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The baryon asymmetry of the universe can be explained by the

out-of-equilibrium decays of heavy right-handed neutrinos. We analyse

this mechanism in the framework of a supersymmetric extension

of the Standard Model and show that lepton number violating

scatterings are indispensable for baryogenesis, even though they may

wash-out a generated asymmetry. By assuming a similar pattern of

mixings and masses for neutrinos and up-type quarks, as suggested by

SO(10) unification, we can generate the observed baryon asymmetry

without any fine tuning, if (B - L) is broken at the unification scale

ACUT rv 1016 GeV and, if mv!-' rv 3.10-3 eV as preferred by the MSW

solution to the solar neutrino deficit.

Die Baryonasymmetrie des Universums kann durch den Zerfall schwerer

rechtshandiger Neutrinos auBerhalb des thermischen Gleichgewichts

erklart werden. Wir untersuchen dies im Rahmen einer supersym-

metrischen Erweiterung des Standard-Modells und zeigen, daB lepton-

zahlverletzende Streuprozesse, die eine erzeugte Asymmetrie wieder ver-

nichten konnen, fur die Baryogenese unverzichtbar sind. Nimmt man

fur Quarks und Leptonen ahnliche Massen und Mischungswinkel an -

wie von SO(10)-vereinheitlichten Modellen nahegelegt - so kann man

die beobachtete Baryonasymmetrie erzeugen. Dazu wird (B - L) an

der Vereinheitlichungsskala ACUT rv 1016 GeV gebrochen, und mv!-' rv

3.10-3 eV angenommen, wie es die MSW-Losung des solaren Neutrino-

Problems nahelegt.
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follow no path

all paths lead where

Introd uction

The observed baryon asymmetry of the universe is one of the most intriguing problems of particle

physics and cosmology. This asymmetry, which is usually expressed as ratio of the baryon density

nB to the entropy density s of the universe,

nB -10YB = - = (0.6 - 1) ·10 ,s

could in principle be an initial condition of the cosmological evolution. However, this is not

compatible with an inflationary phase which seems to be required in a consistent cosmological

model [2]. Hence, the baryon asymmetry has to be generated dynamically during the evolution of

the universe. This is possible if baryon number is not conserved, if C and C P are violated, and if

the universe is not in thermal equilibrium [3].

Although the Standard Model (SM) contains all the necessary ingredients, it is not possible to

explain the baryon asymmetry within the SM, i.e. one has to envisage extended theories. Grand

unified theories (GUTs) are attractive for various reasons and there have been many attempts

to generate YB at the GUT scale [2]. However, these mechanisms are difficult to reconcile with

inflationary scenarios which require reheating temperatures well below the GUT scale.

Preheating, i.e. the non-thermal decay of the oscillating inflaton at the end of inflation via

parametric resonance [4]' may re-open the window for GUT baryogenesis, since it enables the

coherent decay of the inflaton condensate into particles that are more massive than the inflaton



itself. However, recent calculations indicate that parametric resonance may be ineffective in

most inflationary models, if the back reaction of the produced particles onto the condensate, the

rescattering of the decay products, and the expansion of the universe are taken into account [5].

In supersymmetric theories, the influence of baryon number carrying scalar condensates along

flat directions of the scalar potential, i.e. Affleck-Dine baryogenesis [6], requires further studies,

since it is not clear under which conditions this mechanism can generate a baryon asymmetry of

the requested magnitude [7].

During the evolution of the early universe, the electroweak phase transition is the last

opportunity to generate a baryon asymmetry without being in conflict with the strong experimental

bounds on baryon number violation at low energies [8]. However, the thermodynamics of this

transition indicates that such scenarios are rather unlikely [9].

Therefore, the baryon asymmetry has to be generated between the reheating scale and the

electroweak scale, where baryon plus lepton number (B + L) violating anomalous processes are in

thermal equilibrium [10], thereby making a (B - L) violation necessary for baryogenesis. Hence,

no asymmetry can be generated within GUT scenarios based on the gauge group SU(5), where

(B - L) is a conserved quantity.

Gauge groups containing 80(10) predict the existence of right-handed neutrinos. In such

theories (B - L) is spontaneously broken, one consequence being that the right-handed neutrinos

can acquire large Majorana masses, thereby explaining the smallness of the light neutrino

masses via the see-saw mechanism [11]. Heavy right-handed Majorana neutrinos violate lepton

number in their decays, thus implementing the required (B - L) breaking as lepton number

violation. This leptogenesis mechanism was first suggested by Fukugita and Yanagida [12] and

has subsequently been studied by several authors (see, e.g., refs. [13-21]). As detailed studies have

shown, the observed baryon asymmetry can be generated in non-supersymmetric [13,14,15] and

supersymmetric theories [16,17].

If one assumes a similar pattern of mass ratios and m1xmgs for leptons and quarks and, if

mvl' rv 3 . 10-3 eV as preferred by the MSW solution to the solar neutrino problem, leptogenesis

implies that (B - L) is broken at the unification scale [15]. This suggests a grand unified theory

based on the group SO(10), or one of its extensions, which is directly broken into the standard

model gauge group at the unification scale rv 1016 GeV. However, for a successful gauge coupling

unification, such a GUT scenario requires low-energy supersymmetry.

Supersymmetric leptogenesis has already been considered in refs. [16,18] in the approximation

that there are no lepton number violating scatterings which can inhibit the generation of a lepton



number. Another usually neglected problem of leptogenesis scenarios is the necessary production

of the right-handed neutrinos after reheating. In non-supersymmetric scenarios one has to assume

additional interactions of the right-handed neutrinos for successful leptogenesis [14].

In this thesis, we investigate supersymmetric leptogenesis within the framework of the mini-

mal supersymmetric standard model (MSSM), to which we add right-handed Majorana neutrinos,

as suggested by SO(10) unification [17]. Since C P asymmetries in the decays of these neutrinos

are one of the principal ingredients of this model, we start by considering possible sources of C P

violation in decays of Majorana neu trinos in the next chapter. In addition to the usually considered

one-loop vertex corrections [2], we show how self-energy contributions to the CP asymmetry, which

have previously been considered in refs. [18-21], can be consistently taken into account [22]. For

simplicity we only consider the non-supersymmetric leptogenesis scenario. However, our results are

easily generalized to the supersymmetric case.

In chapter 2 we present superfield techniques, which simplify calculations in theories with ex-

act supersymmetry These techniques are used in chapter 3 where we introduce supersymmetric

leptogenesis. In particular, we discuss the neutrino decays and scattering processes that one has

to take into account to be consistent [17]. In chapter 4 we develop the full network of Boltzmann

equations necessary to get a reliable relation between the input parameters and the final baryon

asymmetry. We work out the parameter dependence of the generated baryon asymmetry, and show

that by neglecting the lepton number violating scatterings one largely overestimates the generated

asymmetry, and that in our scenario the Yukawa interactions are strong enough to produce a

thermal population of right-handed neutrinos at high temperatures. Finally, we show in chapter

5 that by assuming a similar pattern of masses and mixings for leptons and quarks one gets the

required value for the baryon asymmetry without any fine tuning, provided (B - L) is broken at

the GUT scale, and the Dirac mass scale for the neutrinos is of order of the top quark mass, as

suggested by SO(10) unification [15,17].

In appendix A we summarize some standard formulae for one-loop integrals. In appendix B we

introduce our spinor notation and compile formulae which are needed for the superfield calculations

of chapters 2 and 3, while the Feynman rules for component field calculations are presented in

appendix C. After a brief review of thermodynamics in an expanding universe in appendix D, we

present the cross sections for the scattering processes discussed in chapter 3 in appendix E. Finally,

in appendix F we discuss some limiting cases in which the corresponding reaction densities can be

calculated analytically.



Chapter 1

CP Asymmetry in Majorana

Neutrino Decays

In this chapter we study how self-energy diagrams can be consistently taken into account when

computing CP asymmetries in heavy particle decays. This is not obvious, since the naive

prescription leads to a well-defined result for the C P asymmetry, whereas the individual partial

decay widths are infinite.

We investigate this problem in the case of heavy Majorana neutrinos, which are obtained as mass

eigenstates if right-handed neutrinos are added to the standard model. Since they are unstable, they

cannot appear as in- or out-states of S-matrix elements. Rather, their properties are defined by S-

matrix elements for scatterings of stable particles mediated by the unstable neutrino [23]. By using a

resummed propagator for the intermediate neutrino, we can separate two-body scattering processes

in resonance contributions and remainder. While the CP asymmetries of two-body processes

vanish [24], the resonance contributions yield a finite CP asymmetry which can be assigned to the

intermediate neutrino

1.1 Self-energy and vertex corrections

We consider the standard model with three additional right-handed neutrinos. The corresponding

Lagrangian for Yukawa couplings and masses of charged leptons and neutrinos reads

Ly = lL H ).i eR + lLfHt ).~ VR - ~ v~ M VR + h.c., (1.1)

where lL = (vL, ed is the left-handed lepton doublet and H = (H+, HO) is the standard model

Higgs doublet. )./, ).V and Mare 3 X 3 complex matrices in the case of three generations. One
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Figure 1.1: Leading order contributions to the self-energy of the heavy Majorana neutrinos. The

fermion flow has been chosen parallel to the external momentum q.

can always choose a basis for the fields /lR such that the mass matrix M is diagonal and real with

eigenvalues Mi. The corresponding physical mass eigenstates are then the three Majorana neutrinos

Ni = /lR' + /I~ .• At tree level the propagator matrix of these Majorana neutrinos reads
t t

. i
zSo(q)= q-M+i£'

This propagator has poles at q2 = M; corresponding to stable particles, whereas the physical

Majorana neutrinos are unstable. This is taken into account by summing self-energy diagrams in

the usual way, which leads to the resummed propagator

is(q) = q _ M
Z

_ E(q)

where PR,L = !(1 ±"Y5) are the projectors on right- and left-handed chiral states. ER and EL are the

contributions of the diagrams figs. (1.1a) and (LIb), respectively. They can be written as products

of a complex function a(q2) and a hermitian matrix J(,

a(q2) is given by the usual form factor Bo(q2, 0, 0) defined in eq. (A.S), whose finite part reads in

the M S-scheme,

1For the calculations we use the non-supersymmetric subset of the Feynman rules in App. C, by identifying the

SM Higgs doublet H with the supersymmetric scalar Higgs doublet H2•



Figure 1.2: One-loop corrections to the couplings of heavy Majorana neutrinos Nj to anti-lepton

Higgs states (a) and lepton Higgs states (b). The fermion flow has been chosen according to the

external lepton lines.

For simplicity we will often omit the argument of a in the following, however one should keep in

mind that a depends on q2.

According to eqs. (1.3) and (1.4) the resummed propagator S(q) satisfies

Inserting this decomposition into eq. (1.7), and multiplying the resulting equation from the left and

the right with chiral projectors PR,L, yields a system of four coupled linear equations for the four

parts of the propagator. The solution reads

[ 2 ] -1SRR(q2) (1 - Edq2)) ~(1 - ER(q2)) - M (1.9)

SLR(q2) ~ (1 - ER(q2))SRR(q2) , (1.10)

[ 2 ] -1SLL(q2) (1 - ER(q2)) ~(1- Edq2)) - M (1.11)

SRL(q2) = ~(1 - Edq2))SLL(q2) (1.12)M .

In addition to the self-energy we need the one-loop vertex function. The two expressions for

the coupling of N to I,Ht (fig. 1.2a) and N to 1,H (fig. 1.2b) can be written as



Here b(q, p) and c(q, p) are diagonal matrices whose elements are given by the standard three point

form factors Co and C12 defined in appendix A.3,

1
16rr2 [Co (-p - q, q, Mk, 0, 0) + C12( -p - q, q, Mk, 0, 0)] ,

1
-6 2 [Co (-p - q, q, Mk, 0, 0) + 2C12( -p - q, q, Mk, 0, 0)] .
1 rr

Since we shall only consider amplitudes with massless on-shell leptons, the terms proportional to

Ck will not contribute. We shall only need the imaginary part of bk which is given by

f (x) = Vi ( 1 - (1 + x) In (1~ x) )

The two lepton-number violating and the two lepton-number conserving processes are shown in

figs. 1.3a-1.3d. Consider first the contributions of the full propagator, where the full vertices are

replaced by tree couplings. The four scattering amplitudes read

(lj(p') Het(q - p')Ili(p) Hb(q - p)) = +i£ab£de (>.~)Ij(>.~)ki

(CPLv(p')l SrkL(q) (PLu(p)) , (1.19)

(lj(p')He(q - p')11i(p)Hbt(q - p)) +i£ab£de (>.t) Ij(>.t) ki

(u(p')PR) SJkR(q) (v(p)PRC)T , (1.20)

(lj(p')He(q - p')Ili(p)Hb(q - p)) -i£ab£de (>.t)lj (>'~)ki

(u(p')PR) SJkL(q) q (PLu(p)) , (1.21)

(lj(p')Het(q - p')11i(p)Hbt(q - p)) -i£ab£de (>'~)Ij (>.thi

(CPLv(p')l stt(q) q (v(p)PRC)T . (1.22)

Here a, b, d, e denote the SU(2) indices of lepton and Higgs fields and i, i, k, 1are generation indices.

The relative signs follow from Fermi statistics.



We are particularly interested in the contributions of a single heavy neutrino to the scattering

amplitudes. In order to determine these contributions we have to find the poles and the residues of

the propagator matrix. Here an unfamiliar complication arises due to the fact that the self-energy

matrix is different for left- and right-handed states. Hence, the different chiral projections of the

propagator matrix are diagonalized by different matrices.

SLL and SRR are symmetric complex matrices, since L:dq2) = (L:R(q2))T. Hence, SLL and SRR

can be diagonalized by complex orthogonal matrices V and U, respectively,

One can easily identify real and imaginary parts of the propagator poles. The pole masses are given

by

-2 2 I<ii (M2
)Mi = ZMiMi, ZMi = 1 + 8rr2 In j.3 - 2 , (1.26)

and the widths are fi = I<iiMd(8rr). In the vicinity of the poles the propagator has the familiar

Breit- Wigner form

We can now easily write down the contribution of a single resonance Nl with spin s to the

lepton-Higgs scattering amplitudes. Suppressing spin indices for massless fermions, one has

(lj(p')Het(q - p')Ilf(p)Hb(q - p))l = (lj(p')Hte(q - P')INl(q, s))

iD/(l) (N/(q, s)llf(p)Hb(q - p)) , (1.28)

(lj(p')He(q - p')IN/(q, s))

iD/(q2) (N/(q, s)llf(p)Hbt(q - p)) ,

(lj(p')He(q - p')IN/(q, S))LC

iD/(q2) (N/(q, s)llf(p)Hb(q - p)) ,

(lj(p')Het(q - p')!N/(q, S))LC

iD/(q2) (N/(q, s)llf(p)Hbt(q - p)) .



lC!-,

(b)

J!
Hb/

lC!-,

(d)
J!

Hb/

Here the subscript LC distinguishes an amplitude defined by a lepton-number conserving process

from the same amplitude defined by a lepton-number violating process. From eqs. (1.9)-(1.12) and

(1.23) one finds

(NI(q, s)llf(p)Hb(q - p))

(Ij(p')Het(q - p')INI(q, s))

(NI(q, s)IIf(p)Hbt(q - p))

(lj(p')He(q - p')INI(q, s))

+i£ab (V(l)>.;) Ii Us(q, MI)PLU(p) ,

-i£de (>'vVT(q2))jlvS(q,MI)PLV(P'),

-i£ab (U(q2)>.t) Ii V(p)PRVS(q, MI) ,

+i£de (>'~UT(q2))jlu(P')PRUs(q,MI)'

+i£de (>.~~(1- Edq2))VT(q2)M) jl

U(p')PRUS(q, MI) ,

-i£de (>.v ~(1- ER(q2))UT(q2)M) jl

V.,(q, MI)PLV(p') ,

(1.32)

(1.33)

(1.34)

(1.35)

where we have used the identity Cv;(p) = us(p).

Eqs. (1.32) and (1.33) describe the coupling of the Majorana field N to the lepton fields li and

the Higgs field H, and eqs. (1.34) and (1.35) give the couplings of N to the charge conjugated

fields Ii and Ht. In the case of C P conservation, one has >'v" = >.~.., which implies [( = [(T and
'J 'J

therefore



with ij = (qO, -q), p = (Po, -fi), as required by CP invariance.

The amplitudes given in eqs. (1.32) - (1.35) have been obtained from the lepton-number violating

processes figs. 1.3a and 1.3b. The lepton-number conserving processes figs. 1.3c and 1.3d yield the

amplitudes given in eqs. (1.36) and (1.37). The consistent definition of an on-shell contribution of a

single heavy Majorana neutrino to the two-body scattering amplitudes requires that the transition

amplitudes extracted from lepton-number conserving and lepton-number violating processes are

consistent. This implies

(lj(p' )He(q - p' )IN/(q, s))

(Tj(p' )Het (q - p') /N/(q, s))

(lj(p' )He(q - p' )IN/(q, S))LC ,

(Tj(p')Het(q - p')IN/(q,S))LC.

(1.40)

(1.41)

From eqs. (1.33), (1.35), (1.36) and (1.37) it is clear that these relations are fulfilled if the mixing

matrices V(q2) and U(q2) satisfy certain consistency relations. Assuming that the matrix Av has

an inverse, one reads off

Uij(Ml) ( MV(Ml) (1 - ~R(Ml)) ~) ij ,

Vij(Ml) = (MU(Ml) (1 - ~dMl)) ~) ij .

V(l) (SLL(q2))-1 VT(q2) = V(q2) ((1- ~R(q2)) ~ (1- ~dq2)) - M) VT(q2) , (1.44)

U(q2) (SRR(q2))-1 UT(q2) = U(q2) ((1- ~dq2)) ~ (1- ~R(l)) - M) UT(q2) , (1.45)

1+ V(q2), V(q2) = _vT(q2) ,

1+ U(q2), u(q2) = _UT(q2) ,

(1.46)

(1.47)

Wij(q2) (Mi~Nji(q2) + Mj~Nij(q2))

Wij(q2) (Mi~Nij(q2) + Mj~Nji(q2))



2-1 (MiMj) (2)(' )Wij(q) = (Mi - Mj) 1+ ~ - 2a q MiB ..jj - MjI<ii .

These equations give the matrices V and U to leading order in EN' They are meaningful as long

as the matrix elements of EN are small compared to those of w-1
•

Inserting eqs. (1.48) and (1.49) in eqs. (1.42) and (1.43), one finds that the consistency conditions

for the mixing matrices V and U are fulfilled to leading order in EN. We conclude that the

contribution of a single heavy neutrino to two-body scattering processes can indeed be consistently

defined. The pole masses are given by eq. (1.26) and the couplings to lepton-Higgs initial and final

states are given by eqs. (1.32)-(1.35).

r(Ni -+ lH) - f(Ni -+ lHt)
Ci = ----------- .

r(Ni -+ lH) + r(Ni -+ lHt)

f M(Ni -+ lH) ex L I(),~UT (M[))jiI2 •

j

To leading order in ),~ this yields the asymmetry (cf. eqs. (1.46), (1.47)),

cr = ILRe {(u(Ml)I<)ii - (v(Ml)I<T)id

Using eqs. (1.48) - (1.50) and (1.6), one finally obtains

1 M· Im{I<~..}
c~ = -- '"' IW"(M~)12(M2 _ M~)_J tJ

t 871" LJ tJ t t J Mi I<ii
J

Consider first the case where differences between heavy neutrino masses are large, i.e., IMi -

Mjl~ Ifi - fjl· Eq. (1.55) then simplifies to

1 M·M· Im{I<~.. }
M '"' t J tJ

ci = - 871" LJ M~- M~ Ie
j t J It

This is the familiar CP asymmetry due to flavour mixing [18]. It has previously been obtained

by considering directly the self-energy correction to the Majorana neutrino decay, without any



p
~

--+--"""T'"" - -....., - - He

N t p+ p' - q N t p+p'_q

Hb __ ~ __ ....1--.......,..-
~

p'

Hb - - ""'f: - - -'---+-- 1j
~

p'

resummation. The CP asymmetry Ci reaches its maximum for IMi - Mjl rv Wi - fjl, where the

perturbative expansion breaks down.

Interesting is also the limiting case where the heavy neutrinos become mass degenerate. From

eq. (1.55) it is obvious that the CP asymmetry vanishes in this limit. The vanishing of the CP

asymmetry for mass degenerate heavy neutrinos is expected on general grounds, since in this case

the C P violating phases of the matrix K can be eliminated by a change of basis.

The CP asymmetry due to the vertex corrections is easily obtained using eqs. (1.13), (1.14),

(1.17) and (1.18). The partial decay widths corresponding to the full vertex read

f y{Ni -+ IHt) ex: L I{Av{l - MbI<T M))ji/2 ,

j

fy{Ni -+ 1H) ex: LI(A~(l- MbKM))jiI2•

j

1 Im{K~ .. } (M2
)

y '""' I) f )ci = - 811" ~ Ie M?-'
j " 1

Let us now consider the C P asymmetries in two-body processes. Here we have to take into account

the s-channel amplitudes shown in figs. 1.3a and 1.3b, with vertex functions up to one-loop, and

the two u-channel amplitudes depicted in figs. 1.4 and l.4b. For the u-channel amplitudes vertex

and self-energy corrections can be omitted to leading order since the absorptive parts vanish.



_ ~IMI2 _ IM(LHt --+ lH)12 -IM(lH --+ LHtW
C = 21MI2 = IM(lHt --+ lH)12 + IM(lH --+ lHt)12 '

where we always sum over generations in initial and final states. There are contributions from

the full s-channel propagator, ~IMI;,from the interference between s-channel amplitudes at tree-

level and with one-loop vertex corrections, ~IMI;,r, the interference between tree-level s-channel

and u-channel amplitudes, ~IMI;,tL'and the interference between s-channel with one-loop vertex

corrections and u-channel amplitudes, ~IM I~,r'
Consider first the CP asymmetry Cs due to the full propagator. The contribution of a single

intermediate neutrino Ni is (cf. (1.28), (1.32), (1.33))

IMi(lH --+ LHt)l; ex: IDi(q2W L I(V(q2)A~ )ijl2 L I(AvVT (q2)hiI2 •

j k

It is very instructive to compare the contribution of a single resonance with the CP asymmetry

Cs for the full propagator. Due to the structure of the propagators SLL and SRR it is difficult to

evaluate Cs exactly. However, one may easily calculate Cs perturbatively in powers of ~N' like the

mixing matrices V(q2) and U(q2) in the previous section.

The full propagator (cf. (1.7)) reads to first order in ~N'



It is now straightforward to calculate the matrix elements of the two-body processes, summed

over generations in initial and final states,

16p. p' q2 (~Tr [J(M D(q2)J(T M D*(q2)] +
2q

Re{ Tr[J(MD(q2)~~(q2)(1- ~D(q2))D(q2)J(TMD*(q2) +

[(V(l)(l - ED(l)) EN(q') M V(l)[(T M V· (q') ] } + ...). (1.67)

16 P . p' L Aij + ... ,

(1.70)

(1.71)

(1.72)

iIm{J(Nij}2MiMjDj(q2)Di(q2) ,

4q2Re {ia(q2)Im{J(~i)MiMj (1 - ~D(q2)i) J(iiDj(q2)IDi(q2W}

(1.73)

(1.74)

From eqs. (1.56), (1.73) and (1.74) one reads off that the sum over Cij yields precisely the

contribution of the resonance Ni to the CP asymmetry,

~.CiJ· 1 M·M· Im{I(~..}_ L..-J = __ ~ • J 'J = 2c:M
A-. 47r ~ M~ - M2 J(.. • .
" j' J "

The second contribution to the CP asymmetry c:s is due to the sum over Bij (cf. eq. (1.71)).

Bij involves two different propagators (i =1= j) and corresponds to an interference term. Using

D;-1(q2) = q2 - MJ - 2a*(q2)q2J(jj and 2q2Im{a(q2)}J(ii = -Im{D;1(q2)}, one can rewrite Cij

as follows,



Comparing eqs. (1.71) and (1.76) it is obvious that the sum of both terms, Le., the CP asymmetry

Cs corresponding to the full propagator, is identically zero! The pole contribution is cancelled by

the interference of the pole term with an off-shell propagator.

The contribution to the CP asymmetry LlIMI:,r can be computed in a similar manner. The

diagrams fig. 1.3a and 1.3b yield two contributions for the two vertices. After some algebra one

obtains the result (cf. (1.15))

LlIMI:,r -64 p' p' q2 L Dijk + ... ,
i,j,k

For q2 ~ Ml, one reads off that the sum over Dijk yields, as expected, twice the vertex CP

asymmetry,

(M~) rv I:kDiik = _-.!:- ~ Im{J(~ik}f (M~) = 2 v
cs,r • - A.. 4 L.., T.(.. M2 C••

•• 7fk r •• i

A result very similar to eqs. (1.77), (1.78) is obtained for the asymmetry LlIMI; u' the interference,

between tree-level s-channel and u-channel amplitudes. One finds (u = (q _ p _ p')2),

-32 p . p' q2 L Eijk + ... ,
i,j,k

10 2p·p' _ q2R (M~)
du 2 - ---f -2 '

_q2 U - Mk Mk q

Finally, we have to consider the CP asymmetry LlIMI~r. A straightforward calculation yields,

LlIMI~,r -32p·p' lLFijk+ ... ,
i,j,k

After integration over u the resulting matrix Fijk is antisymmetric in the indices j and k. As a

consequence, the asymmetry LlIM I~,ris identically zero.



As we have seen, the total CP asymmetry vanishes to leading order in >.~.This result has

previously been obtained in [24]. It follows from unitarity and CPT invariance. The considered

T-matrix elements satisfy the unitarity relation

If, in perturbation theory, the leading contribution to the right-hand side is given by two-particle

intermediate states, one has

L(lHITtTllH) = L (l(l'HITllHW + l(liHtITllHW) + ....
I 1,1'

L (l(liHtITllHW -1(l'HITIIHt)12
) + ... = O.

1,1'

In [24] it was concluded that away from resonance poles, where ordinary perturbation theory holds,

the CP asymmetry (1.89) vanishes to order >.~. Corrections due to four-particle intermediate

states are O(>.~). In this paper we have developed a resummed perturbative expansion in powers

of EN which is also valid for s ~ Ml. The same argument then implies that in this case the CP

asymmetry (1.89) vanishes to order >.~whith corrections O(>'~).

The nature of the cancelation is different for different subprocesses. For the full propagator, the

CP asymmetry vanishes identically for fixed external momenta. Interference contributions between

various s-channel and u-channel amplitudes cancel after phase space integration. In applications

at finite temperature the standard practice [2] is to treat in the Boltzmann equations resonance

contributions and the remaining two-body cross sections differently. This procedure yields for the

CP asymmetry of the decaying heavy neutrino Ni the sum of mixing and vertex contribution,



Chapter 2

Perturbation Theory in Superspace

In this chapter we give a short review of the superspace formulation of theories with global

supersymmetry. Since in the following chapters we will only encounter chiral superfields, we re-

strict ourselves to chiral superfields and leave aside the superspace formulation of gauge theories,

which can be found e.g. in ref. [25]. In particular, we will present the powerful calculational tool

of perturbation theory in superspace, which drastically simplifies calculations of S-matrix elements

in theories with exact supersymmetry.

Supersymmetry transformations are generated by operators Q which transform bosons into

fermions, i.e. these generators have fermionic character [26,27]. The operators Q and their

Hermitian adjoints Q can be chosen to be Weyl spinors1, which obey anticommutation relations

(2.1)

(2.2)

(2.3)

where PIJ. is the energy-momentum operator. Together with the familiar commutation relations for

the generators PIJ. and MlJ.v of the Poincare group, Q and Q form a closed algebra, the so-called

super-Poincare algebra.

A compact technique for working out representations of the supersymmetry algebra was

proposed by Salam and Strathdee [28]. They introduced Grassmann variables 00: (a = 1,2) and 0a



(2.5)

(2.6)

Now we are able to exponentiate the super-Poincare algebra into a group in such a way that the

product of two group elements is again a group element. An element of this super-Poincare group

is given by
G(x, 0, 0) = ei(xoP+l/Q+OQ) .

These group elements generate transformations in the eight-dimensional superspace parametrized

by the coordinates (xlJ.,OCX,Oc,). In the following we use z = (xlJ.,OCX,Oa) to denote a point in

superspace.

Left action of the group element G(a, 7], 7J) induces a motion in superspace,

(2.10)

(2.11)

Q 0 'Ocx IJ. £:l. = --- - Z (J. ucx • cxcx IJ.'
oOcx

o -h _ h-.0 =0..
oOcx cx

The usual rules for raising and lowering spinor indices (cf. app. B) therefore give an additional sign,

if the index position in the differentiations is changed,



Correspondingly, right action of the group elements induces an anti-realization of the super-

Poincare group generated by covariant derivatives D and V,

8 " J.L-00!Cl~ - to"· U",uOa aa .-

8 "Oa J.L!Cl- --. + t 0" ao, UIJ- ,

87r

(2.17)

(2.18)

DaD{3 _~ £a{3D2 (2.19)
2 '

-o-{3 1 o,iJV2 (2.20)D D "2£ ,

Va V2Va V.D2Da (2.21)a '

V2D2V2 -2 (2.22)= -160V ,

D2 D2D2 -16 OD2, (2.23)

-2 --a
D =Do,D

Supersymmetric theories are most easily formulated in terms of superfields in superspace. In order

to get a feeling for how to define a superfield, let us first consider an ordinary quantum field </>(x)

which depends only on the coordinates xlJ- of Minkowski space. Translations of these coordinates

are generated by the operator PIJ-, and we can consider </>(x) to have been translated from xlJ- = 0,



where G(x, (},0) is an element of the super-Poincare group given by eq. (2.8). This means that a

superfield is defined as a Taylor expansion in (}and 0 with coefficients which are themselves local

fields in Minkowski space. Due to the Grassmann nature of (}and 0, this expansion breaks off, and

the most general superfield reads

F(x, (}, 0) = I(x) + (}4>(x) + OX(x) + (}2m(x) + 02n(X) + (}(TJl.OVJl.(x)

+(}2o3:(x) + 02(}'lj;(X) + (}202 d(x) .

This superfield contains as Taylor coefficients four complex scalar fields I, m, nand d, one complex

vector VJl., two spinors 4> and 'lj; in the (~, 0) representation and two spinors X and 3: in the (O,~)

representation of the Lorentz group, altogether 16 fermionic and 16 bosonic field components.

Consequently, superfields form linear representations of the supersymmetry algebra which are, in

general, highly reducible. Irreducible representations can be constructed by imposing constraints on

the superfields. Like all covariant derivatives, D and D can be used to impose covariant conditions.

Chiral superfields <P are characterized by the condition

This first order differential equation is most easily solved in terms of the variables yJl. = xJl. - i(}(TJl.0

and (}since

This is the most general solution to eq. (2.29), as may be seen by expressing the covariant derivatives

in terms of y, (} and 0,

Do. {) . Jl.OCx {) (2.32)- -2t(T. -{)(}o. 0.0. {)yJl. '

D·
{)

(2.33)a {)Oo.



By Taylor expansion in 0 and 0, we can write a chiral superfield as a function of the original

superspace coordinates xl-', 0 and 0,
- 1 2-2

4>(x, 0,0) = A(x) - iOaI-'OoI-'A(x) - 40 0 oA(x)

+V207f;(x) + :n0201-'7f;(x) a 1-'0+ 02F(x) .

It is a natural function of,JI-' = xl-' + iOal-'O and 0, and its power series expansio is obtained from

eqs. (2.31) and (2.34) by conjugation.

Supersymmetry invariant actions can be constructed from chiral superfields and their products.

It is clear from the expansion (2.31) that a product of chiral superfields is again a chiral superfield

(cf. app. B.3), whereas a product of a chiral and an antichiral superfield will satisfy neither eq. (2.29)

nor eq. (2.35). However, not every component of these product superfields can be used to construct

supersymmetric actions. To be able to formulate supersymmetric theories we have to isolate the

components which are invariant under supersymmetry transformations, up to total derivatives.

The general method by which a translation invariant action is derived from fields is to integrate

a Lagrange density .L:(x) over d4x. The result is translationally invariant if surface terms vanish.

Similarly, SUSY invariant actions can be constructed by integration over superspace, once we have

defined an integral over the Grassmann variables 0 and 0. This Berezin integral is determined by

imposing linearity and translation invariance, except for the normalization which is fixed by the

definitions [29] J d2002 = 1 and J d200
2 = 1 ,

with all other integrals vanishing. The two-dimensional volume elements are defined by

d20 -!:-dOcrdO (2.37)4 cr ,

d20 1 - -a
(2.38)--dO.dO .4 cr



If we adopt the convention of dropping total divergences, i.e. surface integrals, the differential

operators _~D2 and _~D2 are equivalent to d2(J and d2{j under a space-time volume integral,

J d8
Z F1 Do: F2 = =+= J d8

Z {Do: Ft} F2 ,

J d8
Z F1 Do: g = =+= J d8

Z { Do: Ft} F2 ,

where the upper (lower) sign is valid if F1 is an even (odd) Grassmann function. Similarly, higher

powers of covariant derivatives can be partially integrated by means of the following formulae

=+= J d8 Z ( D 2 DO:F1) Do: F2 ,

J d8
Z (DO: D 2 Do: F1) F2 .

We may also define superspace delta distributions

J d8z F1 (D2 F2)

J d8 z F1 ( D 2 F2 )

J d8
Z F1 (D2 D 2 F2)

J d8z F1 (DO: D2 Do:F2)

J d8z (D2 FI) F2 ,

J d8
Z ( D 2 F1) F2 ,

J 8 (-2 2 )d z D D F1 F2,

(2.53)

(2.54)



-4exp [i(OI - O2)0"1'0101,1']

-4exp [-i010"1'( 01 - O2)01,1']

16exp [-i (010"1'01 + 020"1'02 - 2010"1'02) 01,1']

16exp [i (010"1'01 + 020"1'02 - 2020"1'01 ) 01,1'] ,

(2.55)

(2.56)

(2.57)

where D1 and D1 act on Xl, 01 and 01. The argument of the derivatives can be changed through

the following transfer rules

D?<58(ZI - Z2) -D~<58(ZI - Z2) , (2.59)

-a 8 -a 8 (2.60)D1 <5 (ZI - Z2) = -D2 <5 (ZI - Z2) ,

Di<58(ZI - Z2) Di<58(ZI - Z2) , (2.61)

-28 -28 (2.62)D1 <5 (ZI - Z2) D2 <5 (ZI - Z2) ,

Superspace integration can be used to construct invariant actions. Consider first the integral

over a chiral superfield. Due to the constraint (2.29), a chiral superfield is independent of lJ, Le.

I d2lJ, and hence the full superspace integral gives zero.

Since for chiral superfields the supersymmetry algebra can .be realized as coordinate

transformations of the chiral subspace of superspace alone, which has coordinates yl' and oa but

not lJa' the I d4x d20 integral, without the d2lJ, is already an invariant integral for chiral superfields.

Therefore, the most general supersymmetric renormalizable Lagrange density involving only one

chiral superfield reads

We will omit the tadpole term gif! in the following, since it can always be eliminated by field

redefinitions.



In close analogy to the usual perturbation theory one can develop a perturbation theory in

superspace [30,25]. Our goal is to compute Green functions for superfields,

where zi = (xi/-L, OiG, OioJ denotes a point in configuration superspace. Let us start by computing

the propagator for a chiral superfield, which is constructed from the free Lagrangian

Since the operator -D2D2/(160) projects on chiral fields,

1 D2 D2
----<I> = <I> if D<I>= 0,

16 0

we can use eqs. (2.41)-(2.44), and rewrite the df>s integration in the mass term of the free Lagrangian

into an integration over the whole superspace,

£0 = J d'z {q;H~m (q;~'q;H~' q;)}
j d8z ~ (<I>,<I» M (:) ,

!-~ D' )
40

To derive equations of motion we have to define a functional derivative in superspace, where

we have to take into account the chirality constraint D <I>= O. This constraint is automatically

respected by varying in the y basis,

8 _ jd8Z'<I>(X',O',O')F(X',O',O') = _!:-D2 F(x,O,7J).
8<I>(x,O,O) 4



This leads to the formal definition

o , , - 1-2 8 ,---~(X,.O ,0') = --D 0 (z - z) .o~(x,O,O) 4
Variation of the free Lagrangian (2.68) then gives equations of motion,

~ ( D 2 0) M (~) = 0 .
4 0 D2 ~

1-2-m~ - -D ~ 04 '
- 1 2m~ - -D ~ = O.

4

o 2 ) 0 (z - z') ,
1D
40

where the differential operator on the right-hand side implements the chirality constraint (2.29).

Solving this equation, one gets the propagator for a chiral superfield

-1
~(z, z') = 2O+m

where -1/(0 + m2) is a symbolic notation for the Green function of the Klein-Gordon operator

0+m2•

2.5 The Generating Functional

the presence of an external classical chiral source J coupled to a free chiral field ~,

1D2

4 0



where £0 is the free Lagrangian from eq. (2.68), and N is a normalization factor which can be chosen

such that Zo[O, 0] = 1. In non-supersymmetric quantum field theories the role of this normalization

factor is to take out disconnected vacuum bubbles, which would otherwise contribute to Green

functions. Although vacuum diagrams vanish in supersymmetric theories because of the non-

renormalization theorems (cf. section 2.6), the normalization factor does not equal unity when the

volume of the system tends to infinity [31].

The oscillatory path integral (2.80) is not well defined, and has to be Wick rotated to Euclidean

space to be evaluated unambiguously. The Green functions calculated in Euclidean space then

yield Green functions in Minkowski space by analytic continuation. We will write all quantities in

Minkowski space with the understanding that they can be justified in Euclidean space.

Performing the functional integral with standard techniques, one gets

{ (

1D2

ZaP']] = exp -~ J cfzd"z' (J(z), J(z)) 4" 0° ~2 ) ~(z, z') x1D
4 0

(

1D,2 ) }40 0 J(z')
x 0 ~ ~2 (J(Z')) ,

where ~(z, z') is the chiral superfield propagator (2.78). With eq. (2.67) this can be brought to a

familiar form,

-1 (- ;1~2
~GRS(Z, z') = 2O+m 1 _ 2) <5(z - z') .

mD---4 0



Since J is a chiral source, its functional derivative is defined like in eq. (2.72). The functional

derivative of Zo then reads

(

1 8 )--- D2J(z)
i 8J(z) Zo = _J d4z' ~(x, x') _1 ( )
1 8 40 -2-

i 8J(z) D J(z)

0) ( ~8J~Z)) _ ( J(z) )M 1 ~ Zo-D2 u -
i 8J(z) J(z)

This equation can easily be generalized to the interacting case. For the cf>3 theory coupled to an

external source the equations of motion read

By comparison with the functional equation for Zo (2.85) we can write down the defining equation

for the full generating functional Z[J, J],

0) (~8J~Z)) _!( J(Z)) ((~8J~Z))2 1]M 1 ~ Z- +>' 2 Z.
D2

u - (1 8 )i aJ(z) J(z) i 8J(z)



1 8
---
i 8J(z)
1 8
---
i 8J(z)

)

'Jd4/r (1818)e -Z x LINT ,U', 8J Z =

(
J(z)) -i J d4x' L (~-L ~ ~)= e INT t 8J' t 8J Z.

J(z)

By comparison with the functional equation for Zo (2.85), the generating functional Z can be

related to the free-field generating functional

iJd4x' L (~-L ~ ~)
Z[J, J] = e INT t 8J' t 8J Zo[J, J] .

This relation, familiar from ordinary quantum field theory, is the starting point of perturbation

theory in superspace.

a(N) ( 1 r. r+1 N) _z , ... ,z,z , ... ,z =

N 8 8 8 8 -I
(-i) 8J(z1)'" 8J(zr) 8J(zr+l) ... 8J(zN) Z[J, J] J=J=O

.N 8 8 8 8
(-z) 8J(z1) 8J(zr) 8J(zr+l) 8J(zN) X

~(i)nrrn J 4 Ii (18 18) -
X L.J ~ . d X LINT i 8J' i 8J Zo[ J, J]

n=O J=1 J=J=o

J 4 Ii (1 8 1 8 )
d X LINT i 8J' i 8J

generate vertices at the superspace points zli, and the functional derivatives 8~ in LINT, when acting

on Zo, generate propagators connecting different vertices. The operators 8Az') not in LINT generate

propagators on external lines, which have to be amputated and replaced by superfields <I>(zi) in

order to get an effective contribution to the Lagrangian. This leads to the following Feynman rules



2. Due to the chirality of the functional derivative (cf. eq. (2.72)), one has to include one (two)

factors - ~D 2 acting on internal propagators to each ep3 vertex with two (three) internal lines.

The same applies to ep 3 vertices and factors - ~D2 •

3. Include a coupling constant ~). and a superspace integration J d8z for each vertex.

In the next chapter we will illustrate these Feynman rules by performing several sample calculations.

Let us first investigate the general structure of diagrams calculated with these rules.

The d20i d2(ji integrals at each vertex can be done, leaving us with one overall d20 d2(j integral

and the usual Minkowski space integrals over d4xi for each diagram. To see how this comes about let

us follow the O-integrations around an arbitrary closed loop2. It consists of propagators, including

factors 88(Zi - zi+d and covariant derivatives acting on them, external superfield factors, and

d20i d2(ji integrals. Higher powers of covariant derivatives can be reduced by using the identities

(2.19)-(2.23).

Consider now the propagator from one vertex zi to another one zi, and integrate by parts

using eqs. (2.46)-(2.52) to remove all the covariant derivatives from its 8-function. The original

contribution becomes a sum of terms. If there are other propagators connecting zi and zi we can

use the relations



where 8ij == 88 (Zi - Zj). Hence, the terms generated by the partial integration vanish, unless each of

the other 8-functions has exactly two D's and two D's acting on it. Now the free 8-function can be

used to perform the d2ej d28J integral and shrink all the propagators between zi and zj to a point

in e-space. This procedure can be repeated, until we have removed all 8-functions and performed

all e-integrals except the original one at zi. We are left with a sum of terms, all with a single d2e d28
integral, various d'Alembert operators from eqs. (2.22) and (2.23), as well as covariant derivatives

acting on the external superfields.

Hence, we have ended up with a d2e d28 integral, even though in the original Lagrangian we

may have had chiral d2e integrals. This is the perturbative no-renormalization theorem for chiral

superfields [33]: radiative corrections do not induce renormalizations of F~terms, i.e. purely chiral

mass or interaction terms. Furthermore, all vacuum diagrams vanish, since the d2e d28 integral

without any external superfield vanishes.



Chapter 3

Supersymmetric Leptogenesis

In this chapter, which is based on ref. [17], we present the supersymmetric generalization of

the leptogenesis scenario suggested by Fukugita and Yanagida [12]. After having introduced the

superpotential, we compute all the relevant decay widths, CP asymmetries and scattering cross

sections. In order to check the results we have performed two independent calculations. First

by using the component field Feynman rules from appendix C, and then by using the superfield

techniques introduced in the last chapter.

In supersymmetric unification scenarios based on SO(10), the effective theory below the (B -

L) breaking scale is the MSSM supplemented by right-handed Majorana neutrinos. Neglecting

soft breaking terms, the masses and Yukawa couplings relevant for leptogenesis are given by the

superpotential

W = ~NCMNC + J.LH1fH2 + H1fQAdDc + HlfLA/Ec + H2fQAuUc + H2fLAvNc, (3.1)

where we have chosen a basis in which the Majorana mass matrix M and the Yukawa coupling

matrices Ad and A/ for the down-type quarks and the charged leptons are diagonal with real and

positive eigenvalues. The corresponding Lagrange density reads

I: = J d2
(} W + J d2(jW . (3.2)

The chiral superfields in the superpotential (3.1) are most conveniently parametrized in the

y-basis (cf. section 2.2).

Hi(Y) + V2 (}iii(Y) + (}2 FH, (y) ,

31



Q(y,O) q(y) + V20qdY) + 02 FQ(y) , (3.4)
L(y,O) l(y) + V20ldy) + 02 Fl(Y) , (3.5)

UC(y,O) UC(y) + V20URC(y) + 02 Fuc(y) , (3.6)
DC(y,O) DC(y) + V20dRC(y) + 02 FDc(y) , (3.7)
EC(y,O) EC(y) + V2 OeR C(y) + 02 FEc (y) , (3.8)
NC(y,O) NC(y) + V2 OVRC(y) + 02 FNc(y) . (3.9)

Q and L stand for the left-handed quark and lepton doublets, UC, DC, EC and NC are the right-

handed singlet fields, and Hi denotes the two Higgs-doublets,

Besides the usual bispinors for quarks and charged leptons we can introduce Majorana-spinors

for the right- and left-handed neutrinos,

In the symmetric phase of the MSSM no mixing occurs between the fermionic partners of gauge

and Higgs bosons. Therefore, we have two Dirac higgsinos

The auxiliary component fields of the chiral superfields (3.3)-(3.9) are obtained from the

Lagrange density [34],

Fi = - (:~Jt (3.14)

The superpotential (3.1) then yields the following contributions to the auxiliary fields



FH2 [-PHi + (q->'uucr + (T>.vNcr] f, (3.16)

FQi
[ t ~t t t ~t t ] (3.17)f H2 Uj (>',Jji + HI Dj (>'d)ji

FL,
[ t ~t t t ~t t ] (3.18)f H2 Nj (>'v)ji + HI E'j (>./ )ji

Fuc (>.t) 0 0 q.t f Ht (3.19)· u ']] 2 ,

FDc (>'~)ij qj t f Hi ' (3.20)·
FEc t -t t (3.21)· (>'/)ijlj fHI,

FNc oct too -:t t (3.22)• -M, Ni + (>'1')'] I] f H2 •

The vacuum expectation values of the neutral Higgs fields generate Dirac masses for the down-

type quarks and the charged leptons

The Majorana masses M for the right-handed neutrinos, which have to be much larger than the

Dirac masses mD, offer a natural explanation for the smallness of the light neutrino masses via the

see-saw mechanism [11].

To generate a non-vanishing baryon asymmetry, one needs a hierarchy in the Majorana mass

matrix M. Then the scale at which the asymmetry is generated is given by the mass MI of the

lightest right-handed neutrino. Hence, it is convenient to write all the masses and energies in units

of MI,

(Mo)2 S MI
aj = ~ , x = Ml and z = T ' (3.25)

where Mj are the masses of the heavier right-handed neutrinos, s is the squared centre of mass

energy of a scattering process and T is the temperature.

Since at these energy scales supersymmetry breaking terms can be safely neglected, we are working

in a theory with exact supersymmetry, i.e. we can use the superfield techniques exposed in the



H2

Figure 3.1: Decay modes of the right-handed neutrino superfield.

last chapter to compute decay and scattering amplitudes. To leading order, the decay modes of

the right-handed neutrino and its scalar partner with positive lepton number in the final state

are all contained in the superfield diagram fig. 3.1a, corresponding to the superpotential term

-Nc>.!L€H2• Choosing the usual decomposition of the S-matrix

we get the following tree level contribution to the T-matrix

T;:) = - J d4x J d2(j Nc>.t L€H 2 •

The decay amplitudes we are interested in are then given by the matrix elements of iT1a
). Let

us first concentrate on two-particle final states. According to the component field decompositions

(3.3)-(3.9) of the chiral superfields, the right-handed Majorana neutrinos Nj can decay into a lepton

and a Higgs-boson or into a slepton and a higgsino, while their scalar partners NJ can decay into

a lepton and a higgsino or into a slepton and a Higgs boson (cf. fig. 3.2). The decay widths at tree

level read [18]

r (Nj -+ T+ h) = r (Nj -+ zt + h )

( ) ( - t) Mjr Nj -+ 1+ H2 = r Nj -+ 1+ H2 = 16rr

r(NJ-+T+H2) =r(NJ-+I+h)

r(N," t -+ zt + Ht) = r(N," t -+ 1+ h) = Mj (mbmn)jj
J 2 J 8rr v2

2

According to eq. (D.15), the reaction densities for these decays are then given by

_ 2 (2) _ M{ (mbmn)jj aj..fiij )
'"IIN - '"11_ - 2 --K1 (z ra:J" •
I j I Nj 4rr3 V

2
z V ~J
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All these decay modes are C P violating, the dominant contribution to C P violation coming

about through interference between the tree level and the one-loop diagrams shown in fig. 3.2.

These one-loop diagrams can be summarized by the one-loop superfield diagrams in figs. 3.1b and

3.1c. Note that the non-renormalization theorems do not apply to these diagrams, since they are

contributions to the D-term N'fLi€H 2. Using the superspace Feynman rules discussed in section

2.6 the diagram in fig. 3.1b yields the following contribution to the T-matrix

iT1b) = L (A!Av) nj (A!) ni J d8z1 d8z2 d8z3 NJ(Zt}Li(Z2)€H 2(Z3) X
n

°T(b) _
t N -

where we have used eqs. (2.61), (2.62) and (2.23) in the last step. Now we can perform the d2(J3 d2(J3

integration,

Similarly, we can partially integrate the D 2 (Z2) derivatives, and perform the d2(J2 d2(J2 integrations

after having used eq. (2.100) to remove all covariant derivatives. Then iT(b) reads



·T(b) -
~ N - -LMn ( AtAv ) n~ (At) ni X

n

J 4 4 4 J d4kl d4k2 d4k3 eiXl(kl+k2)eix2(krk2)e-ixa(kl+ka)

X d Xl d X2 d X3 (2rr)4 (2rr)4 (2rr)4 (kf + ic)(k~ + ic)(k5 - M~ + ic)

X J d20 d20 NJ(XI' 0,Ofli(x2' 0, O)€H2(X3' 0,0) .

Analogously, we can compute the contribution of the diagram in fig. 3.1c to the T-matrix,

iT~c) = 2 ~ Mn (AtAv) 0 (At) 0 J d4XI d4x2 d4X3 (c54
(XI - .X2)) 2 c54(x~2 X3). X

L....- nJ m Ol-~C 03+ n-~c
n

Again using the Fourier representation for the propagators, we find

iT~c) = -i ~ Mn (AtAv) (At) J d4k Bo( -k, 0, O! J d4xl d4x3 eik(Xl-Xa) X
8rr2 ~ nj ni (2rr)4 k2 - M~ + ~c

where Bo( -k, 0, 0) is the massless two-point scalar integral defined In eq. (A.5). One-loop

corrections to the decay amplitudes are given by the matrix elements of iT~b) + iT~c)"

Interference between these one-loop diagrams and the tree-level amplitudes gives rise to C P

asymmetries in the different decay channels of Nj and NJ, which can all be expressed by the same

C P violation parameter cj,

CO "_ r(Nj -t T+ X) - r(Nj -t Tt + h) _ r(Nj -t 1+ H2) - r(Nj -t 1+ HJ)
J'- r(Nj-tT+h)+r(Nj-tTt+h) - r(Nj-tl+H2)+r(Nj-tI+HJ)

r(Ryt -t 1+ X) - r(Ni -t I + h) _ r(Ni -t T+ H2) - r(Nit -t Tt + Hn

r(N/-t 1+ X) + r(NJ -t I + h) - r(NJ -t T+ H2) + r(N/-t Tt + Hn

" [ (1 + X) 2] 3WIth g(x) =..;x In -x- + x-I ::::::vx for X ~ 1 .

Here n is the flavour index of the heavy (s)neutrino in the loop. This result agrees with the one in

ref. [18] and is of the same order as the CP asymmetry in ref. [16].



With Cj we can parametrize the reaction densities for the decays and inverse decays in the

following way

~(1+ C .)",i:.l
2 ) INJ

~(1 - C .)",(2)
2 ) INJ

, (Nj -t T+h) = , (Nj -t 1+ H 2)

(-t - ) (- t ), 1 + h -t Nj =, 1+ H 2 -t Nj ,

, (Nj -t Tt + h ) = , (Nj -t I + HJ)

, (T + h -t Nj ) =, (1 + H2 -t Nj) ,

,(Nj-tT+H2) =,(Nl-tl+h)

Additionally, the scalar potential contains quartic scalar couplings, which enable the decay of

N'j into three particles via the diagram shown in fig. 3.3a. This is just the contribution of the

auxiliary field FH2 given in eq. (3.16) to the superfield decay amplitude in fig. 3.1a. The partial

width for this decay is given by

and the corresponding reaction density reads

,(3) = 3auMt (mbmv)jj ajva:iK1(z ~). = 3au ,(2} .
Nj 128rr4 vi z v ..•)J 16rr Nj

Since the Yukawa coupling of the top quark and its scalar partner is large, au can be of order one.

But even then ,(3} is much smaller than ,(2}. Hence, the three particle decays give only a small
Nj Nj



correction, which we have taken into account for completeness. However, we have neglected the

C P asymmetry in this decay which comes about through the one-loop diagrams in fig. 3.l.

Furthermore, we have neglected the leptonic auxiliary field FLj given in eq. (3.18), since its

contribution to the sneutrino decay width will be of order (>.t>'r>'v)jj, i.e. much smaller than the

other partial decay widths, at least for the lightest sneutrino (j = 1).

The dimensionless squared total decay widths of Nj and NJ are then finally given by

(rN)2 a· (mbmD)jj
2

c· J _ J
J Ml 1611"2 v4

2

(r(2) + r(3j
) 2 (mbmD)jj

2

[1+ ~:; r .NC NC a·
c· J J _J_

J .-
Ml 1611"2 v4

2

- - -NJ + 1 -+ if + UC (cf. fig. 3.3b). The reduced cross section for this process reads

- ;:;t -;1 - - -t -;1
For the processes NJ + q -+ 1 + UC and NJ + UC -+ 1 + q, the corresponding back reactions

and the C P conjugated processes we find the same result. The corresponding reaction density can

then be calculated according to eq. (D.16). One finds

Hence, 1'22j will be much larger than INj and 1~1for small ajz2, i.e. for high temperatures T ~ Mj.
J

Together with similar scatterings, which we are going to discuss in section 3.4, these processes will

therefore be very effective in bringing the heavy (s)neutrinos into thermal equilibrium at high

temperatures where decays and inverse decays are suppressed by a time dilatation factor.



",,(4).
IN •

",,(6).
IN •

",,(5).
IN •

~-->-r;-~
h ~1~-< __ 1

T --~-T--<--H2
I~
'fNc
I

h E I E

3.3 Lepton Number Violating Scatterings Mediated by Right-

Handed Neutrinos

Using the tree level vertices from figs. 3.2 and 3.3 as building blocks we can construct lepton number

violating scatterings mediated by a heavy (s)neutrino. Although of higher order than the tree level

decays, these diagrams have to be taken into consideration to avoid the generation of an asymmetry

in thermal equilibrium, which is forbidden by CPT invariance [35,36].
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Figure 3.6: Diagrams contributing to the lepton number violating scatterings via heavy sneutrino

exchange.

The superfield product can be evaluated with eq. (B.56). The matrix elements of iTL>.L then

correspond to the component field processes that we are going to discuss in the following. In this

section we will only mention the different processes which have to be considered. The corresponding

reduced cross sections can be found in appendix E and the reaction densities are discussed in

appendix F.

By combining two of the decay vertices (cf. fig. 3.2 and fig. 3.3a) one gets the processes that we

have shown in fig. 3.5 and the corresponding CP conjugated processes. We will use the following

abbreviations for the reaction densities

,~) = ,(i + h Hit + h) ,
,~) = , (i+ h food + Ht) ,

(5) (- -t ~ )'N =, l+H2Hl +UC+q ,

,~) = , (1+ h H T+ qt + uc t) .

,~) = ,(I + H2 HI + Hn '
,~4) = ,(I + h H it + Ht) ,
,~6)= ,(I + H2 H T+ h) ,
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(12).
"iN •
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I -->-~ h

I ~~-<--H2 +
(14).

"iN •
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_I
Nc'f _

- I .tI..•.••.• Iq --...:-...Ic::~ _
--Uc

(15).
"iN •

(16).
"iN •
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(18).
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The contributions from on-shell (s)neutrinos contained in these reactions have already been taken

into account as inverse decay followed by a decay. Hence, one has to subtract the contributions

from real intermediate states to avoid a double counting of reactions [36].

From the scattering vertex in fig. 3.3b and the decay vertices we can construct the following

"i(UC+'ifH1+1+H2)' "i~)="i('if+ucHl+l+h),

(-t - -t ) (-t - - )
"i I + 'ifH 1+ Uc + H2 = "i I + Uc H 1+ 'ift + H2 ,

"i (Tt + 'ifH 1+ h + uct) = "i (t + fie H 1+ h + 'ift) .

(8)
"iN

(10)
"iN

(11)
"iN



In fig. 3.6 we have shown one typical diagram for each of these reaction densities. Again, these

diagrams have on-shell contributions which have to be subtracted, since they can be described as

decay of a sneutrino which has been produced in a scattering process.

Up to now we have only considered processes with a neutrino or its scalar partner in the s-

channel. In fig. 3.7 we have shown a selection of diagrams without on-shell contributions. The

corresponding reaction densities will be denoted by

(12)
IN

(14)
IN

(15)
IN

(17)
IN

(19)
IN

I (h+h H It + It ) I}J3) = 1(1 + 1H HJ + Hn '

I(I+1Hh+HJ), ,,}J6)=,,(I+IHUc+q+Hn,

( -t -t -) ( -t -t -t )" H2 + qt H 1 + 1 + Uc =" H2 + UC HI + 1 + q

,,(I+IHh+H2), ,,}J8)=,,(i+HJ Hh+l),

( -t - -t) ( - -t -)" 1+ 1 H h + qt + Uc =" 1+ q H 1+ Uc + h

1(1+ Uc HI + qt + h) = " (it +h H 1+ qt + uct)

,,(q +h HI + I + uct) =,,( Uc+h HI + I + qt) .

At first sight one may think that these diagrams could be neglected, since they are suppressed

at intermediate temperatures, i.e. intermediate energies x :::::::aj. However, they give an important

contribution to the effective lepton number violating interactions at low energies and therefore have

to be taken into consideration.

3.4 Interactions with a Top or a Stop

The Yukawa coupling of the top quark is large. Thus we have to take into account lepton number

violating interactions of a right-handed neutrino with a top quark or its scalar partner. In addition
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to the processes already considered in section 3.2 (cf. fig. 3.3b), we have the superfield diagram

shown in fig.3.8, which gives the following contribution to the T-matrix

J J d4k eik(XI-X2)
-i(>'v)ij(>.t)pq d4xl d4x2 (211")4 k2 + ic x

x J d2(}d2BNj(Xl,(},B) (Li(Xl,(},B) Qq(x2,(},B)) U~(x2,(},B).

In component fields, we have the following processes with a Majorana neutrino Nj as external line

(cf. fig. 3.9)

'Y~) 'Y(Nj+IHq+UC) = 'Y(Nj+IHq+u) ,

'Y~l) 'Y (Nj +7iH It + Uc) = 'Y (Nj + U H It + q) ,

'Y~) 'Y(Nj+ uct Hlt+q) ='Y(Nj+qtHlt+u),

'Y~) 'Y(Nj+lHq+U),

'Yt) 'Y(Nj+uHI+q) ='Y(Nj+7iH1+u).

At this order of perturbation theory these processes are C P invariant. Hence, we have the same

reaction densities for the C P conjugated processes.

For the scalar neutrinos we have similarly (cf. fig. 3.10)

'Y~) 'Y ( Nj + 1 H q + uc) = 'Y ( Nj + 1 H q+ u) ,

'Y~) 'Y(Nj+uct HI+q) ='Y(Nj+qt HI+u),

'Y~) 'Y(Nj+7iH1+Uc) ='Y(Nj+uHI+q),
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The quartic scalar couplings from the scalar potential give additional 2 -+ 3, 3 -+ 3 and 2 -+ 4

processes, which can be neglected since they are phase space suppressed.

The Yukawa couplings of the right-handed neutrinos also allow lepton number conserving processes

like neutrino pair creation and annihilation. The two superfield diagrams in fig. 3.11 yield the

following contributions to the T-matrix

T(a) - t J J d4k eik(Xl-X2)
t NN - -i(Avhi(Av)jl d4xld4x2 (21l")4 k2+ic X

·T(b)
t NN J J d4k eik(Xl-X2)

i(AvAt)ji d4xl d4x2 (21l") 4 k2 + iE: X

X J d20d2lJNi(xl'O,O) (H2(Xl,O,O)H2(X2,O,O))NJ(X2'O,O).

N~ Zl
LI N~ Zl

H2t

I H,H,

t

I
(a) (b) LL

NC Lk NC H2J Z2 J Z2

Figure 3.11: Pair annihilation of singlet neutrino superfields in configuration superspace.
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Decomposing the superfield product into component fields with the help of eq. (B.57), we get the

processes depicted in fig. 3.12 for the neutrinos

(1) ( - -t)/NiNj = / Ni + Nj t-t 1+ 1 ,

/1~~j = /(Ni + Nj t-t H2 + Hn '

For the scalar neutrinos we have similar diagrams and additional contributions from quartic

scalar couplings (cf. fig. 3.13). We have the following reaction densities

",,1:)_ = ""(N~ + N~ t t-t 1 +1 ) ",,(2)_ = ""(N~ + N~ t t-t T+Tt )
I N~N~ I t J ' I N~NC I t J '

• J ' J

/~}Nj=/(Nic+NJt t-th+h) , /~~}Nj=/(Nr+NJt t-tH2+Hn.

It is interesting to note that the contributions to /(2}-c and /(~-c from the scalar potential areNiNJ NiNj
not contained in the superfield diagrams in fig. 3.11. They originate from the contribution of the

auxiliary field FH2 (cf. eq. 3.16) to the decay diagram in fig. 3.1a.

Finally, there are neutrino-sneutrino scattering processes (cf. fig. 3.14),

Such diagrams also give neutrino-sneutrino transitions like Nr + 1 t-t Nj + 1. These processes

transform neutrinos into sneutrinos and leptons into sleptons, i.e. they tend to balance out the



(3) •
'YN~Nc'

• J

Nr-->-E h

Nc -j---<'- h

number densities of the fermions and their supersymmetric partners, but they cannot wash out any

generated asymmetry. As we will see in the next chapter, the number densities of the neutrinos

and the scalar neutrinos are already equal without taking into account these interactions, while

the equality of the number densities of leptons and sleptons is ensured by MSSM-processes, which

we are going to discuss in the next section. Finally, the dominant contributions to these neutrino-

sneutrino transitions corne from inverse decays, decays and scatterings off a (s)top which we have

already considered. Hence, we can neglect these additional processes.

NfI1 N!=-->-,-->-- 1• I

+ I( H2
I

Nj ->-- 1 N· I ••J

NfIh W-->-,-->--H2• I

Nj ~>--H2
+ I( 1

I
N· I •• hJ



ei;-- e

e ~->-- e

In the MSSM the fermionic lepton number LJ and the lepton number stored in the scalar leptons

La are not separately conserved. There are processes transforming leptons into scalar leptons and

vice versa. As an example we have considered the process e + e t-t e+ e (cf. fig. 3.15). For large

temperatures, i.e. s ~ m~, the reduced cross section for this process is given by [37]

M4 0'2 1 [ ( 4 ) ]
/MSSM :::::::-41

3 4" In -2- - 2/E - 3 I
1f Z Z a::y

(m_)2
a::y:= M~ .

These processes are in thermal equilibrium if the reaction rates are larger than the Hubble parameter

H. This condition gives a very weak upper bound on the photino mass,



Chapter 4

Numerical Results

Now that we have identified all the relevant processes we can write down the network of Boltzmann

equations which governs the time evolution of the neutrino and sneutrino number densities and of

the lepton asymmetry1. In this chapter we work out the parameter dependence of the generated

baryon asymmetry by solving the Boltzmann equations, and we discuss the role of the different

scattering and decay processes [17].

The evolution of the neutrino number YN as a function of the inverse dimensionless temperature
J

z = MdT is given by

dYNj _ -z { (YNj ) [ (0) (1) (2) (3) (4)]d;- - sH(Mt} Y~~ - 1 'Nj + 4'tj + 4,tj + 4,tj + 2,tj + 4,tj

For the scalar neutrinos and their antiparticles it is convenient to use the sum and the difference

of the particle numbers per comoving volume element as independent variables,



Furthermore, we have to discern the lepton asymmetry stored in the standard model particles YLf

and the asymmetry YL• in the scalar leptons. Their evolution is governed by



where we have introduced the following abbreviations for the lepton number violating scatterings

mediated by a heavy (s)neutrino

2 (1) + (3) + (4) + (6) + (7) + 2 (12)+ (14)"IN "IN "IN "IN "IN "IN "IN'

(3) + (4) (6) (7) + (14)
"IN "IN - "IN - "IN "IN ,

3 (9) + (17)+ (18)+ 6 (19)
"IN "IN "IN "IN'

4 (5)+2 (8)+8 (10)+3 (9)+4 (15)+2 (16)+ (17)+ (18)+6 (19)"IN "IN "IN "IN "IN "IN "IN "IN "IN·

The numerical factors in front of the reaction densities arise due to the change in quantum numbers

in the corresponding scattering, e.g. processes transforming leptons into sleptons appear with a

relative minus sign in the Boltzmann equations for YL/ and YL •• Furthermore, any reaction density

is multiplied by the number of different processes (cf. chapter 3) contributing independently to the

Boltzmann equations.

This set of Boltzmann equations is valid for the most general case with arbitrary masses of

the right-handed neutrinos. However, if the heavy neutrinos are mass degenerate, it is always

possible to find a basis where the mass matrix M and the Yukawa matrix Av are diagonal, i.e.

no asymmetry is generated. Therefore, one has to assume a mass hierarchy for the right-handed

neutrinos, which in turn implies that the lepton number violating processes induced by the lightest

right-handed neutrino are in thermal equilibrium as long as the temperature is higher than the mass

of this neutrino. Hence, the lepton asymmetries generated in the decays of the heavier right-handed

neutrinos are washed out and the asymmetry that we observe today must have been generated by

the lightest right-handed neutrino. We will assume that the first generation neutrino N1 is the

lightest.

Hence, we will always neglect the heavier right-handed neutrinos as free particles. However,

they have to be taken into account as intermediate states, since they give a substantial contribution

to the effective lepton number violating processes at low energies.



The fermionic part YLf of the generated lepton asymmetry will be transformed into a (B - L)

asymmetry by the action of sphalerons. But since MSSM processes like the one in section 3.6

enforce the relation

the total lepton asymmetry YL = YLf + YL• will be proportional to the baryon asymmetry [38],

__ ( 8Nf+4NH ) y;
YB - 22Nf + 13NH L ,

where Nf is the number of quark-lepton families, and NH the number of Higgs doublets. In our

model with Nf = 3 and NH = 2 we have

The additional anomalous global symmetries in supersymmetric theories at high temperatures

have no influence on these considerations, since they are broken well before the electroweak phase

transition [39].

Typical solutions of the Boltzmann equations are shown in fig. 4.1, where we have assumed a

neutrino mass M1 = 1010 GeV, and a mass hierarchy of the form

(4.16)

(4.17)

Furthermore, we have assumed a C P asymmetry [1 = -10-6. The only difference between both

figures lies in the choice of (mbmD)ll,
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Figure 4.1: Typical solutions of the Boltzmann equations. The dashed line represents the equilibrium

distribution for the neutrinos NI and the solid lines show the solutions for the (s)neutrino number

and the absolute values of the asymmetries in L f and Ls, while the dotted line represents the

absolute value of the scalar neutrino asymmetry YI-. The lines for YNj and Yl+ and for the two

asymmetries YL / and YL• cannot be distinguished, since they are lying one upon another. The

hatched area shows the measured value (1.15).

Finally, as starting condition we have assumed that all the number densities vanish at high

temperatures T ~ MI, including the neutrino numbers YNj and Yl+' As one can see, the Yukawa

interactions are strong enough to create a substantial number of neutrinos and scalar neutrinos in

fig. 4.1a, even if YNj and Yl+ do not reach their equilibrium values as long as z < 1. However, the

generated asymmetries

are of the requested magnitude. On the other hand, in fig. 4.1b the Yukawa interactions are much

stronger, i.e. the neutrinos are driven into equilibrium rapidly at high temperatures. However,

the large Yukawa couplings also increase the reaction rates for lepton number violating processes

which can wash out a generated asymmetry, i.e. the final asymmetries are much smaller than in

the previous case,



In both cases a small scalar neutrino asymmetry Y1- is temporarily generated. However, Y1- is

very small and has virtually no influence on the generated lepton asymmetries.

Usually it is assumed that one has a thermal population of right-handed neutrinos at high

temperatures which decay at very low temperatures T ~ M1 where one can neglect lepton number

violating scatterings. Then the generated lepton asymmetry is proportional to the C P asymmetry

and the number of decaying neutrinos and sneutrinos [2],

By comparison with eqs. (4.19) and (4.20) one sees that by assuming a thermal population of heavy

neutrinos at high temperatures and neglecting the lepton number violating scatterings, one largely

overestimates the generated lepton asymmetries.

A characteristic feature of the non-supersymmetric version of this baryogenesis mechanism is

that the generated asymmetry does not depend on the neutrino mass M1 and (mbmD)l1 separately

but only on the ratio in1 [14]. To check if this is also the case in the supersymmetric scenario we

have varied in1 while keeping all the other parameters fixed. In fig. 4.2 we have plotted the

total lepton asymmetry YL = YLf + YL• as a function of in1 for the right-handed neutrino masses

M1 = 1012 GeV, 1010 GeV and 108 GeV and the CP asymmetry C1 = _10-6.

The main difference between the supersymmetric and non-supersymmetric scenarios concerns

the necessary production of the neutrinos at high temperatures. In the non-supersymmetric scenario

the Yukawa interactions are too weak to account for this, i.e. additional interactions of the right-

handed neutrinos have to be introduced. This is no longer the case here. The supersymmetric

Yukawa interactions are much more important, and can produce a thermal population of right-

handed neutrinos, i.e. the same vertices which are responsible for the generation of the asymmetry

can also bring the neutrinos into thermal equilibrium at high temperatures. However, these lepton

number violating processes will also erase a part of the ~enerated asymmetry, hereby giving rise to

the in1 dependence of the generated asymmetry which we shall discuss in detail.

First one sees that in the whole parameter range the generated asymmetry is much smaller

than the naively expected value 4.10-9• For low in1 the reason being that the Yukawa interactions

are too weak to bring the neutrinos into equilibrium at high temperatures, like in fig. 4.1a. For

high inIon the other hand, the lepton number violating scatterings wash out a large part of the

generated asymmetry at temperatures T < M1, like in fig. 4.1b. Hence, the requested asymmetry
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Figure 4.2: Generated (B - L) asymmetry as a function of m1 for M1 = 108 GeV (dotted line),

M1 = 1010 Ge V (solid line) and M1 = 1012 Ge V (dashed line). The shaded area shows the measured

value for the asymmetry.

can only be generated if m1 is larger than '" 10-5 eV and smaller than '" 5 . 10-3 eV, depending

on the heavy neutrino mass M1.

The asymmetry in fig. 4.2 depends almost only on m1 for small m1 ::;, 10-4 eV, since in this

region of parameter space the asymmetry depends mostly on the number of neutrinos generated

at high temperatures, i.e. on the strength of the processes in which a right-handed neutrino can

be generated or annihilated. The dominant reactions are decays, inverse decays and scatterings

with a (s)top, which all give contributions proportional to m1 to the Boltzmann equations at high

-z (2) _
sH(Mt} INf ex: m1 ,

-z (3) _
sH(Mt} INf ex:m1 ,

For large m1 ;<:. 10-4 eV on the other hand, the neutrinos reach thermal equilibrium at high

temperatures, i.e. the generated asymmetry depends mostly on the influence of the lepton number



violating scatterings at temperatures T;i;"MI. In contrast to the relations of eq. (4.23) the lepton

number violating processes mediated by a heavy neutrino behave like

-z AL M ,,"",-2
sH(Md Ii ex: I LJ mj ,

J

at low temperatures. Hence, one expects that the generated asymmetry becomes smaller for growing

neutrino mass MI and this is exactly what one observes in fig. 4.2.

Eq. (4.24) can also explain the small dependence of the asymmetry on the heavy neutrino mass

M1 for ml;i;" 10-4 eV. The inverse decay processes which take part in producing the neutrinos at

high temperatures are CP violating, i.e. they generate a lepton asymmetry at high temperatures.

Due to the interplay of inverse decay processes and lepton number violating 2 -+ 2 scatterings

this asymmetry has a different sign compared to the one generated in neutrino decays at low

temperatures, i.e. the asymmetries will partially cancel each other, as one can see in the change

of sign of the asymmetry in fig. 4.1a. This cancellation can only be avoided if the asymmetry

generated at high temperatures is washed out before the neutrinos decay. At high temperatures

the lepton number violating scatterings behave like

Hence, the wash-out processes are more efficient for larger neutrino masses, Le. the final asymmetry

should grow with the neutrino mass MI. The finally generated asymmetry is not affected by the

stronger wash-out processes, since for small mi the neutrinos decay late, where one can neglect the

lepton number violating scatterings.

This change of sign in the asymmetry is not observed in fig. 4.1b. Due to the larger mi value

the neutrinos are brought into equilibrium at much higher temperatures, where decays and inverse

decays are suppressed by a time dilatation factor, Le. the (s)neutrinos are produced in CP invariant

scatterings off a (s)top.



Chapter 5

SO(10) Unification and Neutrino

Mixing

In order to study the implications of leptogenesis for low-energy neutrino physics and leptonic

flavour mixing we will assume a similar pattern of masses and mixings for the leptons and the

quarks in this chapter [15,17].

5.1 Neutrino Masses and Mixings

If we choose a basis where the Majorana mass matrix M and the Dirac mass matrix m/ for the

charged leptons are diagonal with real and positive eigenvalues,

where V and U are unitary matrices and the mi are real and positive.

Since the Majorana masses M are assumed to be much larger than the Dirac masses mD, we

have 6 Majorana neutrinos as mass eigenstates [11]. In the weak eigenstate basis the mass matrix



As we have seen in chapter 3, all the quantities relevant for baryogenesis, i.e. the decay widths,

CP asymmetries and scattering cross sections, depend only on the product mbmD' where the

mixing matrix V drops out. On the other hand, the mixing matrix [( in the leptonic charged

current depends on the parameters of both unitary matrices U and V. Hence, leptonic mixing

and CP violation at high and low energies are to leading order independent, Le. the CP violation

needed for baryogenesis does not allow to infer on CP violating interactions of light leptons.

The mixing matrix U can be parametrized by three mixing angles and six phases. Five of these

phases can be factored out with the Gell-Mann matrices Ai,

In analogy to the Cabibbo-Kobayashi-Maskawa (CKM) matrix for quarks the remaining matrix U1

depends on three mixing angles and one phase. In unified theories based on 80(10) it is natural

to assume a similar pattern of masses and mixings for leptons and quarks. This suggests the

Wolfenstein parametrization [41] as an ansatz for U1,

1_ ~2
2

1_ ~2
2



where A and Ip + i1]1are of order one, while the mixing parameter A is assumed to be small. For

the Dirac masses mi, 80(10) unification motivates a hierarchy like for the up-type quarks,

We have mentioned in section 4.1 that we also need a hierarchy in the Majorana masses Mi to get

a non-vanishing lepton asymmetry. We choose a similar hierarchy as in eq. (5.10),

Later on we will vary the parameters Band C to investigate different hierarchies for the right-

handed neutrinos.

Diagonalizing the neutrino mass matrix (5.3) in powers of A yields the light neutrino masses

b
2 4 ( 6)IC + e4iC\' BI A mVT +0 A ,

c21C + e4i
C\' BI A2 0 (A4)

BC mVT +
2

:: +O(A4
) •

We will not discuss the masses of the light scalar neutrinos here, since they depend on unknown

soft breaking terms.

In section 4.2 we have seen that the lepton asymmetry is largely determined by the mass

parameter in1, which is given by

_ _ c2 + A21p + i1]12 2 _ C(c2 + A21p + i1]12)
ml - B A mVT - c21C + e4iC\' BI mv", (5.15)

i.e. ml is of the same order as the vJ.L mass. According to eq. (3.39) the CP asymmetry in the

decay of the lightest right-handed neutrino reads

3 B A2 m2
[ . ]Cl = - ------ A4 ~ 1m (p - i1])2et2(C\'+v'3.B) + 0 (A6) .

811' c2 + A2 Ip + i1]12 vi
In the next section we will always assume maximal phases, i.e. we will set

Cl = __3 _B_A_
2_I_p_+_t_'1]_12

_ A4 _m_5 + 0 (A6)

811' c2 + A2 Ip + i1]12 vi .
Hence, the lepton asymmetries that we are going to calculate may be viewed as upper bounds on

the attainable asymmetries.

Like in the non-supersymmetric scenario a large value of the Yukawa-coupling m3/v2 will be

preferred by this baryogenesis mechanism, since Cl <X m5jvi. This holds irrespective of our ansatz

for neutrino mixings.



The neutrino masses (5.12)-(5.14) can be used to constrain the free parameters of our ansatz. The

strongest hint for a non-vanishing neutrino mass being the solar neutrino deficit1, we will fix the

vJ.L mass to the value preferred by the Mikheyev-Smirnov-Wolfenstein (MSW) solution [43],

Hence the parameter m1, which is of the same order as mv~ according to eq. (5.15), will be in the

interval allowed by fig. 4.2.

The most obvious parameter choice is to take all 0(1) parameters equal to one and to fix ). to

a similar value as the). parameter of the quark mixing matrix,

(5.19)

(5.20)

and eq. (5.17) gives the CP asymmetry E1 ~ -6 . 10-6. Integration of the Boltzmann equations

yields the (B - L) asymmetry (cf. fig. 5.1a)

which is of the correct order of magnitude. It is interesting to note that in the non-supersymmetric

scenario one has YB-L ~ 9 . 10-10 for the same choice of parameters.
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Figure 5.1: Generated asymmetry if one assumes a similar pattern of masses and mixings for the

leptons and the quarks. In both figures we have). = 0.1 and m3 = mt (a) and m3 = mb (b).

Our assumption (5.23), m3 ~ mt led to a large Majorana mass scale M3 in eq. (5.24). To check

the sensitivity of our result for the baryon asymmetry on this choice, we have envisaged a lower

Dirac mass scale

while keeping all other parameters in eqs. (5.19) and (5.20) fixed. The assumed l/j.L mass (5.18)

then yields a much lower value for the Majorana mass scale,

while the light neutrino masses (5.21) remain unchanged. The CP asymmetry £1

becomes very small. Consequently, the generated baryon asymmetry (cf. fig. 5.1b)

is too small by two orders of magnitude. We can conclude that high values for both masses

m3 and M3 are preferred. This suggests that (B - L) is already broken at the unification scale

AGUT '" 1016 GeV, without any intermediate scale of symmetry breaking, which is natural in

SO(10) unification. Alternatively, a Majorana mass scale of the order of 1012 to 1014 GeV can also
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be generated radiatively if SO(10) is broken into SU(5) at some high scale between 1016GeV and

the Planck-scale, and SU(5) is subsequently broken into the MSSM gauge group at the usual GUT

scale rv 1016GeV [44].

Such a Majorana mass scale naturally leads to a baryogenesis scale M1 rv 1010 GeV. As

discussed in section 4.2 and as one can see in fig. 5.1, the neutrinos can be brought into equilibrium

at temperatures slightly above their mass, i.e. this scenario requires a reheating temperature

rv 1010GeV at the end of inflation. This is well compatible with the constraints on the reheating

temperature from the gravitino problem [45].

It is interesting to note that the Vr mass in eq. (5.21) has got almost the value suggested by

the atmospheric neutrino problem [46]

if one assumes that the anomalous J.L to e ratio produced by atmospheric neutrinos is due to

oscillations from vp. to Vr, and when the vp. mass is again given by the MSW value in eq. (5.18).

If we then use eq. (5.29) to fix the Vr mass,the Dirac mass scale (5.23) determines the Majorana

mass scale
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Figure 5.3: Generated lepton asymmetry if one assumes a similar mass hierarchy for the right-

handed neutrinos and the down-type quarks.

Consequently, we again get a large CP asymmetry £1 ::: -3.10-5, and a large (B - L) asymmetry

(cf. fig. 5.2)

This shows that the parameters required to explain the anomalous results of neutrino experiments

by neutrino oscillations also predict a baryon asymmetry of the correct order of magnitude, although

the large mixing angle which seems to be required to solve the atmospheric neutrino problem is

difficult to accommodate within our small-mixing ansatz.

Up to now we have always assumed a mass hierarchy for the heavy Majorana neutrinos like

for the up-type quarks. Alternatively, one can assume a weaker hierarchy, like for the down-type

quarks by choosing



From eq. (5.17) one obtains the C P asymmetry £1 ~ -6· 10-5. The corresponding solutions of the

Boltzmann equations are shown in fig. 5.3. The final (B - L) asymmetry,

is much larger than requested, but this value can always be lowered by adjusting the unknown

phases. Hence, the possibility to generate a lepton asymmetry does not depend on the special form

of the mass hierarchy assumed for the right-handed neutrinos.

In the non-supersymmetric scenario one finds for the same parameter choice

Hence, when comparing the supersymmetric and the non-supersymmetric scenario, one sees that

the larger C P asymmetry in the former and the additional contributions from the sneutrino decays

are compensated by the wash-out processes which are stronger than in the latter.



Conclusions

We have analysed in detail the generation of a cosmological baryon asymmetry by out-of-equilibrium

decays of heavy right-handed Majorana neutrinos and their scalar partners in a supersymmetric

extension of the Standard Model. By developing a resummed perturbative expansion in flavour

non-diagonal self-energies, we could show how self-energy contributions to C P asymmetries in

heavy neutrino decays are consistently taken into account.

We have discussed all the decays and scattering processes relevant for leptogenesis, and by

solving the Boltzmann equations we have shown that, in order to be consistent, one has to pay

attention to two phenomena which can hamper the generation of a lepton asymmetry.

First, one has to take into consideration lepton number violating scatterings mediated by a

heavy neutrino or its scalar partner. These processes, which are usually neglected, can wash out

a large part of the asymmetry if the Yukawa couplings of the right-handed neutrinos become too

large.

On the other hand, the neutrinos have to be brought into thermal equilibrium at high

temperatures. We could show that for this purpose it is not necessary to assume additional

interactions of the right-handed neutrinos in our theory, since the Yukawa interactions can be

sufficiently strong to produce a thermal population of heavy neutrinos at high temperatures, while

still being weak enough to prevent the final asymmetry from being washed out.

The observed baryon asymmetry can be obtained without any fine tuning of parameters if one

assumes a similar pattern of mixings and Dirac masses for the neutrinos and the up-type quarks.

Then the generated asymmetry is related to the 1/p. mass, and fixing this mass to the value preferred

by the MSW-solution to the solar neutrino problem leads to a baryon asymmetry of the requested

order, provided (B - L) is broken at the unification scale, as suggested by supersymmetric SO(10)

unification. The baryon asymmetry is generated at a scale of approximately 1010 GeV, which looks

promising with respect to the gravitino problem.



In supersymmetric theories there are further possible sources of a (B - L) asymmetry, e.g. it

may be possible to combine inflation with leptogenesis by using a right-handed scalar neutrino as

the inflaton (cf. refs. [47]). In this connection, possible constraints on the neutrino masses and

on the reheating temperature from lepton number violating processes at low temperatures require

further studies.

Furthermore, it should be studied to which extent a "primordial" baryon asymmetry, i.e. an

asymmetry generated during or shortly after reheating, is affected if right-handed neutrinos come

into equilibrium after reheating. This may yield interesting constraints on Yukawa interactions of

first generation leptons, since an asymmetry in right-handed electrons might be protected from

being washed-out if right-handed electrons decouple from the thermal plasma [48].

Finally, as discussed in the first chapter, one has to separate "on-shell" and "off-shell"

contributions to lepton number violating scatterings, in order to be able to describe the generation

of a baryon asymmetry in terms of Boltzmann equations. To avoid this separation and treat these

contributions simultaneously, one has to go beyond the semi-classical approximation realized in the

Boltzmann equations by constructing a complete nonequilibrium quantum kinetic theory. Although

such a theory has not been realized up to now, quantum corrections to the Boltzmann equations

have recently been investigated in refs. [49].



Appendix A

One-Loop Integrals

We summarize some standard formulae for dimensionally regularized one-loop integrals in

Minkowski space. We follow the notation of refs. [50], although we use a metric 9ltv = (+, -, -, -)
(d. e.g. ref. [51)).

In n = 4 - 2€ dimensions the scalar one-point function is defined by

4-n J 1
A(mt} = ~ dnk k2 2 .'t1r - m1 + tc:

In the limit € -t 0, A( mt} is given by

A(mt} = m~( ~ -In (;1) + 1) ,

where the UV-divergence is contained in

1
~=--C+ln(41r),

€

and C = 0.577216 is Euler's constant. Note that the massless tadpole A(O) vanishes in dimensional

regularization, and that A(md has no absorptive contribution

Three different two-point integrals can occur

B ( 2 ) J.L4-n J dnk 1o Pl,ml,m2 = -------------
i1r2 (k2 - m~ + ic:)[(k + Pl)2 - m~ + ic:]

67



Lorentz covariance of the integrals allows to decompose the tensor integrals into tensors constructed

from the external momentum PI, and the metric tensor gJ1.V

Bo(pi,o,o) ~-ln (':~I)+2+irr{}(pi),

Bo(O, 0, m) = Bo(O, m, 0) = ~ -In (;:) + 1 = ~2 A(m2) .

Contracting eqs. (A.6)-(A.9) with PI,J1. and gJ1.Vyields a set of coupled linear equations, which

determine the scalar coefficients BI, B21 and B22,

212 [A(mr) - A(m2) + (m~ - mi - pi)Bo(pi, ml, m2)]
PI

- ;E + UV-finite parts,

1 [ 2 2= 3 2 A(m2) - mIBo(PI' ml, m2)
PI

( 2 2 2) (2 ) 1(2 2 1 2]-2 PI + ml - m2 BI PI' ml, m2 - 2 ml + m2 - "3PI)

1 .
3E + UV-fimte parts,

1[( 2 26 A m2) + 2ml BO(PI' ml, m2)

( 2 2 2)B ( 2 ) 2 2 1 2]+ PI + ml - m2 1 PI' mil m2 + ml + m2 - "3PI

1 (2 2 2) .-12E PI - 3ml - 3m2 + UV-fimte parts.



(A.26)

(A.27)

(A.28)

Like for the two point-functions, Lorentz covariance of the integrals suggests the following tensor

decomposition of the tensor three-point functions

Pl,/lPl,vC21 + P2,/lP2,vC22

+(P1P2) (/lV)C23 + 9/lvC24 ,

+(P2P1Pt} (/lvp)C33 + (P1P2P2)(/lVp)C34

+(P19)(/lvp)C35 + (P29)(/lvp)C36 ,



(A.32)

(A.33)

(A.34)

The form factors Cij can be related to the scalar functions A, Eo and Co by contracting the

definitions (A.23)-(A.25) and (A.29)-(A.31) with external momenta PI, P2 and the metric gl-'I/.

In our calculation we only need three-point functions with two vanishing masses (m2 = m3 = 0),

and two light-like momenta pi = 0 and (PI + P2)2 = O. Then Cl2 and Cll read

(A.35)

(A.36)

_ 1rO(p~) In (1 + p~)
p~ m2

1rO(p~) [ m
2

( p~ )]-- l--ln 1+-
p~ p~ m2



Appendix B

Spinor Notation and Conventions

We will use the conventions of ref. [30] with flat space-time metric 9J1.// = (+, -, -, -). Greek indices

a, (3, a and ~ run from one to two and denote two-component Weyl spinors, while all other Greek

letters denote Lorentz-indices.

Two-component spinors 'lj; and 'lj; transform under the (~,O) and (O,~) representations of the

Lorentz group SO(l, 3). Matrix representations are given by the universal covering group SL(2, C)

of SO(l, 3), i.e. under a Lorentz transformation M E SL(2, C) the Weyl spinors transform like

0_(10)a - ,° 1

2 _ (0 -i)a - ,
i °

, * {3-.1•• = M .• 1,.
'Per er 'P{3'

q' = (~ ~) ,

q' = (~ ~1)

(°1 -01)cer{3 = cer{3 = (0 1),
-1 °



(°1 -01),EafJ =

'ljJOt= EOt{3'ljJ{3 ,

'ljJ0 = EOfJ'ljJfJ '

EofJ = (0 1)
-1 ° '

'ljJOt= EOt{3'ljJ{3 ,

,I,. = E • ,I,{3 •
'POt o{3'P

(B.7)

(B.8)

(B.ll)

(B.12)

(B.13)

(B.14)

- - . -0 -0-
'ljJx == 'ljJ0 xOt = -'ljJ Xa = xa'ljJ = x'ljJ,

(x'ljJ)t = (XOt'ljJOt)t = 'ljJo XO = 'ljJx .

(B.15)

(B.16)

(B.17)

xa/L "ifi -'ljJa/Lx, (B.18)

(xa/L 'ljJ ) t 'ljJa/Lx, (B.19)

xa/Lav'ljJ 'ljJaVa/Lx, (B.20)

(xa/L aV'ljJ)t "ifiaval-' X, (B.21)

('ljJ'x)X·
12 ('xal-'x) ('ljJal-')o (B.22)Ot



Furthermore, when computing superfield products (cf. app. B.3)' one can take advantage of the

relations

(}O: (}{3 _ ~ £o:{3 (}2
2 '

() 0: () {3
1 2
2 £o:{3 () ,

-a-h 1 ah 712() () 2£ ,

71.71. 1 -2
-- £ • ()

0: {3 2 a{3 ,

(}(T1l-71(}(Tv71 ~ (}2712 gll-V
2

B.2 Four-Component Spinors

(
0 (T1l-),Il-=

(jll- 0

{/5,,1l-} = 0,

(,5)2=1.

(B.30)

(B.31)

As usual, ,0 intertwines the ,Il- representation of the Dirac algebra with the equivalent hermitian

conjugated representation ,Il-t

(B.32)

(B.33)

This representation of the ,-matrices can be used to relate Weyl spinors to the more familiar

four-component spinors. A Dirac spinor \lIo consists of two Weyl spinors

.T, _ ,T, t 0 _ (\ °: - )
'%'0 = '%'0' - 1\, Xc. .



(B.37)

(B.38)

C intertwines the ,/1- and -,r representations of the Dirac algebra

(B.41)

(B.42)

-TWD =Cwg ,



In Lagrange densities we can switch from Weyl spinors to four-component spinors and vice versa

by means of the following relations

(B.47)

(B.48)

(B.49)

(B.50)

(B.51)

(B.52)--IJ. 11\ \-11 IJ.-
Xl a a /\2 = /\2 a a Xl'

where Wi (i = 1,2) is a generic Dirac spinor consisting of two Weyl spinors Xi and Ai (cf. eq. (B.34)).

Since products of chiral superfields are again chiral, these products can be conveniently computed

in the V-basis (2.31). For the products of two or three chiral superfields <lIi one finds

<lIi(y)<lIj(Y) = Ai(y)Aj(Y) + V20 [1Pi(y)Aj(Y) + Ai(Y)1Pj(Y)]

+02 [Ai(Y)Fj(y) + Aj(y)Fi(Y) -1Pi(Y)1Pj(Y)]

<lIi(y)<lIj(y)<lIk(Y) = Ai(y)Aj(y)Ak(Y)

+V20[1Pi(y)Aj(y)Ak(y) + 1Pj(y)Ak(y)Ai(Y) + 1Pk(y)Ai(y)Aj(y)]

+02 [Fi(Y)Aj(Y)Ak(Y) + Fj(y)Ak(y)Ai(Y) + Fk(y)Ai(y)Aj(Y)

-1Pi(Y)1Pj(y)Ak(Y) -1Pj(Y)1Pk(y)Ai(Y) - 1Pk(Y)1Pi(y)Aj(Y)] .

On the other hand, the product of a chiral superfield <lIj and an antichiral superfield <lit is neither

chiral nor antichiral. In terms of the variables xlJ., 0 and 0 it reads

<lIi(X)<lIj(X) = Ai(x)Aj(x) + V2(01Pj(x))Ai(x) + V2(0 1Pi(x))Aj(x)

+02 Ai(x)Fj(x) + 02
Aj(x)Ft(x)

+oao
ir

[ - iaairlJ. (Ai(x)oIJ.Aj(x) - Aj(x)oIJ.Ai(x)) - 21Piir(x)1Pja]



Superspace integration discussed in Chapter 2 will project out F-terms, i.e. terms proportional to (j2

in chiral superfields and the D-term (proportional to (j2 (12
) in eq. (B.55). These are the terms which

can be used to construct SUSY-invariant actions since they transform into a spacetime derivative

under SUSY transformations.

When computing 2 -t 2 scatterings in superspace one has to evaluate products of four chiral

or anti-chiral superfields, with or without covariant derivatives acting on them. In our calculations

we need the following two products, which can be computed by successively using eqs. (B.53) and

(B.55)

J 2 2- - - 1D~ - -
d ()d ()<Pr(Xl,(),())<Ps(Xl,(),())--<Pi(X2,(),())<Pj(X2,(),()) =

4 02

= [Ar(xt)Fs(xt} + As(xt}Fr(xt} -1/Jr(Xt}1/Js(x1)] Ai(X2)Aj(X2)

+ [A;(x2)Fj(x2) + Aj(X2)Fi(X2) - 1/Ji (X2)1/Jj (X2) ] Ar (xt}As(xt)

+ [1/Js(xt}Ar(xt} + 1/Jr(x1)As(x1)] [1/Ji(x2)Aj(x2) + 1/Jj(x2)Ai(X2)] .

J d2() d271 <Pr(Xl, (), (1) <Ps(Xl, (), (1) <Pi(X2, (), (1) <Pj(X2, (), (1) = (B.57)

-A! (x2)A}(X2)01Ar (xt)A., (xt)

+ i [1/Ji(x2)A}(x2) + 1/Jj(x2)A! (x2)] (f!'(h,!, [1/Js(xt)Ar(xt} + 1/Jr(x1)As(xt}]

+ [Ar(xt}Fs(x1) + As(xt}Fr(xt} -1/Jr(Xt}1/Js(xt}] x

[t t t t - -]X Aj(X2)Fi (X2) + Ai (x2)Fj (X2) -1/Jj(X2)1/Ji(X2) .

Here we have partially integrated derivatives and dropped total derivatives which do not contribute

to the action.



Appendix C

Feynman Rules

In this appendix we present the component field Feynman rules that we have used in the calculations

of chapters 1 and 3. Feynman rules for Majorana fermions which yield the correct relative minus

signs between different diagrams contributing to a process without explicit recourse to Wick's

theorem are proposed in ref. [52]. The basic idea is to introduce a continuous fermion flow, Le.

an arbitrary orientation of each fermion line. Then one can form chains of Dirac matrices by

proceeding in a direction opposite to the chosen fermion flow. Relative signs of interfering diagrams

are determined like for Dirac fermions, i.e. any permutation of two external fermion lines gives a

minus sign. One only needs the Dirac propagator for all fermions. However, one has to introduce

two analytical expressions for each vertex involving fermions, corresponding to the two different

choices of the fermion flow.

As an example, consider the coupling of a right-handed neutrino to a 8M Higgs and lepton

doublet. This coupling can be written in two equivalent ways

corresponding to the two possible choices for the fermion flow. This gives rise to the following

equivalent vertices, where the thin arrow denotes the chosen fermion flow

Ha
2
I
'f,

It.ANj,~

Ha
2

I
'f
I

It.ANj,~



where the four-component spinors 'l/Jl and 'l/J2 are either Dirac or Majorana fermions, and r is a

product of Dirac -y-matrices,

Reverting the fermion flow corresponds to replacing particles by antiparticles, i.e. (C.2) is rewritten

in the equivalent form

r' = crT c-J = {

Hence, when stating Feynman rules in the following we can restrict ourselves to one fermion flow.

Changing the fermion flow just amounts to replacing r by ±r, according to eq. (C.5).

Decomposing the superfield products in the superpotential (3.1) into component fields, we get

the Yukawa interactions of a right-handed Majorana neutrino
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Here we have not specified an explicit fermion flow, since these diagrams have a natural orientation

of the fermion lines.

The mass term in the auxiliary neutrino field FNf (cf. eq. (3.22)) yields trilinear scalar couplings
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Internal Dirac or Majorana fermion lines are all represented by the usual Dirac propagator
p

- u(p, s) ,

- v(p, s) ,

- u(p, s) ,

- v(p,s) ,

» I(- -
» l(- -
» I(- -
» l(- -

where the momentum p always flows from left to right. The spinors v and u are related by charge

conjugation

v(p,s) = CuT(p,s)

u(p, s) = CvT (p, s)

u(p, s) = vT (p, s) C ,

v(p, s) = uT(p, s) C .



Appendix D

Kinetic Theory

The microscopic evolution of particle densities and asymmetries is governed by a network of

Boltzmann equations. In the following we will compile some basic formulae to introduce our

notation [2].

D.l Thermodynamics in the Expanding Universe

The early universe can be assumed to be spatially homogeneous and isotropic. Hence, it is described

by a Robertson-Walker metric

where (t, r, (),¢) are comoving coordinates and k = ±1,O describes the spatial curvature of

spacetime. The scale factor R(t), which describes the expansion of the universe, is given by the

Friedmann equation

1
G=-2

• mp1

denotes Newton's constant in units where Ii = c = 1, and mpl = 1.2211.1019 GeV is the Planck mass.

Neglecting the curvature term k in the Friedmann equation (D.2), which is a good approximation

in the early universe, we get an equation for the Hubble parameter H



7
9. = L 9i + 8 L 9i,

i=Bosons i=Fermions

and 9i is the number of internal degrees offreeedom of the corresponding particle. At temperatures

far above the electroweak scale one has 9. = 106.75 in the standard model, and 9. = 228.75 in the

It is usually a good approximation to assume Maxwell-Boltzmann statistics, so that the equilibrium

number density of a particle i is given by

eq(T) 9i J d3 feq
ni = (211")3 Pi i

~q(T) = 9iT3
n, 2 •

11"

Particle densities can be changed by interactions and by the expansion of the universe. Since

we are only interested in the effect of interactions, it is useful to scale out the expansion. This is

done by taking the number of particles per comoving volume element, i.e. the ratio of the particle

density ni to the entropy density s,

as independent variable instead of the number density. In a radiation dominated universe the

entropy density reads



In our case elastic scatterings, which can only change the phase space distributions but not the

particle densities, occur at a much higher rate than inelastic processes. Therefore, we can assume

kinetic equilibrium, so that the phase space densities are given by

.( . ) _ ni -EdTf. E., T - ----eqe .
n·•

In this framework the Boltzmann equation describing the evolution of a particle number Y", in an

isentropically expanding universe reads [36,13]

dY",
dz

z '"" [y",Ya... eq( ..)- H ( ) ~ yeqy;eq , 1/J + a + ... -H + J + ...
8 m", .. '" a'"a,t,), ...

}';}j . . . eq ( .. .1. )]
- eq eq , t+J+ ... -+ep+a+ ... ,l'i Yj ...

where z = m",jT and H (m",) is the Hubble parameter at T = m",. The ,eq are space time densities

of scatterings for the different processes. For a decay one finds [13]

._ eq(.I, .. )_ eqKl(Z)r
,D .- , ep -+ t +J + ... - n", K

2
(z) ,

where 1<1 and K2 are modified Bessel functions and r is the usual decay width in the rest system

of the decaying particle. Neglecting a possible CP violation, one finds the same reaction density

for the inverse decay.

The reaction density for a two body scattering reads

00

,eq(1/J + a f-t i+j + ... ) = 6~4 J d8O'(8) y'SKI (f) ,
(m",+ma)2

where 8 is the squared centre of mass energy and the reduced cross section 0'(8) for the process

1/J + a -+ i+j + ... is related to the usual total cross section 0'(8) by

2>'(8, m~, m~)
0'(8)= ----0'(8) ,

8



Appendix E

Red nced Cross Sections

In this section we will collect the reduced cross sections for all the 2 H 2 and 2 H 3 processes

that we had discussed in chapter 3. The corresponding reaction densities, which can be calculated

analytically in some interesting limiting cases, will be discussed in the next appendix.

E.l Lepton Number Violating Processes Mediated by Right-

Handed Neutrinos

We have mentioned in the main text that we have to subtract the contributions coming from

on-shell (s)neutrinos, i.e. we have to replace the usual propagators by off-shell propagators

1 x - aj
Dj(x) .- (x - aj)2 + ajcj

1 x - aj
Dj(x) .- (x - aj)2 + ajcj .

To begin with, let us specify the reduced cross sections for the reactions depicted in fig. 3.5. For

the processes T +h H zt + hand 1+ H2 HI + Ht one has

+ '""'Re [(>,t >. ) 2 ] _va_na_j[_x_ + _x_ + __ x
2
_

L....J v v nj X Dj(x) Dn(x) Dj(x)Dn(x)
n,)
i<n

where nand j are the flavour indices of the neutrinos in the intermediate state. The interference

terms with n f= j are always very small and can safely be neglected.



The reduced cross section for the process T+ h +-+ I + HJ reads

(3) 1 {L (t )2 aj [ -x x x
2

( aj) (x + aj)]0- (x)-- AA - --+--+---+ 1--- In --
N - 211" j v v jj X X + aj Dj(x) 2DJ(x) Dj(x) aj

'""' [( t )2]..;a;:a; [x X x2
+ LJ Re >'vAv nj -x- -DJ-·(x-)+ -Dn-(x-)+ -D-j(-x)-D-n-(x-)

n,)
i<n

The same result is valid for the C P conjugated process.
- -;1

For the process 1 + It +-+ 1 + HJ one finds

o-}:)(x) = ~{L(>.tAv)2 aj [ x
2

+ x
2

+ x In(x+aj)]
211" j v jj x aj(x + aj) D/(x) Dj(x) aj

+ x ( 2 +~) In (x +an)] } .
aj - an Dj(x) an

For the scattering T+H2 -+ yt +UC +q and the corresponding CP transformed process we have

0-£')(X)=3a;{L(A!>'Vr. aj [-=-+ x +~~2 _ (1+x+aj)ln(x+aj)]
811" j JJ X aj Dj(x) Dj (x) Dj(x) aj

+ L Re [( A!Avr ]_Van_aj[ x + x + __ ~2_

n,i nj X Dj(x) Dn(x) Dj(x)Dn(x)
i<n

+ (x +aj) ( 2 . _ ~) In (x +.aj) +(x +an) ( . 2 _ ~) In (x +an)] } .
an - aJ Dn(x) aJ aJ - an Dj(x) an

Finally, we have two processes which do not violate lepton number but merely transform leptons

N - ~t
and the 2 -+ 3 process 1+h +-+ 1+qt +uc ,



Let us now come to the 2 -+ 3 processes shown in fig. 3.6.

For the transition 'if + UC -+ I + I + H2 the reduced cross section reads

The remaining integral cannot be solved exactly. However, it can be neglected for x > aj, an and

for x < aj, an it can be approximated by

x

Sp(x) = Li2(x) = - J dy In (ly- y) .
o

- - - - 7't - -t - 7't - - -
For the scatterings 'if + UC -+ 1+ 1+ h, 1 + 'if -+ 1+ UC + hand 1 + UC -+ 1+ qt + h the reduced

+~/t;(x - aj + 3Cj) [arctan (~) + arctan (fi)]]



For the process t + q -7 T+ vet + H2 and similar reactions one gets

+ 2 L Re [( A!Av r.] ya;;a; [2 x ~ aj. In (x +aj) + 2 x.~ an In (x + an)
n,} n) X an a) a) a) an an
}<n

[arctan ( ~) + ••ctan ( If) ]

x .;a;c; [ (x - aj) (If)j ]::::::- - -- arctan vi. -. + arctan -:::::-
an an a) c) c)

x-a' ((X - a·)2 + a.c.)_ --) In ) ) )
2an aJ + ajCj

for x < an and for x > an it can be neglected.

Finally, we have to compute the t- and u-channel processes in fig. 3.7, which give simple

contributions.



For the processes T+T f-t h + hand 1 + 1 f-t HJ + HJ we get

+I:Re [(>.!>.v)2
.] ..;a;;a; [( 1 . + 2 .) In (x +.aj

)
~ x+~+~ ~-~ ~

n,)

In this order of perturbation theory the same result is valid for the CP transformed processes.

For the scattering T+ 1 f-t h + HJ one has

-t -t -The 2 -+ 3 process H2 + qt f-t 1 + 1 + Uc gives

+I:Re [( >'!>'vr.] ..;a;;a; [(2 x ~ aj. + In (x + an + aj)) In (x +aj)
n,i nJ X an aJ an aJ

i<n

+Sp C+::+aJ -Sp C::'~aJ +SP C+::+aJ - Sp C::n:'aJ] } .
For the related transition T+ T f-t UC +q+ HJ we have

_(16)()_ 3au {I:(d\)2 aj [x S (x+aj) 1r
2

(TN x - -- A A - - +2 p --- +-161r2 . v v jj x aj aj 6
J



_ (1 _ 2ln ( x ::aj) ) In ( x :/j) ]
+ 2 L Re [ ( AtAv ):J ~ [(:n ~ ~j + In ( x + :: + aj ) ) In ( x :/j) + Sp ( - x :naj )

n,;
;<n

There are some 2 -+ 2 processes left which do not violate lepton number but simply transform

leptons into scalar leptons, like in the process T+ I H h + H2

+2LI(AtAV) .1
2

[ a:! In(x+aj)+ a~ .In(X+an)]},
n,i nJ aJ an aJ an aJ an
;<n

or in the similar process T+ HJ H h + I

+2LI(AtAV) .1
2[_1+aj x.~aj In(X+.aj)+anX+an.ln(X+an)]}

n,; nJ X aJ an aJ x an - aJ an
;<n

-t - -tFinally, the last process I + I H h + ift + Uc gives

+2LI(AtAV) .1
2

[-1+ aj x.~ai In(x+ai) + an x~an.ln (x+an)]}
n,i nJ X aJ an aJ x an aJ an

i<n

E.2 Scattering off a Top or a Stop



30'u (At All) .. X - aj [_ 2x - aj + 2ah + x + 2ah In (x - aj + ah)]
JJ x x - aj + ah x - aj ah

30'u (At All) .. X - aj [_ x - aj + In (x - aj + ah)]
JJ x x - aj + 2ah ah

In the calculations we have used the value J.L = 800 GeV.

The analogous processes involving a scalar neutrino (cf. fig. 3.10) give similar contributions

• (5) 30'u (At All) ( X - aj) 2 (E.27)at} 2 II jj X '
• (6) = 30'u (At All) .. x - aj [-2 + x - aj + 2ah In (x - aj + ah ) ] (E.28)atj n x x-~ %

• (7) 30'u (At All) .. [_ x - aj + In ( x - aj + ah ) ] (E.29)atj
JJ x - aj + 2ah ah

• (8) 3 ( A t A) x - aj aj (E.30)atj O'u II II .. ,

JJ X X
• (9) 30'u (At All) .. aj [_ x - aj + in ( x - aj + ah ) ] (E.31)at}

JJ x x - aj + ah ah

A (x, ai, aj) = [x - (y'ai + yiiijY] [x _ (y'ai _ yaj)2] ,

In(x-ai-aj+A) ,
x-ai -aj - A



o-};~ = ~ { (>..t>..v) .. (>..t>..v) .. [~A+ ai + aj Lij] - 2 Re [(>..t>..V)2.] va:;a; Lij},
• J 41r ]J " X X JI X - ai - aj

(E.35)

o-~~ = 41 {I (>..t>..V) .. 12 [-~A+ Lij] - 2 Re [(>..t>..v)~.] ~(ai + ajj Lij}, (E.36)
• J 1r JI X JI X X - ai - aj

o-~~=~{I(>..t>..v) .. 12[~A+ai+ajLij] -2Re[(>..t>..v)2.] va:;a; Lij}, (E.37)
• J 41r JI X X JI X - ai - aj

• (1)
0"--N~NC

• J

• (2)
0"--

N~NC
• J

• (3)
0"--N~NC

• J

• (4)
O"~NC

• J



Appendix F

Reaction Densities

In general the reaction densities corresponding to the reduced cross sections discussed in appendix E

have to be calculated numerically. However, there exist some interesting limiting cases where one

can calculate them analytically. Since thermal averaging of reduced cross sections via eq. (D.16) in-

volves modified Bessel functions, we start by summarizing a few useful formulae for Bessel functions

before discussing the reaction densities.

xKv-dx) + xKv+dx) = 2vKv(x) ,
d

Kv-1(x) - Kv+dx) = 2 dxKv(x).

(F.1)

(F.2)

n-l
1 '" k (n - k - I)!"2 L...(-1) (z)n-2k +

k=O k!-
2

(z)n+2k
n+l ~"2 [( x ) 1 ( 1 ]+(-1) L...k!(n+k)! In "2 -"27/Jk+1)-"27/J(n+k+1) ,

k=O

d
7/J(x) = dx In f(x) .

92



n-l 1
7jJ(n) = -/'E +L k '

k=l

where /'E = 0.577216 is Euler's constant. Hence, the leading terms of the series are given by

In (~) - /'E + ... ,

_(n_~_l_)! (~) n + ... ,

[1r -x 00 1 f (ll + k + !)
Kv(x)=V~e Lk!(2X)kf(1I-k+1)'

k=O 2

Kv (x) = [1r e-x + ... .V~
Furthermore, when evaluating reaction densities according to eq. (D.16), one has to compute

integrals involving Bessel functions. In the following we compile the integrals that we have used in

our calculations.

1J dx xV+1Kv(ax) = 2va-v-2r(1I + 1) - ~Kv+l (a)
o

1J dx x1-VKv(ax) = 2-vav-2r(1 - 1I) -lKv-da)
o

00J dx K1(zx) = ~Ko(za) ,
a



00J dxx2Kt{zx) = :3 ' (F.15)
0

00J dx x Ko(zx) = ~Kl (za) , (F.16)
a

00J dx x Ko (zx) = :2 ' (F.17)
0

00J dx VXKl(ZVX) = 2~K2(zva) , (F.18)
a

00J dx VXKl(ZVX) = :3 ' (F.19)
0

00J 1 2 (F.20)dx VX K1(zVX) = ;Ko(zva) .
a

00

J 1 1dx x In(x)Ko(zx) = "2Ko(za) + aIn(a)-Kt{za) ,
z z

00J dx VXIn (~) Kt{zVX) = [:3 + 2zaIn (~)] Ko(zva)
a

00J dx VXIn (~) K1(zVX) = ~ [1 - 2'YE + In (b~2)]
o



F.2 Lepton Number Violating Scatterings

In the Boltzmann equations we do not need every reaction density I~)' i = 1, ... ,19 separately

(cf. sect. 4.1). We only have to consider the combined reaction densities

2 (1) + (3) + (4) + (6) + (7) + 2 (12) + (14)IN IN IN IN IN IN IN'

(3) + (4) (6) (7) + (14)IN IN - IN - IN IN ,

3 (9) + (17) + (18) + 6 (19)IN IN IN IN'

4 (5) + 2 (8) + 8 (10) + 3 (9) + 4 (15) + 2 (16) + (17) + (18) + 6 (19)IN IN IN IN IN IN IN IN IN'

For low temperatures, i.e. z ~ 11va; , the dominant contribution to the integrand of the reaction

densities comes from small centre of mass energies, i.e. x ~ aj. In this limit the reduced cross

sections at) for the (L + L) violating or conserving processes behave differently. For the (L + L)
violating scatterings (i = 1, ... , 5, 8, 10, 12, ... , 16) one finds

u(i) ex x for x ~ a'N ~ J'

for the (L+L) conserving processes (i = 6,7,9,11,17,18,19). In diagrams with an intermediate

neutrino this different behaviour is due to the different chiral parts of the fermionic propagator

contributing to the scatterings. (L + L) violating processes contain the chirality violating

propagators va;1(x-aj), whereas (L+L) conserving processes depend on the chirality conserving

propagator vxl(x - aj). For diagrams with an intermediate scalar neutrino the corresponding

kinematical factors originate in the couplings of sneutrinos to different initial and final states.

Hence, the reaction densities can be calculated analytically in this limit and one finds

AL _ Mt 1 {~( t )2 2 ~ [( t )2] 19 }IA - -5 6 L..J )'v'A.., .. --:- + L..J Re A.., A.., . .'
1r Z. JJ aJ. nJ 4.JanaJJ n.J

J<n

AL _ Mt 1 {~( t )2 1 ~ [( t )2] 7 }IB - 1r5 z6 L..J A.., A.., .. 2a' + L..J Re A.., A.., . 4 ~ ,
j JJ J n,i nJ v~n~J

i<n

I~L = Mt ~ {~ (A!A..,)2
. ~ (4+ 27au

) +L I (A!A..,) .1
2 _1 (8+ 18au

) }
1r5 z8. JJ aJ~ 41r . nJ ajan 1r

J nJ
j<n



For high temperatures, Le. z ~ 1/ va; , we can use the asymptotic expansions of the reduced cross

sections to compute the reactions densities and we get

+ (2+ 3;"_)~ I(AtAV)J} ,

Mt ~ { (3 _ 3au) I: (>-t>-v)2. +I:Re [(>-t>-v) 2.] 8yra:;;a; In (an)
641r5 z4 41r. JJ. nJ an - aj aj

J n,)
j<n

- (2 + 32:- ) ~ I(AtAv ) J} ,
Mt ~ {I:(>-t>-v)2. [-1- 45au + 9au 0i+ (4+ 27au) (In(_2 ) -IE)]

321r5z4 j JJ 81r 8 V C; 21r zva;

+I:I(>-t>-v) .1
2

[2+ 9~u.2(anJajC;+ajJanCn) (F.37)
n,j nJ (an aJ) -

J<n

+ (8 + _36au) (_an In(_2 ) + _aj In(_2 ) -IE)] }
1r an - aj ...;o:;;z aj - an va;z '

Mt 2.. {" (>-t>- )2 [-1 27au 39atl~j ( 27au) (1 (_2 ) _ )]
32 5 4 L..J v v .. + 8 + 8 - + 4+ 2 n va; IE1r z. JJ 1r Cj 1r Z aj

J



dimensional grounds.

For intermediate temperatures z "" 1/va; the reaction densities have to be computed

numerically. This becomes increasingly difficult in the narrow width limit, where I/Dj(x) has two

very sharp peaks. However, in the limit Cj -+ 0 the two peaks in 1/Dj(x) cancel each other, since

they have a different sign, while the peaks in 1/DJ(x) add up. Therefore, the terms proportional

to 1/Dj(x) or 1/Dj(x)Dn(x) with n =F j can be neglected in the narrow width limit, while 1/DJ(x)

can be approximated by a a-function

1 _7[_8 (x _ a.)
DJ(x) ~ 2.Jajcj J

~2
An analogous relation holds for 1/Dj (x).

These relations allow to calculate the contributions from the s-channel diagrams to the reaction

densities analytically in the limit Cj -+ 0, while the contributions from the t-channe1 diagrams can

easily be evaluated numerically.

The reaction densities ,;i) for the interaction of a (s)neutrino with a top or a stop can also be
J

calculated analytically in the limit of high temperatures z ~ 1/va; . For the s-channel processes

one finds

3auM{ (>.t >.) a' K2 (zva;)
647[4 v v jj J z2

2,;°) , ,;5) = ,;0) .
J J J

For the t-channel reaction densities one has analogously

(1) 3a M
4

( ) 1 [( z2a.) z2a· ((a.)) ]'tj = 8:4 1 >.!>.v jj z4 1 - -t- Ko (zy'aj) + -t- In a~ - 1 K2 (zy'aj) , (F .42)

(2) 3auM{ (t ) 1 [( Z2aj) ( ) z2aj (aj) ( )]
'tj = 87[4 >'v>'v jj z4 1- -4- Ko zy'aj + -4-ln ah K2 zy'aj ,

,(4) = 2....,(0) ....,(6)= ",,(I) ",,(7) = ",,(2)
t] Itj' Itj It]' Itj Itj·

,;8) and ,;9) are several orders of magnitude smaller than the other ,;i) for small z and can therefore
] ] ]

be neglected at high temperatures.

By using the series expansions (F.6) and (F.7), one sees that the processes with a higgsino in

the t-channel, i.e. ,;1), ,;2), ,;6) and ,p, behave like T4ln (T / Mj) at high temperatures, whereas
] J] ]

the other reaction densities are proportional to T4.



In the Boltzmann equations we only need certain combinations of reaction densities which can

easily be evaluated for high temperatures

2

"'" (k) _ (1) _L.-J 'YNC NC - 'YN .N~ -
• J J •

k=1

1~!5:4 (>,!>,V) jj (>.!>.v) ii { [1- ~ (.;0:; + va;) 2] Ko (z (.;0:; + va;))

Z2 2 [ (a. + a .) ] }+ - (.;0:;+ va;) 1+ In 2+ I J Kdz (.;0:;+ va;)) ,4 .jaiaj

4~ 'Y~:~j
k=3

4
"'" (k) _ (2) _L.-J 'YN~NC - 'YNN~ -

• J J •
k=3
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