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We calculate the leading power corrections to the decay rates, distributions and

hadronic spectral moments in rare inclusive B ~ Xsl+ l- decays in the standard

model, using heavy quark expansion (HQE) in (1Imb) and a phenomenological model

implementing the Fermi motion effects of the b-quark bound in the B-hadron. We

include next-to-leading order perturbative QCD corrections and work out the depen-

dences of the spectra, decay rates and hadronic moments on the model parameters in

either HQE and the Fermi motion model. In the latter, we take into account long-

distance effects via B ~ Xs + (Jlt/J, t/J', ... ) ~ Xsl+r with a vector meson domi-

nance ansatz and study the inftuence of kinematical cuts in the dilepton and hadronic

invariant masses on branching ratios, hadron spectra and hadronic moments.

We present leading logarithmic QCD corrections to the b ~ S'Y'Y amplitude. The

QCD perturbative improved Bs ~ 'Y'Ybranching ratio is given in the standard

model including our estimate of long-distance effects via Bs ~ ¢'Y ~ 'Y'Yand

B. ~ ¢t/J ~ ¢'Y ~ 'Y'Ydecays. The uncertainties due to the renormalization scale

and the parameters of the HQE inspired bound state model are worked out.

Wrr berechnen im Standardmodell mit der Entwicklung schwerer Quarks (ESQ) Kor-

rekturen in (11mb) zu Zerfallsbreiten, Verteilungen und hadronischen Momenten

des seltenen, inklusiven Zerfalls B ~ X.l+l- . Dieselbe Analyse haben wir

im phanomenologischen Fermibewegungsmodell durchgeflihrt, welches die Effekte

des im B-Meson gebundenen b-Quarks beschreibt In beiden Methoden zeigen wit

unter Einbeziehung nieht ftihrender QCD-Korrekturen die Abhangigkeit der Spek-

tren, Breiten und Momente yon den Modellparametern. Mit einem Vektormeson-

dominanzansatz modellieren wir im Fermibewegungsmodell die langreichweitigen

BeitdigederCharmoniumresonanzen, die dureh B ~ Xs + (J It/J, t/J', ... ) ~ Xst+t-
entstehen. Wrr studieren den EinftuB kinematischer Schnitte in der invarianten Masse

des Leptonpaares und des hadronischen Endzustandes auf VerzweigungsverhaItnisse,

hadronische Verteilungen und Momente des Zerfalls B ~ X ,l+ l- .

Ferner prasentieren wir ftihrende logarithmische QC~Korrekturen in der b ~ 5'Y'Y

Amplitude. Wrr geben das QCD-verbesserte VerzweigungsverhaItnis yon Bs ~ 'Y'Y

im Standardmodell unter Beriicksichtigung unserer Abschatzung langreichweitiger

Beitdige dureh die Zerfallsketten B. ~ ¢'Y ~ 'Y'Yund Bs ~ ¢t/J ~ h~ 'Y'Y

an. Wrr schatzen die Unsicherheiten durch die Renormierungsskala und des B.

Bindungszustandsmodelles, welches der Theorie schwerer Quarks entlehnt is!, 00.
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Chapter 1

Introduction

Rare B decays probe the flavour sector of the standard model (SM) [1] and perturbative and non-perturbative

aspects of QCD. Since the first measurement of rare radiative B -+ K·, decays by the CLEO collabo-

ration [2] this area of particle physics has received much experimental [3] and theoretical [4] attention.

Flavour changing neutral current (FCNC) induced decays are of particular interest, since in the SM they are

governed by loop effects and depend sensitively on virtual particles like, e.g., the top quark and Cabibbo

Kobayashi Maskawa (CKM) matrix elements [5].

The theory of the effective Hamiltonian [6-10] (see section 2.2 for a discussion) 1lef f '" ECiOi
enables a description of low energy weak processes in terms of short-distance (Wilson) coefficients Ci,
which can be calculated perturbatively. The (new) vertices Oi, which are absent in the full Lagrangian, are

obtained by integrating out the heavy particles (W, t, 4> in the SM ) from the full theory. Their coupling

strength is given by the Ci, which characterize the short-distance dynamics of the underlying theory.

The Wilson coefficient C~ff corresponds to the effective bSI vertex. Its modulus IC~ffl is constrained

by the measurement of the inclusive B -+ X$I branching ratio at CLEO [11]. The CLEO result is in

agreement with the present theoretical SM prediction in B -+ X$I decay and moreover, can exclude large

parameter spaces of non-standard models.

The transition b -+ s.e+ £- with £ = e,~, T involves besides the electromagnetic penguin b -+ s,· -+
s.e+ t- also electroweak penguins b -+ sZO* -+ s.e+ £- and boxes. They give rise to two additional Wil-

son coefficients in the semileptonic decay B -+ X $£+£- , Cg and C 10. A model independent fit of the

short-distance coefficients Cg, ClO and C~ff is possible from the following three observables [12]: The

B -+ X $1 branching ratio B (B -+ X $1)' the (partly integrated) invariant dilepton mass spectrum and the

Forward-Backward (FB) asymmetry [13] in B -+ X$£+£- decays. They involve independent combina-

tions of the Wilson coefficients, which allows the determination of sign and magnitude of C~ff, Cg and

ClO from data.

The presence of charmonium resonances in the decay B -+ X$£+t- complicates this analysis. The

cc states appear via B -+ X$ + (J/'IjJ, 'IjJ/, ... ) -+ X$£+t- and can be taken into account in a phenomeno-

logical vector meson dominance (VMD) ansatz, which is assumed to hold near the J/'IjJ, 'IjJ/, ••• peaks

[13]. Hence, kinematical cuts on the dilepton mass q2 have to be imposed to remove the dominant res-

onance contributions and to disentangle the short-distance infonnation from the long-distant one, e.g"



q2 < m}/tJ; - 6. Here 6 is an experimental cut-off parameter and typically of order a few hundred
MeV. The restriction to certain regions of phase space explains the use of partly integrated spectra. The

net effect of the resonances is an additional error on the distributions and hinders the determination of

the short-distance coefficients Ci from experimental data. Hence, they must be evaluated by taking into

account theoretical dispersion by using different phenomenological models [14] or further experimental

input.

The bound state nature of heavy hadrons can be explored within the B-system. Non-perturbative

power corrections in (AQCD/mb)n are systematically obtained with the heavy quark expansion (HQE)

technique [15], parametrizing distributions, decay rates etc. in terms of higher order matrix elements,

denoted by AI, A2 for n = 2. We recall the HQE relation mB = mb + A - (AI + 3A2)/2mb + O(l/mn
between the physical B-meson and the b-quark mass, where A accounts for the "binding energy". The

HQE method has been applied to semileptonic charged current B -+ XlVi [16] and FCNC B -+ XIJI

[17] decays, and it is known that inclusive spectra are not entirely calculable with the HQE approach [16],

[18-21]. B-meson wave function effects have been estimated in B -+ Xu,c1Vl [22,23] and B ~ XIJI
[6,24] decays with a phenomenological Fermi motion model (PM) [22].

We present here a detailed analysis of inclusive B -+ X lJi+r decays in the SM with l = e, p., (since

we neglected lepton masses in our calculation the result cannot be used in the T case), following similar

studies for charged current B -+ X iVl and radiative B -+ X IJ I decays.

This thesis contains the following points [18,25,26,14]:

• We calculate the l/m~ power corrections using HQE techniques in B -+ XIJt+l- decays in the
dilepton invariant mass distribution. This corrects an earlier calculation [17] and has been confirmed

recently [27]. We find that the HQE breaks down near the high q2 end-point, hence the spectrum

cannot be used in this region.

• Alternatively, we study B-meson wave function effects with a Gaussian FM. We present the dilepton

invariant mass distribution and the FB asymmetry and investigate the dependence on the FM model

parameters.

• We include cc resonance effects in B -+ X IJl+l- spectra with the help of a VMD model and present

the distributions including next-to-Ieading order perturbative QCD corrections.

• We present 1/ mb power corrections in the HQE approach and O( alJ) perturbative corrections in the

hadron spectra and hadronic spectral moments in B -+ X lJi+l- decays.

• The explicit dependences of the lowest moments of the hadronic energy EH and the hadronic in-

variant mass SH, (Eli), (Sli) for n = 1,2 on the non-perturbative HQE parameters are worked

out. We find that the first two moments of the hadronic invariant mass in B -+ X lJi+i- decay are

sensitive to A and Al .

• We complement this profile of hadron spectra and moments in B -+ XlJi+r decays by an anal-
ysis in the FM. The hadronic energy spectrum is found to be stable against a variation of the FM

parameters, however, the hadronic invariant mass distribution depends significantly on them.



• We incorporate the charmonium resonances by means of the YMD model into the analysis of hadron

spectra and moments in B -7 X sl+ l- decays. The broadening of the resonances in the FM in the

hadron spectra is worked out. Also the cc resonances turn out to be important in the moments.

• We investigate the resulting uncertainties in spectra and moments in B -7 X sl+ f- decays from

different parametrizations [28,29,18] of the resonant and non-resonant cc contributions.

• We work out hadron spectra, spectral moments and branching ratios in the FM with kinematical

cuts, as used in the CLEO analysis in their search for the decays B -7 Xsl+f- , f = e, J.L [30].

They imposed two kinds of cuts: one in the dilepton invariant mass to exclude the main bulk of

the J /'l/J, 'l/J', ... resonances and another one in the hadronic invariant mass 5H < 3.24 Gey2, to

suppress the B iJ background. Our study of the B -7 X sl+l- branching ratios with cuts is of direct

use to estimate the efficiency of the remaining signal.

To summarize, we shall present spectra, decay rates and hadronic spectral moments in inclusive rare

B -7 X sl+l- decays in the standard model. The dilepton mass spectra and the FB asymmetry presented

here are of use to extract the short-distance coefficients. We show that the uncertainties lying in different

pararnetrizations of the charmonium resonance effects are not the dominant ones. Hadron spectra and

moments in B -7 X sl+l- decays can be used to test HQE and FM and/or to determine their parameters.

We point out that the HQE, where it is valid, and the FM show very similar behaviour. Moreover, some of

their parameters can be related. In particular, the moments of the hadronic invariant mass in B -7 X sl+l-

decays provide a complementary constraint on the non-perturbative HQE parameters A, Al to the one in

charged current semileptonic B -7 XlVi decays [31]. These decays can be used for a precise determi-

nation of these parameters. A related issue is the question of universality of the FMlHQE parameters for

b -7 q transitions with final quarks q = u, d, 5 or q = c. This remains to be tested. Finally, relating

partly integrated hadron spectra of B -7 Xsl+l- to semileptonic B -7 XulVi decays, we expect the

cancelation of uncertainties resulting from bound state effects, thus this offers the possibility of a precise
determination of Vub.

Further, we study the exclusive mode Bs -7 II' which in the SM has a branching ratio in reach

of future B-facilities [3]. We improve earlier analyses [32-34] by including leading logarithmic QCD

corrections to the short-distance b -7 5TY amplitudes. We use the same effective Hamiltonian [6,7] as for

b -7 5/, which, as we will show, contains a complete set of operators for both decays. The Bs -7 //

decay rate gets enhanced under renormalization, like the B -7 Xs/ decay rate [6]. Likewise, we obtain

a strong dependence on the renormalization scale of the Bs -7 // observables, the branching ratio and

the CP ratio [35], the latter resulting from CP-odd and CP-even parts in the FCNC 2-photon amplitude.

Moreover, modeling Bs bound slate effects in a HQE inspired approach, we avoid the constituent quark

mass value ms '" mK, as used in previous analyses.

In our analysis of Bs -7 // decay we take into account long-distance (LD) effects via intermediate

(neutral) vector mesons. Especially the contribution due to Bs -7 <h and subsequent decay ¢J -7 / is

estimated and found to sizeably reduce the Bs -7 // branching ratio. We use QCD sum rules to evaluate

the Bs -7 <h form factor and include the contribution from the gluon condensate. The VMD model is

employed for the ¢-meson photon conversion.



Finally, we perform a VMD based calculation of the decay B~-t 4>'l/J-t ¢ry -t II' where we abbre-

viate'l/J == (J /'l/J, 'l/J',... ). We compare the LD-contribution to B~-t Tt decay resulting from intermediate

'l/Jproduction with the one obtained by the interaction of the virtual charm loop with soft gluons [36].

We find that both amplitudes are in good agreement within the accuracy of the calculation. The contri-

bution due to intermediate charmonium resonances changes the B~ -t II branching ratio including the

intermediate 4>contribution by less than 1%.
Our work in B~ -t "decays [37,38] can be summarized as follows:

• We model B~bound state effects in a HQE inspired approach, in contrast to the constituent quark

model, which is used in the literature.

We present the branching ratio and the CP ratio for B~ -t II decay in the SM, taking into account

improved perturbative O( Ctll) contributions and long-distance effects via intermediate vector mesons. Un-

certainties resulting from the renormalization scale and the bound state parameters are worked out.

An introduction to rare B decays and the methods used is given in Chapter 2, where we discuss the

effective Hamiltonian theory, rare radiative B -t X~I decays and long-distance methods in inclusive B
decays (HQET, FM and VMD). Chapter 3 is based on refs. [18,25,26,14]. Here we investigate inclusive

B -t x~e+e-decays in the SM. We present branching ratios and various spectra, furthermore hadronic
spectral moments are estimated. In chapter 4 the exclusive channel BII -t II is analysed [37,38]. SM

based branching ratios and CP ratios in BII -t II decay are given and their uncertainties are worked out.

Finally, chapter 5 contains a summary and an outlook. Input parameters, Feynman rules and utilities are

collected in appendix A. The power corrections to the structure functions of the hadron tensor in B -t

X 1It+e- decays are given in appendix B, together with auxiliary functions and the FM double differential

Dalitz distribution in the context of the dilepton mass spectrum and the FB asymmetry. Appendix C

contains analytic expressions used in the derivation of hadron spectra and hadronic spectral moment in
B -t X 1I.e+ e- decays.



Chapter 2

Rare B Decays: Motivation and Methods

In this chapter we outline the flavour structure of the standard model (SM). We discuss the CKM mixing

matrix and motivate the importance of studying flavour changing neutral current (FCNC) b ~ s tran-

sitions. We introduce the necessary tool to include QCD perturbative corrections in weak decays, the

effective Hamiltonian theory. As an application of the former we discuss B ~ X~/ decay as the most

prominent example of a rare B decay. Finally non-perturbative methods like the heavy quark expansion

technique, the Fermi motion model and vector meson dominance are sketched.

In the quark sector of the SM, there are six quarks organized in 3 families. The left -handed quarks are put

into weak isospin SU(2)L doublets

and the corresponding right-handed fields transform as singlets under S U (2) L. Under the weak interaction

an up-quark (with Qu = 2/3e) can decay into a down-quark (with Qd = -1/3e) and a W+ boson. This

charged current is given as

JZC = v'2 ~ (u,c,th /I'VCKM ( :) , (2.2)
2smOw

b L

where the subscript L = (1 - /5)/2 denotes the left-handed projector and reflects the V - A structure of

Jc;c in the SM. Here the weak mixing (Weinberg- )angle Ow is a parameter of the SM, which is measured

with high accuracy [39]. The so-called Cabibbo Kobayashi Maskawa (CKM) matrix VCK M [5] describes

the mixing between different quark flavours. It contains the angles describing the rotation between the

eigen vectors of the weak interaction (q') and the mass eigen states (q)



In general all the entries are complex numbers, only restricted by unitarity VCKMVJKM = 1. They are

parameters of the SM and can only be obtained from an experiment. Note that only three independent real

parameters and one phase are left after imposing the unitarity condition. Some parametrizations of VC K M

can be seen in ref. [39].

A useful parametrization of the CKM matrix has been proposed by Wolfenstein [40]

The parameters A, A, p and the phase TJ are real numbers. A is related to the Cabibbo angle through

A = sin Bc [39], which describes the quark mixing with 4 quark flavours. Since A ~ 0.221, the relative

sizes of the matrix elements in eq. (2.4) can be read off from eq. (2.5). As can be seen, the diagonal entries

are close to unity and the more off-diagonal they are, the smaller is the value of their corresponding matrix

elements. The parameter A has been determined from the decays b -t dill and B -t D-'lIl, yielding

A = 0.81 ± 0.07. The measurement of the ratio lVub/Vcbl = 0.08 ± 0.02 yields vip2 + TJ2 = 0.36 ± 0.09.
Likewise the mass difference t::.Md = M(B~1») - M(B~2») ~ 0.46 (ps)-1 constrains the combination

J(1 - p)2 + TJ2. The observed CP-asymmetry parameter £K = 2.26· 10-3 constrains p and TJ. The

precise determination of the parameters p and TJ is a high and important goal, since it corresponds to two

important questions:

• Does CP hold in the SM ?? A non zero phase TJ f; 0 in the CKM matrix directly leads to CP

violating effects .

• The unitarity of the CKM matrix can be used to write down relations between its elements 2:1=1 ~j vA
= Oik, i, k = 1,2,3. There are 6 orthogonality equations possible (i =I k), and each can be rep-
resented graphically as a triangle, a so-called unitarity triangle (UT) [41]. The sides and angles of

such an UT can be constrained by different types of experiments. For the UT given by the relation

there are 3 scenarios possible, which at present are not excluded experimentally and are a sign for

new physics: 1. the UT does not close, i. e., D=1 Qi f; 0, where Qi denotes the three angles of

the triangle. 2. 2:7=1 Qi = 0, but the values of the Qi are outside of their SM ranges determined by

another type of experiment 3. 2:7=1 Qi = 0, but the values of the angles are inconsistent with the

measured sides of the triangle.

In the literature special unitarity triangles are discussed. A recent review over the present status on the

CKM matrix and the unitarity triangle is given by [4].



In the SM, the neutral current mediated through the gauge bosons ZO, 'Y,9 does not change flavour. There-

fore, the so-called Flavour changing neutral currents (FCNC) do not appear at tree level and are described

by loop effects. The subject of the present work is an analysis of such rare (FCNC mediated) B decays

in the SM. The quarks are grouped into light (u, d, s) and heavy (c, b, t) ones in the sense, that the mass

of a heavy quark is much larger than the typical scale of the strong interaction, AQCD rv 200 MeV. The

sixth quark, the top, is too heavy to build bound states because it decays too fast. The special role of the

b-quark is that it is the heaviest one building hadrons. We will not discuss the "double" heavy Be and con-

centrate on B == (bq) meson transitions with light q = u, d, s. Since the b-quark is heavy, the B-system
is well suited for a clean extraction of the underlying short-distance dynamics. Unlike the K -system,

long-distance effects are expected to playa subdominant role in B decays except where such effects are

present in a resonant form.

The motivation to investigate b -t s( d) transitions is to improve the knowledge of the CKM matrix

elements and to study loop effects. For the latter the interest is large, since there is no tree level FCNC

decay possible in the SM. The leading loops give the leading contribution and they are sensitive to the

masses and other properties of the internal virtual particles like e. g. the top. They can be heavy and

therefore can be studied in a rare B decay at energies which are much lower than the ones necessary for
a direct production of such particles. The idea is to compare the SM based prediction for a rare B decay

with an experiment. A possible deviation gives a hint not only for the existence, but also for the structure

of the "new physics" beyond the SM.

Further the B-system can be used as a testing ground for QCD, to check perturbative and non-

perturbative methods. One example is the decay B -t XII'Y, which can be described in the lowest or-

der at parton level through b -t S'Y. As a 2-body decay, the photon energy in the b-quark rest frame is

fixed: E.., = (m~ - m;)/2mb for an on-shell 'Y. A possible non trivial spectrum can result from gluon

bremsstrahlung b -t S'Y9 and/or a non-perturbative mechanism, which is responsible for the motion of

the b-quark inside the meson thus boosting the distribution. Such a bound state effect can be incorporated

with e.g .• the Fermi motion model, see section 2.4.2 for a brief discussion.

Some rare B decays have already been detected. The channel B -t K*'Y has been measured from

the CLEO collaboration some time ago [2], however the most prominent example of a rare B decay is the

inclusive B -t XII'Y [11], where XII is any hadronic state with strangeness s = 1 and B is a mixture of
B± and B°(.BO). The branching ratios are found to be

B(B -t K*'Y)CLEO =

B(B -t XII'Y)CLEO

4.2 ± 0.8 ± 0.6 . 10-5 ,

2.32 ± 0.57 ± 0.35 . 10-4 •

(2.7)

(2.8)

B(hb -t XII'Y)ALEPH = 3.29 ± 0.71 ± 0.68 .10-4 ,

where hb is any b flavoured hadron originating from ZO decays, ZO -t hbX.

The calculation of the exclusive mode introduces large theoretical uncertainties due to the hadronic

matrix elements. The inclusive decay is under better control, leading to the following result in the recenUy



Comparing eq. (2.8) and eq. (2.10), the CLEO measurement is found to be 20" away from the theory,

but the SM cannot be ruled out. One has to look for other decay modes, since improving the theoretical

accuracy in B ~ X If'/ decay seems not at hand. After displaying the methods developed in B ~ X ;,'/,

two other rare B decays, B ~ X ~t+t- with t = e, JJ and the exclusive decay B~ ~ 1''/ will be discussed

in chapter 3 and chapter 4 of this work, respectively. Both candidates have branching ratios rv 10-6

which are in reach of future B experiments. The aim of this thesis is to analyse these decays within the

framework of the SM and to present up to date predictions for measurable quantities (branching ratios,

distributions, asymmetries, etc) as accurately as possible with the present available techniques .

...--- ...•" ...., .., .., ,, ,

A typical diagram for b ~ s is displayed in Fig. 2.1 from where the CKM couplings can be directly

read off. The amplitude T is the sum over all internal up-quarks

T = E AiTi j Ai == Vib Vi: .
i=u,c,t

for a b ~ s amplitude in the SM. In the D-system the FCNC transition rates (c ~ u) are much more

suppressed due to an inbuilt GIM mechanism [45]. Here we have

Tc~u E VciV':Ti
i=d.~.b

in which the first term is CKM suppressed and the second one GIM suppressed since m; - m3 ~ m~.

The SM rates in the charm sector for decays such as DO ~ ", DO ~ t+t- are out of reach for present

experiments. If one nevertheless finds something in the rare charm sector, it would be a direct hint for the
desired physics beyond the SM.



As a weak decay under the presence of the strong interaction, rare B decays require special techniques,

to be treated economically. The main tool to calculate such rare B decays is the effective Hamiltonian

theory. It is a two step program, starting with an operator product expansion (OPE) and performing a

renormalization group equation (RGE) analysis afterwards. The necessary machinery has been developed

over the last years, see [~1O], [46] and references therein.

The derivation starts as follows: If the kinematics of the decay are of the kind that the masses of the

internal particles mi are much larger than the external momenta p mr ~ p2, then the heavy particles can

be integrated out. This concept takes a concrete form with the functional integral formalism. It means

that the heavy particles are removed as dynamical degrees of freedom from the theory, hence their fields

do not appear in the (effective) Lagrangian anymore. Their residual effect lies in the generated effective

vertices. In this way an effective low energy theory can be constructed from a full theory like the SM.

A well known example is the four-Fermi interaction, where the W -boson propagator is made local for

q2 ~ mw (q denotes the momentum transfer through the W):

. 9P.II • (1 q2 )
-2 2 2 ~ 29p.1I -2- + -4- + ... I

q -mw mw mw

where the ellipses denote terms of higher order in 1/ m W. 1 Performing an OPE for QCD and electroweak
interactions, the effective Hamiltonian for a FCNC b ~ s'Y transition in the SM can be obtained by inte-

grating out W, t, <p. Up to O( ~ ) it is given as:mw

9rv
= -821mw

1.16639.10-5 Gey-2 .

(2.16)

(2.11)

01 (SLa'Y p.bLa) (CL{3'YP.CL{3) I

O2 (SLa'Y p.bL(3) (CL{3'YP.CLa) I

03 - (SLa'Y p.bLa) L ( ifL{3'YP.qL{3) I

q=u,d,s,c,b

04 (SLa'Y p.bL(3) L (ifL{3'YP. qLa) I

q=u,d,s,c,b

05 (sLa'Yp.bLa) L (ifR{3'YJ1.qR{3) I

q=u,d,s,c,b

·We remarlc here that the original way was reversed: The main historical step was to extrapolate the observed low energy

4-Fermi theory in nuclear j3-<1ecayto a dynamical theory of the weak interaction with heavy particle exchange.



where L(R) = 1/2(1 =f (5)' (7/-11' = 4[,/-1' 'V] and a, {3are SU (3) colour indices. Ta, a = 1 ... 8 are
the generators of QeD, some of their identities can be seen appendix A.2. Here F/-IV, aa/-lv denote the

electromagnetic and chromo magnetic field strength tensor, respectively. As can be seen from the operator

basis, only degrees of freedom which are light compared to the heavy integrated out fields (W, t, 4», remain

in the theory. The basis given above contains four-quark operators 01...6, which differ by colour and

left-right structure. Among them, the current-current operators 01 and O2 are the dominant four-Fermi

operators. A typical diagram generating the so-called gluonic penguins 03••.6 is displayed in Fig. 2.2. The

operators 07 and Os are effective b -7 5" b -7 59 vertices, respectively. All operators have dimension

6. For b -7 5t+i- transitions the basis eq. (2.18) should be complemented by two additional operators

containing dileptons. They are discussed together with their corresponding Wilson coefficients in chapter

3.

The coupling strength of the introduced effective vertices Oi is given by the (c-numbers) Wilson

coefficients Ci (p.). Their values at a large scale p. = mw are obtained from a "matching" of the effective

with the full theory. In the SM, the Ci(mw) read as follows [134]

C1•3...6(mw) - 0,

C2(mw) 1 ,
3x3 - 2x2 -8x3 - 5x2 + 7x
4(x _ 1)4 In x + 24(x _ 1)3

-3x2 _x3 + 5x2 + 2x
----In x + ------4(x - 1)4 8(x - 1)3

(2.19)

(2.20)

(2.21)

with x = m; / m~. It is convenient to define effective coefficients cf,1f (p.) of the operators 07 and

Os. They contain renormalization scheme dependent contributions from the four-quark operators 01...6 in

llell to the effective vertices in b -7 5, and b -7 59, respectively. In the NOR scheme 2 , which will be

'-We recall that in the naive dimensional regularization (NDR) scheme the "1$ matrix is total anti-commuting. i. e. {"Y$, "1p} =
O. thus L"Yp = "YpR.



C7(J.l) + QdCS(J.l) + QdNcC6(J.l) I

C8(J.l) + CS(J.l) .

(2.23)

(2.24)

evaluating the diagram shown in Fig. 2.3. Contributions from 01...4, which correspond to an I,..L 01,..L
like insertion, vanish for an on-shell photon, gluon, respectively. The Feynman rules consistent with these

definitions are given in appendix A.3.

Our aim is now to include perturbative QCD corrections in the framework of the effective Hamiltonian

theory. This can be done by writing down the renormalization group equation for the Wilson coefficients
3

d
J.ldJ.l Ci(J.l) = IjiCj(J.l) ,

where 1denotes the anomalous dimension matrix, i.e., in general the operators mix under renormalization.

Solving this equation yields the running of the couplings Ci(J.l) under QCD from the large matching scale

(here J.l= mw) down to the low scale J.l~ mb, which is the relevant one for b-decays. Eq. (2.25) can be

solved in perturbation theory 92 = 411"Ck,,:

92 (0) 92 2 (1)
Iji - 1611"21ji + (1611"2) Iji + ... I (2.26)

2
Ci(J.l) = Ci(J.l)(O) + ~2Ci(J.l)(1) +... . (2.27)

1611"

The initial values of the above RGE are the Ci( mw), which in the lowest order in the SM are given in

eq. (2.19-2.22).

Let us for the moment concentrate on the special case that 1 is a number. Then the lowest order

solution is given by

~
C(J.l) = TJ2/1o C(mw) I

3with C. = C.(JJ. g) we have equivalently JJtC. = (JJ :,. + JJ~ :g)C•.



aAmw)
TJ -- O's(Jl)'

which can be easily checked by substituting it into eq. (2.25). In the derivation we have used the QCD /3

function, which describes the running of the strong coupling:

We see that our obtained solution eq. (2.28) contajns all powers of a,,(Jl) In(~). It is called leading

logarithmic (LLog) approximation and is an improvement of the conventional perturbation theory. In

general such a QCD improved solution contains all large logarithms like n = 0,1, ... (here with Jl'= mb)

O'~(mb) lnm
( mb ) , (2.32)
mw

where m = n corresponds to LLog. A calculation including the next to lowest order terms is called next

to leading order (NLO) and would result in a summation of all terms with m = n - 1 and so on. In the

following we use the 2-100p expression for as (Jl) which can be always cast into the form

411" [/31In In(Jl2 / AbcD)]
a,,(Jl) = /30 In (Jl2/AbcD) 1- /35 In (JL2/AbcD) .

With Nf = 5 active flavours (note that we integrated out the top) and SU(Nc = 3) the values of the

coefficients of the /3 function are

23
/30 = 3'

They are given in appendixA2 for arbitrary Nc and Nf. The strong scale parameter AQCD == A~;5) is

chosen to reproduce the measured value of O',,(JL) at the ZO pole. For a" (mz) = 0.112,0.117,0.122 we

have A~bD = 160,214,280 MeV, corresponding to the values of the input parameters listed in appendix
AI.

We recall that in LLog the calculation of the anomalous dimension and the matching conditions at

lowest order, /(0), cfO) (mw) is required. In NLO a further evaluation of higher order diagrams yielding

/(1), Cf1)(mw) is necessary and in addition the hadronic matrix elements (OJ) have also to be known in

O(a,,).
In a general theory and also in the one relevant for rare radiative b decays given in eq. (2.15), the

operators mix and the matrix / has to diagonalized. In the latter case the (8 x 8) matrix /(0) has been

obtained by [8,9] and the running of the Cj (Jl) in LLog approximation cannot be given analytically. The

LLog solution for the Wilson coefficients ready for numerical analysis can be taken from [47]. We display

the Cj for different values of the scale JL in Table 2.1. As can be seen, there is a strong dependence on

the renormalization scale /-', especially for C1 and C;ff. Other sources of uncertainty in the short-distance

coefficients Cj are the top mass and the value of a,,(mz). We keep them fixed to their central values given
in appendix AI.



I C;(p) I p = mw I p = 10 GeV I p = 5 GeV I p = 2.5 GeV I
C1 0 -0.161 -0.240 -0.347

C2 1 1.064 1.103 1.161

C3 0 0.007 0.011 0.016

C4 0 -0.017 -0.025 -0.035

Cs 0 0.005 0.007 0.010

C6 0 -0.019 -0.030 -0.046

C~ff -0.196 -0.277 -0.311 -0.353

C~ff -0.098 -0.134 -0.148 -0.164

Table 2.1: Leading order Wilson coefficients in the Standard Model as a function of the renormalization

scale p.

Here a comment about power counting in our effective theory is in order: As can be seen from Fig. 2.3

with an external photon, the insertion of four-Fermi operators generates a contribution to b -+ 5'Y, which

is also called a "penguin". It is a I-loop diagram, but unlike "normal" perturbation theory, of order a~.To

get the a~ contribution, one has to perform already 2 loops and so on. That means, the calculation of the
LOCNLO) anomalous dimension matrix was a 2(3)-loop task.

A comprehensive discussion of weak decays beyond leading logarithms can be seen in ref. [46]. The

main results of the NLO calculation in B -+ X$'Y decay will be given in section 2.3.

The advantages of the effective theory compared to the full theory can be summarized as follows:

• The effective theory is the more appropriate way to include QeD corrections. Large logarithms like

In(p/mw) multiplied by powers of the strong coupling a$(p), which spoil the perturbation series

in the full theory, can be resummed with the help of the RGE.

• On the level of a generic amplitude A = (llej j) rv Li Ci(p) (Oi)(p) the problem can be factorized
into two parts: The short-distance (SD) information, which can be calculated perturbatively, is en-

coded in the Ci, and it is independent of the external states, i.e. quarks or hadrons. The long-distance

(LD) contribution lies in the hadronic matrix elements. Both are separated by the renorrnalization

scale p. Of course the complete physical answer should not depend on the scale p, truncating the

perturbation series causes such a remaining dependence, which can be reduced only after including

higher order terms or a full resummation of the theory.

• As long as the basis is complete, the effective Hamiltonian theory enables one to write down a

model independent analysis in terms of the SD coefficients Ci. This is true for SM near extensions

like the two Higgs doublet model (2HDM) and the minimal supersymmetric model (MSSM). Here

one can try to fit the Ci from the data [12]. However, new physics scenarios like, e.g., the left-right

symmetric model (LRM) require an extended operator set [48,49,50]. Wilson coefficients in the

2HDM and in supersymrnetry (SUSY) can be seen in ref. [51] and ref. [52], respectively.



The effective Hamiltonian theory displayed in the previous section is applied to B -t X" 1decay. Several

groups have worked on the completion of the LLog calculation [8,9). The anomalous dimension matrix

at leading order 1(0) and the lowest order matching conditions (eq. (2.19-2.22» govern the running of

the LLog Wilson coefficients, denoted in this and only this section by cfO) (J1.), to separate them from the

NLO coefficients. We discuss the improvement of the theory in B -t X,,'Y obtained from NLO analysis.

In the remainder of this work we treat the Wilson coefficients Ci, i = 1, ... 8 in LLog approximation.

In the spectator model, the branching ratio for B -t X,,'Y in LLog approximation can be written as

where a normalization to the semileptonic decay B -t XeiVi to reduce the uncertainty in the b-quark

mass has been performed. Here B,,[ denotes the measured semileptonic branching ratio and the phase

space factor f(me) with me = me/mb for f(B -t XciVi) can be seen in eq. (3.30).

As the branching ratio for B -t X,,1 is mainly driven by C~o)eff(J1.),several effects can be deduced:

• Including LLog QeD corrections enhance the branching ratio for B -t X,,1 about a factor 2 - 3,

as can be seen in Table 2.1 (here denoted by Ci (J1.) and changing the scale from J1.= m W down to

• While the sign of C~o)eff is fixed within the SM, i.e. negative, it can be plus or minus in possible

extensions of the SM. A measurement of B (B -t X" 1) alone is not sufficient to determine the sign
of C~o)eff, or in general, the sign of Cfff resulting from possible higher order calculations.

• The strong scale dependence of the value of C~o)eff (J1.) causes serious problems in the accuracy of

the LLog prediction. Varying the scale between T 5 J1. 52mb, results in an error in the branching

ratio of ±25% [53], [7].

Because of the last point the NLO calculation was required. Several steps have been necessary for a

complete NLO analysis. Let us illustrate how the individual pieces look like: At NLO, the matrix element

for b -t S"f renormalized around J1. = mb can be written as [7]:

GFM(b -t S1) = -4 vl2AtD(07(mb)tree ,

D = Cfff(J1.) + Q"~:b) ~ ( CJO)eff(J1.h!~) In :b + C!0)eff(J1.)ri7) .
,

The ri7 are computed in ref. [43]. They contain the bremsstrahlung corrections [6], [54] b -t s19 and

virtual corrections to the 07 matrix element [43]. Especially the latter with an O2 operator insertion

demands an involved 2-loop calculation, see Figs. 1-4 in [43), where the corresponding diagrams are

shown. It is consistent to keep the pieces in the parentheses in eq. (2.37), which are multiplied by Q" (mb),
in LLog approximation.



Now C~ff (jj) has be be known at NLO precision,

C~ff(jj) = C~o)eff(jj) + a., (mb) C~l)eff(jj) .
411"

As this job consists out of two parts, the work has been done by two groups: The O( a~) anomalous

dimension matrix was obtained in ref. [44], which required the calculation of the residue of a large number

of 3-loop diagrams, describing the mixing between the four-Fermi operators 0l...6 and 07,8. The second

part, the NLO matching at jj = mw has been done in ref. [55] and confirmed in ref. [56]. The NLO

calculation reduces the jj = O(mb) scale uncertainty in varying jj in the range ~ ~ jj ~ 2mb drastically

to ±4.3% [57] and suggests for B --+ X." a scale jj = ~ as an "effective" NLO calculation through

As a final remark on scale uncertainties it should be noted that in the foregoing the top quark and

the W have been integrated out at the same scale jj = mw, which is an approximation to be tested. It is

justified by the fact that the difference between a., (mw) and a., (mt) is much smaller than the one between

a.,(mw) and a.,(mb). 4 The authors of [57] analysed the dependencies on both the W matching scale

jjw = O( mw) and the one at which the running top mass is defined: fflt (jjt) and jjW i= jjt. Similar to

the mb scale they allowed for jjW, jjt a possible range: T ~jjx ~ 2mx where x = W, t. Their findings

are that the jjw, jjt uncertainty is much smaller (namely ±1.1 %, ±O.4% at jj '" mb in NLO, respectively)

than the uncertainty in the scale around mb and therefore negligible.

In this section we sketch the methods to treat the LD effects in inclusive B decays. We have effects due

to the confinement of the quarks in a bound state and due to resonances. They will be explained more

detailed in the following chapters when and where necessary. For the evaluation of the exclusive channels

we refer to chapter 4 in which the rare mode B., --+ II is discussed, especially section 4.2.

There are mainly two different approaches to take into account the effects of the B-meson bound state,

the heavy quark expansion (HQE) and the phenomenologically motivated Fermi motion model (FM).

While the fonner is a field theory in the framework of the heavy quark limit of QCD and has an interest of

its own, the latter serves as a model of the data and has no intrinsic problems like end-point singularities

etc. like HQE. Both models have parameters which can be related to each other and as they are used as

inclusive methods, no fonn factors appear in the amplitudes. Inclusive decays are good from theoretical

point of view and a challenge for experimentalists: An inclusive final state X is an average over a suf-

ficiently high number of exclusive single (resonances) and continuous multi body states with the same

quantum numbers as X. Inclusive decays involve the calculation of quark level processes. The underlying

assumption of quark-hadron duality requires a large and dense enough populated phase space. By means

of a "smearing" procedure, the singular behaviour in a local fonn is avoided and the differential spectra

can be measured in a distribution sense.



Another type of LD effect beside the bound state effect mentioned above, is due to resonances. A (qij)
spin 1 state can hadronize from a virtual q-Ioop. The conversion of such a vector meson into a photon is

described by the phenomenological vector meson dominance (VMD) model.

Consider a hadron containing one heavy quark Q in the limit mQ -+ 00. The other ingredients, light

quarks and gluons, are seen as a light cloud around the heavy quark, sometimes also called the "light

brown muck" [58], which exchanges small momenta of order AQCD with Q for which a perturbative

expansion is not useful. The parameter AQCD characterizes the soft hadronic interaction scale. The heavy

quark inside the bound state is treated as a static source of gauge charge (colour and electric charge): Q is

so heavy compared to AQCD, that it does not recoil as a result of the soft eXChanges, it sits at rest in the

hadron rest frame. This is the heavy quark limit of QCD.

New symmetries can be explored which are exact in the limit of an infinitely heavy quark: The light

degrees of freedom are insensitive to the mass, flavour and spin of the heavy quark! This brings an enor-
mous simplification of certain aspects of QCD, like the calculation of heavy quark matrix elements and

hadron spectroscopy. However, for a firm phenomenological analysis we need to go from the predictions

of heavy quark symmetry in the strict limit mQ -+ 00 to a theory which provides a controlled expansion

around this (academic) case. This can be done with the heavy quark expansion technique (HQEn in the

limit mQ ~ AQCD. The necessary technology has been developed over the last decade and can be seen

in a selection of papers [15,16] and references therein. A nice review on the HQE technique is given in

ref. [59].

Let us now switch to the system under consideration, the B-mesons. Since the b-quark is heavy, i. e.

mb '" 4.8GeV ~ AQCD '" 200 MeV, the success of the spectator model in B == (bq) meson decays can
be understood. Moreover, corrections in inverse powers of mb to this can be systematically obtained with

the help of the HQET.

The light degrees of freedom in the B-meson give rise to the parameter A which accounts for the

binding energy of the bound state. In the limit of an infinitely heavy b-quark, i. e. mb -+ 00 we have

where mB denotes the B-meson mass. Corrections to this can be calculated within the following set

up of HQE: The heavy b-quark momentum is written as Pb = mbv + k, where k is a small residual

momentum of order AQCD. v denotes the velocity of the meson with momentum P = mBv, which at

rest is v = (1,0,0,0). It follows that the relative movement between the heavy quark and the meson is

suppressed by powers of k / mb. Performing an operator product expansion up to operators with canonical

field dimension 5, the HQET mass relation modifies to [60]

- 1
mB = mb + A - - (AI + 3Az) + ... ,

2mb



Reference Method A [GeV) ),1 [GeV2)

Falk et al. [66) Hadron Spectrum ~ 0.45 ~ -0.1

Gremm et al. [31) Lepton Spectrum 0.39± 0.11 -0.19 ± 0.10

Chemyak [67) (B -+ Xlv) 0.28 ± 0.04 -0.14± 0.03

Gremm, Stewart [68) 0.33± 0.11 -0.17± 0.10

Li, Yu [69) Photon Spectrum 0.65:!:g:~ _071+0.70. -1.16

(B -+ X31)

where the ellipses denote terms higher order in 1/mb. In general, the next to leading power corrections in

HQET are parameterized in terms of these matrix elements of the kinetic energy and the magnetic moment
operators ),1 and ),2, respectively. We can get the value of ),2 from spectroscopy

The quantity ),1 is subject to a theoretical dispersion. Its value has been determined from QCD sum rules,

yielding),1 = -(0.52 ± 0.12) GeV2 (Ball and Braun in [61)) and ),1 = -(0.10 ± 0.05) GeV2 (Neubert

[62)). Further, the value for ),1 has been extracted from an analysis of data on semileptonic B decays

(B -+ XlVi), yielding),1 = -0.20 GeV2 with a corresponding value A = 0.39 GeV, as the two are

correlated [31). For a review on the spread in the present values of these non-perturbative parameters

extracted from inclusive decay spectra, see Table 2.2. which is adopted from [63).

Now there is an intrinsic difficulty in the relation eq. (2.41). One can ask for the meaning of the "pole"

mass mb and A ? First of all, they are non-perturbative parameters and they add· up in the combination

given by eq. (2.41) to the physical B-meson mass. However. while the sum is fixed. there is a scheme

dependent "renormalon" ambiguity of order AQCD in both mb and A. which cancels out in physically

measurable quantities [64). Assuming universality. the parameters mb, A determined by one experiment

can be used to help the analysis of another decay. provided that one uses the same renormalization scheme

prescription.

The power corrections in B -+ X31 decay including l/m~ terms have been calculated in ref. [17).

The l/m~ corrections have been recently reported in ref. [65). However. the use of the last calculation is

limited by the fact. that the matrix elements of the higher dimensional operators are almost unknown. In

B -+ X6e+l- decay the l/m~ have been first calculated in ref. [17) (with massless s-quark) and corrected

in ref. [18) with full m6• The latter has been confirmed recently in the massless s-quark case in ref. [27).

Details of the HQET calculation are given in chapter 3.



With me '" 1.4GeV ~ AQCD the charm is still a heavy quark and also lime power corrections are
subject of present B-physics. A theoretically interesting structure, an effective bs,g-vertex appears from

the diagrams displayed in Fig. 2.4 [36]. The amplitude of this operator can be expanded in lime. The

power corrections in AQc D Ime to the B -+ X"' decay rate have been calculated first in ref. [70] and [71],

however with the wrong sign. This has been settled now in favor of [72,73,27]. The resulting correction

to the decay rate is found to be small:

of(B -+ X",)
f(B -+ X",)

dominance ansatz, (see section 2.4.3, Fig. 2.5) in regions of momentum transfer q2 far away from the

resonances.

Pros and cons of the HQE approach

The last point above corresponds to an uncomfortable property of the HQE method: The development of

end-point singularities in inclusive decay spectra [16,18], hence only quantities smeared over a sufficiently

large phase space interval are calculable. Such a smearing is incorporated, e.g., in the Fermi motion model

[22], discussed in the next section.

Another model to handle the effects of the bound state is the phenomenological Fermi motion model (FM)

[22]. The FM is defined through the requirement that the b-quark and the spectator quark q four-momenta

add up to the B = (bq)-meson four-momentum. In the rest frame of the B-meson the quarks fly back to



back with momentum ji == pI,= -p~. From energy conservation follows than that either the spectator or

the b quark has to have a momentum dependent mass. In this work we choose mq to be a parameter of the

model and the b quark to have a p dependent mass. It reads

The next assumption is that the momentum p obeys the Gaussian distribution function </>(p) weighted with

the Fermi momentum PF
4 _p2

</>(p) = V1r 3exp(-2) , (2.46)
trPF PF

with the normalization 1000 dp p2 </>(p) = 1. The procedure to implement these wave function effects to a

general parton model distribution obtained in the b quark rest frame is as follows:

1. replace the b quark mass by mb (p)
2. boost the distribution into the B-meson rest frame and

3. fold the result with the wave function given in eq. (2.46).

For subsequent use in working out the normalization (decay widths) in the FM model, we also define

an effective b-quark mass by

The two parameters of the FM model, the Fermi momentum PF and the spectator mass mq can be

fitted from data, however, up to now this procedure has not been very conclusive as still large ranges of

the parameters are possible. The question appears here whether the FM parameters do depend on flavour,

i. e., are they universal for B -t XI + ("(,leptons) with f = d,u,s,ctransitions. Further relations

between theFM parameters (PF, mq) and the HQETparameters (AI, A) can be obtained. However, there

is no analogue of the magnetic moment coupling A2 in the FM.

We will return to the FM in chapter 3 to model the wave function effects in B -t X s£+£- decay.

Vector meson dominance (VMD) provides a mechanism to convert a spin 1 meson, here generically de-

noted by V == (qij) into a photon [74]. The creation of a (qij) bound state from a virtual q, ij pair and its

subsequent conversion into a photon is displayed in Fig. 2.5. The intermediate vector meson propagator



equals 1/ (m} - q2 - i m v rt7t), where the imaginary parts takes the effect of a finite total width rt7t of

the V into account. The matrix element of the constituent current is defined as

and the photon interacts with the (neutral) bound state through the electromagnetic current J;m = eQ qij,IJq

as:

Here q, EV are the momentum and the polarization vector of the vector meson V, respectively and Qq

denotes the charge of the quark q in units of e. VMD conversion means that while V -+ I also E~ -+ EIJ,

where EIJ is the polarization vector of the photon. The form factor at q2 = m} can be obtained from

measurement of the leptonic width

What about Iv (q2) at q2 =I m} ? For the calculation of the form factor at 0 5 q2 5 m}, there

exist different ways, which are neither straightforward nor unique. a) First of all data on photo production

IN -+ V N at q2 = 0 can be used. They indicate a large suppression of Iv (0) compared to Iv (m} )

only if the vector meson is heavy such as V = J /t/J, t/J'. As in this case q2 = m}N' m~1 to q2 = 0

involves a large extrapolation in q2. It is not expected to be so significant for V = p, w, </> as q2 = m; etc.

is not far away from q2 = O. This is what all the methods listed here share, that Iv (q2) decreases with

decreasing q2. b) Often a single-pole form is assumed to extrapolate the form factor to smaller values of

the momentum transfer

f ( 2) _ Iv (0)
v q - 2/ 21- q mpole

where mpole corresponds to the masses of higher resonances of the V. c) The approach by [75] is based

on a dispersion relation calculation. It yields an interpolation formula between Iv (0) and Iv (m}) where

both can be fixed by data. The situation for q2 > m} is unclear.

The VMD mechanism has been applied to B -+ XSI decay to estimate the long distance contribution

through B -+ Xst/Ji -+ x'" by [76,77]. Here t/Ji = J /t/J, t/J', ... t/J(v) are the known six charmonium

resonances, see [39]. The t/Ji -+ I conversion requires the knowledge of the form factor at q2 = 0 for an

on-shell photon. It has been shown in ref. [76], that the methods a) and c) listed above yield a consistent

suppression at q2 = O. The longitudinal degrees of freedom of the t/Ji have been removed using the

procedure proposed by [77]. However, assumptions made remain as uncertainties in the calculation.

We will make extensive use of VMD in chapter 3 and chapter 4 to include long-distance effects from

intermediate vector mesons in B -+ Xst+ i- and Bs -+ II decays, respectively. However, in chapter 3

we estimate the resulting uncertainties which emerge from various theoretical approaches in implementing

the q2 -dependence of the VMD-dominated amplitude.



Chapter 3

Inclusive B --t Xsg+g- Decay

lbis chapter contains a comprehensive analysis of B -+ X8i+ i- decay in the standard model (SM). We

include QCD improved 0(0'8) corrections, use heavy quark expansion techniques (HQEl) and apply the

Fermi motion model (FM). Further, the long-distance effects via intermediate J /t/J, t/J', ... resonances are

taken into account with a vector meson dominance (VMD) ansatz.

Flavour changing neutral current (FCNC) decays B -+ X 8i+i- and B -+ X 81 are governed in the SM by

loop effects. They provide a sensitive probe of the flavour sector in the SM and search for physics beyond.

In the context ofrare B decays the radiative mode B -+ X81 has been extensively discussed in chapter 2.

In this chapter we address inclusive B -+ X8i+i- decay with i = e, J.l. Since we are neglecting

finite lepton masses we cannot apply our results to the r-ease. The b -+ si+ i- transition has been

studied earlier in the free quark model in refs. [78-80] in the lowest order in the SM context. The NLO

O( 0'8) improvement in the invariant dilepton mass distribution and the decay rate has been worked out in

refs. [9,47]. Leading (l/mn power corrections in the HQET framework [15,16] in the invariant dilepton

spectrum in B -+ X8i+i- decay have been reported in ref. [18], correcting an earlier calculation [17].

lbis has been recently confirmed in ref. [27] for the massless s-quark case. Another interesting quantity

in B -+ x8e+e- is the FB asymmetry [13], also known at l/m~ [18]. It can be used together with

the branching ratio of B -+ X81 and the dilepton spectrum in B -+ x8e+e- for a model independent

analysis of the short-distance coefficients [12] in the search for SUSY effects [81-83], [50]. The l/m~

power corrections to the left-right asymmetry [84,85] have been presented in [86] correcting an earlier

calculation of the same [85]. Both the FB asymmetry and the left-right asymmetry are defined in section

3.1.3. The longitudinal polarization of the lepton, PL, in B -+ X8r+r- at the partonic level has been

worked out [87]; the other two orthogonal polarization components PT (the component in the decay

plane) and PL (the component normal to the decay plane) were subsequently worked out in [28]. The

O(l/m~) correction to the dilepton invariant mass spectrum in B -+ x8e+e- has also been calculated

in [88], however, the result differs in sign from the one in [27]. lbis controversy, which goes back to

the corresponding one in B -+ X81 decay (see section 2.4.1 for a discussion) has been settled in favor



of [27]. It is known that inclusive decay spectra are not entirely calculable with HQET [19-21], [16],

especially, the expansion in powers of 11mb diverges in the high dilepton mass q2 region in B ~ X $e+e-
decay [18]. An alternative approach to take into account B-meson bound state effects is the FM model

[22]. In the FM a prediction for the entire q2 range for the dilepton mass distribution and FB asymmetry

in B ~ x$e+e- decay has been given ref. [18]. The sensitivity of the distributions on the FM parameters

is worked out there. Long-distance effects due to intermediate B ~ X$ + (J 11/J, 1/J', ... ) ~ X$t+t- have

been discussed in refs. [89,28,90] and recently [14]. Hadron spectra and hadronic spectral moments are

presented in refs. [25,26,14] in both the HQE approach and the FM.

This chapter is divided into two parts. The first one (this section up to and including section 3.4) based

on ref. [18], contains an introduction to B ~ x$e+e- decay, basic definitions and the O(a$) and 1/m~

corrected matrix element for b ~ se+e-. Is is mainly devoted to the analysis of the dilepton invariant mass

distribution and the FB asymmetry. In doing that, we derive leading power corrections to the decay rates
and q2 distributions in the decay B ~ x$e+t- using heavy quark expansion (HQE) in (11mb). Further,

wave function effects of the b-quark bound in the B-hadron are studied by us in the phenomenologically

motivated Gaussian Fermi motion model. Using this model for estimating the non-perturbative effects,

we include the dominant long-distance (LD) contributions from the decays B ~ X$ + (J 11/J, 1/J', ••. ) ~
x$e+ e-. Further, taking into account the next-to-leading order perturbative QCD corrections in b ~
se+e- , we present the decay rates and distributions for the inclusive process B ~ X $£+£- in the SM.

The second part. starting from section 3.5 complements the study of B ~ X $£+e- decay and investi-

gates hadron spectra and hadronic spectral moments. It is mainly based on refs. [25.26.14]. We compute

the leading order (in a$) perturbative QCD and power (limn corrections to the hadronic invariant mass

and hadron energy spectra in the decay B ~ X $e+£-. The computations are carried out using HQET

and a perturbative-QCD improved Fermi motion model which takes into account B-meson bound state

effects. We also present results for the first two hadronic moments (Sii) and (Eii), n = 1,2, working

out their sensitivity on the HQET and FM model parameters. In the FM, also the LD effects due to in-

termediate charmonium resonances are taken into account. We study uncertainties in the parametrization

of the cc effects. Further. we investigated the effect of the experimental cuts. used recently by theCLEO

collaboration in searching for the decay B ~ X$f+ £- [30]. on the branching ratios, hadron spectra and

hadronic invariant mass moments using the FM model.

where 9 denotes a gluon from the O(a$) correction (see Fig. 3.2). We define the momentum transfer to

the lepton pair and the invariant mass of the dilepton system. respectively. as

q - p+ +p-,

s == q2.

(3.2)

(3.3)



The dimensionless variables with a hat are related to the dimensionful variables by the scale mb, the

b-quark mass, e.g.,

• S
S=-2 'ffib

etc .. Further, we define a 4-vector v, which denotes the velocity of both the b-quark and the B-meson,

Pb = ffibV and PB = mBv. We shall also need the variable u and the scaled variable u = 3, defined as:
. mb

u == -(Pb - p+)2 + (Pb _ p_)2 ,

U = 2v· (p+ - p_) ,

(3.5)

(3.6)

and further the kinematical phase factor

u(s, m.,) = J(s - (mb + m.,)2)(s - (mb - m.,)2) .

-u(s, m.,) < u < +u(s, m.,) ,
u{s, m.,) = V(s - (1+ m.,)2] (s - (1 - m.,)2] ,

4m1 < s < (1 - m.,)2 .

Next, the explicit expressions for the matrix element and (partial) branching ratios in the decays b -7

sf+ f- are presented in terms of the Wilson coefficients of the effective Hamiltonian obtained by integrat-

ing out the top quark and the W± bosons,

1lelf(b -7 S+ f+l-) = 1lell{b -7 s + /) - ~ ~~vtb (Cg{Jl)Og + CIOOIO], (3.9)

where 1lell (b -7 s + /) together with the operators 01...8 and their corresponding Wilson coefficients

Ci(Jl) [7,6] can be seen in section 2.2. The two additional operators involving the dileptons 09 and 010

are defined as:

A usual, CKM unitarity has been used in factoring out the product ~:vtb. Note that the chromomagnetic

operator 08 does not contribute to the decay B -7 X.,£+ l- in the approximation which we use here. The

Wilson coefficients are given in the literature (see, for example, [9,47]). They depend, in general, on the

renormalization scale Jl, except for ClO• At leading logarithmic (LLog) approximation, we use the values

of the Ci given in Table 3.1.

With the help of the effective Hamiltonian in eq. (3.9) the matrix element for the decay b -7 sf+ f-

can be factorized into a leptonic and a hadronic part as,

M(b-4 siti-) = ~: ~:vtb [(C~ff-ClO) (~/JJLb) (ii' Ll)



C1 C2 C3 C4 Cs C6 Cfff cg CIO C(O)

-0.240 +1.103 +0.011 -0.025 +0.007 -0.030 -0.311 +4.153 -4.546 +0.381

Table 3.1: Values of the Wilson coefficients used in the numerical calculations corresponding to the central

values of the parameters given in Table A.I. Here. C;ff == C7 - Cs/3 - C6• andfor Cg we use the NDR

scheme and C(O) == 3C1 + C2 + 3C3 + C4 + 3Cs + C6•

+ (~ff +C10) (s,J' L b) (i ,J' R l)

-2C~ff (s i 0"J'V :: (ffisL + ffibR) b) (i ,J' l)], (3.11)

where we abbreviate C~ff == C~ff (s). We have kept the s-quark mass term in the matrix element explicitly

and this will be kept consistently in the calculation of power corrections and phase space. The above matrix

element can be written in a compact form,

i,J' L(R) e,
- S [R,J' ( C~ff 1= CIO + 2C~ff f) + 2ms C~ff 'J' fL 1b.

(3.13)

(3.14)

where we have already used massless leptons in substituting -2iO"J'vqv = hJ" i.l by 2'J'tJ in the term
proportional to Cfff.

The effective Wilson coefficient C~ff (s) receives contributions from various pieces. The resonant cc
states also contribute to C~ff(s) and will be discussed in section 3.4; hence the contribution given below

is just the perturbative part:

Figure 3.1: The Feynman diagram responsible for the four-Fermi-operator contribution (depicted by the

blob) to the operator 090



where (NDR) and (HY) correspond to the naive dimensional regularization and the 't Hooft-Veltman

schemes, respectively. We recall that while C9 is a renonnalization scheme-dependent quantity, this de-

pendence cancels out with the corresponding one in the function Y(S) (the value of~, see above). The

function g(z, s) includes the quark-antiquark pair contribution [9,47]:

8 mb 8 8 4 2 . /
-gIn( -;-) - gIn z + 27 + gY - g(2 + Y)y 11- yl

[
1+~ . 1 ]9(1- y)(In yr=y - m) + 9(y - 1)2 arctan yy=l ,1- l-y y-l

8 8 1 ( mb ) 4 1 A 4 .- - - n - - - n s + -l1l"
27 9 Jl. 9 9'

g(mc, s) (3C1 + C2 + 3C3 + C4 + 3Cs + C6)

-~9(1, s) (4 C3 + 4C4 + 3Cs + C6) - ~g(O, s) (C3 + 3C4)

2 4
+g (3 C3 + C4 + 3 Cs + C6) - ~ 9 (3 C1 + C2 - C3 - 3 C4) ,

{
0 (NOR),

~=
-1 (HY),

where y = 4z2 / S. As can be seen from the above equations, internal b-quarks '" g(l, s), c-quarks

'" g(mc, s) and light quarks q, (with mq = 0 for q = u, d, s) '" g(O, s) contribute to the function Y(S);
only the charm loop involves the dominant "current-current" operators 01 and O2•

The O(a.,) correction [91] from the one-gluon exchange in the matrix element of 09 in the invariant
dilepton mass s is represented by

1](s) = 1+ a.,(Jl.) w(s) ,
11"

2 2 4L· (A) 21 Al (1 ") 5+4s 1 ( ")- -11" - - l2 S - - n s n - s - --- n 1- s
9 3 3 3(1 + 2s)

2s(1 + s)(1 - 2s) " 5 + 9s - 6s2
3(1 - s)2(1 + 2s) In s + 6(1 - s)(1 + 2s) .

Note that the function w( s) is given with m., = O. The one-gluon correction to 09 with respect to the final

partonic energy and the invariant mass will be presented below in section 3.6.

In the order we are working only 09 is subject to a., corrections since the renonnalization group

improved perturbation series for C9 is 0(1/ a.,) + 0(1) + O(a.,) + ... , due to the large logarithm in C9

represented by 0(1/ a.,) [47]. The Feynman diagrams, which contribute to the matrix element of 09 in

O(a.,), corresponding to the virtual one-gluon and bremsstrahlung corrections, are shown in Fig. 3.2.

With the help of the above expressions, the differential decay width becomes on using P± = (E±, P±),

__ 1_GF
2 a2

• 12 d3p+ d3p_ ( L LLI'I' R RI'I')
dr - 2mB 211"2 I~.,vtb (211" )32E+ (211" )32E_ W JJV + W /.."L ,



Figure 3.2: Feynman diagrams contributing to the explicit order a., corrections of the operator 09• Curly

lines denote a gluon. Wave function corrections are not shown.

where W"v and L"v are the hadronic and leptonic tensors, respectively. The hadronic tensor W{:jR is

related to the discontinuity in the forward scattering amplitude, denoted by T{:jR, through the relation

W"v = 2 1m T"v. Transfonning the integration variables to s, u and v . ij, one can express the Dalitz
distribution in b -+ si+ i- (neglecting the lepton masses) as:

TL/R"v _ i J d4ye-iq.Y(BIT{rl~/R(y),r2~/R(o)}IB) I

LL/R"v _ L [vL/R(p+) 'Y" uL/R(p_)] [uL/R(p_) 'Yv vL/R(p+)]
.,pin

2 [P+" p_v + p_" P+v - g"V(p+ . p_) 1= i£"valJ P+a P-IJ]

where rl~/Rt = r2~/R = r~/R, given in eq. (3.14). The Dalitz distributioneq. (3.23) contains the ex-

plicit o (a.,)-improvement, and the distributions in which we are principally interested in can be obtained

by straight-forward integrations.

Using Lorentz decomposition, the tensor T"v can be expanded in terms of three structure functions 1 ,

where the structure functions which do not contribute to the amplitude in the limit of massless leptons

have been neglected. After contracting the hadronic and leptonic tensors, one finds

We remark here that the T3 term will contribute to the FB asymmetry but not to the branching ratio or the
dilepton invariant mass spectrum in the decay B -+ X .,i+i- .



It has become customary to express the branching ratio for B -+ Xsi+t- in terms of the well-measured

semileptonic branching ratio Bs/ for the decays B -+ (Xc, Xu)iVt according to

This fixes the normalization constant Bo, which will be used throughout the following sections to be,

_ 3a2 1~~VibI2 1
Bo = BS/161r2 IVcbl2 f(mc)K(mc)'

Here f(mc) is the phase space factor for r(B -+ XciVt) and the function K(mc) accounts for both

the O(as) QeD correction to the semileptonic decay width [92] and the leading order (1/rnb)2 power
correction [15]. They read as:

Ao(mc)
f(mc) ,

Al + f(~c) [-9 + 24m~ - 72m~ + 72m~ - 15m~ - 72m~ In mc]

and the analytic form of Ao(mc) can be seen in ref. [93]. Note that the frequently used approximation

g(z)::::: _~((1r2_ 341)(1-z)2+~)holdswithinl.4%accuracyintherangeO.2 ~ z ~ 0.4. The equation

g(z) = -1.671 + 2.04(z - 0.3) - 2.15(z - 0.3)2 is accurate for 0.2 ~ z ~ 0.4 to better than one per

mille accuracy.

Besides the differential branching ratio, B -+ Xsi+i- decay offers other distributions (with different

combinations of Wilson coefficients) to be measured. An interesting quantity is the Forward-Backward

(FB) asymmetry defined in [13,12]

dA(s) = [1 d2B dz -10 d2B dz
ds Jo ds dz -1 dsdz '

where z == CDS () is the angle of i+ measured w.r.t. the b-quark direction in the dilepton c.m. system.

From the experimental point of view, a more useful quantity is the normalized FB asymmetry, obtained

by normalizing dA/ ds with the dilepton mass distribution, dB/ ds,



The asymmetry ..4, which we recall is defined in the dilepton c.m.s. frame, is identical to the energy

asymmetry AE introduced in [81], as shown in ref. (18]. It is defined in the B rest frame as

A - (N(E_ > E+) - N(E+ > E_))
E = (N(E_ > E+) + N(E+ > E_)) .

Here N(E_ > E+) denotes the number of lepton pairs whose negatively charged member is more ener-

getic than its positive partner, where E± denote the.e± charged lepton energy in the B rest frame. The FB

asymmetry is odd under charge conjugation in contrary to the differential branching ratio, which is charge

conjugation even. Both observables contain non overlapping information which together can be used to

test the SM.
Another quantity is the left-right-asymmetry [84,85,86], defined as

dALR dBL dBR
~= ds - ds '.

with dSL Ids (dBR Ids) denoting the invariant dilepton mass distribution for B -+ X $.e+.e- decay into

purely left-handed (right-handed) leptons. We can obtain dBL/Rlds from the dilepton invariant mass

distribution dBIds by the replacements

Ceff C~ff =f ClO C ClO =f C~ff IC7effl2-+ !IC7eff12 .
9 -+ 2 ,10 -+ 2' 2

Measurement of these asymmetries provides additional information on the underlying short-distance

physics.

We start with a discussion of the analyticity properties of the forward scattering amplitude TJ.'v. They

are determined by cuts, depending on the external states. We consider real particle production in the

inclusive decay B -+ X$.e+.e- , thus we have PB = PX + q, where PB, PX denotes the 4-momentum of

the B-meson, final hadronic state X $, respectively. The hadronic invariant mass is in the range

and the physical cut runs along the real axis in the complex v . q plane in the limits

G m2 +q2 m2
V q2 ~ V • q ~ B 2 - K

mB

The phase space integration, which follows the above cut, is over intermediate physical states and hence,

depends on long-distance QCD. Moreover, at the upper bound of the cut, where Pk rv m;, resonances are

dominating. In order to perform a reliable expansion in perturbative QCD, the contour of the integration

has to be deformed in such a way that a) it encloses the cut and b) stays away from it by a distance large

compared to AQCD (see Fig. 1 in [16] for the contour of integration). The expansion is valid except in

the comer of the Dalitz plot, where the hadronic invariant mass of the final state is small (the s-quark

in Fig. 3.3 is almost on-shell.) However, results of perturbative QeD are expected to be recovered after
suitable smearing.



The next task is to expand the forward scattering amplitude TJlv in eq. (3.26) in inverse powers of mb.
We employ HQE techniques which have been already sketched in section 2.4.1. The leading term in this

expansion, i.e., O( m~) reproduces the parton model result. Let us describe how to get next to leading

power corrections. First we write the momentum of the heavy b-quark as PbJl= mbvJl + kJl, fix the four-

velocity of the external b-quark field to be vJland treat the components of the "residual momentum" kJlof

order AQCD. We obtain the conditionp~ = m~ + 2mbv.k + k2, which yields P~ = m~ + O(k/mb). The
heavy quark remains almost on-shell under soft gluon exchange with the light degrees of freedom, there

is no anti-quark generated and the total b-number is conserved.

It is customary to define a field h with fixed velocity v through

b(x) = eim"v.z [1+ i2~b + ...J h(x) J

and the projection operators P± = (1 ± "')/2. For the Dirac field b(x) the following identities hold

P+b(x) = b(x) and P_b(x) = 0, which are corrected by terms of O(I/mb). Inserting this into the usual
QeD Lagrangian £ = b(ilfJ - mq)b we get the one in theHQET:

1 - 2 1 - 2 1 - -i 2
8£ = -2 h(iD) h - -2 -Zdp)h(iv.D) h + -2 -Z2(p)h-2 uJlvG/lvh + O(I/mb) .

mb mb mb

Here, G/lV = [iDJlJ iDv] denotes the gluon field strength tensor. 2 For definition of the renormalization

constants ZI,2(p) we refer to [17] and references therein. For the sake of completeness we give the
Feynman rules in the HQET in appendix A.3.1. The matrix elements of the above higher dimensional

operators are given as

(BIIi(iD)2hIB) _ 2mBAIJ

(B Iii ~i uJlVGJlVhi B) _ 6 mB A2 J

where B denotes the pseudoscalar B-meson, see section 2.4.1 for a discussion of the values of the pa-

rameters Al and A2. The second term on the r.h.s. of eq. (3.44) vanishes by the lowest order equation of

motion iv.Dh = O. The on-shell condition of the heavy quark is m~ = m~ +2mb v.k +k2. Neglecting the

last term, we have the simple condition v.k = O. This is equivalent to the lowest order EOM of a heavy

quark, thus we have the correspondence k H iD.

2Note that here and only in this section we use this definition of the gluon field strength tensor G = GF LS, following the

conventions of ref. [17). It is not consistent with the usual one appearing in QCD text books, eq. (A.IO), denoted here by GQC D •

The two are related by OFLS = igOQC D •



Suppressing the Lorentz indices for the time being, this operator product expansion (OPE) can be

formally represented as:

= __1 [(B 1001B) + -2 1 (B l0ll B)
mb mb

+_1_ (B 1021 B) + ...J .
4mb2

The expressions for the operators 00,01 and O2 have been first derived in ref. [17], which we have

checked and confirm. They are given as:

1--bf1 (y - i + ms)f2b,
x

3.lifnaf2iDah - 42(v - q)alif1 (y - if + ms}f2iDah ,
x x

1~(v - q)a(v - q)Plift{y - if + ms)f2iDaiD{Jh - 42lif1 (y - if + ms)f2(iD)2h
x x

42(v - q)Plifnaf2(iDaiDp + iD{JiDa)h ,(3.50)x
22ms!Lf1iua{Jf2Ga{Jh + 2

2
ifl'>.a{J(V- q)>.lifnl',sf2GalJh , (3.51)

x x

3.li(,lJfnaf2 + fnlJfna)iDlJiDah - 42(v - q)ali,lJft{y - if + ms}f2iDlJiDah
x x

- 42 (v - q)alif 1 (y - if + ms}f 2,PiDaiDlJh . (3.52)
x

Here x= 1 + s - 2 (v· q) - m; + i l. The operator 03 responsible for l/mf corrections can be seen in
ref. [65].

The above Oi. i = 0,1,2 are obtained by expanding the Feynman diagrams shown in Fig. 3.3. which

contributes to the time-ordered product on the l.h.s. of eq. (3.46). The diagram on the left is responsible

for the operators 00, OI, 0~1) and 0~2). To be definite. we write the intermediate s-quark propagator

using 4-momentum conservation Ps = Pb - q = mb v - q + k as

. Is+ms .1 y-i+l!/mb+ms
t p; _ m~ + if = t mb x - 2q . k/mb + 2v . k/mb + k2 /m~ .



and insert this into the diagrams Fig. 3.3. Expanding as well the propagator as the Dirac field b, which

sandwiches the amplitudes. as the normalization of the states in powers of k/mb, we obtain the desired

OPE. Note that the leading operator 00 is defined in terms of the "full" four-component field b. The other

two subleading operators 01 and O2 are, however, written in terms of the two-component effective fields
h. In rewriting the operator 01 from b -+ h fields by means ofeq. (3.42), we obtain the operator 0~1).

Evaluation of the one-gluon diagram in Fig. 3.3 results in the operator o~g)•

The results of the power corrections to the structure functions Ti, i = 1,2,3 can be decomposed

into the sum of various terms. denoted by Ti(j), which can be traced back to well defined pieces in the

evaluation of the time-ordered product given above [18]:

Ti(V.q,S)= L: TF)(v.q,s).
j=O,l,2,8,g,c5

The expressions for T}j) (v.q, s) calculated up to O( mB/m~) are given in appendix B.t. They contain the

parton model expressions T}O) (v.q, s) and the power corrections in the HQE approach which depend on

the two HQE-specific parameters Al and A2 defined in eqs. (3.45). Note that the s-quark mass terms are

explicitly kept in T}j) (v.q, s). The origin of the various terms in the expansion given in eq. (3.54) can be

specified. as follows:

T(O) ( A A)
i v.q,s -

T(8)( A A) =i v.q, s

TF)(v.q, s)

T(c5) ( A A) =i v.q,s

(BIOoIB) for Al = A2 = 0 ,

(BIOoIB) - Ti(O)(v.q, s) ,

(Blo~j)IB) for j = 1,2,9,

(BI01IB) .

In the leading order in (l/mb) the matrix element of 01 vanishes, but in the sub-leading order it receives

a non-trivial contribution which can be calculated by using the equation of motion [17]. The contributions

Ti(8) arise from the matrix element of the scalar operator bb, Le use of eq. (3.58) given below. We recall

that the scalar current can be written in terms of the vector current plus higher dimensional operators as

[15]

bb = v,,/rr"b + 2~~ h [(iD)2 - (v.iD)2 - (i/2)u"vG "v] h + ....

With our normalization:

Other possible Lorentz structures like 1'5, 1'51'", 1',,1'v sandwiched between b and b give zero after taking
the B-meson matrix element.

From the expressions for TF) given in appendix B.l, we see that Ti(O)(i = 1,2,3) are of order mB/mb
and the rest TP). T?), TF), Ti(8) and Ti(g) are all of order mBAt/mb3 or mBA2/mb3. Since the ratio

mB/mb = 1 + O(I/mb). we note that the Dalitz distribution in B -+ X8t+t.- has linear corrections in

11mb.



3.2 Power Corrections to the Dilepton Invariant Mass Distribution and FB

Asymmetry

1 (_1)n-l
1m - ex: ,5(n-l) (1 - 2v . q + s - m2) •

xn (n - I)! s

Further, the integrand should be multiplied by the function O(4v . q2 - 4s2 - u2) responsible for the

correct integration boundary. 3 The resulting double differential branching ratio in B -+ X s£+ i- can be

expressed as,

dB
dsdu Bo ({[(I-m;f -s2-u2-~(2~d-I+2m;-m~-2s+s2)

+3 ~2( -1 + 6m; - 5m~ - 8 s + 582))] (IC~ffI2 + IClOI2)

+ [4(1 A2 A4+ A6 8-2A A2 A2A2+ A2+ A2A2)- ms - ms ms - mss - s - mss u ms u

-~ (2 ~l( -1 + m; + m~ - m~ + 2 s + lOm;s + 52 + m;s2)

+3 ~2(3 + 5m; - 3m~ - 5m~ + 45+ 28m;5 + 552 + 5m;52))] IC~ffI2
. s

-8 [(5(1 + m;) - (1- m;)2) + ~~l(-I + 2m; - m~ + 5+ m;5)

+~2(5m; - 5m~ + 25 + 5m;s)] Re(C~ff) Cfff
[
_A ] eff+2 2+Al+5A2 u5Re(Cg )ClO

+4 [2 (1 + m;) + ~l (1 + m;) + ~2(3 + 5m;)] uRe(ClO) Cfff} 0 [u(s, ms)2 - u2]
-E1 (s, u) 5 [u(s, ms)2 - u2] - E2(s, u) 5' [u(s, ms)2 - u2]) , (3.60)

where ~l = Atlm~ and ~2 = A2/m~. The auxiliary functions Ei(S, u) (i = 1,2), introduced here for
ease of writing, are given explicitly in appendix B.2. The boundary of the Dalitz distribution is as usual

determined by the argument of the O-function and in the (u, s)-plane it has been specified in eq. (3.8).

The analytic form of the result (3.60) is very similar to the corresponding double differential distributions

derived by Manohar and Wise in [16] for the semileptonic decays B -+ (Xc, X u)£lIt. Further comparisons

with this work in the V - A limit for the single differential and integrated rates are given a little later at

the end of this section.

Finally, after integrating over the variable U, we derive the differential branching ratio in the scaled

dilepton invariant mass for B -+ X si+£- ,

dB
ds - 2 Bo {[~u(s, ms)((1 - m;)2 + s(I +m;) - 2s2) + ~(I- 4m; + 6m: - 4m~ + m~ - s

+ A2A+ A4A - 6 A 3 -2 2 A2-2 3 A4-2 + 5 -3 + 5 - 2A3 2 -4) ~lmaS mss - mss - s - mss - maS s mss - s _(A _ )
U s,ms

+ (1 - 8m; + 18m~ - I6m~ + 5m: - s - 3m;s + 9m~s - 5m~s - I5s2 - I8m;52



-15m:052 + 25053+ 25m~o53- 10054) 'C'x2, )] (IC~ffI2 + IClOI2)
U 8,m3

+ [~U(05,m3)(2(1 + m~)(l - m~)2 - (1 + 14m~ + m:)o5 - (1 + m~)o52)

+~(2 - 6m2 + 4m4 + 4m6 - 6m8 + 2ml0 - 505- 12m205+ 34m405 - 12m68 - 5m805 + 382
3 3 3 3 3 3 3 3 3 3

+29' 2-2 + 29 - 4 -2 + 3 - 6 -2 + -3 _ 10 - 2-3 + - 4 -3 _ -4 _ - 2 '4) 'xl + 4 (-6 + 2 . 2m38 m38 m38 8 m38 m38 8 m38 _( __ ) m3
U 8,m3

+20m: - 12m~ - 14m~+ lOm~O+ 38 + 16m~o5+ 62m:8 - 56m~o5 - 25m~8 + 3052

+73 - 2-2 + 101 - 4 -2+ 15 - 6 -2 + 5 -3 _ 26 - 2-3 + 5 - 4 -3 _ 5 -4 _ 5 - 2-4) 'x2 ] ICf
ffl2m38 m38 m38 8 m38 m38 8 m38 _( __ ) _

U 8,m3 8

+ [SU(8,m3)«1 - m~)2 - (1 + m~)8) + 4(1 - 2m~ + m: - 8 - m~8) U(05,m3) 'xl

+4 (-5 + 30m: - 40m~ + 15m~ - 05+ 21m~o5+ 25m:8 - 45m~o5+ 13052+ 22m~o52

+45m:82 _783 - 15m~83) _C'x2_ )] Re(C~ff) ~ff} . (3.61)
U 8,m3

dA(8)
d8

-2 Bo {[2(U(8, m3»28 + ~(3 - 6m~ + 3m: + 28 - 6m~8 + 382)'x1

+ 8 (-9 - 6m~ + 15m: - 148 - 30m~o5+ 1582)'x2] Re(C~ff) ClO

+ [4(U(8, m3»2(1 + m~) + ~ (1 + m~) (3 - 6m~ + 3m: + 28 - 6m~8 + 3s2)'x1 (3.62)

+ 2(-7 - 3m~ - 5m: + 15m~ - 10s - 24m~s - 30m:8 + 982+ 15m~o52) 'x2] Re(ClO) Cfff}.

The results derived for the 0 «(k3 )-improved and power-corrected Dalitz distribution, dilepton invariant

mass, and FB-asymmetry in B -+ X 3£+£- are the principal new results in this section. It is useful to write

the corresponding expressions in the limit m3 = O. For the dilepton invariant mass distribution, we get

dB
ds 2 Bo {[~(1 - 8)2(1 + 28) (2 + 'xl) + (1 - 15s2 + 1083

) 'x2] (IC~ffI2 + IClOI2)

+ [~(1 - 8)2(2 + 8) (2 + 'xl) + 4 (-6 - 3s + 5s3) 'x2] IC~ffI2

+ [4(1 - 8)2(2 + 'xI) + 4 (-5 - 68 + 782) 'x2]Re(C~ff) Cfff} . (3.63)

dA
d8

= -2 Bo {[2(1 - 8)2s + ~(3 + 28 + 382)'x1+ S(-9 - 148+ 1582)'x2] Re(C~ff) ClO

+ [4(1 - 8)2 + ~(3 + 2s + 3s2)'x1 + 2(-7 - 10s + 9s2) 'x2] Re(ClO) Cfff}. (3.64)

Our result [18] for the dilepton invariant mass distribution given in eq. (3.63) has been confirmed re-

cently by [27] in the m 3 = 0 limit and is in disagreement with an earlier publication [17]. (The differences

between the previous result eq. (3.21) of the paper by [17] have been discussed at length in [18].)
Concerning the invariant dilepton mass spectrum derived by us and given in eq. (3.61), we would

like to make the following observations: First, the leading order power corrections in the dilepton mass



distribution are found to be small over a good part of the dilepton mass s. However, we find that the

power corrections become increasingly large and negative as one approaches s -+ smax, where smax =

(1 - m.,)2. Since the parton model spectrum falls steeply near the end-point s -+ smax, this leads to the

uncomfortable result that the power corrected dilepton mass distribution becomes negative for the high

dilepton masses. We show in Fig. 3.4 this distribution in the parton model and the HQE approach, using

the central values of the parameters in Table A.I. Further, the power-corrected dilepton invariant mass

distribution retains the characteristic 1/ s behaviour following from the one-photon exchange in the parton

model. We note that the correction proportional to the kinetic energy term ).1 renormalizes the parton

model invariant mass distribution multiplicatively by approximately the factor (1 + >"d (2m~)), which is

exact in the limit m., = 0 and no new functional dependence in s is introduced (moreover, this factor

is hardly different from 1). Hence, the negative probability near the end-point is largely driven by the

magnetic moment term ).2.

The normalized FB asymmetry, d.A(s)/ds, in the HQE-approach and the parton model are shown in

Fig. 3.5. We find that this asymmetry is stable against leading order power corrections up to s ~ 0.6,

but the corrections become increasingly large due to the unphysical behaviour of the HQE-based dilepton

mass distribution as s approaches smax (see Fig. 3.4). Based on these investigations, we must conclude

that the HQE-based approach has a restrictive kinematical domain for its validity. In particular, it breaks

down for the high dilepton invariant mass region in B -+ X.,t+ e-. This behaviour of the dilepton

Figure 3.4: Dilepton invariant mass spectrum dB(B -+ X.,e+e-)/ds in the parton model (dashed curve)

and with leading power corrections calculated in the HQE approach (solid curve). The parameters used

are given in Table A.I.

mass spectrum in B -+ X.,t+ e- is not unexpected, as similar behaviours have been derived near the

end-point of the lepton/energy spectra in the decays B -+ XeVi in the HQE approach [16]. To stress

these similarities, we show the power correction in the dilepton mass distribution as calculated in the HQE

approach compared to the parton model through the ratio defined as:

RHQE(s) == dB/ds(HQE) - dB/ds(Parton Model) .
dB / ds (Parton Model)

The correction factor RHQE(s) for B -+ X.,e+i- shown in Fig. 3.6 is qualitatively similar to the

corresponding factor in the lepton energy spectrum in the decay B -+ XciVi, given in Fig. 6 of [16]. We



Figure 3.5: FB asymmetry (normalized)dA(B -t X$e+e-)/ds in theparton model (dashed curve) and

with power corrections calculated in the HQE approach (solid curve). Theparameters used are given in

TableAl.

note that we have been able to derive the power corrected rate for the semileptonic decays B -t XclVt
obtained by Manohar and Wise in [16]. 4 In doing this, we shall reduce the matrix element for the decay

B -t X$l+ l- to the one encountered in B -t XclVt, obtained by the replacements (V - A limit):

C~ff 1= -ClO = 2' (3.66)

C~ff 0, (3.67)

(GFlk * ) (4GF ) (3.68)..j2 1r ~$ ytb -t - ..j2 Vcb .

This amounts to keeping only the charged current V - A contribution in B -t X $l+l- decays.

Finally, since the HQE-improved expression for the decay rate cannot be given analytically due to the

Wilson coefficient C~ff (s) which is a complicated function of S, we give below the results in numerical

form:

where rb is the parton model decay width for b -t sl+ l- and the coefficients depend on the input

parameters. For the central values of the parameters given in Table A.1, they have the values CI = 0.501

and Cz = -7.425. This leads to a reduction in the decay width by -4.1%, using the values of Al and A2

given in Table A.t. Moreover, this reduction is mostly contributed by the A2-dependent term. We recall

that the coefficient of the ~l term CI is (almost) the same as in the semileptoDic width r(B -t XulVt)
obtained by Bigi et al [15]

r~QE= r~,(1 + ~~l- ~~2), (3.70)

where r~,is the parton model decay width. This points towards the universality of this coefficient. The

coefficient of the ~2 tenn C2 for b -t sl+ l- decay is larger than the corresponding one in the semileptonic

decay width. Hence, the power corrections in r(B -t XulVt) and r(B -t X$.e+l- ) are rather similar

but not identical.

~e HQE matrix elements in our convention and the MW ones are related bY'\l = -2mb 2Kb. 3'\2 = -2mb 2Gb and

Al + 3A2 = -2mb2 Eb = -2mb2(I(b + Gb), likewise we have for the normalization of states IB) = V2mBIB)MW.



Figure 3.6: The correction factor RHQE(s) (in percentage) as defined in eq. (3.65) for the dilepton mass

spectrum dB(B -+ X$t+"l-)/ds. The parameters used are given in TableA.l.

3.3 Dilepton Invariant Mass and the FB Asymmetry in the Fermi Motion

Model

In this section, we present our estimates of the non-perturbative effects on the decay distributions in
B -+ X $l+l- . These effects are connected with the bound state nature of the B-hadron and the physical

threshold in the B -+ X$l+ l- in the final state. In order to implement these effects on the decay distri-

butions in B -+ X $l+l- , we resort to the Gaussian Fermi motion (PM) model [22] introduced in section
2.4.2.

In the Fermi motion model, the problem of negative probabilities encountered in the HQE approach

for the high dilepton masses near S -+ Smax is not present, which motivates us to use this model as a

reasonable approximation of the non-perturbative effects in the entire dilepton mass range. The success

of this model in describing the inclusive lepton energy spectra in B -+ (Xc, Xu)lVl and B -+ X$/
strengthens this hope.

In the decay B -+ X $l+l- , the distribution dB/ ds depends on the Lorentz-invariant variable s
only. So, the Lorentz boost involved in the Fermi motion model (Doppler shift) leaves the dilepton mass

distribution invariant. However, since the b-quark mass mb (p) is now a momentum-dependent quantity,

this distribution is affected due to the difference (mb(p) - mb) (mass defect), which rescales the variable

s and hence smears the dilepton distribution calculated in the parton model. For different choices of the

model parameters (PF, mq) corresponding to the same effective b-quark mass, mfff which is defined in

eq. (2.47) the dilepton mass distributions should be very similar [23], which indeed is the case as we have

checked numerically but do not show the resulting distributions here.

The situation with the FB asymmetry is, however, quite different. Being an angle-dependent quantity,

it is not Lorentz-invariant and is sensitive to both the Doppler shift and the mass defect. We give in

appendix B.3, the Dalitz distribution J2f(B -+ X$l+.e-)/dsdu in the Fermi motion model.

As we calculate the branching ratio for the inclusive decay B -+ X $l+l- in terms of the semilep-

tonic decay branching ratio B(B -+ XlVi), we have to correct the normalization due to the variable
b-quark mass in both the decay rates. We recall that the decay widths for B -+ X $t+" l- and B -+ X lVt
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Figure 3.7: Differential branching ratio dB/ds for B -+ X.£+l- (a) and normalized differential FB

asymmetry dA(s)/ds (b) in the SM including the next-to-Ieading order QeD co"ections. The dashed

curve co"esponds to the parton model with the parameters given in Table A.I and the solid curve results

from the Fermi motion model with the model parameters (PF, mq) = (252,300) MeV. yielding an effective

b-quark mass m~J J = 4.85 Gey.

in this model are proportional to (m~fl)5 [24,6.53]. Hence the decay widths for both the decays in-

dividually are rather sensitive to m~ff. 'This dependence largely (but not exactly) cancels out in the

branching ratio B(B -+ X.£+l-). Thus, varying m~ff in the range m~ff = 4.8 ± 0.1 GeV results in

Llr(B -+ X.l+l- )/r = ±10.8%. However, the change in the branching ratio itself is rather modest,

namely LlB(B -+ X.l+l- )/B = ±2.3%. 'This is rather similar to what we have obtained in the HQE

approach.

The theoretical uncertainties in the branching ratios for B -+ X.l+ l- from the perturbative part, such

as the ones from the indeterminacy in the top quark mass, the QCD scale AQC D and the renormalization

scale }j, have been investigated in the literature [9,47]. We have recalculated them for the indicated ranges

of the parameters in Table A.t. The resulting (SD) branching ratios and their present uncertainties are

found to be:

B(B -+ X.e+e-)

B(B -+ X.}j+ }j-)

B(B -+ X.r+r-)

(804 ± 1.9) x 10-6 ,

(5.7 ± 0.9) x 10-6 ,

(2.6± 004) x 10-7 ,

where in calculating the branching ratio B(B -+ X.r+r-), we have included the r-Iepton mass terms in

the matrix element [28]. These uncertainties, typically ±20%, are much larger than the wave function-

dependent uncertainties, and so the theoretical accuracy of the SD-part in the SM in these decays is not
compromised by the non-perturbative effects.

We show the resulting dilepton invariant mass distribution in Fig. 3.7 (a) and the FB-asymmetry
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Figure 3.8: Differential branching ratio dB/ds for B ~ Xsl+l- (a) and nonnalized differential FB

asymmetry dA( s) / ds (b) using the Fermi motion model for three different pairs of the model parameters

(PF, mq) = (450,0) MeV (solid curve), (310,300) MeV (long dashed curve), and (PF, mq) = (310,0)

MeV (short dashed curve) yielding the effective b-quark masses m~ff = 4.76 Gev, 4.80 Gev, and 4.92

GeV, respectively.

in Fig. 3.7 (b), where for the sake of illustration we have used the values (PF, mq) = (252,300) in

(MeV.MeV), which correspond to an allowed set of parameters obtained from the analysis of the measured

photon energy spectrum in B ~ Xs'Y ,using the same model [94]. We see that the dilepton mass distribu-

tion is stable against Fermi motion effects over most part of this spectrum, as expected. We emphazise here

that the end-point spectrum extends to the physical kinematic limit in B ~ X sl+l- smaz = (mB - mx) 2

with mx = max(mK, ms+mq) (mq is the spectator mass), which has to be imposed on theFM program.

It corresponds to the invariant hadronic mass of the lowest physical state with total strangeness number

s = 1, m(Xs) = mK, as opposed to the parton model, in whichsmaz = (mb - msfl. The two thresholds

can be made to coincide for only unrealistically values of mb and m.,. The FB-asymmetry shows a more

marked dependence on the model parameters, which becomes significant in the high dilepton mass region.

As the parameters of the Fermi motion model are not presently very well-<1etermined from the fits

of the existing data [94,95], one has to vary these parameters and estimate the resulting dispersion on

the distributions in B ~ xse+e- . We show in Figs. 3.8 the dilepton mass distribution (a) and the

FB asymmetry (b), respectively, indicating also the ranges of the parameters (PF, mq). The resulting

theoretical uncertainty in the distributions is found to be modest.

3.4 LD Contributions in B ~ Xsl+ l- (I)

Next, we implement the effects ofLD contributions in the processes B ~ Xst+l- . The issues involved

here have been discussed in [96,28,90]. The LD contributions due to the. vector mesons J /'I/J and "p'
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Figure 3.9: Differential branching ratio dB/ds for B -+ X81+1- (a) and normalized differential FB

asymmetry dA( s) / ds (b) calculated in the SM using the next-to-Ieading order QeD corrections and Fermi

motion effect (solid curve). and including the W-contributions (dashed curve). The Fermi motion model

parameters (PF, mq) in MeV are displayed in thefigure.

and higher resonances, as well as the (cc) continuum contribution, which we have already included in

the coefficient C~ff, appear in the (sL"Yl!bL)(e"Yl!e) interaction term only, i.e., in the coefficient of the

operator Og. 1bis implies that such LD-contributions should change Cg effectively, but keep C~ff and C 10

unchanged. In principle, one has also a LD contribution in the effective coefficient C~ff; this, however, has

been discussed extensively in the context of the B -+ X8"Y decay and estimated to be small [97,77,76,98].

The LD-contribution is negligible in C 10. Hence, the three-coefficient fit of the data on B -+ X 81+l- and

B -+ X8"Y , proposed in ref. [12] on the basis of the SD-contributions, can be carried out also including

the LD-effects.

In accordance with this, to incorporate the LD-effects in B -+ X 81+l- , the function Y (s) introduced

earlier is replaced by,

where Yre8 (s) accounts for the charmonium resonance contribution via B -+ X 8(J /'Il, 'Il', ... ) -+ X 8£+ l- .

Its origin lies in the diagram displayed in Fig. 3.1, where the internal charm loop hadronizes before de-

caying into a photon. We take the representation [13],

where C(O) == 3Cl + C2 + 3C3 +C4 + 3Cs +C6• We adopt K = 2.3 for the numerical calculations [96].

1bis is a fair representation of present data in the factorization approach [99]; also the phase of K, which is

fixed in eq. (3.73), is now supported by data which finds it close to its perturbative value [100]. Of course,

the data determines only the combination K e(O) = 0.88. The relevant parameters of the charmonium
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Figure 3.10: Dilepton invariant mass distribution in B ~ X8l+l- (a) and normalized differential FB

asymmetry dA(s)/ds (b) in the SM including next-to-leading order QeD correction and LD effects. The

solid curve corresponds to the parton model and the short-dashed and long-dashed curves correspond to

including the Fermi motion effects. The values of the FM parameters in MeV are indicated in the figure.

resonances (18, ... ,68) are given in the Particle Data Group [39], and we have averaged the leptonic

widths for the decay modes V ~ l+ l- for l = e and l = 1&.Note that in extrapolating the dilepton

masses away from the resonance region, no extra q2-dependence is included in the ,*(q2)-Vi junction.

(The q2-dependence written explicitly in eq. (3.73) is due to the Breit-Wigner shape of the resonances.)

1bis is an assumption and may lead to an underestimate of the LD-effects in the low-s region. However,

as the present phenomenology is not equivocal on this issue, any other choice at this stage would have
been on a similar footing. . :

The resulting dilepton mass spectrum and the FB asymmetry are shown in Fig. 3.9 (a) and Fig. 3.9 (b),

respectively. We recall that the two curves labeled SD and SD+LD include explicit o(a8)-improvement,

calculated in the parton model [9,47] and non-perturbative effects related with the bound state nature of the

B-hadrons and the physical threshold in the final state in B ~ X 8l+l- , using the Fermi motion model.

In addition, the SD+LD case also includes the LD-effects due to the vector resonances, contributing

to C~ff as discussed earlier. The parametric dependence due to the FM is shown in Figs. 3.10 for the

dilepton mass spectrum (a) and the FB asymmetry (b), respectively, and compared with the case of the

parton model in which case no wave function effects are included. These figures give a fair estimate of the

kind of uncertainties present in these distributions from non-perturbative effects. In particular, we draw

attention to the marked dependence of the FB asymmetry to both the LD-(resonances) and wave function

effects, which is particularly noticeable in the region s > m~/' The dilepton invariant mass spectrum, on

the other hand, is very stable except at the very end of the spectrum, which is clearly different in all three

cases shown. 1bis closes the first part of this chapter.



Concerning our approach to include resonant charm effects eq. (3.72), we compare it in section 3.10

with two other LO prescriptions, given in ref. [28] and [29] and estimate the resulting uncertainties in the

dilepton mass spectrum and the FB asymmetry. Further, we discuss a possible double counting, inherent in

our procedure adding SO and LO amplitudes. The determination of these uncertainties is very important,

as a measurement of the partly integrated spectra t::.B, t::.A in B ~ X:/.+l- decay will be used to extract

the SO coefficients, testing the SM.

3.5 Introduction to Hadron Spectra and Spectral Moments in the Decay

B -+ Xsf+f-

In this second part of this chapter we present spectra in inclusive B ~ X ~l+l- decay in kinematical vari-

ables different from the dilepton invariant mass q2, the hadronic energy and the hadronic invariant mass.

Further, we calculate lowest moments in these hadronic variables. We include perturbative O( a~) correc-

tions, 11mb power corrections by means of the heavy quark expansion technique (HQE1) and studies in
the Fermi motion model (FM). This part is based on refs. [25,26,14].

A similar program of investigations [93,23], [101-103] has been run for the charged current induced

semileptonic B ~ Xu,cllli decay. Here the main interest is focused on testing HQET and on the deter-

mination of the CKM matrix elements Vcb and Vub. To be more specific, the HQE parameters Al and A
have been extracted from moments of the hadronic invariant mass spectrum in B ~ Xu,cllli decay [66].

We recall that these non-perturbative parameters appear in the relation mB = mb + A - (AI + 3A2) 12mb
between the mass of the B-meson to the b-quark mass (see section 2.4.1). Explicit calculation [25,26]

shows that also in B ~ X~l+l- decay the hadronic invariant mass moments are sensitive to the HQET

parameters Al and A. This provides potentially an independent determination of these quantities. We

think that the hadron spectra in B ~ X ~l+l- and B ~ X ullli can be related to each other over limited

phase space and this could help in improving the present precision on Vub [39] and the parameters Al and

A [31,63]. Of course, B ~ Xu,cllli decays involve much less problems than FCNC B ~ X~l+l- decay,

as the charged current mode has simpler short-distance (SO) couplings and no cc resonances present in the

spectra. Besides these obvious differences, we will point out in the following sections similarities between

rare B ~ X ~l+l- and the charged current B ~ X u,clllidecays.

What can we learn from the study of hadron spectra and moments in B ~ X ~l+l- ? Our motivation
is manifold:

1. Hadron spectra have an interest on their own, they complete the profile of B ~ X ~l+l- decay

which has been given in the previous sections, i. e. the dilepton invariant mass distribution

and the FB asymmetry.

2. In their search for B ~ X~l+l- the CLEO collaboration [30] imposed a cut on the hadronic

invariant mass SH to suppress the BE background in measuring the dilepton invariant mass
distribution. The hadronic invariant mass spectrum is absolutely necessary to acquire control

over the signal after a cut in SH.



3. A possible determination of non-perturbative HQE parameters AI, it from the first two mo-
ments of the hadronic invariant mass in B -+ X si+i- decay, complementing the constraint

from the charged current B -+ XciVl decay. The constraints from these decays can be used to

reduce the present dispersion on A I and it.

4. Test of the Fermi motion model in B -+ X si+i- decay.

The power corrections presented here in the hadron spectrum and hadronic spectral moments in B -+
X s£+ i- are the first results in this decay.

Besides the parton level kinematics already introduced in section 3.1.1, the corresponding kinematics at

hadron level can be written as:

The hadronic invariant mass is denoted by SH == Ph and EH denotes the hadron energy in the final

state. The corresponding quantities at parton level are the invariant mass So and the scaled parton energy

Xo == ~. In parton model without gluon bremsstrahlung, this simplifies to So = m; and Xo becomes
directly related to the dilepton invariant mass Xo = 1/2(1 - s + m;). From momentum conservation the

following equalities hold in the b-quark, equivalently B-meson, rest frame (v = (1,0,0,0)):

1 - v . q, 80 = 1 - 2v . q + 8 ,

mB - v . q, SH = m1- 2mBv . q + s .

(3.75)

(3.76)

The relations between the kinematic variables of the parton model and the hadronic states , using the

HQET mass relation, can be written as

EH

SH

3.6 Perturbative O(as) Corrected Hadron Spectra in B -+ Xsf+f- Decay

In this section the O(O's) corrections to the hadron spectra are investigated. Following the argument given

in section 3.12, only 09 is subject to O's corrections and the corresponding Feynman diagrams can be

seen in Fig. 3.2. The effect of a finite s-quark mass on the O(O's) correction function is found to be very

small. After showing this, we have neglected the s-quark mass in the numerical calculations of the O( O's)
terms.



The explicit order Os correction to 09 can be obtained by using the existing results in the literature as

follows: The vector current 09 can be decomposed as V = (V - A)/2 + (V + A)/2. We recall that the

(V - A) and (V + A) currents yield the same hadron energy spectrum [104] and there is no interference

term present in this spectrum for massless leptons. So, the correction for the vector current case in B -+
Xsf+ f- can be taken from the corresponding result for the charged (V - A) case [22,91], yielding

C~ff(xo) = C9P(xo) + Y(xo) (3.78)

p(x) = 1 + Os u(x) I (3.79)
1r

u(x) 1 Gdx) (3.80)
- (3x - 4x2 - 2m~ + 3m~x) 3Jx2 _ m; I

where Y(xo) == Y(S) withs = 1- 2xo+ m~. The expression forG1 (x) with ms =1= 0 has been calculated
in [91]. The effect of a finite ms is negligible in G1 (x), as can be seen in Fig. 3.11, where this function is

plotted both with a finite s-quark mass, ms = 0.2 GeV, and for the massless case, ms = O. A numerical

difference occurs at the lowest order end-point xoax = 1/2(1 + m~) (for ml = 0), where the function

develops a singularity from above (xo > xoax) and the position of which depends on the value of ms•

The function G I (x) for a massless s-quark is given and discussed below [91].

Gdx) X2{9~ (16x4 - 84x3 + 585x2 - 1860x + 1215) + (8x - 9) In(2x)

+ 2(4x - 3) [~2+ Li2(1 - 2X)]} for 0::; x ::; 1/2 I

1
G1(x) = 180 (1 - x)(32x5

- 136x4 + 1034x3
- 2946x2 + 1899x + 312)

13224 In(2x - 1)(64x - 48x - 24x - 5)

+ x2(3 - 4x) [~2 _ 4Li2(21x) + In2(2x - 1) - 2In2(2X)] for 1/2 < x ::; 1 . (3.81)

The O(os) correction has a double logarithmic (integrable) singularity for Xo -+ 1/2 from above
(xo > 1/2). Further, the value of the order Os corrected Wilson coefficient ~ff(xo) is reduced compared

to its value with Os = 0, therefore also the hadron energy spectrum is reduced after including the explicit

order OS QCD correction for 0 < Xo < 1/2. Note that the hadron energy spectrum for B -+ Xst+t-

receives contributions for 1 ~ x > 1/2 only from the order Os bremsstrahlung corrections.

We have calculated the order Os perturbative QCD correction for the hadronic invariant mass in the range

m~< So ::; 1. Since the decay b -+ s + t+ + f- contributes in the parton model only at So = m;, only

the bremsstrahlung graphs b -+ s +9 + f+ +f- contribute in this range. This makes the calculation much

simpler than in the full So range including virtual gluon diagrams. We find

dB 2B OS 1 {(so-I)(93 41A 95-2 -3) 4} A (3 A A2 A4)}C2 82-A- = - 0 - -:- --- - So - So + 55so + - n.5o - - 5so + 9so - 2so 9' (3. )
dso 3 1r So 27 9



Figure 3.11: The function G1(x) is shown for ms = O.2GeV (solid line) andfor the massless case

corresponding to eq. (3.81) (dashed line).

Our result for the spectrum in B -t Xsfi"l- is in agreement with the corresponding result for the (V - A)

current obtained for the decay B -t XqlVl in the mq = 0 limit in [93] (their eq. (3.8», once one takes

into account the difference in the normalizations. We display the hadronic invariant mass distribution in

Fig. 3.12 as a function of So (with So = mlso), where we also show the Sudakov improved spectrum,

obtained from the O( Qs) spectrum in which the double logarithms have been resummed. For the decay

B -t XulVl, this has been derived in [23], where all further details can be seen. We confirm eq. (17)

of [23] for the Sudakov exponentiated double differential decay rate d~ryand use it after changing the

normalization fo -t Bo~C~ for the decay B -t Xsf+f- . The constant Bo is given in eq. (3.29). Defining

the kinematic variables (x, y) as

q2 _ x2ml,
1 2

V • q (x + 2 (1 - x) y) mb ,

the Sudakov-improved Dalitz distribution is given by

= -Bo~x(l - x2)2(1 + 2x2) exp (- 2Qs In2(1- y)) (3.84)
3 3~

{4QsIn(1-Y)[1_2Qs(G() H( ))]_2QsdH( )}C2
x 3~ (1 _ y) 3~ x + Y 3~ dy y 9'

[8x2(1 - x2 - 2x4) In x + 2(1 - X2)2(5 + 4x2) In(l - x2) - (1 - x2)(5 + 9x2 - 6x4)]

2(1 - x2)2(1 + 2x2)
+~2 + 2Li2(X2) - 2Li2(1 _ x2)

= fY dz(_4_In 2-z(1-x)+K
Jo 1 - z 2
_(1-X)(3+x+xz-z)[1 ( _ )-21 2-Z(1-X)+K]

(1 + x)2 n 1 Z n 2 .
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Figure 3.12: The differential branching ratio d8(B--:~,l+r) in the parton model is shown in the 0(0'.,)

bremsstrahlung region. The dotted (solid) line corresponds to eq. (3.82), (eq. (3.87». The vertical line

denotes the one particle pole from b ~ si+i-. We do not show the full spectra in the range 0 ~ So ~ ml
as they tend to zero for larger values of so.

K. [7(1 + x)(l + 2x2) 2 ])
- 2(1 + x)2(1 + 2x2) 1 _ z + (1 - x)(3 - 2x) .

The quantity K. in eq. (3.86) is defined as K. == viZ2 ( 1- x p + 4x z.

To get the hadronic invariant mass spectrum for a b-quark decaying at rest we change variables from

(x I y) to (q2 I so) followed by an integration over q2,

The most significant effect of the bound state is the difference between mB and mb. which is domi-

nated by A. Neglecting All A2, Le., using A = mB - mb. the spectrum d~ is obtained along the lines as

given above for :: ' after changing variables from (x I y) to (q2ISH) and performing an integration over
o - _, , _

q2. It is valid in the region mB mB~~~:m,< SH ~ m1 (or mBA ~ SH ~ m1. neglecting m.,) which

excludes the zeroth order and virtual gluon kinematics (so = m;). yielding

The hadronic invariant mass spectrum thus found depends rather sensitively on mb (or equivalently A),

as can be seen from Fig. 3.13. An analogous analysis for the charged current semileptonic B decays

B ~ XulVl has been perfonned in (101l, with similar conclusions.
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Figure 3.13: The differential branching ratio dB(B-;;~l+l-) in the hadronic invariant mass. SH. shown

for different values of mb in the range where only bremsstrahlung diagrams contribute. We do not show the

result in the full kinematic range as the spectra tend monotonically to zero for larger values of S H ~ m1.

3.7 Power Corrected Hadron Spectra in B --+ xse+e- Decay
We start directly with the structure functions Ti of the hadronic tensor. which are calculated up to 0 (m B / m~)

in [18]. They have been decomposed into a sum of various terms, Ti(V.q, s) = Li=0.1.2.$,9.5TF)(v.q, s)
where the individual parts TF> can be seen in appendix B.l. After contracting the hadronic and leptonic

tensors, one arrives at eq. (3.27). Now we are interested in a different set of kinematical variables. We

transform (v· q, s) ~ (xo, so) with the help of the kinematic identities given in eq. (3.75), and make the

dependence on xo and So explicit,

TL/R J,£VLL/RJ,£v = mb 2 { 2(1 - 2xo + so)T1L/R + [x5 - ~u2 - so] T2L/R =f (1 - 2xo + so)u T3L/R} •

(3.89)

With this we are able to derive the double differential power corrected spectrum dX~~~ for the decay

B ~ X$t+t- . Integrating eq. (3.23) over '11 first, where the variable '11 is bounded by

we arrive at the following expression [26]

d:::s
o

=-~BoImJx5 - So {(I - 2xo + so)T1 (so, xo) + x6 ; sOT2(so, xo)} + O(~iO'$) , (3.91)

where



+

+

T2(so, Xo) -

+

+

+

+

Here, x = sO-m~+il,.x1 = .Atlm~ and.x2 = >'2/m~. As the stIUeturefunction T3does not contribute to

the branching ratio, we did not consider it in the calculation of the hadron spectra. The Wilson coefficient

C~ff(s) depends both on the variables Xo and So arising from the matrix element of the four-Fermi-

operators. Here the normalization constant Bo, defined in eq. (3.29), expresses the branching ratio for B -+
Xst+ t- as usual in terms of the semileptonic decays B -+ XciVt. The double differential ratio given in

eq. (3.91) agrees in the (V - A) limit given in eqs. (3.66) • (3.68) with the corresponding expression



derived for B -+ XciVt decay in [93] (their eq. (3.2».
The hadron energy spectrum can now be obtained by integrating over 80. Using eq. (3.59), the follow-

ing replacements are equivalent to taking the imaginary part

1
8(80 - m~) ,-+

x
1 8'(' 0

2)
x2

-+ - So - ms ,

1 18,,(' 02)

x3
-+ - So - ms .

2

max(m~, -1 + 2xo + 4mn ~ 80 ~ x5 ,

ms ~ Xo ~ ~(1 + m~- 4mf) .

Here we keep ml as a regulator wherever it is necessary and abbreviate C~ff = C~ff(8 = 1- 2xo + m~).
Including the leading power corrections, the hadron energy spectrum in the decay B -+ X st+ i- is given

below:

dB
dxo

The functions gJ9.10),gr), gr·9), h~9),hr·9) , ki9) , kf·9) in the above expression are the coefficients of the

l/m~ power expansion for different combinations of Wilson coefficients, with g~j.k) being the Jowest

order (parton model) functions. They are functions of the variables Xo and ms and are given in appendix

C.t. The singular functions 8, 8' have support only at the lowest order end-point of the spectrum, i.e.,

at xoar = !(1 + m~ - 4mf). The auxiliary functions J.s('xI, 'x2) and fcP('x1' 'x2) vanish in the limit
. • ff dnceff
>'1 = >'2 = O. They are given in appendix C.2. The derivatives of C~ are defined as =--.::L-

d
•n _
So

d"d~f.ff(8= 1- 2xo + 80;80 = m~) (n = 1,2). In the (V - A) limitoureq. (3.95) for the hadron energy

spectrum in B -+ X sl+ l- agrees with the corresponding spectrum in B -+ X lVt given in ref. [93] (their

eq. (AI». Integrating also over Xo the resulting total width for B -+ xst+t- agrees again in the (V - A)

limit with the well known result [15].

The power-corrected hadron energy spectrum dB(B-;:;t+ t-) (with Eo = mbxO) is displayed in

Fig. 3.14 through the solid curve, however, without the singular 8,8' terms. Note that before reach-

ing the kinematic lower end-point, the power-corrected spectrum becomes negative, as a result of the

'x2 term. 1b.is behavior is analogous to what has already been reported for the dilepton mass spectrum
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Figure 3.14: Hadron energy spectrum d8(B~::t+r) in the parton model (dotted line) and including

leading power corrections (solid line). For mbl2 < Eo ~ mb the distributions coincide. The parameters

used for this plot are the central values given in Table Al and the default values of the HQETparameters

specified in text.

d8( B~:,.t+l-) in the high q2 region [18], signaling a breakdown of the ~b expansion in this region. The

terms with the derivatives of C~ff in eq. (3.95) give rise to a singularity in the hadron energy spectrum at

the charm threshold due to the cusp in the function Y (s), when approached from either side. The hadron

energy spectrum for the parton model is also shown in Fig. 3.14, which is finite for all ranges of Eo.

What is the region of validity of the hadron energy spectrum derived in HQETI It is known that in

B -t X~l+l- decay there are resonances present, from which the known six [39] populate the Xo (or

Eo) range between the lower end-point and the charm threshold. Taking this into account and what has

been remarked earlier, one concludes that the HQET spectrum cannot be used near the resonances, near

the charm threshold and around the lower endpoint Excluding these regions, the spectrum calculated in

HQET is close to the partonic perturbative spectrum as the power corrections are shown to be small. The
authors of [27], who have performed an lIme expansion for the dilepton mass spectrum d8(B~:,.t+l-)

and who also found a charm-threshold singularity, expect a reliable prediction of the spectrum for q2 ~

3m~ corresponding to Eo 2: ~(l + m; - 3m~) ~ 1.8 GeV. In this region, the effect of the 11mb power

corrections on the energy spectrum is small and various spectra in B -t X s£+ l- calculated here and in

[18] can be compared with data.

The leading power corrections to the invariant mass spectrum is found by integrating eq. (3.91) with

respect to Xo. We have already discussed the non-trivial hadronic invariant mass spectrum which results

from the O(as) bremsstrahlung and its Sudakov-improved version. Since we have consistently dropped

everywhere terms of O(AiCks) (see eq. (3.91», this is the only contribution to the invariant mass spectrum



also in HQET away from So = m;, as the result of integrating the terms involving power corrections

in eq. (3.91) over xo is a singular function with support only at So = m;. Of course, these corrections

contribute to the normalization (Le., branching ratio) but leave the perturbative spectrum intact for So 1=
- 2mr

3.8 Hadronic Moments in B -t Xsf+ f- in HQET

We start with the derivation of the lowest spectral moments in the decay B -+ X se+ e- at the parton level.

These moments are worked out by taking into account the leading power 1/mb and the perturbative O( as)

corrections. To that end, we define:

M(n,m) - 1 J(A A 2)n m d
2
B dA d

l+l- = -B So - ms Xo dAd So Xo,o So Xo

for integers n and m. These moments are related to the corresponding moments (xo(so - m;)n) obtained

at the parton level by a scaling factor which yields the corrected branching ratio B = BoM ~~~). Thus,

( m(A _ A2)n)_BoM(n,m)
Xo So ms - B l+l-·

The correction factor Bo/ B is given below in eq. (3.103). We remind that one has to Taylor expand it in

terms of the O(O's) and power corrections. The moments can be expressed as double expansion in O(O's)
and 1/ mb and to the accuracy of our calculations can be represented in the following form:

M(n,m) _ D(n,m) + O'sC 2A(n,m) + X D(n,m) + X V(n,m)
l+ l- - 0 7r 9 1 1 2 2 ,

with a further decomposition into pieces from different Wilson coefficients for i = 0, 1,2:

D(n,m) _ (n,m)Ceff2 + a(n,m)C2 + (n,m)Ceff+ .r(n,m)
i - O'i 1 fJi 10 'Yi 1 Vi •

The terms 'Yln,m) and &In,m) in eq. (3.99) result from the terms proportional to Re(C~ff)Cfff and IC~ffI2

in eq. (3.91), respectively. The results for O'!n,m),f31n,m), 'Yln,m), &In,m)are presented in appendix C.3.
Out of these the functions O'~n,m)and a~n,m) are oiven analyU·cally but the other two "V~n,m)and &~n,m), • fJ, c-a , 'I 1

are given in terms of a one-dimensional integral over Xo, as these latter functions involve the coefficient

C~ff, which is a complicated function of Xo.

The leading perturbative contributions for the hadronic invariant mass and hadron energy moments

can be obtained analytically by integrating eq. (3.82) and eq. (3.81), respectively, yielding

= 25 - 47r2 A(I,O) _ 91 A(2,O) = ~ ,
9 - 675' 486

1381 - 2107r2 A(O,2) = 2257 - 3207r2

1350' 5400

The zeroth moment n = m = 0 is needed for the normalization and we recall that the result for A (0,0) was

derived some time ago [92]. Likewise, the first mixed moment A(I,I) can be extracted from the results

given in [93] for the decay B -+ X ellt after changing the normalization,

A(I,I) = ~
50



For the lowest order parton model contribution D~n,m), we find, in agreement with [93], that the first two

hadronic invariant mass moments (so - m;), ((so - m;)2) and the first mixed moment (xo(so - m;»
vanish:

D~n,O) = 0 for n = 1,2 and D~l,l) = O.

We remark that we have included the s-quark mass dependence in the leading tenn and in the power cor-

rections, but omitted it throughout our work in the calculation of the explicit a" term. All the expressions

derived here for the moments agree in the V - A limit (and with m" = 0 in the perturbative a" correction

term) with the corresponding expressions given in ref. [93]. From here the full O(a"m,,) expressions can

be inferred after adjusting the normalization fo ~ Bo~C~. We have checked that a finite s-quark mass

effects the values of the A(n,m) given in eqs. (3.100-3.101) by less than 8% for m" = 0.2 Ge'l.

We can eliminate the hidden dependence on the non-perturbative parameters resulting from the b-

quark mass in the moments M~~~) with the help of the HQET mass relation. As m" is of order AQCD,

to be consistent we keep only terms up to order m;/m~ [66]. An additional mb-dependence is in the mass

ratios ml = ~. Substituting mb by the B-meson mass using the HQET relation introduces additional

O(1/mB,1/m1) terms in the Thylor expansion of eq. (3.97). We get for the following normalization

/
(0,0)factor for B Bo = M l+ l- :

Here, the -.A.. and ~ terms proportional to Cfff2 result from the expansion of ml
mB mB

The first two moments and the first mixed moment, (xo)B/Bo, (x5)B/Bo, (so - m;)B/Bo, ((so -
m;)2)B/Bo and (xo(so - m;)B/Bo are presented in appendix CA.

With this we obtain the moments for the physical quantities valid up to O(a,,/m1, l/m1J), where

the second equation corresponds to a further use of m" = O(AQCD). We get for the first two hadronic



2 -2 2 - 2 - -2= m$ + A + (mB - 2AmB) (so - m$) + (2AmB - 2A - Al - 3A2)(xo) ,
4 -2 2 2 2 - 2 2 - -2= m$ + 2A m$ + 2m$(mB - 2AmB)(sO - m$) + 2m$(2AmB - 2A - Al - 3A2)(xo)

+ (m~ - 4Am1J)«(so - m~)2) + 4A2m1(x5) + 4Am1J(xo(so - m~», (3.105)

= (m~ - 4Am1J)«(so _m~)2) + 4A2m1(x5) + 4Am1J(xo(so - m~»,

Using the expressions for the HQET moments given in appendix C.4, we present the numerical results for
the hadronic moments in B ~ X$f.+f.- , valid up to O(a$/m1, l/m1J). We find:

- - -2

>
a$ A a$ A A Al A2

(xo = 0.367(1+ 0.148;- - 0.204mB -:; - 0.030mB - 0.017m2 + 0.884m2 + 3.652m2 ) ,
B B B

- - -2
2 a$ A a$ A A Al A2(xo) = 0.147(1+ 0.324- - 0.221-- - 0.058- - 0.034-2 + 1.206-2 + 4.680-2 ) ,

1r mB 1r mB mB mB mB

( (

A A 2» a$ A Al A2
Xo So - ms = 0.041-(1 + 0.083-) + 0.124-2 + 0.172-2 '

1r mB mB mB

(

A A 2) as ( A ) Al A2So - ms = 0.093- 1+ 0.083- + 0.641-2 + 0.589-2 '
1r mB mB mB

«(so - m~)2) = 0.0071as (1+ 0.083A ) _ 0.196A~ . (3.107)
1r mB mB

As already discussed earlier, the normalizing factor B/ Bo is also expanded in a Taylor series. Thus, in
deriving the above results, we have used

- -2B as A A Al A2-8 = 25.277(1- 1.108- - 0.083- - 0.041-2 + 0.546-2 - 3.439-2 ) •
o 1r mB mB mB mB

The parameters used in arriving at the numerical coefficients are given in Table A.1 and Table 3.1.
Inserting the expressions for the moments calculated at the partonic level into eq. (3.105) and eq. (3.106),

we find the following expressions for the short-distancehadronic moments, valid up to O(as/m1, l/m1J):

2 - - -2
(5) 2 ( ms a$ A as A A Al A2

H = mB -2 + 0.093- - 0.069-- + 0.735- + 0.243-2 + 0.273-2 - 0.513-2 ),
mB 7r mB 7r mB mB mB mB

SOur first expression for (S'h). eq. (3.105), does not agree in the coefficient of (so - m~) with the one given in ref. [93] (their

eq. (4.1». We point out that m1 sbould bave been replaced by m~in this expression. This has been con fumed by Adam Falk

(private communication). Dropping the higber order terms given in their expressions. the badronic moments in HQET derived

bere and in [93] agree.



One sees that there are linear power corrections, O(AI m B), present in all these hadronic quantities except

(51) which starts in ~ :B .
Setting m" = 0 changes the numerical value of the coefficients in the expansion given above (in

which we already neglected a"m,,) by at most 1%. With the help of the expressions given above, we

have calculated numerically the hadronic moments in HQET for the decay B ~ x"t+t-, t = p, e and

have estimated the errors by varying the parameters within their ±1q ranges given in Thble A.t. They

are presented in Table 3.2 where we have used A = 0.39GeY, .xl = -0.2Gey2 and .x2 = 0.12dey2•

Further, using a,,(mb) = 0.21,the explicit dependence of the hadronic moments given in eq. (3.108) on

the HQET parameters .xl and A can be worked out [25]
- -2

2 A A .xl
0.0055mB(1 + 132.61- +44.14-2 +49.66-2 ) ,

mB mB mB
- -2

4 A A .xl
0.00048mB(1 + 19.41- + 1223.41-2 - 408.39-2) ,

mB mB mB
A A2 .xl

= 0.372mB(1 + 1.64- +0.01-2 + 0.02-2 ) ,
mB mB mB
- -2

2 A A .xl
0.150mB(1 + 2.88- +2.68-2 - 0.29-2 ) •

mB mB mB

While interpreting these numbers, one should bear in mind that there are two comparable expansion pa-

rameters A/mB and a"ltr and we have fixed the latter in showing the numbers. As expected, the depen-

dence of the energy moments (E8) on A and.xl is very weak. The correlations on the HQETparameters

.xl and A which follow from (assumed) fixed values of the hadronic invariant mass moments (5H) and

(51) are shown in Fig. 3.15. We have taken the values for the decay B ~ X"p+ p- from Thble 3.2 for

the sake of illustration and have also shown the presently irreducible theoretical errors on these moments

following from the input parameters mt, a" and the scale p, given in Table A.t. The errors were calcu-

lated by varying these parameters in the indicated range, one at a time, and adding the individual errors in

quadrature. Further the correlation following from the analysis of data on semileptonic B ~ XlVi decays

[31] is shown in Fig. 3.15 (ellipse). As can be seen, it gives a complementary constraint to the one from

B ~ xse+e- decay [25], which allows in principle a precise determination of A,.xl from data on the

latter.

The theoretical stability of the moments has to be checked against higher order corrections and the

error estimates presented here will have to be improved. The "BLM-enhanced" twO-loop corrections

[105] proportional to a;l3o, where 130 = 11 - 2n J!3 is the first coefficient in the QCD beta function,

can be included at the parton level as has been done in other decays [93,68], but not being crucial to our

point we have not done this. More importantly, higher order corrections in a" and 1Im~ are not included

here. While we do not think that the higher orders in Q" will have a significant influence, the second



moment (51) is susceptible to the presence of 1/ m~ corrections as shown for the decay B -+ X flit
[106]. This will considerably enlarge the theoretical error represented by the dashed band for (51) in

Fig. 3.15. Fortunately, the coefficient of the A/mB term in (5H) is large. Hence, a measurement of this

moment alone constrains A effectively. Of course, the utility of the hadronic moments calculated above

is only in conjunction with the experimental cuts. Since the optimal experimental cuts in B -+ X6l+f-

remain to be defined, we hope to return to this and related issue of doing an improved theoretical error

estimate in a future publication. We remark here that care has to be taken in a general HQE calculation

with cuts. For an extraction of meaningful observables the calculation must be smeared by integration. If

the remaining phase space gets too restricted the OPE, which is based on parton-hadron duality, breaks

down. This happens for example near the high-q2 end-point of the invariant dilepton mass spectrum in

B -+ X6t+l- decay [18].

Related issues in other decays have been studied in literature. The classification of the operators
contributing in O( 1/ m~), estimates of their matrix elements, and effects on the decay rates and spectra in

the decays B -+ X fVt and B -+ (D, D*)lllt have been studied in [107,108,109]. Spectral moments of the

photon energy in the decay B -+ X61 have been studied in [110]. For studies of O(l/m~) contributions

in this decay and the effects of the experimental cut (on the photon energy) on the photon energy moments,

see [65]. An HQE analysis of the first two hadronic invariant mass moments with a lepton energy cut has
been worked out in ref. [106].
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Figure 3.15: (5H) (solid bands) and (51) (dashed bands) correlation in (AI-A) space for fixed values

(5H) = 1.64 GeVl and (51) = 4.48 Gevt, corresponding to the central values in Table 3.2. The curves

areforced to meet at the point Al = -0.2 GeVl and A = 0.39 GeY. The correlation from B -+ XlVi [31]

is also shown here (ellipse).



HQET (5H) (51) (EH) (ElI)

(Gey2) (Gey4) (GeY) (Gey2)

p+p- 1.64 ± 0.06 4.48 ± 0.29 2.21 ± 0.04 5.14 ± 0.16

e+e- 1.79 ± 0.07 4.98± 0.29 2.41 ± 0.06 6.09± 0.29

Table 3.2: Hadronic spectral moments for B -+ X8p+ p- and B -+ X8e+e- in HQEI' with A
0.39 GeV. Al = -0.2 GeV2• and A2 = 0.12 GeV2• The quoted errors result from varying p, Q8 and the

top mass within the ranges given in Table A.I.

in [27] that an O(A~CD/m~) expansion in the context of HQET can be carried out to take into account

such effects in the invariant mass spectrum away from the resonances. Using the expressions (obtained

with m8 = 0) for the l/m~ amplitude, we have calculated the partonic energy moments ~(xo), which

correct the short-distanceresult at order A2/m~:

B
~(xo)- =Bo

{

-==1== arctan J_r - - 1
3 vr(1 - r) 1- r

F(r) = - (~ /~- )2r 1 I 1 - vI - l/r. 1
-=-=--=------ n--=== + ~1r -
2vr(r - 1) 1+ VI - l/r

The invariant mass and mixed moments give zero contribution in the order we are working, with m8 = O.

Thus, the correction to the hadronic mass moments are vanishing, if we further neglect terms proportional

to 5A and =tm
AAi, with i = 1, 2. For the hadron energy moments we obtain numerically

me e

~(EHh/m~ - mB~(XO) = -0.007 GeV ,

~(Elh/m~ - m~~(x5) = -0.013 GeV2
,

3.9 Hadron Spectra in the Fermi Motion Model

In this section, we study the non-perturbative effects associated with the bound state nature of the B-

hadron on the hadronic invariant mass and hadron energy distributions in the decay B -+ X 8£+ £- . These

effects are studied in the Fermi motion model (FM) [22] introduced in section 2.4.2. In the context of rare

B decays, this model has been employed to calculate the energy spectra in the decay B -+ X 8 + "'(in
[6,24], which was used subsequently by the CLEO collaboration in their successful search of this decay

[11]. It has also been used in calculating the dilepton invariant mass spectrum and FB asymmetry in

B -+ X8l+l- [18], see section 3.3.



The FM has received a lot of phenomenological attention in B decays, partly boosted by studies in the

context of HQET showing that this model can be made to mimic the effects associated with the HQET

parameters A and At [111,16]. We can further quantify this correspondence. The HQET parameters are

calculable in terms of the FM parameters PF and mq with

A = 100

dpp24>(p)Jm~ +r,
At - rX) dpp44>(p) = _~p}.

Jo 2

In addition, for mq = 0, one can show that A = 2PF /..ji. There is, however, no parameter in the FM
model analogous to A2 in HQET. Curiously, much of the HQET malaise in describing the spectra in the

end-point regions is related to A2, as also shown in [16,18].

The relation between mB, mb, A, At and A2 in HQET has already been stated (eq. (2.41». With the

quantity m~ff defined in eq. (2.47) and the relations in eqs. (3.113) for At and A, the relation

mB = m~ff + A - AtI(2m~ff) , (3.114)

is found to be satisfied in the FM model to a high accuracy (better than 0.7%), which is shown in Table

3.3 for some representative values of the HQET parameters and their FM model equivalents. We shall use

the HQET parameters A and At to characterize also the FM model parameters, with the relations given in
eqs. (3.113) and (2.47) and in Table 3.3.

I PF, mq (MeV,MeV) I m~ff (GeV) I At (GeV2) I A (GeV) I
(450,0) 4.76 -0.304 0.507

(252,300) 4.85 -0.095 0.422

(310,0) 4.92 -0.144 0.350

(450,150) 4.73 -0.304 0.534

(500,150) 4.68 -0.375 0.588

(570,150) 4.60 -0.487 0.664

Table 3.3: Values of non perturbative parameters m1, At and A for different sets of the FM model

parameters (PF, mq) takenfrom various fits of the data on B ~ X~+ (J /'lfJ, I) decays discussed in [14].

Calculation of the hadron spectra

We turn to discuss the hadron energy spectrum in the decay B ~ X ~e+e- in the FM model including the

O(a~) QCD corrections. The spectrum d~H (B ~ x~e+e-)is composed of a Sudakov improved piece

from C~and the remaining lowest order contribution. The latter is based on the parton model distribution,

which is well known and given below for the sake of completeness:

dB - {4d; = BO;6 3(mt - 2m;m~ + m: + m~s + m;s - 2s2) (IC~ff(s)12 + IClOI2
)

b '



where u is given in eq. (3.8). Note that in the lowest order expression just given. we have IC~tI(s)12=
IY(s)l2 + 2C9Re(Y(s)) with the rest of C~tI(s) now included in the Sudakov-improved piece as can be

seen in eq. (3.84). To be consistent. the total semileptonic width r81. which enters via the normalization

constant Bo• has also to be calculated in the FM model with the same set of the model parameters. We

implement the correction in the decay width by replacing the b-quark mass in r81 given in eq. (3.116) by

mftI [18]. The hadronic invariant mass spectrum in the decay B -+ X8£+£- in this model is calculated

very much along the same lines. The kinematically allowed ranges for the distributions are mx ~ EH ~

mB and mi- ~ SH ~ m1. and we recall here that the physical threshold has been implemented by
demanding that the lowest hadronic invariant mass produced in the decay B -+ X 8£+ £- satisfies m x =

max(mK' mq + m8). The results for the hadron energy and the hadronic invariant mass spectra are

presented in Figs. 3.16 and 3.18. respectively. We do not show the SH distribution in the entire range. as

it tends monotonically to zero for larger values of SH.

2 3
E,. [GeV]

Figure 3.16: Hadron energy spectrum in B -+ X8£+£- in the Fermi motion model based on the per-

turbative contribution only. The solid, dotted. dashed curve corresponds to the parameters (AI, A)

(-0.3,0.5), (-0.1.0.4), (-0.15,0.35) in (GeV2. GeV), respectively.
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Figure 3.17: Hadron energy spectrum in B -t X~f+f- based on the perturbative contribution only, in

the Fenni motion model (dotted curve) for (PF, mq) = (252,300) (MeV, MeV), yielding m~ff = 4.85

GeV, and in the parton model (long-short dashed curve) for mb = 4.85 Gev.

• The hadron energy spectrum in B -t X~f+f- is rather insensitive to the model parameters. Also,

the difference between the spectra in the FM and the parton model is rather small as can be seen

in Fig. 3.17. Since, away from the lower end-point and the cc threshold, the parton model and

HQET have very similar spectra (see Fig. 3.14), the estimates presented in Fig. 3.16 provide a

good phenomenological profile of this spectrum for the short-distance contribution. Very similar

conclusions were drawn in [23] for the corresponding spectrum in the decay B -t Xuflll, where,
of course, the added complication of the cc threshold is not present.

• In contrast to the hadron energy spectrum, the hadronic invariant mass spectrum in B -t X~f+f-

is sensitive to the model parameters, as can be seen in Fig. 3.18. Again, one sees a close parallel

in the hadronic invariant mass spectra in B -t X~t+f- and B -t Xuflll, with the latter worked

out in [101]. We think that the present theoretical dispersion on the hadron spectra in the decay

B -t X~f+f- can be considerably reduced by the analysis of data in B -t Xuflll.

• The hadronic invariant mass distribution obtained by the O(a~)-corrected partonic spectrum and

the HQET mass relation can only be calculated over a limited range of SH, SH > m BA, as shown

in Fig. 3.12. The larger is the value of A, the smaller is this region. Also, in the range where it

can be calculated, it depends on the non-perturbative parameter mb (or A). A comparison of this

distribution and the one in the FM model may be made for the same values of mb and m~ff. This is

shown for mb = 4.85 GeV in Fig. 3.18 for HQET Oong-short dashed curve) to be compared with

the dotted curve in the FM model, which corresponds to m~ff = 4.85 GeV. We see that the two
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Figure 3.18: Hadronic invariant mass spectrum in the Fermi motion model and parton model, based

on the perturbative contribution only. The solid, dotted, dashed curve corresponds to the parameters

(AI,A) = (-0.3,0.5), (-0.1,0.4), (-0.15,0.35) in (GeV2, GeV), respectively. The parton model (long-

short dashed) curve is drawn/or mb = 4.85 Gev.

3.10 LD Contributions in B -+ X sf+f- <m
1bis section is devoted to various aspects of the cc resonance effects. Following the procedure adopted in

[18], we include the long-distance (LD) resonance effects in the decay B -+ X~l+l- and simply add the

cc resonant contribution with the perturbative cc contribution expressed through the function g(mc, s) in

section 3.1.2 (see, eq. (3.18». Thus, in our method,

The function Yre~(s) accounts for the cc resonance contribution via B -+ X ~(J j'iIl, 'iII', ... ) -+ X ~t+l-
and can be seen in eq. (3.73). Note that in this approach, the effective coefficient C~ff(s) has a s-

dependence, which is not entirely due to the propagators in the function Yre~(s) as also the perturbative

cc contribution g(mc, s) is a function of s. In the resonant region, the perturbative part is not noticeable

due to the fact that the resonant part in C~ff (s) completely dominates. However, when the cc pair is suffi-

ciently off-shell, the s-dependence of the function C~ff(s) is not (and should not be) entirely determined

by the cc resonant contribution. 1bis is the motivation of the representation in eq. (3.117).

We start with an analysis of the constraints from existing data on the FM model parameters. Especially

the question if the PM reproduces the measured J /?jJ momentum distribution in B ~ X8J /¢ will be
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Figure 3.19: Momentum distribution of J /'I/J in the decay B -t X"J /'I/J in the FM model. The solid.

dotted. dashed curve corresponds to the parameters (All A) = (-0.3,0.5), (-0.3,0.53), (-0.38,0.59)

in (Ge y'2. GeV). respectively. The data points are from the CLEO measurements [112].

investigated. Then we turn to the effect of the Lorentz boost on the hadron spectra including LD effects

according to eq. (3.117) and present EH, SH distributions for B -t X"i+ i- decay in the FM. Further. we

study the uncertainties in the B -t X "i+ i- spectra resulting from the ambiguities in the parametrization

of the LD effects. Differences in the distributions from different approaches to treat the cc resonances

are shown as well for hadron spectra as for the q2 spectra discussed before, namely, the dilepton invariant

mass distribution and the FB asymmetry. Finally. the hadronic moments are calculated in the FM and

compared with the ones in the HQE approach for identical values of equivalent parameters.

The FM model parameters PF and mq (equivalently Al and A) can, in principle, be determined from

an analysis of the energy spectra in the decays B -t XulVl and B -t X" + "'/,as all of them involve

the decay of a b-quark into (an almost) massless (u or s) quark. Assuming that the parameters of the

FM models are universal, these parameters can also be constrained from the lepton energy spectrum in

the decay B -t X ciVl and from the shape of the J / 'I/J- and 'I/J'- momentum distributions in the decays

B -t X,,(J /'I/J, 'I/J'). We review the presently available analyses of the photon- and lepton-energy spectra

in B decays in the FM model (and HQET, as the two are very similar) and also present an analysis of the

J / 'I/J-momentum spectrum in B -t X "J / 'I/J.
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Figure 3.20: Hadron energy spectrum in B -+ X~e+f- including the resonance and perturbative contri-

butions in the Fermi motion model (dotted curve) for (.Al, A) = (-0.1 GeVl, 0.4 GeV). and in the parton

model (long-short dashed curve) for mb = 4.85 Gey.

The photon energy- and invariant hadronic mass distributions in B -+ X~'Y were calculated in the FM
model using the leading order (in a~) corrections in [24,6]. These spectra were used in the analysis of the

CLEO data on B -+ X~ + 'Y [11], in which the values PF = 270 ± 40 MeV suggested by the analysis of

the CLEO data on B -+ XfVt were used, together with the effective b-quark mass mfff = 4.87 ± 0.10

GeV, which gave reasonable fits of the data. We translate these parameters in terms of .Aland A using the

relations given in eqs. (3.113) and (3.114), yielding

.Al= -O.l1+g:~ GeV2, A = 0.40 ± 0.1 GeV .

The same data was fitted in [94] in the FM model, yielding (PF, mq) = (0.45 GeV, 0 GeV) as the best-fit

solution, with (PF, mq) = (0.310 GeV, 0.3 GeV) differing from the best-fit solution by one unit in X2•

The quality of the CLEO data [11] is not good enough to draw very quantitative conclusions. The best-fit

values translate into

• Analysis of the lepton energy spectrum in B -+ X fVt

A fit of the lepton energy spectrum in the semileptonic decay B -+ X fVt in the context of HQET has been

performed in [31]. Using the CLEO data [113], the authors of [31] find:

Since the FM model and HQET yield very similar lepton energy spectra apart from the end-point. one can

take the analysis of [31] also holding approximately for the FM model.
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Figure 3.21: Hadronic invariant mass spectrum in B ~ Xsl+l- including the perturbative and res-

onance contributions in the Fermi motion modeL The solid, dolled. dashed curve corresponds to the

parameters (AI, A) = (-0.3,0.5), (-0.1,0.4), (-0.15,0.35) in (GeV2. GeV). respectively.

An analysis of the J /tP-momentum spectrum in B ~ Xs(J /tP, tP1 measured by the CLEO collaboration

[112] in the FM model has been reported in [114]. The authors of [114] addressed both the shape and

normalization of the J/ tP-data, using the NRQCD formalism for the inclusive color singlet and color

octet charmonium production in B ~ XsJ /tP and the FM model. The preferred FM parameters from

this analysis are: (PF, mq) = (0.57 GeV, 0.15 GeV). where mq only plays a role in determining the

position of the peak but otherwise does not influence the small momentum tail of the J/ tP momentum

distribution. This yields values of the parameter PF which are consistent with the ones obtained in [115]

PF = O.54~g:~~.GeV based on an analysis of the CLEO data on B ~ Xlv!. [113]. The central values of

PF in [115] as well as in [114] correspond to mftI ~ 4.6 GeV. which is on the lower side of the present

theoretical estimate of mb pole mass. namely mb = 4.8 ± 0.2 GeV [64].

We have redone an analysis of the J/tP-momentum distribution which is shown in Fig. 3.19. As

shown in this figure. and also discussed in [114]. the low-momentum J /tP. in particular in the region

IkJ;v.. I :::;0.6 GeV. are problematic for inclusive decay models. including also the FM model. The IkJ;v..I-

spectrum appears to have a secondary bump; an inclusive spectrum behaving as a Gaussian tailor having

a power-like behavior ex IkJ;v..I-5 in this region is hard put to explain this data There are also suggestions

in literature [116] that the spectrum in this region is dominated by the three-body decay B ~ J /tPAp
and hence the bump reflects the underlying dynamics of this exclusive decay. In view of this. we have

taken out the first six points in the 10w-lkJ;v..1spectrum and fined the FM model parameters in the rest

of the IkJ/tPI-spectrum. The three curves shown correspond to the FM model parameters (PF, mq) =



Figure 3.22: The real part (a) and the absolute value (b) of C~ff (s) are shown as a function of S, where

C~ff (s) = Cg1]( s) + Y (s) + Y,.es (s). The solid line corresponds to Y (s) calculated using the perturba-

tive cc contribution g(me, s) given in eq. (3.18), and the dotted curve corresponds to using g(me, s) in

eq. (3.121). The dashed one corresponds to the approach by [28J.

(0.45 GeV,O GeV) (solid curve), (PF, mq) = (0.45 GeV, 0.15 GeV) (dotted curve) and (PF, mq)

(0.50 GeV, 0.15 GeV) (dashed curve). They all have reasonable X2, with x21dof = 1.6,1.6 and 1.1,
respectively. Excluding also the seventh lowest point, the X2 improves marginally, with the resulting X2

being X2Idof = 1.4, 1.4 and 0.94. Including the sixth point, the fits become slightly worse. However, they
are all acceptable fits. It is interesting that the best-fit solution of the photon energy spectrum in B -t X s+
/, (PF' mq) = (0.45 GeV, 0 GeV), is also an acceptable fit of the IkJNI-data. The corresponding AI. A
and mb values from these two analyses are compatible within ±lu with the HQET-based constraints from
the semileptonic B decays [31], quoted above. Thus, the values in eq. (3.119) appear to be a reasonable
guess of the FM model parameters. But, more importantly for the present study, the phenomenological
profile of the LD contribution B -t Xs(J l"p, "p', ... ) -t Xsl+l- presented here is certainly consistent
with present data and theoretical constraints.

We now discuss the B-meson wave function effects in the FM model on the hadron spectra in B -t

X s£+ l- . Since the resonances in B -t X sl+l- are in the dilepton invariant mass variable s and not in
SH, and noting that neither Eo (partonic energy) nor EH are Lorentz-invariant quantities, it is expected
on general grounds that the effect of the Lorentz boost in the FM model on EH-and SH-distributions will
be more marked than what was found on the invariant dilepton mass spectrum in [18]. We recall that for
the dilepton invariant mass, the Lorentz boost involved in the FM model leaves the spectrum invariant
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Figure 3.23: Hadron energy spectrum in B -+ x$e+e- including the resonance and perturbative

contributions in the Fermi motion model. In (a). the FM model parameters are fixed at P'l' A) =

(-0.1 GeVZ, 0.4 GeV). The almost overlapping curves differ in the perturbative cc contribution with the

solid curve obtained using eq. (3.18) for g(me• s), the dotted curve using g(me, s) given in eq. (3.121).

The dashed curve corresponds to the approach by [28J. In (b), the solid, dotted, dashed curve corresponds

to the parameters (At. A) = (-0.3,0.5), (-0.1,0.4), (-0.15,0.35) in (GeVZ, GeV), respectively.

and there is only a subleading effect due to the momentum dependent b-quark mass. Not so in the hadron
spectra. In the hadron energy spectrum, the cc-resonances, which are narrowly peaked in the parton model,

are broadened by the Lorentz boost of the FM model. To show this, the hadron energy spectrum in the FM

model is compared with the spectrum in the parton model in Fig. 3.20 for identical values of mb and mfff,
taken as 4.85 GeV. In terms of the hadronic invariant mass, the resonance structure is greatly smeared. The

reason is that each q2-bin contributes to a range of EH and SH. The different-q2 regions overlap)n SH

resulting in a smearing of the resonances over a wide range. This can be seen in Fig. 3.21 for the hadronic

invariant mass. Various curves illustrate the sensitivity of this spectrum on the FM model parameters.

Since we are simply adding the short-distance (SD) and resonant charmonium amplitudes, it can not be

ruled out that possibly some double counting has crept in in the coefficient C~ff (s) , once as a continuum

cc contribution and then again as J /t/J, t/J', ... resonances. In the absence of a clear separation of the LD

and SD physics in the spectra, we can not plead the case one way or the other. In the meanwhile, the

question is whether the addition of the cc-continuum and resonating pieces as being done here and in

[18] compromises the resulting theoretical precision significantly. This can only be studied by comparing
the theoretical scenario in question with other trial constructions which have no cc double counting. For
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Figure 3.24: Dilepton invariant spectrum (a) and the (normalized) Forward-Backward asymmetry (b) in

B ~ X st+e- including the resonance and perturbative contributions in the Fermi motion model. The

FM model parameters arefixed at (AI, A) = (-0.1 GeVl. 0.4 GeV). The curves differ in the perturbative

cc contribution with the solid curve obtained using eq.. (3.18) for g(mc• s), and the dotted curve using

g(mc• s) given in eq. (3.121). The dashed curve corresponds to the approach given in ref. [28].

example, one could retain in the perturbative function g(mc• s) just the constant part in s by replacing

g(mc• s) by g(mc• s), where

- (- -) 8 1 (mb) 8 1 _ 89 m s = -- n - - - nm + -.
c. 9 JJ 9 c 27

'This function (with JJ = mb) has been proposed in [29,28] as an alternative representation of the cc

perturbative contribution and represents the (minimal) short-distance contribution. We denote this ansatz

for C~ff defined as C~ff(s) = CgTJ(s)+ y(s)("g(mc• s) ~ g(mc• s)") + Yres(s) by LSW. Another

approach is based on a dispersion relation, as proposed by [28], here and in the following denoted by KS.

The KS parametrization of the cc resonant part differs from ours (eq. (3.72», and the non-resonant part has
been extracted from data, see [28] for details. The advantage of the KS procedure is that there is certainly

no double counting. Th study the difference numerically, we plot both the real part ReC~ff(s) and the

absolute value IC~ff(s)l as functions of s in Fig. 3.22 by using the complete perturbative expression for

g(mc• s) in eq. (3.16) (our approach) and g(mc• s) given in eq. (3.121) (LSW) and theKS parametrization.

Both figures (a) and (b) show that the KS curve is always below our, which is again always below the

LSWone. One sees from Figs. 3.22 (a) and 3.22 (b) that the difference in these functions in the variable

s is visible. However, the three parametrizations of the perturbative cc part give almost identical hadron

spectra, with the resulting uncertainty in the hadron energy and the hadronic invariant mass spectra being at

most 12.1(4.5)% and 4.1(2.5)%, respectively. The difference between our approach and the KS one (first

numbers) is larger than the one between ours and the LSW one, given in parentheses. 1bese differences are



already difficult to see in the hadron energy spectrum in Fig. 3.23 (a); the effect on the hadronic invariant

mass is even less noticeable and hence is not shown. Since, other uncertainties on the hadronic.distribution

are much larger, see, for example, Fig. 3.23 (b) showing the sensitivity of the hadron energy spectra on the

B-meson wave function parameters, the much talked about cc-continuum related ambiguity in literature
is numerically small. Fig. 3.23 shows that it is not the dominant uncertainty in predicting the theoretical

profiles of hadron spectra in B -+ X sl+l- .

We further analyse the uncertainties resulting from different parametrizations of the short and long-

distance amplitudes in q2-spectra which we have investigated in the previous section 3.4. We show in
Fig. 3.24 the dilepton invariant mass (a) and the Forward-Backward (FB) asymmetry (b) with all three

"SO+LO" approaches discussed before. Unfortunately, the difference between our and the KS one [28]
in the dilepton spectrum is maximal in the low-q2 region below the J / 'lfI-peak, q2 < 9Ge V2• It amounts

up to 15%. In the other distribution, the FB asymmetry, the difference is found to be moderate over the

full q2 -range. It does not exceed 5% in the range 5GeV2 $ q2 $ 9GeV2• However, we remark here that

the position of the first zero of the FB asymmetry is affected by the parametrization of the cc states.

To underline the similarity of the HQET and FM descriptions in B -+ X sl+l- , and also to make com-

parison with data, we have calculated the hadronic moments in the FM model using the spectra which we

have presented in the previous sections. The moments based on the SO-eontribution are defined as:

The moments (Xn) ce are defined by taking into account in addition to the SO-eontribution also tile con-

tributions from the cc resonances. The values of the moments in both the HQET approach and the FM for

n = 1,2 are shown in Table 3.4, with the numbers in the parentheses corresponding to the former. They

are again based on using the central values of the parameters given in Table A.l, and are calculated for

the same values of the HQET parameters A and Ah using the transcriptions given in eqs. (3.113). Both

the HQET and the FM model lead to strikingly similar results for the hadronic moments shown in this

table. However, the moments (Xn)cc with X = S, E are significantly lower than their SO-eounterparts

(Xli) calculated for the same values of the FM model parameters. This shows, at least in this model

study, that the cc resonances are important also in moments. The hadronic invariant mass spectra in

B -+ Xsl+ t- for both the SO and inclusive contributions are expected to be dominated by multi-body

states, with (SH) ~ (1.5 - 2.1) GeV2 and (SH)ce ~ (1.2 -1.5) GeV2 • Note that the difference in the nu-

merical values of the hadronic mass moments (SH)cc and (S1 )cc shown in Table 3.4 caused by different
LO parametrizations is less than 0.22%, 0.42%, respectively, as can be see in.Table 3.6.



(SH) (SH)cc (S1) (S1)cc
(A}, A) in (Gey2, GeY) (Gey2) (Gey4)

(-0.3,0.5) 2.03 (2.09) 1.51 6.43 (6.93) 3.10

(-0.1,0.4) 1.75 (1.80) 1.36 4.04 (4.38) 2.17

(-0.14,0.35) 1.54 (1.49) 1.19 3.65 (3.64) 1.92

(EH) (EH)ec (E1) (E1)cc
(A}, A) in (Gey2, GeV) (GeV) (Gey2)

(-0.3,0.5) 2.23 (2.28) 1.87 5.27 (5.46) 3.52

(-0.1,0.4) 221 (2.22) 1.85 5.19 (5.23) 3.43

(-0.14,0.35) 2.15 (2.18) 1.84 4.94 (5.04) 3.39

Thble 3.4: Hadronic spectral moments for B -+ X"Jj+ 1'- in the Fermi motion model (HQET) for the

indicated values of the parameters (A 1, A).

3.11 Branching Ratios and Hadron Spectra in B ~ Xsf+f- with Cuts on

Invariant Masses

In experimental searches for the decay B -+ X "f+f- , the short -distance contribution is expected to be

visible away from the resonances. So, cuts on the invariant dilepton mass are imposed to get rid of the

dilepton mass range where the charmonium resonances J/ ¢ and ¢' are dominant. For example, the cuts

imposed in the recent CLEO analysis [30] given below are typical:

cut A

cutB

cute

q2 ~ (mJN - 0.1 Gey)2 = 8.98 Gey2 ,

q2 ~ (mJN - 0.3 GeV)2 = 7.82 Gey2 ,

q2 ~ (m,p' + 0.1 Gey)2 = 14.33Gey2 .

The cuts A and B have been chosen to take into account the QED radiative corrections as these effects

are different in the e+e- and 1'+p- modes. In the following, we compare the hadron spectra with and

without the resonances after imposing these experimental cuts. For the low-q2 cut for muons (cut A), the

hadron energy spectra and the hadronic invariant mass spectra are shown in Fig. 3.25 (a), (b) and Fig. 3.26

(a), (b), respectively. The results for the low-q2 cut for electrons (cut B), are shown in Fig. 3.25 (c), (d)

and Fig. 3.26 (c), (d), respectively. Finally, the hadronic spectra for the high-q2 cut (cut C) for e+e- and

1'+1'- can be seen in Fig. 3.25 (e), (0 for the hadronic energy and in Fig. 3.26 (e), (0 for the hadronic

invariant mass. We see that the above cuts in q2 greatly reduce the resonance contributions. Hence, the

resulting distributions essentially test the non-resonant cc and short-distance contributions. These figures

will be used later to quantify the model dependence of the integrated branching ratios in B -+ X "f+ f- .
As mentioned in [30], the dominant BE background to the decay B -+ X"f+t- comes from two

semileptonic decays of B or D mesons, which produce the lepton pair with two undetected neutrinos. To

suppress this BB background, it is required that the invariant mass of the final hadronic state is less than



t = 1.8 GeV, which approximately equals mD. We define the survival probability of the B ~ X~f+f-

signal after the hadronic invariant mass cut:

and present S (t = 1.8 GeV)) as the fraction of the branching ratio for B ~ X /If+ i- surviving these cuts

in Table 3.5. To estimate the model dependence of this probability, we vary the PM model parameters.

Concentrating on the SO piece, we note that the effect of this cut alone is that between 83% to 92%

of the signal for B ~ X~p.+p.- and between 79% to 90% of the signal in B ~ X~e+e- survives,

depending on the PM model parameters. The corresponding numbers for the inclusive spectrum including

the SO and LO contribution, here and in the following abbreviated as tot =SO+LO, is 96% to 99.7% for

both the dimuon and dielectron case. This shows that while this cut removes a good fraction of the BB
background, it allows a very large fraction of the B ~ X ~e+i- signal to survive. However, this cut does
not discriminate between the SO and (SD+LO) contributions, for which the cuts A - C are effective. The

numbers for the survival probability S(t = 1.8 GeV) reflect that the hadronic invariant mass distribution

of the LO-contribution is more steep than the one from the SO contribution.

(All A) B .10-6 B .10-6 No s-cut No s-cut cut A cutB cutC cutC

GeV2,GeV p.+p.- e+e- p.+p.- e+e- p.+p.- e+e- p.+p.- e+e-

(-0.3,0.5) 5.8 8.6 83% 79% 57% 57% 6.4% 4.5%

(-0.1,0.4) 5.7 8.4 93% 91 % 63% 68% 8.3% 5.8%

(-0.14,0.35) 5.6 8.3 92% 90% 65% 67% 7.9% 5.5%

(-0.3,0.5)tot 562.5 563.9 96% 96% 0.8% 1.0% 0.06% 0.06%

(-0.1, 0.4) tot 564.0 565.6 99.7% 99.7% 0.8% 1.1% 0.08% 0.08%

(-0.14,0.35)tot 566.5 568.2 99% 99% 0.9% 1.2% 0.08% 0.08%

Table 3.5: Branching ratios for B -+ X~i+i- , i = p., e for different FM model parameters are given in

the second and third columns. The values given in percentage in the fourth to ninth columns repr~ent the

survival probability S (t = 1.8 GeV) defined in eq. (3.124) for different FM model parameters and cuts

on the dilepton invariant mass as defined in eq. (3.123). The subscript tot = SD + LD denotes that both

the short and the long-distance contributions are included in the branching ratios and S(t).

With the additional cut A (B) imposed on the dimuon (dielectron) invariant mass, between 57% to

65% (57% to 68%) of the B ~ X/li+i- signal survives the additional cut on the hadronic invariant mass

for the SO contribution. However, as expected, the cuts A and B result in drastic reduction of the inclusive

branching ratio for the decay B ~ X~i+i- , as they effectively remove the dominant cc-resonant part.

In this case only 0.8% to 0.9% (1.0% to 1.2% of the inclusive signal survives for the cut A (B). The

theoretical branching ratios for both the dielectron and dimuon cases, calculated using the central values

in Table A.l are also given in Table 3.5. As estimated in eq. (3.71), the uncertainty on the branching

ratios resulting from the errors on the parameters in Table A.I is about ±23% (for the dielectron mode)



and ±16% (for the dimuon case). The wave function-related uncertainty in the branching ratios is smaller,

as can be seen in Table 3.5. With the help of the theoretical branching ratio and the survival probability

S(t = 1.8) GeY, calculated for three sets of the FM parameters, the cross section can be calculated for all

six cases:
(i) no cut on the dimuon invariant mass [(SO) and (SO + LO)], (ii) no cut on the dielectron invariant mass

[(SO) and (SO + LO)], (iii) cut A on the dimuon invariant mass [(SO) and (SO + LO)], (iv) cut B on the

dielectron invariant mass [(SO) and (SO + LO)], (v) cut C on the dimuon invariant mass [(SO) and (SO +
LO)], (vi) cut C on the dielectron invariant mass [(SO) and (SO + LO)]. This gives a fair estimate of the

theoretical uncertainties on the partially integrated branching ratios from the B-meson wave function and

cc resonances. This table shows that with 101BE events. 0(70) dimuon and (0(100) dielectron) signal

events from B -t X:I.e+.e- should survive the CLEO cuts A (B) with m(X:I) < 1.8 GeY. With cut C.
one expects an order of magnitude less events. making this region interesting for the LHC experiments.
Given enough data, one can compare the experimental distributions in B -t X:I.e+.e- directly with the

ones presented here.

We have calculated the first two moments of the hadronic invariant mass in the FM model by imposing a

cut SH < t2 with t = 1.8 GeY and an optional cut on q2.

(sn) = (l
t2

sn d'lBcutx dS d 2)/(l
t2

tPBcutx dS d 2) for n = 1,2. (3.125)
H m~ H dSHdq2 H q m~ dSHdq2 H q

Here the subscript cutX indicates whether we evaluated (SH) and (S1) with the cuts on the invariant

dilepton mass as defined in eq. (3.123). or without any cut on the dilepton mass. The results are collected

in Table 3.6. The moments given in Table 3.6 can be compared directly with the data to extract the FM

model parameters. The entries in this table give a fairly good idea of what the effects of the experimental

cuts on the corresponding moments in HQET will be. as the FM and HQET yield very similar moments for

equivalent values of the parameters. The functional dependence of the hadronic moments on the HQET

parameters taking into account the experimental cuts still remains to be worked out

Further. we have calculated (SH) and (S1) with a cut SH < 3.24 Gey2 and optional ones on q2 (cut

A-C according to eq. (3.123» with the approaches KS [28] and LSW [29] for (,x}, A) = (-0.1,0.4) in

Gey2, GeV. They differ from ours (eq. (3.117» in the parametrization of the resonant and non-resonant

cc contributions, as discussed in section 3.10.3. We compare the values of the moments for the same set

of FM parameters. Oenoting our approach by y. we define by 6 the maximal deviation in % between

ours and KS and LSW. generically written as: 6 = max(ly - LSWI/lyl, Iy - KSI/lyl) and present it
in the last row of Table 3.6. We see that the uncertainties in the hadronic mass moments from different

"SO+LO" parametrizations are small. namely below 1.6% in the worst case.

3.12 Summary and Concluding Remarks on the Decay B -+ Xsf+ f-

In this chapter we have investigated distributions, decay rates and moments in rare inclusive B -t X :I.e+.e-
decay in the standard model. In the first part, we have concentrated mainly on.the study of distributions in



FM No s-cut No s-cut cut A cutB cute

parameters J.l+J.l- e+e- J.l+J.l- e+e- l+l-

(.xI, A) (SH) (S'h) (SH) (S'h) (SH) (S'h) (SH) (S'h) (SH) (S'h)

GeV2,GeV GeV2 GeV4 GeV2 GeV4 GeV2 GeV4 GeV2 GeV4 GeV2 GeV4

(-0.3,0.5) 1.47 2.87 1.52 3.05 1.62 3.37 1.66 3.48 0.74 0.69

(-0.1,0.4) 1.57 2.98 1.69 3.37 1.80 3.71 1.88 3.99 0.74 0.63

(-0.14,0.35) 1.31 2.34 1.38 2.55 1.47 2.83 1.52 2.97 0.66 0.54

(-0.3,0.5)tot 1.41 2.61 1.41 2.62 1.61 3.32 1.66 3.47 0.74 0.68

(-O.l,O.4}tot 1.35 2.14 1.36 2.15 1.77 3.60 1.87 3.94 0.74 0.62

(-0.14,0.35)tot 1.17 1.84 1.18 1.85 1.45 2.76 1.51 2.95 0.66 0.54

6(%) 0.15 0.19 0.22 0.42 0.90 1.56 0.32 0.58 0.01 0.32

Thble 3.6: (SH) and (S'k) for B ~ Xse+l- , l = J.l,efordifferentFMmodelparametersand a hadronic

invariant mass cut SH < 3.24Gey'2 are given with and without additional cuts on the dilepton invariant

mass as defined in eq. (3.123). The Swmoments with cuts are defined in eq. (3.125). The subscript

tot = S D + LD denotes that both the short and the long-distance contributions are included in these

moments. The value of 6 estimates the uncertainty from different approaches to take into account the

effect of the cc continuum and resonances, see text.

the dilepton invariant mass q2, the differential branching ratio in this variable and the FB asymmetry. Our

findings can be summarized as follows [18]:

• We have calculated the leading 11mb power corrections with HQE techniques in the dilepton in-

variant mass distribution in B ~ Xse+ i- decay and have explicitly kept the s-quark dependence.

Our calculation is at variance with an earlier one [17] in the limit ms = 0 and has been confinned

recently by [27] for the massless s-quark case.

• We find that the 1/m~ corrections are stable over a good part of the dilepton mass spectru~:. How-

ever, near the high q2 end-point the distribution becomes unphysical due to the HQE parameter .x2,

signaling a breakdown of the heavy quark expansion.

• The B ~ X se+ l- decay rate in the HQE method decreases by about 4% and the branching ratio

by about 1.5% from their corresponding parton model values.·

• Alternatively, we have implemented a Gaussian Fermi motion model in the decay B ~ Xse+l- to

model B-meson bound state effects. We have analysed the dilepton invariant mass distribution and

the FB asymmetry within this framework, showing the dependence on the parameters of this model.

Non-perturbative effects are found to be perceptible in both distributions in the high q2 region.

• The theoretical uncertainties in the short-distance branching ratios in B ~ X sl+ l- decay are found

to be ±23% (±16%) for the electron (muon) case in the FM.



• We have modeled the long-distance contributions from intermediate charmonium resonances with

a VMD ansatz and presented the dilepton invariant mass distribution and the FB asymmetry in the

FM, including next-to-leading order perturbative QCD corrections in figures.

We have completed the description of final states in B ~ X tlf+ f- decay in the second part of this chapter,

which is devoted to the study of hadron spectra and hadronic spectral moments. We summarize [25,26,14];

• We have calculated the O(atl) perturbative QCD and leading O(I/mb) corrections to the hadron

spectra in the decay B ~ X tlf+ f- , including the Sudakov-improvements in the perturbative part.

• We find that the hadronic invariant mass spectrum is calculable in HQET over a limited range

SH > mBA and it depends sensitively on the parameter A (equivalently mb). These features are
qualitatively very similar to the ones found for the hadronic invariant mass spectrum in the decay

B ~ XufVI [101].

• The l/mb-corrections to the parton model hadron energy spectrum in B ~ Xtle+ f- are small over

most part of this spectrum. However, heavy quark expansion breaks down near the lower end-point
of this spectrum and close to the cc threshold. The behavior in the former case has a similar origin

as the breakdown of HQET near the high end-point in the dilepton invariant mass spectrum, which

we have presented here and in ref. [18].

• We have calculated the hadronic spectral moments (Sli) and (Eli) for n = 1,2 using HQET. The
dependence of these moments on the HQET parameters is worked out numerically. In particular, the

moments (Sli) are sensitive to the parameters A and Al and they provide complementary constraints

on them than the ones following from the analysis of the decay B ~ XfVI. The simultaneous fit

of the data in B ~ X tle+f- and B ~ X fVI could then be used to determine these parameters very

precisely. This is illustrated in Fig. 3.15.

• The corrections to the hadron energy moments tJ.(EHh/m~ and tJ.(Ekh/m~ from the leading

O(A~CD/m~) power corrections have been worked out, using the results of [27]. We find that

these corrections are very small. The corresponding corrections in tJ.(SHh/m~ vanish in the theo-

retical accuracy we are working.

• We think that the quantitative knowledge of A and Al from the moments can be used to remove

much of the theoretical uncertainties in the partially integrated decay rates in B ~ XufVI and

B ~ X tlf+ f- . Relating the two decay rates would enable a precise determination of the CKM

matrix element Vub.

• As a phenomenological alternative to HQET, we have worked out the hadron spectra and moments

in B ~ X tlf+ f- in the Fermi motion model. We find that the hadron energy spectrum is stable

against the variation of the FM model parameters. However, the hadronic invariant mass is sensitive

to the input parameters. Present theoretical dispersion on this spectrum can be reduced with the

experimental measurements of the corresponding spectrum in the decay B ~ XufVI, which will

determine these parameters. Conversely, with good measurements of the decay B -+ X Jt+e- ,one



could fix the input parameters in the decay B ~ X u1v( and determine the CKM matrix element

Vub rather precisely.

• For equivalent values of the FM and HQET parameters, the hadronic spectral moments in B ~

X 81+l- decay are found to be remarkably close to each other.

• We have worked out the effect of the cc resonances in the effective coefficient C~ff (s) on the hadron

spectra in B ~ X 81+l- , by parametrizing the present data on the resonant part from the decays

B ~ X8(J /.,p, .,p', ... ). The resonances are incorporated at the parton level and the broadening

of these resonances from the wave function effects in the FM model are then worked out. These

spectra will provide an important test of the FM model in B ~ X 81+i- .

• We find that the cc long-distance effects in B ~ X~e+l- decay are also important in the hadronic

moments.

• We have quantitatively studied possible double counting effects which may have entered in sim-

ply adding the resonant contribution via Breit-Wigner functions and the complete perturbative cc
contribution in the coefficient C~ff (s) in B ~ X 8i+ l- . The numerical difference between this

approach, followed here [18,14], and alternative ones [28] and [29], are found to be small in the

dilepton invariant mass spectrum and negligible in the hadron spectra and moments. Theoretical

spectra are found to be more sensitive to the wave function effects, which dominate the uncertainty
in the shape.

• We have worked out the hadron spectra by imposing the experimental cuts designed to suppress the

resonant cc contributions, as well as the dominant BE background leading to the final state BE ~
X~i+l- (+ missing energy). The parametric dependences of the resulting spectra are studied in the

FM model. In particular, the survival probability of the B ~ X8i+ i- signal by imposing a cut on

the hadronic invariant mass SH < 3.24 GeV2, as used in the CLEO analysis, is estimated and its

model dependence studied. This quantifies the statement that with the indicated cuts, these spectra

essentially test the physics of the short-distance (and non-resonant cC) contribution.

The CLEO collaboration has already been searched for inclusive b ~ sl+ l- decay with l = e, p. Their
results are [30]:

B(b ~ se+ e-)CLEO < 5.7.10-5
I

B(b ~ sp+ p-)CLEO < 5.8.10-5.

Comparing this with our estimates for the SD branching ratios in the decay B ~ X~l+l- given in

eq. (3.71), we see that the above CLEO upper bounds are approximately one order of magnitude away

from the theoretical standard model prediction.
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Chapter 4

The Decay Bs -+ ryry

Besides the rare decays B -t X ~I and B -t X ~e+e- •B~ -t II is another potential candidate to explore

perturbative and non-perturbative aspects of QCD and test the standard model (SM). The L3 collaboration

has already been searched for B~ -t II decay. Their upper bound is the best present limit of this channel

[117]

The first theoretical analysis of a rare decay into 2 photons is contained in the pioneering work by Gaillard

and Lee [118], who considered KS.L -t II' Exclusive B~ -t II decay has been investigated in the

lowest order in refs. [32-35]. The branching ratio found is 4.5 . 10-7 in the SM context for m~ = 0.5

GeV and other parameters given in Table A.I. The large value of the s-quark mass here results from using

the constituent quark mass m~ ,....,mK. As learned from studies of B -t X ~Idecay, the flavour changing

neutral current (FCNC) b -t Sl vertex receives in leading logarithmic (LLog) QCD approximation a

large enhancement about a factor of 2-3. We suggest similar effects for the b -t sil transition. 1b see

whether B~ -t II decay is worth more effort to be searched for at future experiments, a more advanced

analysis of its branching ratio is required. A branching ratio of order 10-6 is a benchmark of a decay

to be measured at present B experiments like CLEO or Hera-B with reasonable statistics. Upgrades and

planned B-factories will be sensitive to branching ratios of order 10-8. However, the B~iJ~ pair is too

heavy to be produced at the T (4s) resonance.

The B~ -t II final state consists ofa CP-odd T- and a CP-even T+ amplitude. It offers, besides

the branching ratio, another observable, the so called CP ratio IT+ 12 IIT-12 [34,35]. With it CP violating

effects can be studied.

The work reported in this thesis, which has already been published [37], [38] differs from the previous

ones [35.33,32] with respect to three points: a) We calculate and use the QCD-improved LLog amplitudes.

b) In contrast to previous works using the constituent quark model we model the bound state effects of

the B~ meson through an heavy quark expansion technique (HQE1) inspired approach following [16].

This introduces an additional dispersion on the B~ -t II branching ratio and CP ratio, which serves as

an estimate of the hadronic uncertainties. c) We include long distance effects due to decay chains via

intermediate vector mesons in our analysis. To be definite, we estimate the additional contribution in the

decay B~~ II through B~4 t/Yy followed by <p ~ i using Vector Meson Dominance (VMD) [74].



Further. the B" -t t/>'l/J decay is modeled by inclusive b -t s'l/J decay. Using the VMD model. the amplitude

for the chain process B" -t t/>'l/J -t ¢ry -t 'Y'Y is presented.

Leading logarithmic QCD corrections for the short-distance part of the decay B" -t 'Y'Y have also

been calculated by Chang et al. [119]. They fix A = mB. - mb. which corresponds to m" in the naive
constituent quark model. and the renormalization scale J.' = mb. We emphasize here that the decay rate

(and the CP ratio) is sensitive to both of these parameters and requires further theoretical investigation.

Soni et al. [120] calculated also LLog QCD calculations in B" -t 'Y'Y and in addition in the decay

B -t X,,'Y'Y. Analyses of B" -t 'Y'Y decay in non standard models have been done in ref. [35] in the

lowest order and in ref. [121] including LLog QCD corrections in the two Higgs doublet model (2HDM).

in ref. [122] in the minimal supersymmetric model (MSSM) and in ref. [123] in the 2HDM with flavour

changing neutral currents allowed at tree level.

4.1 Leading Logarithmic Improved Short-Distance Contributions in Bs -+

II Decay

In this section we present the leading logarithmic QCD-improved rates for exclusive B" -t I'Y decay. We

use the free quark model and make the connection between quark and mesons states by means of the B"
meson decay constant fB,. Dot products of kinematical variables, which are not fixed by this are estimated

in an approach inspired by HQET.
QCD-improved rates in b-quark decays can in general be obtained through the following procedure:

Matching of the full theory with an effective theory at a scale J.' = mw, using an effective Hamiltonian

and performing an evolution of the Wilson coefficients from mw down to J.' '" O( mb), thus resumming all

large logarithms of the form a~(mb) lnm
(:;), where m ~ n (n = 0,1,2, ... ). In the leading logarithmic

approximation, which we use here, m = n. In our case, which is B" -t II now an enormous short cut is

possible from observing that the effective Hamiltonian in eq. (2.18) for b -t s, is identical for b -t S,'Y

to this order of ~:mw

1
lleJJ(b -t SI) = lleJ/(b -t Sf'Y)+ 0(-4-) .mw

The proof goes as follows: One can ask, if there are more operators needed for b -t S,'Y than included

in lleJ J (b -t s'Y) and try to find an operator sX b with dim(X) ~ 3 and containing two photons! Here X

must be a gauge and Lorentz invariant structure made out of quark and photon fields. masses and covariant

derivatives D I' = 81' + ieQqAW (For the moment we shall work in zeroth order of the strong interactions.)

When constructing the full set of physical operators, the equations of motion (EOM) can be used to reduce

the operator basis:

Here FI'V, Fl'v = !lJ'vaP FaP denote the photon field strength tensor and its dual, respectively. For chiral

fermions we have the following EOM, which can be obtained with the identities given in eq. (A.41)



Other useful identities in this context are:

2 2 1 1D = f/J - 2eQqCTF, D~ = 2(f/J/'~ + /'~f/J), [D~, Dvl = ieQqF~v .

As a result, using the EOM gives either a mass, a current or remains in the operator basis 01...8 eq. (2.18)

or gives contributions to the FCNC self energy. The latter will be absorbed in the on-shell renormalization

and does not give any contribution to b -t 5/'/'

Here p, p' is the 4-momentum of the incoming b-quark, outgoing s-quark, respectively. To display the

foregoing we give some examples of EOM operator identities:

• s/,,,(D~F~V)b = eQqs/'"bq-yVq

Since after applying the equations of motion there exists no gauge-invariant FCNC-2-photon operator

with field dimension :S 6, the set of operators given in eq. (2.18) is a complete basis for both b -t SJ' and

b -t S/,/, decay [lO.5 1]. Hence all the results obtained for the former, a collection of which can be seen

in section 2.2, can be used for the latter, like the LLog evolution of the Wilson coefficients.

Having convinced us that the set-up eq. (4.2) is correct, we can now turn to an explicit calculation ofLLog

improved FCNC 2 photon amplitudes. The amplitude for the decay B8 -t /'/'can be decomposed as

[32,33,35]

where the ki and €i(ki) denote the four-momenta and the polarization vectors of the outgoing photons,

respectively 1. Alternatively, we can write the amplitude in terms of photon field strength tensors:

We have for real photons kl = 0, €i.ki = 0 with i = 1,2, k}.k2 = mtj2 and further for a B8 decaying

at rest the additional conditions €}.k2 = €2.k} = O. Then the following equations result:

A+ - 2 T+ A- - 2T-- -mB. ' - .

Also, in the rest frame of the BII meson, the CP = -1amplitude A-is proportional to the perpendicular

spin polarization €i x €2, and the CP = 1 amplitude A+ is proportional to the parallel spin polarization

€i.€2. The ratio
. +2

_ + 2 I -12 _ 41A Ircp = IT 1 / T - m1J.IA-12



TIlE DECAY Bs -+ 1'!.-
ClJAPTER4.

Cu(p)

Cc(p)

CiJ(p)

D(p)

= Cd(p) = (C3(p) - Cs(p))Nc + C4(p) - C6(p) ,

= (C1 (p) +C3(p) - Cs(p))Nc + C2(/l) +C4(/l) - C6(/l) ,

- Cb(/l) = (C3(p) + C4(/l))(Nc + 1) - NcCs(p) - C6(p) ,

Cs(/l) + C6(/l)Nc •

The Feynman rules used are given in appendix A.3. Note that the chromomagnetic operator 08 does not

contribute here in this order of aiJ. The functions I(mq), J(mq) and ~(mq) come from the irreducible

diagrams with an internal q-type quark propagating, see Fig. 4.1, and are defined as

Detailed analysis shows that the diagram Fig. 4.1 requires the calculation of three different types of inser-

tions: The current-current operators 01,2 only give a contribution to a charm loop. They have the structure

1IJL I8l 1 IJL, which leads after integration over the internal quark momentum to the function I (mq) given

above. In contrast, each of the penguin operators 03...6 has two possible insertions, a "direct" one and one



after Fierz ordering of the fields. In the former just internal b- and s-quarks appear and the operators have

to be "turned" by ±90° to generate a diagram consisting of one continuous b -t s fermion line. In the

latter the four-Fermi operators, which contribute to all 5 active flavours q = u, d, s, c, b, are rearranged

with the help of the Fierz transformation given in appendix A.3. This simplifies the calculation as it cir-

cumvents a trace over 1'-matrices. The procedure is legitimate since the resulting amplitude is (IR and

UV) finite. The operators 03,4 have the same Dirac structure as 01,2"'" 1'p.L 0 1'p.L which is reproduced

after Fierz transformation, see eq. (A.21). Therefore, here no new integrals appear. The operators 05,6 are

of l'p.L 0 l'p.R type. "Direct" insertion leads to the functions 6.(mq), J (mq) given above. They contribute

to the Bs -t 1'1' amplitude only via an internal s- and b-quark. Here care must be taken of the left-right

structure, which is different for the s- and the b-quark and results in the sign difference in the correspond-

ing term proportional to D(J.') in the CP-even amplitude A+ given in eq. (4.11). The Fierz transformation

of 05,6 results in a scalar/pseudoscalar coupling"'" R 0 L, see eq. (A.22). The analytical expression for
such an insertion is minus the one for 1'p.L 0 1'p.L, which can be checked after explicit calculation. From

here the minus signs in the functions eq. (4.12) can be understood.

The parameter As enters eq. (4.11) through the bound state kinematics. At the quark and meson level,

the decay kinematics are given

b(p) -t s(p')-y(kt. (1)-y(k2, (2) ,

Bs(P) -t 1'(k1, (1)-y(k2, (2) ,

(4.14)

(4.15)

respectively. A problem lies now in the intermediate propagators of the reducible diagrams, see Fig. 4.2,

where we need to evaluate p.kj and p' .kj, i = 1,2. The answer cannot be given just by using kinematics,

energy/momentum conservation in a chosen frame and a model is necessary here. For definiteness, we

consider the decay Bs == (bs) -t 1'1'. We write the momentum of the b-quark inside the meson as

p = mbv + k, where k is a small residual momentum, v is the 4-velocity, which connects the quark with

the meson kinematics through P = mB. v and P is the momentum of the meson. In the Bs rest frame,

v = (1,0,0,0). Now following [16], we average the residual momentum of the b-quark through

1< ka > - --2 -(A1 + 3A2)Va ,
mb

A1< kakl3 > "3(ga13 - vavl3) , (4.16)

where A}, A2 are matrix elements from the heavy quark expansion. Using P = p - p', P.ki =
v.ki = m:. and the HQETrelation [16]

- 1
mB. = mb + As - -2 -(A1 + 3A2)

mb

p'.ki

(m~ff)2 == p2

(m~11)2 == pf2

mB. --2-(mB. - As) ,
_ mB. A

2 s,

= m~ - 3A2,

(m~JJ)2 - m1. + 2mB.A~ .



The non-perturbative parameter A" can be related to A, which has been extracted (together with AI) from
data on semileptonic B±, BO decays in ref. [31], and the measured mass difference!:::.m = mB. - mB =
90 MeV [39], defining A" = A + !:::.m. The matrix element A2 is well detennined from the B(,,) - B(,,)

mass splitting, A2 = 0.12 GeV2. With the help of eq. (4.17), the correlated values of A and Al can

be transcribed into a correlation between A(,,) and mb. We select 3 representative values 2 (mb, A,,) =

(5.03,370), (4.91,480), (4.79,590) in (GeV, MeV) to study the hadronic uncertainties of our approach.

Note that we assume here that AI, A2 are flavour independent. Furthermore, we have used the definition

which leads together with the off-shellness of the quarks inside the meson to the matrix element of the

pseudoscalar current

The auxiliary function g_ = g_ (m:fJ, A,,) is defined as

g_ = mB.(m:fJ + m;fJ)2 + A,,(m1. - (m:fJ +m;ff)2).

Note that in the limit A" -+ m", m:~f -+ mb,,, and using mB. = mb + m" we recover the result obtained
by the constituent quark model [32,33,35], ignoring QCO corrections. Using the above expressions, the
partial decay width is then given by :

r(B" -+ ')'')')= 32 1 (4IA+12 + -21m1J IA-12
) •

rrmB. •

Now, there are 2 new observations to be made:

First, the Wilson coefficients in eq. (4.11) depend on the scale p. Therefore, since the behaviour of these

short-distance (SO) coefficients underrenormalization is known from the studies of B -+ X,,')' [43,44,6,7],

one can give an improved width for B" -+ ')'')'by including the leading logarithmic QCO corrections by

renormalizing the coefficients Cl. ..6 and Cfff from p = mw down to the relevant scale J.l ~ O(mb).

The explicit O(a,,) improvement in the decay width r(B" -+ ')'')') requires the calculation of a large

number of virtual corrections, which we have not taken into account. Varying the scale J.l in the range

~ :$ p :$ 2mb, one introduces an uncertainty, which can be reduced only when the complete next-to-

leading order (NLO)-analysis is available, similar to the recently completed calculation for the B -+ X,,')'

decay [43,44].

The second point concerns the strong dependence of the decay width r(B" -+ ')'')')on A", r '"0(12)
•

in eq. (4.22). It originates in the s-quark propagator in the diagram with an intermediate s-quark in Fig. 4.2.

In the earlier work the authors of e.g. [32] evaluated the decay width with m" ~ m K, assuming that the

constituent quarks are to be treated as static quarks in the meson. This is a questionable assumption. In the

HQET inspired approach, this gets replaced by A", which is well-defined experimentally. This formalism

implies, that the decay width r(Bd -+ ')'')')will involve the parametei A, which avoids the unwanted
uncertainty on md.

2We choose (~I, A) = (-0.09,280), (-0.19,390), (-0.29,500) in (GeV2, MeV) from Fig. 1 in (31).
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Figure 4.1: The generic diagram contributing to b ~ 5

"

in the effective theory due to the (Fierz ordered)

four-quark operators. The diagram with interchanged photons is not shown.

Figure 4.2: The reducible diagrams contributing to b ~ SI,. The blob denotes the FCNC operator 07•

The diagrams with interchanged photons are not shown.

The branching ratio and the CP ratio as a function of the scale p. for different values of (mb, As) are

discussed in section 4.4 including the 07-type long-distance (LD) estimate.

In the lowest order, which can be recovered at p. = mw, C7 and C2 are the only remaining non-

zero Wilson coefficients. The reducible diagram (lPR), which is proportional to C7, contributes to A±,
however, the irreducible one (lPO ('" C2(mw) = I), represented by the charm loop, enters only the

CP-odd amplitude A -. In contrast, in neutral pion decays 11"0 ~ II the electromagnetic vector coupling

results in an CP-odd amplitude and hence A+ = 0 and the CP ratio I"V IA+12/IA -12 vanishes. The authors

of [32], analysed the b ~ Sli transition in the lowest order in the full theory (SM). This amounts in the

calculation of in total 2 x 34 diagrams (the factor 2 is due to the diagrams with interchanged photons).

They further interpreted the total 1PI amplitude as a (local) FCNC 2 photon operator with canonical field

dimension 8:

After applying the EOM to the photonic part of 0,.,.., the following Lorentz structure is obtained in the Bs

rest frame



1 1
CIf(mw) = --k k (-8 2)I(mc).

1· 2 7r

Note that 0...,..., is the only operator with dimension ~ 8 after applying the EOM containing 2 photons and

2 fermions [33]. One can try to renormalize this dim 8 operator as a point. As a result, the leading order

anomalous dimension of 0lf vanishes.

In the description of exclusive B decays hadronic matrix elements < XIOilB > are involved. Here X

is any hadron (with mass mx) and the amplitudes just mentioned are purely non-perturbative objects.

At present there are two methods to calculate them in a model independent way and, depending on the

mass value of X, one can be chosen. For so called "heavy-to-heavy" transitions, where X contains one

heavy quark, the heavy quark expansion technique (HQET) is most appropriate. Heavy quark symmetry

implies that the form factors, which appear in the Lorentz decomposition of a decay into a hadron with

certain spin, are all related to one single function, the Isgur- Wise function € (v.v') [124]. Here v I v' denote

the velocities of the B I X, respectively. Moreover, it can be shown that at the zero recoil point, that is

where the final hadron is at rest in the rest frame of the decaying B, we have the normalization € (1) = 1.

The behaviour of € (v. v') for general values of the argument v.v' :j; 1 cannot be calculated. It is of non-

perturbative nature. The advantage is that there is just one universal function describing all transitions in

the heavy quark limit. From kinematical considerations one can get the possible range of the dot product

as v.v' = (m1 + mi - q2)/2mBmx, where q2 = (mBv - mxv')2. The maximal momentum transfer

q~ax = (mB - mx)2 corresponds to the minimal value of v.v' = 1. The decay under consideration

Bs --+ <h requires q2 = 0 for an on-shell photon, and we have v.v' = 2.73. For such "heavy-to-light"

decay an extrapolation too far from the zero recoil point is needed, and the QCD sum rule method is more
useful.

The decay Bs --+ <h is CKM allowed and, in the language of the operator basis given in eq. (2.18),

involves the operator 07, (see eq. (4.29) below). It has been studied in the literature in the framework of

Light-cone QCD sum rules [125], which is based on the approximate conformal invariance of QCD. Here

the sum rule is evaluated in terms of meson wave functions on the light-cone. These universal functions

with increasing twist replace the expansion in "classical" QCD sum rules into many vacuum expectation

values of operators with increasing dimension. We show the calculation of the form factor F1 in the decay

Bs --+ <h in the framework of the ordinary QCD sum rules [126], including the contribution from the

gluon condensate [37].



GF e • eff
C = .;2 211"2 ~"VtbC7 (Jl),

where we just take the contribution due to the electromagnetic penguin operator 07

07 = ~2SerCTJ.lv(mbR + m"L)berFJ.lV ,
1611"

into account and put m" = 0, justified by m" ~ mb. Here €. and q are the photon polarization and the

(outgoing) photon momentum, respectively. Lorentz decomposition gives further:

< 4>(p')ISCTpvRqVbIB,,(p) > _ i€.J.lvpu€'<pvp"p'u F} (q2)

+ (€.:p.q - PJ.lq.€.<P)G(q2) ,

where p, p' denote the four-momenta of the initial B".-meson and the outgoing 4>,respectively and €.t is

the polarization vector of the 4>-meson. At q2 = 0 both form factors coincide [127] and it is sufficient

to calculate F} (0). Note, that the form factors introduced above are in general functions of two variables

q2 and pl2. Since the 4>is on-shell, we abbreviate here and in the following unless otherwise stated

Ft{q2) == F} (q2, pl2 = m~).

The starting point for the sum rule is the three-point function [128]

where Jer = SIerS, Js = si'Ysb and TJ.l = s~CTpvqVb correspond to the electromagnetic, pseudoscalar
currents and the penguin operator, respectively. Performing now an operator product expansion (OPE)

of TerJ.l' we obtain a perturbative term, the so-called bare loop, and non-perturbative power corrections,

diagrammatically shown in Fig. 4.3. The bare loop diagram can be obtained using a double dispersion
relation in p2 and pl2,

1 100 (OO, p(s, S') .
nare = 11"2 m~ ds 10 ds (s _ r)(s' _ pI2) + subtraettons .

Technically, the spectral density p( s, s') can be calculated by using the Cutkosky rule, namely, by replac-

ing the usual propagator denominator by a delta function:

k2~m2 -t -211"i8(k2 - m2)()(ko). As a result we get

OPE enables us further to parametrize the non-perturbative effects in tenns of vacuum expectation

values of gauge-invariant operators up to a certain dimension, the so-called condensates. We consider

up to dimension-5 operators; Le. the quark condensate, gluon condensate and the quark-gluon (mixed)

condensate contributions (Fig. 4.3). This calculation is carried out in the fixed point gauge, i.e. ApxP = O.

We get

-mb _ 1
-2- < ss > (r - ml)p'2 ,



Figure 4.3: Contributions o/perturbation theory and o/vacuum condensates to the BII ~ ¢rr decay. The

dashed lines denote soft gluons.

= ~ < G2 > {I dx {I-X dy {'X> do:o?
1441r Jo Jo Jo
(ci + C2p2 + c3p!2)e-cr(d1 +d2P2+daPt2) ,

mb m2 m2

29 < suGs > [2(r _ ~n3p'2 + 3(r _ ~~)2P'4

1
+ 2(p2 - m~)2p'2] ,

CI - mtx4

C2 - m~x4(1 - x - y) ,

C3 m~x3(3 + y)(l - x - y) ,

dl 2mbx,

d2 = x(l - x - y) ,

d3 y(1- X - y) .

Here we used the exponential representation for the gluon condensate contribution:

_1_ = 1 roo do: o:n-I e-crD • (4.36)
Dn (n - I)! Jo

The momenta P, pi in eq. (4.34) are Euclidean.
For the calculation of the physical part of the sum rules we insert a complete set of on-shell states with

the same quantum numbers as BII and 4> in eq. (4.31) and get a double dispersion relation

m~JB. 1 .
TphYII=---ft/>mt/>(...2 2 )(..J2 2)FI(O)+conunuum, (4.37)

mb y - m B. Y - m t/> .



where It/> and lB. are the leptonic decay constants of the </> and B" mesons respectively, defined as usual

by

< OPal</> >
< OPsIB,,(p) >

mt/>It/>f.~ ,

= IB.m1jmb.

We have absorbed all higher order states and resonances in the continuum.

Now, we equate the hadron-world with the quark-world by Tphy" = nore + T3 + T4 + Ts. Using

quark-hadron duality, we model the continuum contribution by purely perturbative QCD. To be definite, it

is the part in eq. (4.32) above the so-called continuum thresholds So and s~. To get rid of subtractions and

to suppress the contribution of higher order states, we apply a double Borel transformation B [126] with

respect to p2 and pl2. We make use of the following properties of the Borel transform:

(_1)n e-m2JM2

(n-1)! (Af2)n '
c5(1 - aAf2

) •

(4.39)

(4.40)

h - . ( 2' ) d Mt2 H ed th ..were S = mln S - mb, So an Xmox = M2+M12' ere we us e parametrization

The last term in eq. (4.41) is due to the gluon condensate contribution and the function N(x) is defined

by:

First we list the values of the input parameters entering the sum rules (eq. (4.41)), which are not included

in Table A.l: m5 = 0.8 Gey2 [129], < 5S >= -0.011 Gey3 [130], ~ < C2 >= 0.012 Gey4 [126],

mt/> = 1.019 GeY and It/> = 0.23 GeY [131].

We do the calculations for two different continuum threshold values So = 33 Gey2 and So = 35 Gey2

and take s~ = 1.8 Gey2• In Fig. 4.4 we present the dependence of PI (0) on Af2 and AfI2 for So =

33 Gey2. According to the QCD sum rules method, it is necessary to find a range of Af2 and AfI2, where

the dependence of FI (0) on these parameters is very weak and, at the same time, the power corrections



Figure 4.4: The dependence of the decay constant F1 (0) on the Borel parameters M2 and MI2 for So =

33 Gev'l.

and the continuum contribution remain under control. From Fig. 4.4 and Fig. 4.5 follows that the best

stability region for F1(0) is 7 Gey2 ~ M2 ~ 9 Gey2, 2 Gey2 ~ M12 ~ 3 Gey2 for So = 33,35 Gey2.

We get:

This agrees for our value of mb within errors with the result given in the literature, based on Light-cone

QCD sum rule calculations [125].

Numerical analysis shows, as also mentioned in [128], that the natural hierarchy of the bare loop,

the power corrections and continuum contributions does not hold due to the smallness of the integration

region, and the power corrections exceed the bare loop contribution. The gluon condensate contribution is

~ 1% of the dim-3 + dim-5 condensate contributions and can therefore be safely neglected·in numerical

calculations.

Starting with the amplitude for the decay B" -+ </rt as input, we calculate the CP-odd and CP-even

amplitudes in B" -+ "by using a if> -+ , conversion factor supplied by the YMD model. Here an

extrapolation of the B" -+ </rt decay amplitude from pl2 = m~ (needed for B" -+ </rt) to pI2 = 0

(required for B" -+ ,,) is necessary, such that the if> meson propagates as a massless virtual particle

before converting into a photon. Note that we suppressed in our notation the dependence of the form
factor F1 (q2) = FI(q2 ,pl2 = m~) on the second argument p/2. We define here FI (Q2) == F1 (q2 = 0, Q2)
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Figure 4.5: The dependence of the decay constant F1 (0) on the Borel parameter M2 for fixed Mf2 at

So = 33 GeV2 (solid) and So = 35 GeV2 (dashed).

for virtual momenta Q2 = _pf2. We assume, that the form factor Pi (Q2) is dominated by a single pole,

which is a good approximation for light mesons and write:

Pi (Q2) = F\(O) 2
1- Q /mpole

Using an mpole of order 1.7 - 1.9 GeV, which corresponds to the mass of the higher resonances of the 4>
meson, we estimate Pi (0) = 0.16 ± 0.02.

With the help of VMD [74,77,76] and factorization we can now present the amplitude for Bs -+ fl.

Using the intermediate propagator Q2+~~at Q2 = 0, the 4> -+ l conversion vertex from the VMD
mechanism

< OIJS' eml4>(P', £) >= eQs!r/J(O)mr/J£S' , (4.46)

and the A(Bs -+ 4>'1)amplitude, see eq. (4.27), we get:

A(Bs -+ 4>'1-+ ,,) = £i(kl)£~(k2)(AtDOTgS'1I + iALDOT £S'lla/3kr!4) , (4.47)

with the CP-even (A tDOT) and CP-odd (A LDOT ) parts:

m~ - m2 _
2XCmb • 2 r/JF1 (0)

G mb(m2 - m2)= v'20' F FdO)!r/J(O) At ;. <PC$ff(JS) ,
1r mr/J

ALDOT - 2XCmbFI (0)

2v'2O'GF F1(0)!r/J(0)At
3

mb C$ff(JS) ,
1r mr/J

where !r/J(O) = 0.18 GeV [75], Q/I = -1/3 and C is defined in eq. (4.28). The factor 2 stems from the

addition of the diagrams with interchanged photons. While for the analysis of the sum rule for Bs -+ 4>'1
we have used!r/J == !r/J(m~), here we take into account the suppression in !r/J(Q2) going from Q2 = m~
to Q2 = O. We treated the polarization vector £r/Jas transversal and replaced £ -+ £1, £r/J -+ £2, q -+
k1, p' -4 k2• The conversion factor X is defined as X = -eQ $ Im(O) •.;
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Figure 4.6: Scale dependence of the ratio R(p) defined in eq. (4.50). The solid, short-dashed and long-

dashed lines correspond to the values (mb, As) in (GeV, MeV) as indicated in the figure. The dotted line

depicts the suggested choice of the scale pfrom B -t Xs"'f studies in NW [43,44,6,7]. The parameters

used are given in Table A.I.

4.4 Numerical Estimates of the p, (mb, As) Uncertainties and the 07 Medi-
ated LD Effects

We combine in this section the results obtained in the previous sections 4.1-4.3, i. e., the LLog Qeo

corrections, the HQET inspired bound state model and the 07-type LO effects in Bs -t "'f"'f decay. We

give numbers for the Bs -t "'f"'f branching ratio and CP ratio and discuss the dependences on and the

uncertainties due to the renormalization scale p and the bound state parameters (mb, As).
Adding the 07-type LO amplitudes (eq. (4.48)) to the short-distance ones (eq. (4.11)), we obtain the

Bs -t 'Y'Ywidth including the Bs -t <h -t 'Y"'f contribution:

Here a comment about double counting is in order. The "LO" amplitudes considered here, which involve

the Wilson coefficient C7, also contain a piece from perturbation theory. It originates in the bare loop

diagram in the calculation of the sum rule and enters the value of the form factor Fl. Without this pertur-

bative part, it is not possible to perform an operator product expansion; it corresponds to the leading term

in the sum rule and hence there is no way to avoid it. The "SO" amplitudes on the other hand include also

contributions from small momenta As a consequence, by adding the perturbative and the non-perturbative

parts in eq. (4.49) there is certainly some double counting present. However, as usual, it is assumed that

the SO parts are small in regions where the LO ones are large and hence the effect of this is small.



R(p) = r(Bs -+ 1'1')(P)SD+LD07

r(Bs -+ 1'1')(mW)sD+LD07

In the numerical analysis we neglect the masses of the light quarks, i. e. we use I(mq) = 1 for q =

u, d, sand ms6(ms) = msJ(ms) = 0 in eq. (4.13). From Fig. 4.6 we find an enhancement factor

of 1.3 - 2.3 relative to the lowest order result obtained by setting p = mw, depending on the model

parameter (mb, As). Varying p in the range 2.5 GeV ~ p ~ 10.0 GeV, gives an uncertainty 6R/ R(p =

5 GeV) ~ ±(17, 19,22)% for As = (590,480,370) MeV, respectively. Here one can argue, that the

choice p = T takes into account effectively the bulk of the NLO correction as suggested by the NLO

calculation for B -+ Xs1' [43,44].

Table 4.1 shows the combined p and model parameter dependence of the branching ratio

r(Bs -+ 1'1')SD+LD07
B(Bs -+ 1'1')SD+LD07 = rtot(B

s
)

The dependence of the form factor FI (m~) on the b-quark mass has been extrapolated from Fig. 3 [125].

Here FI (0) = 0.14,0.15, 0.16 has been used for mb = (5.03,4.91,4.79) GeV, respectively. Qualitatively,

p As = 370 MeV As = 480 MeV As = 590 MeV

(GeV) mb = 5.03GeV mb = 4.91 GeV mb = 4.79 GeV

2.5 1.43.10-6 8.1.10-7 5.0.10-7

5.0 1.18.10-6 6.8.10-7 4.3.10-7

10.0 0.99.10-6 5.9.10-7 3.8.10-7

Table 4.1: Branching ratio B(Bs -+ 1'1')SD+LD07 for selected values (mb' As) and the renormalization

scale p.

the influence of the LD contribution through Bs -+ <h -+ 1'1' reduces the width because of the destructive

interference of the LD + SD contributions. To quantify this, we define

B(Bs -+ 1'1')SD+LDo - B(Bs -+ 1'1')SD
K,= 7

- B(Bs -+ 1'1')SD '

depending mainly on (mb, As). To summarize, lowering the scale p and As enhances the branching ratio

B(Bs -+ 1'1').

The dependence of the CP ratio [35], [121], here including our LD 07-type estimate

41A+ + AtD0712
rcp SD+LDo7 = m4 IA - A - 12'

B. + LDo7



J.l AIJ = 370 MeV AIJ = 480 MeV AIJ = 590 MeV

(GeV) mb = 5.03 GeV mb = 4.91 GeV mb = 4.79 GeV

2.5 0.79 (0.80) 0.88 (0.88) 0.89 (0.90)

5.0 0.69 (0.71) 0.73 (0.75) 0.70 (0.73)

10.0 0.61 (0.63) 0.60 (0.63) 0.55 (0.60)

mw 0.38 (0.41) 0.33 (0.36) . 0.26 (0.33)

Table 4.2: The CP ratio rcp SD+LDo7 given in eq. (4.54)for selected values (mb, AIJ) and the renormal-

ization scale J.l.The values in parentheses correspond to rcp as defined in eq. (4.10) without taking into

account the 07-type W effects.

on the renormalization scale and on the bound state parameters can be inferred from Table 4.2. The values

of rcp without taking into account the LD contribution from the decay chain BIJ ~ <fry ~ ii are also

shown in parentheses. As can be seen, the 07-type LD effects reduce the ratio [121]. Further including

the LLog QCD corrections enhance rcp SD+LD07 by a factor of 1.6 - 3.4 compared to the lowest order
result (p, = mw), depending on the (mb, AIJ) parameter set. As a rule, both lowering J.land increasing AIJ

enlarge the value of the CP ratio.

4.5 Estimate of the Long-Distance Contribution through b --+ s'lj; in Bs --+

II Decay

In this section we estimate the additional LD effect due to the dominant four-quark operators 01 and O2
(see eq. (4.56» through the BIJ ~ # ~<fry ~ ii chain decay. We use at quark level b ~ s'l/J followed

by b ~ Sf decay [76] and we pass to the hadronic level using the transition form factor F1 (0) from the

amplitude A(B,y ~ ¢» [37], [127] given in eq. (4.44). For both the conversions 'l/J ~ i and ¢>.. ~ i

we employ the Vector Meson Dominance (VMD) model [76]. The conversion 'l/J ~ i needs further

manipulation because of the strong contribution from the longitudinal part of the 'l/J meson. We extract the

transverse part using the Golowich-Pakvasa procedure [76], [77]. Further, we calculate the 01, 2-type LD

effect to the BIJ ~ <fry decay using the method given in ref. [36], namely, by taking into account the virtual

c-quark loop instead of the hadronization of the cc pair. This procedure was originally applied to estimate

the LD effect in B ~ J(*i decay and uses operator product expansion and QCD sum rule techniques.

Finally we present amplitudes for the decay chain BIJ ~ ¢>'l/J ~ <fry ~ ii.

We first consider the additional contribution to b ~ 8"/ from b ~ 8'l/Ji ~ Sf, where 'l/Ji are all cc J = 1

bound states, see Fig. 4.7. The relevant part of the effective Hamiltonian describing this process is given



_ 1- 15 _ 1 - 15
01 = Sal/-i-2-C{3 C{31/-i-2-ba ,

_. 1- 15 _ 1- 15
O2 - S,/-i-2-C C'Y/-i-2-b .

Here 0', f3 are SU(3) colour indices and ~~.) are the relevant elements of the quark mixing matrix. The

initial values of the corresponding Wilson coefficients are C1 (mw) = 0 and C2(mw) = 1. 'Ib include

leading logarithmic QeD corrections we evaluate C1,2 (Jl) at the relevant scale, Jl ~ mb for B-decays, and

this takes into account short-distance effects from single gluon exchange. The analytical expressions can

be found in [6,7]. Further we have used the unitarityoftheCKM matrix Vc~Vcb= -~~\lib - V:s Vub and

have neglected the contribution due to an internal u-quark, since V:s Vub ~ ~~ \lib = At.

Using factorization, we obtain the inclusive decay amplitude for the process b -+ st/J [76] as

where Nc = 3 in colour SU(3) and kll €"" are the momentum and the polarization vector of the t/J,
respectively. In eq. (4.57) we used the matrix element



At this stage there is a critical remark about factorization in order, concerning the value of a2 (p) used.

The decay under consideration is a class II decay following the classification of [132]. In general eq. (4.59)
is written as

a~ff = (C1(p) + C~:))[1 + £1 (p)] + C2(P)£2(P) ,

where £t{p) and £2(p) parametrize the non-factorizable contributions to the hadronic matrix elements.

a~ff takes into account all contributions of the matrix elements in contrast to a2 (p), which assumes naive

factorization £1 (p) = £2(p) = O. Especially £2(p), which is the colour octet piece, has sizable contribu-

tions to naive factorization in class II decays [99]. Furthermore, the additional problem is not to know the

correct factorization scale. In order to include the non-factorizable corrections we use the effective coeffi-
cient a~ff, which is determined experimentally from the world average branching ratio of f3 -+ K(*)7jJ as

[99]

it follows that€ ~ 0.41 withC1 (mb) = -0.25 and C2(mb) = 1.11 for the input values given in Table A. 1.

For comparison, naive factorization would give a2 (mb) = 0.12.

Our aim is to replace the 7jJ meson with the photon 1and to construct a gauge invariant amplitude.

We remove the longitudinal component of the meson 7jJ and then ft can be converted into the polarization

vector £Z of the photon I' We utilize the Golowich-Pakvasa [76],[77] procedure making use of the Gordon

identity, namely 1~/a = g~a - iO"~a. We start with the vertex s/~(l - 15)b and using the equation of
motion pb = mbb and momentum conservation p = p' + k1, we get

where p, p' are the momenta of the b- and s-quark, respectively. We neglect the first term in eq. (4.64)

since ~ ~ 1 and p'~£~ = 0, which follows from £~~ = 0 in the rest frame of the b-quark and the

transversality condition £~ ki = 0, where £~ is the transversal polarization vector of the 7jJ meson [76].

The second term can be written as

Only the 0"~a term in eq. (4.65) couples to the transversal component of the 7jJ and we obtain the corre-

sponding amplitude as

A(b-+ s7jJT) = -2Cf,p(m~)m,psO"~akl Rb£~,
mb

where R = 1iJs denotes the chiral right projection. Note that the coupling structure is the same as due to

a direct use of 07 = 16e
1r2 SO"~"mbRbF~v [6,7] with the photon field strength tensor F~" and m~ = O. For

the 7jJT -+ 1conversion following the VMD mechanism we have



where Qc = 2/3 and 1",(0) is the coupling at kr = 0, see eq. (4.71). Using the intermediate propagator

of the 1/J meson at kr = 0, we get

A(b~ s1/JT ~ s,) = 2C/~(0)eQcsO'lJokf Rb£~ . (4.68)
mb

The expression for the amplitude eq. (4.68) can be completed by summing over all cc resonant states

1/J(IS),1/J(2S),1/J(3770).1/J(4040), 1/J(4160) and 1/J(4415)

A(b~ s1/JT ~ Sf) = 2C2;/~;(0)e:!bCSO'lJokf Rb£~ .
•

The various decay couplings I",; = I",; (m~) are calculated using

2 + - 3m",;I",; = r(1/Ji ~ e e ) Q~41ra2 I

and the measured widths from [39] and given in Thble 4.3.

1/Ji I I",; [GeV] I
1"'(18) 0.405

1"'(28) 0.282

1"'(3770) 0.099

1"'(4040) 0.175

1"'(4160) 0.180

1"'(4415) 0.145

Now we have to extrapolate the couplings I",; (ki) from kr = m~; to kr = O. We use the suppression
factor [76]

obtained from data on photo production of the 1/J and assume '" to be universal for the other (higher)

resonances. 3 We now use eq. (4.69) to find the matrix element of Bs ~ </rr through the b ~ s1/JT ~ s,
transition at quark level. The matrix element [127] is given as

< <!>(p')lsO'lJoRkfbIBs(p) > = i£lJvpq£rI>vp"p'uF1(kD

+ (£:p.k1 - plJk1.£rI»G(kD I



where £11l' £t are the polarization vectors and k •• p' are the momenta of the photon and 4> meson, respec-
tively. We used G(ki = 0) = Fdki = 0) [127]. Note, that the form factors introduced above are in

general functions of two variables ki and pl2. We abbreviated here Fdki) == F1 (ki, pl2 = m~) and use

the value F1 (0) = 0.24 ± 0.02 [37] obtained in section 4.2.2.

Now we want to compare our result for A(Bs -+ 4>1)eq. (4.73) with the same amplitude calculated by

the method worked out in [36]. This method is based on the new effective quark-gluon operator obtained

by the interaction of the virtual charm quark loop with soft gluons, in contrast to a phenomenological

description in terms of 1/J resonances converting into a photon, as we used. In this approach, the operator

01 does not give any contribution to the matrix element of Bs -+ 4>1for an on-shell photon. The Pierz

transformation of the operator O2 reads (using eq. (A. 13) and eq. (A.2I))

_ I- 15 a _ I - 15 a
Ooctet = 4(clll-2-T c)(slll-2-T b) ,

and Ta = .xa/2 are the SU (3) colour generators. Then the only contribution comes from the colour octet

part Ooctet. Using the operator Ooctet as a vertex of the virtual charm quark loop, which emits a real

photon, and taking into account the c-quark-soft gluon interaction, a new effective operator is obtained.

The matrix element of this operator between Bs and 4> meson states gives the long distance amplitude of

Bs -+ 4>1decay due to the 01,2 operators and it is written as (see [36] for details; there the amplitude for

the decay B -+ K*, is given)

where C' = :A;; ~) .The form factors L and L are calculated using QCD sum rules [36],



The Borel parameters M and M' are varied to find the stability region for L and L. We use in the

evaluation of the sum rules the input parameters given at the beginning of section 4.2.2 and. Table A.I.

The stability region is reached for 6 Gey2 ~ M2 ~ 9 Gey2 and 2 Gey2 ~ Mt2 ~ 4 Gey2 and we get

L (0.30 ± 0.05) Gey3 ,

L - (0.35 ± 0.05) Gey3 .

Writing the amplitude for B8 -t <fry as

A(')(B8 -t <fry) = EiEif> v (iEjJvpukip,q A-(') + 9jJv A+('») ,

and using eq. (4.73), (4.76) and (4.78), we can compare the coefficients obtained by the two different

methods and get

IA- - A'-I---- < 10%,A-
IA+ - A'+I

A+ < 5%. (4.80)

This means, that the amplitudes agree within 10%.

In our approach, the structure of the transition b -t st/JT -t Sf is proportional to UjJQ ~ kf (see

eq. 4.66), since we removed the longitudinal part of the t/J meson from the amplitude. Further, the form

factors FI (ki) and G(kr) in eq. (4.72) are related for a real photon (kr = 0), FI (0) = G(O). Therefore, in

the amplitudeA(B8 -t <fry) only one form factor appears, which is FI (0) in eq. (4.73). However, the form

factors Land L in A'(B8 -t <fry) given in eq. (4.76) are not related. They are calculated separately using

QeD sum rules and this causes the difference between the ratios in eq. (4.80). In spite of the fact that the

amplitudes A± and A'± are different from each other, they coincide within the given approximation and

theoretical uncertainties lying in both methods.

We can now present the amplitude for B8 -t "due to the chain reaction B8 -t 4>t/J -t <fry -t ". We use

the intermediate propagator at zero momentum transfer and the 4> -t , conversion vertex from the VMD
model,

where the polarization vector Et is treated as transversal. To apply the VMD mechanism to the amplitude

eq. (4.73), we have to know the form factor at FI (ki = O,pt2 = 0). We employ the extrapolated value

PI (0) '= FI (0,0) = 0.16 ± 0.02 [37] from section 4.3. Then the amplitude can be written with p' -t k2,

Et/> -t E2 as



where (; is defined in eq. (4.58) and the conversion factor X is given as X = -eQ" f;'<;>. Here 1<1>(0) =

0.18 GeV [75] and Q" = -1/3. The extra factor 2 comes from the addition of the diagram with inter-

changed photons.

In conclusion, we have reanalysed the decay rate B" ~ " in the SM and we included leading logarithmic

QCD corrections. Our model to incorporate the bound state effects in the B" meson is inspired by HQET.

resulting in the parameters (mb, A,,). The strong parametric dependence of the decay rate r(B" ~ 'T)
and the CP ratio rcp on (mb, A,,) and on the renorrnalization scale JJ has been studied by us. Further we

investigated the influence of the LD contributions due to the chain B" ~ <fry ~ ". Depending on A",
the LD-contributions induced by the operator 07 become sizeable.

For typical values (mb, A,,) = (5 GeV, 370 MeV) and JJ=5 GeV, we get (including long-distance

effects through 07) the branching ratio B(Bs ~ ")SD+LDo-, = 1.18.10-6• which is a factor 1.9 larger

compared to the lowest order estimate for the same values of the parameters. However, varying (mb, As)
and JJ in the allowed range results in significant variation on the branching ratio (see Table 4.1), yielding

0.38 .10-6 ~ B(Bs ~ ")SD+LDo-, ~ 1.43.10-6 •

Improving this requires NLO calculation in the decay rate Bs ~ " and further study of the bound state

effects. The present best limit on the branching ratio in Bs ~ " decay [117] given in eq. (4.1) is still a
factor>::::100 - 400 away from the estimates given here.

Likewise the CP ratio rc P SD+LD07 is rather uncertain. Varying mb/2 ~ JJ ~ 2mb and (mb, As) in
the allowed range, we get in the SM

Further we presented a VMD model based calculation of the LD contribution to CP-even A+ and

CP-odd A-decay amplitudes for Bs ~ " decay due to the inclusive process b ~ s"p via Bs ~ # ~
<fry ~ "decay. The conversions to photons from both the "pi resonances and the if> meson lead to two

suppressions and make the amplitudes in eq. (4.83) smaller than the ones from the LD effect from the

Bs ~ <fry ~ " chain decay [37]. To quantify this we estimated the ratio

while varying T ~JJ ~ 2mb and allowing a~ff to have a theoretical error of 25% as stated in [99]. We

compared the LD-contribution to Bs ~ " decay resulting from intermediate "pi production with the one
obtained by the interaction of the virtual charm loop with soft gluons [36]. We see that both amplitudes



are in good agreement within the accuracy of the calculation. The new LD contribution resulting from the

four-quark operators 01 and O2 is smaller compared to the one of the operator 07 [37] and affects our old

estimate given in eq (4.84) for the branching ratio B(B~ -+ ,,)SD+LDo-r [37] by less than 1%.
Another LD effect in B3 -+ "decay is the one due to intermediate D3, D; mesons [133]. At quark

level this involves the four-Fenni operator transition b -+ CC5. The calculation cannot be done by first

principles and hence is not straight forward, as the diagrammatic structure is the one of charmed mesons

in a loop, which are no fundamental particles. The B3Di*) Di*) vertex can be treated with a factorization

approach, which is an approximation. The next task is to give a prescription of the electromagnetic cou-

pling of the (charged) Di*) mesons, which can be solved by minimal substitution as a first approximation.

The authors of [133] found a contribution to the branching ratio B3 -+ ", which is even larger than the
D(-)D(-)

SM short-distant one. The channel B3 • -+' "surely needs further investigation.

"New physics" -effects in B3 -+ " decay are found to be small as in b -+ Sf, they are mainly driven

by the Wilson coefficient Cfff, for which a strong constraint from data on B -+ X3, decay exists. This

has accordingly been studied in ref. [121] in the 2HDM and in ref. [122] in the MSSM. However, a small

enhancement of the branching ratio B (B3 -+ ,,) compared to the SM one is still possible in some regions

of the parameter space. In models with an extended operator basis the branching ratio and the CP ratio

can be much larger than the SM estimates [123].

Once the necessary machines are running, B3 -+ "will certainly get the same attention as the single
photon decay b -+ 5, has at present. In particular, the branching ratio B(B3 -+ ,,) '" 0(10-6) is large

enough to be observed at the LHC.



Chapter 5

Summary & Future

Rare B decays are one of the most active fields in recent particle physics. Its main theoretical principles

and developments of the last 40 years. which are still used. are roughly given as: Of course. the stan-
dard model (SM) (1961) [1] and the quark mixing (CKM) matrix (1963) [5]; further phenomenological

approaches like vector meson dominance (VMD)(1969) [74] and the Fermi motion model (FM) (1979)

[22]. The description of low energy weak processes (1981) [134] made progress with the inclusion of

QCD improved perturbative corrections by using renormalization group equation methods yielding the

effective Hamiltonian theory (1991) [fr8], [10], together with the onset of the heavy quark expansion

(HQE) (1990)[15].

We outlined these methods and applied them to the decays B -t x$e+e- with e = e, Jl and (partly)

to exclusive B$ -t II decay. We presented quantitative SM based results in terms of distributions, decay

rates and moments which can be compared with experimental results.

Concerning B -t x$e+ e- decays. the invariant dilepton mass spectrum and the Forward-Backward

(FB) asymmetry can be used to extract the short-distance coefficients from data in conjunction with the

branching ratio in B -t X$I decay. In this work we have analysed these spectra and their present
uncertainties.

Further. apart from being a test of the SM, the decay B -t X $e+e- can help to improve our knowledge

in certain aspects of long-distance effects:

a) HQE enables a description of B-meson bound state effects in terms of higher dimensional operator

matrix elements. We proposed in this thesis the determination of the non-perturbative HQE parameters

A and A1 from moments of the hadronic invariant mass in B -t X $e+e- decays. as it has been done

for the charged current induced decays B -t X eVt [66]. Given enough data, these parameters can be

extracted from B -t x$e+e- decays and assuming universality. can be used in the analysis of. e.g .• the

decay B -t XueVt. Likewise. B -t x$e+e- decay can be used to test the FM. which can be seen as a

model dependent resummation of the theory into a so-called shape function [19,135]. and/or to determine

its parameters. We remark here that some of the HQE and FM parameters are related.

b) Long-distance(LD) effects occur in B -t x$e+e- decays via the decay chain B -t X$(J /W, W', ... )
-t X $e+e- , which we have taken into account with a VMD ansatz. Since in the literature there is no agree-
ment about the implementation of this LD contribution together with the short-distance one, we compared



our approach [18] with alternative ones [28,29] and estimated the resulting uncertainties in the observ-

abIes. We find that these uncertainties are not the dominant ones in B -+ X .,e+e- decay. Further we have

shown, that one can reduce the influence of the cc resonances by kinematical cuts. At present, only an

experimental analysis can identify the correct procedure to implement the charmonium resonances into an

a parton model based calculation in the decays b -+ se+e- .
Finally, by means of building appropriate ratios of (partly) integrated spectra of rare B -+ X .,e+l- and

semileptonic B -+ X u,clv( decays, the uncertainties resulting from bound state effects in the individual

decays are expected to cancel out to a large extent.

The essential points reported in this thesis are:

• The calculation of leading power corrections in spectra and hadronic spectral moments in the decay

B -+ X .,l+ e- , including next-to-Ieading order perturbative O( n.,) corrections [18,25,26,14] .

• The presentation ofleading logarithmic QeD corrections to B., -+ 'Y'Ydecay and an estimate of the

long-distance effects due to intermediate neutral vector mesons in B., -+ 'Y'Ydecay [37,38].

Besides B., -+ "Y"y, other exclusive decay modes relevant for future B-experiments are B., -+ i+e-,
B., -+ vii and, of course, B -+ (K, K*)i+l-, B -+ (K, K*)vii. Thetransitionsb -+ svii are the cleanest

theoretically among other b -+ s decays. The expected branching ratio is larger (,,-, 4 . 10-5 [136]; note,

that one has summed over all neutrino flavours) than the one from b -+ sl+ l-. However, the decay

b -+ svii is difficult to observe. Moreover, the inclusive B -+ X., r+r- channel is interesting. In the SM,

its branching ratio is smaller than the one involVing light lepton species (e, J.l), however, in non-standard

multi-Higgs models it can be enhanced through large Higgs coupling of the r-Iepton.

Upgrades of present experiments and planned B-facilities like Hera-B, CLEO, BaBar and Belle are

about to start soon and they will be sensitive to branching ratios of order 10-6 and below. For an overview

see Table 5.1.

This work will help the search for flavour changing neutral current B -+ X.,l+ e- and B., -+ 'Y'Y

decays and in particular, will contribute to precise determinations of the HQET parameters and Vub using

the inclusive decays B -+ X.,i+ i- and B -+ XulVl in forthcoming B-facilities.



Expt. Collider Beams VB Year £, (1033 O'(bb) bb pairs P,CT O'(bb)

(GeV) online em-Is-I) (nb) (107/yr) (pm) / 0'( qij)

CLEO III CESR e+e- 10 1999 1.2 1 1.2 30 3.10-1

CESR-IV 10 ? 30 1 30 30 3.10-1

BaBar PEP-II e+e- t 10 1999 3-10 1 3-10 270 3.10-1

Belle KEK-B e+e- t 10 1999 3-10 1 3-10 200 3.10-1

HERA-B HERA pN 40 1998 - 6-12 50-100 9000 1.10-6

CDFII Tevatron pP 1800 2000 0.2-1.0 105 ooסס2 500 1.10-3

DO

BTeVt 2004 0.2 5000

LHC-Bt LHC pp 14000 2005 0.15 5.105 75000 7000 5.10-3

Atlas 500

CMS

Table 5.1: Future B experiments. Parameters which do not change between different experiments at the

same collider are entered only once. t asymmetric beam energies, t forward detector. [3J
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Appendix A

Generalities

~ Parameter II Parameter I
mw 80.26GeY a-I 129

mz 91.19 GeY a" (mz) 0.117 ± 0.005

sin2 Ow 0.2325 1~~Ytbl/lVebl 1

m" 0.2 GeY 8,,1 (lOA ± 004) %

me 104 GeY ).1 -0.20 Gey2

mb 4.8 GeY ).2 +0.12 Gey2

mt 175±5 GeY ftot(B,,) 4.09· 10-13 GeY

jj m +mb lB. 0.2 GeYb-mb/2
A(5) 0.214~t~ GeY mB. 5.369 GeYQCD

The QeD Lagrangian reads in covariant gauge [137] (A~: gluon field)

r '" -( .1Tl ) 1aa aa IJV r. rJ..,QCD = L.J q z.If' - mq q - 4 IJV + J.., fax + J..,gho,,'" ,
q=u,d,,,,e,b,t

-2-(a. Aa)2
2~ ,

caa. Dabcb •

(A.2)

(A.3)



DJl = aJl - igTX A~ ,
Dab tSaba _ gfabx AX

Jl Jl Jl'

(A.5)

(A.6)

(A.8)

(A9)

Ta, a = 1, ... ,8 are the generators of QCD. They are related to the Gell-Mann (3 x 3) matrices ).a

through Ta = ),.2°. The Ta obey the following relations (i, j, k = 1, 2, 3)

Sp(Ta) = o , (All)

Sp(Tan) = tSab/2 , (AI2)

TtiTkl
1 1

= - 2N
c

tSijtSk1+ 2tSiktSjl , (AI3)

Ti'iT,'k = tSikCF, (A. 14)

with the invariant CF is in an arbitrary SU(Nc) given as

N2 -1 4
CF = c (= - for Nc = 3) .

2Nc 3

The coefficients of the QCD beta function (see eq. (2.30» are written as:

/30 = llNc - 2Nf
3

34N; - 10NcNf - 6CFNf/31 = --------
3

Here, Nc denotes the number of colours (Nc = 3 for QeD) and Nf denotes the number of active flavours

(N f = 5 for the effective Hamiltonian theory relevant for b decays).

The covariant derivative consistent with our definition of the operator basis and the corresponding Wilson

coefficients given in section 2.2 is [51]

where Aa, A denote the polarization four-vectors of the gluon, photon respectively. Note that the sign

convention of the strong coupling here is opposite to the usual one appearing in QCD text books [137,



138] given in eq. (A.5), but can be made coincident with the substitution g -+ -g. The Feynman rules

consistent with eq. (A.18) are given here with boson propagators in Feynman gauge. In a general gauge

with gauge parameter ~ they are written as:

.gJJII + (~- l)kJJkll/(k2 + if)
-t k2 + if '

with ~ = 1, 0 corresponding to Feynman, Landau gauge, respectively. The rules should be complemented

q
••

J k

,,9
~

a, /-L b, v

±
j k

• add a (-1) for a closed fermion loop and perform the trace over the string of'Y matrices

The rule for an 07 operator insertion is, using 01' = iqJJ for an out going photon and further £ • q = 0 for
a real photon, and FJJII = 01' All - OilAI'

(q} 'YI'Lq2)( iiJ'YJJLq4)

(qn JJL(R)q2) (q3'YJJR(L )q4)

+(q}'YJJLq4)(q3'YpLq2) ,

(-2)(q}R(L)q4)(q3L(R)q2) .

(A. 2 I)

(A.22)

The effective Lagrangian in the limit of an infinitely heavy quark h with mass mQ -+ 00 is given by

£HQET = hiv.Dh. Here v denotes the velocity (v2 = 1) of a heavy quark h with momentum p =

mQv + k and small residual momentum k of order AQCD. These rules are consistent with the definition

of the covariant QeD derivative in eq. (A.5), which causes a sign difference in the quark gluon/photon

coupling compared to the weak effective Hamiltonian rules above, based on the convention eq. (A.18). A

heavy quark h is represented by a double line.
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A variety of tools for I-loop calculations is collected in the appendix of ref. [138].

Distributions

1 r .
= 21r JR dqe,qx dq ,

-i 1 e
iqx

= lim - dq--dq
(-+0 21r R q - if '

O(x)

dO (x)
dx

x2 - E I data-curve 12 , (A.27)
. errordatapomts

X2 X2
(A.28)= .

do! Ndata points - NFit parameters

2iiJ should be around 1, if it is much smaller, the errors are underestimated, if it is large, the model fails.

Special Functions useful for loops
Poly logarithms:

00 k

E ;n; Izl < I,
k=l

lzdt
- -In(1 - t) .

o t

_ Li2(z) = - r1
dt In(1 _ zt) ,Jo t

1r2 1r2o I Sp(l) = 6 Sp(-I) = 12



1[2
-Sp(l - z) + 6" -In(z) In(l - z) ,

1 1[2 1
-Sp(-) - - - -ln2(-z).

z 6 2

1 1+ iz 1 1+ zarctan (z) = -: In --. , aretanh( z) = -In -- .
2~ 1- ~z 2 1 - z

~ .

{'I" IV} = 291'v, qI'V = 2['1" IV], II'IV = 91'v - iqI'V .

A useful tool within this context is the lRACER routine [140] running under the symbolic algebra program
mathematica.

Chiral projectors L(R) = (1 ~ 15)/2:

1, ,i = 15,

L(R) , LR = RL = 0, (L(R))t = L(R) .

(A.38)

(A.39)

'ljJ - 'ljJt,o = ('ljJ*f,o, 'ljJL(R)== L(R)'ljJ,

'ljJL(R) L(R)'ljJ = (L(R)'ljJ)t,o = 'ljJt(L(R))t,o = 'ljJt,oR(L) = 'ljJR(L) . (A.41)



AppendixB

B --+ Xsf!+f!- Dilepton Invariant Mass

Distributions and FB Asymmetry

B.I TheFunctionsTiU) (v.q, s)

In this appendix we list the functions T?) (v.q, s), (i = 1,2,3) with j = 0,1,2,5, g, <5,(defined in

eq. (3.55», representing the power corrections in b -+ 5e+e- up to and including terms of order mB/m~.
The parton model contributions Ti(O) are given in eqs. (B.l) - (B.3).

T
1
(0)L/R 1 mB { _ efI Z

= --- (1 - v· q)IC9 =FClOlx mb

+; [(I+m;) (2(v.q)Z-s(v.q)-s) -2m;s] IC~fIlz

+~ [v. q - s - m; (v· q)] Re [(C~fI =FClO)*C~1I]} , (B.l)

Tz(O)L/R -~ :~ {IC~fI =FClOlz- ~ (1 + m;) IC~fIIZ} , (B.2)

T3(0)L/R :. mB { _1~fI =FClOlz_ ~ [2(v· q) - s] [1 _ mZ] IC~fIlz
x mb 5Z 3

-~ (m; + 1) Re [(C~fI =FClO)*C~1I]} , (B.3)

T
1

(I)L/R 1mB {[I 2 C ( -)Z)] 1 efI IZ (B.4)---(Al+3A2) --- 5- v·q C9 =FClO3mb3 x xZ

+~ [~(S-2(v.q)Z) - :Z (s2-2s(v.q)-s(v.q)Z+2(v.q)3)] (1+ m;)IC~ffIZ

C -Z) - 2 8 R (CefI C )*Ceff}- 5 - v· q m372 e 9 =F 10 7 ,
5X

T2(I)L/R 2mB [1 2 -] [ 1 efI C IZ 4 ( OZ)I efIl2] (B.5)= -3" mb3 (AI + 3AZ) ; + xZ v· q - C9 =F 10 +""i 1+ m3 C7 ,

T3(l)L/R 2 mB { 1 _ efI Z--- (AI + 3Az) -(1 - v· q)lC9 =FClOl3 mb3 xZ

-: [:.v. cj- 2- (s + s(v· q) - 2 (v. q)Z)] (1- m~)IC~ffIZ
52 x x2



TI($)L/R

T2($)L/R

T3($)L/R

T
I
(g)L/R

- - 2 4 R {Ceff C )*Ceff}-v· q m$ 72 e 9 =t= 10 7 ,
8X

.!. mB Al {[-~ (S - (v· q)2) + ~J{I - v· q)IC~ff =t= ClOI2
3 mb3 x3 x2

4 [4-2 12-2-2 3- 9-2- 4-2 - 4-2-2 - 7- -- -_- - 8 - m 8 + 8X + m 8X - 8 V· q - m 8 V· q + 8XV' q82X3 $ $ $

+7m~sxv. q + 12sv. q2 + 20m;sv. q2 _ 6xv. q2 _ 6m;xv. q2 + 48V. q3

+4m;v. q3s - 4xv· q3 _ 4m;xv. q3 _ 8v. q4 _ 8m;v. q4] IC$ffI2

4 [4 -2 5 - 4 - - 4 - 2 - - + 3 - 3 - 2 - 4 - -2 2 -2+-=--3 8 - 8X - 8V' q + m$8v· q xv· q - m$xv· q - 8V' q + xv· q
8X

+4v . q3 - 4711;v . q3] Re [(C~ff =t= ClO)* C$tI]} ,

2 mB \ [4 (- ( -)2) 3 2 -J---"I - 8- v·q ----V·q
3 mb3 x3 x2 x2

(IC~ff =t= ClOI2 -1{1+ 711;) IC$ffl 2) ,

_ _.!. mB Al {[~ (8 - (v. q)2) - ~JIC~ff =t= ClOI2
3 mb3 x3 x2

+ 4 [4 -2 5 - 8 - - 6 - 4 - -2 4 -2 8 ~] (I - 2) ICeffl2s2X3 - 8 + 8X + 8V· q - XV· q + 8V· q - XV· q - V· q - m$ 7

+8~3 [(4S - 3x - 4v· q2){1 + m;) - 2xv· q] Re [(C~ff =t= ClO)* c;tI]} ,

s2x :~ (AI + 3A2) [{s - V . q)Re [(C~ff =t= GlO)* C;1IJ + 2m;lC$ffI2] ,
0,
-J- m~ {AI + 3A2)Re [(C~ff =t= ClO)* C;ffl ,

8X mb J
1 mB { - eff 22"-3 A2 -(I - V· q)ICg =t= ClOl

X mb

+~ [8 + 3m~8 + s{v· q){1 + m;) - 2 {v· q)2 (1 + m;)] IC$ffI2

+1{8 - v· q {I - m;))Re [(C~ff =t= ClO)* c;1IJ} , (B.B)

:; :~ A2{ _IC~ff =t= ClOI2-1 (I + 711~)IC;ffI2 - 4Re [{C~ff =FGlO)*c;tI]} ,(B.14)

-1 mB \ {Iceff 12 4 [( -) -J ( - 2) I effl2= -2 -3 "2 9 =t= ClO +":2 2 v· q - 8 1 - m$ C7
X mb 8

+1 (I + m;) Re [(c~ff =t= ClO)* c;1IJ} ,

.!. mB (AI + 3A2) {[.!. - ~ {I - v. q)2] IC~ff =t= ClOI2
2 mb3 X x2

- _2
4

2 [-28 - 6m;s + sx + m;8x + 4m~8v, q + 4v· q2 + 4m~v. q + 28V' q2
8 X

+2m~sv. rl- 2xv· q2 _ 2m~xv. q2 - 4v. q3 _ 4m~v. q3] IC$ffI2

4 [_ _ _ 2 - - - - -2--_ - -28 + 2v· q - 2m v· q + 28V· q - XV· q - 2v· q
8X2 $

+2m~v. q2] Re [(C~ff =t= ClO)* C;1IJ} ,

(B.ll)

(B.12)



mB [1 2 _ ] [ eff C 12 4 ( - 2) I effl2]-3 (AI + 3A2) - - 2" (1 - v· q) ICg 1= 10 - -:- 1+ m" C7mb x x s

(o)LIR mB {I _ eff 2T3 = -3 (AI+ 3A2) -2" (1 - v· q) ICg 1=CIOI
mb x

+: [~v. q - 2- (1 - v . q) (2 (v· q) - s)] (1 - m~) 1c.~ffI2
s2 X x2

- s~2 [2 + 2m; - x - 2v· q - 2m;v. q] Re [(C~ff 1=ClO)* c;tlJ} .
Here the variable x is defined as x == 1 + s - 2 (v. q) - m; + i (.

B.2 Auxiliary Functions E1 (s, u) and E2( s, u)
In this appendix we give the auxiliary functions Eds, u) and E2(s, u). multiplying the delta-function
8[u(s, m,,) - u2] and its first derivative 8'[u(s, m,,) - u2]. respectively. appearing in the power corrected

Dalitz distribution d2Bjdsdu(b -7 se+.e-) in the HQE approach given in eq. (3.60).

EI (s-,u-) !{2' [1 - 4 - 2+ 6 - 4 _ 4 - 6 + . 8 _ 2 . 2- + 4 - 4- _ 2 . 6- + 2 . 2-3 _ -4- 3 "'1 m" m" m" m" m"s m"s m"s m"s s

+u2 (1 - 2m; + m: - 2m;s + 4 s + s2)]
+3'x2 (1 - m; + s) [-1 + 7m; - 11m: + 5m~ + 11 s + 10m;s - 5m:s - 15s2
-5m;s2 + 5s3 + u2 (1 - 5m; + 5 s) ]}
X (IC~ffI2 + IC1012)

+ 4 {2' [1 3 - 2+ 2 - 4 + 2 - 6 3 - 8 + - 10 10 - 2- + 18 - 4- 6 - 6- 2 - 8-3s "'1 - m" m" m" - m" m" - m"s m"s- m"s- m"s
+16 - 4-2 6 - 2-3 + 2 - 4-3 -4 - 2-4m"s - m"s m"s - s - m"s

-2(1 -2 -4+ -6+4-+2-2- 2-4-+-2+ -2-2)]-u - m" - m" m" s m"s - m"s s m"s

+3'x2 (1 - m; + s) [3 + 2m; - 8m: - 2m~ + 5m~ + 3s - 35m;s - 27m:s - 5m~s
-l1s2 + 8m;o52- 5m:s2 + 5s3 + 5m;s3
+u2 (3 + 8m; + 5m: - 5s - 5m;s)]} IC~ffI2

+8 { ~, (1 - 4 - 2 + 6 - 4 _ 4 - 6 + . 8 _ - _ • 2- + 5 - 4- _ 3 - 6- + -2 + 3 - 4-23"'1 m" m" m" m" s m"s m"s m"s s m"s
-3 • 2 -3)-s - m"s

+'x2(1 - m; + s) [4 - 3m; - 6m: + 5m~ - 605- 4m;s - lOm:s + 2s2 + 5m;o52+ u2]}
Re(C~ff) C~ff

+4su [-~'xIo5+'x2 (7 - 2m; - 5m: +205+ lOm;s - 5052)] Re(C~ff)CIO

+~u [-4'xI S (1 + m~)
3' (5 -2 -4 5-6 2-+4-2- 10.4- 3-2 5-2-2)]C *Ceff (Bl)+;\2 + m" - m" - m" + s m"s + m"s - s - m"s 10 7, .



+4 (1 ·2 • 4 + ·6 8.2 - -2 - 2 -2 + -2 + .2-2) Icf
ffl2- ms - ms miJ - mss - s - mss u ms u _
s

+8 (1 - 2m; + m~- s - m;s) Re(C~ff) cfff

+4 s ii Re(C~ff) CIO + 8 ii (1 + m;) Re(ClO) Cft1] . (B.2)

B.3 Dalitz Distribution £i2f( B ~ Xsf+ f-) / dsdu and FB Asymmetry in the

Fermi Motion Model

---------------

-------------
Figure B.1: Phase space boundaries for the u' and p integrations with fixed values of sand u drawn for

s = 15 GeV'2 and u = 8.9 GeV'2. The integration region (solid curve) is given by the intersection ofu,±

(short dashed) and ±u(s,p) (long dashed curve). The Fermi motion parameters used are (PF, mq) =

(450,0) in MeV.

We start with the differential decay rate d3rB/dsdudp, describing the decay b -l- s{+t- of a moving

b-quark having a mass mb = mb (p) and three momentum Ipl = p with a distribution 4>(p),which will be
taken as a Gaussian [22],

Here, d2rb/ds du' is the double differential decay rate of a b-quark at rest and can be written in the case
of b -l- st+t- as,

d2rb I. 2 GF
2

1 3 a2
[ ( )' () '2]

dsdu' = ~"vtbl 19211"3 mb3 161r2 F1 s,p) + F2(s,p u + F3 s,p u ,

and the three functions have the following expressions,

[(mb 2 - ms 2f - S2] (IC~ffI2 + IClOI2)

[
4 2 2 4 m,,6 2 2+ 4 mb - ms mb - m" + --2 - 8 s ms - s

mb

8 [s (mb 2 + ms 2) - (mb 2 - m" 2) 2] Re (c.~ff C~ff) ,



F2(s, p) = 4 s Re(C~ff ClO) + 8 (mb 2 + m" 2) ClO C~ff ,

F3(S, p) = - (IC~ffl'+ IClOl')+ 4 [1+ (::: r] "::' Iciffl' ,

which can be read off directly from eq. (3.60) in the limit Ai = 0; i = 1,2. Note that the Wilson
coefficient C9eff also has an implicit mb dependence, as can be seen in the text. The integration limit for

u' is determined through the equations

u~ax - Min [u~,u(s,p)] ,

U~in - Max [u~, -u(s,p)]

(B.6)

(B.7)

u± == Eb u ± J!....- V4 s mB2 + u2 ,
mB mB

Eb=Jm~+r,

A typical situation in the phase space is displayed in Fig. B.l. Integration over p gives the double

differential decay rate including the Fermi motion. The result is,

• 2 GF2 3 a2 [Pm..,. 1
= I~"¥tbl 19211"31611"210 dp mb2mB p<j>(p)

{
u:nax+ Ju~ax 2+ 4 mb2 s

Ft{s,p) In ~----
u:Oin+ JU~in 2+ 4 mb2 s

+F2(s,p) [Ju~ax2 + 4mb2 s - JU~in2 + 4 mb2 s]

+F3(s,p) 4 [u~ax Ju:nax 2+ 4 mb2 s - u~in JU:Oin2+ 4 mb2 s

2· u:Oax+ Ju:nax 2+ 4 mb2 s ] }-4 mb s In ~ I

u:Oin+ JU:Oin2+ 4 mb2 s

Lastly, the normalized differential FB asymmetry including the Fermi motion becomes,

dA rO ~du - (Upb ~du
J-Upb d"du )0 d"du

d; = rO ~du+ (Upb ~du '
J-Upb d"du )0 d"du



with mq the spectator quark mass and mK the kaon mass. Since the calculations are being done for an
inclusive decay B -+ X~f.+f.- • we should have put this threshold higher. say starting from mK + m1r•

but as this effects the very end of a steeply falling dilepton mass spectrum. we have kept the threshold in

B -+ X~l+f.- at m(X~) = mK.



Appendix C

B --+ Xsg+g- Hadron Spectra and

Moments

These functions enter in the derivation of the leading (l/m~) corrections to the hadron energy spectrum

in B --+ x:Je+e- . given in eq. (3.95).

v'X5 - m~332(-2m~ + 3xo + 3m~xo - 4x6) , (C.l)

V
~ 1

9
6(9m~ + 23m: - 18m~xo - 18x6 - 52m~x6 + 36x~ + 20x~) , (C.2)

x2 - m2o :J

1 16(3m~ + 23m: - 3xo - 21m~xo - 6x5 - 52m~x6 + 36x~ + 20x~), (C.3)v'x5-m; 3

/ 2 • 2
64 (10 . 2 10.4 3 18.2 3 ·4 2 2 2' 2 2) (C 4)V Xo - m:J 3 m:J + m:J - Xo - m:Jxo - m:Jxo + Xo + m:Jxo , .

1 1 -8 (9 • 2 34 . 4 104. 6 1 O' 8 3' 10
( 1 ( • 2))2 m:J + m:J + m:J + 1 m:J + 1m.,

. /x2 _ m2 Xo -"2 1+ m:J 9V 0 :J

132m:xo - 312m~xo - 180m~xo - 18x5 - 170m~x5 - 58m:x5 + 74m~x6 - 20m~x5

+ 72x~ + 564m~x~ + 576m:x~ + 228m~x~ - 116x~- 676m~x~ - 436m:x~ - 20m~x~

+ 72xg + 240m~xg + 24m:xg) , (C.5)

(7) 1 1 16(2 . 2 93' 4 97' 6 3' 8 3 63' 2g2 ----::=== 1( • 2) -3 7m:J + m:J + m:J + 1m:J - Xo - m:Jxo
. / x2 _ m2 Xo - "2 1 + m:JV 0 :J

189m:xo - 129m~xo - 18x6 - 108m~x6 - 62m:x5 - 20m~x6 + 72x~ + 324m~x~

+ 180m:x~ - 60x~ - 152m~x~ - 20m:x~) , (C.6)

gf,9) v'x5 - m~128( - 2m~ + Xo + m~xo) , (C.7)

(7,9) 1 64( • 2 + 3 . 4 2 • 2 2 2 4' 2 2) (C.8)gl ----::=== m:J m:J + m:Jxo - Xo - m:Jxo ,JX5 - in;

(9,10)go

(9,10)gl

(9,10)
g2 -

(7)go

(7)gl



116

(7,9)
92

h(9,1O)
1

h(9,10) =2

h(7,9) =1

h(7,9)
2

k(9,10) =1

k(7,9)
1

1 64(5' 2 9' 4 5 . 2 6 2 12 . 2 2)---==== m" + m" - Xo + m"XO - Xo - m"xO'JX5 - in;

3: JX5 - in; (-12in~ - 6in: + 9xo + 19in~xo + 3x5 + 15in~x5 - 28x~) ,

3: J x5 - in; (-6in: + 3xo + 5in~xo + 3x5 + 15in;x5 - 20x~) ,

128 . / 2 . 2( 8' 2. 2· 4 3 3 • 2 5 2 5 . 2 2)3Y Xo - m" - m" - m" + Xo - m"XO + Xo + m"xO ,

128 _/ 2 . 2( 4· 2 6· 4 3 15· 2 + 7 2 15' 2 2)3Y Xo - m" - m" - m" + Xo - m"XO Xo + m"xo,

64 / 2 • 23(2 • 2 3 3 . 2 4 2)!iYXO - m" m" - Xo - m"XO+ Xo ,

-256 _/ 2 • 23
( 2' 2 • 2 )-3-Y Xo - m" - m" + Xo + m"xo .

(C. 10)

(C.Il)

(C.I2)

(C.I3)

The aUxiliary functions given below are the coefficients of the singular terms in the derivation of the

leading (lImn corrections to the hadron energy spectrum in B ~ X"e+l- , given in eq. (3.95).

80{[~(1-in~)3(5 - in~)Xl

~(1- in;)3(-1 + 5in~)X2] (IC~ffI2 + IClOI2)

[1(1+12'288.44'236'2•2736'4'25'424.2•4720'4'49 m, - m, - m" - m,m" - m, m" + m" + m, m" + m, m"

+ 24•2•6 + 160 • 4·6 5.8 36.2•8 56.4• 8) Xl + 4 ( 1 + .2)( 3m, m m, m - m - m,m - m, m - - - m -
" "" :J "m2 3 ",

+ 14 • 2 _ 2 • 2 + 166 . 2 . 2 + 8 • 4 + 154 • 2 • 4 + 2 • 6 + 50 • 2 • 6 _ 5 • 8) \ ] ICf
ffl2m, m" m,m" m" m,m:J m:J m,m:J m:J ;\2 .2m,

+ [~(1- in;)3(7 + m;)X1. + ~(1 - m;)3(13 + 15m;)X2] Re(C~ff) C~ff

+ X (-1 • 2)5(~ dlC~ffl2 ~ dRe(C~ff) dff)}
1 + m:J 9 dso + 3 dso 7 .

to,(X}, X2) - 80X1 {~(1 - m;)5 (IC~ff12 + IClOI2)

2 ICeffl2+ -9(-1 + in;)3(-1 + 14in~ + in; + 52in~in; + in: + 14in~m: - in~) : 2
m,

+ ~(1 - m;)5 Re(C~ff) C~ff}. (C. 17)

C.3 The Functions ai, f3i,Ii, 6i

The functions entering in the definition of the hadron moments in eq. (3.99) are given in this appendix.
Note that the functions a~n,m) and 13!n,m) multiply the Wilson coefficients ICfffl2 and Cro, respec-



tively. The functions r!n,m) I 8!n,m)result from the Wilson coefficients Cfff Re(C~ff), IC~ffI2, respec-

tively. They cannot be given in a closed form since C~ff is an implicit function of xo.

The functions a~n.m)

a&O,O)= 196(-8 - 26m; + 18m: + 22m~ - 11m~) + 332(-1 + m;)3(1 + m;) In(4mn

64 • 4 (9 2 • 2 • 4) 1 (. )+ 3m" - - m" + m" n m" I

(0,0) 1 (0,0)
al = 2ao I

a~O,O)= ~(-4 + 38m; - 42m: - 26m~ - 15m~) + 16(-1 + m;)2(3 + 8m; + 5m:) In(4mn

+ 32m;( -8 - 17m; - 2m: + 5m~) In(m,,) I (C.20)

a&O,l)= ~(-41 - 49m; + 256m: - 128m~ - 43m~) + 1
3
6(-1 + m;)3(1 + m;)2In(4m~)

16 . 4 (3 . 2 2 • 4) 1 (. )+ 3m" - m" - m" n m" I

(0,1) (0,0)al = al I

a~O,l)= ~(21 + 167m; + 128m: - 276m~ - 319m~) + 1; (-1 + m;)2(3 + 14m; + 21m:

+ 10m~) In(4m~) + 332
m;(3 - 24m; - 18m: + m~) In(m,,) I

a&O,2)= 425(-119-144m;+45m:+320m~+45m~)+ ~(-1+m:)3In(4m~)

- 136m~(8 + 3m;) In(m,,) I

a(O,2)= ~(-127 - 278m2 + 1075m4 - 800m6 + 49m8) + ~(1- m2)3(_7 - 17m2
1 27 """" 9" "

- 5m: + 5m~) In(4mn + ~m:(18 - 38m; - 13m:) In(m,,) I (C.25)

a~O,2)= ~(27 - 46m; + 1681m: - 688m~ - 1189m~) + ~(-1 + m:)2(3 + 20m; + 25m:) In(4mn

- ~m:(18 + 54m; + 47m:) In(m,,) I (C.26)

a&l,O)= 0 I (C.27)

a(l,O) = ~(-23 _ 159m2 _ 112m4 + 304m6 _ 45m8) _ 16(-1 + m2)4(1 + m2) In(4m2)
1 9 """" 3 " " I

+ ~6m:( -39 - 7m; + 6m:) In(m,,) I

a~l,O)= ~(-93 - 469m; + 704m: - 127m~) + 136(-1 + m;)3(3 + 8m; + 5m:) In(4mf)

112 . 4 (3 3' 2 2 . 4) 1 (. ) (C.29)- 3m" + m" + m" n m" I

a&l,l) = 0 I (C.30)

ap,l) = :7(-4 - 131m; + 307m: - 416m~ + 178m~) - ~(-1 + m;)4(1 + 6m; + 5m:) In(4mn

+ 196m:(9 - 35m; - 7m:) In(m,,) I (C.3!)

a~lll) = ~(-60 - 185m; + 173m: + 160m~+ 70m~)+ ~(-1 + m~)3(l + m~)2(3 + 5m~)In(4mn



16 " 4 (3 2" 2 3 " 4) I (" )+ 3m$ - 1m$ - 1 m$ n m$ ,

(2,0) 0
Qo = ,

Qi2,0) = 1~5 (119 - 176m; - 1085m: + 400m~ + 835m~) + 3
9
2(1 - m;)5(1 + m;) In(4mn

- ~4 m~(28 + 5m;) In(m$) ,

(2,0) - 0
Q2 - •

(C.32)

(C.33)

(C.34)

(C.35)

The functions .81n,m)

.8~o,O) = ~(1 - 8m; + 8m~ - m~- 24m: In(m$)) ,

.8(0,0) _ ~.8(O,O)
1 - 2 0 ,

.8~0,0) = -3 + 8m; - 24m: + 24m~ - 5m: - 24m: In(m$) , (C.38)

.8~0,1) = 3
1
0(7 -25m; +160m: - 160m~ + 25m~ -7m~0 +120m:In(m,,) + 120m~ln(m,,)) , (C.39)

.8~O,I) = .8~o,O) , (CAO)

.8~O,I) = ~m;(7 - 20m; + 20m~ -7m~ + 24 In(m,,) - 48m;In(m,,)) , (CAl)

.8~O,2) = 4
2
5(2 - 3m; - 30m: + 30m: + 3m~0 - 2m~2 - 120m~In(m,,)) , (CA2)

/3(0,2) = _1_(43 - 135m2 + 1260m4 - 1440m6 + 405m8 - 153mlO + 20m12+ 1080m4In(m )
1 270 " " " " " " $ $

+ 840m~ In(m$)) , (CA3)

.8(0,2) = ~(13 - 315m2 + 1500m4 - 1560m6 + 315m8 + 147m10- 100m12 + 360m41n(m )2 90 $ $ $ $ $ $ $ $

+ 840m~ In (m$)) , (C.44)

.8~1,0) = 0 , (CA5)

.8P'O) = 3
1
0(13 -135m; -160m:+320m~ -45m: + 7m~0-600m: In (m,,) -120m~ln(m$)) , (CA6)

.8~I,O) = ~(3 - 9m; + 16m: - 48m~ + 45m~ - 7m~0+ 24m: In (m,,) - 72m~ln(m$)) , (C.47)

.8~1,1) = 0 , (CA8)

/3(1,1) = _1_(23 _ 45m2 + 1080m4 _ 1440m6 + 585m8 - 243m10+ 40m12+ 1080m4In(m )
1 270 " " " $ " " ,,$

+ 600m~ln(m,,)), (CA9)

.8(1,1) = 2.(13 + 45m2 - 120m4 - 45m8 + 147ml0 - 40m12+ 360m41n(m )
2 90 " " " $ " ""

- 600m~ In(m,,)) ,
a(2,O) - 0
fJo - ,

.8~2,O) = 16 (-1 + 9m; _ 45m: + 45m: - 9m~0+ m~2 - 120m~In(m$)) ,
135

a(2,O) - 0
fJ2 - •

(C.50)

(C.51)

(C.52)

The functions -r1n,m)

Note that in the expressions given below C~ff == C~ff(s = 1- 2xo+m;). The lower and upper limits





The functions 8!n,m)

(C.80)

(C.8t)

(C.88)

(C.89)



2 2 2 2 2 m~ eff2 1 (2 2) 2--2 (-41mB - 49m" - 24(mB - m,,) 10(4-2))C7 + -3027mB - 25m" CIO9mB mB mB

It(l+m~/m~) 64 2 2 2 2 2 2 eff eff
+ dXo-2 Xo(-m" - 4m"xo + 2mBxO + 2m"xo) Re(C9 )C7

m./ms mB

It(l+m~/m~) 16 2 2 2 2 2 2 3 eff 2
+ dXo--2 xo(-3m" + 6mBxO + 6m"xo - 8mBXO)IC9 I

m./ms 3mB

+ a"A(O I)C2 -32Ceff2 J.,. -16Ceff2 J.,.2 [-16(1 31 (4m~ )),...eff2 Cio
- • 9 + - 7 - + - 7 - + - + 0 - L-i + -
1r 3 mB 3 m~ 9 m~ 3

It 2 rreff rreff 16 2 eff 2] Al+ Jo dxo(64xoRe(L-9 )L-i + 3(3 - 4xo)xolCg I) m~

[
4 m~ eff2 lt 64. 2 eff eff+ -(19+1210(4-2 ))C7 + dxo(-xo(-3-9xo+28xo)Re(Cg )C73 mB 0 3

16 ( 2 3)1 effl2] A2+ 3xo -3 + 3xo + 48xo - 80xo C9 m~ ,



+ it dxo(128(1 - xo)x5Re(C~ff)C$ff + 3; (3 - txo + 4X5)X5IC~ffI2)] ~1
+ [~2 (31 + 2410(4 :r»C$ff

2 + C!o (C.93)

r! 128 2 eff eff 32 2 2 eff 2] "\2+ Jo dxo( TXo(3 + 7xo)Re(Cg )C7 + "3xo(3 + 3xo - 20xo)ICg I m1'

((

A • 2)2) 8so-m -
3 80
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