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The screening masses in a 3-dimensional gauge theory can be calculated

analytically using gap equations. This mechanism is extended to

two-loop order. We calculate the two-loop gap equation in a resummed

non-linear a-model and in a resummed 8U(2) Higgs model. The

corresponding self-energies of the vector boson and the Higgs field are

evaluated in Feynman and in unitary gauge. We demonstrate that in

both theories the two-loop gap mass is in good agreement with the

one-loop results and with lattice data. In the non-linear a-model,

the two-loop propagator mass is ~ 0.34 g2 and numerically nearly

independent of the gauge parameter. In the Higgs model, the two-loop

gap equation is solved in Feynman gauge yielding Tn ~ 0.31 g2.

Die Abschirmmassen einer dreidimensionalen Eichtheorie kann man mit

Hilfe von Gapgleichungen analytisch berechnen. Diesel' Mechanismus

wiI'd auf Zwei-Schleifen-Ordnung erweiterl. Wir stellen die Zwei-

Schleifen-Gapgleichung in einem resummierten nicht-Iinearen a-Modell

und in einem resum mierten 8U(2)-Higgsmodell auf. Die entsprechenden

Selbstenergien des Vektorbosons nnd des Higgsfeldcs werden in

Feynman- lInd in unitarer Eichung berechnet. Wir zeigen, daB die

Zwei-Schleifen-Gapmasse in beiden Theorien in guter Ubereinstimmung

mil den Ein-Schleiren-Ergebnissen und den Gitterdaten ist. 1m nicht-

linearen a-Modell ist die Propagator masse in Zwei-Schleifen-Ordnung

~ 0.34 g2 und numerisch nahezu unabhangig vom Eichparameter.

1m Higgsmodell wird die Gapgleichung auf Zwei-Schleifen-Niveau in

Feynma.n-Eichung gelost und es ergibt sich m ~ 0.31 g2.
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below 70 GeV [5]. Around 80 GeV it changes to a smooth crossover. In this case, there is no

departure from thermal equilibrium at the phase transition and the Standard Model baryogenesis

seems to be ruled out.

Hence, the baryon asymmtery has to be generated at energies higher than the electroweak scale.

There have been many attempts to explain baryogenesis in the framework of Grand unified theories

(GUT's), where baryon number violating processes are already possible at tree-level [1]. However,

this scenario may lead to problems with inflation, which demands reheating temperatures well

below the GUT scale [6]. Taking this into account, baryogenesis between the reheating scale and

the electroweak scale has recently been investigated in [7] using the gange group SO(1 0). It has

been shown that the observed baryon asymmetry can be generated in non-supersymmetric as well

as in supersymmetric theories.

Any generated baryon asymmetry will partly be washed out in the symmetric phase of the

Standard model, as baryon number violating processes are expected to occur ra.pidly at high

temperatures. The exa.ct value of the rate at which these procesSI'~qoccur, the sphalel'on-rate,

is not yet known in the high-temperature phase. In recent years, there has been intensive research

to estimate this rate [8].

In the high-temperature phase of the Standard Model, there are still technical and conceptual

problems. One naively expects a vanishing Higgs vacuum expectation value and vector boson

mass. This leads to a breakdown of ti,e perturbative expansion due to severe infrared divergences

in the magnetic sector of the theory [9]. This infrared problem may be cured by introducing a

non-vanishing magnetic mass, which acts as a cutoff regularizing these divergences. The symmetric

phase is expected to be governed by non-pertu rbative effects whose size is determined by the

magnetic screening length, which is the inverse of this magnetic mass.

The picture of the symmetric phase which one has obta.ined so far, mainly on the lat.Lice [20],

is one of a confining phase with a dense spectrum of bound sta.tes (W-bi111s and bound states of

scalars). Other simulations [21] could extract a propagator mass for the vector boson which is much

smaller than the mass of the lightest bound state. The correlation between the di[[erent masses,

the origin of the magnetic mass,' its connection with confinement and with the particle co ntent in

the symmetric phase is still not known.

At high temperatures the 4-dimensional finite temperature field theory can be dl'.8cribed by an

effective 3-dimensional theory. An analytical framework for calculating the dynamically generated

mass in a 3-dimensional SU (2) gauge theory has recently been via gap equittions, which so fa.r have

been treated only to one-loop order. The extension to two loops is the centml topic of this thesis. 1l

One of the most interesting unsolved problems in elementary particle physics and cosmology is the

baryon asymmetry in the observed universe [1]. Quantitatively, it is

with nB,B being the baryon and anti baryon density, respectively, and s being the entropy density

in a comoving volume. As an example, the lack of a considerable amount of antimatter in our galaxy

cluster cannot be explained by any known mechanism to separate matter and antimatter on this

length scale.

In principle, the baryon asymmetry can be introduced into the cosmological Standard Model as

an initial condition. In the evolution of the universe there are, however, baryon number violating

processes which may wash out the initial asymmetry. To treat the baryon asymmetry as an initial

condition is also not compatible with inflationary models [1]. For these reasons, it is expected to

be generated dynamically during the the evolution of t.he universe.

Sakharov pointed out three basic requirements, which have to be fulfilled for dynamical ba-

ryogenesis [2]. These are i) baryon number violating processes, ii) C- and CP-violation and iii)

departure from thermal equilibrium.

The last possible stage in t.he evolution of the early universe for the generation of the observed

baryon asymmetry, is the electroweak phase transition, which occurred 10-10 seconds after the big

bang [3]. Baryon-number violating processes fall out of thermal equilibrium at the corresponding

critical temperature. The electroweak phase transition is the transition from a high-temperature,

symmetric phase to a broken phase with the familiar massive W- and Z-Bosons and massless

photons. It is connected with a jump of the Higgs vacuum expectation value, which is small in

the symmetric phase, to a much higher value in the broken phase. The phase transition in the

corresponding finite temperature quantum field theory was first investigated in [4].

It is now known that the electroweak phase transition is only of first order for Higgs masses



is a crucial test for the reliability of the method. The two-loop results indicate that gap equations

are a consistent tool to calculate the propagator mass for the vector boson in 3 dimensions.

In chapter 1, we draw the physical picture of the symmetric phase which was obtained so far,

mainly in lattice calculations. We describe the main open questions and the connection between

the 3-dimensional Higgs model and the high-temperature expansion of the corresponding finite

temperature quantum field theory in 4 dimensions.

In chapter 2, the concept of gap equations is presented, which has recently been used by several

authors to calculate the magnetic mass. The one-loop results in the 3-dimensional non-linear a-

model and the Higgs model are reviewed and the vector boson and Higgs self-energies are newly

calculated to this order in unitary gauge. Furthermore, the peculiarities of calculations in unitary

gauge are thoroughly discussed and the problems with renormalization are described. It is shown

that the solution of the gap equation in the non-linear a-model provides a very good approximation

to the gap mass in the Higgs model to one-loop order.

Chapter 3 deals with technical aspects of the two-loop calculation. We explain in detail a

recently developed algorithm [37], which is used to reduce two-loop Feynman integrals to a set of

linearly independent basic integrals.

In Chapter 4, the two-loop calculation in the non-linear a-model is present.ed keeping t.he gauge

parameter arbit.rary. It is seen t.hat. .t.he two-loop gap equation has a real and positive solution.

The two-loop correction to the one-loop gap mass turns out to be sma.ll and numerically nearly

independent of the gauge-fixing parameter and the renormalization scale.

To test the non-linear a-model as a model for infrared phenomena in the symmetric phase, an

analogous calculation is performed in chapter 5 for the 3-dimensional SU(2) Higgs model. The

self-energy of the Higgs field and the transverse part of the polarization tensor of the vector boson

is calculated in unitary and Feynman gauge. The analysis of the two-loop gap equation for the

vector boson mass in Feynman gauge shows that the two-loop correction to the gap mass in the

linear model is of the same sign and of similar size as in the non-linear a-model.

In appendix A, we summarize the formulae for one-loop integrals in 3 dimensions in dimensional

as well as cut-off regularization. In appendix B, the two-loop results of the non-linear a-model are

presented in more detail keeping the dimension arbitrary. Appendix C summarizes the basic two-

loop integrals. In appendix D, the two-loop Higgs and vector boson self-energy in the SU(2) Higgs

model are given in unitary and Feynman gauge, and finally in appendix E the two-loop master

integral i.s evaluated numerically for several special mass cases.

Chapter 1

The Problem of the Magnetic Mass

In this introductory chapter, we sketch the basic unsolved problems in tile higil-temperature phase

of the Standard model. We also describe the relation between a 4-dimensional finite temperature

field theory and the corresponding 3-dimensional T=O t.heory, which justifies the restriction to 3-

dimensional gauge-Higgs models in the two-loop ca.1culation. At the end of this chapter, we present

the main features of the physical picture of the symmetric phase which one has obtained so far,

mainly in lattice simulations.

An extensive overview of finite temperat.ure quantulll field theory can nowada.ys alrea.dy be found

in textbooks [11]. The main difrerence to 1'=0 field theory is that in the part.ition function, which

is the equivalent of the generating functional, one integrates over a finite interval [0, ~lill ima.ginary

time. Fourier-transformation leads to discret.e Matsubara-frequencies Wn = 2mrT for bosons and

Wn = (2n + 1)7rT for fermions.

It t.urns out, that the behaviour ill the UV is exactly the same as in T=O field theory. The

renormalization counter-terms for T=O are sufficient to render all thermodynamic quantities in

the corresponding finite temperat.ure field theory finite. However, there are complications ill

the infrared. Compared to T=O quantum field theory, one encounters additiona.l severe infrared

divergences, as can already be seen in the following simple example.

Consider the static infrared limit of the vector boson self energy in a non-Abelian SU(N)-gauge

theory (the sLatic modes yield the dominant infrared contribution). The contribution of a typical



(n + I)-loop diagram in fig. 1.1 can be estimated as follows,

In+2 (T J d3p) n+I p2n+2 (p2 + m2) -(3n+2)

is a considerable simplication of the resummation program [14], the well-known ring summation of

daisy and super-daisy graphs. The summation of all the ring-diagrams is equivalent to replacing the

tree-level propagator by a corrected propagator which involves the one-loop mass of above [15,16].

This procedure removes the infrared infinities for all internal lines of the Ao-field .

. There remains a problem with the A;-fields, however. As they do not get a mass to one-loop

order, the magnetic mass is at least of second order in the coupling m ~ g2T. From (1.2), one

immediately sees that such a mass would get contributions form all orders in perturbation theory.

In other words, it is not perturbatively calculable.

The purpose of this disserta.tion is to shed light on the generation of this magnetic mass and,

in particular, to extend and thereby check a formalism for calculating its numerical value, which is

based on gap equations.

where the external momentum has been set to zero for simplicity. After integration this is of the

order 1.2 The 3-dimensional reduced theory and its renormalization

properties( 2T) n-l
g4T2 9m ' n > 1 , (1.2)

If the internal particles are massless, the contribution to the self-energy is divergent. However,

the originally massless gauge bosons get a dynamically generated mass which is temperature

dependent. The self-energy for static fields behaves for small external momentum as [13]

n~v (Po = 0, P -t 0) = o~oOvo~lT2 + O(p) ,

An extensive overview of the ideas of dimensional reduction as well as the calculations can best

be found iu [17]. Here, the main steps are summarized and the renorrnalization properties of the

3-dimensional theory are discussed.

We are interested in the high-temperature phase of the electroweak Standard Model, the focus

being on the infrared content of the theory, i. e. we would like to study the theory at scales ~ g2T.

Originally, there are a number of different mass scales in 'finite-temperature electroweak theory: the

temperature T, the scale of the Debye mass or the electric mass gT, the non-perturba.tive magnetic

mass g2T etc. For our purpose, it is very helpful to integrate out all modes which are heavier than

g2T.
for the Ao fields. The spatial components Ai remain massless to this order.

The crucial point is, that the electric mass is of the order of the coupling. Therefore, for soft

momenta p ~ gT, the one-loop self-energy is of the same order as the inverse of the tree-level

transverse propagator p2g~v - Pp.Pv ~ g2T2 In order to calculate consistently in perturbation

theory, the tree-level propagator has to be modified to incorporate contributions of higher-order

Joop diagrams which are already relennt to leading order in g. The simple connection between

loop order and the order in the coupling constant of 1'=0 field theories is no longer valid at finite

temperature. In [12], Braaten and Pisarski established a program for a systematic resummation of

the perturbation series, which allows a complete calculation of amplitudes to a given order in 9 (as

long as iufrared divergences are screened by a mass ~ gT). If the external fields are static, there

As already outlined in the previous section, in finite-temperature Held theory we have discrete

Matsubara frequencies due to a finite integration in imaginary time. The 4-dimensionaJ finite

temperature field theory can be viewed as a 3-dimensional 1'=0 theory with an infinite number of

excitations. Their masses are m2 + (21l'nT)2 for bosons and rn2 + (21l'(n + 1)T)2 for fermions. In

(18) all these massive degrees of freedem, namely all fermionic modp.s and all bosonic modes except.

for n = 0, are integrated out. This is the program of dimensional reduction of hot 4-dimensiona.l

theories at finite temperature.

More explicitly, let us consider the following 4-djmensional Langrangian



o We now discuss some properties concerning renormalization which are characteristic for the

3-dimensional Higgs model. The model of eq. (1.7) is super-renormalizable and has three para-

meters m3, A3 and g§. There is only a finite number of irreducible UV-divergent graphs, whose

topologies are depicted in fig. 1.2. The one-loop diagram is linearly divergent and the two-

loop setting-sun diagram contains a logarithmic divergence. All these diagrams correspond to

a mass renormalisation, no wave function or coupling constant renormalization is needed in the

3-dimensional theory. In the mimimal subtraction scheme MS of dimensional regularisation the

one-loop diagram is finite. The theory is then finite to one-loop order, at the two-loop level mass

counterterms have to be added to the Lagrangian, and to higher orders no additional divergences

8
We neglect fermions for simplicity, which lead to more complicated equations, but do not

incorporate new infrared physics. They can be added to (1.5) in a straightrorward way [14,19J.

Instead of starting with the whole electroweak Standard Model, we therefore restrict ourselves to

the SU(2) gauge theory with a doublet scalar field.

Integrating out all modes ~ T leads to the following effective action for energies ~ gT

Serr[Ai(x), Ag(x), iI},(x)] = J d3x {~F;jFij + i(DiAo)a(DiAoJ" + (Di<I»t(Diil})

+~mbAgAg + ~AA(AgAg)2 + m~<J!til}+ A3(iI}til})2+ h3A(jA(jil}til}} . (1.6)

In this last introductory section, an overview of recent lattice calculations is given, which deal with

the physical picture, in particula.r the mass spectrum of the symmetric phase of ti,e 3-dimensional

Higgs model (1.7).

Apart form the motivation to study the 3-dimensiona.l theory as a. high temperature effective

theory, there are other reasons for looking at 3-dimensional theories instead of the full 4-dimensional

/inite temperature field theory on the lattice. As a consequence of their super-renormaJizability,

they exhibit a very good scaling behaviour, so that one can extrapolate results of simulations to

the continuum limit much more accurately. 3-dimensional theories can be regarded as laboratories

for studying the qualitative features of confinement in QCD.

In spite of intensive research on the lattice, the understanding of the symmetric phase is still

incomplete. Philipsen et. al. looked at the mass spectrum by calculating gauge-invariant operators,

which lead to a picture of a confining phase with a dense spectrum of bound states [20].

In particular they studied the following correlation functions

The 3-dimensionalfields have the canonical dimension (GeV)1/2, whereas the 3-dimensional

couplings have dimension (Cell)l The parameters in eq. (1.6) have well-defined relations to the

4--dimensional parameters of eq. (1.5) [17]. Here no different notation for the fields is used for

Since we are interested in the theory at scales ~ g2T, the mass mD ~ gT can be viewed as

large and one may further simplify the theory by entirely integrating out the An field yielding an

effective action

Seff[Af(x),<l>i(X)] = J d3x Hl~jFij + (Di<l»1(Di<l» +m~iI}til}+A3(<l>tij1)2} (1.7)

This is the usual linear SU(2) !-Eggs model in 3 dimensions. It contains all the infrared physics

of the hot electroweak standard model. From now on, we restrict the discussion to 3-dimensional

gauge theories. Concerning the mass generating mechanism, we not only choose a Higgs model,

but a.lso consider a non-linea.r a-model.

R(x) Tr (ij1t(x)if)(X)) 1

L(x) Tr ((D~<J!(x))tD~<l>(x))

1
P(o;) = 2Tr(A~vA,lV)'



V;(x) = ~Tr ('Pt(x) Ii ~'P(x)ra)

the hot phase. For Gn this would be a ('Pt\I» state, for GL a (\I>tAA\I» state and for Gv a (q;t;l\I»

state. In addition to these bound states involving the scalar field, there is also a pureLy gluonic

state, a W-ball (AAAA) for Gp. This constituent picture, which interpretes the propagator mass

as a constituent mass, could qualitatively explain the measured masses of eq. (1.10). OUler bound

state models have been considered in [23].

Recently, other non-perturbative, non-local and gauge-invariant operators were investigated on

the lattice [24] in order to measure the constituent or screening masses of the bound states and

compare them with the mass obtained in gap equations and the Landau gauge simulation. The

numerical value extracted for the screening mass M is

Ta being the triplet of Pauli matrices.

Screening masses can be extracted from the corresponding two-point functions with the following

results for the symmetric phase

Gn(x - y) = (ll(x)R(y)) ~ e-m"lx-YI

Gv(x - y)~" = (V~(x)Vv(y)) ~ e-mv!x-yl

Gdx - y) = (L(x)L(y)) ~ e-mLix-yl

Gp(x - y) = (P(x)P(y)) ~ e-mplx-yl

mn = 0.839(15)l

mv = 1.27(6)g2

mL = 1.47(4)g2

mp = 1.60(4)g2 . This is approximately half of the lightest 0++ W-ball mass, which was 1.60(4)92, and twice the

propagator mass. Unfortunately, this result does not shed much light on the physical interpretation

of the propagator mass.

A comparison of the lattice calculations in the I-Iiggs model with the results in the pure gauge

theory shows almost no difference between the masses of the W-balls and the glueballs [20,25]. The

bound states of scalars seem to be rather disconnect.ed form the W-ba.ll part of the spectrum. This

approximate decoupling of the pure gauge sector from the Higgs sector in the symmetric phase is

confirmed by t.he analytical gap equat.ion approach.

Other altern pts cOIKentrate directly on the gauge boson propagator. Karsch et. a1. [21]

calculated the following correlation function for the gauge field on the lattice in Landau gauge,

At the moment, the only available analytical tool to calculate this propagator mass is via

gap equations. This approach is the central point in this thesis, and its concept as well as the

corresponding one- and two-loop ca.lculations are extensively discussed in the following chapters.

As will be demonstra,ted, the gap equation yields a mass of about the same size as the fixed gauge

simulation of eq. (1.12).

The connection between masses of eq. (UO) and eq. (1.12) is still an unsolved puzzle. Ln [22J

Buchmiiller and Philipsen explain the difference between the gauge-invariant correlations functions

and the ones in a fixed gauge. They argue that the two correlation functions are only proportional,

if the fluctuations of the Higgs field a.re small compared to the vacuum expectation value. This

is not the case in the symmetric phase, so that one cannot expect that the gauge-dependent two-

point functions constitute a good approximation to the gauge-invariant two-point functions. The

conjecture is also made that multi-particle states of constituent scalar and vector bosons determine

the exponential fall-off of the gauge-invariant two-point functions, since the f1uctuatiuons dominate



in a formal I-expansion [41]. Perturbative ca.lculations are no longer done to a fixed order of the

gauge coupling g, but as a power series in I, resulting in a rearranged or resummed perturbation

series.

One-loop Gap Equations The choice of the mass term is at first arbitrary. For our problem, it is required to contain

the correction of the self energies to the considered order in perturbation theory. This yields

a self-consistent condition for the vector boson mass, which is known as the gap equation. It

determines the particular sir.e of the tree-level mass-term m = Cg2, so that the transverse part of

the (Euclidean) vedor boson propagator remains at p2 = _m2 to the considered loop-order, i.e.In this chapter, the concept of gap equations is discussed. In this framework, it is possible to

estimate the size of the dynamically generated mass in a 3-dimensional SU(2) gauge theory ana-

lytically. The calculations in several models are reviewed and extended here. We focus on two

models in particular, the linear SU(2) Higgs model and the corresponding non-linear o--model, and

concentrate on unitary gauge and renormalization issues.

1
p2 + m2 - TIT(p2)

Z
p2 + m2

with some residue Z. With eq. (2.3) one obtaius the desired gap equ<ttion for the self-energy in

resummed perturbation theory
In chapter 1 we saw that in the high-temperature phase of the standard model a naive perturba.tive

expansion with a vanishing vedor boson mass leads to severe infrared divergences in the magnetic

sector of the theory. The infrared problem in the electric sector, however, could be solved by a

resummation (ring summation). Calculations are done with an effective propagator containing

the electric mass which, in contrast to the magnetic mass, is perturbatively calculable (at least to

leading order).

Let us follow a similar path for the magnetic mass. In ordinary perturbation theory with a free

and interaction part of the action, S = So + Sf, one expands in Sf, which is supposed to be small.

A resummation of t.he perturbation theory is obtained by adding and subtracting a mass term in S

TIT(p2 = _m2)

1- ~(p2 = _m2)'

In n-th order of resummed perturbation theory one calculates eq. (2.4) up to I" and solves t.he gap

equation for m. At one-loop eq. (2.4) reduces to

TIT(p2 = _m2) (1 + ~~; (p2 = _m2)) = O.
In theories with a BRS-symmetry the position of the pole of the propag<l.tor and therefore

eq. (2.4) is gauge-independent on mass-shell [26]. The self-energy itself is not. gauge-invariant on

mass-shell except at the one-loop level.

Now, one expands in S/ - Sm and uses an effective tree-level propagator extracted from So + Sm.

The subtracted term enters the perturbation theory at one loop higher than the added term. This

is formalized by introducing a loop-counting parameter I: one rescaJes all the fields by ,fi and



The ghost and Goldstone boson mass is given by VEmo.
In order to extract a non-vanishing mass in the symmetric phase, where in ordinary perturbation

theory v = 0, we apply the idea of resummation developed in the last section. The tree-level masses

m5 and MJ are expressed as

Let us start with the 3-dimensional SU(2) Higgs model as motivated in chapter 1. It is defined by

the action

where m and M enter the propagators of the loop expansion, and 8m2 and 8M2 are treated

perturbatively as counter-terms. For a gauge-invariant one-loop gap equil.tion it is necessary and

sufficient to have a BRS-invariant resummed tree-level action. This requires a suitable resummation

of the ghost. and Goldstone boson mass as well as of the following vertices,Here a'" is the vector field, (1 is the Higgs field, i is the Goldstone boson field and i the triplet

of Pauli matrices.

Varying fJ.2194 one expects a phase transition which is of first order for sufficiently small values

of AI 92• It is known that the Higgs phase and the symmetric phase are analytically connected [27].

It is therefore conceivable that the Higgs model has a simpler structnre than the pure gauge theory.

We are interested in the Higgs and vector boson masses in both phases which determine the

exponential fall-off of the corresponding two-point functions at large separation Ix - yl, g2M2 _ rv~
A = 8m2 u

((1(x)(1(Y))

(W,,(x)W,,(y))

In the Higgs phase, these 2-point functions can be evaluated in perturbation theory. The masses

m and M are given by the gauge-independent poles of the corresponding propagators in momentum

space.

In (2.7) we shift the Iliggs field (1 around its vacuum expectation value v, (1 = v + (1', add an

Rcgauge fixing term and the corresponding ghost terms,

LR + Ll + LO,

1 ~ ~ 1 ( ~)2 1 2 - 24W"vW"v + 2Z o"W" + 2m W,.
+~ (0,,(1,)2 + ~M2(112+ ~ (8"i)2 + ~m2i2

+~m(1'I.v~ + ~IV". (iO,.(1' - (1'o"i) + ~ (W" x i) . o"i

g2 9 M2 g2 M2 2+_w2 ((112+ i2) + __ (1' ((112+ i2) + __ (a'2 + i2)
8 " 4 m 32 rn2

+o"c*o"t + (m2c*c~ (o"W: - (~vrr·r
LPP = -c'· (02 - (.bcO"W~ - (~V (v + (1' - (.bCrrC) ) c'.

This yields the following masses for the vector boson and the Higgs field,

- (- ) 9 - 9-+go"c" W"xc +(2ma'c·c+(2'mc·.(ixC)

_8m2 (~W2 + ~i2 + (c*c) _ ~8M2a'2 + ~ ('L~+ AV2) ii~
2 " 2 2 2

+V (fJ.2 + AV2) (1' - ~8V9 ((1'I,y~ + ((1'C*C+ (c*· (i XC))2 92
2 2 2 2mo = TV ,Mo = fJ. + 3AV .
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1 1'co = _1-'21)2 + _,>-1)4.
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In resummed perturbation theory, the vertices defined by 'cl are treated as counter-terms. The

propagators for the vector boson, Goldstone boson, ghost and Higgs boson, respectively, are easily

obtained,
(

p6 p4 2 2) 2 2 2- - - - - 5p + 4m Eo (p ,m m)
8m4 m2 '

6 1 ( ) P"P" )ob~+ 2 6,,"+(~-1 ~+c 2p m P ~Tn

60b( ) 60b
, P = p2 + ~m2'

b 1
6~ (p) = p2+M2'

(
p6 p4 2 2)' 2 2 2- - - - - 51> + 4m Eo (p m m)

811'J,4 m2 1 )

where E is the one-loop Higgs boson self-energy and DT is the transverse part of the vacuum

polarization tensor,

D~t(p) = 60b [(6,," - p;;v) ilT(p2) + P;;VilLip2)] . (2.17)

The results for the self-energies in Re-gauge can be found in [28]. Here the expressions in unitary

ga,uge, .e -+ 00, are given. A peculiarity of the unitary gauge is that the limit ~ -+ 00 must be

performed before divergent integrals are evaluated [29]. Otherwise one would get a.n infinite result

for nT. This and some more characteristics of the unitary gauge are discussed in detail in section

2.4. For the moment, we just state that a separate calculation has to be made in unitary gauge.

For the ()ne-Ioop self-energy all the diagrams including Goldstone and ghost lines, which become

infinitely heavy, can be left out. The tree-level propagator for the vector boson changes to

In dimensional regularization they turn out to be finite. For explicit formulae see appendix A .

The on-shell self-energies in unitary gauge coincide with the self-energies in Re-ga.uge for arbitrary

Dob ( ) _ 6 1 (r p"p"),," P - ob-2--2 u,," + -2- .p+m Tn

One more comment has to be made concerning the third equation of (2.16), which determines

the vacuum expectation value 1) of the I'figgs field self-consistently. As 11 is no physical observable,

this equation is not gauge parameter independent. On the other hand, the masses obtained form

the gap equations (2.16) are physical observables and must therefore be gauge independent. The

weak gauge dependence induced by the gauge dependence of 1) has to be cancelled at higher orders.



Details of the calculation and the solutions of the gap equations in the linear Higgs model can

be foulld in (28]. The main result is that deeply ill the symmetric phase, the value for the gap

mass is a.pproximately the same as the one obtained in a non-linear (J model, which requires the

evaluation of much less diagrams than in the linear model. That is why we concentrate on the

simpler non-linear model first when calculating two-loop effects. It is introduced in the following

is dynamically generated in the symmetric phase.

In unitary gauge the un physical degrees of freedom decouple and one is left with a massive

Yang-Mills theory. In this case, the calculation of the vector boson self-energy involves ollly two

diagrams (see fig. 2.1), yielding [41]

We start from the Higgs model before resllmmation. To obtain the non-linear a-model, one

eliminates one degree of freedom by the constraint

and takes the limit A, JL --+ 00. Resumming the masses for the vector boson, Goldstone boson

and ghost, and supplementing these mass redefinitions by resummation of the vertices involving II

as in the linear Higgs model, one arrives at the following Lagrangian. Note, that we have neglected

all higher-dimensional operators which do not contribute to the two-loop self-energy.

(
p6 p4 2 2) 2 2 2]- 8m4 - m2 - 5p + 4m Eo (p ,m ,m )

£R+£I,

1 - - 1 ( _)2 1 2-2
;jW,,"W,," + ~ 8"W" + 2m W"

1(8-)2 E 2-2 g(- _)+2 ,,11" + 2m 11" + 2 W" X 7l"

+8"c*8"c+ Em2c'c

This result agrees with the one for arbitrary finite E, which can be found in [30] on mass··shell,

since the tree-level resummed action of the non-linear model is I3RS-invariant. As expected, the

longitudinal part of the polarization tensor vanishes for all p2. The gauge-invariant gap equation

of the non-linear a-model,

2 g2m (63 3)m = -- -ln3--
1611" 4 4'

+g8"c' . (TV" X ~ + E~mc-' . (ii' x C)

+i.(i8"if)2 _i.TV .iii'·8"i +i.w .8 ii'ii'2
8 m2 4" m 8"" m

2
-ELi2c-'c

8

_5m2 Ow; + ~if2 + Ec-'c)

which is in good agreement with the lattice result of Karsch et. al. (1.12).

In the non-linear a-model there are non-renormalizable vertices. A t one-loop level there is

no problem with renormalizability in dimensional regularization, as in this scheme all one-loop

integrals are finite in 3 dimensions. How to deal with the divergences at two-loops will be discussed

in later chapters.
Again the terms from £1 are treated as counter-terms. 6m2 is the same as in the linear model.

We solve the gap equation in the limit II = O. If we get a non-zero value for m, a vector boson mass



To go into details, consider the vector boson self-energy in unitary gauge of the non-linear

a-model in cutoff-regularization. The result is
As already indicated, the unitary gauge has to be treated with care. It has the advantage, that

loop calculations may be simpler than in Rt-gauge because there are less Feynman diagrams to be

considered. On the other hand, the resulting expressions may be more complex because of the form

of the vector boson propagator which is proportional to the zeroth instead of the inverse second

power of the energy. As a consequence of this bad high-energy behaviour one loses renormalizability

rrt-tOO(q2) = l (-~-~L + ~L) ~ + rrt->OO(q2)1 . (2.29)
T 3 15 m2 3 m4 211'2 T DR

. Notice the high powers in the external momentum in front of A, which cannot be removed by

the usual redefinition of parameters in the Lagrangian. This is a consequence of the high-energy

behaviour of the propagator in unitary gauge, it is not due to the non-renormalizability of the

non-linear a-model. Even in renormalizable theories one would obtain these high powers of q2

For comparison, the self-energy in renormalizable gauges, i. e. for arbitrary finite (, reads
In the Higgs model one obtains the unitary gauge either by performing the limit in each diagram

before evaluating divergent integrals or by integrating out the unphysical fields (Goldstone boson

and ghosts) in the Lagrangian, which get infinite masses and decouple. The ghost-ghost-scalar

coupling becomes infinite, too, so that the ghost term does not completely vanish: there remains

a quartic divergent, i. e. proportional to 04(0), non-polynomial Higgs-self-coupling term [32]. This

term can be set to zero in dimensional regularization [33].

However, other difficulties arise when performing unitary gauge calculations in connection with

dimensional regularization. Let us look at the simplest one-loop integral in 3 dimensions,

II~,(q2) = _g2
6
\ + Il}-(q2)I . (2.30)

1r DR

Here, only a gauge-independent mass renormalization is needed, as is already suggested by naive

power counting. After performing this renormalization, the gap equation in cut-off regularization

of the non-linear a-model is identical to the one in dimensional regularization, since the on--shell

finite part is the same in both schemes.

2 J d
3
k 1

Ao(m ) = (211')3 k2 + m2 '

which reads in dimensional regularization and in cutoff-regularization, respectively, In recent years, other one-loop calculations have been performed. They all st.a.rt from a massless

Yang-Mills theory, then add and subtract some gauge-invariant mass-term. One could also view

the calculation of section 2.3 in a resummed non-linear a-model as one in a resummed pure gauge

theory if one slightly modifies the resummat.ion scheme: one adds and subtracts the whole a-model,

not just the masses. At. the one-loop level this leads to the same gap equation as before.

Using this modified resummation scheme, it is possible to integrate out tl,e Goldstone and gliost

fields exactly in au arbitrary gauge, provided one uses a gauge-fixing term which depends only on

Wi' [41]. For more details see chapter 4.

Let us briefly review the other gap equation approaches for the 3-dimensional SU (2) gauge

theory. Alexanian and Nair considered a gap equa.tion based on the Chern-Simons eikonal [34].

Interestingly, their one-loop gap equation yields a magnetic mass closely related to mSM,

4 2
mAN = 3msM '" 0.389 (2.3J.)

m
411'

_1_ (A _ marctan~)
211'2 m

If the mass of the internal particle becomes infinite, Ao should be zero, as it is indeed the case in

cutoff-regularization. In dimensional regularization, however, performing the limit m -+ 00 after

integra"tion yields Ao -+ 00. To get the correct answer in it unitary gauge calculation in dimensional

regular~zation, one has to take the limit ~ -+ 00 before divergent integrals are evaluated.

Let us now discuss renormalizability in the unitary gauge. In dimensional regularization all

one-Ioo p n-point integrals are finite in 3 dimensions. Using this scheme, the gap equation has to be

renorm alized only at the two-loop level. In cutoff-regularization, however, Ao is manifestly linearly

diverge~lt, requiring a renormalization of the gap equation already at one loop.



where F~ = !E~vpFvp [35] and obtained a complex magnetic mass with the mass term of eq. (2.32),

which however can be modified such that the generated mass becomes real. Another attempt was

recently made by Cornwall [36]. He used the pinch-technique in a non-linear O"-model in order to

obtain a self-energy which is gauge parameter independent for all external momenta, not just on

mass-shell. His pinch-technique gap equation lead to a gap mass 1 of Chapter 3

Calculation Techniques for Two-loop

Propagator Integrals

Before extending the gap equalion approach to two loops, we discuss a newly constructed method

for reducing two-loop self-energy type integrals of Feynrnan diagrams to a set of basic integrals. It

has recently been developed by O. Tarasov [37].

As in our case all propagators are massive and the external momentum does not vanish, the

reduction of the scalar integrals to basic integrals with no momenta in the numerators turns out

to be the most difficult step in the t~o-loop calculation. Using Tarasov's recurrence relations it is

possible to reduce the self-energy integrals to a small set of linearly independent basic integrals.

For the first time this method arrives at a com plete red uction and stays all an algebraic level as

far as possible.

In this chapter, we look at the algorithm in more detail. We discuss the whole formalism in

Minkowski space, contrary to all other chapters of this thesis, in oruer to be easily compara.ble to

the work of Tarasov.

Iln our opinion, it is not clear why me and mSM are not identical, since the diagrams which are added in the

pinch-technique formalism usually vanish all mass-shell.

There have recently been other attempts in the literature to build an a.lgorithm for the complete

reduction of two-loop integrals with arbitrary masses to basic integrals. The earlier approach

developed in [38] has some disadvantages: first, it is not a complete reduction, i. e. the basic

integrals are not linearly independent, and second, using MATIIEMATICA it is not able to handle

the huge expressions, which appear in two-loop self-energies for vector bosons in a. non-abelian



gauge theory. The method of Tarasov, however, does not show these deficits. We checked his

formulae and implemented them into a FORM [39] package.

Let us sketch the basic features of this program and show in simple examples how the reduction

mechanism works. The method used here is only applicable in dimensional regularization. If we

calculate transverse or longitudinal parts of self-energies, all two-loop Feynman diagrams yield

expressions of the form

Id( 2) = ~ 11 ddk ddk f (k~, k~, kjq, k2q, k1k2)
q 1[d 1 '2 c~lc~ C~3 C~4 C~5 '

f being a polynomial in its arguments and c; being inverse propagators in Minkowski space,

I:xample(q2) = i-d 1 1 1 dQj dQ2dQ3q2 Q3 !!±.l . (3.8)
(QIQ2 + QIQ3 + Q2(3) 2

With the same manipulations we get a relation for an integral in d + 2 dimensions and with one of

the propagators sq uared,

I:xample(q2) = ro~:'2 11 dd+2kldd+2k2cl:2C~· (3.10)

This mechanism works for all integrals with the irreducible numerators k1q and k2q. We are

left with integrals having higher space-time dimension and higher powers of the propagators, but

without any scalar products in the numerator. The next task is to relate these integrals to integrals

with lowest possible powers of the propagators and the generic dimension d by using recurrence

relations. These will be introduced in the next section.

2k1k2 k~ + k~ - mg-=1---- (3.3)
cs cs

and analogous relations for ~c ' ~, '1 and Ii. As a next step, similar simplifications are done
4 C3 C2 Cl

for the remaining Ii as well as for ':i. After all these algebraic manipulations the remaining
C3 q

integrals with irreducible numerators contain the scalar products k1q and k2q. They can be written

as a combination of scalar integrals with shifted space-time dimells.ion and higher powers of the

propaga.tors as shown in the following simple example.

[d (2) 1 11ddk ddk (k1q)2
example q = 7fd 1 '2CIC2C5' (3.4)

where all the masses are taken to be equal for simplicity. Introducing an auxiliary scalar parameter

In this section we explicitly derive the recurrence relations for two-loop bubble integrals. For

simplicity we set all masses equal to m and use the abbreviation

kjq = ~e;/3k,ql '
t8f3 /3=0

using th e well-known a-parametric representation of the propagator,

d 1 11 d d 1IV1V'J1J3 = d d kId k2~.1r c1 c2 c5

In particular we aim at a relation which reduces the power of one of the the propagators by

1 and another relation which reduces the space-time dimension by 2. To obtain a relation, which

reduces the power of the propagators, we use partial integration. In particular we look at

1 _ 1 100

d v-I [. (k2 2· )]
(k2 2 ')V - -:---r( ) .Qa exp la - m + IE- - m + tE tV v 0



Reducing the first term by applying eq. (3.3), we get the desired recurrence relation for lowering

the power of one of the propagators by one, keeping the dimension d constant,

o o CDThis equation enables us to reduce each power of the propagators in the two-loop bubble

integrals down to one, leaving us only with Ift/n, which we now seek to reduce now to ItH' The

first term in eq. (3.13) can also be treated in a similar way as the integral in eq. (3.4). We write

klk2 = _O"V_EJ_~ei(alkl+a2k2)1. '
EJal;<8a2v 0,=0

and apply the same techniques as in the last section arriving at

~JJddkddk klk2 -~dId+2
rrd I 2 Cl C~C5 - 2 122'

Substituting this into eq. (3.13) we obtain

00
O. Tarasov derived recurrence relations for all two-Joop propagator integrals. When checking

his equations, only one non-trivia.! misprint was found. In eq. (67) of [37] there should not be an

overall minus sign on the RHS. His method enables us to reduce these integrals to the set of basic

two-loop integrals given in fig. 3.1. The dotted propagator means a squared propaga.tor in the

integraL

Switching back to Euclidean space, we define

Repeated use of eq. (3.16) leads to the recurrence relation connecting bubble integrals of different

space-time dimension with equal powers of the propagators,

Now we are able to reduce integrals of the type I~:~~"which we get after the procedure of

the previous section, to one basic bubble integral Itl1 (plus products of one loop integrals). In our

FORM package, we also include relations like eq. (3.17), reducing running times compared to a

repeated application of eq. (3.14) and (3.18).

All other two-loop propagator integrals with non-vanishing external momentum and arbitrary

masses can be treat.ed in the same way as described above. One should not forget that this technique

is only valid for dimensionally regularized integrals. For example, eq. (3.12) requires translational

invariance of dimensionally regularized integrals in k-space.

J J

ddkl ddk2 1

(2rr)d (2rr)d (ki + mil (q + mD
1

((k1 - q)2 + 1n5) ((k2 - q)2 + mD ((kl - k2)2 + m~) •

J J

ddkl ddk2 1

(2rr)d (2rr)d (k~ + mil ((kl - qJ2 + 1n~)



1
((1'2 - qJ2 + mD ((kj - k2)2 + mD '

11 ddkj ddk2 1

(2rr)d (2rr)d (k? + mil ((k2 - q)2 + m~l
1

((kj - k2)2 + m5l '
fJ 2

-,,2Illl(q )(ml,m2,m3),urn1

Two-loop Gap Equation In the

The one-loop integrals Ao and Eo were already introduced in eq. (2.21).

Apart from the master integral F(ml' m2, m3, m4, ms), which has to be evaluated numerically,

there eJCist analytic expressions for the basic integrals in d = 3 - 2E dimensions [40]. The results are

summarized in appendix C. For F a one-dimensional integral remains. [n appendix E we evaluate

F(mj, m2, m3, m4, ms) numerically for some special mass cases.

[n this chapter, we ext.end the method of gap equations to two loops. We st.art with the non-linear

CT-model, as already motivated in section 2.2. There it was shown that deeply in the symmetric

phase the solution of the one-loop gap equations in the non-linear model provides a very good

approximation to the one-loop gap mass of the linear Higgs model. The two-loop calculation in the

linear model, which involves the eva.luation of many more diagrams than in the non-linear model,

is only justified, if the simpler non-linea.r case yields a reasonable value for the two-loop gap mass.

That this is indeed the case, is shown in the following.

[n section 2.3, we resummed the masses of the vector boson, Goldstone boson and ghost. Let

us look at a sligh!y modified resummation scheme introduced in section 2.5, which to one loop is

equivalent. We add a gauged non-linear CT-rnodel to a pure Yang· Mills theory and subtract the

whole CT-rnodelagain (including the kinetic term and vertices). To all orders in perturbation theory

this describes a pure Yang-Mills theory, whereas the models in section 2.2 and 2.3 represent a linear

Higgs and non-linear CT-model, respectively, to all orders. The functional integral for the partition

function in this case, where Sm = Su, reads

z= 1DWDrr6exP-}(SG+SU+SGF-ISu).

28



Sa is the massless Yang-Mills action, Sq the action of the non-linear a-model, SaF is some gauge-

fixing term which depends only on WI" and 6 the corresponding Fadeev-Popov determinant. The

non-linear a-model Lagrangian can be written in a compact way

fixing terms. One can also view this massive Yang-Mills theory as a non-linear a-model (with R{-

gauge fixing) in unitary gauge, i. e. in the limit € --+ 00. In section 2.2, it was already shown, that

the on-shell one-loop self-energies coincide in the non-linear a-model and in massive Yang-Mills

theory, as to this order it is a gauge-invariant quantity.

where the Goldstone field <!> = 2mU and U is a unitary matrix, which one can parametrize as exprr,

with" in the adjoint representation.

In order to minimize the amount of diagrams in a two-loop calculation, we follow a suggestion

by Jackiw and Pi [41]. We aim at integrating out the Goldstone field: a gauge fixing is chosen

which depends only on WI" and a change of variables is performed as

We saw in chapter 2 that several authors have extracted a gap mass at one-loop level via gap

equations. They all differ by the added and subtracted mass term in their model. The one loop

results varied form mSM = 0.2892 in the non-linear a-model 1.0 mAN = 0.3892 in Alexanian and

Nair's calculation. Why is it now necessary to perform a two-loop calculation?

The loop expansion does not correspond to an expansion in a small parameter

f Neverthcless, it might very well be that the one-loop results provide reasonable

approximations of the true mass gap. This can only be test.ed by a t.wo-Ioop calculation.

which is just a gauge transformation thus leaving the gauge-invariant Sa and 6 unchanged. fq

becomp.s a mass term for the gauge fleld,

• If the whole method is consistent, the numerical values for the mass gap in the diffe,-ent models

should converge at higher loop-orders, since to all orders they describe t.he same Ya.ng-Mills

theory. In this case one expects the two-loop correction to be of order mAN - mSM.The definition of the Faddev-Popov compensator directly leads to the following relation in

dimensional regularization [42],

J drr6e-tSGF(AIJ) = 1 . (4.5)

After all these steps we arrive at a simple massive Yang-Mills theory plus a one-loop subtractioll

• The two-loop gap equation is quadratic in m, whereas at onc loop it is lincar. The existence

of a positive solution is a non-trivial check of the whole approach.

The gap equation approach can only be a consistent method to calculate a magnetic mass, if the

two-loop result fulfills all these requirements.

Consider the Langrangian of eq,·(4.6) and (4.7) in d = 3 - 2f dimcnsions and with the gauge group

SU(2). It is equivalent to a resummed non-linear a-model in unitary gauge. The advantage of this

gauge is that only a minimal amount of diagrams has to be calculated. The gap equation (2.4) has

to be expanded up to OW), which requires the evaluation of the diagrams depicted in figurc 4.1-

The contribution of the one-loop diagrams to the transverse self-energy were already calculated in

section 2.3.

This is the model, which we first investigate in a two-loop calculation. For the gauge group we

choose SU(2), for the dimension d = 3 - 2f.

It has to be pointed out, that we integrate out the Goldstone and ghost fields exactly in an

arbitrary gauge. In the resulting massive Yang-MiJls theory one does not need any additional gauge



nl-Ioop-CT( 2 2) 1 (21 ) 2 2
T P = -m = 811" 4"ln3 - 9 1 gin. (4.10)

In order to evaluate the pole of the vector boson propagator, we also need the derivative of

the one-loop self-energy (see eq. (2.4)), ~rri:-Ioop, which contributes to O(l~). The off-shell

self-energy in unitary gauge is calculated in [35], leading directly to

8 rrl-Ioop( 2 2) 1 ( 21) g2
-2 l' P = -In = - 33- -ln3 1-.8p 3211" 4 m

Far more work has to be done for the evaluation of the remaining 9 generic two-loop diagra.ms,

which contribute to OWl) to the gap equation.

Using the transverse projector,

pJl.V = ~ (1 + E) (8 _ pJl.pv)
l' 2 Jl.v]12'

the reduction program in FORM yields for the sum of the transverse parts

_1_rr2-loOp( 2)
t2g4 T P

Let us first concentrate on the one-loop counter-term diagrams, which on mass-shell yield a

contribution of O(l2g2m) to the self-energy. The calculation is fairly straightforward. With the

help of the recurrence relation

one can write the result for diagrams 4 and 5 as a linear combination of Ao and Bo. The

transverse part of the sum of diagrams 4 and 5 is

_l_rrl-IOOp-C1'( 2)
t2g2 T P (

2 p4 1 p6 ) 2 2 24m +---- Bo(p m m)
m2 4m4 "

(
63 4 III 2 2 67 4 33 p6 1 p8)
4"m - TP m - Tij"P - 32;;"2+ l6m1 F(m,m,m,rn,m)

(
63 2 113 2 27 p4 109 p6 )

+ -2m - TP - 16m2 + 64 m4V(m,ln,m,m)

(
189 m4 237 2 12257 2 21 p1 167 p6)

+ -2];2 + 4m + --s<JP -"8 1/12 - 80m1 1211(m, m, m)

(
63 m2 111 1591)2 463 p4 1 p6

+ 4"p2-T-16m2+192m1-60m6

387 m2 903 1.597p2 149 p4 1 p6 )
-4p2E+ TE+ 20 m2E- 15 m4E - 5Om6E T11l(p2)(In,m,m)

+ (_~ m2 + III + 159L _117 t...
4 p2 8 16 7112 64 m4

135m2 195 207 p2 3 p4 )
+4p2E - TE - T m2 E - 4: 7114E Tllr(O)(m, m, m)

(
37 2 5 2 387 p4 .1 p6 35 1)8 1 pIa). . .

+ 4"1n -2.P -32m2-32m4+128;;s-61;;;:S B(p2,m2,rn2)FJ(p2,m?,m2
)



(
23 151 p2 57 p4 1 pS 1 p8) 2 2 2 2

+ -------+--+-- B(p ,m ,m )A(m)
28m2 8 m4 4 mS 16 m8

(
25 1 7 p2 87 p4 1 p6) 2 2

+ ---+--+----- A(m)A(m).
8 m2 8 m4 160 mS 16 m8

If one expands the basic integrals of appendix C around p2 = 0 and takes £ ~ 0, the terms ~ fi
in eq. (4.13) cancel, leaving a well-defined limit p2 ~ 0 as required. The sum of the longitudinal

parts turns out to be 0 for all external momenta p,

_1_n2-IOOP( 2)
/294 l' P

849 4 ) 1329 2, ( . )32m F(m,m,m,m,m - (i4m ~ m,m,m,m

In 3 dimensions, I(p2)(m, m, m) and I(O)(m, m, m) are logarithmically UV-divergent, whereas

all other basic integrals are finite in dimensional regularization. III d = 3 - 2£, these two integrals

exhibit the following behaviour for small £,

I(p2)(m, m, m) = [(O)(m, m,m) = ~ + tinite,
64rr £

rr2-Ioop (7 p4 1 pS) 1 ".T - ----- --+lIIllte
- 12 m4 60 mS 64rr2£ '

JThe on-shell two-loop self· energy for an arbitrary dimension d is written in append.ix B. The result of the

reduction of the 9 generic two-loop diagrams was also obtained using a FORM package written independently by

O. Tarasov.

which cannot be dealt with by a mass or wave function renormalization. As we will see in the

next section, this due to the bad high-energy behaviour of the propagator in unitary gauge. A

similar problem arises already at olle loop in cutoff-regularization, which was discussed in section

2.4. Calculations of counter-terms cannot be done in unitary gauge. However, if one is interested in

finite parts of gange-invariant quantities like poles in propagators, it provides a convenient short-cut

of the calculation.

Let us now look at the corresponding calculation in Feynman gauge of a resllmmed non-linear

a-model.

In this section, we calculate the two-loop self-energy for the vector field in the resummed non-

linear a-model introduced in section 2.3 using a finite gauge parameter~. In this case, many

more diagrams have to be evaluated, as ghost and Goldstone bosons are not integrated out. The

diagrams are depicted in figures 4.2, 4.3 .

First let us look at the one-loop counter-term diagrams with all arbitrary gauge parameter~.

Its on-shell value, which contributes to the gap equation, reads

This quantity is not gauge-parameter independent. The resummation coullter-terms, i.e. the

mass counter-terms for the vector, ghost and Goldstono field, destroy BIlS-invariance. III cq. (2.23),

only £n exhibits a BRS-invariance, leading to a gauge-invariant pole of the propagator in every order

in perturbation theory, if we neglect £t. If one includes the terms of £t, one loses gauge-parameter

independence in the two-loop gap equation. To one loop, the gap mass is ga.uge-invariant, since

the only contribution from £1 arises from a tree-graph contributing 1m2 to the gap equation. The

I; dependence is clearly a deficit of the resummation method we used. To all orders in perturbation

theory, the ~-dependence has to vanish. In our case, the calcula.tion is only meaningful, if the

numerical dependence of the two-loop gap mass on the gauge parameter is small.

The derivative of the one-loop self-energy is also gauge-parameter dependent,

o I-Ioop( 2 2) 1 (33 21 ( 1). 2~ + 1 . rr) 92 1.-TIT P = -m = - - - ,----ln3 + ~- - In--- - 3V~ 1-,~> - .Op2 8rr 4 16 4 2~ - 1 m 4
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In the sum of the transverse parts of t.he generic two-loop diagrams n~-loop, the coefficient.s

of product.s of one-loop basic integrals contain ~-dependent. t.erms which do not cancel on mass-

shell. However, this dependence combined wit.h the ~-dependence in ~rIIi-loOP leads to a gauge-

invariant result for IIT(p2 = _m2) (1 + ~11r(p2 = _m2)) atthe two-loop level, if one neglect.s

t.he resummation count.er-terms. This quantity is not.hing but the two-loop pole of the propagator,

which should be gauge-invariant. in BFtS-symmetric theories.

In order to check the preceding statement.s, the generic two-loop diagrams of the non-linear

a-model in Feynrnan gauge, ~ = 1, are calculated in appendix B. Neglecting couuter-terms from

resummation, we obtain the same position for the pole of the propagator as in unitary gauge. This

constitutes a very stringent test for the algorithm we use.

The Feynman gauge is a renorrnalizable gauge. Collecting the coen1cients of I(p2)(m, m, m)

and I(O)(m, m, m), we get the following poles in ( for the self-energy

1 rr2-1oop( 2) ( 7 1 p2) 1 f'
pg4 T,€~l P = 12 - 60 m2 6411'2( + illite.

In order to get a 'finit.e result for the gap ma..%, we have to add count.er-terms, which are ~ 12 to

the Lagrangian. To one loop the self-ene •.gy is finite in 3 dimensions in dimensional regularization,

a already shown in chapter 2. According to eq. (4.20), to two-loop order a mass and wave function

renormalization removes the infinities in the self-energy. This is also suggested by naive power

counting.

We use the M S-scheme here. Renormalization in Fcynman gauge int •.oduces a renormalization

scale I-'MS into the gap equation. This imposes another requirement on the solution of the gap

equation: its numerical dependence on I-'MS shonld be small.



J!:. 0.3 1 3
m

~,€=I,oo 0.343 0.335 0.327

~,€= 2 0.345 0.336 0.328

~,€ = 10 0.350 0.342 0.334

In this section, we use the results gained in the preceding sections to set up the two-loop gap

equation and look for solutions. We have to expand the equation

1m2 - 0.2845Slg2m + !J (0 1292m + 12(0 12g2m

- 0.06434612g4 + 0.003799S12lln!: = 0 ,
m

1 (21 1. )- -ln3 - 9 + -ln3 + V((3 - In3)8rr 4 4~ ,

1 (33 21 1 2~ + 1 )- - - -ln3+ (€ - -)In-- - 3V(
8rr 4 16 4 2~-1

away from the one-loop result. Moreover, it is now in better agreement with Alexauian and Nair's

gap mass and, above all, matches perfectly the lattice result obtained by Karsch et. al.

There is still one weak point in the present calculation: the non-renormalizability of the non-

linear a-model. To judge the significance of the result in the non-lineal' case, it is crucial to perform

the whole calculation in the linear Higgs model, which is super-renormalizable. This will be done

in the next chapter.

The € dependence in the !I-term stems form theone-loop counter-term dia.grams, the one in

12 from ~rr}-loOp . In the term of 0(12g4), there is no gauge parameter dependence, since it gets

contributions from Ln only. Interestingly, the gap equations in unitary and Feynman gauge turn

out to be identical. Using the Feynman gauge renorma.lization counter-terms leads to a finite gap

equation also in unitary gauge.

The major result is that the gap equation (4.22) has a real and positive solution for ~. The

results are given in table 4.1 for different values of f'MS and €. The two-loop correction to the

one-loop gap mass (2.26) is only 15 - 20%.

One may worry about the dependence of the gap mass on the renormalization scale f'MS and

on the gauge parameter €- As discussed above, this is an artefact of (resummed) perturbation

theory, which is expected to be cancelled at higher orders. Fortunately, both the dependence of

~ on f' and on € is numerically unimportant, which is a basic requirement for the solution to be

meaningful. It suggests that the solution constitutes a reliable approximation to the exact gluon

propagator mass in SU(2) gauge theory.

The two-loop result survives all the crucial tests which have been mentioned in section 4.2

unexpectedly well: the quadratic ga.p equation has a. real and positive solution, which is not fa.r



z 1 1.2 1.4 1.6 1.8

~ 0.132 0.180 0.242 0.322 0.426
9

u 0.178 0.178 0.173 0.166 0.157
9

m 0.285 0.290 0.292 0.294 0.295?Two-loop Gap Equation In the SU(2)

I-liggs Model
z 1 1.2 1.4 1.6 1.8

~ 0.111 0.153 0.208 0.277 0.367
9

~ 0.159 0.162 0.160 0.155 0.148
9

m 0.226 0.231 0.234 0.236 0.237?

In this chapter, we investigate two-loop effects on the gap equation in tlte 3-dimensional Higgs

model. It is shown that the non-linear a-model constitutes a reliable approximation for infrared

phenomena in the Higgs model, and thereby also for the eJectroweak Standard model.

5.1 One-loop gap equations revisited: Landau versus Feynman

gauge

In the 110n-linear u-model, the one-loop gap equation is independent of the gauge parameter. In

the linear model, one has to solve the coupled set of three equations (2.16) with three unknown

variables, v, m and lvf, varying A and fL2 as parameters. The requirement of the third equation,

that thE vacuum expectation value of the Higgs field remains at zero, is manifestly gauge parameter

depend-€nt, since v is not a physical observable. This results in a gauge parameter dependent gap

mass. 'The weak gauge dependence has to be cancelled at higher orders, since the gap mass should

be a ga..uge-invariant quantity.

In the two-loop calculation, we will not solve the complete set of three two-loop gap equation,

but res.trict ourselves to the first of eqs. (2.16), the gap equation for the vector boson mass. For

differerlt values of z = M/m, we insert the corresponding fL and v from the one-loop solution and

then s~lve the equation for m. We also investigate the dependence of m on varying I' and v around

the one-loop value.

The two-loop gap equation for the vector boson is gauge parameter dependent. First, as in the

one-loop case caused by a ~-dependent v. Second, as in the two-loop case in the non-line<tf u-model

due to the one-loop (resummation) counter·term diagra.ll1s. The two-loop ca.lculation in the linear

Higgs model is performed in Feynman gauge, in contrast to the one-loop calculation in [28], where

Landau gauge, ~ = 0, is used. For a suitable comparison of one- and two-loop results, we first solve

the one-loop gap equations in Feynman gauge.

In table 5.1 and 5.2, we calculate the one-loop solutions for fL, v and m for different values of z,

with fr = k· We use Landau, ~ = 0, and F'eynman gauge, ~ = 1. The equations are listed in [28].

From the treatment in Landau gauge in [28] we see, that 1 s: z s: 2 is a reasonable choice for the

symmetric phase. z ~ 2 is forbidden, since ill this case the Higgs boson can decay into two vector

bosons. As a consequence of this, there will he poles in the two-loop result. for the self-energy for

M = 2m. The one-loop gap equation for M is complex for z > 2.



It can be seen that in both gauges there is a constan t vaJue for the vector boson mass deeply

in the symmetric phase. There is, however, an obvious difference (20%) in the numerical value.

The generic two-loop Higgs self-energy diagrams are depicted in figures 5.1 and 5.2. The sum of

these diagrams is evaluated on mass-shell, p2 = - M2. The lengthy expressions resulting from

the reduction to basic integrals can be found in appendix D in Feynman and in unitary gauge.

The unitary gauge result differs from the result in Feynman gauge only by products of one-loop

integrals. Quantitatively,

This ensures that neglecting the resummation counter-terms, the pole of the Higgs boson

propagator is gauge parameter independent to two loops. The underlying reason for this powerful

check of the calculation is the BRS-invariance of the linear model. Eq. (5.1) can be verified using

the expressions in appendix D and the one-loop results in (28) and section 2.2.

Concerning renormalization, eq. (D.1) leads to the following pole structure in E for the Higgs

self-energy (keeping the external momentum p2 arbitrary),

,,2-loop( 2) (519M2 3 M4) 1 ..u p = - + -- - -- -- +fllllte.
84m2 8 m4 64rr2E

As expected and already mentioned in chapter 1.2, there is no wave function renormalization

necessary in the 3-dimensional linea.r Higgs model. We have to add only a mass renormalization

counter-term for the Higgs field.

The analogous calculation is performed for the vector boson field. The sum of the generic two-loop

diagrams shown in figures 5.2 and 5.3 is evaluated in Feynman and unitary gauge in d = 3 - 2E on

mass-shell, p2 = _m2 (note, that we only draw those Feynma.n diagrams, whose transverse part is

non-zero). The results are written in appendix D.
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A relation similar to eq. (S.l) holds for the transverse two-loop vector field self-energy. It can

be showru, that the pole of the transverse part of the vector boson propagator is gauge-invariant.

In dimensional regularization, the divergent terms in the vector self-energy (evaluated for arbitary

external momentum p2) can be obtained form eq. (D.2),

As for the Higgs field, no wave function renormalization is needed for the vector field. There is

only a renormalization of the va.cuum expectation value. Comparing eq. (S.3) with eq. (S.2), one

can see a.. simple relation between the divergent terms: the coefficient in front of ~ in eq. (S.3) is

just ~ t;imes the mass renormalization counter-term for the Higgs field (Ward-identity).

The proved gauge-invariance of the poles of the Higgs and vector boson propagator to two-loops

(neglecting resumrnation counter-terms) constitutes a powerful test for our FORM package.

In this sllction, we aim at a calculation of the vector boson mass in the symmetric phase of the

3-dimens ional linear lliggs model. Since solving the complete set of three gap equations (2.16)

would be unnecessarily complicated, We will use the following short-cut. As already mentioned in

sectioll Sd, we look at the gap equation for the vector boson mass for different values of z = ~,
which ar e typical for the symmetric phase according to the one-loop calculations. For /-'2 and v

we will insert the corresponding one-loop results from table S.2. As already explained, the gap

equation is gauge parameter dependent. We restrict the discussion to Feynman gauge.

In setting up the vector field gap equation we have to insert the third equation of (2.16), that

the vacu·um expectation value of the shifted field a' equals a up to OW). Diagrammatically, this

equation is written in fig. S.4. The sum of tree-level counter-term, one-loop, one-loop counter-term

and generic two-loop tadpole diagrams has to vanish.

This condition reduces the amount of one-loop counter-term and generic two-loop self-energy

diagrams which contribute to the flrst equation of (2.16), since the relations in figure S.S hold.

Therefore we can leave out all the two-loop diagrams involving tadpoles as well as the one-

loop cou nter-tenn diagrams which contain the scalar one-point function. The remaining one-loop

diagrams with resummation counter-terms contributing to the first equation of (2.16) are depicted

in fig. 5.6. Their on-shell value is given by
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With all the quantities evaluated above, we are now in the position to discuss the two-loop gap

equation for the vector boson field,

2
1m2 _ IfLv2 + 11~;-loOP(p2= _m2)

4

+n~-loOP(p2 = _m2) + rr~-IODP-CT (p2 = _m.2)

L 8 rrl-1oop( 2 _ 2) (rrl-100P( 2 _ 2) ../ I 2 192 2) - 0
T 8p2 T P - -m T p - -m ,- m - -:tV - .

As outlined in section 5.1, the gap equation is investigated for different z, with 1 ~ Z ~ 2. We

choose Z = 1,1.2,1.4,1.6,1.8. For these values of z the master integral F(ml, m2, m.3, m4, ms), 71li =
m, AI, is evaluated in appendix E. As in the non-linear O'-model we work in the M S-scheme. It

turns out, that the coefficient in front of the I-'~dependent. terms is negligibly small. Therefore,

we set. /lMS = m in what follows.

The solutions of eq. (5.6) for different values of z are listed in table 5.3. They are compared

with the one-loop result in Feynman gauge.

For the scalar coupling fr, we choose ~. For this value, a crossover behaviour was found for the

transition between the lIiggs and the symmetric phase. As table 5.3 shows, the two-loop solutions

exhibits a similar behaviour as the one-loop gap mass: it is numerically nearly independent of the

value of the Higgs mass. Moreover, the two-loop correction is of the sa.me sign and approximately

of the same size as the correction in the non-linear O'-model. The 15 - 20% difference between the

numerical value of the one-loop gap mass in the non-linear and linear model in Feynman gauge still

remains at two loops. 1



z 1 1.2 1.4 1.6 1.8

~ (one-loop) 0.226 0.231 0.234 0.236 0.237

~(two-Ioop) 0.303 0.307 0.310 0.309 0.299

,
z == 1.6, 7 == 0.277, ~ == 0.1 0.155 2

m 0.303 0.309 0.317r

z == 1.6, ~ == 0.155, ~ == 0.177 0.277 0.377

m 0.304 0.309 0.315r

In solving eq. (5.6), the one-loop values for J.l-2 and v are inserted for each value of z according

to table 5.2. At two loops these values cha.nge, if one solves the set of three gap equations exactly.

To estimate this e'ffect, we vary {12 and v around the one-loop solutions of table 5.2 for a flxed va.lue

of z (z == 1.6) and show that there is only a small numerical influence on the two-loop gap mass

(see tables 5.4 and 5.5).

The small numerical difference between the gap mass in the lineal' and non-linear model as

well as the independence of the gap maSs of the Higgs mass M shows tha.t the non-linear a-model

describes the infrared limit of the linear Higgs model and of the electl'Oweak Standard model a.t

flllite temperature to a very good approximation.

here. The one-loop solution suggests that the numerical dependence is bigger than in the non-linear u-modd, where

it is almost negligible.



Summary and Conclusions

agreement with the lattice simulations of the propaga.tor mass in Landau gauge and with the

results of other one-loop models. The gap equation still contains a weak gauge dependence and a

logarithmic dependence on the renormalization scale. It has been shown that they are numerically

unimportant. This suggests that the solution constitutes a reliable approximation to the exact

gluon propagator mass in an SU(2) gauge theory.

A vector boson mass ~ 0.34g2 is not in contradiction with confinement. It is of the same size as

the confinement scale given by the string tension which was calculated in [44]. The connection of

such a propagator mass to the heavier glueball masses ~ 0(1)g2 [25,45] in a 3-dimensioll al SU(2)

gauge theory remains to be clarified. We published the calculation in the non-linear u-model inWe have investigated gap equations for the magnetic mass to two-loop order. In particular we have

looked at the following 3-dimensional theories: a resummed massive Yang-Mills theory, a resummed

non-linear u-model in arbitrary gauge and a resummed SU(2) Higgs model in unitary and Feynman

gauge. The one-loop approaches have been summarized and some additional calculations have been

performed, in particular the one-loop self-energies of the vector and Higgs field in the Higgs model

in unitary gauge. Theone-loop self-energy for the vector boson in the non-linear u-model has

been recalculated in cut-off regularisation. In dimensional regularization all one-loop self-energies

are finite. In cut-off regularization, the calculation in renormalizable gauges shows, that a mass

renormalization counter-term has to be introduced into the non-linear a-model at one-loop. The

result for the gap mass is identical in both schemes. In unitary gauge, calculating to one-loop order

with a cut-off leads to divergences with high powers of the external momentum which cannot be

removed by a renormalizaticn of the mass or the wave-function. This is because the unitary ga.uge

is a non-renormalizable gauge.

The two-loop calculation of the transverse vector self-energy in the non-linear a-model shows

a similar behaviour even in dimensional regularization. In renormalizable gauges, we need a mass

and wave-function renormalization, whereas in unita.ry gauge we again get powers in the external

momentum which cannot be dealt with by the usual redefinition of parameters. To three-loop order

naive power counting suggests that these problems arise also in renormalizable gauges. This is due

to the non-renormalizability of the non-linear u-model. In the linear Higgs model, however, we have

seen that at the two-loop level a mass renormalization is sufficient in Feynman gauge, as expected

in a renormalizable theory ill 3 dimensions. In unitary gauge of the linear modeJ, however, the

problematic situation remains.

To judge the significance of a calculation in the non-renormalizabl.e non-linear sigma modeJ, we

have performed the same calculation in the linear Higgs model, which is super-renormalizable. The

vector-boson and Higgs self-energy have been calculated on mass-shell in Feynman and unitary

gauge and the corresponding gap equation for the vector boson mass has been solved varying the

Higgs mass.

The result for the gap mass is almost independent of the Higgs mass in the symmetric phase.

This proves that the non-linear u-model is a very good approximation for infrared phenomena of

the linear Higgs model. Moreover, the two-loop correction in the linear model is of similar size as

in the non-linear model.

The result of the two-loop calculation in the considered 3-dirnensiona.l models is a very strong

hint that the gap equation approach is a reasonable way to calculate the transverse propagator

mass of the vector boson in the symmetric phase. It i~ a crucial test for the consistency of the

whole method. The physical interpretation and the connection to the masses of bound states seen

on the lattice is not yet clear. This should be cla,rified by fnrther research.

The two-loop gap equation in resllmmed massive Yang-Mms theory and in a resummed non-

linear a-model shows a real and positive solution for the vector boson mass: m ~ 0.34 g2. This

is clearly a non-trivial result. It is only ~ 20 % larger than the one-loop result and in very good



The finite parts in all relations are identical in both regularization schemes. In cut-off regularization,

there are also two other independent non-trivial integrals,

Appendix A
- ~g2 A + finite

3rr

12(3 2) 74 .--g A - 3m A + --g A -I-finIte.
187[2 30rr2

One-loop Integrals
In dimensional regularization these integrals can be related to the ones of eq. (AA) and (A.5)

using translational invariance.

The formulae for one-loop two-point integrals in 3 Euclidean dimensions are summarized. They

are discussed in dimensional as well as in cut-off regularization.

In dimensional regularisation all propagator type integrals can be reduced to two basic integrals

Ao and Bo defined in eq. (2.21), using simple cancellation techniques between numerator and

denominator in integrals of Feynman diagrams and taking advantage of translational invariance.

Integration yields

( 2) J 31m
Ao m = dk--- = --

P +m2 47[

BO(p2,m;,mD = Jd3k 1 - _l-arctan--P-- (A.2)
(P-I-mf) ((k-l-p)2-1-mO 4rrp ml+m2

The only non-trivial reduction relation in dimensional regularisation, used for the calculations

in this thesis, is

J 3 kg
d k(k2+rn2) =0.

In cut-off regularization a relation corresponding to eq. (A.3) is



Two-loop Results in the Non-linear

a-model

_1_re-100P( 2) _
12g4 7' p-

(
257 m4 _ 3511)2m2 _ ~p4) F(m m m m m)

16 32 2 ""

(
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8 64 32 m2 '"
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8163m8_ 4607 2m6_12183 4 4_122436 2_ 778) [211(m,m,m)

+ 20 80 P 20 pm 80 pm 8P m2p2(p2 + 4m.2)
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279 6 1409 2 4 53279 4 2 3923 6

+ -7m + 4:8P m + 960-P m + 480P

8717 6 14647 2 4 225067 4 2 54736) [1II(p2)(m,m,m)
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20 60 600 100 m2p2(p2 + 4m2)
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+ +7m - 15P m - 64P m - 32P

655 6 51 2 4 537 4 2 35 G) 11ll(0)(m,m,m)
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+products of one-loop integrals.

In chapter 4, the transverse two-loop vector boson self-energy is calculated in d = 3 - 2£ dimensions

on as well as off mass-shell. Here the on-shell result of the reduction is given in an arbitrary

dimension d. The basic integrals are defined in eq. (3.19).

_1_n2-loOp( 2) =
(2g4 T P

3 4176d - 24516m d-1 F(m,m,m,m,m)

3 2144d3 - 712d2 + 1241d - 760 ( )
-16m (d-1)2 V m,m,m,m

_ 1 10800d4 -70632d3+ 165227d2-166654d+61752I( 2 _ 2)( )
48 (d-1)2(3d-4) p - -m m,m,m

3 (d-2)(32d3-312d2+656d-405)[()( )
-16 (d-1)2 0 m,m,m

3 32d2 - 148d + 155 (2 2 2 2 2 2 2 2
+32 (d-1)2. Bp =-m,m,m)B(p =-m,m,m)

3 16d4 - 188d3 + 668d2 - 940d + 465B( 2 2 2 2)A( 2)
- 4 (d _ 1)2 P = -m ,m ,m Tn

1 (2d - 3)(24d5 - 164d4 + 452d3 - 680d2 + 597d - 242) A( 2) ( 2)
8m2 (d _ 1)2(3d _ 4) m Am,

The coefficients in front of the generic basic two-loop integrals coincide in unitary and Feynman

gauge on mass-shell, see eq. (4.15).

We also present the transverse part of the master two-loop self-energy diagram with tile topology

-(J)- in the unitary gauge calculation of the non-linear a-model. It is the most difficuJ t diagram

to reduce due to the high powers of momenta in the numerator (unitary gauge propa.gatol: + vector

boson vertices). The result can best be used for a check of some reader's red uction progr am. That

is why we give it in detail here, i.e. off-shell and for any dimension d,

fly-aster ==

1
16(288dm8 - 360m8 - 336p2 dm6 + 564 p2 mG + 250p4 m4 _ 128p4 Ii m4

- 32p6 dm2 + 63 p6m2 + 2p8)F(m, m, m, m, m)/((-l + d) m4) - ~(-864 dm6
8

+ 384 d2m6 + 480 m6 + 122 m4 p2 + 114 m4 p2 d _ 104 m4 p2 d2 + 350 p4 d m2

- 152p4d2 m2 - 153 m2 p. - 5l + 8p6 d)V(m, m, m, m)/(( -1 + d)2 m4) - ~12



(p2 + 9m2) (1'2 + m'l)( -6067124 - 17347124 d2 + 5767124 d3 + 1764 d 7124+ 506471221'2 d2

_ 144071221'2 d3 - 56461'2 d 7122+ 19561'27122 + 1051'4 d2 - 1871'4 d + 761'4)
1

hll(m, 712,712)/(( -1 + d)2 1'27124 (-4 + 3d) (-2+ 3 d)) - 72 (-1T784p4d4 7124

_ 447121'2 d4 7126- 321'8 - 158652 d 7128+ 456847128 + 4095181'2 d m6 _ 1210801'27126

_ 826681'4 m4 + 2627281'4 d 7124+ 126961'6 d m2 _ 41521'67122 _ 4849261'27126 d2

- 122551'67122 d2 + 2435761'27126 d3 + 202824 7128d2 - 1118887128 d3 + 108l d

-100p8d2 - 282900p4m4d2+ 1226551'47124 d3 + 4452lm2d3 - 576ld4m2

3+ 22032 d4 7128+ 241'8 d3)Illl (1'2)(712,712, 712)/((-1 + d)2 1'27126 (-4 + 3 d) (-2 + 3 d)) + 8
(-7871241'2 + 12671241'2 d - 48 m4 1'2 d2 - 108dm6 + 48 d2rn6 + 607126 + 851'4 drn2

1
- 401'4 d2 7122- 3471221'4 - 1'6 + 21'6 d)llll (0)(712,712, 712)/(( -H- d)2 1'2 7124)+ 32 (

-1808 d mID + 576 d2 71210+ 142471210 + 11681'27128 _ 16481'27128 d + 5761'27128 d2

+ 1036p4dm6 - 416p4d2m6 - 62471261'4 + 248p6dm4 - 80p6d2m4 -160lrn4

- 1'87122 + 8lm2 d + p10)B(1'2, 7122, 7122)2/((_1 + d)2 7128) _ ~(p2 + 4 7122)(1247126

-176dm6+ 64 d2 7126- 104 71241'2 d2 - 21071241'2 + 292 71241'2d _1871221'4
1+ 151'4 d 7122+ 1'6)B(p2, 7122, 7122)A(m2)/(( -1 + d)2 7128) + 24(-12231'4 d4 7122

-7201'2d6m4 - 4884p2d4m4 + 31801'2 d5 7124+ 11941'4d3m2 -1927126- 4500d2m6

+ 1392 d 7126- 600 71241'2d2 - 3761'4 d2 m 2 + 241'6 d2 _ 541'6 d3 + 408 p4 d5 7122

+ 618 7126d5 + 72 m6 d6 + 30241'2 d3 7124+ 27 p6 d4 + 60427126 d3 _ 3468 d4 m6)A( m2)2

/(( -1 + d)2 d2 mB (-4+ 3d) (-2 + 3d)) .

Appendix C

Basic Integrals in d

We give analytic results of the basic integrals defined in eg. (3.19). Some misprints in [40] a.re

corrected in the following formula.e.

Only J(1'2)(m1' 7122,7123) and J(0)(ml,m2,m3) show poles in E for d = 3-2c F, V, [211,1121, [112

are finite in 3 dimensions. We define

4, J J d3
-
2'k1 d3

-
2'k2 1

It (27r)3-2' (27r)3-2' (kr + mil ((k2 _ p)2 + m~)
1

((k1 - k2)2 + m~) ,

4' J J d3
-
2'k1 d3

-
2'k2 1

J.L (27f)3-2." (27r)3-2' (kr + mt) (q + mD
1

((k1 - k2)2 + m~) .



1 {21n mz + m3 + m4 arctan--P-
(411-)24pm3 mz - m3 + m4 ml + m3

+i [Liz ( - :1 ~ :31~ ~~J-Liz ( ::ZI;:3;:J
+Liz (_ ml - m3 + iP) _ Liz ( ml + m3 + ip )]}, (CA)

mz + m3 + m4 mz - m3 + m4

lx In(1 - t)
Liz(x) = - ---dt.

o t
For F(ml' 111Z,m3, m4, m5), there remains a one-dimensional integrals which has ro be evaluated

numerically. If only two masses are different, F is evaluated in appendix E . The expression in the

general mass case is,

2

vIM(p, 1HI, 1H3,m5, 1Hz,m4)1

1m, IMH(p, 1H1,1H3,X, 1Hz,1H4)1 d~==========x x,
Mo vIM(P, 1HJ, 1H3,x, 1Hz,m4)1

(

2111Z

M(p, ml,mZ, 1H3,m4,m5) = mi + mt - rn~

m~+m~-m~

2 2 Z )1HZ+m3 - m5

mi + m~ + p2

2m~

mi +m~ - m~

2mi

mi + m~+pZ

(

HI

M (P, ml, m2, 1n3, 1ns,1ns) = rn·i + 1n~- m~

m~ +m~ - m~

Hz
2mi

mi +m~ + pZ

_1_ 1 a.rclan--P-
(4rr)Z 2mlP ((ml + 1112)2+ p2) . m3 + 1114'

1 1
(4rr)2 2mlP ((pZ + ml + m4)2 - 4mim~)

((pZ + m~ - 1Hi)a.rctan p
ml + m2 + rn3



1 1
(411")22m2P (m~- (m2 + m3)2)

(arctan P - arctan--
p
--)

ml + m2 + m3 1111+ m4

Appendix D

Two-loop Results in the SU(2) Higgs

The on-shell value of the Higgs boson self-energy and of the transverse vector boson self-energy to

two loops is given in unitary and Feynman gauge in 3 - 2£ dimensions, neglecting resummation

counter-terms. The coefficients in front of the generic basic two-loop integrals are identical in both

gauges. In the unitary gauge result, we therefore write only the part containing products of one-

loop integrals. With the following formulae and the one-loop results in (28) and in sect. 2.2, the

gauge-invariance of the pole of the Higgs and the vector propagator call easily be proved to two

loops.

The two-loop self-energy for the Higgs field in Feynman gauge reads,

(
27 9 1.18)+ 91.12m2 - "41.14 + 16 m4 F(rn, 1.1,Tn, 1.1,m)

81 M8
+-2 -4 F(M, M, 1.1,1.1, 1.1)

3 Tn

(
189 2 2 213 M4

)+ -m +6M - --- V(m Tn m m)
8 64 m2 ".

(
3 M4 3 M6 15 M8)+ -3m2+-M2+3----+-- 11(111 m 111M)
2 m2 2 1114 64 m6 '"
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9 45M4 9 M6)+ __ M2+ -- VIM m M m)

8 16 m2 64 m4 ",

27 M6
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In unitary gauge, the products of one-loop integrals in the two-loop self-energies of the Higgs field

read,
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Integral

All basic integrals except for the master integral F(ml' "'2, m3, m4, m5) have analytic results. It

can be represented by a one-dimensional integral as shown in appendix C. If all masses are equal

and with p2 = m2, it reads,

..j2 11 dx
--- _·_--····(ln3

32rr2m4 0 (x + 2)v'3=X2

+(x + 1) In(x + 3) .- (2x + 4) In(x + 2) + (x + 3) In(x + 1)). (E. 1)

In the following table, we investigate the master integral for two different masses in its argument.

We give tlle numerical results for the cases of interest in the analysis of chapter 5.

z = M. 1 1.2 1.4 1.6 1.8
m

F(m, m, m, m, m)· 104 ",4 2.4531 2.4531 2.4531 2.4531 2.4531

F(m, m, m, m, M) . 104 m4 2.4531 2.1332 1.8723 1.6567 1.476:~

F(M, m, m, m, m) . 104 ",4 2.4531 2.0291 1.7113 1.4659 1.2716

F(M, m, m, M, m) . 104 m4 2.4531 1.6834 1.2062 0.89441 0.68080

F(m, m, M, M, M) . 104 ",4 2.4531 1.4776 0.95061 0.64266 0.45158
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