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The young field of high energy neutrino astronomy gives the opportunity to open a
new observational window to the universe. This provides a large variety of prospects
to investigate new phenomena in astro and particle physics. One of the major challenges
neutrino telescopes are facing is the rejection of background from atmospheric muons. One
approach to achieve the required rejection rate is to cut on quality parameters obtained
from the reconstruction of detected events. In this work an alternative approach, based on
artificial neural networks, is attempted for the AMANDA experiment. A first aspect is the
comparison between a neural network analysis and a "conventional" analysis, when both
are restricted to use the same parameter set. This is performed with Monte Carlo data
simulated for AMANDA-II, the year 2000 version of the AMANDA array. It is shown that
the neural network analysis can obtain a '" 30 % better signal passing rate while having
the same background rejection. If further input parameters are added, not only an almost
50 % increase in signal passing rate can be achieved, but also an improved background
rejection. During the second main part of this work, another neural network analysis is
performed for the AMANDA-B4 detector. The results of this analysis are subsequently
applied to data taken with that detector in 1996. Finally the two most likely neutrino
candidates from this analysis of one day of measured data are presented.
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Neutrinos, tbey are very small.
Tbey bave no cbarge and bave no mass

And do not interact at all.
Tbe eartb is just a silly ball

To tbem, througb wbicb tbey simply pass,
Like dustmaids down a drafty ball

Or pbotons througb a sbeet of glass.

One of the most fascinating pictures nature offers us is the star spangled sky during
a dark night. This is probably the reason, why astronomy is one of the oldest sciences,
which was always pursued from ancient cultures to the modern days. While it also served
other purposes (e.g. the ancient Egypts used astronomy to forecast the regular floodings of
the river Nile [66]), its main purpose always was to explain the phenomena seen in the sky.
Despite the use of telescopes ever since Gallilei pointed this invention of a Dutch sailor into
the sky, the underlying principle of astronomy has stayed the same for centuries: Detecting
photons with the eye or (starting last century) with a photographic plate. Nowadays
telescopes detect photons with energies between'" 10-9 eV (radio waves) and", 1010 eV
(gamma rays).

1911/12 Victor Hess discovered the cosmic rays during his balloon flights [25] and the
aim to reveal their origin eventually became one of the major challenges in astrophysics.
By now individual cosmic rays with energies up to '" 3 . 1020 eV have been detected.
But since they are deflected in cosmic or galactic magnetic fields, the question about the
origin of these highest energy cosmic rays has yet to be answered. There are three main
approaches to find the answer: The search for photons of similar energies, the search
for particles of such high energies that they are not significantly deflected in magnetic
fields and the search for high energy neutrinos. Interestingly, all three approaches have
a common feature: Cosmic rays interact with the natural environment of a detector and
produce secondary particles. All properties of the primary particle (energy, direction,
particle identification, etc.) have to be deduced from signals induced by the secondaries.

1. Gamma rays can be detected in large air shower experiments. Among the various
designs, Cerenkov telescopes are the (so far) most successful to locate gamma ray
point sources. They resemble conventional telescopes, but do not register the pri-
mary gamma ray. Instead, they register radiation emitted by charged particles from
the electro-magnetic cascade caused by the gamma ray's collision with the earth's
atmosphere. Hadronic cascades caused likewise by incident protons or other charged
particles can be rejected due to different signatures [69, 55]. The WHIPPLE tele-
scope in Arizona [70],HEGRA in La Palma [32], the CANGAROO array in Australia
[20]and others, pave(d) the way for this approach2 .. They have thresholds of 300 GeV

1Cosmic Gall in Telephone Poles and other Poems, Andre Deutsch, London, 1964
2The mentioned experiments are not dedicated gamma ray experiments. They are rather combined

experiments for gamma rays as well as for charged cosmic rays.



and higher. New projects try to lower this number to some 20 GeV [50] to get an
overlap with the highest energies gamma-ray satellites can measure. In the TeV re-
gion several point sources have been located [33], whereas searches for point sources
in the PeV region have been inconclusive so far. This is not really surprising, since
the 2.7 K background radiation opaques the universe for very energetic photons.
Unambiguous gammas have only been detected up to rv 50 TeV so far [65].

2. Energetic charged nuclei can be detected with air shower arrays. Present arrays
measure the energy and the chemical composition of the primary particle spectrum.
An alternative aim is to look at such high energies, that the deflection due to mag-
netic fields is small. The energy scale where this deflection becomes less dominant
can be estimated from the (measured) isotropy of the flux of the charged particles.
This isotropy is high for energies below 1017 eV but starts decreasing heavily above
these energies [30]. This is in accordance with cosmological calculations for galac-
tic magnetic fields, leading to a deflection of only some degrees for energies above
1019 eV [61]. An example of running experiments is the Japanese AGASA experi-
ment [3], which is a prototype of the future PIERRE AUGER project [8]. Particles
with energies up to rv 3.1020 eV have been detected [31], but no unambiguous point
source was found yet [46].

3. The third attempt is to probe the universe via neutrinos. There are several ad-
vantages to this concept: Neutrinos are not deflected by galactic magnetic fields or
absorbed in intergalactic dust clouds. Furthermore they are not scattered but carry
direct information from the whole volume of cosmic ray sources rather than only
surface information3. These advantages come at the price of difficult detection of
the neutrinos. These characteristics all have a common reason: The tiny interaction
cross section for only weakly interacting particles.

Until the 1990s cosmic neutrinos could only be investigated by experiments originally
build for other purposes; like the FREJUS detector [58] which was designed to look for
proton decays, or (SUPER- )KAMIOKANDE [42] which's main purpose now is the study
of solar neutrinos. In the late 70s, research and development for a large neutrino telescope
was started by the (now abandoned) DUMAND experiment [22]. DUMAND laid out the
basic principle for detecting high energy cosmic neutrinos: A large grid of photomultiplier-
tubes (PMTs) is deployed in a transparent medium. A high energy neutrino interacts with
the environment in the vicinity of the detector. In case of a charged current interaction a
massive lepton is produced, which in average receives 2/3 of the neutrino's energy. This
r±, J..L±or e± emits Cerenkov radiation, which is detected by the PMTs. In order to register
enough events, a large volume has to be monitored. Due to the short lifetime (i.e. short
distance traveled) of tauons and the high showering rate of electrons, the telescopes are
optimized to detect muons and their neutrinos. In order to shield them from the enormous
background of atmospheric muons (see figure 2.6), the detectors are mounted in great
depths. Since transparent media are required throughout the volume, deep lakes, the

3In potential cosmic neutrino sources like supernova bursts, densities p ~ 1012 g cm-3 might exist. In
this case the neutrino mean free path becomes smaller than the size of these objects [9]. The volume/surface
argument then becomes less important, but is still true in comparison to photons.



deep sea or deep ice are the only possible places for such detectors. Today, there are four
projects for neutrino telescopes:

The BAIKAL experiment was christened after Lake Baikal, where the first running
neutrino telescope is located. Being the only such experiment in a lake its characteristics
are also determined by the lake: Despite being the deepest lake on earth, Lake Baikal
restricts the experiment to the rather shallow depth of "-' 1.1 km. Its ice cover during
the winter provides a stable deployment platform, which simplifies deployment severely
compared to ocean detectors. To overcome the high photon absorption rate of water,
the neutrino detector needs a relatively narrow PMT spacing. This in turn leads to a
low energy threshold [10]. The experiment started with 36 PMTs ("NT-36") deployed in
1993, was extended step by step, has 144 PMTs at present and aims for 192 PMTs ("NT-
200") in 1998 [12]. This is the only neutrino telescope having published unambiguous
(atmospheric) neutrino events so far [11].

NESTOR is a Greek-Italian project headed by the university of Athens. Its 168 PMTs
shall be deployed in a hexagonal structure of several floors in the Mediterranean sea, close
to Pylos, Greece [49].

The ANTARES collaboration is also planning to build a deep ocean telescope in the
Mediterranean sea. A fully equipped 3-dimensional test array is to be deployed within
the next two years. The site for this so called demonstrator near Toulon is at a depth of
2.5 km, but the final site is meant to be deeper and might be located somewhere else [5].
ANTARES also plans to emphasize non-astronomical research like ocean science [6].

At present AMANDA is the biggest running experiment with 424 PMTs deployed after
the 97/98 season [4]. It is located at the geographic south pole, using the infrastruc-
ture of the American Amundsen Scott Soutb Pole Station. It does not use water as its
transparent detection medium but very pure natural ice from the previous interglacial
period. Compared to ocean water, ice has a low scattering length but a high absorption
length. This simplifies energy reconstruction, but necessitates a more sophisticated track
reconstruction.

One of the major challenges all of these projects are facing is background: Despite the
depth, down-going atmospheric muons occur several orders of magnitude more frequent
than cosmic neutrinos. The most important mean to suppress this background is to cut
on the reconstructed zenith angle and only accept up-going muon events. However due
to a remainder of mis-reconstructed atmospheric muon events, further criteria have to be
applied.

A standard approach is to cut on various further parameters. An alternative is to use a
neural network analysis. One main subject of this work is a comparison between these two
approaches. This comparison is performed with simulated data for the AMANDA-II array.
This detector is planned to be completed by the year 2000. The other major investigation
concerns the application of the neural network analysis method to data. In this work data
taken with the AMANDA-B4 array in 1996 is analyzed by neural networks. The two most
likely neutrino candidates from this analysis are presented.



2.1 High Energy Astrophysics

2.1.1 Gamma Ray Astronomy

Two very different efforts are undertaken to detect high energy cosmic gamma rays: Direct
measurements are only possible outside the earth's atmosphere with satellites. The main
restrictions here are cost, weight and size of the instrument. The flux of cosmic gamma rays
from point sources in the energy range accessible to satellite based experiments decreases
like E-(1.9+f), where 0 < € < 0.6. This makes it very unlikely for the small instruments
to be hit by a gamma ray of very high energy (VHE gamma ray). Therefore existing
satellites are not even designed to measure E > 30 GeV photons accurately. Since there
are uncertainties concerning the background, no diffuse flux in this energy range could be
measured so far.

An alternative approach to detect cosmic gamma rays are large, ground based air shower
Cerenkov experiments. Here, the main concern is to suppress the dominating Cerenkov
background from cosmic ray protons. So far this suppression can best be achieved by the
Cerenkov telescopes used within these experiments. As there has not been an all sky survey
so far, no diffuse gamma ray flux in that very high energy range is known either. Since
such air shower experiments only detect high energy gammas (E ~ 300 GeV for gammas
detected in existing air shower experiments), the two efforts are seen as complementary
rather than rivalry.

High energy gamma ray astronomy has some fundamental problems: Even though
photons might originate from the center of stellar objects, they are heavily scattered and
absorbed on their way to the surface. Therefore it is difficult to deduce direct information
on anything but surface properties. Gamma rays also have a high interaction probability
with infrared or cosmic microwave background radiation (CMBR)

and cosmic or galactic dust. This leads to a mean free path for 10 TeV photons of the
order of 10 Megaparsec [28], further decreasing with energy.

2.1.2 Charged Cosmic Rays

The spectrum of charged particles extends up to energies of a few 108 TeV, see figure 2.1.
It is assumed that most of the very energetic particles originate from supernovae or AGNs
[15]. The knee in the spectrum probably indicates an energy scale above which standard
acceleration processes become unlikely. The existence of particles with energies beyond
the ankle might hint at another, rarer but more powerful acceleration mechanism. The
most energetic particles emitted from such accelerators are supposed to be heavily atten-
uated between source and potential detection due to their interaction with the microwave
background radiation. This should lead to the so-called Greisen-Kuz'min-Zatsepin (GKZ)
cutoff in the cosmic ray spectrum. Protons with energies beyond this cutoff, i.e. with
energies ~ 5 . 107 TeV, registered on earth therefore have to originate from sources at
distances of some 10 Megaparsec or less [28]. So these ultra high energy (UHE) cosmic
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Figure 2.1: Flux of high energy cosmic rays, multiplied by E2.75 for better visibility of structures like
the knee near 1 PeV and the ankle near 10 EeV (both marked by arrows)

rays can only probe our local region of the universe. Cosmic rays of energies ~ 1019 eV
on the other hand loose their directional information due to deflections in galactic or in-
tergalactic magnetic fields [30]. Compared to electrically neutral particles which are only
slightly deflected via gravitational lenses, this is a serious disadvantage.

Since they interact only weakly, neutrinos have neither the problem of absorption (like
photons) nor that of deflection (like charged cosmic rays). They can travel over a Hubble
radius still carrying the information from their point of origin. As always, such advantages
come at a price: They are hard to detect, and in order to do so one has to monitor a large
volume, i.e. build a large detector.

2.2 Detection of High Energy Cosmic Neutrinos

2.2.1 Cerenkov Light

Energetic particles with velocities v > c/n (n being the refractive index of the medium)
emit Cerenkov radiation [53]. For muons in ice or water (typical environments for neutrino
telescopes with n "" 1.3) this emission starts at EJ' "" 300 MeV. The photons are emitted
under an angle () = arccos(f3~) and form a so-called Cerenkov cone. In the energy range
interesting for neutrino telescopes, f3 = 1 and n = const., i.e. the Cerenkov angle is
independent of the muons' energy. The photons have a continuous energy spectrum. The
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So the number of photons of a given frequency is proportional to v dv. This is why the
blue light is dominant for Cerenkov radiation.

The emission of Cerenkov light by the muon itself is not the only photon source rele-
vant. Muons also loose energy due to ionisation (continuous energy loss), production of
<5-electrons,bremsstrahlung, e+e- -pair production, muon nucleus interactions and JL+JL--
pair production (all stochastic processes). All of these processes lead to further Cerenkov
photons from shower particles. The energy loss due to the stochastic processes is rising
with energy. Thus an energetic muon emits more light per unit track length, making it
easier to be detected and allowing a better energy estimation.

All emitted photons can interact with the environment before they hit a PMT. These
interactions are stochastic processes only, namely scattering and absorption. Their proba-
bilities are mainly determined by the optical properties of the water/ice, but (in a first
approximation) they are independent of the photon's frequency. The optical properties
are normally parameterized by an effective scattering length >"ef f and an absorption length
>"ab", or by the attenuation length >"att. In the case of diffuse scattering (like in AMANDA-
A), there exists a simple relationship:

>.. - J>..eff>..a
att - 3'



AMANDA-A AMANDA-B Lake Baikal Oceans
900 m 1800 m

absorption length AObs 67-234 m 95 ± 5 m 21 ± 1 m 40 - 55 m
eff.scattering length Aet t ~ 60 cm 24 ± 2 m 150 - 300 m 150 - 300 m
attenuation length Aott ;S7m ~ 30 ~ 20 ~ 50

Table 2.1: Comparison of important optical parameters for various possible detector sites. Data taken
from [16]. The absorption length of the ice at AMANDA-A is wavelength dependent:
Aabs = 67 m for a photon wavelength of 500 nm, whereas Aabs = 234 m for a wavelength
of 410 nm.

Compared to water detectors, ice detectors have a large Aobs, a similar Aott, but a small
Aeff (see table 2.1). The reason is the low absorption in very pure ice crystals on the one
hand, but higher scattering due to residual impurities (air bubbles in shallow ice, dust,
etc.) on the other hand. The high scattering rate in ice complicates track reconstruc-
tion. Contrary to this, energy reconstruction can actually benefit from scattering: For ice
detectors with very small Aeff but large AObs (like AMANDA-A), scattering enhances the
probability for a given photon to hit any PMT. The detector has thus better calorimetric
properties.

Deep underwater lice telescopes consist of a lattice of PMTs spread over a large transparent
volume to detect Cerenkov light. Since the detectors are placed in great depths, one shields
the PMTs with a pressure sphere made of very transparent boron-silicate glass. Other
(e.g. electronic) devices might also be included into these housings. This equipped pressure
sphere is then called an optical module (OM). Depending on the optical properties of the
medium and the distances to the various OMs, a certain fraction of the Cerenkov photons
emitted by a muon will hit a PMT. For AMANDA-B, a 1 TeV muon in average induces
one photoelectron in a PMT at 25 m distance to the track [43]. The PMT's time and
amplitude information is then recorded. If enough PMTs are hit, the muon's track and
its energy can be reconstructed from the time and amplitude information gathered. With
this approach, it is not possible to discriminate between J.L+ and J.L-, 'and therefore only
the combined fluxes of particle and antiparticle are measured.

Several theoretical calculations indicate that a size of 1 km3 is desirable for large neu-
trino detectors [26]. To estimate the required size of the detector, one can compare neutrino
fluxes to the gamma ray fluxes known from air shower experiments: Galactic accelerators
might produce high energy hadrons1 (mostly protons), which interact with a matter or
photon fields to produce pions. These are supposed to be the sources for high energy
photons and neutrinos via their decays, e.g.:

lSome theories doubt such processes exist. They describe cosmic accelerators for electrons only. If this
was true, there would be no cosmic point sources for neutrinos.
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SOthe original muon neutrino flux <Pv is expected to be of the same order of magnitude
as the gamma ray flux <P-y. Two main processes can alter this approximate 1:1 ratio:
The gamma ray flux might be higher due to electro-magnetic showering within the source,
producing more (albeit less energetic) photons out of the initial gammas. In contrast, if the
source is dense enough, absorption of photons within the source might become relevant.
In this case, the neutrino flux reaching earth might be larger.

Taking into account the absorption probability of gammas A-y (within the source and
on their way to earth), the detected flux of photons [65] and the interaction probability
of neutrinos inside the earth [34], one can calculate the upward muon flux. For example
for binary stars, which some years ago were considered as possible neutrino point sources,
the upward muon flux can be estimated to

<p( ) < 2 events(EJ.l > 1 TeV) x 1 (2.5)
t J.L '" 105m2yr (1 - A-y) ,

for an energy spectral index 'Yin the range 2.1 to 2.32 [24]. Similar estimations for various
other potential sources justify the quest for effective detection areas> 1 km2 [16]. In
order to achieve such an "effective area" an equipped volume of '" 1 km3 is needed [26].
The task to equip such a large volume with PMTs and the aim to keep costs at a low
level enforces an OM spacing of ~ 10 meters. Such a spacing in turn leads to a minimum
threshold of ~ 10 GeV for reconstructible tracks. This compares to the MeV limits for
solar neutrino experiments like 1MB or KAMIOKANDE.

A key feature distinguishing neutrino telescopes from most other detectors in the field
of high energy physics and astronomy is the inherent use of their natural environment as
part of the detector. This leads to an interesting property of such detectors: The effective
volume,

VeIl = Aell . RJ.l (2.6)

becomes considerably larger than the actual detector, i.e. the detector sees beyond its
limits, see figure 2.3. The effective area Aell from equation 2.6 is the constant of pro-
portionality incident particle flux and detection rate. RJ.l, the mean muon range is given
by

RJ.l = i ·In (b~J.l + 1) , (2.7)

where a = 2 MeV fcm and b ,.....,3.4 . 10-6 cm-1 [72]. So RJ.l '" EJ.l up to EJ.l '" 1 TeVand
RJ.l '" log EJ.l at higher energies. Since multi- TeV muons travel several kilometers, this
effect (Veil> Vdetector) is not only relevant for present detectors, but still for km3-sized
extensions.
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Figure 2.3: The effective volume. detector volume and the effective area of a neutrino telescope
(= muon detector). Contrary to accelerator experiments the reaction (v -+ p.) is not
required to be inside the detector.

Neutrino telescopes are optimized to detect muon neutrinos, but there are signatures for
charged current interactions of the two other flavors as well.
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Figure 2.4: Point-like events like energetic electro-magnetic or hadronic cascades give spherically
symmetric terenkov fronts. This symmetry concerns timing distributions only - not
photon density distributions.

Single showers of energies 6.4 PeV (see figure 2.4) can be assigned to hadronic or
electro-magnetic cascades from the Glashow resonance:



Since there are no positrons inside the ice, such a detection is not possible for Ve, but only
for lie. Deducing the lie direction from it's shower requires a sophisticated analysis, mainly
based on amplitude information. It makes use of the fact that in the forward direction of
the shower (relative to the original neutrino track),PMTs should be illuminated stronger
thil.ll in the backward direction. Hadronic cascades from the Glashow resonance should
be so bright that they can be seen far outside the detector. The statistics of Ve detection
should therefore be limited by the capability to identify such distant showers.

An incident tau-neutrino with energy 2:: 1 PeV hits a nucleon and produces a local
hadronic cascade. The emerging tauon emits Cerenkov radiation and travels a distance
d = CfJ'fT 2:: 50m. Its decay causes another hadronic cascade. This process is called a
double-bang event. It is unlikely to separate the two cascades if they are close together,
therefore energies 2:: 1 PeV are needed. A clear double-bang event could be direct evidence
for the existence of the so far undetected tau-neutrinos. Source tracing is still possible via
the tauon track. Again no distinction between particle and anti-particle is possible. Since
the detection of Vr does not profit from the long range of a muon (see equation 2.7), the
statistics for these processes will be limited.

There are two different sources of background muons inherent to large neutrino detectors
(see figure 2.5): atmospheric muons and atmospheric neutrinos. Both kind of background
signals are of physical interest on their own and shall only be called background to distin-
guish them from extraterrestrial neutrino sources3. Their fluxes can be approximated by
simple power laws:

The flux of atmospheric neutrinos has "f ~ 3.7, while for cosmic neutrinos "f ~ (2 + c),
where c is a small number, is expected. From this it is obvious that signal to noise improves
with energy [24J. Atmospheric muons can be separated due to their direction.

When energetic cosmic rays interact with the earth's atmosphere, they produce a
hadronic cascade. Most of the baryons eventually decay to pions (pionisation), which
in turn decay into muons. For muons in the energy range interesting for neutrino tele-
scopes, the Lorentz factor "f is large enough, so that a non-negligible fraction of these
muons can penetrate the earth deep enough to reach the telescope (see figure 2.6). In fact
the flux of these muons exceeds the flux of neutrino-induced muons by several orders of
magnitude [12]' [24]. The ratio depends critically on the depth of the detector and on the
energy threshold.

The background of atmospheric muons is suppressed severely by a simple cut on the
zenith angle of the reconstructed track: Up-going muons are considered to be neutrino-
induced signal, while down-going muons are all ignored as atmospheric muons. Theoreti-
cally, with a perfect track reconstruction, this single cut would be sufficient to suppress
such background. In reality, some tracks are reconstructed into the wrong direction and

3A diffuse flux of neutrinos from the interaction of cosmic rays with interstellar or intergalactic dust,
the sun's atmosphere or the CMBR exists [24]. Hope is that extraterrestrial point sources can also be
discovered.



Figure 2.5: Signal comes from muons originating from cosmic neutrinos (bottom right). Indistin-
guishable background is due to muons induced by atmospheric neutrinos (bottom left).
These. as well as atmospheric muons (top right) are due to cosmic rays interacting with
the earth's atmosphere. Sometimes this interaction not only causes the occurrence of
one. but of several coincident muons at the detector (top left).

additional cuts are needed. Due to the necessary zenith angle cut, it is said that neutrino
telescopes can only look down, i.e. a telescope can only detect neutrinos from the opposite
hemisphere (or, in best case, 10° - 20° above horizon). This implies that at least two such
instruments (as antipodic as possible) are needed to scan the whole sky. In this sense
AMANDA is actually needed as the complementary partner by any of the other planned
neutrino telescopes since they are all located on the northern hemisphere.

The other important (though much rarer) source of background events, the atmospberic
neutrinos also originate from the interaction between incident cosmic rays and the atmo-
sphere: Due to individual lepton number conservation, one vJJ (vJJ) is produced for every
J.L- (J.L+) produced and another vJJ (v"/J) for every J.L- (J.L+) decaying. This is the same
as in equation 2.4. Some of these neutrinos interact in or near the detector (exactly like
cosmic neutrinos do) and produce a muon. These atmospheric neutrino-induced muons
are indistinguishable from signal muons. Therefore individual events cannot be assigned
to potential cosmic neutrino point sources. Instead, peaks within the homogeneous back-
ground have to be found. The higher the angular resolution of the detector is achieved,
the more significant these peaks become.

Both kind of background events can be utilized however: First of all they are a proof
of method: These sources are known to exist, so their detection indicates the capabilities
of neutrino telescopes. Furthermore, fluxes are known to within 10-20% [52, 73J. They
can thus be used to calibrate the telescope. In addition, atmospheric neutrinos can probe
uncharted territory in neutrino oscillation parameter space [16J. However, since neutrino



....•.•..•.......•.•...
~ 10

Ii:~

* lIigashietaI., 1966
* lIigashietaI., 1966
o Davitaev et aI., 1969
• Vavilov et aI., 1970
Y Rogers and Tristam, 1984
o FyodorovetaL,1985
o NESTOR Prototypes, 1989-199
'" DUMAND Prototype, 1990
• BAIKAL Prototype, 1992
• BAIKAL NT-36, 1993

_ Bugaev-Naumov-Sinegovsky

~
'"•....§ 10

.5
~
t: 10
~

o 1000 2000 3000 4000 5000 6000
Depth, m

Figure 2.6: Vertical flux of atmospheric muons, measured at various sites [12]. This explains the
quest for sites located as deep as possible in order to minimize the number of down-
going events.

telescopes are optimized to (high energy) muon neutrinos they are not expected to help
solve the atmospheric neutrino anomaly.

Contrary to ice detectors in a sterile, very cold (rv -40°C) environment, water de-
tectors have to cope with a high level of noise originating mostly from bioluminescence.
Bioluminescence is especially important since it may not only be random noise: Light
emitting bacteria can stimulate other bacteria, leading to coincident hits in various PMTs
[72]. Deep ocean detectors have one further major background: The natural radioactivity
of 40K. This potassium isotope, which is present in the dissolved salt, emits beta rays,
which in turn can emit Cerenkov photons. The beta rays themselves are readily absorbed
in water, but their Cerenkov photons can trigger PMTs. To cope with noise, BAIKAL
uses and ANTARES plans to use a local coincidence trigger [10, 5]. That is to say a
PMT signal is disregarded as long as no neighboring PMT signal is reported within a few
nanoseconds.

Neutrino telescopes, like most other large detectors in the field of physics, are no single
purpose instruments. Their primary goal is the detection of cosmic neutrinos. From di-
rectional and kinetic information, one aims to deduce information on point sources. All



standard models of such sources predict some acceleration mechanism producing energetic
charged particles, which then hit a so-called "beam-dump", which is just dense (on inter-
stellar scale) material or a dense photon field. There the charged particles interact with
target material, producing pions which then decay to neutrinos, see equation 2.4. Some of
the possible or expected sources are supernovae, AGNs and GRBs. Nowadays supernovae
seem to be understood fairly well in the low energy region, but for AGNs and especially
GRBs many questions remain unanswered. Neutrino based information on them would
give a set of information complementary to the present knowledge, hopefully yielding new
indications on what kind of theories are required to describe these objects. Even the
non-detection of point-sources would be an important information.

But the astrophysical search for point sources is not the only task of neutrino telescopes.
They also offer the opportunity for particle physics to detect, or set more stringent upper
limit on the fluxes of new particles: Many cosmological and GUT theories describe new, so
far undetected particles. For the detection of some of them (or their decay products), like
neutralinos or magnetic monopoles, neutrino telescopes might be an appropriate device.
Environmental studies are also performed at detector sites. Since their results are of vital
importance to the experiments, these studies are sometimes considered as compulsory
exercises, but in fact they are interesting studies by themselves and are a nice example of
interdisciplinary science.

Heavy stars which burned up their hydrogen, helium and other light elements (up to iron)
start collapsing until the outer layer rebounds from a suddenly solid or expanding inner
core. As proven by SN 1987A, supernovae emit a large flux of neutrinos [14]. In general

~
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these neutrinos have energies far below telescope thresholds. However disregarding the
standard telescope operating mode, one can also use the detector as a simple rate counter:
A sudden increase in the ve flux causes small localized cascades (see figure 2.7) and thereby
a sudden increase of the counting rate. During the initial collapse of a supernova, only
electron neutrinos are produced, leading to electron showers in the detector. But in
addition all three flavors of l/ V pairs are produced via the ZO exchange just '" 1 second
later, when there are enough positrons in the hot environment of the burst to annihilate
with electrons [64]. But as muon and tau-neutrinos do not have enough energy to produce
charged leptons, only l/eS and ves ignite showers from this "delayed" burst. Depending on
the average size of these showers (determined by the neutrino energy), a certain fraction
of the showers will illuminate the closest PMT. These are independent hits, so no source
tracking is possible with a single neutrino telescopes. But an overall increase in the
counting rate can give a significant signal indicating the existence of a burst-like event,
e.g. a supernova. Due to their large noise (especially in K-40 polluted ocean detectors) and
a small absorption length, water detectors are less sensitive for such supernova searches
than ice detectors. With the good timing resolution of neutrino telescopes, one obtains very
precise information on the duration of the neutrino signal leading to limits on l/e masses:
After the supernova 1987A, underground experiments could set mass limits which are of
similar quality as those of dedicated tritium decay experiments [1]. Furthermore, once at
least three neutrino detectors running, their combined timing information can be used for
triangulation.

2.4.2 Supernova Remnants

After the actual supernova burst, a so-called supernova remnant (SNR) remains. Such
remnants are well known sources of electro-magnetic radiation. One of the most prominent
SNRs is the Crab nebula, the remnant of a supernova reported by Chinese astronomers
in 1054. It is a standard source of TeV photons for the earlier mentioned air shower
Cerenkov experiments as it is the brightest known steady source of energetic gamma
rays. It would thus be very interesting to compare neutrino fluxes to the well established
gamma ray fluxes. Neutrinos are expected from an acceleration of protons at the expanding
shock front. Energies up to around 1 PeV are predicted for the protons. These, or other
accelerated hadrons can collide with the stellar wind of the former star, caused by the
pre-burst mass loss. During this collisions processes like described in equation 2.4 are
then expected to produce energetic neutrinos.

2.4.3 Active Galactic Nuclei

Active Galactic Nuclei (AGNs) belong to the most luminous objects in the universe. It
is assumed that matter accreting onto a central massive black hole powers them. Two of
the main classes of models describing AGNs both predict high energy fluxes from AGNs:
Protons are accelerated by shock waves in the accretion flow close to the black hole (generic
AGN models) or in the jets emitted perpendicular to the accretion disk. These protons
then interact with photons causing a hadronic cascade as a result of which (among other
particles) neutrinos are produced. Such neutrinos should have energies comparable to or
higher than the known gamma rays from AGNs, i.e. far above detector thresholds [16].



2.4.4 Gamma Ray Bursts

Yet to be fully explained sudden high fluxes of gamma rays from seemingly point sources
are called gamma ray bursts (GRBs). They can last for tens to hundreds of seconds
and are isotropically scattered over the whole sky. Since 1996 counterparts in the X-ray,
optical and radio spectrum have been reported for some GRBs [45]. Many models predict
either "internal" or "external" shock acceleration4. Both classes assume some hadronic
acceleration mechanisms, and therefore predict the emission of energetic neutrinos, like
seen in equation 2.4. Neutrino energies up to 100 TeV are expected [28]. Detecting
such high energy neutrinos in coincidence to the gamma ray bursts would make a strong
point for hadronic models. So signatures for high-energy neutrinos from GRBs are the
coincidence with detected gamma rays and the directional agreement.

If GRBs also lead to low-energy neutrino bursts, these can be detected by an increase
in the counting rate (just like supernova bursts can be detected). Additional information
obtained from photon detectors then leads to a distinction between supernova and gamma
ray bursts.

Dedicated gamma ray observatories have timing accuracies of the order of milliseconds.
Neutrino telescopes can easily monitor their counting rates with the same precision. The
time of flight from source to earth would be longer for massive neutrinos than for massless
particles like photons. Comparing the arrival time distributions from neutrino telescopes
and gamma ray satellites could therefore lead to 10-4 eV information on neutrino masses
for a source of 1000 Mpc distance [29].

2.4.5 Topological Defects

GUT theories tell us that at a very early stage, there was an exact symmetry between the
electroweak and the strong force. This is not the case any more. In order to account for
this broken symmetry, there must have been a phase transition in the past[47]. During
this phase transition, topological defects might have been frozen out[68]. They could be
zero-dimensional (monopoles), one-dimensional (strings) two-dimensional (domain walls)
or even more bizarre objects. Such topological defects might accelerate hadrons, thereby
perhaps accounting for the highest energy cosmic rays.

Cosmologists describing a flat universe postulate the existence of hot and/or cold dark
matter. Cold dark matter refers to particles which have little kinetic energy (on the scale
of their mass). A subclass of these are the so-called weakly interacting massive particles
(WIMPS), which only interact via the weak force. The most prominent candidates are
neutralinos postulated by super symmetric extensions of the standard model. This is
a nice example how closely related the theories describing the biggest (cosmos) and the
smallest (elementary particles) are related: They even propose similar new particles. After
being created during the big bang, WIMPS started annihilating, but due to their small
interaction cross section not all have vanished yet. They are expected to scatter off nuclei,

'However many questions remain unanswered, as no convincing model fully describes all aspects of
gamma ray bursts so far.



Every time a new "window" to the sky was opened, i.e. every time new photon frequencies
or new particles were used, new phenomena were discovered: Quasars, pulsars and AGNs
were discovered with radio waves during the fifties. Once satellites were available, X- and
gamma rays became a new tool for astronomy, which lead to the discovery of black hole
candidates, accretion discs and the still enigmatic gamma ray bursts [25]. None of these
discoveries were expected. Likewise the atmospheric neutrino anomaly was discovered
by chance while looking for proton decays. AMANDA-II, which's simulation is analyzed
during this work will exceed present neutrino detectors by 1-2 orders of magnitude, a final
1 km3 detector will exceed them by 3 orders of magnitude in effective area. Having this in
mind, it would be very unlikely that nothing new will be discovered. As one might put it:
Astropbysics is a subject wbere observers generally lead, and tbeorists follow bebind [56].



The DUMAND collaboration had experienced serious problems regarding reliability, de-
ployment techniques and access (ship) time. In the early 1980s Halzen and Learned
suggested using ice rather than water as the natural environment for a neutrino telescope
[27]. The premise was that inferior properties of ice with respect to water could be com-
pensated by a greater number of PMTs. Advantages should arise from a solid deployment
platform and low background. South Pole is the only place on earth to combine the two
requirements for such a project: A constant, several kilometers thick ice shield and an
excellent infrastructure with the possibility of year-round access for maintenance. This
was the reason to locate AMANDA at the Amundsen-Scott South Pole Station.

In the austral summer 1991/92 preliminary site studies and drilling tests were per-
formed. Two years later the first four stringsl were deployed with 20 OMs each at depths
between 810 and 1000 meter. This is nowadays referred to as the AMANDA-A array.
Together with the OMs, several other devices (like artificial light sources) were deployed
to calibrate the detector and to analyze the (esp. optical) properties of the ice at that
depth. It was concluded that the small scattering length (mainly due to residual air bub-
bles) of ,....,25 cm was insufficient for track reconstruction. However in combination with
the surprisingly large absorption length AMANDA-Aproved to be an useful tool for the
observation of contained l/e-induced electron showers and for supernova burst searches
[54].

Glaciologists estimated that under the higher pressure, deeper ice (below,...., 1200 -
1400 meters) should consist of purer ice crystals with significantly better optical properties.
So 1995/96 four new strings were deployed (one in the center and three on a circle of
35 meter radius), but this time the OMs reached depths between 1600 and 1950 meters.
It was shown that the ice around this so-called AMANDA-B4 detector had a scattering
length of 24 m, sufficiently large to allow reconstruction [71]. During the next campaign
in 1996/97 six additional strings were deployed on a second circle (concentric to the first
one) of 60 meter radius. In 1997/98 three further (survey) strings were deployed, with
OM locations from 1300 meter depth down to 2350 meters, yielding AMANDA-B13.

3.2.1 Geometry

The present geometry of the AMANDA detector is sketched in figure 3.8. So far the
geometry is close to a cylindrical symmetry. This will also remain the case for the next
drilling season, when eight new strings are supposed to complete the 100 meter circle
around AMANDA-BlO, resulting in AMANDA-II.For ICECUBE, the planned 1 km3 sized
extension of the AMANDA detector, several possible geometries are under consideration.
Based on Monte Carlo simulations as well as experience with the present detector, a

IThe term string is sometimes confusing: Normally it stands for the whole set of cables from surface to
the bottom of one hole. But sometimes it is also used to describe only that region of the cables where the
OMs are attached.
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Figure 3.8: The present AMANDA detector after the 1997/98 deployment season. The shallow
AMANDA-A detector consists of four strings. forming part of a 30m radius cylinder.
AMANDA-B consists of 13 strings: One in the center. three on a cylinder of 35 m radius.
six on a cylinder of 60 m radius and three on one with 100 meter radius. Up to 42 optical
modules are attached to each string. The optical modules are looking down in order to
increase efficiency for up-going muons and decreaseefficiency for down-going muons.



preliminary decision towards one or the other of these geometries is expected within the
next two years.

In order to equip the planned 1 km3 of ice with OMs, the ice below and above the
AMANDA-BID array has to be probed. It is known from AMANDA-A that there is a certain
limit above which scattering becomes to strong. So AMANDA-B cannot be extended too
far to more shallow depths. However there are limits on the other extreme as well: Since
the '" 3 km thick ice shield at south pole is essentially a massive glacier moving with a
speed of '" 10 meters per year, shearing forces are expected to exist in the deepest ice. Even
if they might not destroy very deep strings, they would cause a time dependency of the
relative geometry of the detector. Since it is virtually impossible to continuously monitor
the current detector geometry (sonar signals as used in water detectors are absorbed in
ice), this would complicate data analysis enormously. So far the collaboration intends to
solve this by staying above the problematic region. The three recently deployed strings
should provide a detailed depth profile of the ice properties in the proposed region of a
cube kilometer scale detector.

Detectors at large accelerators normally consist of several very different subdetectors, all
designed and installed in parallel. Neutrino telescopes on the other hand consist of a lattice
of more or less identical elements (OM fixed to a cable), installed over the course of several
years. This offers the advantage to design, install, test and improve these elements during
construction of the detector. This is explained using the example of signal transmission
from OM to surface.

Exact timing information is critical for neutrino telescopes: First of all muons traverse
the detector with velocity v = co/1.3, i.e. PMTs at a distance of ;S 10 m along the
track are hit within < 50 ns (neglecting scattering). Thus relative timing information
between the different channels should be correct to a high accuracy. Furthermore, muons
might produce several hits per PMT, which should be reported separately. So the ideal
transmission would have very good timing resolution, a high dynamical range (from 1 to
1000 PE events), little attenuation, and negligible broadening of the signal.

AMANDA-A and AMANDA-B4 use coaxial cables to transmit the analog PMT signals
to the surface. These have the disadvantage of a rather strong attenuation and dispersion
(rise time at the surface'" 180 ns, FWHM '" 600 ns). To overcome this problem the six
strings deployed 1995/96 were mainly equipped with twisted pair cables. Rise time and
attenuation improved by a factor three (rise time at the surface", 60 ns, FWHM '" 210 ns).
In this case the main challenge concerns the appearance of cross talk signals: When a non-
coax cable transmits a signal over a long distance and a second cable is running parallel,
induction will cause a pulse in this second cable. Such induced pulses mimic additional
roughly coincident PMT signals. As a third attempt fiber optics are tested at present [44]:
Inside the OM the PMT signal is used as input for a LED transmitter. The LED light
output is then fed into an optical fiber which is connected to a photo diode receiver on
the surface. Time resolutions are improved considerably (rise time at the surface", 4 ns,
FWHM '" 4 ns [16]), see figure 3.9.
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Figure 3.9: The time over threshold (TOT) distribution is shown for 6 fiber optic OM (left) and for
6 twisted pair OMs (right). 50000 events have been used. The mean TOT is 20 ns
and 213 ns respectively. The TOT is a measure of the minimum time to separate single
photoelectrons.

LEDs are the first non-passive electronic devices inside OMs. Contrary to the original
AMANDA approach to keep as much electronics as possible accessible inside buildings at
the surface, tests of digital OMs (DOMs)[21] are also being performed. These digitize
the pulse shape of a signal inside the OM with a resolution of 1 ns and then send this
information through the electrical cable. This would be the most flexible solution and
would overcome the whole problem of attenuation in the,.....,2 km long cables. As a second
advantage it is not necessary to operate the PMTs at the present large gain of 109 to get
the signal to the surface. This should reduce potential aging effects, e.g. on the last dynode
inside the PMT. However reliability has not yet been proven satisfactorily. A large detector
with many DOMs would need a hierarchical structure introducing higher risks of failure.
This is especially problematic for an ice detector, where recovery and/or repair of deployed
OMs (or other devices) is not possible. Furthermore costs are much higher than for the
other mentioned solutions. But nevertheless, like all the other technologies mentioned, a
few DOMs are already used in order to be tested under experiment conditions. Decisions
on technologies used in the future are mainly taken on basis of these "in situ" -performances
rather than purely on laboratory test or theoretical predictions.

Likewise other parts of the detector are likely to change: For example the deployment of
several test-OMs with wavelength shifters coating the UV-opaque pressure spheres to yield
higher light input for the PMTs is planned for the next drilling season. Other research
areas include improvements of the OMs' penetrators and larger OMs. Obviously like in all
high-energy experiments electronics and on-line software is continually upgraded as well.
In 1997/98 for example a whole new DAQ was installed. It is capable of supporting very
sophisticated trigger conditions and designed to cope with long-term AMANDA extension
plans.



The AMANDA Detector is already the biggest operating neutrino telescope. In 1998/99,
no deployments are planned. Instead full systematic test data will be taken to compare
(among others) the different technologies installed so far, performances of various potential
trigger conditions, etc. In 1999/2000 seven additional strings shall complete AMANDA-II,
an array of"J 50· 103 m2 effective area for 1 TeV neutrinos. Depending on their predicted
neutrino fluxes, some theoretical models can already be verified (or falsified). However
full physics capability will only be reached by the proposed ICECUBE detector.

A final decision on the ICECUBE technology can be taken once AMANDA-II is com-
pleted; depending on results from AMANDA-BID and AMANDA-B13 some options might
be fixed even earlier. A standard solution should provide the opportunity for an efficient
deployment of twice the number of strings per year as handled so far. The original time
schedule for ICECUBE was to complete it by 2005. After five years of running, an "all sky"
map2 of possibly discovered neutrino point sources is hoped to be sufficient accurate to
start looking for time dependent effects and energy spectra. As it is certain by now that
south pole station is being heavily upgraded during the next five years, transport capac-
ities might not be sufficient to meet AMANDA's desires. So the completion of ICECUBE
could be delayed slightly.

2 As explained in section 2.3, due to background from atmospheric muons, neutrino telescopes can only
look down through the earth. Such an "all sky" map for AMANDA is therefore of the northern hemisphere
only.



In modern high-energy physics experiments it is a common challenge to uncover signals,
hidden by an overwhelming background. This process is called filtering, the hardware or
software tools used are filters. The main task for designing filters is to find information
gathered in the detector, which allows some kind of distinction between signal and back-
ground. Mathematically spoken one aims for a manifold in the available parameter space,
which separates a region of high signal to noise ratio from the rest. When deciding on
filter specifications, one has to determine an optimal balance between large signal passing
rate and high background rejection.

Usually filtering is applied to the data at several levels between data taking and final
result. These may include the following:

1. A trigger decides on the readout and/or storage of the measured data. It is an impor-
tant element of the data acquisition system (DAQ). Depending on the complexity
of the experiment and the capacities of the data handling system, such a trigger
can consist of several consecutive levels. For AMANDA-B there are actually several
trigger conditions used in parallel: The standard trigger condition requires at least
eight channels hit within a time window of 2fLS. Alternative "external" triggers are
provided by events in nearby detectors like AMANDA-AI, SPASE2 or GASP3.

2. Before starting an individual analysis it may be useful to filter the acquired data
again, according to the properties relevant for that specific analysis. This reduces
storage requirements and CPU time for the analysis. For example, in AMANDA an
analysis of individual PMTs might be performed. Then only such events are used,
where that particular PMT was hit.

3. Finally one might perform a quality analysis after the main analysis (for AMANDA:
reconstruction) is done. This is often not considered as a filter any more but practi-
cally has the same characteristic: With such an analysis, signal shall be accumulated
relative to background. As was explained in chapter 2, one very important aspect
of the AMANDA analysis is the rejection of mis-reconstructed down-going muons.
Such a quality analysis is the topic of this work.

Sometimes peculiarities of an experiment require special filters. AMANDA for example
takes data during the austral winter, when there is no possibility to ship data to the col-
laboration laboratories for analysis. There exists the opportunity to use a small bandwidth
satellite connection however. A filter determines the small fraction of data transmitted

lCoincidences between AMANDA-A and AMANDA-B are a very important calibration source, e.g. for
the reconstruction: The direction of muons is known to be almost vertical, see figure 3.8.

2The South Pole Air Shower Experiment is located on the surface close to the AMANDA array. Since
SPASE has a very good angular resolution, coincidence events between the two experiments can be used
to calibrate the AMANDA array. This combination of air shower experiment and neutrino detector is not
possible for ocean detectors.

3The Gamma Astronomy South Pole experiment was running until the end of Dec 1997.



via this satellite link [40J. The rest of the data is then shipped from the pole once the
station is accessible again.

Examples for the different separation techniques introduced are displayed in figure 4.10.
The aim is to separate the darker ("signal") from the brighter ("background") sample,
both shown in (A). One has only information about two observable called 1 and 2.

Figure 4.10: Example for various techniques to separate signal (dark) from background (bright).
(A): Two sample classes that shall be separated; (8): Possible cuts on parameter 2;
(C): Possible cuts on parameter 1; (0): A combination of individual cuts; (E): Linear
combination of both parameters (solid line) and cuts on it (dashed lines) (F): Possible
separation contour from an artificial neural net.
In general, both classes are overlapping distributions rather than compact regions in
parameter space. A perfect separation like in (F) is then impossible. Furthermore pa-
rameter spaces have normally more than two dimensions. This figure thus only outlines
general features of separation techniques.

The easiest way to tackle any separation is to look for a simple cut in one variable like
the up/down cut on the muon's direction for the AMANDA experiment. In figure 4.10 (B)
possible cuts on parameter 2 are shown, in (C) similar cuts on the other parameter are
indicated. Generally not only the best cut observable is unknown, but also it's optimal cut
value. Figure 4.10 (B) and (C) display two cases: The cuts named (a) leave a background-



free signal, while those named (b) try to balance background rejection and signal passing
rate. They might be appropriate in cases where a higher signal passing rate than with cut
(a) is required. One notices that for case (a) the better result (higher signal passing rate)
is reached with a cut on parameter 2, while for case (b) a cut on parameter 1 seems more
reasonable.

Often enough one parameter is not even sufficient and a set of parameters has to be
found. Such a multi-parameter cut is shown in figure 4.10 (D): If an event has a large value
with respect to parameter 2, and a low value with respect to 1, it is considered signal,
otherwise background. This considerably improves the separation compared to one cut on
a single observable. Since the potential cut parameters are often not independent from
each other neither are the cut values. So the quality of a parameter set for filtering depends
on its set of cut values which have to be optimized simultaneously. Keeping in mind that
such cuts are restricted to produce hyper-rectangular parallelepipeds (multi-dimensional
rectangles) in parameter space, i.e. that normally an ideal contour for separation cannot
be found anyway, other separation techniques are often being employed.

The so called discriminant analysis, as described by Fischer [48], assumes a gaussian
distribution with respect to each parameter. (So the samples in figure 4.10 is not an ideal
example to explain this method.) It is nevertheless explained with the aid of figure 4.10 (E).
The analysis consists of an analytic calculation of a so-called orthogonal vector, which
basically points from the center of the signal distribution to the center of the background
distribution in parameter space. The scalar product of this orthogonal vector with the
position vector (in parameter space) of each event is then a new parameter, defined for
every single event. It is a linear combination of all parameters used (the solid line in
the figure). A cut on this new parameter (dashed lines in the figure are potential cuts)
defines a hyperplane separating both distributions. So the separation problem in the
multi-dimensional parameter space is reduced to a one-dimensional problem4• For the
example of figure 4.10, the discriminant analysis has a similar quality as a combined cut
on both parameters, but is considerably better than a single cut on one parameter. This
method makes assumptions on the shape of the distributions (gaussian). Only such an
assumption offers the opportunity for an analytic solution to the search for the appropriate
linear combination of potential cut parameters in a quality filter. The before mentioned
combined cuts on sets of individual parameters (figure 4.10 (D)) cannot be found by similar
(fast) analytical methods - even with assumptions on the distributions.

The main disadvantage of the discriminant analysis and its extensions is the restriction
to linear combinations of the original parameters. Lifting this restriction could lead to
an optimized separation contour for the individual problem. Such a contour is sketched
in figure 4.10 (E). This approach is the domain of neural networks. They are nowadays
widely used, e.g. as standard tools for filtering problems, in high energy experiments.
Details of such an analysis are explained in the next section.

4There are similar, more general tools, which can reduce the problem to any number of specified
dimensions[23J. It is then hoped, that a human being might recognize some good separation contour
within these reduced dimensions. Since an "eye-scan" in more than two dimensions is hardly applicable,
the problems are normally reduced to one or two dimensions.



The term artificial neural networks describes where they come from: The task to replicate
the main feature of the human brain, i.e. the network of neurons. In the early stages of
this approach, such a network design was very different from proven computing solutions:
Standard computers were sequential machines performing one calculation after the other.
During assembly, the individual elements were connected and neither the elements nor the
connections could be changed afterwards. Computers could perform simple mathematical
operations much faster than humans, but failed to perform complex tasks like pattern
recognition. This failure could not be caused by using "dead" electronics, since it had
been realized that the brain also basically works via electrical signals. Thus the idea was
to combine the speed of signal transmission in computers with the complex "design" of
the brain, into an artificial neural network. This then should unite the advantages of both
systems.
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Figure 4.11: Sketch of a small fraction of a biological neural network (The information flow is from
left to right). The dendrites deliver the network input neti to their cell. This in
turn reaches a new state of activation Gi and generates some output Oi in its axon.
Via synapses of individual strength Wij. branches of this axon are connected with the
dendrites of neighboring cells.

The main biological knowledge was the following: The brain consists of individual,
albeit connected nerve cells. A cell receives its stimulus (input neti) from its dendrites.
Depending on the stimulation strength, the cell turns into a certain stage of activity (ai)
and changes the electrical potential of its axon (Oi) accordingly. This axon is branched
out and the various branches are connected via synapses to dendrites of neighboring cells.
The synapse determines the strength of the influence (Wij) an axon has on the attached
dendrite. A model of such a biological network is shown in figure 4.11.

Compared to computers, one of the most remarkable features of the human brain is the
ability to learn. More sophisticated software can provide improved results from the same
computers. But the hardware always stays the same - unlike the brain which can adapt
itself. As a rough approximation learning is performed by adapting the synapses. If they



disappear, are newly formed or change the strength of axon-dendrite couplings, then the
communication between the cells is altered, i.e. the brain's architecture is reconfigured.

Figure 4.12: Idealized model of a neural network as found in biology or in artificial replicants: den-
drites. synapses and axon branches are combined to weighted links. Apart from this the
main ingredients are the same as in the more realistic biological model from figure 4.11.

In an effort to translate the various biological elements and their interplay as directly
as possible, artificial neural networks were designed as simple copies of biological models
(see figure 4.12) and consist of the following:

1. The network architecture which specifies the topology of layers of neurons and links
between them. This is the equivalent to its biological counterpart.

• The threshold 8j applied to the input,

• The activation aj (= exciting voltage), which is calculated by an activation
function fact from the input netj (for its definition see below), the present
activation and the threshold 8j of this unit j:

where at is equivalent to one update iteration for the units. Often, the calcula-
tion of an activation is independent from the previous state of activation. Then
formula 4.10 reduces to

• The output OJ (= signal in axon), which is calculated by an output function
fO'Ut from the activation' aj of the unit j

The output and functions are normalized as to produce activations with values
between 0 and 1.

3. The weights of the links: A link connecting units i and j is equivalent to the axon
branches of a biological cell. The weight Wij of that link is equivalent to the synapses,
i.e. it determines the importance of a unit (ant i-)stimulus from one cell to a connected
cell.



4. The propagation function, which computes the input of one unit j from the outputs
Oi of its predecessor units and the weights Wij of the links between them:

5. The learning algoritbm, which defines the method of adjustment of thresholds and
weights during learning. This is equivalent to the adaption of synapses in the bio-
logical learning phase.

likelihood
per channel

z-component
center of gravity

Figure 4.13: Typical feedforward net used for this work, with six input units, one hidden layers of
six units and two output units. For a detailed description of the input parameters see
section 5.3.

In short, an artificial neural network works in the following way: First an architecture is
specified. During the learning period the neural network is given some data sets of known
"demand" output. It then adjusts its weights, thresholds and possibly links according to
its learning algorithm in order to reproduce the demand output as good as possible. Then,
after learning these weights, thresholds and links are fixed and new data sets can be fed
into the net. Each data set results in a certain pattern of activation and output of the
individual units. This output pattern is the result of the analysis.

Some of the units are input units. For a certain application each of these receives its
own specialized kind of information. For example, if one would use a neural network as
trigger in the data acquisition, the first unit might always get the ADC information of
the first channel, the second unit the ADC information of the second channel and so on.



Of similar importance are the output units5. After a set of information is processed by
the net, the output of these units is the "answer" of the net. As a standard example, one
might have trained a neural network to separate two classes of events. With one output
unit, an output close to 0 of this unit indicates a likely member of one class, while an
output close to 1 indicates a likely member of the other class. The units in between the
input and the output units are called hidden units.

Before learning starts, the starting values of the activations of the various units, their
thresholds and the weights of the links are set to initial values, most easily random. Then
a set of information is fed into the input units of the net. From this the new activations
of the input units (and in turn also their output) is determined. Their output, multiplied
by the weights, is the input of the next layer of units. Now their activation is recalculated
and so on. In case of back-coupling links6 the ordering of these updates is crucial and
several updates per unit per set of input information might be necessary. In the case of
feed-forward networks, where no back-coupling is possible, update ordering is performed
in layers and multiple updates per unit are not required. After every unit was finally
updated, the whole network has reached a new state and especially the output units have
new activations and outputs.

With a fully trained net, this output of the last layer is the result of the analysis. During
the learning period however, this output is compared to a desired or demand output. Such
learning, where the net is not only fed with input data, but also with the expected output is
referred to as supervised learning. The difference between demand output and calculated
output is considered as the error for this event (set of information). The error is an
indicator for the quality of the analysis and the basis of the learning: According to the
learning algorithm the weights of the links and the thresholds of the units are updated7.

Likewise a large sample of representative information sets passes the net one at a time.
Most learning algorithms are based on a descending gradient method. It is hoped that
the global error (in parameter space, i.e. on a large sample of data sets) can be minimized
by adjusting free parameters to get a smaller error on the individual (local) event. If the
network specifications as well as the choice of the used input parameters fit the problem,
the net adapts its free parameters automatically to this global error minimum. Once
the error cannot be reduced any further (or is small enough for the particular purpose)
learning is stopped. The adjusted parameters are now fixed to their current values. The
analysis of data with unknown demand output is then nothing else but the calculation of
a (more or less) complicated analytic function of the input parameters.

5There is a whole class of artificial neural networks called cohonen nets, without output units. But they
were not used during this work and their theory is very different from those networks with output units,
so they will not be treated here. An outline of their theory is given in most books on neural nets, like [75].

6Just like in networks of regular conductors, it is possible to construct neural networks (biological or
artificial) with or without back-coupling. If the information flow is restricted to one direction, an artificial
neural net is described as feed-forward. These are easier to implement, train and use. However networks
with back-coupling potentials are more general in there output. One might even consider feed-forward
nets as a subset of back-coupling nets with zero back-coupling, but this is normally not done. During this
work only feed-forward nets were used.

7In some cases even new links might be formed or others abolished, but such dynamic topologies were
not used during this work so again this is an effect which will be ignored from now on.



It is well known that the calculation of such a specific function can be done on a multi-
purpose computer with the appropriate software or with some hardware optimized on the
specific function. In general, hardware solutions result in single-purpose chips/cards which
are more expensive, but faster than software solutions. For neural networks, there exist all
kind of hard-, software or hybrid solutions. For example learning might be performed on
a simulation platform and once the neural network's properties are specified, a hardware
element is produced accordingly.

In general, the activation and/or output functions are restricted to yield values in the
range [0,1]. Thereby they also set a natural scale for the input data. Depending on the
specific net used, data sets that are not restricted to this range will prolong the learning
period, yield worse results or might even not be accepted as input data. Therefore all
input data should be (has to be) transformed to this range before it is fed into the network.
Depending on the original distributions, this transformation can be performed by simple
operations like a division by some maximum value or by more sophisticated processes.
The major concern is not to loose relevant information during this transformation. The
transformations used in this work are described at the beginning of chapters 6 and 7.

So far, the standard analysis of AMANDA data has been performed without the aid of
neural networks. However, preliminary studies on the potentialities of such networks at the
trigger level or as a pre-reconstruction filter have been performed [57]. It was found that
information on the OM-number and the leading edge of its signal were the most relevant
information. During this work a complementary application, as a post-reconstruction
filter, was investigated. The aim was to separate up-going, neutrino-induced muons from
down-going atmospheric neutrinos.

During this work only feed-forward networks with one hidden layer were used. All units
of one layer were connected with all units of adjacent layers, but no back-coupling links or
links connecting units from next-to-neighboring were allowed. Two anti-symmetric output
units "goodness" and "badness" were used: "goodness" should produce an output of 1 for
up-going muon events and 0 otherwise, while "badness" should be 1 for mis-reconstructed
atmospheric muons and 0 for signal events. There were several different networks tested,
so that the specific number of units in each layer will be described when the individual
analysis are presented in the chapters 6 and 7.

The activation function for a unit j used in this work is called logistic activation func-
tion8. It calculates the activation aj of a unit j from its input netj and its threshold 8r

with Vi being the outputs of the unit i from the previous layer, Wij being the weight
between this unit j and unit i. i is running over all units in the previous layer. As one
can see, it is normalized to values between 0 and 1.

8This "logistic activation function" is closely related to the "Fermi function", well known for example
from thermodynamics: fact(f.) == fFermi(-f.) == 1- fFermi(f.)



thus during this work the terms output and activation of a unit are identical.
Supervised learning is often based on the Hebbian rule, which states that the link

between two units is strengthened if both units are active at the same time. In order to
train the networks, the backpropagation weigbt update rule, a special form of the Hebbian
rule, was used. The alteration t:::..Wij of a weight between unit i and unit j can be calculated
by

t:::..Wij = rJ LOpiopj

p

where p runs over all patterns (input sets / events), rJ is a constant factor called learning
rate. If rJ is too big, the global error minimum might be missed during learning. If it is
too small, learning might stop in a local minimum. So a common solution is to use several
successive learning periods (each with up to a few hundred loops over the whole training
sample) with decreasing values for rJ. In this work five steps with values from 0.2 to 0.001
were used. In the case of backpropagation with the logistic activation function and the
identity as output function (as during this work), the error signal Opj is given by

Opj is the actual output of unit j for input pattern p and tpj is the theoretical (demand)
output value of unit j for input pattern p [75].

The simulation itself was performed on the free system SNNS 4.1 [74]. This package
implements a large variety of neural network techniques and provides a XII interface for
visualization and a batch mode interface. Further details on specific nets used can be
found in chapters 6 and 7, when results are presented.



5 Simulation and Reconstruction: Description of Methods
and Input Parameters for Neural Networks

Like in any kind of experiment, the quality of a search for neutrino point sources in
AMANDA is determined by two kind of errors: The statistical error is given by the num-
ber of events, i.e. basically by the geometry (size) and trigger efficiency of the detector
and by the neutrino flux from point sources. It can be minimized by building big and
efficient telescopes. The systematic error is governed by the quality of the reconstruction
algorithms and the filtering tools. In order to optimize these, Monte Carlo simulations are
needed: By simulating a muon with known direction traversing the detector and the detec-
tor response to this passage, one can simulate experimentally gathered data, which can be
reconstructed and analyzed. Via a comparison between the generated muon direction and
the reconstruction result, the quality of the reconstruction can be tested and in turn be
improved. This is just one among many reasons why Monte Carlo simulations are impor-
tant. Others include optimization of detector geometry, determination of ice-parameters,
optimization of trigger conditions or estimations of trigger rates (thus determining the
required data storage capacities), see for example [35].

Events in the detectors AMANDA-B4 and AMANDA-II studied in this work were simu-
lated by the AMASIM program developed by Stefan Hundertmark [38]. A full discussion
of the simulation tools including air shower generation and muon propagation can be found
in [37, 39].

The generation of background events starts from isotropic cosmic ray protons with
energies up to 1000 TeV. The atmospheric shower program basiev [18, 60] simulates the
interaction of these protons with the earth's atmosphere. The resulting air shower is
simulated to obtain the correct muon multiplicities and muon energy distributions. The
propagation of the produced muons is then simulated with an averaged energy loss until
they intercept the so-called generation plane. This is a large plane far outside the detector
(see figure 5.14). The generation plane is at a distance of'"'"' 800 m to the detector. Its
orientation is always perpendicular to the mean shower direction.

For the case of neutrino-induced muons, single muons can be simulated with arbitrary
angular and energy distributions. Tracks are generated on a generation plane or inside a
generation volume (for low energy muons). For the AMANDA-II simulation used in this
work, muons were generated isotropic ally on a generation surface at '"'"'800 m distance
from the detector. In the case of the AMANDA-B4 simulation, muons were generated
inside large volumes. The boundaries were so far away from the detector, that muons
generated at the boundaries in general stopped before reaching the detector.

Starting from the generation plane, it's the same procedure for both kind of muons1:

The muon propagation program MUDEDX simulates the energy losses due to continu-
ous (ionisation) and stochastic (a-electrons, bremsstrahlung, e+e-pair production, muon-
nucleus interactions and JL+JL-pair production) processes [41]. Since the continuous emis-
sion of Cerenkov radiation by the muon itself causes only a negligible fraction of the energy

lSingle muons generated inside a volume are treated as if they already had intercepted the generation
plane



Figure 5.14: Sketch of the geometries relevant for the muon simulation. Only muons intercepting the
generation plane (marked with an x) are passed on to the muon propagation program.
Photons from secondary processes (marked with a *) are only generated inside the active
volume around the detector.

loss, it is not simulated here. During this phase of the simulation the other mentioned
processes are simulated in detail. One therefore obtains a correct simulation of the energy
loss of the muon (rather than an averaged one). However, the propagation of photons only
becomes interesting close enough to the actual detector, since photons normally travel less
than 200 m in ice. Therefore an active volume is defined, consisting of the equipped
volume plus a thick "layer" of 200 m extension in every direction.

Inside the active volume the same processes (plus Cerenkov radiation) are simulated.
But this time the propagation of the photons, including time delays (due to scattering)
and attenuation (due to absorption), is relevant. This propagation is not simulated for
each individual photon, but performed with the aid of so called scatter tables. One of
these large multi dimensional tables contains information on the mean number of photons
as a function of the distance and relative orientation between a PMT and an energy
loss vertex or a muon track. The other scatter table gives the corresponding time delay
distribution relative to unscattered Cerenkov photons. There are tables for stopping muons



as well as for muon tracks of infinite length. These tables are taking advantage of the
homogeneous ice properties at the AMANDA-B site. They only have to be calculated once
with an appropriate light propagation program. When the muon propagation program
then simulates an energy loss vertex inside the active volume, the appropriate entries of
the tables can be read out (and interpolated) much faster than an individual simulation
of the light propagation would be.

Taking into account the efficiencies of the individual PMTs, the time delays within the
signal transmission and random noise of all PMTs (i.e. simulating the detector), a full
simulation of one event is achieved. It has to be noted that in the case of the atmospheric
shower program basiev, two or even more muons can arrive at the detector in coincidence,
so one event might contain data from more than one muon.

As AMANDA aims to find neutrino point sources, it is of vital importance to deduce the
original neutrino direction from data gathered on the muon. The neutrino and the muon
are almost collinear:

Thus, the neutrino direction can be approximated by the muon direction. Formula 5.18
then also sets the natural goal for detector resolution (with respect to muons). The pro-
cess of deducing the required muon direction from gathered data is called reconstruction.
Energy reconstruction is also possible, but not relevant for this work. From now on the
term reconstruction shall only refer to track reconstruction.

The reconstruction techniques used in AMANDA are outlined in [16]. It is a two-step
process, starting with a fast analytic "first-guess" of the muon track. Based on this, a
large fraction of background atmospheric muons can be rejected. Then, with the reduced
remaining events, a likelihood reconstruction is performed. It uses the first-guess fit as
starting value for its calculation.

Several algorithms can be used for the first-guess. At present a line-fit is preferred. It
is described in [62] and ignores scattering of the photons or amplitude information, but
produces a fit only on basis of the hit times. It assumes light traveling with a velocity
v (which is not necessarily the speed of light within the ice) through a I-dimensional
projection of the detector: The i-th PMT is located at fi and reached at ti, so it is
assumed that at t = 0 the light was at r:

The error is then minimized with respect to the components of rand v. The error X2 is
defined by:

Nch

2 ~(- - -t)2X = LJ ri - r - Vi,

i=l



and (inserting equation 5.21 into the corresponding equation for the velocity):

< riti > - < fi >< ti >V=----------< q > - < ti >2

.where < Xi > indicates the mean of parameter x with respect to all hits i. The velocity Ivl
of the line-fit turns out to be an important cut parameter, see section 5.3. With a cut on
the zenith angle after this first guess reconstruction, a high fraction of atmospheric muons
can be rejected without loosing much signal.

For the likelihood reconstruction, a more sophisticated approach is needed. As stated
in section 2.2.1, energetic particles with velocities v > c/n (n being the refractive index
of the medium) emit Cerenkov radiation under an angle (), where cos () = 1/ (j3n). For
energies of interest in AMANDA the Cerenkov angle is independent of energy. But the
photons can be scattered between emission from the muon and detection by a PMT. This
scattering enlarges the time of flight for the photon. The resulting delay, together with
the time jitter of the PMT, is described by a term called time-residual tres:

where thit is the measured time when the PMT was hit and texpected is the time at which
an unscattered photon would have hit a jitter-free PMT. So tres > 0 for scattered photons,
but tres ::::::0 for unscattered ones. Having reconstructed a track, the texpected are simply
calculated and compared to the measured thit. In this case negative values for tres do occur
- not indicating a violation of causality, but a noise hit, a hit due to a second muon, or
an error in the reconstruction. The primary challenge of the reconstruction is to develop
a probability function P (tres,i) describing the probability of certain time-residuals for a
given track and set of PMTs hit. For a monochromatic, point-like light source, an exact
analytic probability function can be found [51]. However this function cannot simply be
used for radiating muons: It is not even defined for negative time residuals. So, taking
into account the different source, the inevitable reconstruction error and the PMT jitter,
one has to adapt this analytic function non-analytically in the region tres ;S 20 ns. Using
an appropriately adapted function [16], the reconstruction tries to optimize the overall
likelibood of the measured time-residuals and amplitudes. The starting track for this
likelihood reconstruction is the result from the line-fit.

One challenge for the reconstruction is to identify and reject the noise hits within an
event. Therefore a process called hit-cleaning is used to reject noise hits during reconstruc-
tion. Contrary to a normal filter which rejects or passes a full event, hit-cleaning rejects
individual hits, but does not reject events. It is especially important for the analytic line-
fit, while the likelihood reconstruction is less sensitive to individual noise hits. For each
reconstruction step individual criteria determine which hits are ignored and which were
accepted. So only a summary of potential criteria is given here, the numbers given just
indicate approximate values. If not stated otherwise, the listed criteria only reject hits for
an individual reconstruction step. In general rejected hits from the line-fit do enter the
likelihood reconstruction. Details on this can be found in [16, 35].

1. Only hits within a given time-window ("" 5 J.Ls) are accepted. Hits outside this
window are rejected for all reconstruction steps.



Filtering during reconstruction is important to improve speed by rejecting down-going
muons or events which are unlikely to be reconstructed correctly. A cut on the recon-
structed zenith angle is performed after each step of the reconstruction. To reject "bad"
events, which probably were not reconstructed correctly, further filters (described in the
next two chapters) can be applied. Apart from events which do not leave enough informa-
tion inside the detector, "bad" events can for example come from muon bundles, stopping
muons, bremsstrahlung within the detector or muons traversing the ice below the detector.
E.g. if an individual incident cosmic ray causes the occurrence of several muons, two or
more muons can arrive simultaneously at the detector. In this case it is difficult to assign
the individual PMT hits to the various muons.

In this section the input parameters used during the neural network analysis are described.
For those parameters used in the AMANDA-B4 analysis, the distributions before filtering,
after filtering and after the transformation process (of the filtered data) is shown. Points
represent data taken on June the 23rd 1996, the solid line refers to simulated atmospheric
muons and the dotted line shows the distributions for simulated and good reconstructed
signal muons. In order to make them comparable, all distributions are normalized to
percentages rather than absolute numbers. The statistics entering these plots are the
following:

• Unfiltered (filtered) measured data events: 1.4· 106 (4523)

• Unfiltered (filtered) MC background events: 8.1 .105 (2872)

• Unfiltered (filtered) MC signal events: 3.6· 104 (3332)

Further details on the samples which enter these plots can be found at the beginning
of chapter 7. As is explained in that chapter, data (dominated by mis-reconstructed
atmospheric muons) and Monte Carlo background should be compared after filtering,
not before. The filters applied for this AMANDA-B4 analysis are explained in detail in
chapter 7. They were:



The mentioned transformations of the filtered events are necessary since the neural
network simulator requires input data from the range [0..1]. Those used for the AMANDA-
II analysis were slightly different from the transformations for the AMANDA-B4 analysis,
so they are explained when the individual analysis is presented.

As mentioned in section 5.2, time-residuals are zero for unscattered photons from the true
muon track hitting jitter-free PMTs. Assuming that the reconstruction result was close
to the true muon track, a calculated time-residual of approximately zero should indicate
hits from undelayed photons. Such hits are called direct bits [35]. A large number of
them indicates a good reconstruction. This is already known from conventional analysis
[16, 35]. Three different definitions of direct hits were used:

• Ndirect, 15-25: The number of direct hits with 15ns < tres ::; 25ns.

Ndirect, 15 and Ndirect, 15-25, which were used for the AMANDA-B4 analysis are shown in
figure 5.15. It can be seen that signal events are accumulated at large Ndirect values. It
can also be seen that Monte Carlo and data do agree pretty well.

During reconstruction, different tracks are tested until the one with the best likelihood for
this event is found. The absolute likelihood2 of this final track is a measure for the quality
of the reconstruction. Since there are events with very different numbers of channels, the
likelihood itself may not always be strictly comparable. Therefore not only the likelihood
L, but also the likelihood per channel L/ Nch was used. Nch is the number of PMTs hit in
an event. Since PMTs can resolve more than one hit per event, this is in general smaller
than the number of hits. These parameters are shown in figure 5.16. As expected signal
events are accumulated at low values (large probabilities). MC and data agree pretty well.
With a higher resolution, one actually sees that the data and MC background distributions
contain equivalent structures at the same values, however high likelihood values seem to
occur more frequent for data.

5.3.3 Velocity of Line-Fit

The line-fit is the first guess for the muon track. If the initial first guess is already good,
a good reconstruction is likely. As was described above, the velocity (and therefore its

2Strictly speaking the parameter called likelihood in this work is not the likelihood itself, but twice the
negative logarithm of it.
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Figure 5.15: Distribution of direct hits. Left column: hits with time residuals between -5 and +15 ns,
right column: hits with time residuals between +15 and +25 ns. First line: unfiltered;
second line: filtered; third line: transformed distribution.

absolute value IVI) of the line-fit is a free parameter, adjusted to minimize the error of the
line-fit. Since this is no physical velocity, it may become larger than 0.3 mlns, so a normal
transformation has to be applied to this variable. It is assumed that the first guess results
in a better track, when IVI is large. In an ideal case it is equal to the speed of light in ice.
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Figure 5.16: Distribution of likelihoods. Left column: likelihood itself; right column: likelihood per
channel. First line: unfiltered; second line: filtered; third line: transformed distribution.

This parameter is shown in figure 5.17. Signal (containing good reconstructed events only)
indeed has high values of liil. There is a slight shift to smaller values for Me compared to
data (middle row). By correcting for this shift within the transformation, the agreement
between the two distributions becomes good. Together with the transformation itself, this
correction is described in section 7.3.



eu
~
E
8 208.

~ 30
Eeu
~8. 20

Figure 5.17: Distribution of the velocity of the line-fit IV] [m/ns). Top left: unfiltered; top right:
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The center of the detector is at the 10th OM (from the top) on the central string. In
most cases, the closer the muon track approaches this point, the better positioned the
detector is for this muon. Since the slim AMANDA detector has a distinguished z-axis, the
relative orientation between detector and track should also be relevant. A track close to the
detector with a direction parallel to the z-axis is expected to lead to a good reconstruction.
Several different parameters describing track data have been used:

• Orec is the reconstructed zenith angle. It is presented in figure 5.18. As mentioned
in section 2.3, a cut on this parameter is required during reconstruction.
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As can be seen in figure 5.18, Rrec does accumulate signal at low values. Data and
MC both peak at Rrec '" 30m, but MC has too many events in the tail. This difference
is not understood so far. The parameter Rrec is a nice example, where the application of



the filters is necessary to obtain reasonable results: In the unfiltered case, signal events
in average have slightly higher values than background, whereas this difference is strongly
reversed for the filtered samples.

Signal muons were generated isotropically over the full hemisphere, i.e. the distribution
of the cosine of the generated zenith angles is flat. As shown in figure 5.18 top right,
reconstructed zenith angles with values'" ±1 are overrepresented. This has two reasons.
First of all, the trigger efficiency of the slim AMANDA-B4 detector is very angle dependent
and most sensitive for vertical up-going tracks. (Since the PMTs are facing down, they
are more efficient to detect up-going light than down-going light.) But it also highlights a
reconstruction feature. The reconstructions preferably produces vertical rather than hori-
zontal tracks. However this misbehavior of the reconstruction does not hinder this analysis
as it appears likewise for data, MC signal and MC background. Being distinguished by
their true zenith angle, it is not surprising that signal and background also have different
distributions with respect to the reconstructed zenith angle. MC and data agree very well.

5.3.5 Center of Gravity

The center of gravity (COG) is defined as the average x, y and z coordinates of the
PMTs hit. The z-component of this is COGz, while the the horizontal component is

COGx,Y = V(COG3c + COGir) (the origin is in the center of the detector). Events
which only trigger PMTs in a very localized outer part of the detector have extreme COG
coordinates, while those with hits distributed over the full detector have small COG values.
The latter ones are expected to be reconstructed better than the first ones. Since direct
hits contain very accurate information, the same parameters can be defined just for the
direct hits.

COG z and COG Z,dir are displayed in figure 5.19. As expected, the signal distri-
bution is dominated by small values. But one notices a remarkable effect of the fil-
ters: Mis-reconstructed down-going events at COG z '" 0 are suppressed relative to mis-
reconstructed events at ICOGzl '" 100. For data this effect is even stronger. This effect
cannot fully be explained yet. The difference between data and MC might originate from
slightly wrong assumptions on the optical properties in the simulation. It could be, e.g. due
to inhomogeneous ice vs. depth. Furthermore by now it is known, that the absorption
length used in the Monte Carlo samples was by a factor three too large. This could smear
out the observed strong peaks in the data sample.

COG X,Y is presented in figure 5.20. There is a slight accumulation of signal at large
values. It is not very significant though. There is a good agreement between data and
Monte Carlo.

Apart from COG z(direct), several further combinations of reconstruction and hit data
were used. One of them is the "length of the hits" , Zleng' If one projects the locations of the
PMTs hit onto the reconstructed track, one obtains an estimate for the length over which
the muon's radiation entered the reconstruction. The reconstruction quality is expected to
benefit from a long "lever arm". Again this can also be defined for the subsample of direct
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direct hits (time residual smaller 25 ns). First line: unfiltered; second line: filtered;
third line: transformed distribution.

hits only. This is then the length of direct hits Zleng, dir. It is displayed in figure 5.20.
As expected, background events predominantly occur at small values, while signal events
have a much broader distribution. One notices that there is a nice agreement between
data and Me.
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Figure 5.20: Distribution of COGx,Y and Zleng, dir. Left column: Horizontal component of center
of gravity (COGx,Y); right column: Length of direct hits (time residual smaller 25 ns).
First line: unfiltered; second line: filtered; third line: transformed distribution.

The likelihood of the hit topology .chit is the probability that the reconstructed track
illuminates the hit PMTs and just those. This probability ignores timing or amplitude
information, but nevertheless should be a parameter indicating the quality of the recon-
struction. It is presented in figure 5.21. As hoped, good reconstructed signal events
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Figure 5.21: Average distance of direct hits (left column) and hit probability (right column). First
line: unfiltered; second line: filtered; third line: transformed distribution.

are more likely (have smaller likelihood values) than background. Since MC is shifted
to slightly smaller values than data, the transformation corrects for this difference. For
details see section 7.3. After this correction, MC and data agree very well.

The average distance of direct hits, ddir is the last of these parameters used. It is the
average distance of PMTs to the reconstructed track, but just for those PMTs hit with



a time-residual of less than 25 ns. It is assumed that it is more likely for nearby PMTs
to be hit by unscattered photons (i.e. get direct hits) than for distant PMTs. For a good
reconstruction this parameter should have small values. It is shown in figure 5.21. The
artifact of frequent very small values in the unfiltered samples is caused by zero direct hits,
so it is always filtered out (Similar peaks in the distributions for COG Z, dir and Zleng also
vanished after filtering) . Signal and background show only slight differences, with direct
hits being slightly closer to the good reconstructed signal events. Again Me is shifted
slightly compared to data, which is corrected for by the transformation. Afterwards the
agreement is good.

An important definition is that of the effective area and volume: One of the main char-
acteristics of neutrino detectors are the effective area Aeff and the effective volume Vef f

introduced in section 2.2.2. If an incident flux cPinc of 'particles enters the detectors en-
vironment, events are detected at a rate of cPinc . Aeff. This single parameter therefore
characterizes the capability to detect a certain flux. The effective area is calculated via:

is the total detector efficiency, defined by the trigger, the reconstruction and the quality
filtering efficiency.

For simulated signal data, the integration is replaced by simple counting:

Nacc
Aeff = Agen . -N '

gen

where Agen is the area of the generation plane, Ngen is the number of generated muons
and Nacc is the number of muons remaining after triggering, reconstruction and quality
cuts3. If the definition of Nacc is slightly altered, as to be the number of accepted muons
after triggering (and reconstruction) only, then Aeff is the effective trigger (reconstruction)
area.

For simulated atmospheric muons the counting is slightly more complicated: Since the
simulation uses the known flux of cosmic ray protons, it can simulate the flux of muons
through the detector cP J.& and the resulting trigger rate of the detector Rtrig. The product
of both values is the effective trigger area. Now, a similar calculation as above yields:

Nacc Nacc
Aeff = Aeff,trig . -N = cP J.& • Rtrig . -N .

trig trig

3This definition of Aeff is independent of the area of the generation plane or other features of the
generation process: The effect of an increased area is canceled by an increased Ngen, so that only a
generation density enters the formula. This density is proportional to the acceptance density, which in
turn is proportional to the number of accepted muons. So all generation specific numbers cancel out and
the remaining constants of proportionality give the effectivearea.



Nacc
VeIl = Vgen . -N '

gen

The relevance of Aell was explained above; that of Vel I is to offer a different description
of the detectors performance in cases where Aell is not well defined, namely if the muon
track is of finite length. Then an effective area can be calculated via



AMANDA-II is the extended version of the present AMANDA-B detector, planned to be
completed in the austral summer 1999/2000. In [16], it was shown that the simulated
background of this detector can be rejected to a high degree by applying successive cuts
on reconstruction parameters. In this chapter, a neural network analysis is compared
to that "conventional" analysis. Furthermore an extension of the neural net analysis is
performed by using additional input parameters.

For this work, a pair of one signal and one background Monte Carlo sample were used. For
the signal sample, a large number of 1 TeV muons were generated isotropically over the full
hemisphere. The generation planes were so large, that most generated muons missed the
detector and therefore could not be triggered by the detector simulation. Due to energy
losses, the 10 . 103 muons that did trigger had an average energy of about 600 GeV in
the center of the detector. Out of these, 5291 were true "up-going" muons. A subsample
of 5149 of these muons were also reconstructed as "up-going" and subsequently used as
"up-going" or "signal" sample. The effective trigger area (integrated over all angles) for
these muons was determined to be '" 1.0 . 105 m2. For this analysis, the term "up-going"
describes muons with zenith angles bigger than 80°, i.e. muons which come from within
10 degrees above the horizon ((J = 90°) are still referred to as up-going.

For the background sample, the atmospheric shower program simulated 1.1.106 trigger-
ing events from atmospheric muons. In this case the effective trigger area was calculated
to be '" 5.0.104 m2• Out of the triggered events 19556 were mis-reconstructed as up-going
(reconstructed zenith angle (Jrec > 80°) and henceforth used as background sample.

During or after the reconstruction, cuts were also performed on the number of direct
hits (Ndirect,25 2: 3), on the zenith angle of the line-fit reconstruction ((Jline-fit > 80°)
and on the reconstructed zenith angle ((Jrec > 80°). Via equation 5.26 the effective area
for background after filtering was calculated to be 0.89 . 103 m2. For the signal sample,
one is interested in effective areas from potential point sources, so equation 5.26 had to
be adapted to compensate the effects of a reduced solid angle:

Nfil Ogen
Aeff, fil = Aeff, trig' -N .n '

trig fil

where Ogen is the generated solid angle, Ofil is the solid angle accepted by the filter, Ntrig
and Nfil are the numbers of triggered events and of those left after filtering and Aeff, trig

is the effective trigger area. This calculation yielded an effective area of 90 . 103 m2 after
filtering.

In order to compare the neural net analysis to that from the AMANDA-II proposal, the
parameters used in this analysis were the same as in the proposal. The extended analysis
additionally used parameters describing the reconstructed track. All these are summarized
in table 6.2.



Cut value description Cut in [16J
(1) Ndirect, 15 Number of direct hits with -5ns < tres < 15ns >4
(2) Ndirect, 25 Number of direct hits with -5ns < tres < 25ns >6
(3) L Likelihood of the reconstruction < 15
(4) LINch Likelihood per hit channel < 0.5
(5) Ivl velocity of line-fit (first guess) > 0.1 mlns
(6) COGz Center of gravity of hits (z-component) > -250 m
(7) ()rec Reconstructed zenith angle -

(8) Rrec reconstructed distance (to the detector center) -
(9) Prec reconstructed horizontal distance -
(10) Zrec reconstructed vertical distance -

Table 6.2: Observables used as input to the neural networks investigated in this chapter. A more
detailed description is given in section 5.3. The cuts used in the AMANDA-II proposal are
stated in the fourth column.

The transformations used in this analysis to limit input parameters to the range [O..IJ
were the following:

I 2 ( x )x = - .arctan --= ,
1r 2· x

where x is the mean of the distribution of x .

• For parameters x, which coould have positive and negative values (like coordinates),
the means x+ and x_ were calculated separately for each of the two parts of the
distribution. Then:

I 1 ( x )x = - .arctan (- 1_ I) + 0.5 .1r 2· x+ + x_

The means were calculated from the Monte Carlo background distributions. As an ex-
ample of the effect of such a transformation, the likelihood distributions for the untrans-
formed and transformed simulated AMANDA-II background events are shown in figure
6.22.

In general, the transformations are a compromise between contradicting aims. First
of all, all possible values had to be transformed to the range [O..IJ. The arctan function
is limited to the range [-~ ..+~J. Together with a simple linear transformation it can be
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Figure 6.22: Distribution of likelihood values for the AMANDA-II simulation. (A) before and (8)
after transformation to the input values of the network.

used to transform any distribution to [0..1]. Then the aim was to have a transformation
"as linear as possible". Since arctan(x) = x - x3/3 + ...for small x, it is rougWy linear for
Ixl < 0.7. So the distribution was prescaled as to make sure that the main contributions
got values smaller than 0.7. This was performed by a division by twice the mean. A
division by bigger values was not desired, as then the main part of the distributions would
be squeezed to a small range of values.

The analysis from this work cannot be compared directly to the analysis presented in the
AMANDA-II proposal. Both were performed with the same data samples, but with slightly
different definitions of the signal sample: In the AMANDA-II proposal, simulated up-going
(neutrino-induced) muons which where mis-reconstructed as down-going were included in
the signal sample. In this work all signal muons which were reconstructed as down-going
were rejected. Only muons which were generated as up-going and reconstructed as up-
going entered the signal sample. As a second difference to the proposal, for this neural
network analysis, the Me samples had to be divided into one sample used for learning
and one to analyze the resulting network. Therefore the analysis from the proposal was
performed again, this time using only the control sample from the neural network analysis.

The rejection achieved with this reproduced analysis is shown in figure 6.23. In the
left column, the reconstructed cos ()distribution of the remaining mis-reconstructed atmo-
spheric muons is shown. The right column presents the same distributions for the signal
sample. In the first row, the full distributions without cuts are shown. Here the decrease
in signal event numbers at large cos () values is due to edge effects during reconstruction:
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Figure 6.23: Stepwise rejection of mis-reconstructed atmospheric muons. The figure shows the re-
constructed cos B distribution during various stages of the conventional quality analysis
presented in [16]. Left column: fakes (mis-reconstructed muons); right column: up-
going events.
First line: all events. second line: remaining events after cuts Ndirect, 15 > 4 and
Ndirect, 25 > 6. third line: remaining events after additional cuts: .c < 15 and
.cjNch < 0.5. fourth line: remaining events after additional cuts:IVI > 0.1 mjns and
COGz > -250 m.

Compared to events with large cos ()rec values, events with cos ()rec ,....,80° are more likely to
come from mis-reconstructed true down-going muons, which are not included in this sam-
ple. It is interesting to notice that the effect of very low trigger efficiencies for horizontal



muons (cosO'" 0), which was seen for the slimmer AMANDA-B4 detector in figure 5.18
has vanished. I.e. the trigger of the thicker AMANDA-II detector is horizontally sensitive.

In the next row, cuts on the number of direct hits were applied: Ndirect, 15 > 4 and
Ndirect, 25 > 6. These themselves are shown to be very powerful cuts, signal to noise
improves by a factor 201. In the third row additional requirements were made on the
reconstruction likelihood (.c < 15 and .cINch < 0.5). This improves signal to noise by
another factor of five. In the last row, further cuts were performed on the z-component of
the center of gravity (COGz > -250 m) and the velocity of the line-fit (Ivl > 0.1 m/ns).
With these six cuts, signal to noise improves by a factor of 350 (after the zenith angle
cut). Inserting the effective area after filtering from the previous section into equation
5.26, one calculates that the remaining 828 up-going events are equivalent to an effective
detector area of 29 . 103 m2 for such signal muons. From equation 5.27 it follows that
the 9 remaining fake events (mis-reconstructed atmospheric muons) on the other hand are
equivalent to an effective area for down-going muons of 0.82 m2.

The theory of neural networks emphasizes the importance of representative training (learn-
ing) samples. Neural networks should be fed with events from all of parameter space. Fur-
thermore the events should be distributed approximately homogeneously. In AMANDA,
mis-reconstructed atmospheric muons are by several order of magnitude more common
than up-going signal events. Therefore it was tested, whether the training sample should
consist of exact equal numbers of up- and down-going muons, or whether the latter ones
should occur more frequent. In order to do so, two equivalent nets were trained with dif-
ferent training samples: The first training sample consisted of half the number of available
up-going events (2574) and half the number of available "fake" events (9783). This sam-
ple shall be called "asymmetric" (as it does not have equal numbers of true up-going and
true down-going events). The second training sample consisted of the same 2574 up-going
events, but this time only 2574 of the fake events were used. It shall be referred to as
the "symmetrically" trained sample. Both nets were trained with their respective samples
and both were tested with the remaining sample of 2575 up-going and 9783 down-going
events.

The networks used were identical to the one displayed in figure 4.13: six input units,
one layer of six hidden units and two output units. The input parameters were all six
parameters known from the AMANDA-II proposal, summarized in the top of table 6.2. The
result of the networks was given by the difference between the output units "goodness"
and "badness". I.e. an output 0 close to +1 indicated a likely up-going event, while one
close to -1 indicated a likely down-going event. The performances of the networks are
displayed in figures 6.24 and 6.25. The first row of the plots displays the general shape
of the output distributions. It looks reasonable in that sense, that the distri.butions are
falling from the demand output to the other extreme. However the very tail of the up-going

1The term signal to noise in this circumstance is slightly misleading. This is obviously no real signal to
noise ratio, as the signal sample chosen is unrealistic (only 1 TeV neutrinos interact exactly 800 m before
the detector) and atmospheric neutrinos are not accounted for. In this work, the expression signal to noise
is thus only used to describe the relative efficiencies for the Me samples under consideration.



103~

102 .

-1 -0.5 0 0.5 1
output = (goodness-badness)

150

100

50

o
-1

~ [ : : :~~~n~:=:9:: : : : :dl
-1 -0.75 -0.5 -0.25 0

cos(zenith) for 9 fake events

1
0.75

0.5
0.25

o
-1

cos(zenith) for 828 signal events

down-going muons

:::bd
-1 -0.5 0 0.5 1

output = (goodness-badness)

1~L3
-1 -0.75 -0.5 -0.25 0

~~
-1 -0.75 -0.5 -0.25 0

cos(zenith) for 9 fake events

~~
-1 -0.75 -0.5 -0.25 0

cos(zenith) for 828 signal events

up-going muons

Figure 6.24: "Symmetrically" trained net: It was trained with 2574 fake and signal events and tested
with 9783 fake and 2575 signal events. Left column: fakes. right column: up-going
events.
First line: output (0) distribution (notice the peak at 0 ,...,-1 for up-going muons).
second line: cos(}rec distribution for the "default cut" 0 > O. third line: cos(}rec

distribution for 0 > 0.961 (leaves 9 fakes). last line: cos(}rec distribution for stringent
cut 0 > 0.98029 (leaves 828 up-going events)

spectrum slightly rises again as () approaches -1. The reason for this is not understood.
The events within this unexpected peak are not distinguished with respect to any of the
six parameters used or with respect to their reconstructed or true zenith angle. There
is no corresponding peak at () '" +1 for down-going muons. This peak effect is slightly
stronger for the asymmetrically trained net.



-0.5 0 0.5
output = (goodness-badness)

60

40
20

o
-1

1
0.5

o
-0.5

-1
-1 -0.75 -0.5 -0.25 0

cos(zenith) for 828 signal events
down-going muons

-0.5 0 0.5
output = (goodness-badness)

100

50

0
-1 -0.75 -0.5 -0.25 0

cos(zenith) for default cut

80
60
40
20
0

-1 -0.75 -0.5 -0.25 0
cos(zenith) for 9 fake events

80
60
40
20
o

-1
cos(zenith) for 828 signal events

up-going muons

Figure 6.25: "Asymmetrically" trained net: It was trained with 9783 fake and 2574 signal events
and tested with 9783 fake and 2575 signal events. Left column: fakes. right column:
up-going events.
First line: output (0) distribution (notice the peak at 0 ,....,-1 for up-going muons).
second line: cosBrec distribution for the "default cut" 0 > O. third line: cosBrec
distribution for 0 > 0.87 (leaves 9 fakes). last line: cosBrec distribution for 0 > 0.93965
(leaves 828 up-going events)

A comparison between neural networks is not trivial: Such networks are non-linear and
therefore no natural cuts on their output exists. E.g. in the second row of the figures 6.24
and 6.25, a "default cut" at CJ = 0 was performed. Here the comparison between the
results is ambiguous: The asymmetrically trained net has a signal passing rate of 74 %



and a background rejection of 97.1 %. The numbers for the other net are 86 % and 90.0 %
respectively. So this "default cut" turned out to be more stringent for the asymmetrically
trained network. In order to compare the two learning methods, two other cuts were used:
In the third row of the figures, a cut on the output was performed in such a way, that 9
fake events (like in the AMANDA-II proposal) remained. In this case 54 additional signal
events ('" 1.5 a) passed the asymmetrically trained net. In the last row a similar cut is
set, as to leave 828 (again number taken from the proposal) signal events. Here three
fake events passed the symmetrically trained net, while the asymmetrically trained net
rejected 100 %. Comparing how many signal (fake) events remain in the third (fourth) row,
one sees that the asymmetrically trained net is performing better than the symmetrically
trained one. Therefore learning continued from now on with a sample containing almost
four times more fake events than signal events. The results of this test are summarized
in table 6.3. It also states the cuts required on the neural network output to achieve the
demanded passing/rejection rates.

proposal symmetric asymmetric
remaining up-going for 9 fakes left 828 1013 (0.961) 1061 (0.87)
remaining fakes for 828 up-going passing 9 3 (0.98029) o (0.93965)

Table 6.3: Results of the two different learning routines.
First row: resulting number of up-going events for a fixed number of 9 fake events. Second
row: resulting number of fake events for a fixed number of 828 up-going events. Also
given: the required cut on the neural net output to leave the desired number of events
(in brackets) .

In order to test the influence of the number of units in the hidden layer a "6-6-2net" was
compared to a "6-3-2net". I.e. in both cases six input units and two output units were
used, but once there was a layer of six hidden units and once a layer of three hidden units.
The input parameters were the same six as in the previous section. The results are shown
in figure 6.26.

In the left column, the results from the bigger net are plotted, in the right column
those of the smaller net. In the first line the output distributions for all fakes are shown,
in the next line the corresponding distributions for all signal events. No obvious differences
appear. But using a cut criterion as to leave only 828 up-going events (third line) one
sees that the 6-3-2net does not perform as good as the bigger net: It leaves two fakes
rather than none. In the last line a cut criterion is set so that 9 fakes remain. Now the
reconstructed cos ()distribution is plotted for the remaining signal events. Again the larger
net seems to have a better performance. It keeps 1061 signal events, while the other net
only leaves 987. The improvement is a 2 a effect.

This indicates, that using more hidden units gives a better network performance. A
further increase in the number of hidden units did not improve the nets any more, while a
decrease worsened the result. For the investigation of different numbers of input parame-
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Figure 6.26: Test of number of units in the hidden layer: Left column: six hidden units; right column:
three hidden units.
First (Second) line: fakes (signal) events versus output. Third line: fakes for 828
remaining signal events (Cuts: 0 > 0.93965 and 0 > 0.939). Bottom line: up-going
events for 9 remaining down-going events (Cuts: 0 > 0.87 and 0 > 0.908).

ters it was decided to generally use networks with the same number of units in the hidden
layer as are in the input layer. Once the set of input parameters of such a neural network
analysis has converged to a fixed number, this test of the optimal number of hidden units
should be re-performed. The rule of thumb obtained here might otherwise lead to nets
with not enough hidden units (worse performance) or it could lead to too many hidden



units, which would yield slow networks: The speed of such a network is proportional to
its number of links. With networks of the topologies used here, the speed is then simply
proportional to the number of hidden units.

So far it was shown what kind of networks were chosen, how many hidden units were used
and how the nets were trained. In the following, a comparison between the "conventional"
cuts from the proposal and neural network results is presented.
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Figure 6.27: Comparison between a neural network analysis and conventional cuts; rejection adjusted
to proposal. Left column: fakes; right column: up-going events;
First line: input Ndireet, 15 and Ndireet, 25. output 0 > 0.045; second line: additional
input: .c and .c/ Neh. output 0 > 0.665. third line: additional input:IVI and COG z.
output 0 > 0.87.

In order to do this comparison, analogous results to those given in the proposal were
produced. There the rejection was improved by successively applying cuts on the quality



parameters, see figure 6.23. For this analysis, the neural network was fed with the same
parameters. One single cut on its final result (output 0) is then needed. In order to
compare the result with that of the conventional cuts the cut was adjusted as to reproduce
the proposal's rejection rate (see figure 6.27) or the proposal's passing rate (see figure 6.28).
This comparison was not only performed for the final result with all six parameters, but
for the two intermediate steps from the proposal as well.

First of all it was tried to produce analogous results using information on direct hits
only. Thus a 2-2-2net (2 input units, 2 hidden units, 2 output units) was fed with Ndirect, 15

and Ndirect, 25' The results are shown in the first lines in figures 6.27 and 6.28. Already
on this level a significant improvement is achieved: Depending on the cut, the network
passes 164 ("" 4 (T effect) additional signal events or rejects 112 (> 7 (T effect) more fake
events.
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Figure 6.28: Comparison between a neural network analysis and conventional cuts; passing rate
adjusted to proposal. Left column: fakes; right column: up-going events;
First line: input Ndirect, 15 and Ndirect, 25, output > 0.3; second line: additional input:
I:- and 1:-/Nch, output > 0.773. third line: additional input: IVI and COG z. output
0> 0.93965



Then additional information on the likelihood was included: A 4-4-2net was fed with
Ndirect, 15, Ndirect, 25, L and LINch information. The results are shown in the second line
of figures 6.27 and 6.28. This time the improvement is not as large as before, but still
significant: With the two slightly different cuts presented, one can choose between 134
more signal events ("'"4 (7 effect) or 12 less fake events.

Finally information on [VI and on COGz was included. This time a 6-6-2net was fed
with information on all six parameters. Again the results were made comparable by fixing
the passing rate and the rejection respectively (see last row of figures 6.27 and 6.28). This
time the number of signal events can be increased by 233 ("'" 7 (7 effect), or one might
reject all 9 remaining fake events.

I Cut on output ~ Nfakes Aeff,dQWn I Nacc,up

0> 0.93965 0 < 0.045 m2 828 29.103 m2 > 0.64.106

0> 0.87 9 0.82 m2 1061 37.103 m2 0.045.106

Proposal ~__ 9 0_.8_2_m_2_ 29 . 103 m2 I 0.035· 106 I
Table 6.4: Proposal results compared to results with the 6-6-2net (Oree > 80°). N/akes is the number

of fakes accepted. Ae//,down and Ae//,up are the effective areas for down-going and up-
going muons according to equation 6.35 and S/ N = Ae//,up/ Aef/,down is signal to noise
(for the two samples investigated)

The final result is summarized in table 6.4. The effective areas are calculated according
to equations 5.26 and 5.27:

Nacc
Aeff = -N . Aeff, fil ,

fil

where Nacc is the number of accepted events, Aeff, fil is the effective area for the filtered
sample (given in section 6.1) and Nfil is the number of events that passed the filter in the
considered test sample only.

As can be seen from the plots 6.23, 6.27 and 6.28 as well as from the table 6.4, the
"conventional" result could be improved on every level of input information. Using all six
parameters, the passing rate could be increased by more than 25 % on the same rejection.
Instead, with the same passing rate as in the proposal, one could reject all fakes (even
those from the horizon). Relaxing the last cut slightly one could have passed between 835
and 861 events, if one last fake event is accepted. However, if trying to perform such a
fine tuning to very high rejection rates, one reaches the statistical limits of the samples
used.

In order to investigate the influence of cos Orec (the reconstructed zenith angle) as input
unit, a 6-6-2net was tested versus a 7-7-2net. cos Orec was the additional input parameter
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output> O. third line: fakes left after cut leaving only 828 up-going (0) 0.93965 and
o > 0.98557). fourth line: signal left after cut leaving only 9 fake events (0 > 0.87
and 0> 0.8)

in the second case. According to the results from section 6.5 this required a seventh hidden
unit. The results are shown in figure 6.29.

The distribution of the smaller net is plotted against cos ()rec in the left column of
figure 6.29, while the corresponding distribution for the bigger net is plotted in the right
column. The cut criterion for the plots in the first two rows was output> O. From the
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plots one can see, that with the 7-7-2net there are 26 %(= 38) less fake events than with
the 6-6-2net. This difference is a 3 (j effect, so the result is significant. Furthermore one
gets a higher passing rate (+108 up-going events), which is still a 2.5 (j effect. Signal to
noise for the two samples is improved by a factor of 1.3. So here the "default cut" does
give an unambiguous answer as to which net is performing better (contrary to the case in
section 6.5).

The cos ()rec distribution of the fakes in the 7-7-2net have an interesting shape: It does
not show the same peak near the horizon as the proposal analysis or the smaller net does,
but rather has a flat shape. Actually the rejection of fakes is even worsened for events
with cos()rec ,....,-1 values (see figure 6.29 top right); but it considerably improved for
events with cos ()rec ,....,-0. This phenomenon is not completely understood. One possible,
yet heuristic explanation is based on the way the error of the network analysis is defined:
Without cos ()rec information, the net can identify clear up-going events rather easy. Up-
going events near the horizon however are topologically little different from fake events. As
seen with the 6-6-2net one therefore expects a good fake rejection on cos ()rec ,....,-1 values,
but a worse fake rejection at cos ()rec ,....,O. Including the cos ()rec information through the
additional input unit, the net optimizes its output angle-dependent. That fraction of the
error due to events in the cos() ,....,-1 region is smaller if it accepts some few fake events
for the benefit of a large passing rate. At cos() ,....,0 on the other hand, the error is smallest
when a large fraction of mis-reconstructed fake events is rejected.

In the next two rows of the figures, more stringent cuts are shown: In the third row
the cut accepts 828 signal events and the remaining fake(s) are shown. One sees, that this
cut is already too strong to give statistically significant results. So in the fourth row a
different cut is set, which leaves 9 fake events - and the events which pass this cut are
shown. This cut gives a very nice result indeed: 369 further signal events passed, a,....,10 (j

improvement. So information on cos ()rec is still very important for the analysis - although
a "conventional" cut on it had already been performed (cos ()rec > 80°) during filtering.

The AMANDA detector is close to being cylindrically symmetric. Inspired by this, possible
dependences on the actual location of a muon track inside the detector are tested with
the following "cylindrical" parameters: distance between track and detector center, z-
component of this distance and horizontal component of it.

The effect of these new parameters is shown in figure 6.30. In the left column the results
from the already introduced 7-7-2net are shown, in the right column, those obtained with
the new 1Q-1Q-2net. Again requiring the output to be bigger than zero (first two rows), the
rejection factor was virtually indifferent against the additional parameters and remained
at 98 per cent. The passing rate improved slightly: from 76 to 80 per cent (2.5 (j). The
overall shape of the distributions are similar for both nets. In the third line, the passing
rate is adjusted to 828 events and both nets reject all but one fake event. In the last line,
demanding a less stringent cut, which leaves 9 fake events (0 > 0.98557 for the smaller net;
o > 0.99053 for the bigger net), no benefit is achieved by the new parameters any more.
Actually the performance of the larger net is marginally worse (less than 1 (j difference).
This indicates, that the additional information on track distance is almost obsolete for
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Figure 6.30: Results obtained by adding information on the reconstructed track distance: Rrec, Prec
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First line: remaining fakes versus cos()rec after an autput > 0 cut, second line: remain-
ing up-going events versus cos()rec after an autput > 0.9 cut, third line: remaining
fakes after a cut to leave 12 fakes, fourth line: remaining up-going events after a cut
to leave 12 fakes.

this analysis. However, if the rejection is fixed as to leave less than 5 fakes, the bigger net
performs slightly better than the smaller net again. So a decision which is the better net,
cannot be finally drawn with the limited statistics available. The additional CPU time
required for the bigger network might be an argument for the smaller network.



I Cut on output ij N/akes Ae//,dvwn I Nacc,up

0> 0.9613 1 0.091 m2 1202 42.103 m2 0.47.106

0> 0.9222 9 0.82 m2 1398 49.103 m2 0.060.106

0> 0.9 13 1.2 m2 1470 52.103 m2 0.043.106

0> 0.5 64 5.8 m2 1880 66.103 m2 0.011 . 106

0>0 235 21 m2 1979 70.103 m2 0.0033.106

Proposal ~ 0.82 m2 I 828 29 . 103 m2 I 0.035· 106 I

Table 6.5: Proposal results compared to results with the lO-lO-2net (Oree > 80°). Njo.kes is the
number of fakes accepted. Aef/,down is the effective area for down-going muons according
to equation 5.27. Aef/,up is the effective area for up-going events according to equation
5.26 and S / N = Aeff,up/ Aef/,down is signal to noise for the two samples.

Table 6.5 summarizes the effects of the final 1D-1D-2net in comparison to the results
obtained in the proposal. The strong correlation between performance of the neural net
(measured via the effective areas) and the cut on the output is obvious. Compared to the
analysis presented in the Zeuthen AMANDA-II proposal, an almost 50 % increase of signal
passing rate could be achieved while background rejection was still improved considerably.
Alternatively, with a less stringent cut, a 70 % increase in the effective area for signal
muons can be achieved for the same background rejection.



The Monte Carlo background sample used for the AMANDA-B4 analysis was generated
similar to the one used in the previous chapter. This time 8.1.105 of the generated atmo-
spheric muons triggered the detector simulation. The effective area for this background
sample was determined to be 6.6 . 103 m2. This sample was reconstructed and subse-
quently divided into two equally sized subsamples - one for training the networks and one
for testing.

The signal sample however was produced slightly different from the previous signal
sample: This time 100 GeV, 1 TeV and 10 TeV muons (rather than just 1 TeV muons)
were generated inside a volume (rather than on a generation plane). The dimensions of the
generation volumes were larger than the maximal distance muons of the generated energy
can travel. So, due to energy losses, muons reaching the detector had energies distributed
between 0 and the generation energy. However no simulation of the atmospheric neutrino
spectrum was performed. The effective trigger areas were determined to be 3.1 . 103 m2,

7.2.103 m2 and 1.6.104 m2 respectively. Again the simulated samples were divided into
a teaching and a testing sample.

The measured data used in this chapter consists of 1.1.106 triggered events, which were
gathered with the AMANDA-B4 detector on June 23rd 1996. The day was chosen since a
Swedish analysis had already found a neutrino candidate among the data measured on that
day [17]. Apart from the standard AMANDA-B4 trigger (at least eight hits within 2p.s),
additional external triggers can initiate an event readout. The reconstruction performed
prior to this analysis used all events regardless of their trigger. Since external triggers are
responsible for ;S 10 % of all triggers, this introduced a small bias only. As no teaching is
possible with measured data, the full sample was analyzed with the trained networks.

Some initial filtering had to be performed in order to reject down-going muons. The filters
used for the AMANDA-B4 analysis were the following:

1. At least eight hits were required. This mimicked the AMANDA-B4 trigger. It is not
equivalent since this filter was set after the reconstruction had rejected likely noise
hits. Therefore it is slightly stronger than the AMANDA-B4 trigger. The aim of this
filter was to correct for the different trigger conditions between measured data and
MC simulation.

2. The reconstruction error had to be less than 15° for the simulated signal. Bad
reconstructed events are unlikely to yield unambiguous signals, so they should not
be used to train the neural network. This cut was not (could not be) applied to MC
background (measured data).



4. The reconstructed zenith angle had to be bigger than 1200• This and the previous
filter determine what is meant by the term "up-going" in this chapter: events with
zenith angles larger than 1200•

5. Three hits with a time residual of less than 25 ns were demanded. Without some
direct hits it is highly unlikely to get good reconstruction results.

6. The normal reconstruction started with the track from the initial line fit. A second
reconstruction was also performed, which started from a vertical down-going track.
If the zenith angle from this second reconstruction was less than 1200 and its likeli-
hood was better (i.e. smaller) than that of the normal reconstruction, the event was
rejected.

Filter Data MC back- MC signal MC signal MC signal
(exp.) ground 100 GeV 1 TeV 10 TeV

triggered events 1.4 .106 8.1.105 1.2.104 1.1 . 104 1.2. 104

Aeff, trig [m2
] - 6.6.103 3.1.103 7.2.103 1.6 . 104

events with Nch > 7 1.1 . lOb 4.6·10:> 9.4 . lOJ 9.6·lOJ 9.7·lOJ

IOrec - Otrue I < 150 - - 33% 31% 21%
Oline- fit > 1200 7.4% 12% 23% 18% 11%

Orec> 1200 6.3% 9.2% 22% 16% 9.8%
Ndirect, 25ns > 2 1.1% 1.2% 16% 12% 6.0%

Ldown > Lup 0.42% 0.42% 14% 12% 5.8%
passing events 4523 2872 1470 1195 667
Aeff, filter [m2

] - 28 1.5.103 3.1 .103 3.6.103

Table 7.6: Filters used between reconstruction and neural network analysis for the AMANDA-B4
simulation. Energies given are at generation points inside volume.
First filter: at least eight hits within the event; second filter (for Me signal only): recon-
struction error smaller than 15 degrees; third filter: angle reconstructed with initial line-fit
must be up-going; fourth filter: finally reconstructed angle must be up-going; fifth filter:
At least three hits with a time residual of less than 25 ns; last filter: The up-going track
must be more probable than a potential down-going alternative.

The filters and their respective passing rates are summarized in table 7.6. The effective
areas in the last row were calculated according to equations 6.31 (signal samples) and 5.26
(background sample).

Again three simple transformations x -+ x' were used to transform the parameter distri-
butions to the range [0..1]:

• Since this time cos 0 was"restricted to values between -1 and -0.5 (after the cut on
the reconstructed zenith angle), its transformation was:



I 2 (X)X = -; .arctan i '

• For parameters X, which could have positive and negative values (like coordinates),
the means x+ and x_ were calculated separately for each of the two parts of the
distribution. Then:

I 1 (x)X = - . arctan _ 1_ I + 0.5 .
1r X+ + x_

The means were calculated from the distributions of measured data and used for the
transformation of data and Monte Carlo samples. The distributions of all parameters used
for the networks of this chapter can be seen in the figures of section 5.3. Compared to the
transformations of the previous chapter, the main difference is that this time the division
was by the mean of the parameter - not by twice the mean. There were two main reasons
for this:

1. Figure 6.22, the example of the transformation from the previous chapter, is typical
in that sense that the transformed distributions there did not use the whole range
[0..1]. The tails often almost vanished for values bigger than 0.6 - 0.8.

2. For more than half of the parameters investigated, signal events tended to have
smaller values than mis-reconstructed atmospheric muons. This interesting range
of small values could be expanded by using smaller numbers for the division. One
might have thought of using two different transformations: One with a division by
twice the mean for the minority of parameters which had signal accumulated at
large values, and a second one (like the transformation used in this chapter) for
parameters, which had signal accumulated at small values. This was discarded for
the benefit of a common transformation formula for all parameters.

As a last subtlety, slight deviations between MC and Data were corrected for: In
the case of the three parameters velocity of line-fit lvi, average distance of direct hits
ddir, and likelihood of the hit topology Lhit, MC background was systematically shifted
compared to data. This shift was corrected for by multiplying the MC distributions of
these parameters with the ratio Xdata/XMC backgrO'Und prior to the transformation. As can
be seen in figures 5.17 and 5.21, where the corrections are included in the bottom line
only, this improved the consistency between data and MC background. More complicated
deviations that occurred between data and MC for other parameters could not easily be
corrected for and remained.

The analysis presented in this chapter was performed after the analysis of the previous
chapter. Therefore use was made of two results obtained there. The first result was
that the network performance can be improved when all available statistics are used for



training - whether the resulting training sample is asymmetric or not. In the case of the
AMANDA-II analysis, this resulted in a training sample which consisted of almost four
times as many background as signal events. In this chapter's analysis, the mismatch was
smaller and reversed (with 16 % more signal events). The second result from which this
analysis benefited was that the number of hidden units in the network topology should be
the same as the number of input units - therefore only "n-n-2nets" were used. The input
parameters that were chosen for a first network are already known from the networks in
chapter 6. They were:

• number of direct hits between 15 and 25 ns, Ndirect, 15-25ns (This was used instead
of Ndirect, 25n$ as it is independent of the already used Ndirect, 15ns),

The results of the trained "6-6-2net" are presented in figure 7.31. In the first row,
the output distribution of the network is given for data (left column; points), background
(left column; line) and signal (right column). It can be seen that MC background and
data agree well within the available statistics. As expected for a successful analysis, both
decrease from 0 ,....,-1 to 0 ,....,1. However there seems to be a slight but significant peak
in the data for values at 0,...., 1, which is not as strongly developed in the MC background
sample. The background sample on the other hand has a stronger peak at 0 ,....,-1. The
signal distribution is flatter, but with a prominent (expected) peak at 0,...., 1.

In the second row, the cosine of the reconstructed zenith angle cos ()rec is shown for the
full testing samples. As pointed out in section 5.3.4, the slight rise of the data and MC
background distribution to negative values is due to a reconstruction feature.

This distribution can be compared to the same distribution after a cut 0 > 0.5 on the
output (in the third line). As can be seen, data and MC still agree within the available
statistics. The cut gives a signal passing rate of 78 % and a background rejection of 95 %.
Data is rejected slightly less - by 92 %. The reason for this difference could already be
seen in the first row: Compared to MC background, there is a higher ratio of data events
at large output values. Accordingly an even more stringent cut at 0 = 0.95 (bottom row)
again gives a higher rejection for MC background than for data (another 88 % rather than
another 80 %). Only approximately further 20 % of signal events are rejected by this more
stringent cut.

The passing rates of the trained "6-6-2net" are summarized in table 7.7. The effective
areas are calculated according to equation 6.35 (background) and 6.31 (signal samples).
Signal to noise (SIN) is given by the ratios of the effective areas of the specific signal sample
to that of the background sample. One has to remember that the signal samples used here
do not represent the atmospheric neutrino flux but hypothetical monoenergetic neutrino
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Figure 7.31: Result of the basic network: Left column: MC background (line) and data (points); right
column: MC signal. First line: Distribution of neural network output 0 for all events.
Second line: Distribution of cos ()rec for all events. Third line: cos ()rec distribution after
a cut 0 > 0.5. Fourth line: cos ()rec distribution after a cut 0 > 0.95.



Cut value Data MC back- MC signal MC signal MC signal
ground 100 GeV 1 TeV 10 TeV

all events 4523 1436 736 597 333
, 2 28 1.5. 103 3.1.103 3.5.103Aeff, filter [m ] -

0>0 711 (16%) 163 (11%) 581 (79%) 481 (81%) 280 (84%)
0> 0.5 352 (7.8%) 67 (4.7%) 521 (71%) 444 (74%) 247 (74%)
0> 0.95 70 (1.5%) 8 (0.56%) 393 (53%) 340 (57%) 178 (53%)

Aeff, filter [m2
] - 0.13 8.1.102 1.7. 103 1.9 . 103

SIN - - 6.2.103 1.4 . 104 1.5.104

o 2:: 0.99752 13 (0.29%) 1/2 (0.03%) 259 (35%) 196 (33%) 73 (22%)
Aeff, filter [m2

] - 8.1.10-3 5.4.102 1.0.103 7.8.102

SIN - - 6.6.104 1.3.105 9.6.104

Table 7.7: Performance of the smallest network in the AMANDA-B4 analysis. First two lines: events
entering the control sample and their respective effective areas. Next two lines: number
of events passing cuts 0 > 0 and 0 > 0.5 respectively. Next three lines: Events passing
cut 0 > 0.95, the corresponding effective areas and the signal to noise ratios calculated
as the ratio of the effective areas. Last three lines: Events after cut 0 > 0.99752 (the
output of the last fake event), the corresponding effective areas and the signal to noise
ratios.

sources. Furthermore the passing rates of very stringent cuts on the neural network output
differs for data and MC. The difference is too large to be explained solely on basis of a
few neutrino events in the data sample. Therefore the signal to noise ratios given for the
MC simulated events cannot be used to determine signal to noise ratios for the remaining
data events. They can only give an estimation of the order of magnitude of the actual
signal to noise ratios after such cuts.

After the results from the basic network proved that the method of a neural network
analysis seems to be applicable to the AMANDA-B4 detector, further input parameters
were included. They were:

• the likelihood of the hit topology Lhit,

• the average distance of the direct hits to the muon track ddir and

• the length of the direct hits Zleng, dir'

This time a "9-9-2net" was trained; the results are shown in figure 7.32. In the first
row the output distribution is presented. Compared to the previous network, the shape
of the distributions are similar. This time however the bin at 0 '" -1 is more prominent
in the distribution for data and MC background. Furthermore, data and MC background
agree better. This is especially true for the extreme values at 0", ±1. In the second row,
the cos ()rec distribution is reproduced for comparison with the next two lines.
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Figure 7.32: Result of the extended network: Left column: MC background (line) and data (points);
right column: MC signal. First line: Distribution of neural network output 0 for
all events. Second line: Distribution of cos ()rec for all events. Third line: cos ()rec

distribution after a cut 0 > 0.5. Fourth line: cos ()rec distribution after a cut 0 > 0.95.



In the third line again a cut of 0 > 0.5 is set on the output. The signal passing rate is
virtually unchanged (compared to the previous network), namely 78 %, but background
rejection improved to 97 % (from 95 %). Data is also rejected at a higher rate (95 % rather
than 92 %). The feature of a stronger background than data rejection remains. However,
the ratio of passing rates between data and MC background improved from 1.7 to 1.5.

In the bottom line of figure 7.32, the cut is set at 0 > 0.95. This gives another factor
of eight in background (and data) rejection, while it reduces signal by 25 % only. This
time the cut does reject the same ratio of data and MC background events.

Cut value Data MC back- MC signal MC signal MC signal
ground 100 GeV 1 TeV 10 TeV

all events 4521 1436 736 597 333
Ae!!, filter [m2

] - 28 1.5 . 103 3.1.103 3.6.103

0>0 554 (12.3%) 122 (8.5%) 611 (83%) 521 (87%) 282 (85%)
0> 0.5 237 (5.2%) 49 (3.4%) 558 (76%) 477 (80%) 260 (78%)
0> 0.95 30 (0.66%) 6 (0.42%) 393 (53%) 344 (58%) 198 (59%)

Aeff, filter [m2
] - 9.8.10-2 8.1.102 1.8.103 2.1.103

SIN - - 8.3.103 1.8.104 2.1 . 104

02:0.98848 12 (0.27%) 1/2 (0.03%) 292 (40%) 274 (46%) 152 (47%)
Aeff, filter [m2

] - 8.1 . 10-3 6.0.102 1.4 . 103 1.6. 103

SIN - - 7.4 . 104 1.8.105 2.0.105

Table 7.8: Performance of the extended network in the AMANDA-B4 analysis. First two lines: events
entering the test sample and their effective areas. Next two lines: number of events passing
cuts () > 0 and () > 0.5 respectively. Next three lines: Events after cut () > 0.95. the
corresponding effective areas and the signal to noise ratios calculated as the ratio of the
effective areas. Last three lines: Events passing cut () > 0.98848 (the output of the last
fake event). the corresponding effective areas and the signal to noise ratios.

The passing rates for various cuts on the output of this network are summarized in
table 7.8. The effective areas are calculated from equations 6.31 (signal samples) and 6.35
(background sample). Again caution is needed when interpreting the SIN ratios given:
These are no signal to noise ratios for the actual experiment, but only for the MC samples
investigated.
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So a "13-13-2net" was trained and tested. The results are displayed in figure 7.33.
In the first row, the output distributions for the full samples are shown. The peaks
in the extreme bins at () rv +1 (signal) and () rv -1 (data and background) contain
approximately seventy (data sixty) per cent of all events. Compared to the previous
network, one notices that the little peak for data at () rv + 1 has reappeared.

In the second row, the well known cos ()rec distribution is again reproduced for compari-
son. In the third row, the required cut () > 0.5 is as stringent for MC background as the
equivalent cut on the output of the previous network: It rejects 97 %. However it is less
stringent for data (rejection of 93 % rather than 95 %) and MC signal (passing rate 82 %
rather than 78 %). This proves again that cuts on the same output for different networks
cannot strictly be compared.

In the last row, the cut () > 0.95 confirms this: all three data samples get a higher
passing rate than in the case of the previous network. This time 66 % of the data, 0.49 %
of the background and 1.4 % of the data pass the filter. So as expected from the plot
in the first line, the deviations between data and MC background become significant on
such stringent cuts. Before these deviations are fully understood, results obtained from
MC simulations (like signal to noise ratios) cannot be used to make accurate quantitative
statements for data.

Cut value Data MC back- MC signal MC signal MC signal
ground 100 GeV 1 TeV 10 TeV

all events 4521 1436 736 597 333
Aeff• filter [m2

] - 28 1.5.103 3.1 . 103 3.6.103

() > 0 578 (13%) 109 (7.6%) 635 (86%) 517 (87%) 298 (89%)
() > 0.5 306 (6.8%) 50 (3.5%) 601 (82%) 498 (83%) 275 (83%)
() > 0.95 62 (1.4%) 7 (0.49%) 494 (67%) 407 (68%) 227 (68%)

Aeff, filter [m2
] - 0.11 1.0.103 2.1.103 2.4 . 103

SIN - - 8.9.103 1.9· 104 2.1 . 104

() 2: 0.99972 6 (0.13%) 1/2 (0.03%) 277 (38%) 250 (42%) 128 (38%)
Aeff, filter [m2

] - 8.1.10-3 5.7.102 1.3.103 1.4.103

SIN - - 7.0.104 1.6.105 1.7.105

Table 7.9: Performance of the largest network in the AMANDA-B4 analysis. First two lines: events
entering the control sample and their respective effective areas. Next two lines: number
of events passing cuts 0 > 0 and 0 > 0.5 respectively. Next three lines: Events after
cut 0 > 0.95, the corresponding effective areas and the signal to noise ratios calculated
as the ratio of the effective areas. Last three lines: Events passing cut 0 > 0.99972 (the
output of the last fake event). the corresponding effective areas and the signal to noise
ratios.

The results from the analysis of this network are summarized in table 7.9. As stated
before, the calculated signal to noise ratios are only for the signal and background sam-
ples used. As the atmospheric neutrinos were not simulated (they have different energy
spectra from the MC signal used here) and due to the deviations between data and MC
background, it is not valid to transfer these SIN ratios directly to data.



Comparing the second, third and fourth plot in the left column, for the results of
all three networks, one notices that the ratio of events with reconstructed zenith angles
close to 1800 increases. With the stringent cuts required to get a high signal to noise
ratio, almost no events remain at values close to cos Orec "-' -0.5. This justifies the filter
condition cos Orec < -0.5, which had been chosen at the beginning of this analysis.

Successively setting more and more stringent cuts on the output of the three neural net-
works until only very few data events remain, one notices an interesting result: The two
last data events (i.e. the two most likely neutrino candidates) are always the same. This
is especially impressive, as among the next three most likely data events, there is only
one event commonly identified by two networks: The third most likely event according to
the medium sized network was considered to be the fourth most likely candidate by the
largest network.

One of the two neutrino candidates found is just the neutrino candidate which had been
found by the earlier mentioned Swedish study. This is a very satisfying result, since this
analysis was completely independent from the Swedish study: That study started with a
different reconstruction algorithm and then applied very stringent "conventional" cuts on
their reconstructed zenith angle, their number of direct hits and their z-component of the
velocity of the line-fit [17]. The two neutrino candidates found with the analysis presented
here, are shown in figures 7.34 and 7.35.

small network medium network large network
output of first l/ candidate 0=0.99994 0=0.99988 0=1.0

remaining 1 TeV signal events 107 122 147
Ae//, up [m2

] 5.6.102 6.4 . 102 7.7.102

SIN = Aeff, uplAeff, down > 6.9 .104 > 7.8.104 > 9.4 . 104

output of second l/ candidate 0=1.0 0=0.99953 0=1.0
remaining 1 TeV signal events 27 151 147

Aell, up [m2
] 1.4 . 102 7.9.102 7.7.102

SIN = Aeff, uplAeff, down > 1.7.104 > 9.7.104 > 9.4 . 104

output of third best data events 0=0.99992 0=0.99842 0=0.99996
remaining 1 TeV signal events 116 190 176

Aell, up [m2] 6.1.102 9.9.102 9.2.102

SIN = Aeff, uplAeff, down > 7.5.104 > 1.2.105 > 1.1 .105

Table 7.10: Comparison of the best data events (according to this analysis). First column: Results
from the 6-6-2net, second column: results from the 9-9-2net. last column: results from
the 13-13-2net. First block of data: Results for the "first neutrino candidate". the
candidate which was known from a Swedish study. Second block of data: Results for the
"second neutrino candidate". the candidate which was newly found with this analysis.
Third block of data: Results for the third most likely neutrino candidate. Only the
results for the 1 TeV signal sample entered this table. Effective area for background:
8.1.10-3 m2.



One can compare the number of two v-candidate events found within one day to expec-
tations: AMANDA-B4 is expected to trigger,.....,2000 atmospheric neutrino events per year
[37]. The efficiency of the filters for the true energy spectrum is not known. Using the
passing rates for the 1 TeV MC signal sample as an approximation, one would expect 0.6
neutrino events per day. However the day investigated was chosen as the Swedish study
had already found a very likely neutrino candidate (the Swedish cuts were so stringent,
that only two candidates in several months worth of data were found), so for this day the
expectations are approximately 1.6 neutrino events.

As mentioned before, the true signal to noise ratio for these candidates can not be
calculated from the present analysis. Table 7.10 nevertheless lists the output values for
the two candidates and the third most likely candidates (which is a different event for
each of the three networks) together with lower limits for MC signal to noise ratios. The
candidate named "first v candidate" is the one known from the Swedish study. As no MC
background events remained after these stringent cuts, the effective area for background
events was set at 8.1 . 10-3. This is equivalent to half an event remaining. Since the
expressiveness of these numbers is limited, only one signal sample (1 TeV) was used for
calculating effective areas and SIN ratios.

Comparing the required cut values on the outputs of the neural networks in this chapter
to the ones in the previous chapter, one notices that cuts very close to 0 = 1 are needed
for the AMANDA-B4 simulation. This indicates that the analysis of this chapter is not
only limited by the available MC statistics, but also by the detector itself. AMANDA-II
can already be considered to be a neutrino detector, whereas AMANDA-B4 was only one
step in that direction. Clear neutrino candidates are expected however already from the
AMANDA-BlO detector.

On the following pages, a selection of data and MC events are shown. The displayed
events can be explained as follows: The detector (strings are blue) is seen from the side.
The little coordinate system indicated near the center of the plots defines the origin of
the detector. The reconstructed muon track is shown in red. If a Monte Carlo event is
displayed, the true generated muon directions are indicated in yellow. There can be more
than one generated muon within an event. E.g. in figure 7.40 two coincident muons from
one air shower reached the detector. In some cases the generated muon stops inside or
close to the detector. An example of this can be seen in figure 7.38. The black circles
(ellipses in the projection used) indicate the hit PMTs: The radius is proportional to the
amplitude of the hit. The green lines finally are the assumed photon tracks from muon to
PMT. They do not end at the PMT. The length of that part of the photon track which goes
beyond the PMT is proportional to the calculated time residual of the track. Neglecting
the PMT jitter, one can establish the total length of the green lines as the total distance
traveled by the (in general scattered) photon.

The events were chosen as to represent a large variety of results: First, the two neutrino
candidates found are presented. As contrast, one data event which was considered as
background by all three networks is shown. The next event is a data event with output
values above 0.98, but still in a region where the majority of data events is supposed



to be background. These four data events are presented in figures 7.34 to 7.37. The
output values of the three networks for these events are presented in the first four lines of
table 7.11.

The first simulated event shown is the last remaining MC background event when one
sets very stringent cuts on the output of the smallest network. The next two events are
its counterparts from the two other networks. It is interesting to notice that the respec-
tive other nets generally also have difficulties identifying these last fake events correctly.
There is one exception to this rule however: The last background event from the largest
network is clearly marked as a background event by the smallest network. Looking at
this particular event in figure 7.40, one notices that this is a bundle of two muons. The
last MC background event presented is one which is correctly identified by all networks.
The four MC background events are displayed in figures 7.38 to 7.41. The corresponding
output values are listed in the second block of table 7.11.

Finally some MC signal events are shown. The first one is a signal event mis-identified
as background by all three networks. Looking at it in figure 7.42, one sees that this is a
generated muon, which stops inside the detector. The second signal event is one which
received the maximum output of 1.0 three times, i.e. is clearly marked as signal event by
all three nets. The last event shown is a generated signal event which had rather high
output values, but these were not as high as those of the (data) neutrino candidates. It
therefore is not unambiguously identified. These three MC signal events are shown in
figures 7.42 to 7.44. Their output values are given in the last three lines of table 7.11.

Table 7.11 summarizes the neural network results for these events.

small network medium network large network
Neutrino candidate I (9 = 0.99994 (9 = 0.99988 (9 = 1.0
Neutrino candidate II (9 = 1.0 (9 = 0.99953 (9 = 1.0
Probable fake event (9 = -0.87936 (9 = -0.95914 (9 = -0.88907

Ambiguous measured event (9 = 0.98378 (9 = 0.99520 (9 = 0.98215
Last fake from the small net (9 = 0.99752 (9 = 0.98264 (9 = 0.94195

Last fake from the medium net (9 = 0.97118 (9 = 0.99948 (9 = 0.97585
Last fake from the large net (9 = -0.95218 (9 = 0.96289 (9 = 0.99972

Identified fake event (9 = -0.95362 (9 = -0.99874 (9 = -0.99982
Mis-identified signal event (9 = -0.82418 (9 = -0.99472 (9 = -0.96747

Good identified signal event (9 = 1.0 (9 = 1.0 (9 = 1.0
Ambiguous signal event (9 = 0.99646 (9 = 0.99360 (9 = 1.0



Figure 7.34: "Neutrino Candidate I", the first of the two data events which are potential neutrino
candidates. This one was already discovered by a Swedish analysis.





Figure 7.35: "Neutrino Candidate II". the second of the two data events which are potential neutrino
candidates.





Figure 7.36: "Probable fake event", a measured event which all three networks considered to be a
mis-reconstructed atmospheric muon event.





1
I ]1 1 J

I 1

I j I
I ] I

Figure 7.37: "Ambiguous measured event", a measured event which had an output 0 > 0.98 for all
three networks. Due to the expected neutrino flux, it is nevertheless probably a fake
event.





Figure 7.38: "Last fake from the small net" , the mis-reconstructed Me background event which had
the highest probability to be a neutrino event according to the analysis with the basic
network. The generated muon is stopping near the detector.





Figure 7.39: "Last fake from the medium net", the mis-reconstructed Me background event which
had the highest probability to be a neutrino event according to the analysis with the
extended network.





Figure 7.40: "Last fake from the large net" , the mis-reconstructed Me background event which had
the highest probability to be a neutrino event according to the analysis with the largest
network. This is an example of an atmospheric muon bundle. A total light output of
this event is especially large due to a 3.9 TeV bremsstrahl event in less than 100 m
distance of the detector.





Figure 7.41: "Identified fake event", a mis-reconstructed Me background event, which was identified
as mis-reconstructed by all three networks.





Figure 7.42: "Mis-identified signal event", a generated signal event, which was mis-identified as a
fake event by all three networks. The generated muon is stopping behind the detector.





Figure 7.43: "Good identified signal event" , a generated signal event which got assigned an output
of 1.0 by all three networks.





Figure 7.44: "Ambiguous signal event", an example of a generated signal event, which got assigned
an output () > 0.99 by all three networks.





This work was a first approach to incorporate artificial neural networks into the quality
analysis of the AMANDA detector. The main results can be summarized as follows:

1. Already standard artificial neural network designs can be used as a tool for the
quality analysis in the AMANDA experiment.

2. As the detector is being constantly upgraded and expanded, only geometry inde-
pendent parameters were used. These are either reconstruction results (like the
reconstructed zenith angle) or averaged hit data (like the average z-component of all
hit PMTs). It was shown that a set of input parameters which was appropriate for
one detector version could also be used for a different geometry.

3. The results of a neural network analysis of the future AMANDA-II detector were
compared to an established analysis which sets individual cuts on the same quality
criteria. Both were performed with the same MC samples for atmospheric muons
and an arbitrary signal of 1 TeV neutrinos. Demanding the same rejection for
atmospheric muons, the neural network analysis achieved a '" 30 % improved signal
passing rate. With a few additional input parameters, the signal passing rate could
be improved by almost", 50 %, while at the same time rejecting more fake events.

4. The method of a neural network analysis can be applied to data. Events measured
with the AMANDA-B4 detector in 1996 were analyzed and two neutrino candidates
were found. A signal to noise ratio for them cannot be given due to limited MC data.
The two candidates are presented together with some generated MC and measured
data events.

5. The neural network analysis gives results which are consistent with those from an
independent analysis: One of the neutrino candidates had already been discovered
by a Swedish study, which used a very different analysis technique.

This work was not intended to and could not be a complete analysis of the capabilities of
neural networks as analysis tools for AMANDA. As an outlook for potential future research,
several areas of interest for neural networks in AMANDA shall be given:

• True signal to noise ratios have to be calculated. In order to do so, large statistics
of simulated MC background and MC signal have to be generated.

• Additional potential input parameters should be tested.

• Instead of separating signal events from mis-reconstructed atmospheric muons, neu-
ral networks might be trained to estimate the reconstruction error.

• New classes of networks can be tested: These could for example contain more than
one hidden layer, backcoupling links, other activation or update functions, etc.

With the AMANDA-II detector, which shall be completed in the year 2000, first physics
results are expected. By that time a neural network analysis should be established as a
standard tool during the analysis of measured data events.
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Die vorliegende Diplomarbeit beschaftigt sich mit der Unterdriickung atmospharischer
Myonen im AMANDA Experiment. Ziel dieses Experimentes ist der Nachweis hochen-
ergetischer Neutrinos. Hierzuwerden Photomultiplier in einer Gitteranordnung tief ins
siidpolare Eis versenkt. Vollzieht ein hochenergetisches Myonneutrino in der Umgebung
des Detektors eine geladene schwache Weehselwirkung, so wandelt es sieh in ein ebenfalls
hochenergetisehes Myon um, welches Cerenkovlicht abstrahlt. Dieses Licht kann yon den
einzelnen Photomultiplierzellen registriert werden. Sprechen hinreichend viele Zellen an,
so ermogliehen die gewonnenen Zeit- und Amplitudeninformationen eine Rekonstruktion
der Myonspur. 1m fiir AMANDA interessanten Energiebereich oberhalb einiger zehn GeV
sind Myon und Neutrino fast kolinear, weswegen sich die Neutrinospur durch die Myon-
spur annahem lafit. Man hofIt hierdureh Punktquellen kosmischer Neutrinos entdecken
zu konnen.

Der Hauptuntergrund bei solchen Neutrinoteleskopen sind atmospharisehe Myonen. Falls
geladene kosmische Strahlen auf die Erdatmosphare trefIen, so losen sie eine hadronische
Kaskade aus, in deren Verlauf eine grof3e Zahl Myonen entstehen. Da dies minimalioni-
sierende Teilchen mit einer relativ langen Lebensdauer (T = 2,2 . 10-6 s) sind, dringen
einige yon ihnen bis zum AMANDA-Detektor in das Eis ein. 1m Vergleieh zu den er-
warteten Fliissen yon neutrinoinduzierten Myonen, treten diese atmospharischen Myonen
um etwa fiinf bis seehs Grofienordnungen haufiger auf. Da Myonen im Gegensatz zu
Neutrinos nicht durch die Erde durchfliegen konnen, werden im Experiment nur solche
Ereignisse beriicksichtigt, die als von unten kommend rekonstruiert wurden. Aufgrund von
Fehlrekonstruktionen dominieren aber aueh naeh diesem Winkelsehnitt atmospharische
Myonen jegliches gemessene Signal.

Ziel dieser Arbeit war es Moglichkeiten zur Unterdriickung dieser fehlrekonstruierten Un-
tergrundmyonen mit Hilfe kiinstlieher neuronaler Netzwerke zu untersuehen. Die Unter-
suchungen besehrankten sieh auf feed-forward Netzwerke mit je einer Eingabe-, einer ver-
borgenen und einer Ausgabeebene. Als Eingabeparameter wurden insbesondere Qualitats-
merkmale des Rekonstruktionsverfahrens benutzt. Die Netzwerke wurden mit Hilfe einiger
tausend Monte Carlo-simulierten Untergrund- und Signalereignissen trainiert. Als Aus-
gabe berechneten sie einen Wert zwischen -1 und +1,wobei ein Wert von etwa -1 ein
wahrscheinliches Untergrundereignis, ein Wert nahe +1 jedoeh ein wahrscheinliches Sig-
nalereignis darstellte.

Simulationen von zwei versehiedenen Ausbaustufen des AMANDA Detektors wurden unter-
sueht. Begonnen wurde mit einer Analyse fiir den AMANDA-II Detektor, welcher im Jahre
2000 fertiggestellt werden solI. Hierbei wurde zunaehst versueht dieselbe Unterdriiekung,
welche bereits mit einer "konventionellen" Analyse erzielt worden war zu erreichen. Hier-
fUr wurden dieselben Monte Carlo Simulationen eines 600 GeV Signals (im Detektor),
sowie des wahren Spektrums atmospharischer Myonen benutzt, die bereits bei der an-
deren Analyse verwendet wurden. Bei identischer Untergrundunterdriickung wurde eine
urn fast 30 % erhohte Neutrinoakzeptanz erzielt. Wurden zusatzliehe Eingabeparameter
verwendet, welche nicht fiir die "konventionelle" Analyse beriicksichtigt worden waren,
so konnte bei weit verbesserter Untergrundunterdriickung die Signalakzeptanz sogar um



anniihernd 50 % verbessert werden. Das fUrdiese beiden Ereignisklassen erzielte Verhiiltnis
der Akzeptanzen betrug schlie13lich5 . 105.

Anschlie13end wurde eine analoge Analyse iiber eine Simulation des seit 1996 bestehenden
AMANDA-B4 Detektors unternommen. Als Signal standen kontinuierliche Spektren mit
Energien zwischen 0 und 100 GeV, 1 TeV bzw. 10 TeV zur Verfiigung. als Untergrund
wurde wiederum eine Simulation des wahren atmosphiirischen Myonspektrums verwendet.
Erneut zeigte sieh, daB eine hohe Unterdriickung des Untergrunds erreicht werden konnte.
In diesem Teil der Arbeit wurden drei verschiedene Netzwerke trainiert. Wandte man
diese auf die an einem Tag gemessene Daten an, so blieben in allen drei Netzwerken
dieselben beiden Ereignisse als wahrscheinlichste gemessene Neutrinokandidaten dieses
Tages zuriick. Aufgrund fehlender passender Monte Carlo-Statistik und leichter Abwei-
chungen zwischen Daten und Monte Carlo konnte fUr die beiden Kandidaten jedoch keine
Neutrinowahrscheinlichkeit berechnet werden. Man erwartet pro Tag etwa 0,6 getriggerte
atmosphiirische Neutrinoereignisse. Da aus einer anderen Analyse bereits bekannt war,
daB an dem untersuchten Tag ein wahrscheinlicher Neutrinokandidat gemessen worden
war, erwartet man fUr diesen Tag etwa 1,6 Neutrinoereignisse. Somit liegt es im Bereich
des mogliehen, daB es sieh bei beiden um tatsiichliche Neutrinoereignisse handelt. Wenn
man die Ergebnisse fiir das Signalspektrum bis 1 TeV zugrunde legt, so entsprechen die
beiden Kandidaten Signal zu Untergrund Verhiitnissen yon .2:: 1 . 105.

Einer der beiden gefundenen Kandidaten wurde bereits in einer vollstiindig unabhiingigen
schwedischen Studie gefunden. Somit wurde gezeigt, daB die Methode der neuronalen
Netzwerkanalyse nicht nur auf simulierte Monte Carlo-Daten, sondern auch auf experi-
mentell gemessene Daten anwendbar ist. Sie eignet sich somit als kiinftiges Standard-
werkzeug der im AMANDA Experiment verwendeten Analysekette.

Hiermit bestiitige ich, daB ieh die vorliegende Arbeit ohne unerlaubte fremde Hilfe ange-
fertigt habe.
Ich bin mit der Auslage meiner Diplomarbeit in der Bibliothek der Humboldt-Universitiit
zu Berlin einverstanden.


