematic error of
the reconstruction code due to the resolution of the optical imaging system, beam jitter,
longitudinal misalignment and field errors of the quadrupole magnets. The interpolation
of missing profiles and the uncertainty of the space charge dominated beam transfer add
to the systematic uncertainty.

Simulations

The quality of the tomographic reconstruction is estimated by simulations using a sym-
metric and an asymmetric charge distribution. The symmetric distribution is a Gaussian,
the asymmetric distribution consists of three Gaussians of different rms width and height
arranged asymmetrically in phase space (see Fig. 4.8). The initial distributiomn is tracked
to the OTR screen for different quadrupole settings and projected onto the z and 2’ axis.
During tracking, a beam jitter and an uncertainty of the transfer matrix M can be intro-
duced by allowing a random variation of the tracked phase space distribution and of the
transfer matrix elements. The obtained Radon transform is then used for the tomographic
reconstruction. The quality of the reconstruction is judged by the relative difference of

the input and output emittances.

Beam Jitter

The beam stability was investigated in the injector by analyzing the beam intensity dis-
tributions over a time interval of 40 minutes, which is longer than the time needed for a
quadrupole scan. Figure 5.8 shows the horizontal and the vertical beam position and the
beam width (determined by the rms of the beam profiles). The horizontal beam centroid
is gently drifting towards positive values while the vertical centroid remains stable. The
correlated beam movement is corrected for during the reconstruction and should there-
fore have no influence on the result of the measurement. Notice the appearance of sudden
horizontal beam movements towards smaller values. At the time being this effect is not
well-understood and needs further investigation. The variation of the beam width over
the measurement period of 40 minutes is less than 40 microns (5%).
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Distribution Aefe Aoy Jon (%] | Aora/orz (%)
Symmetric | 4.0+ 0.1 <1 =]
Asymmetric | 11.5 £+ 1.1 3.8+0.4 8:1.£0.3

Table 5.1: Systematic error on the beam parameters determined by simulation of the
tomographic reconstruction. 18 projections at a constant angular steps of 10° are com-
puted. The Radon transform is interpolated to 120 profiles. No smoothing is applied in
the filtered backprojection. A symmetric and a asymmetric phase space distribution has

been used.

Table 5.1 shows the relative systematic error of the reconstructed emittances and beam
parameters simulated with the measured beam instability. The symmetric phase space
distribution can be recovered with Ae/e = (4.0 + 0.1) %, the asymmetric distribution
with Ae/e = (11.5 4 1.1) %. The beam dimension in the simulation is adapted to the
parameters of the measured charge densities (see Fig. 5.7). 18 projections with an angular
spacing of 10° have been evaluated and the Radon transform is interpolated to 120 profiles.
No smoothing by the filtered backprojection is applied. The computation assumes a
longitudinal positioning of the quadrupole magnets and the transition radiation screen of
better than 1 mm. The relative error of the quadrupole field strength Ag/g should not

exceed 1%.

Influence of Space Charge Defocusing

Space charge forces have to be included to calculate the beam transfer in the injector sec-
tion. The additional space charge defocusing reduces the available range of rotation angles
because the intensity on the transition radiation screen does not suffice for a beam image
at certain quadrupole settings. It is therefore not possible to obtain a Radon transform
covering 180°. The missing beam profiles in the Radon transform have to be extrapo-
lated. Simulations show that the result of the tomographic reconstruction depends on
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Figure 5.8: Left graph: horizontal and vertical beam position for a period of 40 minutes.
Right graph: horizontal and vertical beam size for the same time period.
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Figure 5.9: Relative emittance and transverse beam parameters as a function of the
number of electrons per bunch. The transfer matrix fulfills the self-consistency condition
for a simulated bunch charge of 6.25 - 10° electrons. The solid, dashed and dotted curves
indicate the systematic error of the reconstructed emittance and beam parameters if the
true bunch charge is different than assumed for the self-consistency condition.

which beam profiles are missing. If the waist of the beam is scanned symmetrically, then
the systematic error of the reconstructed emittance due to the missing beam profiles will
be smaller than Ac/e = 10 %.

Figure 5.9 shows the relative systematic change of the emittance and the beam parameters
as a function of the bunch charge. The description of the space charge dominated beam
transfer depends on the accuracy of the bunch charge measurement. The transfer matrix
M has been adjusted to fulfill the condition of self-consistency for 6.25 - 10' electrons per
bunch. The solid, dashed and dotted curve in Fig. 5.9 show the variation of the emittance
and the beam parameters if the true bunch charge differs from this value. Then the
beam transfer is not modeled correctly by the program and wrong beam parameters are
determined although the self-consistency condition is fulfilled. A bunch charge uncertainty
of 10% yields a systematic uncertainty of Ae/e = 4%, Aayy /o1 < 1% and Aoy /012 = 8%.

Error Discussion

The transverse emittance of the 16 MeV beam is

[<1]

Yex (55102 £0.540.3)- 10 °m (
e = (95794 +£1.3405)-10"°m. (

Il

2
3)

(<]

The first error represents the systematic error of the tomographic image reconstruction
(beam jitter, longitudinal misalignment, quadrupole field error and interpolation), the
second error the uncertainty due to space charge forces and the third error the statistical
error of three consecutive measurements. The uncertainty of the space charge term is
derived from an estimated uncertainty of the bunch charge measurement of 0.1 nC and
from the result of simulations containing only 13 projections in the Radon transform. The
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Figure 5.10: Comparison of measured beam profiles and projections of the reconstructed
phase space distribution tracked to the OTR screen.

study of systematic effects indicates that there is a tendency to overestimate the emittance.
Hence the error bars in Eq. (5.2) and (5.3) are asymmetric. The beam parameters oy,
012, 033 and o34 evaluated from the reconstructed horizontal and vertical phase space
distribution are

on = (3.3+0.1£05+0.2)-10""m? (5.4)
o = (52+0.1412+0.2)-10%m (5.5)
o33 = (3.940.1+0.5+0.2)-10 'm? (5.6)
034 (1.340.140.640.1)-10""m (5.7)

where the errors represent the systematic errors due to the tomographic image reconstruc-
tion, due to space charge forces and the statistical error of the measurement.

The measured horizontal emittance of 5.5-10%m at the end of the injector represents the
best beam quality expectable for the operating parameters used. Smaller emittances can
be realized with a higher-gradient rf-accelerating field of about 50MV/m and a smaller
laser pulse length of o, < 1.5ps.

Self-consistency Check of the Reconstruction

The reconstructed phase space distribution is tracked forward to the transition radiation
screen using the quadrupole settings as in the tomographic scan. Figure 5.10 shows a
comparison of the phase space distribution projected onto the spatial coordinate axis and
the measured beam intensity distribution. The agreement of the measured and recon-
structed beam profiles is excellent. Only slight differences are visible at the tails of the
profiles. The reconstruction of the transverse phase space distribution therefore yields
reliable numbers for the beam parameters. This result demonstrates the applicability of
tomographic image reconstruction techniques for transverse phase space diagnostics.

5.2 Measurements with the Photo Injector Beam

69

?

160

Main Solenoid Current [A]

170

180

o

-7
T gX 10
g 3
E 12 =
£ - E 03 —o-" G
i (tomography) e 6 > 0,
E 10 -t | E - Oy
£ (tomography) £
@ g i - € ,E- 4 + B 0y
f =1 = ¢
2 5 ; ,l(
3 6 N'_" ¢
: e
§ o
z

160

Main Solenoid Current [A]

170

180

Figure 5.11: Left graph: horizontal and vertical emittance measured at the T'TF photo
injector by phase space tomography and the slit technique (only vertical emittance de-
termined). Right graph: beam parameters determined by phase space tomography. The
emittance and the beam parameters are plotted for different gun solenoid magnetic fields
and solenoid currents respectively. Both the primary and secondary solenoid have been
varied while keeping a constant ration of I,/I, = 1.8.

5.2.5 Further Emittance Studies using the Photo Injector Beam
Slit Emittance Measurement

The emittance determination by transverse phase space tomography has been compared
to a slit emittance measurement. For this purpose a screen with horizontal slits of 100 zm
width and separation is moved into a beam of 1 nC charge and 16 MeV energy. The image
of the beam has been recorded using optical transition radiation and a CCD camera.
The idea of the method resembles the hole-camera principle of geometrical optics. The
observed distribution and the width of the images of the individual slits can be used
to determine the beam width and angular divergence [47]. Figure 5.11 (left) shows a
comparison of the vertical beam emittances measured by the tomographic and the slit
technique using the photo injector beam. The emittances agree within errors.

Optimization of Solenoid Currents

The fields of the gun solenoids are varied to minimize the emittance of the rf gun beam.
Two solenoid current scans with different laser spot diameters on the photo cathode have
been performed to determine the optimum solenoid setting. Figure 5.11 shows the beam
emittance and the beam parameters measured for three different settings of the solenoid
coils, i. e. 158 A & 86 A, 165A & 90A, 176 A & 96 A for the primary and secondary
solenoids respectively. The normalized horizontal and vertical emittance (left) and the
beam parameters (right) are plotted versus the primary solenoid current. The laser spot
diameter on the photo cathode is d = 3mm. The horizontal emittance is increasing
with increasing solenoid current. The variations of the vertical emittance are not signif-
icant. Currents of 165 A and 90 A yield a normalized horizontal and vertical emittance
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of ye; = 5.5-107°m and e, = 9.5- 1075 m respectively and have been used as standard
solenoid settings. i

Figure 5.12 shows the normalized horizontal and vertical emittance as a function of the
the variation of the primary and secondary solenoid currents for a laser spot diameter of
d = 10mm. A fixed ratio between the solenoid currents I,,/I, = 1.8 is maintained. The
minimum emittance is obtained at f,, = 166 A as shown in the left column. In a second
step, the primary solenoid is fixed at I, = 166 A and the current of the secondary solenoid
is varied. The optimum emittance of ye; = 9-107°m and ¢, = 17 - 10~%m is found at
I, = 166 A and I, = 82 A. The larger emittances are mainly caused by the larger laser
spot on the photo cathode.
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Figure 5.12: Normalized horizontal and vertical emittance measured at the T'TF photo
injector using a quadrupole scan with tomographic image reconstruction techniques. Left
column: wvariation of the primary and secondary gun solenoid current at constant ratio of
I,/Is = 1.8. Right column: variation of the secondary solenoid with the primary fixed at
I, = 166 A. Top row: horizontal emittance. Bottom row: vertical emittance. The laser
spot diameter on the photo cathode is d = 10 mm
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Figure 5.13: Horizontal phase space distribution measured at the TTF thermionic injector.
Upper graph: three-dimensional view. Lower graph: contour plot of the phase space area.

5.3 Measurements with Thermionic Injector Beam

The TTF thermionic injector was operated with beam currents between 1 and 5mA, with
2 Hz macro-pulses of 30 s length and with a bunch repetition rate of 216 MHz. The total
number of electrons per bunch is 2.3-10%. The beam energy at the quadrupole scan section
was 9 MeV. Space charge effects in the scanning section can be neglected because of the
lower bunch charge.

Figure 5.13 shows the reconstructed horizontal phase space distribution from a scan cov-
ering an angular interval of 160°. The charge distribution shows a single peak whose
contour lines are almost elliptic close to the center. The elliptic contour lines hint at a
Gaussian charge distribution. A close inspection of the upper graph reveals still some
star-like blurring which is a remainder of the missing angular interval of 20°. Figure 5.14
shows the contour lines corresponding to the o and the 20 emittances. The transverse
phase space distribution in the vertical plane is of similar shape.

The normalized beam emittance and the beam parameters obtained for an average beam
current of / = 3mA are

v, = (3.8—0.5+0.2+0.4)-10"°m
Yo = (3.3-0.4+0.240.4)-10"°m
oit = (1.1+£0.1+0.1)-10""m?
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Figure 5.14: Horizontal phase space distribution measured at the T'TF thermionic injector.
The contour lines represent the o and the 20 emittances.

o1 = (46+03+0.2)-10"%m
033 (1.34£0.140.1)-10""m?
oy = (9.8+0.5+0.3)-10"%m.

I

The horizontal emittance and the beam parameters o1, and 015 have been measured as
a function of the beam current shown in Fig. 5.15. The transverse emittance is increas-
ing with beam current while the beam parameters remain constant. The increase of the
transverse emittance can be explained by stronger space charge forces in the thermionic
gun. The design emittance for an average beam current of 8mA is y-¢ = 5-107m.
The design current could not be achieved because of efficiency problems of the cathode.
However, it can be seen that an extrapolation of the normalized emittance will is larger
than the design value of the thermionic injector.
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Figure 5.15: Normalized horizontal emittance (left) and the horizontal beam parameters
o011 and 015 measured at the TTF thermionic injector versus the average beam current.
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5.3.1 Parabola Fit Analysis

The beam profiles recorded during a quadrupole scan measurement are analyzed using the
parabola fit analysis. The beam size z?,,; divided by the beam transfer matrix element
M}, is plotted versus the quotient of M;;/M;2. The data obtained from a quadrupole
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Figure 5.16: Parabola fit analysis of the beam profiles taken during a quadrupole scan.
The error bars indicate the statistical error of the measurement.

scan performed with the thermionic injector beam are shown in Figure 5.16. The beam
current is 3mA. The parabolic fit to the data yields the normalized emittance and the
beam parameters

Y& = (4.0=£0.5)-10"°m (5.8)
on = (1.9%£0.2)-10""m? (5.9)
o = (1.1£0.2)-10*m. (5.10)

The error bars indicate the quadratic sum of the systematic (image processing, beam
stability fluctuations, beam transfer) and the statistical error of three consecutive mea-
surements. The emittance and the beam parameters, as indicated in Figure 5.16, yield
similar results as obtained by phase space tomography. The error of the emittance and
the beam parameters can be obtained directly from the fit procedure. The quality of the
parabola fit could be improved by recording additional data points at larger My, /M,.



Chapter 6

Time Domain Techniques for Bunch
Length Measurements

6.1 Streak Camera

6.1.1 Experimental Setup

The streak camera is a device for the detection and the time-resolved investigation of
light pulses in the picosecond regime. Figure 6.1 shows the working principle. The light

Slit Sweep

Photo-
cathode

Phosphor Micro-channel
screen plate

Figure 6.1: Principle of the streak camera.

pulse travels through a dispersion-free optical system and a slit before hitting the photo
cathode of the streak camera. The slit reduces the transverse dimension of the image on
the photo cathode. The light pulse is converted to an electron pulse, which is accelerated
and swept transversely by a fast rf electric field. The resulting transverse distribution is
projected onto a phosphor screen. The image is amplified by a multi-channel plate and
then detected by a CCD camera.
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Figure 6.2: The TTF spectrometer dipole magnet with the synchrotron light mirror. The
light is reflected by a polished aluminum block through a quartz glass window verti-
cally out of the vacuum chamber. The light pulses are guided through a 11 m long light
beam line out of the tunnel. Three aluminum mirrors reflect the synchrotron light to an
experimental area where the streak camera is installed.

The streak camera' manufactured by the ARP company has an intrinsic time resolution
of gres = 2ps. A degradation of the temporal resolution may be due to the transverse
dimension of the photo-electron pulse, which is convoluted with the longitudinal electron
distribution during the sweep. To fully exploit the time resolution of the streak camera
tube a slit width of og; < 0res has to be used. In the present experiment, the bunch
length was expected to be in the order of 10 picoseconds, so a slit of 1.9 mm width (o, =
(6.2 £ 0.1) ps) was inserted in front of the photo cathode. The slit is oriented such
that the narrow dimension is parallel to the orientation of the sweep. During the bunch
length measurement, the residual transverse dimension of the electron pulse gy, has to
be deconvoluted from the measured length of the phosphor screen o; by

s = [0} — ol (6.1)
yielding the bunch length o,. The timing of the streak camera was adjusted by slowly

increasing the sweeping speed of the tube. The delay of the phase stabilized timing
signal, a 216 MHz sub-harmonic of the master oscillator, is re-adjusted at each step. The

!T thank Dr. Terry Garvey, Michel Bernard and Bernard Leblond from LAL, Orsay, France for
making the LAL streak camera available.

6.1 Streak Camera 7

camera is operable when stable light pulses are detected by the CCD camera at maximum
sweeping speed. :

Synchrotron Light Delivery Synchrotron light generated in the spectrometer dipole
at E = 170MeV is extracted by a synchrotron light mirror as shown in Fig. 6.2. The
mirror is a 50 x 50 mm polished aluminum block. The light is reflected through a quartz
window vertically out of the beam pipe and is guided through an underground beam line
of 11 m length to the optical diagnostics experimental area. The light beam line consists
of three aluminum mirrors of 76 mm diameter. No focusing lenses are used. The streak
camera and the synchrotron light beam are aligned by adjusting the last two mirrors.

6.1.2 Bunch Length Measurements

The electron bunches produced by the TTF photo injector (@ = 3nC, UV laser pulse
length o, = 15 ps) have been transfered to the spectrometer magnet with the magnetic
compressor being switched off. During the acceleration from 16 to 160 MeV, the longi-
tudinal charge distribution can be considered as invariant. Synchrotron radiation light
pulses, produced in the spectrometer dipole, are detected with the streak camera. Figure
6.3 shows the measurements yielding an rms bunch length of o, = (1.95 + 0.08) mm and
0. = (3.27 £ 0.06) mm. The left graph has been obtained for an rf phase in the gun
cavity of 20° yielding an optimum bunch compression without a significant reduction of
the bunch charge. The right graph is obtained at a rf phase of 45° yielding a reduced
bunch compression.

The streak camera measurements of the injector bunch length are summarized in Fig. 6.4.
The left graph shows the rms bunch length as a function of the rf gun phase at a fixed
bunch charge of @ = 3nC. The bunch length decreases with decreasing rf phase. The effect
is explainable by longitudinal bunching due to the head-tail velocity modulation imposed
on the bunch by the rf field. The phase ¢ = 0 indicates the phase of the rf field where the
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Figure 6.3: Longitudinal bunch charge profiles produced by the TTF photo injector at
rf gun phase settings of 20° (left) and 45° (right). Data is presented as circles, the solid
curve indicates a Gaussian fit.
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Figure 6.4: Streak camera bunch length measurements. Left: rms bunch length versus rf
gun phase (@ = 3nC). Right: rms bunch length versus bunch charge (rf gun phase set
to 30°). The solid line indicates the prediction by PARMELA. The error of the bunch
length measurement is within the marker size.

electric field changes sign and thus from acceleration to deceleration. The solid line is the
prediction by PARMELA [48]. The right graph shows the rms bunch length as a function
of the bunch charge at a fixed gun rf phase of 30°. The bunch length does not change
significantly for bunch charges smaller than 8 nC. Larger bunch charges cause a gradual
lengthemning of the longitudinal charge distribution. This lengthening can be explained by

6.2 Longitudinal Phase Space Rotations
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longitudinal space charge forces whose strength is rising proportional to the bunch charge.

The laser pulse length has been reduced by a factor of 2 during the run in spring 1999.
The reduction of the laser pulse length reduces the electron bunch length by the same
factor since the longitudinal space charge forces are of equal magnitude (Q = 3nC, 16 ps
laser pulse length compared to @ = 1nC, 8ps laser pulse length). Unfortunately, the
streak camera was no longer available to investigate the electron bunches produced with
the short laser pulses.

6.2 Longitudinal Phase Space Rotations

6.2.1

The longitudinal dispersion of a magnetic chicane followed by an off-crest acceleration in
an rf cavity can be used to translate the longitudinal charge profile into an energy profile
of the bunch. Time slices are transfered to slices of constant energy behind the rf cavity.
An energy profile measurement in the spectrometer behind the rf cavity yields then an
image of the longitudinal bunch charge distribution in front of the chicane.

Theory and Simulation

Figure 6.5 shows a sketch of the TTF linac including the rf module #1, the magnetic
chicane, rf module #2 and the dispersive section at the experimental area. To demonstrate
the method, an asymmetric charge distribution is used in the simulation. The evolution of

Figure 6.5: The longitudinal charge distribution of an electron bunch can be measured
using the longitudinal dispersion of the magnetic chicane compressor followed by an off-
crest acceleration in an rf cavity. The longitudinal phase space distribution produced by
the injector, behind rf module #1, behind the magnetic chicane and behind rf module #2
is shown. The parameters of the rf module #1 and the magnetic chicane are adjusted for
optimum bunch compression. The parameters of the rf module #2 are adjusted to rotate
the longitudinal phase space distribution between the beginning of the chicane and the
experimental area by m/2. The center graph shows a comparison of the original longitu-
dinal charge distribution with the reconstructed distribution using the energy profile in
the spectrometer section. The agreement is perfect.

this distribution along the linac is shown in Fig. 6.5. The parameters of the rf module #1
and the chicane are adjusted to obtain optimum bunch compression. The gradient and
the phase of rf module #2 are adjusted to rotate the longitudinal phase space distribution
between the beginning of the chicane and the dispersive section by 7/2. The simulation
parameters are listed in Tab. 6.1.

Equation (2.23) describes the bunch energy spread (Gg) as a function of the injector bunch
length (os5), the injector energy spread (ogs), the parameters of f module #1 (Mgs, Mg
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‘able 6.1: Parameters of the simulation.

and Uj,) and #2 (Res, Res and S4) and the longitudinal dispersion Msg of the bunch
compressor. Time slices in front of the chicane are transformed into energy slices behind
rf module #2 if one chooses the transfer matrix elements such that MsgRes + Rgg — 0.
Equation (2.23) then reduces to

2
555 = 055R§5 + U§{0'55(1 + M55M55)2 + 056A1526A436 + Sﬁ hfgﬁa‘%}
=~ (7’55R(2;5 .

The non-linear term of the second rf acceleration stage can be neglected because of the
short bunch length behind the chicane.

The longitudinal charge distribution in front of rf module #1 and the energy distribution
behind rf module #2 are shown in Fig. 6.5. From the projections one can see that the
energy distribution behind module #2 is a direct image of the longitudinal charge distri-
bution in front of module #1. The center graph in Fig. 6.5 shows in a quantitative way
that the reconstructed and the original charge profile agree perfectly.

The phase space rotation method can also be used to observe the longitudinal compression
within the chicane by varying the parameters of the second rf module. The position z;
where the longitudinal charge profile is to be determined is again given by the condition
of the form My Rgs + Rgs — 0. Here, M5 denotes the longitudinal dispersion between z;
and the end of the chicane.

Resolution The resolution of the method is limited by the resolution of the spectrom-
eter and the validity of linear beam transfer including the applied quadratic corrections.
The energy resolution of the TTF spectrometer is AE/E = 2-10~%. Hence, the spatial
resolution is given, in linear approximation, by
Az = AE/E. (6.2)
Res

Az can be minimized by choosing Rgs (at a given field gradient) as large as possible,
dEsin® 2r dE2r 2m

1
M Mmoo ~—=27.2[—] 3
Ro= T B "% m &3

since both rf modules operate at the same field gradient. For maximum resolution the
second module has to be operated with a phase ® = /2. The T'TF spectrometer then
yields a spatial resolution of

Azl = 7.5pm (6.4)
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reconstructed at Msg(29 — 2;) = 3.7cm corresponding to a chicane position at the end
of the third dipole magnet. '

The spatial resolution at the beginning of the chicane (Mss = 0.18 m) is

_ MyAE/E
res 1?66

where Rgg is chosen unity (rf phase ®; = 7/2). In the present configuration, the resolu-
tion is sufficient to determine electron pulse length produced by the chicane compressor.
Non-linear effects like cavity wake-fields and longitudinal space charge forces are small
and can be neglected.

Az| = 36 um (6.5)

The bunch length determination by phase space rotations is, in a sense, a single bunch
time-domain measurement with a resolution of about 40 ym. Intensified CCD cameras
with a gating of faster than 100 ns are commercially available and capable to resolve the
bunch spacing at the TTF linac. An excellent application of this method is the direct
observation of electron beam micro-bunching at the Stanford FEL center [49].

6.2.2 Bunch Length and Energy Distribution Measurements

For the measurements the TTF linac was operated with macropulses consisting of 20
bunches of 1 nC charge with a repetition rate of 1 MI{z. The gun cavity rf phase was 20°
to produce the shortest bunches possible. The laser pulse length was o, = 8 ps.

Energy Spread at the Injector

The energy spread at a beam energy of 16 MeV was measured in the dispersive section
of the injector by means of optical transition radiation. The minimum energy spread was
og/E=19-103.

Energy Distribution at the Experimental Area

RF module #1 is operated at a gradient 10 MV/m and a de-phasing angle of 14° to
optimize the bunch compression in the magnetic chicane (E = 90 MeV). The beam is
accelerated in the second rf module to the final beam energy of 170 MeV. The beam
energy distribution is recorded in the spectrometer located in the experimental area using
optical transition radiation.

Figure 6.6 shows the measured energy profiles at the experimental area. The measure-
ments were taken at different machine settings as shown by Tab. 6.2. The energy profile
on the left corresponds to a relative energy deviation of 9.2 - 103 (FWHM), the profile
on the right to 3.3- 102 (FWHM). The lower plots show the compression of the longitu-
dinal charge distribution through the chicane with the vertical dashed line indicating the
chicane position where the condition MsgRgs + Rgs — 0 is fulfilled. The energy profile
on the left corresponds to a FWHM bunch length of 2.6 mm at the first dipole magnet
(0, = 1.1mm, g, = 3.8 ps), the profile on the right to 280 um in the third dipole magnet
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Figure 6.6: Energy profile measurements performed behind the TTF spectrometer dipole
magnet at different rf parameter settings. The energy deviation yields 6 - 103 (left) and
3.3 1073 (right) FWHM. The lower plots show the evaluated rms confidence intervals
of the bunch length throughout the chicane. The dashed line indicates the longitudinal
position where the measured energy profile matches the longitudinal charge distribution.
Left: optimum compression. Right: over-compression.

(0, = 120 pum, oy = 400 fs).

The step-wise reduction of the rms bunch length in the magnetic chicane is shown in
Fig. 6.6. The confidence interval is obtained from a comparison of the measurements and
simulation. The rms energy spread at the spectrometer dipole magnet is computed for a
set of the following parameters: bunch length and energy spread in front of module #1,
gradient and phase of both rf modules and longitudinal dispersion of the chicane compres-
sor. Gradient and phase of the rf modules and the final rms energy spread are measured
within their error intervals. A comparison of the measured data and the results of the
simulation yields a set of possible solutions describing the compression of the longitudinal
charge distribution for the accelerator setting used. The set of possible bunch lengths is
indicated as the confidence interval (shaded area) in Fig. 6.6.
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AE/E [10_3] V055 [mm] AE] [MV/m] AE2 [MV/m] q)l [OJ d)g [o]
Left 9.2+0.2 1.3 0.1 76.54 0.3 65.2 + 0.3 13.56+5 (1445
Right 3.31+0.2 0.14 £ 0.03 76.5+ 0.3 65.2+03 |205+5|34+5

Table 6.2: TTF machine settings yielding the energy profiles shown in Fig. 6.6. The
columns indicate from left to right: relative energy spread measured in the dispersive
section, reconstructed rms bunch length, field gradient of cavity module #1 and #2, rf
phase of module #1 and #2. The injection energy is 16.5 MeV. The errors are statistical
errors of the measurements.

The average rms bunch length at E' = 16 MeV is g, = (990 4 180) um. The result is in
accord with the streak camera measurement (o, = (1.95 & 0.08) mm) if a correction is
made for the different laser pulse lengths.

The lower left graph of Figure 6.6 shows the optimum bunch compression of the longitu-
dinal charge distribution. Here, the parameters of the first acceleration module are set
to obtain a final bunch length of o, = (350 + 130) ym, 0, = (1.1 £ 0.4) fs, and energy
spread of (1.5 & 0.1) MeV behind the magnetic chicane. The lower right graph shows
an example for a longitudinal over-compression, where the minimum bunch length is ob-
tained at the third dipole magnet. The final bunch length at the end of the chicane is
o, = (500 £ 120) pm, oy = (1.7 £ 0.4) ps. The final energy spread of (550 + 30) keV is
smaller than for optimum compression. The correlation of the longitudinal phase space is
opposite with higher energy leading lower energy electrons. This opposite correlation is
decreased, eventually removed and inverted, by the off-crest acceleration in the second rf
module increasing the energies of the trailing with respect to the leading electrons. The
result is an energy profile of reduced width.



Chapter 7

Fourier Transform Spectroscopy

A Martin-Puplett interferometer is used to determine the longitudinal pulse shape by
autocorrelation of the incoming radiation pulse. The coherent power spectrurm and the
bunch form factor is derived using a Fourier transformation. This section outlines the
working principle and the spectral acceptance function of the Martin-Puplett interferom-
eter. Several data analysis techniques will be presented. Simulation results showing the
errors and limitations of the method and measurements will be presented.

7.1 Description of the Martin-Puplett interferometer

A Martin-Puplett interferometer is a Michelson-type interferometer used in the millime-
ter and sub-millimeter wavelength range. A schematic view is shown in Fig. 7.1. The
interferometer used at TTF consists of two parabolic mirrors, three wire grids, two roof
mirrors and two pyroelectric detectors. These components are mounted on a stable alu-
minum plate which is supported by an adjustable table. The interferometer components
are designed to have high precision and optical quality [50].

Wire Grids

The wire grids with an aperture of 90 mm are wound from 20 zm diameter gold-plated
tungsten wire with a spacing of 100 um. The grids have been built on a winding machine
in the workshops of the University of Aachen. The wire grids are mounted in a metallic
frame which is placed into the interferometer. The use of a microscope is essential during
the assembly of the grid to straighten out the wires and ensure a regular spacing.

Parabolic Mirrors

Aluminum parabolic mirrors with optical quality have been built in the workshops of the
Fraunhofer Institute fiir Produktionstechnik (IPT) in Aachen and of the University of
Aachen. The mirrors have a focal length of 200 mm and an aperture of 100 x 100 mm.
The parabolic mirrors are mounted on a three-point suspension and are equipped with
micrometer screws to vary the position of the reflective plane and the reflection angle.
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Figure 7-1: Schematic view of the Martin Puplett interferometer consisting of parabolic
mirrors, wire grids, roof mirrors and two detectors.

Roof Mirrors

The roof mirrors consist of two polished aluminum mirrors which are glued under an
angle of 90° into an aluminum girder. The aperture of the roof mirrors matches the clear
aperture of the wire grids. The movable roof mirror is mounted on top of an optical mover
driven by a stepping motor. The roof mirrors are equipped with a single micrometer screw
to vary the vertical reflection angle of the mirror.

Pyroelectric Detectors

Two pyroelectric detectors Molectron PI-45 with integrated FET operational amplifier
are used in the interferometer. The specification of the PI-45 detector can be taken from
Table 7.1. A resistor of 100 M is connected to the FET to achieve an signal of 30 V/W
at a bandwidth of 4kHz. A second variable amplifier is available. The detector and the
electronic circuit is housed in an aluminum box which is mounted in the interferometer. A
polished aluminum horn antenna of 83 mm length and 35.8° full opening angle is mounted
in front of the pyroelectric detector to increase its active diameter. The analogue signal
produced by the pyroelectric detector is transfered out of the TTF tunnel using an ad-
ditional current driving amplifier. A 12 bit, 1 MHz bandwidth ADC digitizes the signal

Figure 7.2: Different views on the TTF Martin-Puplett interferometer. The radiation
is collected by a parabolic mirror located in front of the vacuum window, and reflected
into the interferometer by the polarizing wire grid. The beam splitter transmits / reflects
radiation into both interferometer arms and sends the recombined beam towards the
second parabolic mirror. The radiation pulse is passing the smaller aperture analyzing
grid and is focused onto two pyroelectric detectors equipped with horn antennas.

produced during the 800 us long macropulse.

Assembly of the Interferometer

The first parabolic mirror of the interferometer is placed in front of the vacuum window.
The height of the paraboloid is fixed by the height of the transition radiation screen and
the vacuum window. The transverse position of the mirror is fixed by the condition that
the transition radiation target has to be in the focal plane of the paraboloid. The mirror
produces a parallel wavefront radiation beam which is reflected vertically up towards the
polarizing wire grid. The grid reflects the radiation horizontally into the interferometer.
The radiation is horizontally polarized because of the wire orientation. The beam divider
grid is reflecting and transmitting polarization components parallel and orthogonal to
the wire orientation towards the roof mirrors. The beamn divider grid is oriented at an
angle of 54.73° with respect to the vertical to obtain an “apparent” angle of 45° of the
dividing grid (see Figure 7.6)'. The position of one roof mirror is fixed while the other

INotice that: tan (/BAC) = tan 8/ cosa.
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Material LiTaO3
Critical temperature | 610°C
Temperature stability | 0.2%/°C

Crystal thickness 100 prm

Crystal diameter 5mm
Capacity 75 pF
Voltage Supply +15V
max. DC current 6 mA

max. output power 50 mW

Table 7.1: Specification of the pyroelectric detector P1-45 [51]

is mounted on an optical mover equipped with a remotely controllable stepping motor.
The recombined radiation from both arms is focused onto the pyroelectric detectors by
a second parabolic mirror. The analyzing grid which is located between the mirror and
the detectors, transmits the radiation polarized orthogonal to the wires to detector #1
and reflects the radiation polarized parallel to the wires to detector #2. The pyroelectric
crystals are located in the focal plane of the parabolic mirror.

Compared to a Michelson, the Martin-Puplett interferometer is a polarizing interferometer
and has the advantage of two radiation output ports. The ratio of the difference and the
sum of the two detector signals yields an interference pattern which is less sensitive to
beam intensity fluctuations than the individual detector signals [52].

7.2 Working Principle of the Interferometer

The incoming radiation pulse is polarized horizontally by the first wire grid (polarizer) and
split by the beam divider to both interferometer arms. The beam divider grid is oriented
at an apparent angle of 45° with respect to the polarizer to deliver equal field amplitudes
to both arms. The orientation of the polarization is flipped by two roof mirrors so that
the radiation pulse transmitted first, is now reflected by the beam divider and vice versa.
Generally, the linear polarization in front of the beam divider is transformed into ellipti-
cal polarization after the recombination, depending on the position of the movable roof
mirror. The analyzing grid transmits one principal axis of the elliptical polarization into
the pyroelectric detector #1 while the other is reflected into the pyroelectric detector #2.
Hence the two detectors measure anti-correlated signals when the roof mirror is moved.
The sum signal measures the total radiation power passing the interferometer.

The amplitude and the state of polarization of the millimeter wavelength radiation beam
can be described by a complex two-dimensional vector, each of the components represent-
ing the field amplitude along the axis perpendicular to the direction of propagation. An
optical device can therefore be represented by a 2 x 2 transfer matrix S relating the input
and output of the field amplitude and polarization state [29]. We choose a coordinate
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system where the = and y axis are oriented parallel and orthogonal to the wires of the
polarizing grid respectively. The optical elements of the Martin-Puplett interferometer
can be represented by the following transfer matrices.

Polarizing grid The polarizing grid polarizes the millimeter wavelength radiation.
With p, and p, denoting the spectral reflectivity of the horizontal and vertical polar-
ization state, we obtain the transfer matrix

_(m O
pP= ( <M ) (7.1)
The coordinate system is chosen to be aligned with the principal axes of the polarizing
grid.

Analyzing grid The analyzing grid is oriented at an angle of y = —90° with respect
to the polarizing grid, hence

A=(20) (3 a) (1 9)=(%a) oo
(S w¥)=(1 ) &

has been used. The coeflicients a; and a, denote either the reflectivity or the transmission
of the analyzing grid, depending on which detector is used.

where

Beam Splitter and Roof Mirrors: The transfer matrix of the beam splitter and roof
mirrors is evaluated in a coordinate system where the & axis is oriented parallel to the
wires of the beam splitter and the n axis orthogonal to the wires. In a second step, the
transfer matrices are rotated by 45° to transform é and €, to &, and €.

The radiation incident on the beam splitter is transfered to either arm of the interferome-
ter according to the grid’s spectral reflectivity p¢ and p, and spectral transmission 7¢ and
Ty for the horizontal (£) and vertical (n) field component. An incident polarization state
of 1/v/2(¢¢+€),) yields the reflected field component 1/v/2 (peé¢ + p,&,) or the transmitted
field component 1/v/2 (7¢€; + 7))

The transfer matrix of the roof mirror (horizontal deflection) is

r=(7 1) (7.4)

as can be seen from Fig. 7.3. The matrix R has to be rotated by 45° because of the
orientation of the roof mirror in the (§,17) coordinate system. We obtain

Rz(_@g).(?g)_@—éﬁ):(gg) (7.5)

After the reflection by the roof mirrors, the radiation pulses have the polarization states
1/V/2 (p¢ expidé, + pyexpidée) (reflected by the beam splitter) and 1/v/2 (1¢é, + )
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Figure 7.3: Polarization components during reflection at a vertical roof mirror. The
incident light is polarized under 45° with respect to the roof mirror axis. The electric field
component parallel to the orientation of the roof mirror (Ej) is invariant, the orthogonal
component (E,) is inverted.

(transmitted by the beam splitter) respectively. & denotes the path difference of both
interferometer arms.

The beamlets are recombined after passing the beam splitter a second time yielding the
state vector 1/v/2 ((7¢py expid + T,p¢)éy + (Type €xp id + T¢py)€¢). The transfer matrix of
the entire beam splitter and roof mirror complex therefore yields

= 0 Teppexpid+7pe \ _ (0 E
e ( TyPg €Xp 10 + Tepy i i =R (7.6)

The matrix B has to be rotated by 45° to transform & and é, to €, and €. Hence
171 -1 0 D 1 1\_1/-(D+E) D-E
B=3(17)(20) (a2 1)-3(20%8 o38) @
Notice that a perfect beam splitter yields p; = 1, p, =0, e =0, 7, = 1, § = 0, hence

B=(79 1) (7.8)

Incident. horizontally polarized radiation will therefore remain horizontally polarized (since
§ = 0), but acquires a phase shift of . As stated above, elliptical polarization will be
obtained for § # 0. The optical transfer matrix of the entire interferometer is given by
gi=ABP.

Intensity at the Detector The detector is not sensitive to the polarization state of
the incident radiation. Initially horizontally and vertically polarized radiation yield the
radiation intensity |Sy;|2+|Sa1|? and |S)a|? +|Sao|? respectively. The normalized response
function can therefore be expressed as

1 1
R = 5}_} |yl* = 5Tx (s*S) . (7.9)
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where the S;; denote the elements of the optical transfer matrix. For S = A- B - P we
obtain {

R= %n ((ABP)*(ABP)) = %’n (P*B*A*ABP) = %”ﬁ (PP*B*A*AB) (7.0)
yielding
R= -é {(D* + E*)(D + E) (pla? + pja3) +(E* — D*)(E — D)(pla} - pda?)}  (7.11)

where D and E are defined by Eq. (7.6). The expansion of R into R = Ry + Q exp(id) +
Q* exp(—id) yields a term @ exp(id) varying with the phase difference ¢ imposed by the
movement of the roof mirror and a dc offset Ry. The signal enhancement factor of the
interferometer is defined by @/Ry. The expansion yields

1
Ry = 1 {(P'llag W pga%)(pgT,, i Pan)z =k (pfaf i Pgag) (pETn i /’1)76)2} (7.12)

1
Q = g{(viad +p3ad)(oera + pure)” ~ (plod +P3a3) (gmy — pare)’}  (7.13)
and Q* = @ [53]. The optimum performance of the interferometer is obtained by using
ideal wire grids, hence setting py = a; =1, pa = ay =0, pe = 7, = L and p, = 7 = 0,
yielding @ = Q* = —1/8 and Ry = 1/4, hence

R = %(2 i)~ o)) = %(1 - g (7.14)

a, and a, can either denote the reflectivity or the transmission of the analyzing grid. Let
a; and ay in Eq. (7.14) denote the reflectivity, then R describes the detector response
of the reflected radiation (pyro #2). The detector response caused by the transmitted
radiation (pyro #1) can be described by choosing a; = 0 and a; = 1 yielding

r= % (2 + exp(i0) + exp(—id)) = % (1 +cosd) . (7.15)

The recorded reflected and transmitted radiation intensity R will be anti-correlated. For
example, for § = 0, the entire radiation power is transmitted and only one detector
records a signal. As the mirror moves, the reflected radiation intensity increases, while
the transmitted intensity decreases and so forth. This feature has been utilized in the
present interferometer design by the installation of two detectors recording the reflected
and the transmitted electric field component of the analyzing grid (installed at an angle
of 45°). The total radiation power reaching the analyzing grid is recorded by the sum of
the two signals. The ratio of the difference and the sum of the two detector signals yields
an interference pattern which is insensitive to beam instabilities.

7.3 Frequency-dependent Acceptance Function

7.3.1 Spectral Transmission and Reflectivity of Wire Grids

A theoretical description of the scattering of electromagnetic waves by a regular grid of
parallel cylindrical wires with circular cross-section and an experimental confirmation of
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Figure 7.4: Computed power transmission of a wire grid as a function of d/\ (ratio of
wire spacing and the radiation wavelength). The curves denote different ratios of wire
diameter and wire spacing. Upper graph: polarization of the electric field vector parallel
to the wire grid. Lower graph: polarization of the electric field vector perpendicular to
the wire grid [54]. The star marks the curve predicted for the interferometer grids.

7.3 Frequency-dependent Acceptance Function 93

the theory is well-established in literature [55, 56, 57]. Figure 7.4 shows the power trans-
mission of a wire grid versus the quotient of the wire spacing and the radiation wavelength
d/\. The resistance of the gold plated tungsten wire is p = 5.5 - 10~° Qm. The radiation
is approaching the grid under at incidence angle of 45°. The upper and the lower graph
show the power transmission of the polarization components parallel and perpendicular
to the orientation of the wires.

The wire grid acts as an ideal polarizer (7; = 0 and 7, = 1) only in the limiting case
of A = oo. At shorter wavelength the transmission of the “forbidden” polarization com-
ponent is increasing while the transmission of the “permitted” component is slightly
decreasing. At a critical wavelength A, = 0.59d the grid becomes transparent to incident
radiation of both polarization states. The same applies for A = \./n, wheren = 1,2,3, .. ..
The factor 0.59 is caused by the orientation of the wires and is derived in the next section.
Wire grid serve as a proper polarizers, beam dividers and analyzers only for wavelengths
significantly longer than A.. Unwanted diffraction patterns will occur at shorter wave-
lengths. The critical wavelength for 100 pm wire spacing is A, = 170 ym (corresponding
to f. = 1.76 THz), which is beyond the range covered in the experiments.
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Figure 7.5: Transmission of the wire grids used for the Martin-Puplett interferometer
as a function of radiation frequency. Left: transmission of the polarization component
parallel to the wires. Right: transmission of the polarization component orthogonal to
the wires. Data obtained by THz spectroscopy are indicated as circles. The dashed curve
denotes the prediction of [55]. The solid curve is the parameterization used to describe
the spectral transmission of the wire grids.

Transmission Measurement of the Wire Grids The spectral transmission of the
wire grids has been measured [58] by I. Wilke and M. Khazan using time-domain THz
spectroscopy?. Figure 7.5 shows the measured amplitude transmission of the wire grids
used in the Martin-Puplett interferometer. The left graph shows the spectral transmission
of the polarization component parallel to the wires, the right graph shows the transmission

21 thank Dr. Ingrid Wilke and Mr. Maxim Khazan for performing spectral transmission measure-
ments using time-domain Fourier-transform spectroscopy.
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Figure 7.6: Beam divider geometry.

of the orthogonal polarization component. There is good agreement between the mea-
surement and the theoretical prediction by [55] (dashed line). The solid line indicates an
exponential parameterization of the data and is used to describe the spectral transmission
of the wire grids.

7.3.2 Spectral Acceptance of the Wire Grid Beam Divider

The spectral acceptance of a wire grid depends not only on the wire parameters (diameter,
wire spacing, wire material), but also on the orientation of the wire grid relative to the
incident radiation. Figure 7.6 shows the geometry of the beam divider grid. The wire grid
is located in the ABCD plane with the wires oriented along AC. The radiation is incident
along CE. The plane ABEF represents the projected plane of the wire grid perpendicular
to the propagation of the electromagnetic radiation. The projected wire orientation is
along AE.

The following coordinate system is introduced: the z-axis points along the direction of
the wires along AC, the x-axis is oriented perpendicular to the wires in the plane of the
grid ABCD. The y-axis is oriented perpendicular to the plane of the grid, along GE. In
polar coordinates, the unit vector € is defined as

€ = (sin 0 cos ¢, sin 0 sin ¢, cos ) (7.16)

where @ is the angle Z ACE in Fig. 7.6. ¢ is oriented in the z,y plane.

An incident electromagnetic wave with momentum k and magnitude |k| = w/c has a
moment.um component perpendicular to the orientation of the wire grid (in the x,y plane),
which is k = |€- k| = |k|sin@. & is called the effective wave number of the radiation
interacting with the grid. The wire grid is operated in zeroth diffraction order, for wave
numbers smaller than |k|o = 27/d (normal incidence). For arbitrary incidence, the Bragg
diffraction condition is (k,+27n/d)? = k%, where n denotes an integer. Using k, = kcos ¢,
the lowest critical wave number is given by

|klc Iklﬁ

" sinf(1+cosg)’ {7
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Equation (7.17) can be more conveniently expressed by the angle a = / CBE, denoting
half of the reflection angle of the wire grid, and 8 = / BAE, denoting the apparent angle
of the wire grid in the projection plane with respect to the vertical. The colatitude # can
be expressed in terms of @ and 3 by

sinf = — = ok = AR = ) (7.18)
AC /oD +AD?  \/AB2+BC?  \feos? g+ 38 :
where BC?/AE? = (BC?BE?)/(BE?AE?) = sin? 8/ cos® a has been used. We obtain finally
. cos v
N PO . S (7.19)

1 —sin? acos? 8 '
The azimuthal angle ¢ can be found by equating the y component of the unit vector
Eq. (7.16, sin @sin ¢, with

: EG
sin(m — @) = CE = cose (7.20)
(see Fig. 7.6), hence
cos ¢ = sinacos 3. (7.21)

Equation (7.19) and (7.21) introduced into Eq. (7.17) yields for the lowest critical wave

number
lkle 1 [1—sinacosf
|klo ~ cosa\ 1+sinacosf’ @2)

The quotient £l yields for @ = 45° (90° deflection at the wire grid): ke — 0.59 for

Iklo |klo
=0, {ﬁ; = 0.82 for # = 45° and {i,:J'; = 1.41 for 8 = 90°.

Equation (7.22) describes the variation of the critical wavenumber for non-perpendicular
incidence on a wire grid. Fig. 7.4 shows the transmitted radiation power at a wire grid
where a = 45° and = 0°. Notice that the critical wave number, hence the performance
of the grid, can be improved by a factor of 2.4, if 3 is changed to 90°. The abscissa of
Fig. 7.4 will be scaled by 2.4 while the characteristic of the data is invariant. The opti-
mum spectral acceptance of the beam divider can be achieved for 8 = 90°. More generally
stated, the orientation of the beam divider wires should be as parallel as possible to the
reflection direction. To optimize the present interferometer assembly, the beam divider
should be oriented horizontally. As a direct consequence, the roof mirrors, the polarizing
and the analyzing grid then have to rotated by 45°.

Figure 7.7 shows the quantity @ (Eq. (7.13)) of the beam divider-roof mirror configura-
tion of the Martin-Puplett interferometer as a function of the radiation frequency. The
spectral transmission and reflectivity functions pe, p,, 7¢ and 7, (see Fig. 7.4) arc inserted
into Eq. (7.13). The polarizing and analyzing grids are assumed to be ideal. The beam
divider angles are @ = 45° and 3 = 45°.

The spectral acceptance of the beam divider-roof mirror configuration decreases grad-
ually from @ = 1.0 to @ = 0.8 for frequencies up to 1 THz (a/d = 0.2) which is the
frequency range covered by the experiments. The acceptance is decreasing linearly at
larger frequencies. Ideally, a ratio a/d = 0.3 yields a flat response up to 1.2 T1lz.
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Figure 7.7: The factor @ (Eq. (7.13)) of the beam divider - roof mirror configuration [55].
The curves correspond to different quotients of wire diameter a and wire spacing d.
7.3.3 Diffraction in the Interferometer

Diffraction phenomena of freely propagating electromagnetic fields can be described in the

slowly varying envelope (SVE) approximation [59]. The time dependent wave equation

~pa V2E =0. (7.23)
can be solved by the general ansatz for an electromagnetic wave traveling in z direction
E(r, z,t) = Ey(r, z) exp(—i (kz — wt)). (7.24)

We obtain in cylindrical coordinates

21 i
Tlaltis) 100ty 0 {———aE‘g:’ - ilch(r,z)} — ik

OEy(r, 2)

e T 0.  (7.25)

or? v . On 0z

The SVE approximation implies that the variation of the field amplitude F, within a
wavelength is small compared to the field amplitude, hence 0E,/9z < kEy. The equation

then yields
OEy(r, z) ) lan(r, z) o 2ikBE(,(r,z)
or? s 0z
Equation (7.26) is suitable to describe diffraction phenomena as the decrease of the field
amplitude along the direction of propagation z is coupled to an increase of the radial

boundary of the field distribution.

=0. (7.26)

Equation (7.26 is solved by
7 2 2
By(r.$,2) =1 (2L> o exp(—(%) ) exp(i(wt — @, — O7)) (7.27)

Ey w? ) w
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Figure 7.8: Field intensity distribution of the Iy(r,2)-mode of waist wy and Rayleigh
length zp. R(z) denotes the radius of the surfaces of constant phase, #, denotes the
far-field divergence angle.

where
kr?

(I)T: ﬁ

, Pr=kz—(2p+1) arctan(zi) ’ (7.28)
0

Lg(r) denotes the Laguerre polynomials of order p. The azimuthal order is set to zero
to describe the radial symmetry of transition radiation. p indicates the number of zeros
in the radial field distribution. A Gaussian field distribution (“Gaussian beam”) is the
solution for p = 0.

The angular distribution of transition radiation can in principle be expressed by a su-
perposition of the E,(r,¢,2), p = 0,1,2,.... For the discussion of diffraction effects in
the Martin-Puplett interferometer it is sufficient to consider a Gaussian field distribution
(p = 0) of appropriate dimension because diffraction affects the field amplitudes at large
radii only. The intensity distribution of a Gaussian field distribution Iy(r,z) = EjF is
shown in Fig. 7.8. The shape of the radial field amplitude distribution is invariant while
the field propagates along the z-axis. Starting from z = 0, the beam size increases as

P
w = woy/1+ (z_) (7.29)
0
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Figure 7.9: The diffracted electromagnetic field envelope in the Martin-Puplett interfer-
ometer. The aperture radius of the following optical elements is shown. PG: Polarizing
Grid, BS: Beam Splitter, RM: Roof Mirror, PM: Parabolic Mirror, AG: Analyzing Grid,
HA: Horn Antenna. The field envelope is drawn for A = 1cm and A = 1 mm.

where wy = 20 denotes the waist dimension of the light beam and

2

Twg
==t 7.
20 ¥ ( 30)
is called the Rayleigh-length. The divergence angle f; is
P s (7.31)
mTwy

The beam size w(z) at a given axial position z is, by convention, defined as Eqo(w) := Eyp/e
or Ing(w) := Iy/e? respectively. The transverse phase factor ®r describes the wave front
of the propagating light wave. The bending radius of these surfaces of constant phase is

R(z) =z (1 + (‘Z—°)2) (7.32)

yielding R — oo for z — 0 (plane waves at the waist), R = 2z for z = 2 (maximum
bending) and R — z for z — oo (spherical waves with origin at z = 0). The longitu-
dinal phase term ®;, indicates the phase of the field distribution along the direction of
propagation.

Propagation through an optical system A complex beam parameter

. 1 hei X
q=2z+1z oOr E= —

5 == (7.33)
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is introduced to transform the field amplitude along the optical beam line. Transfer
matrices

1
ol ( (1) <11 ) (driftd) or L;= ( -3 (1) ) (thin lens, focal length f)  (7.34)

describe the beam transfer [29] and can be used to transform the complex beam parameter
q [59] according to
_Lugi+ Ly %
" Loigi+ Lag (7:35)
Diffraction Figure 7.9 shows the envelope of the electromagnetic fields traveling through
the Martin-Puplett interferometer. The envelope covers the first parabolic mirror (z = 0)
entirely (see chapter 3), so that wp is equal to the effective mirror radius. The optical
transfer matrix L of the Martin-Puplett interferometer consists of a drift, a parabolic
mirror with 200 mm focal length, a drift of 1200 mm including the passage through the
polarizer, beam splitter, roof mirrors, a second parabolic mirror with 200 mm focal length
and the final drift of 110 mm through the analyzing grid to the detector. The transition
radiator is in the focal plane of the first parabolic mirror, hence the initial complex beam
parameter is gy = mwo/(—1\) (the slope of the light envelope after the first parabolic mir-
ror vanishes). The aperture of the optical elements is sufficiently large that the evaluated
light beam envelope passes the elements without losses. However, a limiting effect occurs
at the horn antenna of the detector. The detector dimension (see appendix F) therefore
limits the spectral acceptance of the interferometer. The acceptance becomes wavelength
dependent only for A > 2mm as is indicated for the A = 10 mm envelope.

7.3.4 Detector Acceptance

The detection of far-infrared radiation is based on energy absorption by the pyroelectric
crystal leading to a heating which is accompanied by the creation of surface charges.
The spectral dependence of the detection process is influenced by the dimension (5 mm
diameter and 100 zm thickness) and the permittivity of the pyroelectric crystal. The
crystal diameter causes a long-wavelength cut-off because diffraction effects reduce the
coupling of electromagnetic fields whose wavelength exceeds the detector diameter. The
thickness and the permittivity of the crystal lead to an interference effect at the front and
the back surface of the crystal. The interference effect was discovered in the course of the
measurements and not known before. The effect was investigated also by other groups
[34, 60] and improved the understanding of the measured coherent power spectra. In
the following we let ¢ be the amplitude transmission of electromagnetic fields entering the
crystal and r be the amplitude reflection at the back and the front surface. I% denotes the
incident electric field amplitude, then the final electric field amplitude inside the detector
is

Eiyn = {Eotexp(iwt) + Egtr exp(—iwt) exp(—id)} (rz exp(—?z‘rf))2 (7.36)
n=0

1

= Byt {exp(iwt) + rexp(—iwt) exp(=i0)} y—5 oo

(7.37)
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Figure 7.10: The acceptance function of the pyroelectric detector is dominated by an
interference effect at the front and the back face of the crystal. Minima of the acceptance

function repeat every 250 GHz.

where § = 2mnd/\ is the phase of a reflected beamlet with respect to the incident wave

Fy. n denotes the refractive index of the crystal. The detected intensity i, = Ein(Eip)*
is

B2 (1412

PR ., . i & (7.38)

1+ 74— 2r2cos 24

Figure 7.10 shows the expected detector response I;,/Iy as a function of radiation fre-

quency. The interference effect yields an oscillatory acceptance function. Minima and

maxima of the acceptance function repeat every 250 GHz which is determined by the

optical path length of nd = 600 um.

Calibration Measurement of the Detector Acceptance The pyroelectric detector
acceptance is shown in Fig. 7.11. The data originate from a calibration measurement® [61]
performed with output power calibrated GaAs Read-type IMPATT diodes. The detector
acceptance has been measured at 10 dedicated frequencies (see appendix F). The result
is a slight increase of the acceptance between 72 and 128 GIIz, a maximum at 156 GHz
and a decrease toward larger frequencies. The increase below 156 GHz is explainable by
the reduced radiation coupling due to the detector diameter, the decrease towards larger
frequencies by the interference effect. The oscillatory characteristic of the latter effect is
shown as solid curve, representing the optimum fit of Eq. (7.38) to the data. Only four
data points (f > 150 GHz) of the calibration measurement are available to perform the
adjustment. Besides, the coherent power spectra measured with the shortest bunches at
the TTF linac have been investigated to determine the frequency interval between the
maxima and the minima of the acceptance function. The rapid decrease of the detector
acceptance at low radiation frequencies is described by a vertical line at f = 135 GHz
in Fig. 7.11 followed by smooth interpolation of the data towards smaller frequencies.
The gray curve is finally used to model the acceptance of the pyroelectric detectors.
The quality of the calibration data is not yet satisfactory and it is advisable to repeat
the calibration for an increased frequency range. For the time being, the uncertainty of

3thanks to Dr. Jiirgen Freyer, Lehrstuhl fiir Allgemeine und Angewandte Elektronik, TU Miinchen,
for the use of the millimeter-wave radiation sources to perform the calibration measurement of
the pyroelectric detectors.
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Figure 7.11: Spectral acceptance of the pyroelectric detector. The data of the calibration
measurement are shown as circles. The solid line indicates the interference characteristic
of the detector crystal matched best to the result of the calibration measurernent. The
detector acceptance is reduced below 130 GHz due to diffraction effects. The gray curve
is included into the interferometer acceptance to account for the destructive interference
in the crystal and the small frequency cut-off of the pyroelectric detectors.

the detector acceptance function limits the precision of the Martin-Puplett interferometer.

A second result of the calibration measurements is the effective diameter of the horn
antenna mounted on the pyroelectric detector (see appendix I'). The effective diameter
of the horn antenna is d = 32.1 mm, while the true diameter is 55.9 mm.

7.3.5 Transmission of the Quartz Window

The spectral transmission of the quartz Suprasil I vacuum window has been measured [58]
using time-domain T'Hz spectroscopy. Figure 7.12 shows the amplitude transmission which
is decreasing continuously from T'= 0.8 at f = 200GHz to T' = 0.2 at f = 1.5THz. A
linear fit to the data yields T' = 0.86—0.52- f [THz] and is used to model the interferometer
acceptance function.

7.3.6 Aluminum Foils of Finite Thickness

The electric characteristics of the aluminum transition radiation films can be described
by macroscopic quantities because the thickness of 40 nm corresponds to about 80-100
atomic layers. This thickness is sufficient for high reflectivity in the optical regime but
the question is whether the incident sub-millimeter radiation may penetrate the metallic
layer since the wavelength is much larger than the thickness of the aluminum film. If
penetration occurs, it will be frequency selective and will lead to an additional acceptance
function.
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Figure 7.12: Transmission of the Suprasil II quartz glass window as a function of radiation
frequency.

For simplicity the bunch fields are replaced by a free-propagating sub-millimeter elec-
tromagnetic wave incident perpendicularly onto the metallic boundary. The electric and
magnetic fields inside the conductor can be described by

E = E exp(—,/m—zmi z) exp (i\/ u,u;mu z— iwt) (7.39)
= o s

EE: e : —Ax E 7.40
H o= (1) (7.40)

where 7 points along the direction of propagation of the electromagnetic wave. o denotes
the conductivity and p the permeability of the metal. The conductivity of aluminum at a
temperature of 20°C is o = 3.54 - 107 1/Qm. Both field amplitudes drop exponentially in
the metal. The penetration depth d, where the fields have dropped to 1/e of their surface

Figure 7.13: A free-propagating electromagnetic wave incident perpendicularly onto a
metallic boundary.
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Figure 7.14: A free-propagating electromagnetic wave with momentum k is incident per-
pendicularly onto an aluminum sheet of thickness a. The wave is partially reflected (k')
and transmitted (k') at the first boundary. At the second boundary the transmitted part
is again partially reflected (k''T) and transmitted (k'").

2
6= ‘/uu e (7.41)
0

For aluminum, z = 1, we obtain a skin depth of 280 nm at a frequency of f = 100 GHz,
which is clearly larger than the thickness of the aluminum layer. Obviously the second
boundary of the aluminum layer has to be taken into account to calculate a reflection and
transmission coefficient for the incident wave. Assume a metallic layer of thickness a and
a coordinate system arranged as in Fig. 7.14. The electromagnetic wave with momentum
(k) is incident from the left and is split into a reflected (k') and transmitted wave (k') at
the first boundary at z = 0. At the second boundary (z = a) the wave with momentum
(k") is split again into a reflected and transmitted component with momentum (k') and
(k™) respectively. In steady state, the electric fields in vacuum are given by

values, is called the skin depth

E™ = Elexp(ik™z — iwt) (7.42)
3 im x fm
:  IRRWEL. AT (7.43)
How
and in the metal by
Er = }_:}'{,' exp(—Az) exp(iAz — iwt) (7.44)
- (1+1) o s
Hit = x E" 7.4
V2 \ " Wit
where A = /pow/2 and k= ké, has been used. The superscripts m and n denote the

different field components either in vacuum or in the material, so Eq. (7.42) describes I,
E'! and E'Y and Eq. (7.44) E' and E''' respectively.

The tangential component of the electric field (7 x E) and of the magnetic field (7 x H )
have to be continuous at z = 0. Using 7 x (k X E) =-F (ﬁ . k), we obtain a set of four
equations

By 4 Bl E} + BT (7.46)
Bk ERT Q29 [ @ fur. emi ~
How  pow 2 Y ppew (25 - E") S

Il
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B} exp(ik"’a) = Elexp(—Aa +ida) + E} exp(Aa — iAa) (7.48)

k . 1+19) [ o
—ElV expik’a
pow P V2 \ pow
El exp(—Aa + iAa)) 3

(—Eé” exp(Aa — i4a) + (7.49)

Equations (7.46) - (7.50) can be solved for B}, E}f, E{!! and E[Y as a function of the
amplitude of the incoming wave E;. We obtain for the reflected amplitude BT

(+ = iL) sinh(Aa — iAa)

2 w 1
Y e rer ) B
(531?74",753)311111(Aa—1ﬂ:4)+—(lf2 S cosh(Aa—iAa)

Figure 7.15 shows the amplitude reflectivity E}!/Ey as a function of the thickness of the
aluminum layer. The frequency of the electromagnetic wave is f = 100 GHz (A = 3.1 mm).
We get the important result that a 40 nm aluminum film is not at all penetrated by the
electromagnetic wave.

An experimental test was made to verify this surprising result. The transmission of
the transition radiation screen was measured using time-domain THz-spectroscopy [58].
No signal was observable. From the signal to noise ration of better than 6000 we can
conclude that the transmission in the frequency band between 200 GHz and 1.5 THz is
smaller than 1.5 - 1073, The important conclusion is that the reflection of far-infrared
transition radiation by thin 40 nm aluminum foil amounts to 100% without noticeable
frequency dependence.

7.3.7 Spectral Acceptance of the Martin-Puplett Interferometer

The suppression of high-frequency and low-frequency components of the far-infrared tran-
sition radiation field distribution inside the Martin-Puplett interferometer has been dis-
cussed in this section. To summarize:

1
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Figure 7.15: Amplitude reflectivity EZ’/E, as a function of the thickness of the aluminum
film. The radiation frequency is f = 100 GHz.
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Figure 7.16: The spectral acceptance function of the TTF Martin-Puplett interferometer.

1. Suppression of low frequencies:
(a) At low frequencies the source dimension of transition radiation exceeds the
diameter of the aluminum foil. (chapter 3).
(b) The enlarged opening angle due to Fresnel diffraction (chapter 3).
(¢) Diffraction in the interferometer.

(d) Efficiency reduction of the pyroelectric detector at frequencies lower { han 130 GHz.
2. Attenuation of high frequencies:

(a) The transmission of the quartz window (chapter 3).

(b) The reflectivity of the polarizing grid.

(c) The spectral acceptance of the beam splitter and the roof mirrors.

(d) The transmission and reflectivity of the analyzing grid.
3. Attenuation of intermediate frequencies:

(a) The interference effect in the pyroelectric detector.

(1a), (1b) and the influence of the transverse beam size on the form factor (3) depend on
beam energy and the transverse beam emittance. Figure 7.16 shows the overall interfer-
ometer acceptance for E = 170 MeV, ye = 5-10"%m.

7.3.8 Systematic Error of the Acceptance Function

The systematic error of the spectral acceptance function has been evaluated using the
errors of the transmission measurements performed with the optical elements of the in-
terferometer and by varying the parameters of the diffraction calculation.
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Quartz Window and Wire Grids: A linear fit of the quartz window transmission
(Fig. 7.12) has been included in the interferometer model. The transmission data of
the wire grid have been fitted by an exponential curve (Fig. 7.5). The rms scatter of the
window and grid transmission data around the fit yield (o§!) .. = 0.022 and (0%.), ,,, = 0.01
respectively. The errors of the window, polarizer, beam splitter and analyzer transmission
and reflectivity coeflicients are uncorrelated and add quadratically.

Diffraction: The influence of diffraction on the spectral transfer function can be es-
timated by varying the dimension of the transition radiation screen, the size of first
parabolic mirror of the interferometer, the active detector dimension and the beam en-
ergy. The transition radiation screen and the parabolic mirror have rectangular shape
but are approximated by circles of equal area in the model. To obtain an error estimate
of the approximation, the diameter is varied to either enclose or inscribe the rectangular
screen and mirror. The active detector diameter is varied by 10% and the beam energy by
5%. A small size of the transition radiation screen, parabolic mirror and active detector
diameter in combination with a higher beam energy causes the strongest suppression of
long radiation wavelengths. On the other hand, a large transition radiation screen, mirror
and detector diameter and a lower beam energy reduces the suppression. The difference
of both computations yields an error band for the diffractive terms in the interferometer
acceptance function. The diffractive error is added quadratically to the errors obtained
previously.

Transverse Beam Size: The assumed transverse beam size is varied by a factor be-
tween 0.5 and 2. The difference of the frequency domain expressions is added quadratically
to the previously obtained errors. The error caused by the transverse beam size is small
compared to the other errors because of the small transverse emittance.

Detector: The thickness and the permittivity of the pyroelectric crystal, which deter-
mine the separation of the maxima and minima of the acceptance function, is adapted to
the calibration measurements and the data taken with the shortest bunch length measured
at TTF. A variation of the optical path length within 30 um was possible to describe the
measurements. The amplitude reflectivity in Eq. (7.38) is a free parameter to fit the in-
terference characteristic to the calibration measurement. Unfortunately only four points
of the calibration measurement, f > 130 GHz, are suitable to determine 7 yielding a large
uncertainty of this parameter.

The error interval of the interferometer acceptance function is shown in Fig. 7.17.

7.4 The Autocorrelation Function

Autocorrelation and Power Spectrum

The radiation intensity at the pyroelectric detectors (Eq. (7.14) and Eq. (7.15)) can be
rewrittem in terms of radiation intensities I

= %Io (1 £ cos(wr)) . (7.51)
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Figure 7.17: The spectral acceptance of the Martin-Puplett interferometer. Superimposed
is the error interval of the acceptance function.

The phase difference § has been substituted by the angular frequency w and the time
difference 7 corresponding to the path difference in the two arms of the interferometer.
In case of a continuous spectrum

Julr % i L e (7.52)

The difference of both detector signals is evaluated to subtract correlated signal fluctua-
tions originating from beam instabilities, hence

1,07 - Iy = ‘1-1 4 R cosfur) i (7.53)

The radiation spectrum can now be evaluated by inverting the cosine Fourier transforma-

tion of Eq. (7.53)
8

-~ 00

Tw) == /o (I, (r) — I_(r)) cos(wr) dr . (7.54)
The Fourier transformation of the difference interferogram I, (r) — I_(7) yields the fre-
quency spectrum of the incident radiation pulse. The difference interferogram is normal-
ized by the sum of the two signals to correct for radiation intensity fluctuations during
the measurement.

Simulation

Three longitudinal charge distributions are considered: a Gaussian and two asymmetric
distribution composed of two Gaussians. The beam energy is 170 MeV and the normal-
ized emittance is € = 5-107%m. The transverse charge distribution is assumed to be
Gaussian. The coherent transition radiation spectrum and the autocorrelation response
of the Martin-Puplett interferometer are simulated as follows:
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1. Determination of the longitudinal bunch form factor jy,, by Fourier transformation
of the longitudinal charge distribution. i

2. Convolution of the form factor with the spectral acceptance function of the inter-
ferometer.

3. Computation of the coherent power spectrum |f,.|* and application of an inverse
Fourier transformation to obtain the autocorrelation function (Eq. 7.54).

Figure 7.18 shows the longitudinal charge distribution of the Gaussian (left) and the
asymmetric (middle, right) bunches. The second row shows the coherent power spectrum
|Agwl®. The power spectrum is obtained by Fourier transformation of the longitudinal
charge distribution, by a multiplication with the acceptance function and by squaring
the result. The autocorrelation function (third row, solid line) is obtained by an inverse
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Figure 7.18: Top: Three longitudinal charge distributions versus time. Middle: The
expected longitudinal from factor versus angular frequency w. Bottom: The expected
autocorrelation in the Martin-Puplett interferometer (solid curve). Superimposed is the
autocorrelation of the longitudinal charge distribution disregarding the spectral accep-
tance (dashed curve).
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Figure 7.19: Top: the longitudinal from factor versus angular frequency. Bottom: the au-
tocorrelation function. The shaded area denotes the uncertainty interval of the conversion
from the charge distribution to the form factor and autocorrelation function.

Fourier transformation. Superimposed is the autocorrelation function without any spec-
tral corrections (dashed line).

The spectral corrections cause significant oscillations of the autocorrelation function due to
missing frequency components. The main maximum is narrower with spectral corrections
than without. The FWHM of the autocorrelation function is therefore not a reliable
measure of the bunch length. To learn about the shape of the longitudinal distribution,
more sophisticated analysis techniques have to be applied to the entire autocorrelation
and the coherent power spectrum.

Error Investigation The uncertainty of the bunch form factor and the awtocorrela-
tion function are dominated by the imprecise knowledge of the spectral acceptance of
the interferometer. Figure 7.19 shows the error intervals of the form factors and the
autocorrelation functions for the three charge distributions.

7.5 Reconstruction of the Longitudinal Charge Dis-
tribution

The variety of effects influencing the spectral acceptance of the interferometer make a
direct determination of the longitudinal bunch charge distribution difficult. The analysis
presented in this section therefore follows the opposite way: a “reasonable” longitudinal
bunch charge distribution is assumed and Fourier transformed. After the application of the
interferometer acceptance function, a prediction of the coherent power spectrumn and the
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Figure 7.20: Reconstruction of a symmetric longitudinal bunch charge distribution. Left
column: bunch charge distribution. Middle column: coherent power spectrum. Right
column: autocorrelation. Row (a): simulated bunch charge distribution, coherent power
spectrum and autocorrelation. Row (b) shows a Gaussian distribution of amplitude A; =
1.2 and rms width of o, = 300fs fitting best to the highest order maximum of the
simulatec] power spectrum. The power spectrum and the autocorrelation are shown as
solid curves. Row (c) shows a second Gaussian distribution superimposed contributing
the missing lower frequency contributions (A2 = 1 and o, = 1ps). The corresponding
power spectrum and the autocorrelation are presented as solid curves.

autocorrelation function is made. The parameters of the initial bunch charge distribution
are varied until the predictions are in good agreement with the measured autocorrelation
and power spectrum. This procedure does of course not yield a unique description but
appears €0 be the most useful compromise in view of the many limiting effects. In general,
the measured data cannot be described by a single Gaussian distribution. A sum of
several Gaussian distributions of different amplitudes A; and widths o;, which can even
be displa.ced, have to be considered. The reconstruction of a symmetric and an asymmetric
bunch charge distribution will be discussed in the following.
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Symmetric Charge Distribution

Consider a charge distribution composed of two Gaussians of amplitudes A; = 1.2, 4, = 1
and variance g, = 300 fs and o5 = 1 ps respectively. Row (a) of Fig. 7.20 shows the bunch
charge distribution, the coherent power spectrum and the autocorrelation of the charge
distribution as circles. To reconstruct the initial charge distribution, a single Gaussian is
assumed first. The amplitude and the width of the Gaussian is varied until its Fourier
transformation fits the highest order maximum of the coherent power spectrum (b). A
second Gaussian distribution is superimposed to match the lower frequency components.
In the present case, the rms width of the second distribution may not be shorter than 1 ps
to prevent contributions at frequencies larger than 500 GHz in the power spectrum. The
amplitude and the rms width is varied until an agreement is reached.

Asymmetric Charge Distribution

The question arises whether asymmetric charge distributions are analyzable with the
presented method. See Fig. 7.21, row (a), as an example and consider the asymmetric
charge distribution introduced in Fig. 7.18. The simulated coherent power spectrum and
the autocorrelation are shown as circles. Row (b) shows a Gaussian charge distribution
whose frequency contribution fits to the highest order maximum of the coherent power
spectrum. In contrast to Fig. 7.20, we obtain too large low frequency components which
cannot be compensated by just adding a Gaussian curve of smaller rms width. Hence a
more complicated bunch charge distribution must be considered.

The Gaussian charge distribution of amplitude A; is separated into two Gaussians of
amplitude A;/2 and equal rms width. In a second step the two Gaussians are separated
in time. The adaption of the highest order maximum will degrade but while continuing
the separation, the adaption will eventually improve. The optimum separation of the two
peaks is found for the best re-adaption of the highest order maximum of the coherent
power spectrum (c). The lower frequency components are also reduced. Thirdly, we su-
perimpose a Gaussian distribution of larger rms width. The amplitude and the width of
the charge distributions are varied until the coherent power spectrum and the autocorre-
lation function agree with the simulation (d).

It can be very time-consuming to work out arbitrary longitudinal charge distributions
using the presented method. The use of a superposition of Gaussian charge distributions
is sufficient for the present data quality which is heavily impeded by the interferometer
acceptance.

Error Investigation The three longitudinal charge distributions of Fig. 7.19 have been
used to investigate the systematic error which is due to the interferometer acceptance.
The autocorrelation and the coherent power spectrum are evaluated for the upper and
lower boundary curves of the interferometer acceptance function. The charge distribution
is then reconstructed using the method outlined above. The error range of the longitu-
dinal charge distributions is shown as the shaded area in Fig. 7.22. The error is largest
at the maxima and local minima of the distributions. Allowing for a variation of the line
shape within the full range of the error band, it is still possible to distinguish between a
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Figure 7.21: Reconstruction of an asymmetric longitudinal bunch charge distribution.
Left column: bunch charge distribution. Middle column: coherent power spectrum. Right
column: autocorrelation. Row (a): simulated bunch charge distribution, coherent power
spectrum and autocorrelation. Row (b) shows a Gaussian distribution of amplitude A, =
1.56 and rms width of oy = 500fs fitting best to the highest order maximum of the
simulated power spectrum. The corresponding power spectrum and the autocorrelation
are shown as the solid curves. The lower frequency contributions exceeding the simulated
power spectrum indicate a more complicated charge distribution. Row (c¢) shows two
Gaussian distributions of amplitude A;/2 and rms width o, separated by A = 1.7ps. At
a separation of A, the highest order maximum of the simulated (circles) and predicted
power spectrum (solid curve) are, again, in agreement. The lower frequency components
are reduced. The amplitude and the rms width of both Gaussians has been optimized, as
shown in (d), to obtain the simulated charge distribution.
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Figure 7.22: Estimation of the systematic error of the time- and frequency-domain fitting
technique to determine the longitudinal bunch charge distribution. The charge distribu-
tions introduced in Fig. 7.19 are reconstructed. The shaded area denotes the uncertainty
of the reconstructed bunch shape. The error is mostly due to the uncertainty of the
spectral acceptance function of the interferometer.

single peak, shoulder and double peak distribution. The method is, on the other hand, not
able to predict the forward-backward symmetry of the longitudinal charge distribution,
because this information is contained neither in the power spectrum nor in the autocor-
relation.

More sophisticated data analysis techniques, as the application of a Kramers Kronig
analysis on the bunch form factor, make sense only if the form factor is known precisely
over a large spectral interval. A Kramers Kronig analysis [62], which has been suaccessfully
applied at the linac of the Cornell synchrotron [63], can be used to reconstruct the phase
information of the longitudinal form factor. Once the phase is known, a direct inverse
Fourier transformation can be used to derive the bunch charge distribution. In the present
case, a deconvolution of the longitudinal form factor with the interferometer acceptance
would lead to large uncertainties in frequency intervals where the acceptance function is
small. The technique would become applicable when a different detection device with a
flat spectral acceptance, for example a photo acoustic detector, is used.

7.6 Determination of the Bunch Length

7.6.1 Analysis of the Autocorrelation

Under the assumption of a Gaussian charge distribution, the bunch length and the width
of the autocorrelation function are closely related. A Gaussian of variance o, yields an
autocorrelation with a variance of 20,. The idea is to predict the length of the lomgitudinal
charge distribution directly from the width of the autocorrelation function. The influence
of the interferometer acceptance function on this simple method will be investigated in
this section.

A simulation is used to investigate the error of the bunch length determinatiom using the
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Figure 7.23: FWIIM of the autocorrelation used for the determination of the bunch
length. The simulated charge distribution consists of two Gaussians of equal rms width
o but different height 4; (0 = 1ps, Ay = 1, A, = 0.6). The ratio of the width of the
autocorrelation and the width of the charge distribution is plotted versus the separation
of the two Gaussians. The error bars are due to the uncertainty of the spectral acceptance
of the Martin-Puplett interferometer.

FWHM of the autocorrelation function. The longitudinal charge distribution is described
by two Gaussians of equal rms width (¢ = 1ps) but of different height A; (4, = 1,
Ay = 0.6). To vary the FWHM of the initial charge distribution, the two Gaussians are
separated in small steps relative to each other. Figure 7.23 shows the ratio of the FWHM
evaluated from the autocorrelation function and the FWHM of the initial charge distri-
bution as a function of the translation of the two Gaussians. The error bars are due to
the uncertainty of the spectral acceptance of the interferometer.

For a negligible separation of the two Gaussians, the ratio of the two is close to unity.
The ratio is decreasing for a larger separation of the charge contributions. The initial
charge distribution becomes longer, at large variations a shoulder or a double peak is
formed. The width of the autocorrelation, on the other hand, does not change, which is
explainable by the suppression of the low frequencies by the acceptance function. The
bunch length is therefore under-estimated.

To conclude, the FWHM of the interferogram measured by the TTF Martin-Puplett
interferometer is a good measure of the FWHM bunch length only under the assumption
of Gaussian longitudinal bunch shapes. More complicated bunch shapes lead to results
which deviate from the correct FWHM value easily by a factor of two.

7.6.2 On-line Monitoring of the Bunch Length

It is possible to monitor the bunch length on-line by observing the detector signal ampli-
tude. Figure 7.24 shows the coherent power spectrum of Gaussian charge distributions of
0. = 1ps (left) and o, = 2.5ps (right). The spectral acceptance function of the Martin-
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Figure 7.24: Coherent power spectrum of a Gaussian charge distribution. Left: o; = 1 ps.
Right: oy = 2.5 ps. The detector response is proportional to the integral coherent power
spectrum marked by the shaded area. Shorter bunches yield larger signals.

Puplett interferometer is included in the computation. The detector signal is proportional
to the integral of the power spectrum shown in Fig. 7.24 (shaded area). For a constant
bunch charge and average beam current, shorter bunches will cause larger detector sig-
nals. Figure 7.25 shows the expected relative detector signal versus bunch length under
the assumption of the charge distributions in Fig. 7.19. This method has been extensively
used in optimizing the bunch compression.

7.7 Bunch Length Measurements
Bunch length measurements performed with the Martin-Puplett interferometer are pre-

sented in this section. The instrument has been used to determine the longitudinal charge
distribution of the beam produced by the photo injector and the thermionic gun.
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Figure 7.25: Pyroelectric detector signal as a function of the bunch length. Bunch charge
and average beam current are invariant. The error bars are due to the uncertainty of
the acceptance function. The left, middle and right graph corresponds to the respective
longitudinal charge distribution introduced in Fig. 7.19.
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7.7.1 Measurements with the Photo Injector Beam

The rf gun photo injector produced 20 bunches of 1nC charge with a repetition rate
of 1MHz. To measure the bunch length, the beam was transfered to the high energy
experimental area (E = 170 MeV) with and without the use of the magnetic chicane.
Bunch compression using the magnetic chicane was investigated.

Alignment of the Interferometer

The interferometer is aligned using the light of a diode laser which is guided into the beam
pipe about 3m upstream of the interferometer and reflected by the transition radiation
screen. The laser beam is aligned on the accelerator axis by centering the spot on the
first mirror and on the transition radiation screen.

The polarizing grid of the interferometer is covered with a stretched aluminum foil to
reflect the laser beam. The beam divider is replaced by a stretched transparent foil act-
ing as an optical beam divider. The plane of the foil is identical to the wire grid. The
pyroelectric detectors and the analyzing grid are replaced by two small apertures of 2 mm
diameter distant by 130 mm to define the position and the angle of the laser beam in the
interferometer.

Pyro. Detector 0 Pyro. Detector 1

[v.Is, PyFo 0 | ADC/ENPI.ADC3/CHOZ. 1D T4V_]s T ADC/ENPI.ADC3/CHO3.1D
CES o g A A e :

il

i TERRTH 14
oL 400,
Res= 1,Biff~26

Start Measurement

e e

Figure 7.26: The signal of the pyroelectric detectors sampled by an ADC. The signal is the
integrated response over a macropulse. The duration of the detector signal is explained
by the 4 kIlz bandwidth of the amplifier. The difference between the main maximum and
the offset prior to the maximum is proportional to the incident radiation intensity.
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Figure 7.27: Left graph: pyroelectric detector signal as a function of the mumber of
bunches (@ = 1.2nC). Right graph: pyroelectric detector signal as a function of bunch
charge for three bunches.

The interferometer table is arranged such that the table is leveled out and that the laser
beam hits the center of the first parabolic mirror. The parabolic mirror is adjusted that
the reflected laser beam hits the beam splitter at the correct height and that it hits the
center of the two roof mirrors. The tilt of the roof mirrors is adjusted to produce a single
light spot on the transparent beam splitter foil. The second parabolic mirror is then
adjusted to transfer the laser beam through the two apertures.

Data Acquisition

Figure 7.26 shows the signal shape of the pyroelectric detectors. The incident radiation
intensity is proportional to the signal peak. The peak is determined by evaluaating the
maximum of a parabolic fit applied to a data sample surrounding the peak. The detector
signals are sampled every macropulse by the ADC. The detector signals, typically five
signals per position of the roof mirror, are stored for off-line data processing.

Coherence of Transition Radiation

The size of the pyroelectric detector signal depends on the number of bunches and the
bunch charge. A linear increase of the detector signal is expected when the mumber of
bunches is increased and the bunch charge is kept constant. This linear increase is indeed
observed as shown in the left graph of Fig. 7.27. In the contrary, according to Fq. (3.23),
a quadratic increase of the detector signal is expected for a variation of the bunch charge.
The non-linear dependence of the detector signal versus bunch charge is presented in the
right graph of Fig. 7.27. The conclusion is that the transition radiation generated by the
electron bunches is in fact coherent.
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Figure 7.28: Upper left: raw signals detected by the pyroelectric detectors during an
interferometer scan. Upper right: the two signals are scaled, and plotted with an arbitrary
offset of 3 and 6 V. Signal #2 is inverted. Lower left: normalized difference interferogram.
Lower right: coherent power spectrum obtained by Fourier transformation.

Autocorrelation and Coherent Power Spectrum

Figure 7.28 shows the raw signals of the pyroelectric detectors during an interferometer
scan. The anti-correlated response of the two detectors is caused by observing either the
transmitted or the reflected radiation component behind the analyzing grid. The sum of
both signals is proportional to the radiation power. A scaling correction is needed for
the slighitly different amplification of the two detectors. The scaling factor is obtained by
comparing the main maxima (obtained by a parabolic fit of the data around the peak)
of both signals and the signal average. The scaled signals are depicted in the upper
right graph of Fig. 7.28 with an offset of 3 and 6 V. The detector signals are subtracted
from each other and normalized to their sum yielding an improved signal-to-noise ratio.
Correlat.ed intensity fluctuations which are caused by bunch charge variations and orbit
instabili ties cancel in he normalized difference interferogram shown in the lower left graph
of Fig. 7.28. The coherent power spectrum (lower right graph) is evaluated by Fourier
transformation.
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Figure 7.29: Shortest bunch measured at the TTF linac. Upper left: autocorrelation.
Upper right: coherent power spectrum. Data is represented by circles. Lower left: lon-
gitudinal charge distribution matching the measured autocorrelation and the coherent
power spectrum. The solid curve shown in the upper graphs depicts the predicted auto-
correlation and coherent power spectrum of the longitudinal pulse shape. Lower right:
error estimate of the longitudinal charge distribution.

Bunch Length and Bunch Shape Determination

The time- and frequency-domain fitting analysis can be applied to the data shown in
Fig. 7.28. A superposition of three Gaussian distributions of different amplitude and vari-
ance is required to reproduce the measured autocorrelation and coherent power spectrum.
Figure 7.29 (lower left) shows the longitudinal bunch charge distribution

B0) = Nekokp | oy | 4 Bk Ll 4l e 7.55
P = A exp 207 2 €Xp %%- 3 exp —%;; (7.55)

with
A1 =062, o0,=270fs, A;=020, oy=1ps, A;=0.18, o,=2ps (7.56)

matching the measured autocorrelation and coherent power spectrum. The autocorrela-
tion and the coherent power spectrum computed from the longitudinal charge distribution
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Figure 7.30: Autocorrelation measured by the Martin-Puplett interferometer for different
rf gun phases. Tt is not possible to reproduce the interferograms using the time- and
frequency-domain fitting technique.

of Eq. (7.55) are presented in Fig. 7.29 (top row). The measurements are described very
well. The error of the longitudinal charge distribution is determined by convoluting the
charge distribution Eq. (7.55) with the upper and lower bound of the interferometer ac-
ceptance curve. The lower right graph of Fig. 7.29 shows the resulting confidence interval
as shaded area. The solid line depicts the mean bunch charge distribution. The narrow
peak of the bunch charge distribution is determined more precisely than the tails of the
distribution which is caused by the uncertainties of the acceptance curve at low frequen-
cies.

The FWHM bunch length of the charge distribution of Eq. (7.55) is (1.33 + 0.45) ps, cor-
responding to o, = (200 £ 70) um or o, = (660 + 25) fs respectively. The measurement
presented by Fig. 7.29 depicts the shortest bunch studied with the Martin-Puplett inter-
ferometer at the TTF linac. The result is in agreement with the shortest bunch length
determined by longitudinal phase space rotations. Also the pulse shape, a narrow peak
superimposed onto a wider basis, is consistent.

Measurements without Compression

The longitudinal bunch charge distribution has been measured without the use of the chi-
cane compressor to investigate the applicability of the method in the limit of long bunch
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Figure 7.31: Interferogram and coherent power spectrum measured with the beam of the
thermionic injector. Data are represented by circles. The solid line represents the predic-
tion of the longitudinal bunch charge distribution of Eq. (7.55) using the interferometer
model.

lengths. The injector parameters used for the streak camera measurements in chapter 6
have been applied. Figure 7.30 shows four interferograms measured by the Martin-Puplett
interferometer for different phases of the gun rf field ®. It is conspicuous that the shape
of the interferogram is different from previous measurements. The shape can, in fact,
not be predicted by the interferometer model. The model predicts, independent of the
shape of the charge distribution, larger oscillations at the tail of the interferogram. The
problem consists in the Fourier transformation of the measurement. The coherent power
spectrum reaches merely a frequency of 200 GHz which is below the first minimum of the
interferometer acceptance curve. The coherent power spectrum is suppressed in the entire
frequency interval so that the analysis is very much impeded. The investigation of the
FWHM of the autocorrelation function yields bunch lengths which are under-estimating
the result obtained with the streak camera measurement by a factor of 2-4.

The present analysis is not applicable for coherent power spectra which do not exceed
the frequency of the first minimum of the interferometer acceptance function. Only with
the first appearance of frequency contributions larger than 250 GHz bunches shorter than
oy = 2 ps can be confidently predicted.

7.7.2 Measurements at the TTF Thermionic Injector

The TTF thermionic injector was operated at an average beam current of 5 mA and pro-
duced 30 ps long macropulses with a bunch to bunch repetition rate of 216 M\Hz. The
bunch charge is 37 pC. The beam was accelerated to an energy of 80 MeV and transfered
to the experimental area.

Figure 7.31 shows an interferogram and the coherent power spectrum. The small sec-
ondary maxima in the coherent power spectrum indicate a bunch length shorter than
2 ps. A Gaussian bunch charge distribution fitted to the data yields an rms bunch length
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of 0, = 0.6mm (0, = 1.9ps). Further investigations of the thermionic injector bunch
length using the Martin-Puplett interferometer have been performed by [50] yielding a
minimum length of o, = 0.5mm (o, = 1.6 ps).

7.8 Possible Improvements of the Interferometer

The Martin-Puplett interferometer is limited by the acceptance of the pyroelectric detec-
tors suppressing frequencies due to an interference effect on the front and back side of the
crystal. It is advisable to replace the detector by a Golay cell (photo-acoustic detector)
having a flat acceptance in the in the frequency range between 30 GHz and 3 THz [64].
Golay-cells have a larger sensitive detector dimension which improves the low frequency
acceptance.

The overall acceptance of the interferometer can be improved by wire grids wound with
wires of 10 um diameter and 30 pm spacing. The ratio of wire diameter and wire spacing
of a/d = 0.3 is favorable for a flat acceptance of the beam splitter. The wire grid ac-
ceptance can further be improved by a rotation of the grids: a vertical orientation of the
polarizer in the present setup improves the acceptance limit of the interferometer already
by a factor of 1.4.

The transmission out of the beam pipe can be improved by the use of a crystalline quartz
window. These windows are transparent for radiation up to 3 THz. A further improve-
ment can be achieved only by the use of a diamond window, which is transparent in the
entire spectrum of infrared radiation.

The acceptance of the pyroelectric detector can be improved by increasing the distance to
the second parabolic mirror. Diffraction losses inside the beam pipe cannot be significantly
reduced, because of the limited size of the pipe and the vacuum window. An interesting
option is the use of a diffraction radiation screen, which is an aluminum foil with a circular
hole at the center. The electron bunch is traveling through the hole whereas the coherent
radiation is reflected from the foil yielding an almost “non-destructive” bunch length
measurernent [65].

Chapter 8

Hilbert Transform Spectroscopy

High-T¢ Josephson junctions offer a new spectroscopic method to determine the longitu-
dinal bunch form factor. The principle is to investigate the modification of the current-
voltage characteristic of a Josephson junction due to incident radiation. Applying a
Hilbert transformation to this modification the frequency spectrum of the radiation can
be derived. Since the principle of Hilbert transform spectroscopy is based on a purely
electric measurement, it offers the possibility of high-speed spectroscopy in the millimeter-
and sub-millimeter wavelength regime.

8.1 Electric Properties of a Josephson Junction

8.1.1 The Josephson Effect

A Josephson junction consists of two superconductors separated by a thin insulating layer.
The electrons in a superconductor form Cooper-pairs which can be described by a single
macroscopic quantum mechanical wave function. If the insulating layer is sufficiently
thin, Cooper-pairs will penetrate from one superconductor to the other by the quantum
mechanical tunnel effect. The Josephson equations are

I; = I.sing(t) (8.1)
dp 2
v Yalag I_iU(t) (8.2)

where I, is the critical current of the junction, ¢(t) is the phase difference of the Cooper
pair wave functions on both sides of the insulating layer and U(t) is the voltage across
the junction. For currents |I| < I. the dc Josephson effect occurs. According to (8.2) U
vanishes in this case. The detection of microwave radiation is based on the ac Josephson
effect, hence the junction is operated with a dc current I = I > I, leading to a non-
vanishing voltage U. Incident radiation modifies the current-voltage characteristic of the
junction, and this change is used to determine the spectral distribution of the radiation.

Josephson junctions used for a spectral analysis in the range 100-1000 GHz have to be
designed to have a negligible capacitance. Their electrical performance is then well de-
scribed by the so-called Resistively Shunted Junction (RSJ) model. An equivalent circuit
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Figure 8.1: Equivalent circuit of a resistively shunted Josephson junction (RSJ model).

is shown in Fig. 8.1. Both Cooper pairs and unpaired electrons are able to tunnel through
the insulating layer of the Josephson junction. An applied current I splits up into a
Cooper-pair (or Josephson) current (I,) and a single-electron “resistive” current (Ip).
The Cooper pair current obeys the Josephson equations.

8.1.2 DC Characteristic of the Josephson Junction

The equivalent circuit for an “autonomous” Josephson junction (without incident mi-
crowave radiation) is shown in Fig. 8.1. The bias current of the junction is a pure dc
current Iy > I.. According to Kirchhoff’s law, the current I, splits into both branches of
the circuit and the following equation holds:

h d¢
2R dt
Solving the differential equation for ¢(t) and using Eq. (8.2), an expression for the time-
dependent voltage U(t) across the junction is derived. As shown in appendix E.1 the
result is [66, 67

Iy=1;+1Ip=I.sin¢+ (8.3)

(IafL)E =1
In/I. — cos (wot)

where wp = %“RIC\/ (Io/1.)* — 1 is the Josephson frequency. An arbitrary constant phase
has been omitted. This equation shows that for I > I, an oscillating voltage U(t) arises
which derives from an alternating Cooper-pair current as well as a resistive single-electron
current. The voltage U(t) has a dec component and is not purely sinusoidal as can be seen
from Fig. 8.2. For a bias current just above the critical current a strongly distorted sine
wave is observed while with increasing bias current the oscillation becomes more and more
sinusoidal. Taking the time-average of Eq. (8.4) one obtains (see appendix A)

U= 0 for Ih<I, (8.5)
T\ RYE-1I2 for: Jo > 1; | i
The current-voltage characteristic of the junction, obtained by plotting Iy as a function
of U, is shown as the dashed-dotted curve in Fig. 8.3.

U(t) = RI, - for Ip>1, (8.4)
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Figure 8.2: Time dependence of voltage U(t) across the Josephson junction for the au-
tonomous case (no incident radiation). Top graph: Ip/I, = 1.02, bottom graph: Iy/I. = 4.
The resistance R is assumed to be 1 €, the critical current is 1 mA.

8.1.3 Josephson Junction with Incident Radiation

The incident microwave radiation is modeled by a small sinusoidal ac current which is
superimposed with the dc bias current. We consider first the case of monochromatic
radiation, the generalization to a continuous spectrum is straight forward. The total bias
current is now the sum of a dc component I and an ac component with amplitude I, and
frequency w,/2m

I(t) =1+ I,sinw,t . (8.6)

The generalization of Eq. (8.3) reads

0y ; h d
I+ I;sinwst = I sing+ ﬁd_f : (8.7)
The differential equation (8.7) has no analytic solution. It can be solved approximately if
the amplitude I, of the ac current, representing the incident radiation, is small compared
to the dc bias current. A second-order perturbation approach [66, 67, 68], outlined in

appendix E, yields a correction to the de current

Al =

1 (26R[5)Z- B for (ws # wp) (8.8)

T4l h 2

2
h Wy

where | 25
2eU

u)():T

(8.9)
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Figure 8.3: Dashed-dotted curve: time-averaged voltage across the junction as a func-
tion of the dc bias current. Solid curve: modification of dc characteristic curve due to
monochromatic incident radiation. The dc current-voltage characteristic acquires a step
at the voltage U = h/2ew,. The height of the step is proportional to the incident radiation
power. The RSJ model is assumed.

denotes the frequency of the unperturbed Josephson oscillation at the given dc bias. The
frequency wy is often called the working point of the junction, since it gives the frequency
of the unperturbed Josephson oscillation. The working point is changed by varying the
dc bias current.

Equation (8.8) diverges for wy = ws, but this divergence disappears if the internal noise
in the junction is taken into account. With noise included the equation can be written as

1 (2eRI\? Wy — Wy e,
YREEL (o2 )
81wy h (ws —wo)2+ 792 (ws + wp)? + 72 (8.10)

where 7 is a damping term introduced by the noise. Hence the junction responds to the
incident monochromatic radiation in such a way that the dc current-voltage characteris-
tic acquires a step Al in current at the voltage U = h/2ew;. The height of the step is
proportional to the incident radiation power. This is shown schematically in Fig. 8.3.

8.1.4 Hilbert Transform Spectrometry

Incident radiation consisting of a number of discrete spectral lines will lead to corre-
sponding discrete current steps in the I-U curve. Now we want to demonstrate that the
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Josephson junction, as described by the RSJ model, may equally well serve as a detector
for electromagnetic radiation with a continuous spectral distribution S;(w,) [69]. The ba-
sic point is the observation that the voltage response of the junction depends quadratically
on the amplitude I, of the ac current (see Eq. (8.10)), hence intensities can be added. For
this reason the voltage response to a continuous radiation spectrum is simply obtained
by integrating Eq. (8.8) over the frequency range of the radiation, taking the spectral
intensity S;(w,) as a weight factor.

. R2I2 o S(w,) dw,
AI—_(h) 4l Jo Ww—uf g

The pole in the integrand requires a careful mathematical treatment. The equation can
be written in the following way

2 00
Ko o 1 (2€RIC> P S(w,)dw,__ T (2(3RI

== (=2 - Y misw (812

—00 Ws — Wp "~ 8lwy wo
where P denotes the principal value of the integral and

S(w,) dw,

oo Ws— Wy

H[S(wy)] = 'P / (8.13)
is the so-called Hilbert transform (see appendix E) of the radiation spectrum S(w,). Note
that by evaluating the principal value of the integral one can use the noise-free Tiq. (8.8)
instead of (8.10). The spectral intensity of the incident radiation, computed by the inverse
Hilbert transform of (8.12), is

S(ws) = H™'(g(w»)) (8.14)
with the function :
g(wo) = 2 (26) ﬂw"n—)f](;i)ﬂ. (8.15)

Jquation (8.15) shows the quantities that have to be measured to determine the radiation

spectrum. The current-voltage characteristic of the Josephson junction has to be scanned
both with and without incident radiation. During the scan the bias current is increased
in small steps. At each step the Josephson frequency wy = 2eU/h and the modification
AU (wp) due to the radiation are measured. The current modification A7 is derived from
AU via the differential resistance Ry = dU/dI of the unperturbed I-U curve. These
quantities are used to compute the function g(wp) which is Hilbert-transformed to obtain
the spectral intensity S(w,) of the incident radiation. The square root of S(w,) then yields
the longitudinal bunch form factor.

8.2 The Josephson Junction

High-Tc Josephson junctions have been fabricated by epitaxial growth of YBayCuzO;_,
on NdGaOj bicrystal substrates [70]. A schematic view of the detector which incorpo-
rates the antennas for millimeter and sub-millimeter wave detection is shown in Fig. 8.4.
The size of the antenna varies from 1.8 mm at the outer bound to several micrometers
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Figure 8.4: A schematic view of the Josephson junction used as a detector for millimeter
and sub-millimeter wave radiation.

at the center. Here, a grain boundary in the substrate cuts the thin film of the high-T¢
superconductor, which then works as a Josephson junction. The electrical properties of
grain boundary high-T¢ junctions are very close to those predicted by the RSJ model [71].
An electrical circuit to bias the junction with a de current and to measure the potential
difference across the contact is connected to the antennas. The junction features a large
dynamic range of approximately 10° and a high sensitivity of ~ 10~ W/Hz'/? Noise
Equivalent Power (NEP) to millimeter- and sub-millimeter radiation [72]. The resolution
is around 1 GHz in the temperature range from 4 to 78 K [70].

The Josephson spectrometer was mounted at the same diagnostic station of the linac
which had been used to determine the bunch length with the Martin-Puplett interfer-
ometer. Coherent transition radiation generated at the front face of an aluminum foil
was guided through a quartz window to the antenna of the Josephson junction, using an
arrangement of mirrors and wire grid polarizers. A grid served as a low pass filter for
millimeter radiation. The junction was installed inside a pumped aluminum pipe placed
in a liquid nitrogen bath (7' = 78 K). The millimeter wavelength radiation was transfered
to the junction through an over-sized cylindrical wave-guide equipped with a copper horn
antenna for better radiation coupling!. The Josephson junction was current-biased. The
voltage response signal of the junction was amplified by a factor of 10, time-averaged by
a digital oscilloscope and recorded as a function of the unperturbed Josephson frequency
wp, derived from the time-averaged junction voltage U. The operation of the spectrometer
was controlled by a personal computer through an IEEE-488 interface.

!see also (73] for a more complete description of the experimental setup.
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Figure 8.5: Left: the current-voltage characteristic of the Josephson junction without
incident radiation. Measured data points are marked by circles. Dashed-dotted line: the
theoretical I-U curve (8.5) with fitted values for I, and R. Solid curve: convolution of the
theoretical I-U curve with Gaussian-distributed noise. Right: the differential resistance
Ry as determined from differentiation of the I-U characteristic (solid curve), compared
with point-to-point difference quotients (circles).

8.3 Bunch Length Measurements

The TTF thermionic gun was operated with the same parameters as for the interferometer
measurements. The gun produced bunches of 2.3 - 10% electrons at a repetition rate of
216 MHz. Te macropulse length was 30 ss at a repetition rate of 2 Hz. The buncher cavity
rf phase was adjusted for optimum bunching.

8.3.1 The Intrinsic Parameters of the Junction

Figure 8.5 shows the characteristic I-U curve of the Josephson junction used. The mea-
sured data points are presented as circles. A non-linear characteristic caused by the ac
Josephson effect is observed at low bias currents while an Ohmic characteristic (linear
relation between potential difference and bias current) is observed for large bias currents.
The intrinsic parameters I, and R of the junction are measured by fitting the t heoretical
I-U curve (8.5) to the data. The result is

I,=011mA R=162Q. (8.16)

The fit is shown as the dashed-dotted line in the left graph of Fig. 8.5. The agreement
with the data is quite satisfactory except in the vicinity of I, where a gradual increase
of the voltage is measured instead of the steep rise predicted by theory. The difference
is due to noise in the junction. A better representation of the experimental I-U curve is
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Figure 8.6: The analysis of the spectroscopic measurement to obtain the coherent tran-
sition radiation spectrum. Upper graph: The detector response AU as a function of U.
Lower graph: The characteristic function g(wp), as defined by Eq. (8.15), plotted versus
U = h/2ew,. The solid curve shows the extrapolation of g(wp) for small U. The measured
characteristic I-U curve of the Josephson junction without radiation is shown in Fig. 8.5.

obtained if the theoretical curve is convoluted with a Gaussian noise distribution.
- =ne
T R / RI? — IZexp (-%)dﬂ : (8.17)
/(27r02) 20

The variance o is a fit parameter. The resulting solid curve in Fig. 8.5a, corresponding
to o = 0.02 mA, provides a perfect description of the data.

The differential resistance of the junction Ry = dU/dI is computed by differentiation of
the I-U curve with noise (8.17) or by taking the slopes between adjacent data points. The
right graph of Fig. 8.5 shows that both methods are in good agreement. In the further
analysis, the differential resistance obtained from the I-U fit curve is used to avoid the
point-to-point fluctuations in the data.

8.3.2 The Spectroscopic Measurement

The spectroscopic information is contained in the difference AU between the characteristic
curves with and without radiation, which is shown in the upper graph in Fig. 8.6. AU is
transformed to AI by AI = AU/Ry, where Ry is the differential resistance shown in the
right graph of Fig. 8.5. The detector current response Al, the dc bias current I and the
time-averaged voltage across the junction U are multiplied to compute the characteristic
function g(wp) as defined by Eq. (8.15). g(wp) is shown in the lower plot in Fig. 8.6. The
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Figure 8.7: The coherent radiation spectrum as obtained from a discrete Hilbert transform
of the characteristic function g. Corrections must be applied for data points marked with
crosses. The decrease below f = 100 GHz is due to the WR-10 waveguide cut-off. These
data points are not used in the analysis. The solid curve indicates a Gaussian fit to the
power spectrum.

determination of AI is problematic for small frequencies (i. e. dc bias currents close to
I.). The differential resistance R4 drops to zero when I approaches I.. The data at small
values of U are quite sensitive to measurement errors and noise in the junction, which
has a significant influence on the differential resistance in the vicinity of I.. Therefore
the frequency range 0 < f, < 50 GHz has been omitted from the present analysis. Since,
however, g(wp) is needed at all frequencies to perform the Hilbert transform, a smooth
extrapolation function of the form

Wo

——— i = 2 I3 - .
wi + const or fo=wo/(2m) < 50 GHz (8.18)

9(wo) o
is used in the range 0 < fo < 50 GHz, shown as a solid curve in Fig. 8.6. The extrapola-
tion function has to vanish at U = 0 to generate an antisymmetric characteristic function
g(wp). The Hilbert transformation of g(wp) then leads to a symmetric power spectrum.

The intensity spectrum was calculated using an algorithm of discrete Hilbert-transform
[42]. Figure 8.7 shows the evaluated coherent radiation spectrum. The spectrum is plotted
in the frequency range between 60 and 260 GHz. The power spectrum has a maximum
at a frequency close to 100 GHz. The decrease towards smaller frequencies is explained
by transmission losses of the radiation for frequencies close to cut-off frequency (60 GHz)
of the WR-10 waveguide, diffraction of the radiation delivery line, transmission losses in
the quartz window and diffraction of the bunch electromagnetic fields at the finite size
transition radiator. These effects have been discussed in detail in chapter 7.
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8.3.3 Data Analysis

The main uncertainty of the experiment originates from the wavelength-dependent ac-
ceptance of the detector system. Read-out errors of the voltage response AU, which was
determined from a digital oscilloscope after averaging over 15 seconds, cause additional
uncertainties. The precision of the read-out of the Josephson voltage is estimated to be
better than 1 .V, the bias current power supply stability to 1 pA. The analysis of this
proof-of-principle experiment has been carried out without a detailed consideration of
the spectral acceptance function. The main interest was to show the applicability of a
Josephson junction as detector for coherent transition radiation.
A Gaussian-shaped frequency spectrum of the radiation is assumed for the determination
of the rms bunch length. A Gaussian fit applied to the data, shown as a solid curve in
Fig. 8.7, results in

oy = (102 +16) GHz . (8.19)

oy refers to the intensity spectrum which is proportional to the square of the form factor.
The rms bunch length is therefore given by

1
¢ ==

7(\/50’/

The resulting rms bunch length is smaller than the bunch lengths determined by the
Martin-Puplett interferometer. The experiment, however, shows that a Josephson junc-
tion can be applied to record the form factor of picosecond electron bunches and that a
pulse length of correct magnitude is derived. Improvements can be expected from a quasi-
optical coupling of the radiation to the junction and an improved electronic read-out. A
special cryostat equipped with a quartz window is in preparation. The bandwidth of the
read-out electronics will be adapted to a bandwidth sufficient to measure selected bunches
within TTF macropulses [74]. The experience collected during the proof-of-principle ex-
periment and the improvements proposed show great promise that Hilbert transform spec-
troscopy will become a quick and reliable technique to determine sub-picosecond electron
bunch lengths.

=12 ps.. (8.20)

Chapter 9

Conclusion and Outlook

Transverse phase space tomography has been successfully applied to determine the beam
emittance and beam parameters at the TESLA Test Facility linac. The beam emittance
produced by the photo injector was optimized by adjusting the gun solenoids to provide
a compensation of the correlated emittance growth. The solenoid currents leading to a
normalized beam emittance of ye, = (5.5 4 37) - 10~ ® m and e, = (9.5+17) - 10=%m are
Itimary = 165 A and Jsecondary = 90 A. The vertical emittance agrees with an emittance
measurement performed with a screen of narrow horizontal slits. In the tormographic
method it turned out to be essential to include linearized space charge forces in the beam
transfer computations and to demand self-consistency between the reconstructed beam
parameters and the parameters assumed for the beam transfer computation. The re-
sulting beam parameters have been successfully used as input values for beam transfer
computations, yielding a magnetic lattice with 100% beam transmission to the end of the
linac.

Phase space tomography has also been used to determine the transverse phase space dis-
tribution of the beam produced by the thermionic injector. At a beam current of lyeam =
3mA, a normalized emittance of ye; = (3.8+£)7)-107%m and y¢, = (3.3£34)-10°m has
been measured. Due to limited optical resolution it was not possible to obtain reliable
numbers for the transverse emittance and the beam parameters behind the first f module.
Measurements with an improved optical system are needed.

The longitudinal charge distribution has been investigated using a streak camera and ro-
tations of the longitudinal phase space density. The measurements of the streak camera
(0¢ = 2ps resolution) reliably determined the rms bunch length and the shape of the
longitudinal charge distribution of the photo injector beam. The bunch length varied be-
tween o, = (1.95+0.08) mm and o, = (4.72 £ 0.09) mm depending on the rf phase of the
gun cavity. The longitudinal bunch shape agrees well with a Gaussian distribution. Lon-
gitudinal phase space rotations yield an rms injector bunch length of o, = (990 =+ 90) pm.
The injector bunch length determined by the two methods is compatible, because the
laser pulse length was reduced by a factor of 2 between the two measurements.

The proper operation of the magnetic chicane compressor has been demonstratec by longi-
tudinal phase space rotations and the Martin-Puplett interferometer yielding a minimum
rms bunch length of o, = (350 + 130) pm and o, = (200 £ 70) pm respectively. The pulse



134 Chapter 9 Conclusion and Outlook

shape reconstructed by both techniques is similar: a narrow peak superimposed onto a
wider basis. The shape of the charge distribution can be explained by an uncorrelated
bunch energy distribution in front of the chicane compressor.

A Martin-Puplett interferometer and a Josephson junction have been applied as far-
infrared coherent transition radiation spectrometers. Considerable effort has been made
to evaluate the spectral acceptance of the Martin-Puplett interferometer. The measure-
ment of the coherent transition radiation power spectrum is affected by diffraction effects
at the finite size transition radiator, the transmission of the quartz window, the transmis-
sion and the reflectivity of the wire grids, the radiation diffraction in the interferometer
and the acceptance of the pyroelectric detectors. In spite of the fairly large corrections,
it was possible to model the autocorrelation and the coherent power spectrum of the
compressed pulses and to successfully determine the rms bunch length and the bunch
shape. However, a comparison of bunch length measurements of the uncompressed beam
of the photo injector showed a discrepancy between the interferometer and streak cam-
era results. The Martin-Puplett interferometer is not suited for bunch lengths exceeding
oy = 2 ps because of severe acceptance limitations at frequencies below 100 GHz.

A Josephson junction has been applied as a frequency-selective far-infrared spectrometer
for the first time to determine the longitudinal bunch form factor. The Josephson junc-
tion offers a possibility for high-speed spectroscopy in the millimeter- and sub-millimeter
wavelength range. A proof-of-principle measurement has been performed at the TTF
linac using the thermionic injector beam. It is planned to improve the Josephson junction
detector by using a cryostat with direct optical coupling of the radiation. The read-out
electronics will be adjusted to a bandwidth sufficient to measure selected bunches within
TTF macropulses. The Josephson spectrometer will be set up in parallel with a Martin-
Puplett interferometer to have a direct comparison of both methods. The measurement, of
a particular electron bunch within a macropulse will be possible by triggering the appara-
tus on the same bunch at every beam crossing. The other option is a measurement of an
average bunch length within a macropulse by sampling the current-voltage characteristic
of the junction within a single macropulse.

Appendix A

Beam Dynamics and Parameters

The beam transfer, the phase space description of charged particle beams and the first
order beam-matrix formalism for the definition of the beam parameters will be outlined
in this section. A beam line is a set of magnetic elements and accelerating structures
placed along a reference path. The reference particle follows the reference trajectory, the
path through the center of the magnetic elements, and has the design momentum. The
transverse coordinates used in this chapter are labeled z for the horizontal plane and y
for the vertical plane. The longitudinal coordinate is labeled [.

A.1 The Transfer Matrix Formalism

A charged particle in a beam line can be represented by a six-dimensional vector X

=

X =(z,7,9,9,.,9) (A.1)

where z and y denote the horizontal and vertical displacement of the particle, 2’ and 3’
the horizontal and vertical angle of the particle’s trajectory with respect to the reference
trajectory. [ and d denote the longitudinal displacement and the fractional momentum
deviation (§ = Ap/p) with respect to the reference particle. The knowledge of X at an
initial position i of the beam line determines the particle coordinates at a final position f.
If the magnetic fields depend linearly on the deviation of the particle from the reference
path, beam transfer can be reduced to the process of matrix multiplication

6
(Xp)e =D Mu(X), (A.2)
k=1

where M is a 6 x 6 square matrix, called the beam transfer matrix.

The entire beam line can be modeled by multiplying transfer matrices sequentially from
the end to the beginning of the line, hence

Mmg =t Mn s Mn-—-l e e o Mz ® M[ (A3)

and by replacing M in Equation (A.2) by the product matrix M,,;.
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A.2 Beam Transfer Matrices

Drift Space A drift space is a region free of electromagnetic fields. The length of the
drift space is denoted by L. The transfer matrix is

1 B0 0 0 0
0Lk 0. 1000
051 L 00

Mp(L) = 8 00100 (A.4)
0, 20 =0 0 1 0
0001001

Quadrupole Magnet A quadrupole magnet focuses the beam in one plane, defocuses
it in the other. The transfer matrix for a horizontally focusing quadrupole magnet of
strength k and length L is

cos (§2) ﬁ sin (£2) 0 0 00
—Vksin ()  cos () 0 . 0 00
Mq(k, L) = 0 0 cosh (2) - sinh(2) 0 0 (A.5)
0 0 VEsinh ()  cosh(Q) 0 0
0 0 0 0 ()
0 0 0 0 01

where Q = vk - L. For a vertically focusing quadrupole magnet, the upper left block
matrix M, 1 < 4,j < 2, and the middle block matrix Mg;;, 3 < 4,5 < 4, have to be
interchanged.

Dipole Sector Magnet In a dipole sector magnet the central trajectory has a radius of
curvature R and exits perpendicular to the pole-face boundaries. The deflection angle of
the beam is @. The transfer matrix is

cos (@) Rsin (o) 0 0 0 R(1-cos(a)
——sin (a) cos (a) 0.0 0 sin (@)
Lo S TR g e
- Si(l; () —-R(1 —Ocos (@) 8 8 (1) —R(a —isin (@)

Rectangular Dipole Magnet The rectangular dipole magnet consists of straight pole-
face boundaries which are not perpendicular to the central beam trajectory. The magnet
can be described by a combination of a dipole sector magnet and a “magnetic wedge” of
angle 1; at the entrance (i = 1) and the exit (i = 2) of the magnet [75]. 3 denotes the
rotation of the pole-face with respect to the orientation of a sector magnet pole face. The
transfer matrix yields

Mgp(R,a,v) = Mp(¥)- Mp(R,a) - Mp(¥) with (A7)
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B 0 000
tan )/ 1 A

r 0 1 000

Mp(¢i) = 0 0 —tan(¢y)/R 1 0 0

The sign convention is such that 1; > 0 denotes horizontal defocusing and vertical focus-
ing.

Standing Wave Cavity The beam gains energy (AFE) and experiences focusing while
traveling through a standing wave cavity of length [. The transfer matrix is

cos(a)—v/2sin(a) .@%?@ 0 0 0 0
—3 AE sin(a) EK 0 0 0 0
VBI(E+AE) (E+AE) o8
: 81E sin(a)
Ms(AE, ¢,1)= g AL e e (A.8)

0 VBI(E+AE) (E+AE) 0 0
0 0 0 0 i} 0
E

0 0 0 0 0 wram

where a = log (1 +AE/(\V/8 E)), K = cos(a) + ﬂ2) sin(a) [76]. E denotes the injection
beam energy. Equation (A.8) holds for on-crest acceleration of relativistic bearns.

Coordinate Rotation A coordinate rotation of the transverse coordinates is described
by a rotation matrix

cos () 0 sin (/) 0
0 cos () 0 sin (8)

oSO CcOoC
—Ooocococ

Me(B) =] ~ sig (B) X sig - coso(ﬂ) coso(ﬂ) (A.9)
0 0 0 0
0 0 0 g

The angle 3 denotes the angle of rotation. It is possible to describe the beam transfer
through a vertical bend or a skew quadrupole by multiplying matrix (A.9) in front and
behind of matrices (A.6) and (A.5) with the respective coordinate rotation angle of £7/2
and +m/4.

A.3 First Order Beam Matrix Formalism

In an accelerator it is often of more concern to study the dynamics of a bunch of particles
rather than the single particle motion. Every particle in a bunch, in case of the TESLA
Test, Facility there are up to 10'° electrons, appears as a point in a six-dimensional phase
space whose coordinates are z, @', y, ¢/, [, and §. Assume an arbitrary charge distribution
p(¢), where { = ((i,(a,C3,Ca, G5, () denotes the phase space variables (z,1",y,y/,1,0).
The characteristics of the charge distribution (transverse beam width, transverse angular
divergence, bunch length and momentum deviation) can be described by a statistical
approach using the first moments o; and the second moments o;;, 1 < 4,5 < 6, of the
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charge distribution

@5

[Ge@d (A-10)
[ G=a) (6 =) p(©)dc. (A11)

Oij

The a; define the beam centroid coordinates in phase space. The second moments form
the covariance matrix o of the bunch charge distribution p. The diagonal elements o;;
represent the variances of the phase space coordinates, the off-diagonal elements o;;, © # j,
the covariances of the respective coordinates. The matrix o is called the beam matrix.

The diagonal elements of the beam matrix describe the transverse beam width (oy; in
the horizontal and o33 in the vertical plane), the transverse angular divergence (o9 in the
horizontal and 044 in the vertical plane), the bunch length (os5) and the fractional mo-
mentum deviation (ogs). The off-diagonal elements describe covariances of the transverse
planes (012, 034), coupling between the transverse planes (0,3, 014, 023 and gy4) and the
coupling between the transverse and longitudinal coordinates (o5, 016, 025, 026, 035, 036,
045 and o46). Since the beam matrix elements describe the characteristics of the bunch
charge distribution in six-dimensional phase space, they are called the beam parameters.

As an example, consider a two-dimensional Gaussian charge distribution

2
12 ’ b
— + T — —— A.12
2011 010 2022) ( )

2

pa(z,2') = exp (-

which can be represented by an ellipse in the (z,z') phase space. A contour line of p, is
defined by pa(z,z') = exp (C) with

0928% — 201253 + 012" = C = constant (A.13)

C defines the phase space area enclosed by the contour line. The ellipse given by Equation
(A.13) can be rewritten in terms of a two-dimensional beam matrix o, yielding

XTo;'X =C (A.14)

where X7 is the transpose of the coordinate vector X. o7 denotes the real, positive
definite and symmetric beam matrix. In particular, it is

1 = e
_ [ o 0O12 =LA 022 12 > _ (T
" ( o ) o' = ( A ) L ( : ) (A.15)
so that Equation (A.13) becomes
0221‘2 o 20’121:1" - (J’u.’l)'2 = det agy. (AIG)

The constant C of Equation (A.13) is evaluated to be the determinant of the o matrix.
The ellipse described by Equation (A.16) is shown in Figure A.1 along with the physical
interpretation of the beam matrix elements. ,/g,; defines the horizontal spatial extent,
/022 the angular extent of phase space occupied by the bunch. The off-axis element oy, is
a measure of the covariance of the angular and spatial coordinate, i. e. of the orientation
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A =deto

Figure A.1: The horizontal phase space ellipse and the physical interpretation of the beam
matrix elements.

(tilt) of the ellipse. The area enclosed by the ellipse is A = 7 - deto.

A six-dimensional ellipsoid can be expressed in terms of Equation (A.14) as well. The
physical interpretation of the elements of the six-dimensional beam matrix is straight
forward: the square roots of the diagonal elements describe the extent of the phase space
ellipsoid on the respective coordinate axis. This is in particular

e ,/o1:: the width of the beam ellipsoid in the horizontal plane.

e ,/02;: the horizontal angular divergence of the beam ellipsoid.

e /033 the width of the beam ellipsoid in the vertical plane.

e /o44: the vertical angular divergence of the beam ellipsoid.

e /0ss: the longitudinal extent of the beam ellipsoid

e ,/0ge: the fractional momentum deviation of the beam ellipsoid.

The off-diagonal elements describe the covariance of the phase space ellipsoid with respect
to a pair of its coordinate axis. A convenient quantity to measure the covariance of the
phase space ellipsoid is the correlation defined as

Tij .

= for 1<4,j<6. A7

g <ij< (A.17)

The correlation ranges between —1 and 1. 7;; = 0 denotes a circular phase space distri-

bution, 74 = 1 a linear distribution with slope 1. A correlation between 0 and 1 denotes
a tilted phase space distribution as shown in Figure A.1.
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A.3.1 Beam Transfer

The beam matrix will undergo a transformation when the bunch of particles passes a
beam line. Inserting the identity I = MM~ = M~'M into Equation (A.14) we obtain

XT(M™M™ ) o7t (M M) Xy = 1 (A.18)
(MX)" (MoM™) ™ (MX) = 1 (A.19)
e '%y = 1 (A.20)

where M denotes the transfer matrix of the beam line, the indices ¢ and f denote the
initial and final position of the beam respectively. The beam matrix can be transformed
through a beam line using the single particle transfer matrix M. The beam parameters
can therefore be obtained at any position of the beam line if they are measured once. The

transformation law is
a;=Ma;M" . (A.21)

It should be noted that for magnetostatic beam lines the determinant of the transfer
matrix is unity, hence the determinants of oy and o; are identical since

det oy = det (Mo;M™) = det M - det o; - det M = det o; (A.22)

A direct consequence of Equation (A.22) is the conservation of the volume enclosed by
the phase space ellipsoid, known as Liouville’s theorem.

The transformation laws of the beamn matrix elements in a beam line have been derived
for the special case of Gaussian charge distributions. In contrast to the Gaussian case,
an arbitrary charge distribution is not completely described by the covariance matrix.
Nevertheless, the transfer of the variances and covariances of an arbitrary distribution
through a beam line can still be described by the beam matrix formalism.

A.3.2 Beam Emittance

The beam emittance is defined as the phase space volume occupied by a certain fraction,
typically 1o, of the beam. The emittance is a measure of the beam quality. A low
emittance beam has a small angular divergence after it is tightly focused or when it is
transfered with large cross-section over large distances without external focusing. In the
beam matrix formalism, the emittance is equal to the determinant of the beam matrix
(see Figure A.1), hence

deto = gy109 — 05 =< 22 >< 3% > — < a3’ >’=€. (A.23)

Here the two-dimensional horizontal projection of the charge distribution is used. An
identical relation holds for the vertical transverse (y, ') and the longitudinal phase space
distribution (l,9).

Appendix B

Derivation of the Ginzburg-Frank
formula

This chapter presents the derivation of the Ginzburg-Frank formula describing the spec-
tral and angular distribution of transition radiation. The radiation originates from the
transition of charged particles in uniform linear motion of velocity ¥’ through a plane
boundary of two media of different permittivities €; and e;. The particles are assumed
to travel along the z-axis directed perpendicular to the boundary. The configuration is
shown in Fig. B.1.

(1) Electromagnetic fields carried by a particle bunch

Maxwell’s equations can be used to derive the wave equation for the scalar and vector
potential ®(7,t) and A(7,t) [77]

€ P(Ft)  oge p(7t)
5 ~ VYRR = = (B.1)
€ 2A(F - 8
TALD _widrn) = wmito ©2)

where ® and A are related to the electric and magnetic fields E and B by

- 7, TR
E=-Vo-—, B=VxA (B.3)
p(7,t) denotes the charge density of the bunch and i@, t) the current density. For parti-
cles traveling along a straight line, p and j are related by j = p#, hence either of Eq. (B.1)
and (B.2) gives a complete description of the problem.

The differential equations (B.1) and (B.2) can be solved in frequency domain, where
they transform into algebraic equations. The Fourier transformation takes the transverse
coordinate 7| into a transverse momentum ¢ and time ¢ into frequency w. The longitudinal
coordinate is not transformed because of the boundary conditions which have to be fulfilled
at z = 0. For the scalar potential ® we obtain

i 1
Oir 2t = @ /dzq dw ®g,,(2) exp (iq - 7L — iwt) (B.4)
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£1= l 82— {3
Q——v-—b
=
medium 1 medium 2
z =10

Figure B.1: Configuration used for the derivation of the Ginzburg-Frank Equations.

/T(Fl,z,t)

PE /d gdw A, ,(2) exp (i§ - 71 — iwt). (B.5)

The algebraic equation for ®,, can be derived by inserting Eq. (B.4) into Eq. (B.1)
yielding

Bou(2) = P [q D i] 3 (B6)

€€ v? c?

Differential Eq. (B.2) is solved by a similar expression given by

= € .,
A= a’ 7 (B.7)
Using Eq. (B.3), the electric field yields
€
EQ =1 [wv (c_ = 17) q ] Do s (B.8)

The superscript Q in Eq. (B.8) indicates that the field is produced by a charged particle
bunch. The Fourier transform of a charge distribution p, ., has to be derived and inserted
into Eq. (B.8). The Fourier transform of a single particle and, as an example of a particle
bunch, a Gaussian charge distribution of transverse variance o2 and longitudinal variance
o2 will be considered.

Single particle The charge distribution of a single particle in uniform motion with
velocity v is
p°(F,t) = ed(7)d(z — vt) (B.9)

yielding the Fourier transformation

Pou(z) = e/d2rl dtd(r)d(z—vt) exp (—ig 7 +iwt) = S exp (z%) (B.10)
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Radiation Fields
The electric radiation field has to satisfy the homogeneous wave equation
€ O°F (r A
2 — V*E(7,t) =0. (B.11)
which can be transformed into frequency domain using
g | 1 = s ;
B(frit) = W /dzq dt Eq,(z) exp (1§ - 7 — iwt). (B.12)
T

The boundary at z = 0 is assumed to be of infinite extent, hence the radiation field can be
characterized by a plane wave propagating in z direction. The ansatz for the z component
is

i Efw(z) = ( zt ) exp (+ik.z) (B.13)

where a; and a_ are yet undetermined coefficients and i is a unity vector pointing along
the 2 axis. Two coefficients and two signs are introduced in Eq. (B.13) because the
radiation wave can propagate either forward into medium 2 (z > 0, a;, and upper sign)
or can be reflected backward into medium 1 (z < 0, a_, and lower sign). Equations (B.11)
and (B.13) lead to a relation among radiation frequency w, transverse ¢ and longitudinal
k, momentum

(ﬂ e kf) b @) =D N o i (B.14)

The transverse electric field components can be derived using V-D=0 yielding

i g 1o
J.ER =52 BR
¢ T

qw *

(B.15)

The complete expression for the electric radiation field is
ol ay giieal s on few?
B, —z(a ) q:—q— — = exp | ¢ o o) B (B.16)

Boundary Conditions

The coefficients a, for 2 > 0 (medium 2) and a_ for z < 0 (medium 1) have to be
determined from the boundary conditions the sum of the charse and the radiation field
has to fulfill at the interface. The normal component of the D-field and the tangential
component of the E-field have to be continuous at z = 0.

Normal component:

medium 2

ad- (EQ, + EL)

=i - (B3, + L)

(B.17)

z=0 2=0

leads to
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€ 1 W qw?]™!
ela..+elwv(—1——)M[42+__l_] -

¢z v?/ g6 v? c?
€ 1\ p w?  ew?]™ (e
. Ll Sl Ll (718 P D AT e T TR
€3y T Equy (02 112) €260 [q + v2 c? ]
Tangential component:
R medium 1 i3 £Q SR
g (B +ER) " =a (B +ER)|", (B.19)
leads to
TS . e s g " NN, RN
P o el iRl ' ato (¢ + 35 - 4")

Equation (B.18) and (B.20) can be solved for a; and a_. For the special case of €; =1
(vacuum) and e, = € (medium), we obtain

e Br2(e=1)(1-F + fVe—+?)

s (B.21)
6w (1 — 52 + 2k2) (1 + Bve - nz) (\/e — K24+ e/1 — n2)
e Br2(e—1) (1~ﬁ2€—ﬂ\/l—ﬁ2) (B.22)

=@(l—ﬂ2e+ﬂ%2) (1—ﬂ\/1—n2) (\/E—K2+€\/1—KZ)

where k = ge/w has been used [23]. The combination of Eq. (B.21) and (B.22) with
Eq. (B.16) describes the electric transition radiation field between vacuum and a medium
of permittivity e with the restriction of infinite boundaries.

(4) Radiated energy into the backward hemisphere

The energy U contained in a propagating electromagnetic wave is described by
00 = 2
e / dzdy / dz |E"w, o) . (B.23)
—00

The knowledge of the electric field is sufficient for the evaluation of the radiated energy,
since the electric and magnetic fields, in time average, store the same energy. In the
following, the radiation into the backward hemisphere, which is used for beamn diagnostics
at the TESLA Test Facility, is evaluated.

Let t = 0 be the time of transition from medium 1 to medium 2. To use the plane wave
radiation field, we have to choose the time ¢ large enough that the radiation field and the
charge field are well separated. The center of the coordinate system, i. e. z = 0, is shifted
to the center of the radiation pulse. This coordinate transformation causes an unknown
phase factor in the coefficient a_, but justifies the use of symmetric boundaries on the
integrals (B.23) [78].
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Figure B.2: Translation of the origin of the coordinate system into the middle of the
radiation pulse.

The Fourier decomposition of E.R(F, t), see Eq. (B.12), is introduced into Fq. (B.23)
leading to a frequency domain description of the radiated energy

20 d2 ’
Rl EO/dxdy/ /d q (;,rdwdw (8.24)

B @ EF @ exp (i (7L (- 7) — tw - w))).

1. The integration over dz dy yields

/ dzdyexp (i (7 (7- 7)) = @n)*8* (7- 7) (B.25)
hence
U=co [T ds [ UL B B (e (it =)D (B26)

2. The radiation field Eq. (B.16) is introduced into Eq. (B.26) and then integrated over

z using
M 2 /2
~(ErF) o 7
/dze =276 (\/—c?—qz— 6—2—q2 (B.27)

We obtain
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v

=)
=~

Figure B.3: Transverse momentum ¢, the total momentum E and the polar angle of
emission of the transition radiation.

Note that a_ and a* depend on (q,w) and (g,w’) respectively. The §-expression in
Eq. (B.28) implies w = w’, hence a_-a* = |a_|?. The additional phase factor intro-
duced by the coordinate translation cancels out. Equation (B.28) can be simplified
using the equality of w and ' yielding

d? dw dw' w? w? w?
U=c¢ la—|2ﬁ5(\/§"02—\/3—q2) . (B-29)

(2m)* c’q

3. The integration over w' can now be carried out using

5( uc)_:' 2_\/%2'_ 2)2272 Y Pl —u) +Sw+a)]  (B30)

c?

dgdw , 5 w? q2c?
=2 — la_|" — - —. B.31
i (en)® ! gV - L

4. The angular distribution of transition radiation can be evaluated by expressing the
transverse momentum ¢ by the total momentum k of the radiation and its emission
angle m — 0, hence ¢ = k cosf. The vectors are shown in Fig. B.3. There is no need
to introduce an azimuthal emission angle because of symmetry. The differential d?q
becomes 2mgdg = 2ww?/c? sin @ cos #df and we obtain

hence

U=on /0 dw /0 d6 sin0 U, (w, 0) (B.32)
with . 2 0s26
e if2en 2 W* cos
Uy (w,0) = (21r)3 la—] o 520 (B.33)

being the differentiated spectral energy density.

Introducing a_ from Eq. (B.21), we obtain the Ginzburg-Frank [23] formula describing
the opening angle and the spectral power density distribution of transition radiation:

2
U = e f%sin®0cos?0 (6—1)2(1—ﬂ2+ﬂ\/6—5in 9)
L=
dmdeoc (1 — B2 cos? )” (1 + BVe— sin20)2(cc030 —Vve— sinzﬂ)z

(B.34)
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For the special case of € — oo, that is in case of a metallic boundary for frequencies well
below the plasma frequency of the metal, we obtain the simplified expression
e (?sin®6

4mdeoc (1 — 42 cos?6)®

1 (B.35)

Expression (B.35) denotes the Ginzburg-Frank formula as commonly applied for the com-
putation of transition radiation in accelerators.



Appendix C

Electromagnetic Fields of
Relativistic Electron Bunches

The transverse source size of transition radiation is defined by the projection of the elec-
tromagnetic fields, carried by a charge distribution traveling in uniform motion through
a beam pipe, onto the transition boundary. The charge distribution is assumed to travel
along the axis of a cylindrical vacuum chamber of either perfect or high conductivity.
Maxwell’s Equations are solved with proper boundary conditions to obtain the electro-
magnetic fields inside the pipe.

(1) Fields of the Charge Distribution

The electric and magnetic fields of a charge distribution traveling on the axis of a cylindri-
cal beam pipe are described by the vacuum solution of the Maxwell Equations. The charge
distribution is assumed to travel in the center of the beam pipe and to be azimuthally
symmetric. The Maxwell Equations in vacuum are

v-E:eﬁ . We.B=p (€.1)
0

< dB s - 1dE
VXB——E ’ VXB—[I()]'*‘(—,Z? (C2)

From symmetry only the radial and longitudinal components of the electric field (£, and
E,) and the azimuthal component of magnetic field (By) have to be considered. p denotes
the charge density. The current j has only an axial component, which originates fromn the
moving charge distribution. The Maxwell Equations for the above field components read
in cylindrical coordinates

= 1
V- B = 28,(rE)+8,E, =2 (C.3)
! €
s 1
V-B = ~%By=0 (C.4)
s = }aﬂEz = 0
VxEB = —gB | 8.E8E, = -8B (C.5)
1%E, = 0
AR -8,By = LB,E, ,
s ol B v {;a,(rBo) = fiojs + 4O, e
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Here 0,, 9y and 0, denote 8/dr, 8/80 and 8/0z respectively. Equations (C.4), (C.5) and
(C.6) show that By, E, and E, are independent of the azimuthal coordinate 6 (azimuthal
symmetry). The fields depend on the radial coordinate r and the longitudinal coordinate
¢ = z — fct taking into account that the fields travel together with the charge at a
velocity of Bc. Maxwell’s equations are solved in frequency domain where the longitudinal
coordinate ( is transformed into the wave number k£ by a Fourier transformation. The
transverse coordinates are not transformed to retain the transverse component of the
electromagnetic fields at different wave numbers k. The field components are

E..((7) = /°° B, ,(k, r) exp (ikC)dk (C.7)
—00
0% |2
Ba(¢r) = [ Bolk, ) exp (ikC)dk (c.8)
p(Gr) = [ plk,r)exp (ik¢)dk (C.9)
The Fourier components obey the equations
10(E,) .. _ P
A = (C.10)
1B,
s s A A1
rop 0 s
I 6E‘z . N
ikE, — i 1kfBcBy (C.12)
—ikBy = —ikgﬁ,. (C.13)
10 (rBs) KBz . -
;T = ~—E—Ez+llo]z . (014)
Inserting Bq. (C.13) into Eq. (C.12) yields a relation between E, and E,
oE, ik -
5 ?E‘, . (C.15)

Equation (C.15) inserted into (C.10) yields a well known second order differential equation

for E, ) 3
&#E, 10E, kK. ikp
IR e
The two independent solutions of the homogeneous equation are the modified Bessel
functions Iy(kr/v) and Ky(kr/7). The inhomogeneous differential equation will be solved

for a ring charge distribution of radius a with azimuthal symmetry

§(r —a)
2ma

(C.16)

gA(k) (€.17)

p(k,r,a) =

where X (k) denotes the Fourier transform of the longitudinal charge distribution and q
the total charge. F, is written as a superposition of I, and K in the following form

& ) alk)h "7—" L kr
E,(k,r] = { cz(k)l(o E%; iy } +C3(k)10 (7) . (018)
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The terms ¢, (k)Io (kr/7) and cy(k)Ko (kr/v) describe the field E, originating from the
ring charge distribution j(k,r). Fields inside the ring (r < a) can only be given by
Iy (kr/v), since Ky (kr/v) diverges for r — 0. Fields outside (r > a) are given by
Ko (kr/v), since Ky is decreasing with radius. The term c3(k)Iy (kr/7) describes the
effect of the cylindrical boundary. Iy has been chosen because it is not divergent at r — 0.
The coefficients ¢;(k), c2(k) and c3(k) have to be determined by boundary conditions at
ri=1g. b

(2) Vacuum Chamber of Infinite Conductivity

The longitudinal component E,(k,r) has to fulfill the following boundary conditions
o The continuity of E, at r = a.
e A vanishing longitudinal field component at the beam pipe, i. e. E‘,(k,b) =10,
e Eq. (C.16) has to hold. This introduces the charge term into the ansatz (C.18).

These boundary conditions at r = a, b yield the following equations

et ("7) i cz(k)m)(’—‘f) (C.19)

Equation (C.16) is integrated over an infinitesimal radial interval from a — e < r < a + ¢
to take the charge term into account. The left hand side yields

r@,E‘,

a+
a

¢ ks
2 ¥ 2£;Y—2aE',(k,a) (C.21)

as { —ea(R) K, <%) —ey(k)ly (%)} (C.22)

where € — 0 has been used [27]. The first term of integral (C.21) describes the disconti-
nuity of the derivative of the field at » = a. The second term is of the order of ¢, because
of the continuity of F, at r = a. The right hand side of Eq. (C.16) integrated over the
same radial interval yields

ik a+e (5(7‘-—(1) - 2, ik q =
e /a—e W A g ) (C.23)

g

ate - 2
[ Cdrr {1a,ra,1?, = k—zz}
a T o

Il

where the ring charge distribution Eq. (C.17) has been used. Eq. (C.22) and (C.23) yield
the third boundary condition

b ('—“73) ekl (%) - %X(k) . (C.24)
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For the coefficients ¢;(k), c2(k) and c3(k) we obtain

alld 2"‘ q,\(k)l(0<7) (C.25)

o) = g (%) (c.20)
- Ky (&

ca(k) = 2”1€k072q,\(k)1 ("7“) In" ((EZ)) (C.27)

where the Wronskian Iy(ka/v) K, (ka/v) + I (ka/y)Ko(ka/y) = 7/ka has been used [79].
These coefficients are introduced into ansatz (C.18) yielding an expression for the longi-
tudinal component of the electric field E,(k,7)

. Ko (%) I (%),r <a ka) Ko (%) kr)
E.(k,r " +, 12 Io (€28
( 7) 2(] ( ){{_ (’m)I(g r>a 0 T (kb) ~ ( )
The field components E,(k,r) and By(k,r) can be derived from Eq. (C.15) and (C.13),

respectively. The result obtained is
kr

L|{— C.29
(2 )] (c:29)

ko("“)ll S )ir<a ka Ko(k;b)
|| (i s () W (%)

and By = B/cE..

E,(k,r)=

(3) Vacuum Chamber of Finite Conductivity

For the vacuum solution of Eq. (C.16) we make the ansatz (C.18)

o ] alk) ’% ,r<a kr

E,(k,T) = { (:2(k)]{0 Ek—"g, v Ml } += C3(k)]o (7) (C30)
o o a (k)L Moo kr

E.(k,7) = —iy [{ — ek, (& § ;’ i ey } + c3(k) ]y (’y )] (C.31)
Bo(k,r) = —m%’ [{ (fc';)lgg ; :jz }+c3(k)11 (’;1)] (C.32)

where E, and By are derived from Eq. (C.15) and (C.13) respectively.

The Maxwell Equations have to be solved inside the metal of the beam pipe. The average
charge density p in the metal vanishes in the frequency range considered (frequencies
smaller than the electron plasma frequency in the metal). The time varying magnetic
field induces a radial current in the beam pipe obeying Ohm’s law j, = oE,, where o
denotes the conductivity of the metal. The wall currents are described by an additional
term in Eq. (C.6)

i 1
(V x B) = -8,Bs = pojr + SO (C.33)
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Hence the Fourier-transformed Maxwell Equations become
il 6(rE ) o
St ikE, = 0 (C.34)
108,
P 0 (C.35)
oF, b
- = ikfBcBy (C.36)
19(rB ikp -
10(rBs) _ _ﬁgz and (C.37)
P o e
5 5 (B oo
B = Bf5-21 .,
] E (c ik (C.38)
Inserting Eq. (C.38) into Eq. (C.36) we obtain
OE, ik 4
or — (? + uooﬁc) E,» » (039)
A second order differential equation is obtained for F, if Eq. (C.39) is substituted into
Eq. (C.34).
10 ( 0F, ik 10(rE;)
18 ( s ) o (; + uoaﬁc) R (C.40)
k? ~
= (? - ikuoaﬂc) E, (C.41)

The penetration depth of the high frequency field inside the metal is small compared
t,o the thickness of the beam pipe. The radius 7 is therefore r ~ b = constant. Hence
q. (C.41) reduces to an Helmholtz wave equation

(32 +X2)-B, =0 (C.42)
where A2 = (ikpyofic — k?/y?). Eq. (C.42) is solved by
E,(k,r) = dexp (£i\(r — b)) for r>b. (C.43)

where the coefficient d depends on the wave number k and the radius of the charge dis-
tribution a. In the following the positive sign in the exponential is used to describe an
exponential drop of the field for r > b.

Expression (C.43) can be used to evaluate the azimuthal magnetic field component inside
the metal. The differentiation of Eq. (C.38) leads to

16(rf39) 16(TE,) B o
rTer 1 o (;“7’}:) : o

and after the substitution of Eq. (C.34) we obtain (while keeping r a2 b = constant inside
the metal)

9By ikp , ks
v il (uoa - T) dexp (iA(r — b)) . (C.45)
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The integration leads to

By(k,r) = -d%( /\)exp(i/\(r—b)) for 7>b. (C.46)

The radial electric field E, is related to the azimuthal magnetic field by Eq. (C.38). This
yields

E.(k,r) = —d % exp (iA(r—b)) for 7>b. (C.47)

The longitudinal electric fields F, has to be continuous at r = a, E, and By have to be
continuous at r = b and Eq. (C.16) has to hold to fulfill the boundary conditions. The
following equations are obtained

oK, (Fe) ke _i 9 34 ;
—(,‘2(]\.)1(, ( ~ ) Cl(k)ll ( ~ ) = 5 2ﬂfoa/\(k) (649)
ea(K) Ko (%) +es(B) (%’3) — d(k) (C.50)
2
—mg <»-c2(k)1(1 (%) +ea(k)y (%)) - —d(k)[%c (1 + %) . (C.51)
For the coefficients ¢;(k), ca(k), c3(k) and d(k) we obtain
| alk) = 27: 9 (k) Ko (I; ) (C.52)
| calk) = = grsaAb)lo (2) (©53)
| ik kb
ei(k) = (d(k) + s qA(k)lo ( " ) K, ( " )) yan ( 1) (C.54)
B s I (%ﬂ) 1
dikli= g\(k) ] (C.55)
2abT 0 () (ortad - 4 (5+))

The fields E,, E, and By are obtained both in the vacuum and the metal by introducing
these coefficients into Eq. (C.30)-(C.32). We obtain for the vacuum solution

; ko[ Ko (%) I (&),
Hlkuri= 27rzclz72q)‘(k) { P (0(§ca))Ko 5 ; g: : iz }

i/

+ [d(k) k5w (’;“) i (E;)] l (i‘:) v
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and By = f/cE,.

(4) The Ultra-relativistic Limit

For high particle energies, the argument of the modified Bessel-functions will tends to
zero and an approximate expression for the electromagnetic fields can be derived. For
o |

Tfz) B 1 (C.58)
L(z) =~ ; (C.59)
Kolz) ~ —(111(2)+05772) (C.60)
Kilz) = % (C.61)

Vacuum Chamber of Infinite Conductivity: Inserting the approximate expression
for the small argument modified Bessel functions into Eq. (C.27)-(C.29) we obtain

E,(k,r) = lim mk qA(k ){log(k )+lo (;:)} =0 (C.62)
Bk = Jimpde {Z+og(2)] - 281 o
By(k,r) = gE,(k,r). (C.64)

The fields of Eq. (C.62)-(C.64) are now identical to the fields evaluated by a steady-state
coasting beam approach [80].

Vacuum Chamber of Finite Conductivity: Inserting the approximations (C.58) -
(C.61) into Eq. (C.54) and (C.55) yields the following result for v — oo

(k) = WL TN (C.65)
3
(k) = d(k). (C.66)

In the ultra-relativistic limit the coeflicients ¢(k,r;) and d(k,r,) become equal. The
electromagnetic fields simplify to

E, = d(k) (C.67)
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. gMB)Y ik

Biph = 27“0” 2d(lc)r (C.68)

i = q’\(k)l_f d(k)r . (C.69)
2mepc T

Notice that the longitudinal field components do not vanish even for infinitely high beam
energies. These fields, called longitudinal wake fields, originating from resistive wall of
the vacuum chamber influence the energy spread of short electron bunches. These wake
fields become stronger for a smaller radius of the vacuum chamber b, for shorter bunches
o, and for a smaller conductivity o of the beam pipe. The bunch length dependence
of Eq. (C.67)-(C.69) is hidden in the Fourier transformation of the longitudinal charge
distribution A(k) (see Eq. (D.24) and (D.25). Longitudinal wake fields are important for
the understanding of the longitudinal charge profile determination as presented in chapter
6.

Source dimension of Coherent Transition Radiation from a Uniform Charge
Distribution: The integration of Eq. (C.28)-(C.29) weighted with a transverse uniform
charge distribution yields the source dimensions of coherent transition radiation on the
radiation boundary. The following calculation considers only the radial component of the
electric field, because it dominates over the longitudinal component and is related to the
azimuthal magnetic field by §/c. The coordinates are chosen such that a denotes the
radius of the ring charge distribution and r the radius at which the field is evaluated.
A transverse uniform charge distribution A(a) can be composed of a set of ring charge
distributions. The integral over a,

E.= 2ﬂt07q/~\(k) {— ¢ d¢daako(’:—“) A), ( 7) !

/ dqbdaal(,(ka) Xa)K; (%’-) " (C.70)
/ d¢daa10( ) o(5), (’") ;
W(y) "\
is solved for a uniform transverse charge distribution of radius R
N 1 I -a%& R
,\(a)zm{o’ a>R}. (©.1)
We obtain
- k kr
P 5 Mz {/ d¢daaK0(7>I (;) 4
ka kr
/ dpdaaly|=7) Ko =) + (C.72)
" (
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The integrals can be evaluated analytically using [79]
/0 “dtl, ()t = 2°1,(2) (C.73)
/ TAe K, (f)dt = —2K,(z) + 2 'T(2) (C.74)
0
where v denotes an integer. We obtain
f R\ Ak kr 52 .
_/0 daaKg(’y) = TK‘(y)‘kﬁ (C.75)
g ka kr
R k R (kR
/ da a10<—“> = Xy (—) ) (C.77)
0 9 k 7

The radial electric fields of a uniform bunch charge distribution moving with velocity v
in straight line uniform motion is

it )= D8) Hy, (%) , r<R} ml(m) K (%) ,(%)] i

neoR? | | RI, (*2) K, (%), r> R n(%)

The electric field of a uniform charge distribution projected onto the transition radiation
screen is rising proportional to Iy (kr/7) towards R. At radii larger than R, the field drops
proportional to K (kr/). The vacuum chamber adds to the final electric field by a term
proportional to I, (kr /7).

Longitudinal Space Charge Forces: The longitudinal space charge forces can be
evaluated by Eq. C.28. To derive Eq. (2.3) in chapter 2 we consider a point charge, hence
rs = 0 and A(¢) = 6(¢ — (o), yielding

= i exp(-ikG) (C.79)
Equation (C.28) then reduces to
- ik kr j
Ez = W(]Ko (7) eXp(—lk(()) . (080)
In time-domain we obtain
kr !
B s Wm / dk szo( )exp(zk € - ) (C.81)
= / ko | explik (¢ 2 65 (C.82)
47r3c072 d¢
d 1
o Lolat ) ; (C.83)

g (<z>2+<<_<o>zy

= 4,,22072 2(( 5t CD) % (C.84)
(G +c-ar)
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Equation (2.3) in chapter 2 is obtained by setting r =0

o C.85
T ey ((- Q) e

Appendix D

Space Charge Forces

A linear expression for the space charge forces experienced by a test particle in a uniform
and a Gaussian charge distribution can be evaluated using Eq. (C.29) describing the radial
electric field of a ring charge distribution of radius a traveling in uniform motion with
velocity v along a straight line. Neglecting the wall effects of the beam pipe we obtain

Bolhyr) = — qf\(k){ ~Ko(8) & él’:i; : T<a}. (D.1)

2megy Iy ("7—“) K, 5 0

where a denotes the radius of the ring charge distribution and r the radius where the field
is evaluated. To describe the field travelling together with a transverse charge distribution
lambda, Eq. (D.1) has to be wighted with . The integral yields

{—/0' d¢daa1{0("7—“> M), (%) +

r=27re'7

Uniform Charge Distribution

For a uniform charge distribution

Y@= {0, 65 ) 03)

Eq. (D.2) yields

Flf':%'zwqj}(z’;{ /d¢d K[,(k) ( ) /dqsdauo(k )In(I;T)}(DA)

_d\k) | #h (H) ' IR
_Wcom{ ;211 (ZTR) K(%) , r>R[° (D.5)

A small argument approximation of Eq. (D.5) is obtained by inserting the small argument
approximation of the modified Bessel functions Eq. (C.58)-(C.60)

= Ak Rl R
E:’(k,r)—_—ieo(Rl{ b r>R}. (D.6)
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The field is increasing linearly until the edge of the uniform charge distribution. For larger
radii it decreases proportional to 1/7.
Gaussian Charge Distribution

To describe a Gaussian charge distribution, Eq. (ID.1) has to be weighted with a transverse

Gaussian distribution .

1 a
/\G(a) = wexp(—éﬁ) . (D?)

Integral (D.2) yields
. k  gA(k) / ka a? kr
e K — |h|—
ES = Sreyy Fro { dpdaa 0( exp —202 )11\ 5 iiF
ka a’ kr
/r d¢daalo(7> exp(—-2—0'2—>1(1<7)} !
The second integral is split into two components. Applying partial integration we obtain

a® V2rka? K2RE k*o?
/ daa 1[]( )exp( 3) =02+ - exP(/l—'yZ) Ly (W) (D.9)

- fjdaat (%) ”"(‘ zfz) o (I" (%) e’"’( 22) i l> g D.10
ko? /d ll( )e‘Kp< ;:) e

00 ™ b? b?
/o dt exp(—aztz)l,,(bt) dt = ;/—a-exp (éﬁ) L’”(Q) (D.11)

has been used [79]. The expressions (D.9) and (D.10) have to be evaluated for small
transverse dimensions 7, i. e. close to the center of the Gaussian charge distribution where
we expect a linear characteristic of the space charge force. Using the small argument
approximations of the modified Bessel functions and the polynomial expansion of the
exponential function we obtain a linear contribution from Eq. (D.10) yielding

(D.8)

where

= k gA(k) kr i kr

nd [N MR < (i S, 2 . —

E; Sregy 2mo? 2mo, $ I - exp 207 K| — 7 (D.12)
= —Lf\(k) TR (D.13)
= 2" 207 T =
_ aAk)

W 47['600’2 St

The two missing integrals bound by 0 and r are evaluated for small radii. We obtain

ko? ka a? ko? . ka a?
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/daal(o(k )exp( 2“22) z—/orda< 1n("7“) 0.58) (a—;—;) (D.16)

Equation (D.15) yields a term linear in r

- k  q\(k)2nk?o2r? _ (kr
BT e i RO URE SO R o
ki 2megy 2mo2 42 2 #r v (P17
k2
R ,yzq Ak)r (D.18)

The evaluation of integral (D.16) yields lowest order terms of O(r). The lowest order of
the radial electric field is then of the order of O(r?) because I (kr/v) ~ kr/2y = O(r).

The electric and magnetic fields close to the center of a transverse Gaussian charge dis-
tribution are in linear approximation

BC = q/\(k)
471’600’2 47re 72

(k)

4mego?

g\ (k)r ~ (D.19)
The second term of Eq. (D.19) is small compared to the first term because of the factor
1/4* and can therefore be neglected. The linear approximation of the fields of a Gaussian
bunch charge distribution is a valid approximation for radii r < a,.

Forces and Transverse Kicks

The electromagnetic force F' can be evaluated using
= = i ) 2y _ ebr
Fo=e(E, —vBy) = ek, (1- ) = - (D.20)

where e indicates a test charge. The linearized space charge force has to be inserted into
the equation of motion. To do so, the force F, has to be transformed into an acceleration
d?r/d2? with respect to the longitudinal position z in an accelerator. For the acceleration

we obtain ) !
r 1 dr 1 F, qF,

FE-Pad - Pom  Powyd (b-21)
The special case of a uniform and a Gaussian charge distribution yields

d? Ne2\(k it

da'r ealk) 2o (D.22)
d22|, 4dmegmfF2c2y3 R? B2y R?

@ Ne)(k |

.- ol ) BN (D.23)
d22|, 4dmegmF2ctyio? f*yia?

where ¢ = Ne and N denote the number of particles per bunch. A(k) denotes the Fourier
transformation of the longitudinal bunch charge distribution. The kick a test charge ex-
periences close to the center of a uniform charge distribution is twice the kick close to a
Gaussian distribution of equal total charge.
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A longitudinal Gaussian charge distribution can be expressed in terms of the wave number
k .

5 9
A(k) = exp (——2%%) s (D.24)

The Fourier transformation yields

00 2
Q) = /_ "~ (k) exp(ikC)dk = 2; i exp(—Qiz) (D.25)

where o, denotes the bunch length. For Gaussian distributions the rms width in time and
frequency are related by o, = 1/ox. The coordinate ( = z — fct takes into account that
the fields travel along with the bunch at a velocity v.

The resulting transverse space charge kick is
__2Nr, 1 v Nr, 1
" Nox PR, T T 2 Prole,

for a uniform and a Gaussian charge distribution, respectively. Equations (D.26) are writ-
ten for the central slice of the bunch (¢ = 0).

(D.26)

Equations (D.26) describe the linearized space charge forces for a bunch of cylindrical
symmetry. Using an elliptical integration path a more general situation, where the hori-
zontal o, and vertical o, beam dimensions are different, can be evaluated. The result of
this calculation yields for a Gaussian transverse charge distribution [81]

N 2N, 1 __2Nr, I (D.27)
T Vam oaloatoy) o2 T Y 2w oy(ost0y) 06293 ’

Equation (D.27) is used for the evaluation of linearized space charge forces in chapter 4.
For the special case of o, = gy, Eq. (D.26) is obtained.

Appendix E

Hilbert Transform Spectroscopy

This appendix outlines the theory of Hilbert transform spectroscopy for Josephson junc-
tions obeying the so-called RSJ-model. The response of the junction without incident
radiation (autonomous case), with incident monochromatic radiation and with an inci-
dent radiation spectrum will be treated.

E.1  Current-Voltage Characteristic without Radia-
tion
A Josephson junction obeying the RSJ model is described by Equation (8.3)

d¢
U= S
) Sm¢+2Rdt

A constant dc current Iy > I is applied. In the following we use dimensionless quantities

2eRlI,

1o =do/ 1L, u'= UlRIL, T =tu,, Wy = ;
1

(E.1)

Equation (8.3) then transforms to

# = ip —sin¢(7) . (E.2)

For Iy > I, i.e. iy > 1, one gets d¢/dr = iy — sin ¢(7) # 0 so we can separate variables:

io_dﬁ i (E.3)
Integration gives
= arctan ( UL ]) 7 + const (E.4)
ig—1 ﬁ_f
or
tan(¢/2) = ll + s tan \/—2—‘1 T+ X) (E.5)
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where y is an arbitrary phase. Then ¢ is

J__"

tan

Vi T+x0 (E.6)

¢(7) = 2arctan (

The normalized voltage is u(7) = d¢/dr:

1 + tan® (l's’zr+x)
2
—
o+ & (1 +4/(i3 — 1) tan (ligjr +x))

i
o+ & (cos (1/2'3 17+ 2x) + /(i3 — 1) sin (\/zﬁ — 17+ 2)())
The last expression can be simplified by substituting sinf = 1/iy (remember that Iy > I,
0 49 > 1). Then cosf = V1 — sin20 = \/zo —1 and

u(r) = dp — (i5 — 1)

=(2-1) - (B.7)

(i - 1)
u= : (E.8)
ig + sin (\/ig —17+42x+ 9)

The constant x is determined by the initial conditions. For the following calculations x
is chosen such that

2 _ 1
u= fh - B . (E.9)
ip — cos (,/ig -1 T)
Returning to unnormalized quantities we get Equation (8.4). The dc voltage measured
across the junction is the time-average of u(7):

1 fm iz2—1
U= — dr . E.10
e : ki

o ig — co8 (\/ig-—l‘r)

Here 7 = 2m/4/ig — 1 is the period of oscillation. The integral yields

T=T0
9 (io—-l)tan( i3 — 1%)
u = — |arctan §
o V/ig — 1
The argument of the tangent function is zero at the lower boundary and = at the up-

per boundary. The arctan function advances by 7 between two successive zeros of its
argument. Therefore we obtain the simple formula

(E.11)

7=0

2
T=—m=4/i-1. (E.12)
To
The result can be summarized by
. 0 for [ip] <1 (B.13)
~ \yfi2=1  for [ig]>1 i

and corresponds to Equation (8.5) in unnormalized quantities.
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E.2 Current-Voltage Characteristic with Radiation

Incident radiation is modeled by an additional sinusoidal current with amplitude I, and
frequency w,, which has to be superimposed on the dc bias current I. In normalized
quantities, the differential Equation (8.7) becomes

i+ 1,8in (27) = sin (1) + % (E.14)
with I
. w’
= 1—: and Q= el (E.15)

Equation (E.14) has no analytical solution. The radiation-induced current can be regarded
as a small perturbation since i, < 1 [66]. In the following calculation we determine the
change in the dc bias current while keeping the time-averaged voltage % constant (compare
figure 8.3). The dc current 7 and the phase ¢ are expanded into powers of the ac-current
amplitude i,

00 00

i=dg+ Y axit and ¢=o+ Y byit. (E.16)

k=1 k=1

The sin ¢ term in Equation (E.14) is expanded into a second-order Taylor series

00 2
sin (450 + Z bki';) a2 sin ¢y + by cos ¢y i + (bz COS g — %sin ¢0) i . (E.17)
k=1

Equations (E.16) and (E.17) are introduced into the differential Equation (E.14). Sorting
for powers of i, we get

d . |

——dqio +sin g = g (E.18)
db

d_rl + by cos g = ay + sin (27) fon, Lk =11 (F.19)
di 2

% + by cos g = ag + b—2lsin bo for k=2 (E.20)

Equation (E.18) describes the characteristic of the junction without radiation and is solved
by (E.6). Equations
(E.19) and (E.20) are of the form

db
E'E + b cos go = fx(7) . (E.21)

The general solution of this equation is

b= exp (= [ cosnar’) ([ oo ([

An expression for cos ¢y can be derived from (E.2). Taking the derivative with respect to
the normalized time
& ¢o deo

Py +d— cos gy =0

'

€os ¢ dr") fr(T) (l'r') : (E.22)



166 Appendix E  Hilbert Transform Spectroscopy

one obtains X :
cos o = —ﬁ = Bl ; (E.23)
b0 dr
Inserting Equation (E.23) into (E.22) the latter equation yields

by / : %’;E—:—;dr' : (E.24)

We are now looking for the change in the dc current at a fixed value of the time-averaged
voltage: Amig N
T=qo+b +by+.... = ¢y . (E25)

This is fulfilled if ol
by =0 forall £>0. (E.26)

A consequence is that the integrand in Equation (E.24) is not allowed to have a dc
component. This can be seen as follows. We form the long-term time average of by

B = ik ] bl B L ipuE) - a0 1,27
o= Jim 7 [ bdr = Jim 2 (b(T) - bu(0)) (E.27)

Assume now that the integrand in Equation (E.24) had a dc component, say A. Then
bx(T') — bx(0) would be of the form A - T' plus a bounded term due to the ac components
of the integrand in (E.24). From the condition bx = 0 follows immediately A = 0, i.e. the
de component is indeed zero.
The condition by = 0 implies

(ay +sin (7)) ¢g' =0 (E.28)

or

(a1 + sin (7)) (7o — cos (ur)) =0 (E.29)

where fi(7) = a; + sin (€27) has been inserted. Keeping in mind that a; describes a pure
dc current component, Equation (E.29) can be solved for a;:

e AL
a1 = i—siu (Qr)cos(@r) = a;=0 for R#7T. (E.30)
0
From Equation (E.30) follows directly that there is no first-order dc current component
is introduced by the small ac current!. The first-order phase correction by(7) can now be
calculated from Equation (E.24) setting a; = 0. It follows

. 7 sin (27 it i . ’ !
by = ¢0/ smi.soT )d‘r’ e @) / (i — cos (ur')) sin (') dr (E.31)

or

e (E.32)

1 (io cos(Qr) cos((—-m)7) cos((2+7) T))
"o — cos (aT) Q @ 200-q 2(Q+7)

1A finite value is obtained for a; if @ = @. This special case is excluded by taking the principal
value of the integral in Equation (E.41)
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The next step is the solution of Equation (E.20) with the condition E = 0. The absence
of a dc component in the integrand in (E.24) means for k = 2: :

(az + %sin ¢o) (ip — cos (ur)) =0 (E.33)

An expression for sin @y can be derived from Equations (E.9) and (E.2).

u?

R I g

and therefore
1 — g cos (ur)

singg = — -— .
ip — cos (Tr)

(E.35)

Inserting the latter expression into Equation (E.33) and solving for the second-order
correction ap of the de current we find

] e N
ay = —2—_(1 — g cos (ur)) b} . (E.36)
o

Now expression (E.32) has to be substituted for b, and with the identity

l—iocos(\/i%—lT) o kcos (k\/ig—l‘r)

(io - cos (\/%_—IT))z —2’; m (E.37)

the following expression for the second-order dc current is found

a=—3 3
i i+ \fi8-1)

Note that only the first two terms (k = 1,2) of the sum are included in taking the time
average. Three terms have to be evaluated

n N 2 ' 2 (71
T, = l/ ) 1 ag cos? (27') cos® (ur’) &'
o

12 kCOS(k ig_”) (iocos(ﬂr) cos (—u)7) cos((@+7)7))’
Qa  20-7  20Q+m) )

T i + ) Q(Q-7)
S | —ag cos? (21') cos? (ar')
Ty = — '
4 r/ io(i0+'ﬂ)( Q@+ g

1" pr 2
R ) U A
I / io (1o + 1)
(0032 (@r") cos? (Q7') — sin? (w@r") sin® (QT')) (cos2 (ar') — sin? (Hr’)) X
IO dr .

The integrations are straight forward and lead to

il

a2:T1+T2+T3=—m—)-.
0 =

(E.38)
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The important result is that in second order a non-zero dc current component remains
after the integration. This leads to a resonance-type correction of the dc current-voltage
characteristic of the Josephson junction. In terms of currents, the final result can be

stated as
’i2

410 (Q2 2)

Returning to unnormalized quantities we get Equation (8.8). The current correction in
second order Ai is proportional to the square of the perturbing radiation amplitude 72
and is sensitive to its frequency w,. The first property implies that the Josephson junction
acts as a “quadratic detector”, i. e. the detector response is proportional to the incident
radiation power.

At = agi’ = for w#£0Q. (E.39)

The generalization of Equation (E.39) to a continuous radiation spectrum is straight
forward. The response of the Josephson junction to monochromatic perturbation has to
be convoluted with the normalized continuous power spectrum 3(2). Equation (E.39)
then becomes

. 1 > i235(Q) 1 oo s(Q)
i s e . Bhefl, e n' /8 . (9] )
il /_m v g, / WiB o (B.46)
where s(2) = 5(€2) i2. Returning to unnormalized quantities and setting S(2) = s(Q)/1.
we get Equation (8.11).

BEquation (E.40) has to be solved for the power spectrum s(§2). Consider

/w s(Q)2u . /oo s() (-5 +n‘) 42+ /w 5(Q)(Q2+7) a0
0 u? 0 u? 0

[QLa 7, 02 — QZ—T_L2
0 s(Q)(Q+u % 5(2)(2 + @)
. -/~oo eow ot / wow ©
= s(Q)

where () = s(—Q) is assumed. The latter integral diverges for Q@ = . A correct
mathematical treatment, however, demands for a principal value integral, denoted by P,
to exclude the pole. Hence

- % () ;
Ai = sn,ap/msz-u‘m (E.A1)

Equation (E.41) corresponds to Equation (8.12) in the text. The principal value integral
(E.41) is related to the Hilbert transform, a well defined integral transform. The Hilbert
transformation is derived from Fourier theory in Appendix E.3.

E.3 The Hilbert Transform

In this section the Hilbert transformation will be derived from Fourier theory. The Fourier
integral is written in the following way [82]:

Jar= / (a(y) coszy + b(y) sinzy) dy (E.42)
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where
aly) = 117 /_ :f(u) cosyu du (E.43)
bly) = % /_ Z f(u) sinyu du (E.44)

Inserting Equation (E.43) and (E.44) into (E.42) we obtain

f(x)-1/°°d [ 1w cos (y(u~ ) d E.45
"l e y ik {E.48)
or written in complex form
f(z) =Re ks /00 dy /m f(u)exp (iy(u — z)) du = Re ® (E.46)
m Jo —o0 i i
Calculating the imaginary part of ® instead we obtain
g(z) =Im & = —-/ dy/ ) sin (y(u — x)) du (E.47)
or m
ax)= /0 (b(y) coszy — a(y) sinzy) dy . (E.48)

The integral (E.48) is called the allied integral of Fourier’s integral [83]. The allied integral
is obtained by replacing a(y) by b(y) and b(y) by —a(y) in (E.42). The twice repeated
formation of the allied Fourier integral leads to the negative of the original.

According to Equation (E.48) the Fourier coefficient a(y) and b(y) can be written in a
different way:

1 00
——/ g(u) sinyu du (E.49)
mJ-o0
1 froo
—/ g(u) cosyu du . (E.50)
—00

™

2
~
<
=
Il

=
=
=
=
Il

Formally we obtain from Equation (E.47)

glz) = —7F ,\111.20 dy/ f(u)sin (y(u — z)) du . (B.51)
Integration of the outer integral leads to
L i % 1 — cos (A(u — z))
= — I e et 3 8

gle)y=_lim § flo]——— du (.52)

For A — oo, however, the term cos (A\(u — «)) averages to zero. Hence

© fl) , g

glz) = b e z (E.53)

where P denotes the principal value at u = z.
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The inversion of Equation (E.53) is derived by inserting (F.49) and (E.50) into (E.42)
following '

1= g .
Jler= ——/ dy/ g(u) sin (y(u — x)) du. (E.54)
wJo —00
Following the previous steps we obtain

— cos (A(u — 7)) d

fz) = -% Jim /_c: g(u)l . (E.55)

Uu—

The cos (\(u — x)) term can be neglected for A — oo and the following expressions have
been derived

9(x)=%7’/_zl{—g%du, f(z)z—%P/_Z%du (E.56)

The reciprocity expressed by (E.56) was first discovered by Hilbert. The Hilbert trans-
formation can also be derived from Cauchy’s integral theorem.

Appendix F

Acceptance Measurement of the
Pyroelectric Detectors

The spectral acceptance of the pyroelectric detectors has been measured at the TU Munich
using GaAs Read-type IMPATT diodes [61, 84]. The output power of the oscillators,
shown by Tab. F.1, is calibrated using a calorimetric measurement.

W-band D-band G-band
f[GHz] | 78.0 | 82.3 | 88.2 | 101.9 | 123.4 | 128.5 | 156.0 | 164.8 | 176.0 | 203.2
Py [mW} 46.8: 3714} 374} 15:1 1.2 1.0 5 4 3.6 iy |

Table F.1: Output power and frequency of the radiation sources. An isolator between the
oscillator and the horn antenna has been used with the W-band and G-band sources.

Distance

L

Hom antenna

\

A

Detector Position

Figure F.1: Spectral acceptance measurement of the pyroelectric detectors with power
calibrated dc diodes sources. The diode is connected to an isolator and a horn antenna.
The emitted GHz radiation propagates freely to the detector. A chopper in front of the
source is used to impose an harmonic variation on the radiation signal. The pyroelectric
detector equipped with a horn antenna is mounted opposite to the source. The detector
is mounted on a rail to vary the distance between the source and the detector.

171
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An isolator between the horn antenna has been used with the W-band and G-band sources.
The isolator prevents reflected rf power from traveling back to the oscillator. The atten-
uation caused by the use of the isolator is 1.9dB. The W-band horn antenna has an
opening of 36.5 x 27.5 mm and a length of 61.5 mm. The D-band horn antenna opening is
24.5 x 18.5 and the length is 43 mm. The attenuation of the horn antenna is determined
by a calorimetric measurement and yields 3.1dB at 101.9 GHz and 1.85dB at 78.0 GHz.
The measurement agrees well with numerical simulations performed by [85] yielding

f[GHz] [ 78.0 [ 82.3 [ 88.2 ] 101.9 | 123.4 | 1285
A[dB] | 1.97 | 219|251 | 333 | 1.56 | 1.69

Table F.2: Attenuation A evaluated for the source horn antennas.

The calibration measurements of the pyroelectric detectors have been performed using
the assembly shown in Fig. F.1 (W-band, D-band). The oscillator, the isolator and the
horn antenna are mounted on an optical table. The GHz radiation propagates freely
from the horn antenna to the detector. A chopper wheel is used to impose an harmonic
variation on the radiation signal. The pyroelectric detector equipped with a cylindrical
horn antenna is mounted opposite to the source on a rail to vary the distance between
the source and the detector.

During the calibration measurement the detector signal is recorded at different distances
from the source with and without radiation in order to subtract the background from
the signal. The measurement is repeated for each of the five pyroelectric detectors. The
left graph of Figure F.2 shows the resulting signal amplitude for the 78 GHz source as
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Figure F.2: Left graph: detector response caused by the 78 GHz radiation source as
a function of the distance between source and detector. D1-D5 denote five different
pyroelectric detectors. The solid curve shows the theoretical prediction by diffraction
calculations. Right graph: theory is fitted to the measurement by varying the effective
diameter of the detector horn antenna. The sum of the quadratic differences between
theory and measurement (see left graph for best adaption) is plotted versus the effective
diameter of the horn antenna.
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Figure F.3: Effective diameter of the pyroelectric detector equipped with the horn an-
tenna. Data is shown as markers in the frequency range of 78 GHz to 128.5 GHz. The
solid line indicates the theoretical expectation of an ideal horn antenna.

a function of the distance between the source and the detector horn antennas. The five
pyro detectors are indicated as D1-D5 and the theoretical prediction is depicted as solid
curve. The theoretical prediction is evaluated from a diffraction calculation of the freely
propagating radiation wave. The electric field distribution in an rectangular horn antenna
can be evaluated by solving Maxwell’s equations [86] yielding

T LER2 ) 1
7 = Eycos —) B Pk P,
E ocoq(za exp( 1 (215‘ + 21”)) (F.1)

where z and y denotes the coordinates of the aperture dimension and [y and Iy the slant
heights of the horn. Effects at the outer rim of the horn antenna are not considered. The
field distribution of Eq. (F.1) is propagated to the detector horn antenna by superimpos-
ing spherical wavelets according to the Huygens-Fresnel principle which was outlined in
chapter 7. A numerical simulation is used to compute the field intensity at the opening of
the detector horn antenna. The detector signal is assumed to be proportional to the inte-
gral of the intensity distribution. The theoretical prediction is adapted to the measured
data by varying the effective diameter of the detector horn antenna. The right graph of
Fig. F.2 shows the sum of the quadratic differences Y;(Ij,ea — Iheory)® Of the intensity
measurement and the intensity simulation at distances d; between the source and the
detector. The optimum horn antenna diameter is 32.1 mm. The left graph of Fig. F.2
shows the comparison of the measurement and the computation for the optimum horn
antenna diameter.

The effective diameter of the detector horn antenna is shown in Fig. F.3 in the frequency
range of 78 GHz to 128.5 GHz. An effective diameter of 30-35 mm in the W-band range
and of about 40 mm in the D-band range has been evaluated. Measurements in the G-
band were not possible because of a change of the experimental setup. The solid line
indicates the true diameter of the horn antenna (55.9 mm).

The G-band measurements have been performed using an optical setup which is depicted
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Figure I".4: Quasi-optical setup to determine the detector acceptance in the G-band
range. Frequency-doubled W-band sources are used. Radiation is emitted through a horn
antenna, collected and transfered by an assembly of lenses and focused onto the detector
horn antenna.

in Fig. F.4. The Gigahertz radiation is generated by frequency-doubled W-band sources
and is emitted through an isolator and a horn antenna. The radiation is collected, trans-
fered and focused on the detector horn antenna by an assembly of teflon lenses. The beam
transfer can be computed using the transformation laws applied for the propagation of
Gaussian beams outlined in chapter 7. The transverse dimension of the GHz radiation
pulse behind the third teflon lens is computed by assuming a symmetric radiation envelope
in between lens #2 and #3, which was the design specification of the optical beam line.
The detector is positioned at the waist of the radiation beam which is the longitudinal
position where the largest signal is detected. The damping of the optical setup, which is
a function of radiation frequency, has been measured and the radiation power behind the
third teflon lens is listed in Tab. F.3.

f[GHz] | 156.0 | 164.8 | 176.0 | 203.2
Py[dBm] | 15.7 | 14.7 | 12.1 | 10.0

Table F.3: Expected radiation power behind the third lens of the quasi-optical setup.

The maximum detector signal is recorded and compared to the radiation power reaching
the horn antenna. The transverse power distribution is given by the properties of a Gaus-
sian beam.

The detector acceptance is the ratio of the recorded detector signals and the radiation
intensity reaching the detector horn antenna. The result is shown in Fig. F.5. The
detector acceptance is increasing rapidly between 100 and 130 GHz, reaches a maximum
at f = 156 GHz and decreases towards larger frequencies. The error bars originate from
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Figure F.5: Calibration measurement of the pyroelectric detectors. The acceptance is
increasing rapidly at frequencies larger than f = 130 GHz. A maximum is at f = 156 GHz
and the acceptance is decreasing towards higher frequencies. The decrease is explainable
by destructive interference of the radiation between the front and the back side of the
100 pm thick pyroelectric crystal.

read-out errors of a digital oscilloscope, uncertainties of the computed attenuation of the
horn antenna and uncertainties of the radiation transfer in the optical setup.
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