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Dimcnsional reduction of various gravity and supergravity models leads to effec-
tively two-dimensional field lJlcories described by gravity coupled nonlinear G fH coset
space u-models. This TIlesis is devoted to an analysis of lJlese models willlin ilie
canonical framework, exploiting ilie close relations to well-known integrable field ilie-
ories. A complete set of conserved nonlocal charges is derived (rom ilie transition
and monodromy matrices of ilie associated linear system. Their Poisson algebra is a
modified (twisted) version of lJle semi-classical Yangian double. 'nle classical infinite-
dimensional symmetry group (ilie Geroch group) is generated by ilie Lie-Poisson action
of lJlese charges. TIle structures completely extend to models wiili local supersyrnmetry,
taking into account all additional fermionic degrees of freedom. Canonical quantization
of the algcbra of charges leads to a twisted Yangian double wiili fixed central extension
at a critical level. Thc last chapter collects some results wiiliin ilie so-called isomon-
odrornic approach to thcse models.
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Zusanlluenfassung

Dimensionale Reduktion einer groflen KJasse von Modellen hOher-dimensionaler
Gravitation und Supergravitation fiihrt auf effektiv zwei-dimensionale Feldilieorien, ge-
nauer, auf gravitationsgekoppelle nichlJineare a-Modelle auf Quotientenriiwnen G fH.
Die vorliegende Arbeit ist einer Untersuchung dieser Modelle gewidmet. Dies ge-
schieht im kanonischen Zugang, indem die engen Verbindungen zu bekannten integra-
bien Feltltheorien ausgenutzt werden. Ein vollstiindiger Satz erhaltener, nicht-Iokaler
Latlungen HiBt sich aus den Monotlromien des zugehorigen linearen Systems ablei-
ten. Die Poisson-Algebra dieser Ladungen ist eine modifizierte (getwistete) Version des
semi-k1assischen Ya.llgian-Doppels. Die unendlich-dimensionale k1assische Symmetrie-
Gruppe dieser Modelle (die Geroch Gruppe) wird durch die Lie-Poisson Wirkung der
Ladungen erzeugt. Siimtliche Strukturen erweitern sich auf lokal supersymmetrische
Modelle unter Beriicksichtigung aller zusiitzlichen fermionischen Freiheitsgrade. Die
kanonische Quantisierung der Algebra nichtlokaler Ladungen ftihrt auf ein getwistetes
Yangian-Doppel mit zentraler Erweiterung. Das letzte Kapitel enlJliilt eine Zusammen-
stellung von Resultaten im sogenannten isomonodromen Zugang zu diesen Modellen.
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6.1 Hamiltonian description of isomonodromic deformations
6.2 Isomonodromic sector in dimensionally reduced gravity.
6.3 Poisson algebra of observables . . . . . . . . . . . . . .
6.4 Quantization..........................
6.5 Isomonodromic defOimations and KZB equations on the torus

7 Conclusions and Outlook



allow to further analyze several features that are expected to characterize quantum black hole
solutions of the full four-dimensional theory (gravitational collapse, Hawking radiation, in-
formation loss, etc., see [116] and references therein).

Finally, from a higher-dimensional perspective these models and techniques find appli-
cation in the study of gravitational string backgrounds and their symmetries, or describe the
behavior of extended objects after dimensional reduction. It is further tempting to speculate
about some higher-dimensional interpretation, where in a stringy setting the physical states
of the theory, quantized on the two-dimensional world-sheet, are reinterpreted as the one-
pa.rticle excitations of a higher-dimensional theory (see [102] for more speculation in this
direction).

The interest in the symmetries of dimensionally reduced gravity originally arose in the
context of the so-called solution-generating techniques [32, 78, 47, 67, 51]. Over the years,
the point of view has changed. Rather than in producing new solutions to Einstein's field
equations, nowadays, one is mainly interested in understanding the symmetry structures
themselves. In particular, the analysis of the classical phase space with its full symmetry
structure exhibited, is a necessary prerequisite for quantization. More precisely, a symmetry
group which acts transitively on the phase space while preserving the symplectic structure
may be identified with the classical phase space itself. The in'educible representations of this
group then caITy the information about the underlying quantum system.

The understanding of the structure of dimensionally reduced gravity was significantly
improved by the revelation of the linear system [89,7] which underlies the equations of mo-
tion. This established a first link to the integrable structures found in many two-dimensional
models. It opened the possibility to subsequently make use of the methods and techniques
which were developed in the theory of integrable systems (see [39 J and references therein).
In fact, the dimensionally reduced gravitational field equations (the Ernst equation [35] and
its generalization to higher-dimensional Lie algebras) strongly resemble the equations of
motion of the nonlinear a-model [86, 121]; the main difference - apart from the coset struc-
ture - comes from the explicit appearance of the additional dilaton field in the gravitational
equations. This field arises as a generic feature of Kaluza-Klein type dimensional reduction,
measuring the size of the compactified (internal) manifolds. Throughout the following, it
turns out to playa pivotal role.

For the nonlinear a-models, it was soon realized that the arising (hidden) symmetries
were not symplectic and generated by nonlocal charges which obeyed a new type of charge
addition rules [86, 25], thus making manifest the nontrivial Hopf algebra structures of the
underlying symmetry algebras. Since then, infinite-dimensional quantum groups have ap-
peared to playa major role in lower-dimensional physics, providing a powerful description
of the quantum symmetries of many integrable models and field theories. The classical
symmetry generated by the nonlocal charges gains a natural description in the framework
of Lie-Poisson actions [113, 6]. In particular, this offers new perspectives in quantization
[11, 84] where the classical action turns into the adjoint representations of the underlying
Hopf algebras.

Since it will become important in the following, let us mention a prominent example of
the infinite-dimensional quantum groups, namely the Yangian algebra Y(g) associated with
a simple finite-dimensional Lie algebra g. Having turned up already in the early days of the
quantum inverse scattering method [114, 37], this algebra was rigorously defined within the

The so-called hidden symmetries, appearing in the dimensional reduction of gravity and
supergravity theories, have played an impOitantrole in the study of these theories overthe last
thirty year·s. Based on ear'lier work [32, 93J it was Geroch who first realized the emergence of
an infinite-dimensional symmetry algebra in the two Killing vector field reduction of general
relativity [47]. Later on, this symmetr·y structure was found to be generic for a broad class
of models of dimensionally reduced gravity and supergravity theories [60, 62].

Upon reduction to two dimensions these models take the form of G/H coset space a-
models coupled to 2d gravity and a dilaton. Various coset spaces descend from different
models (see e.g. [67,90,62,98, 14,88,45)), culminating in the E8(+8)/SO(16) which origi-
nates from dimensional reduction of maximally extended supergravity in eleven dimensions.
The infini te-dimensional symmetry algebra of these models has been identified with the loop
algebra which is associated with the Lie algebra 9 of G; the existence of a central extension
of this algebra has been noted in [61].

The interest in studying this class of two-dimensional models is (at least) a threefold.
First, these models enlar'ge the list of integrable models, exhibiting a new underlying al-
gebraic structure «3.60), (3.61) below) which already deserves interest for itself: On the
classical side we face a surprising regularization mechanism of the Poisson algebra of non-
local char'ges - caused by the space-time coordinate dependence of the spectral parameter
(3.3), which is one of the distinguished properties of the model. On the quantum side, the
main interest is in the resulting algebra (5.5)-(5.9) below, which is a modification of the
well-known Yangian double [28]. The twist by which it differs from the normal Yangian
double essentially requires a new representation theory to be developed.

From the physical point of view, marlY of these models have received interest in the con-
text of so-called midi-superspace models whose quantization serves as an interesting testing
ground for mlli1Y issues of quantum gravity. Despite the fact that dimensional reduction
represents an essential truncation of the phase space, the models under consideration ar'e suf-
ficiently complicated to justify the hope that their exact quantization may provide insights
into characteristic features of a still outstanding theory of quantum gravity. In particular,
and in contr'ast to previously exactly quantized mini-superspace models, they exhibit an in-
finite number of degrees of freedom, which is broadly accepted to be a sine qua non for
any significant model of quar1tum gravity. Their quantization may thus lead to progress in
understarlding the nature of quantum geometry and quantum black holes, reliability of semi-
classical methods, etc. . This belief is e.g. supported by the observation that already rather
simple arId exactly soluble two-dimensional models of dilaton-coupled gravity capture and



framework of Hopf algebras by Drinfeld [27], and later on appeared to underlie many two-
dimensional field theories (see [10, 12] and references therein). The Yangian algebra Y(g)
may be considered as a deformation of the positive half of a loop algebra with nontrivial Hopf
algebra structure. A deformation of the full loop algebra emerges from the Yangian double
constmction [28] which has been introduced in quantum field theory in [82, 11]. Like the
loop algebra, this stmcture admits a central extension [110].

It is the purpose of this thesis to carry out the canonical framework for the described class
.of models of dimensionally reduced gravity by making use of the powerful tools that are pro-
vided by integrability and the emergence of quantum groups. The existence of a (modified)
Yangian symmeu'y in the classical theory eventually allows the complete quantization. The
results are essentially based on [72]-[77] and [104, 105].

The plan of the thesis is the following. In Chapter 2 we introduce the general class of two-
dimensional coset space (J-models that shall play the main role in the text. The canonical
fOllnalism is set up, including the fundamental Poisson brackets and the gauge algebra of
constraints. For illusu'ation, we begin with a detailed discussion of the simplest model of the
seIies - the two Killing vector field reduction of general relativity - and show how in this
case the infinite-dimensional symmetry algebra arises.

Chapter 3 is devoted to the analysis of the classical integrability of the model. StaJting
from the linear system, we identify integrals of motion encoded in the associated transition
and monodromy matrices. They are shown to be gauge invariant. We discuss, for which
sectors of the theory this set of nonlocal charges is complete. This is essentially related
to celtain assumptions on the global behavior of the dilaton field. In the relevant sector
(colTesponding to a cylindrically symmeuic setting) the nonlocal charges turn out to cany
the values of the Oliginal physical fields on the symmetry axis. The Poisson algebra of
these charges is computed. Again, the dilaton field plays a key role in that it causes the
vanishing of celtain ambiguities that are known to aIise in the related sUuctures in flat space
(J-models. The resulting Poisson algebra is closely related to the Yangian double from which
it differs by a twist which is remnant of the underlying coset structure. We end up with
a reformulation of the classical model in terms of a complete set of nonlocal conserved
charges. This formulation reveals integrability and the classical symmetry structure in a
natural way. The Geroch group is recovered as the adjoint Lie-Poisson action associated
with these nonlocal charges.

Chapter 4 contains the generalization of the structure to the maximally supersymmetric
extension of the model, which gives dse to N = 16 supergravity coupled to an Es(+s)/ SO(16)
coset space (J-model. Nonlocal charges may be defined in analogy to the bosonic case. Re-
markably, they turn out to be supersymmetric, i.e. invariant under the full gauge superalge-
bra, and satisfy the same Poisson algebra as their purely bosonic counterpaJts. The essential
calculations are performed in all fermionic orders, i.e. including all cubic fermionic terms
that have been neglected so far.

In Chapter 5 we address the quantization of the model in terms of the nonlocal charges,
i.e. search for the quantum algebra which reproduces the Poisson algebra in a classical limit
while preserving certain exu'a properties (again related to the coset structure). We identify
this algebra for the coset spaces G/H = SL(N)/SO(N). The central result is given by the
algebraic suucture (5.5)-(5.9) below. In conU'ast to the well-known centrally extended Yan-
gian double, the quantum R-matdces appear with a relative "twist" in the exchange relations

which connect the two Yangian halves. A central extension of the algebra is required, who se
value is uniquely fixed.

Finally, Chapter 6 contains several results obtained within the so-called isomonodromic
framework, initiated in [71]. This approach has mainly been motivated by the apparent simi-
larity of the equations of motion in certain sectors of the models under consideration with the
deformation equations of monodromy preserving deformations [58). Despite the dch mathe-
matical su'ucture which culminates in a link to the Knizhnik-Zamolodchikov equations from
conformal field theory [68] (again slightly modified due to the underlying coset structure),
we have so far not been able to embed this approach into the canonical framework which has
been elaborated in the rest of the thesis.

In Chapter 7 we briefly summarize the solved and some remaining problems.



Assume now the existence of two commuting Killing vector fields. For definiteness we
take them to be spacelike, one of them with closed orbits. This characterizes spacetimes with
cylindrical symmetry. It is convenient to adopt a coordinate system such that the Killing vec-
tor fields are given along coordinates Ii, and -/;' respectively. In this system, the coefficients
of the metric depend only on the two remaining coordinates x and t. Further fixing the
freedom of Lorentz transformations, the vierbein is casted into the block triangular form:

E A = (ep" E;;,em
a

) (2.5)
M 0 e

m
a .

Greek indices a, J.1. represent the coordinates x and t whereas small Roman indices a, m
denote the coordinates ¢ and z associated to the Killing vector fields. We fulther parametrize
the constituent ema of (2.5) by its determinant p == det en: and an 5£(2, R) matrix V:In this chapter, we introduce the class of models that we are going to study in the sequel.

Originating from Kaluza-Klein type dimensional reduction of gravity and supergravity theo-
ries, they are casted into the form of two-dimensional G/H coset space u-models coupled to
dilaton gravity. We discuss in detail the simplest example of this series, the two'Killing vec-
tor field I'eduction of four-dimensional Einstein gravity, which is embedded into the general
scheme with the particular coset space G /H = 5£(2, R)/50(2). For this model, we give'

an elementary construction of the infinite dimensional symmetry algebra ;r; due to Geroch
[47]. In the next chapter, we will recover tllis symmetry within the general setting. Finally,
we establish the general canonical fOimalism, including the Poisson brackets of the physical
fields a.nd the confonnal gauge algebra.

Inserting (2.5) into the original Lagrangian (2.2) leads after some calculation (see e.g. [13])
and up to surface terms to the following effectively two-dimensional Lagrangian

I:Pl = _~pE(2)R(2)+~pE(2)hpVtr(opMM-IovMM-I) (2.7)

+ ~pE(2)hp~hv>'MmnF;::'F::>. + ~E(2)hl'v p-IOppavp,

h,w - ep "e/1],,{3
Mmn _ (VVT)mn = pemaenbOab ,

F;::' _ apE',;' - ovE;;' .

The curvature scalar R(2) here corresponds to the two-dimensional metric hpv; E(2) accord-
ingly denotes the determinant of the zweibein ep ".

From a lower dimensional point of view, the Lagrangian (2.7) describes two-dimensional
gravity hpv coupled to scalar and vector matter fields which descend from the remaining
components of the original higher-dimensional metric (2.5). The so-called Kaluza-Klein
vector fields E;;' enter the Lagrangian only via their field strengtlls F;::'; they will prove to
be auxiliary in the reduced theory. The matrix M combines the scalar fields which in two
dimensions appear sinlilar to the nonlinear u-model coupled to gravity. They will play the
main role in the sequel. The presence of the dilaton field p in (2.7) is a typical feature of
Kaluza-Klein type dimensional reduction. In general context, this dilaton field measures tile
size of the compactified dimensions of the higher-dimensional space-time (cf. (2.5), (2.6».

At least locally, the zweibein ep" may further be brought into diagonal form (conformal
gauge) exploiting the freedom of the diffeomorpllisms and Lorentz transformations in xl':

2.1 The two Killing vector field reduction of Einstein gravity
The existence of two commuting Killing vector fields in four-dimensional general relativity
gives rise to an essential simplification of the field equations and to a remaining model witll
a remarkably rich symmeuy structure. In the following, we will describe this reduction and
tile arising of the symmetries.

Denote the four-dimensional metric by GMN and consider the decomposition into the
vierbein EM

A

with the Minkowski mettle 1]AB = diag(l, -I, -1, -1). Vacuwn general relativity in four
dimensions is described by the Lagrangian

where R(4) and E(4) denote the curvature scalar of G M N and the determinant of the vierbein
Eft1. respectively. The action is manifestly invariant under diffeomorphisms generated by
vector fields ~:

In the following, we neglect possible global obstructions. We introduce light-cone coordi-
nates x± == XO±xl and similarly define V± == VO± Vi and V± == HVo ± Vd for any vector
VI' and covector VI" respectively. The two-dimensional metric hpv then has componentsand Lorentz transformations generated by A E 50(1,3):

O/\,EM
A = EMBAB

A.



In this model, it is not possible to gauge away the conformal factor (J since the Lagrangian
(2.7) is not Weyl invariant. i.e. it is not invariant under local rescaling of the two-dimensional
metric hlJV' The (J-model part of (2.7) is conformally coupled, but neither the coupling of the
Kaluza-Klein vector fields nor the two-dimensional dilaton-gravity part is Weyl invariant.
The reason for the latter is the multiplicative appearance of the dilaton field p, this is in
conu'ast to usual 2d gravity.

where a compensating SO(2) rotation hg is required to restore trianguladty of V. This sym-
metry of the dimensionally reduced theory has been made explicit by Matzner and Misner
[93]. Note that the matrix M = VVT is invariant under (2.13) and transforms linearly under
(2.12).

~±a±v ,
~±a±p ,
~±a±(J + ~a±~± .

Equations of motion

In conformal gauge (2.8) and after rescaling (J I-t (J+ iIn p the Lagrangian (2.7) becomes
(up to boundary terms again)

[J2) = -aI"P&I"(J+~p(tr(&I"MM-laI"MM-l)+e-2UMmnF;::'FnI"V), (2.15)

where the indices j.t, v are raised and lowered with the Minkowskian metric 7]I"V .now. TlJe
explicit appearance of the conformal factor (J shows, that (2.7) is not Weyl invariant. TlJe
equations of motion for the fields involved are the following:

• The Kaluza-Klein vector fields B;;' satisfy:

Some of the gauge symmetries (2.3), (2.4) of the oliginal theory are still compatible with the
truncation (2.5). (2.8). .

• Conformal u'ansformations ~±(x±) leave the form (2.8) invariant. According to (2.3)
the fields transform as

• The special diffeomorphisms~m(xl") act as gauge transformations on the Kaluza-Klein
vector fields B;':

In the following we restrict to that sector of the theory where the constant is zero.
Tlus is e.g. a necessary condition for asymptotically Minkowskian spacetimes.2 The
Kaluza-Klein vector fields then are (locally) pure gauge (2.11). They may carry phys-
ical degrees of freedom related to nontrivial topology of the two-dimensional sUlface
parametrized by the xl". Neglecting these modes, in the following we restrict to the
caseUpon toroidal cOl11pactification, i.e. with periodic boundar'y conditions on the direc-

tions xm only a discrete subgroup S£(2, Z) appears as gauge symmetry of the original
theory. In any case however, (2.12) remains a symmetry of the lower-dimensional
theory.

• The Lorentz transformations A. b = h. b(xl") act on V according to

The metric (2.1) then acquires block diagonal form, which is equivalent to hypersur-
face orthogonality of the Killing vectorfields: the surfaces orthogonal to both Killing
vector fields are integrable.

In abstract language, the physical degrees of freedom in V(x) parameu'ize the coset space
G/H = SL(2,lR)/SO(2). The H gauge transformations are given by (2.13); the group G
acts linear'ly by (2.12). One may choose a fixed system of representatives of the coset space,
e.g. the triangular matrices V.1 The action (2.12) then provides a nonlinear realization of
SL(2,lR):

Its general solution is given by p(x) == p+(x+) + p-(x-) , and allows to inu'oduce a
dual field jj

IFor general Lie groups one may correspondingly fix !be or!bogonal part of !be Iwasawa decomposition of
UJematrix V [52J.

21naddition, !bere are good arguments to believe !bat UJerich symmetry sUlIcture of the model will not be
compatible wiUJnonvanishing cosmological constants of !his type [100].



defined up to a constant. Under finite conformal gauge transformations (2.10), the field
p transforms as In addition to the gauge symmetries collected above, the two-dimensional model possesses a

rich symmetry structure leading to complete integrability. This underlying structure becomes
already manifest in a duality symmetry of the equations of motion, which we will describe
in this subsection. In particular, this implies the existence of a dual of the (gauge) symmeu'y
(2.12). Together with (2.12), it generates an infinite-dimensional symmeu'y group - the
Geroch group.

In the next chapter, we will give a closed realization of this infinite-dimensional symme-
try group and its action via the linear system and the associated transition mau·ices. Never-
theless, here we show how to generate the infinite-dimensional symmetry in an elementary
way by successively commuting the two dual symmetry groups. Apart from giving a his-
torical flavor, a construction of this type may turn out to be useful on the way to implement
further symmetries in absence of a complete picture.3

The duality symmetry of this model appears as follows [13]. Parametrize the matLix V as

PI) ,
p-'26.'2

where the gauge freedom (2.13) has been fixed to achieve trianguladty. The equations of
motion (2.22) then yield

with arbitrary functions J+ and J-. Assuming certain monotony behavior of p+ and
p-, one may fix this residual gauge freedom by identifying the dilaton field with one
of the two-dimensional world-sheet coordinates

The upper sign cOlTesponds to a time like dilaton field which appears e.g. in the context
of the cosmological Gowdy models [49]. The lower sign refers to a spacelike dilaton
field which has commonly been used in the descLiption of gravitational waves with
cylindrical symmetry [69, 79, 3J. With radial coordinate p == T, the four-dimensional
line element the takes the familiar form

The distinguished coordinates (2.20) are often referred to as the Weyl canonical coor-
dinates.

8+ (6.2p-18_B) +8_ (6.2p-18+B) = 0,

which gives Lise to defining a dual potential Bv by

8±Bv == ±6.2p-18±B .

With the further definition [78]
TillS is the so-called Ernst equation [35J. Except for the dilaton field p it agrees with
the equations of motion of the nonlinear a-model.

with jj == a - ~ In(8+p8_p). According to (2.10), jj transforms as a scalar under con-
formal transformations, making the conformal covadance of (2.23) manifest. Com-
patibility of these equations is ensured by (2.22). They determine the conformal factor
up to a constant, since they are of first degree. Rather than equations of motion of the
usual type, these equations form a set of (first-class) constraints. They are not derived
from (2.15) but descend from vw.iation of the two unimodular degrees of freedom of
the 2d metric h/-w, that appear as Lagrangian multipliers in (2.7). The second order
equation of motion for the conformal factor results from valiation of the Lagrangian
(2.15) w.r.t. p:

it follows, that the mauix Vv satisfies the Sal.11eequations of motion (2.22) with Mv = VvVJ.
This duality has two interesting consequences. First, note the different asymptotic be-

havior of V and Vv at p ~ 00. E.g. in Weyl coordinates (2.21), 4d-Minkowski space is
described by 6. = 1, B =0. Thus, at radial infinity p ~ 00 the matrices V and Vv behave as

for asymptotically Minkowskian spacetimes. In a similar way, V and Vv differ on the sym-
metry axis p = O. We can hence describe the Sal.11ephysical situation by equivalent models
with different asymptotics.

3Since OleGeroch group appears to be already transitive in the seclor which we have described so far, addi·
tional symmetries caII only enter when one restores more physical degrees of freedom. A promising candidate
are e.g. the topological degrees of freedom of the Kaluza-Klein vector fields B;:' and of the two-dimensional
metric h"v. relaxing (2.16) and (2.8). respectively. Their relevance in the further reduction to one dimension
bas already been suggesled in [100. 96J.

The consistency of this equation with the first order equations (2.23) can be checked
usin.g (2.17), (2.22) and (2.40).



Second and more important, since Vv obeys the same equations of motion (2.22), there
is a dual symmetry to (2.14), which we denote by 5£(2,JR)n. Via (2.26) the action of
5£(2, JR)v on the original fields V can be constructed and turns out to be rather nontrivial.
This symmetry has originally been discovered by Ehlers [32] in the three-dimensional re-
duction of 4d-Einstein gravity. The most interesting property of the two symmetry groups
5£(2, JR) and 5£(2, JR)n is that they do not commute but span an infinite-dimensional sym-
melry group - the 39-called Geroch group [47]. On the algebra level, 5[(2) and 5[(2)v span

the affine algebra 5[2.
Let us make this more explicit. Denote the generators of 51(2) by h, e, f. According to

(2.14) they act on V by left multiplication with the matrices

Upon further commuting, these transformations generate the affine a1gebra;r;. As a vector
space this algebra is given by 5[2 ® C[z, Z-l] Ell kC, where C[z, Z-l] denotes the set of
Laurent polynomials in a formal variable z. The algebraic structure is:

[h®zm, e®zn]
[e®zm,/®znl

2e®zm+n, [h®zm, f®zn] = -2f®zm+n,
h®zm+n + kbm+n,O .

The element k lies in the center of ;r; and is referred to as the central extension. The subal-
gebras 51(2) and 51(2)0 are embedded into;r; as follows:

f = (0 0)
1 ° '

h = h®zo I e = e®zo I 1= f®zo I

hv = T(h)®zo + k, ev = T(e)®z-l, 10 = T(J)®Z ,

where T is the algebra-involution (hH -h, eH - I, fH -e). These two subalgebras corre-
spond to the two nodes of the associated Dynkin diagram [64]. Together they obviously span
the full algebra (2.35). The transformations from (2.33), (2.34) correspond to the elements
5[(2)®z.

We close this section with a few remarks on properties of the Geroch group, which have
already shown up here.

and a compensating 50 (2)-rotation induced by f. We now turn to the action of 5[(2)v with
generators hv, ev, 10. Similarly to (2.14) they act on Vv as:

Remark 2.1 The action of 51(2)0 on V in (2.31) involves two dual potentials Ev (2.26) and
4>0 (2.32) whose existence follows from the Ernst equation (2.22). By further commuting
the transfOlmations from 51(2) and 51(2)0 an infinite hierarchy of such dual potentials arises.
They have been observed already in the early history of the Geroch group [47, 67]. On the
level of associated charges, the construction of this hierarchy con'esponds to the well-known
procedure [15] of successively generating nonlocal charges in two-dimensional integrable
models.

Remark 2.2 Equations (2.31) illustrate another property of the Geroch group. It is only the
half 5[2 ®C[z] of the affine algebra (2.35) which acts nontrivially on the physical fields. The
other half 5[2 ®C[z-ll describes the freedom of shifting the dual potentials (c.f. the action of
ev in (2.30». Accordingly, the central extension k in (2.35) leaves V invariant. However, it
has been observed by Julia [61] that this central extension acts non trivially on the confolmal
factor (1. which is determined by V only up to a constant (2.23).

Compatibility of these equations is again ensured by (2.22).
The algebraic structure of the symmetries becomes more transparent in their action on

the currents h == V-18± V. These are left invariant by 5[(2) and transfonn only under 10
according to

(
p-lt,28±E 28±6.)

± ° -p-IN8±E

± [V-1eV, h+Jn ± 28±PV-1eV.

Remark 2.3 To honestly prove the existence of the affine symmetry (2.35) at this stage, one
would have to check the corresponding Serre relations between multi-commutators of the
generators (2.36) [100] as well as the absence of further relations between them. We refrain
here from doing so since later on we will present a closed approach which makes the affine
symmetry explicit.

2.2 lwo-dimensional coset space u-models coupled to gravity and a
dilaton

[bf,ofDlh
[bf, [bf, bfD]]J±

± [pV-1hV, J±+/r ] ± 28±pV-1hV I

Of2 [V-If V , J±+Jr] Of 48±PV-1fV.

11

Dimensionally reduced pure Einstein gravity described in the previous section already cap-
tures all the features of the class of models we are going to study. It is the simplest example



of the G/H coset space a-models that aIise from dimensional reduction of vaIious gravity
and supergravity models. More general, d-dimensional Einstein gravity with (d - 2) com-
muting Killing vector fields [90] gives rise to a SL(d-2, JR.)/SO(d-2) coset space a-model.
Other examples with higher-dimensional coset spaces G/H come from Einstein-Maxwell
systems [67] and Einstein-Maxwell-dilaton-axion systems [45]. The largest exceptional -
and maybe most fundamental- coset space E8(+8)/SO(16) arises from dimensional reduc-
tion of maximally extended N == 8 supergravity in 4 dimensions [60, 62, 98]. For general
reasons, related to boundedness of the energy, it is always the maximal compact subgroup H

. of G that is divided out in the coset.
Let B be a two-dimensional Lorentzian world-sheet, parametrized by coordinates xl'.

Let G be a semisimple Lie group and g the corresponding Lie algebra with basis {tAl. The
Cartan-Killing form in the fundamental representation is given by tr(tAtB) and used to raise
and lower algebra indices. Denote by H the maximal compact subgroup of G, charactetized
as the fixgroup of an involution T [52]. Lifting T to the algebra gives rise to the decomposition

and its current is related to the coset currents from (2.39) by

8pMM-1 == 2VPpV-1 == 2DpVV-I .

It is the separate task of each dimensional reduction to two dimensions to eventually
cast the resulting model into the form of the con'Csponding coset space a-model. In the last
section this has been shown in detail for pure Einstein gravity with two commuting Killing
vector fields. See [67, 90, 62, 98, 14,45] for more complicated examples.

The final form of the two-dimensional Lagrarlgians and the con'esponding equations of
motion are a straight-forward generalization of (2.15}-(2.24) inserting the matrix M E G
from (2.42). The coset-structure becomes more transparent if we rewrite the cun'ents in
terms of the coset currents from (2.39): 8pM M-I == 2V PJy-1 == 2Dp VV-I. Summarizing,
we obtain the Lagrangian

. { ~ for ~ E !J
with T(O == _~ for~ E e '

and the equations of motion for

the dilaton field:
Dp == 0,

the conformal factor:

8±p8±a == 8±p8±a - ~8±8±p ~p tr (P±P±) ,
8+8_a == -~tr (p+P_) ,

and the scalars building the coset space:

Dp(pPp) == D+(pP_) + D_(pP+) == O.

which is orthogonal with respect to the Canan-Killing form. For instance, for the coset space
G/H = SL(N,JR.)/SO(N), the involution T is defined by T(X) == (XT)-l for X E G and
T(O == _~T for ~ E g, respectively.

The physical fields of the model are mappings V(xp) from B into the coset space G/H,
i.e. they are G-valued and exhibit the gauge freedom of right H-multiplication (cf. (2.13»

(2.47)

(2.48)

The discussion accompanying these equations in (2.17)-(2.24) can be adopted for the general
case here.

8pQv - 8vQp + [Qp,Qvl + [Pp,Pv]
DpPv -DvPp

Remark 2.4 The Lagrangian (2.45) and the equations of motion for the currents P± resem-
ble the principal chiral field model (PCM) [86, 38] with the compact group G of the PCM
replaced by the noncompact coset manifold G/H and arising of the additional dilaton field
p. It is mainly the appearance of p that accounts for the new features of these models in com-
parison with the flat space models. Equations (2.47) further show that p may not be chosen
constant without tIivializing the matter part of the solution [99]. Since the Cartan-Killing
form tr(tAtB) is positive definite on the coset e, 8±P==O would require P± ==0.It is also seen
from (2.10) that any solution with 8±p == 0 has some degenerate orbit under the conformal
gauge transformations. There is hence no smooth limit in which the dilaton-coupled model
would approach the PCM.

with the (H -)covariant derivative D pPv == 8pPv +[Q1" Pv]. Under the gauge transformations
(2.38) they transform as

Qp >-+ H-IQpH + Ir18pH) PI' >-+ IrlppH,

with If =H(xp) E H. The matIix

is the analogue of the matrix containing the higher dimensional metric coefficients in (2.21).
It is symmetric under In this paragraph, we derive the canonical Poisson structure from the Lagrangian (2.45). For

simplicity, we denote the spatial coordinate Xl by x only and the timelike coordinate XO by t.



Moreover, we drop the argument t in most of the following equations, keeping in mind, that
the Poisson brackets are defined at equal times.

For the conformal factor CT and the dilaton field p we directly obtain: pPo -Ol1rP - [Ql, 1rp]- [PI, 1rQ] ,

o -Ol1rQ - [Ql,1rQ] - [Pl,1rp].

i.e. the conjugate momenta to p and CTcoincide with OOCTand ooP, respectively. These rela-
tions are equivalent to

In terms of the fields p and p from (2.18) the brackets (2.50) become

{p(X),OOCT(y)} = {p(x), 01CT(y)} = -o(x-y) .

related to the gauge transformations (2.41).
Many calculations in the following are more conveniently performed in the index-free

tensor notation. Denote for some matrix Aab:
There are also different ways to choose tile canonical coordinates among the matrix en-

tries of M. One may e.g. parametrize the matrix M by coordinates like in (2.42) which take
into account the group properties and the additional symmetry (2.43) to tllen extract canon-
ical brackets from (2.45). For higher dimensional groups G however, such a set of explicit'
coordinates is hard to find and certainly not very practicable. The algebra valued currents
o±M M-l offer a suitable parametrization but hide the symmetry property (2.43).

It is thus most convenient to consider the currents (2.39) of the matrices V as basic vari-
ables. Definition (2.42) then ensures (2.43). Moreover, the choice of V as fundamental
objects is indispensable for coupling felwions to the model (cf. Chapter 4). The prize for
introducing thc additional H-gauge freedom (2.38) in V is the appearance of the associated
constraints (2.55) below.

In a standard way [39], we obtain the canonical Poisson structure with coordinates Jl.

Introduce the cOlTespondingmomenta

In components this takes the form (A <81 nab,cd == Aabocd and (I <81 A)ab,cd == Acdoab . Define
accordingly the following matrix notation of Poisson brackets [39]:

for matrices A ab, Bcd. Let Og == tA <81 tA be the Casimir element of g, which due to orthogo-
nality of the decomposition (2.37) allows the splitting Og = O~ +Or. The canonical brackets
(2.53) in this notation become

_ _ oS _ oS .A

1r = 1rQ+1rp = oJl = o(ooJt) t

Remark 2.5 An important feature to note about tllese Poisson brackets is the appearance of
a non-ultralocal term in the tllird equation. In the known flat space integrable models, the
presence of such a term is a good indicator for some breakdown of the conventional tech-
niques at later stage (see e.g. [24] for exploring the fatal consequences of the non-ultralocal
term in the PCM). However, in our model this term shows a surprisingly good behavior and
in fact supports the entire further treatment.

{p(x)Po(x) , V (y)}

{p(x) Po (x) , Ql (y)}

{p(x)Po(x) I }'1(y)}

{p(x) Po (x) , Po (y)}

at equal times. The time derivative of J1 is expressed in terms of Qo and Po via the relations
(2.40):

OO(QI + PI) = OOJI = OlJO + [J1> Jo] == "v'rJo .

The operator \11 is linear and antisymmetric with respect to the scalar product (tr Jdx). The
relevant part of the action (2.45) thus reads

~J dx p tr (PoPo) ~ J dx P tr (po \1jl(OOJr))

-~J dxtr ((00Jl)\111(pPO))

2
- V(x) Or o(x- y) ,

[Or, PI (x) ]o(x- y) ,

[Or I Ql (x) ]o(x- y) + Or oxo(x- y),

[ Or I ~ (x) ] o(x- y) ~ O.



The conformal constraints T±± build two commuting copies of the classical Virasoro-
Witt algebra

We have already discussed that equations (2.23) do not descend from variation of the La-
grangian (2.45) but rather as constraints from its ancestor (2.7), i.e. before imposing con-
formal gauge (2.8). This sU'ucture is the same in the general class of coset space (J models
introduced above.

Diffeomorphism invariance of (2.7) allows to bring the 2d metric h,w to conformal gauge
(2.8). This gauge freedom is reOected in (2.7) by the fact that the components T±± of the
2d energy-momentum tensor arise as constraints with the unimodular parameters of hI-IV

as Lagrange multipliers. In the language of canonical 2d gravity, these are the light-cone
combinations of the Hamiltonian constraint (cf. (2.61) below) and the (one-dimensional)-
diffeomorphism constraint; the associated Lagrange multipliers are the lapse and shift func-
tion of the two-dimensional (unimodular) metric [104]. In conformal gauge, these constraints
read

{T±±(x), T±±(y)}

{T±±(x), Tn(y)}

'1'(T±±(x) + T±±(Y)) o'(x-y)

O.
In the course of applying the canonical formalism to (2.45), we have further encoun-

tered another set of constraints (2.55), having its origin in the H-gauge freedom (2.38). The
Poisson algebra structure of the generators <1?A is inherited from the algebra ~:

{~(x),~(y)} = [n~,~(x)]O(x-y).

Under <1?the fields u'ansform in an infinitesimal version of (2.38), (2.41):

After fixing the conformal gauge (2.8). the full model is thus given by the Lagrangian (2.45)
and the conformal constraints T±±. As first-class constraints the T±± generate the confor-
mal transfonnations (2.10) of (2.45). With the canonical Poisson brackets (2.50), (2.57) we
obtain:

J dx {tr (h(x)<1?(x)), Qr}
J dx {tr(h(x)<1?(X)) ,p±}

{T±±(x), V(y)}

{T±±(x), P±(y)}

{T±±(x), P'f(Y)}

{T±±(x), p(y)}

{T±±(x), a(y)}

D±Vo(x-y) = VP±o(x-y),

'fP±(y) o'(x-y) + D±P± o(x-y) ,

D±P± o(x-y) ,

8±po(x-y) ,

8±a o(x-y) ,

In Dirac terminology [26] this means that all the constraints of the model are of the first
class, thus compatible and responsible for gauge transformations. The full gauge algebra of
constraints is given by (2.62), (2.63) and (2.66).

Remark 2.6 The action (2.65) of the constraints <1?does not describe the full gauge freedom
observed in (2.38). According to the canonical formalism, h is just a function of the spatial
coordinate x and thus carries only half of the gauge degrees of freedom of (2.38). Actually,
the other half has been absorbed by the fact, that the field Qo from (2.39) has not shown up
within the canonical framework. Hence, it appears decoupled from the rest of the theory and
may be consistently put to zero.

where for the calculation of these equations one has to make use of the relations (2.40) as
well as of the equations of motion (2.49). Thus, the transfonnations

reproduce (2.10) up to gauge transformations (2.41). The parameters h~ denote the confor-
mal dimensions of the field rp. This formula illustrates the inteIlJlay between the canonical
and the covariant framework. Canonically, the gauge parameter ~± is defined as a function
of and integrated over the spatial dimension x. Upon using the equations of motion for rpand
restoring the time dependence of ~± according to 8±~'f= 0, the r.h.s. of (2.60) takes a con-
formall y covariant form. In particular, constant time translations are generated by integrating
the Hamiltonian density

Let us finally recall the possibility to fix the gauge algebra (2.62). As discussed in (2.20),
the conformal transformations may be used to map the system (at least locally) to Weyl
canonical coordinates, i.e. to identify the dilaton field p and its dual p with the coordinates
of the two-dimensional world-sheet. This is the precise analogue of adopting light-cone
gauge in string theory [50]. Reference [3] gives an exhaustive discussion of this gauge
fixing in the canonical treatment of models with cylindrical symmetry (2.21), handling all
the physical boundary conditions with great care. In the following we will mainly - i.e.
whenever necessary - stick to this particular choice of Weyl coordinates. Nonetheless, we
will argue that the essential arising structures are to some extent generic.



Remark 3.1 The original currents contained in L± (3.1) determine V only up to left multi-
plication with a matrix depending on the constant spectral parameter w;

Remark 3.2 The nonlinear a-model admits a similar linear system with constant spectl'al
parameter'Y [107, 121]. The coordinate dependence of'Y in (3.1) turns out to be essential for
the entire foHowing treaunent, here. Its origin lies in the explicit appearance of the dilaton
field pin (2.49).

In this chapter, we exploit the integrability of the model (in technical terms: the existence
of a linear system) to construct nonlocal integrals of motion from the associated transition
matrices. We prove the stronger fact, that these conserved charges are invariant under the
fuHgauge algebra (2.62), (2.63). In conU'ast to the nonlinear a-model which allows a similar
constlUction. there arise no ambiguities in the Poisson algebra of nonlocal charges here.
Rather, as a central result we obtain the algebra (3.60), (3.61) which is closely related to
the Yangian algebra known from various two-dimensional field theories [37, 10, 12]. Tllis
is analyzed in detail for the two particular choices of Weyl coordinates (2.20). The infinite
dimensional syrnmeuy group associated to these charges is revealed and their action on the
physical fields is given. The Geroch algebra is recovered as the Lie-Poisson action of the
algebra of g-valued functions on the complex plane. With some regularity assumptions on the
fields the symmetry group acts transitively. Finally, we illustrate the results for the Abelian
sector of the theory where due to linearization of the field equations' the structures simplify
essentially.

The spectral parameters

Here, we coHect some useful formulas illustrating the interplay between the variable and the
constant specu'al parameters 'Yand w.

The parameteq lives on the Riemann surface defined by V(w+p+p)(w+p-p), which
is a twofold covering of the complex w-plane with xl'-dependent branch-cut. Transition
between the two sheets is performed by to 'Y >-+ ~. TIle branch-cut connects the poin ts
w = - .0± p on the real w-axis, which correspond to 'Y(w = - p± p) = ±1. The real w with
Iw+ .01 < Ipl are mapped onto the unit circle I'YI= 1. Real w with Iw+ .01 > Ipl are mapped
onto the real 'Y-axis.The image of the axis ~(w) =- .0 is the imaginary axis in the 'Y-plane.

Dividing the w-plane into two regions H± and the 'Y-plane into four regions D±, D±
according to Fig. I, D± and D± lie over H±, respectively.

3.1 The linear system and the monodromy matrix
The model (2.45) is integrable in the sense that it possesses a linear system [7, 89]. I.e. the
equations of motion (2.49) appear as integrability conditions of the foHowing fanlily of linear
systems of differential equations, labeled by the spectral parameter 'Y:

8± V(x, t, 'Y) = V(x, t, 'Y)L±(x, t, 'Y) , (3.1)

1=F'Y
V(x, t, 'Y)E G , L±(x, t, 'Y)= Q± + 1 ± 'YP± E 9 .

In addition, the spectral parameter 'Yhas to satisfy the differential equations

-18 1+ 'Y -18 (32)
'Y ±'Y=l±'YP ±P, .

which due to (2.46) are compatible and have the general solution

'Y(x, t, w) = ~ (w + .0 - V(w + .0)2 - p2) , (3.3)

with a constant of integration w. This constant may be understood as the underlying constant
spectral parameter of (3.1); in contrast we will refer to 'Yas the variable spectral parameter.

Remark 3.3 It is important that for fixed w i JR and continously varying p and .0, the parame-
ter'Y does not cross the boundalies which separate these regions. The limits of its trajectories
are given by



is non-singular as a function of , in an annular region containing the unit circle 1,1 == l.
The matrix VBM(,) may then be recovered from MBM by solving (3.12) as a (generalized)
Riemann-Hilbert f~torization problem on this annulus. Thus, MBM contains the complete
information about V. Since it obeys

Another useful formula is the inverse expression w(r)
implies

Two spectral parameters ,(x, t, v) and ,(x, t, w) at coinciding coordinates x, t are related
by:

p (,(v)-,(w)) (r(v)r(w)-I)
2' ,(v)r(w)

Monodromy mah'ix

The involution T which according to (2.37) defines the symmetric space G/H can be ex-
tended to an involution TOO which acts on G-valued functions of the spectral parameter, by
combining the action on G with a transition between the two sheets of, [61]: with a matrix VBZ(r(w)) which also solves the linear system (3.1). Its associated monodromy

(3.9) vanishes, i.e.

This generalized involution leaves the connection L±(r) of the linear system (3.1) invariant.
Thus. it motivates the following definition [13): This solution of (3.1) has been used in the approach of Belinskii and Zakharov [7]. It is

defined up to left multiplication with H-valued matrices S(w) (for which T(S) == S).

The matrix M is called the monodromy matrix associated with V(r). Due to the invariance
of L± ('),) under Too, the linear system (3.1) implies The monodromy matrix MBM, introduced in the previous paragraph, apparently is a good

candidate for generating nontrivial integrals of motion. At least in principle. it carries the
entire information about the original fields V. However, so far its usage as a canonical object
suffers from the fact that its definition is a rather implicit one, involving the holomorphy of
VBM in the unit ,-disc. A priori, it is not clear how to explicitly construct this object from
given fields V, thus we miss the information about the symplectic structure of tlle encoded
integrals of motion. However, in the next section we will be able to identify MBM in the
canonical framework (cf. (3.40), (3.49), below). In this section, we introduce the transition
matrices of (3.1) as canonical objects. We extract the encoded integrals of motion and derive
tlleir Poisson algebra.

The transition matrices associated to the linear system (3.1) are defined by

thus M depends on the constant spectral parameter w only. Its independence of the co-
ordinates in particular implies, that the monodromy matrix does not feel tlle x±-dependent
branch-cut of Figure 1.

According to Remark 3.1, the monodromy M is defined only up to the conjugation

witl] some S(w) E G. A preferred choice of eliminating this freedom has been introduced
by Breitenlohner and Maison [13) by demanding holomorphy of V(r) inside a domain in
the ,-pi aIle containing the unit disc D+ U D_. 4 This uniquely fixes V up to a con~ant
matrix. Whenever necessary, we will denote the corresponding solution of (3.1) by VBM.

The absence of singularities in the disc in particular allows to recover the original field V via

U(x,y,t,w) _ V-1(x,t,,(x,t,w)) V(y,t,,(y,t,w))

P exp lY
dz LI(z, t, ,(z, t,wi) ,

which are unique functionals of the connection L± == ~ (Lo±Lr) . The integrand in (3.17)
lives on tlle twofold covering of the complex w-plane with a branch cut which according to
Figure 1 varies on the real w-axis while z runs from x to y. Having in mind Remark 3.3, the
transition matrix U(x, y, t, w) is well defined for w ~JR. It also lives on the twofold covering
of the w-plane and like L± it is invariant under the generalized involution TOO introduced
in (3.8). In other words, U(x, y, t, w) is completely determined by its values on one of the

The cQrresponding monodromy matrix

MIlM(W(r)) == VBM(r) Too(VB~(')) == VBM(r) T(VB~(~))
"Roughly speaking, Ole invariance w('Y) = W(-y-l) allows 10 rellcet all singularities at the unit circle by

multiplying V with a suilable S(w).



sheets; its values on the other sheet are given by T(U(X, y, t, w». Until explicitly stated, we
shall in the following always consider the sheet with ,E D+ UD_ inside the unit disc.

The values of U(x, y, t, w) on tlle real w-axis can be obtained from evaluating the limit

• If there is at least one point Xo in spacetime, where according to (3.22) or (3.23)
Lo(xo, t, ,(xo, t, w» vanishes, the transition matrix

liIl1U(x,y,t,w±i~) with ~ E lR>o,,-to
which may however give two different results for + and-. forms a solution of the linear system (3.1). We can then furtller extract its monodromy

matrix (3.9) as a canonical object, which itself is an integral of motion.

Integrals of motion

Inspecting the time dependence of the transition matrices we can conclude how to extract
integrals of motion. Namely, the modified transition matrices

What is still missing of course is the degree of nontriviality of all these integrals of
motion. Assume e.g. that we had identified a solution VBz in (3.24) then according to (3.16)
its monodromy matrix would carry no information at all. The content of the integrals of
motion will thus have to be checked separately whenever in the following we will conStlllct
integrals of motion according to the procedure described above.

satisfy

aJJ(x, y, t, w)

So far we have just shown, that certain transition matrices constructed from (3.19) are inte-
grals of motion, i.e. conserved in time. Constant time translation is generated by the integral
over the Hamiltonian density (2.61) (in the language of canonical gravity: by the Hamilto-
nian constraint integrated with a constant lapse function). In fact, meaningful observables
in the sense of Dirac should satisfy much more, namely be invariant under the full gauge
algebra (2.62), (2.63). In this paragraph we show tllat this is indeed tlle case for the integrals
of motion obtained above.

First, we check the transformation behavior of the modified transition matrices U under
the H -gauge transformations (2.65). It is

- I "vv I 2,2 VD V-I _ ~ VP V-ILo = VLoV- - uo - = 1-,2 ro 1-,2 I .

There are now several possibilities to constmct integrals of motion:

• Assuming periodic boundary conditions for Po and PIon an interval [-t, t]. (3.20)
shows that the eigenvalues of U(-t, t, t, w) are time-independent if also p and Ii are
periodic functions in x. Charges of this type have been studied in [91]. In general
however. assuming peliodic boundary conditions on the physical fields Po, PI and p
does not guarantee periodicity of the dual field Ii defined by (2.18). The variable
specu'al parameter, then is not periodic in x. and it remains an open problem how to
extract proper integrals of motion from U. 11Iis is an essential difference to the normal
integrable systems with constant specu'al par-arneter.

• The transition matIix U(xo, Yo, t, w) itself becomes an integral of motion if

{<l>(Z),U(x,y,w)} = 0,

i.e. the modified transition matrices are H-singlets for arbitrary endpoints x and y. This
mainly distinguishes them from the normal transition matrices (3.17). which transform by
conjugation. The transformation behavior under the conformal consU'aints T±± may be ob-
tained from the general formula (3.29) below and yields

Po(xo) = PI (xo) = ° arId ,(xo) f ±1 ,
,(xo) = 0 and 1P0(xo)I < 00, IPr(xo)1 < 00 ,

(3.22)

(3.23)

{T±±(z) ,U(xo, Yo, w)} = -L±(xo)U(xo, Yo, w) <5(z-xo)

+ U(Xo,yo,w)L±(yo) <5(z-yo) ,

and accordingly for Yo. The first case (3.22) e.g. occurs for asymptotically vanishing
CUITentswith Ixol----t 00. This may describe asymptotically Minkowskian space times
(cf. (2.28».

The second case (3.23) is even more interesting since it makes use of the field depen-
dence of the variable spectral pararneter. According to(3.5) the crucial limits at which
, tends to zero ar'e p -t 0 and Ii -t ±oo. The interpolating transition matrices thus
provide integrals of motion.

- I ,,'VV I ,~ VP V-I.L± == VL±V- - u± - = '1±, ±

This is the direct generalization of (3.20). The r.h.s. of (3.26) vanishes under the very same
conditions on Xo. Yo that were discussed for (3.20). I.e. all the integrals of motion obtained
in the previous section are indeed invariant under arbitrary confolmal transformations. gen-
erated bt the T±±.



{U(x, y, v) , a1<7(Z)} = -U(X, Z, v) avIJ1(X, 'Y{V)) U{Z, y, v) ,

Due to the coset structure of the model, it is a priori not obvious, that the Poisson algebra
of the connection L1 of the linear system (3.1) is of a closed form. However, this turns out
to be true on the constraint surface (2.55);

{it (z, 'Yl) , L (z', 'Y2)} =

Let us finally compute the Poisson bracket between the integrals of motion and the con-
fonnal factor <7. An arbitrary transition mauix (3.19) satisfies

which in turn follows from (2.50), (3.29) and the fact that avLl = apL1• By integration we
obtain

using that the connection L1 vanishes at the critical points xo, Yo. Thus we see, how the
confOlmai factor <7 at the spatial boundaries provides a derivation operator of the integrals of
motion.

This paragraph is devoted to the (rather technical) calculation of the Poisson brackets be-
tween two transition matrices with pairwise distinct endpoints. A similar calculation has
been done for the PCM [24]. The results however differ in two essential points. First, the
underlying coset structure here implies the appearance of a twist in the resulting Poisson
algebra (3.46). (3.47). Second, the calculation for the PCM is obstructed by certain ambi-
guities which arise due to the non-ultralocal contributions of the original Poisson brackets
(2.57). They prevent a well-defined answer for the Poisson brackets between transition ma-
trices with coinciding endpoints. In particular this spoils the Poisson algebra of transition
matrices relating the spatial boundalies. In our model on the other hand, the coordinate de-
pendence of the spectral parameter - caused by the coupling of the dilaton field pin (2.49) -
yields an inuinsic regularization of these ambiguities at the spatial boundaries [77] provided
that we assume the proper asymptotic behavior of the fields p and p . We shall describe this
in detail.

Let U(x, y, v) and U(x', y', w) be the transition matrices with spectral parameters v and
w, respectively. and pairwise distinct endpoints x, y and x', y'.5 The definition (3.17) implies
the relations [39]

Inserting this into (3.30) and using (3.7) and definition (3.17) leads to

{U(X,y,v),U{X1,yl,W)} = (3.32)

1
y 1yl 1- dz dz' -- o{z - zl) (a. + a••) 3~
x x' v-w

-lYdz 1>/dz' 2'YW -'Y;) o( - ') a ::;'
x x' p(I-'Yi)('Y2-'Ytl{1-'Y1'Y2) Z Z .~,

+1Ydz1yldz' 2'Yf(I-'Yi) o( - ') a ::;'
x x' p(I-'Yl)(-Yl-'Y2)(I-'Y1'Y2) z z .'~'

-lYdz1yldz' 2{p-l(zhl{1+'Yi)+p-l(Z'h2(1+'Yf))::;, ao( _ ')
x x' (1-'Yf)(I-'Y~) -, • z z ,

{U(x, y, v) , X} = 1
Y

dz U{x, z, v) {L1{z, 'Ytl , X} U{z, y, v) ,
1 2 I I 1 2

'::'1) - U{x, z,v)U{x,z,w) n~U(z,y,V)U{ZI,y',W),
1 2 I I 1 2

3, U(x,z,v)U{x,z,w) n, U{z,y,V)U{ZI,y',W).

{ U(x,y,v), U(X',yl,W)} = lYdZ ['dzl (U{x,z,v) U{X',Z',W)) x (3.30)

{ £1 (z, 'Yr) ,l'dz', 'Y2)} ( U{z, y, v) U (Z',y', w)) ,

Partial integration of the first three terms reduces the expression to boundary terms. There
arise additional terms from derivatives of the spectral parameter (cf. (3.2». E.g. the second
term in (3.32) gives a contribution of

8'Yhi {(-Yl-'Y2)2 + (1-'Yl'Y2)2) -2a
(1-'Yf)(1-'Yi)('Yl-'Y2)2{1-'Y1'Y2)2 P oP

+ 'Yl(l+'Yfhi (4'Yl(-Yl-'Y2)(l-'Y1'Y2) + 2{1-'Yf)(1-2'Yl'Y2+'Yi)) -2a
('Yl-'Y2)2{1-'Y1'Y2)2{1-'Yf)(1-'Y~) p IP;
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SFor clarity, we drop tile coinciding argument t tIlroughout Ulis calculation. NoneUleless, so far all the
arising objeclS are time-dependent.



{U(X,Y,V) , U(x', y', w) } = (3.33)

V~w x { B(x,x',y) (U(X,X',V) nil U(x',y,v)U(x',y',w))

+B(x',x,y') (U(x',x,w) n~U(x,y,v)U(x,Y',w))

- B(x, y', y) ( U(x, y', v) U(x', y', w) n~U(y', y, v))

-B(X~y,y') (U(x,y,v)U(x',y,w) n~U(y,y',w)) }

+ B(x,x',y) ( 1 I 1, 2, I ) 1'(x',v)(I-1'2(x',w))
U(x,x,v) n, U(x,y,v)U(x,y,w) (' )(1- 2( I ))v-w 1'x,w l' X,V

B(x',x, y')(2 , 1 2, ) "Y(x,w)(I-')'2(x, v))
+ U(x,x,w) n, U(x,y,v)U(x,y,w) ( )(1 2( ))v-w 1'X,V -')' x,w
_ B(x', y', y) (u (x, y', v) U (x', y~w) n, u (y', y, v)) ')'(y', v)(I-')'2(y', w))

v-w ')'(y',w)(I-1'2(y',v))
B(x',y,y') (1 2, 2,) 1'(y,w)(I-1'2(y,v))

- U(x,y,v)U(x,y,w) n, U(y,y,w) ( )(1 2( ))'
V - W ')' y, v -1' y, w

The final result then is

V~1(x) V:'1 (x') { b (x, y, v) , U (x', y', w) } V(y) V (y') (3.34)

1 { , (1, 1, 2 I' )-- x B(x,x,y) u(x,x,v) n~U(x,y,v)U(x,y,w)v-w

+ B(x', x, y') ( U(x',x, w) n~U(x, y, v) U(x, y', w))

-B(X,y',y) (U(x,y',v) U(x', y', w) n~U(y',y,v»)

1,(1 2 I 2,)}-B(x,y,y) U(x,y,v) U(x,y,w) n~U(y,y,w)

the third term yields the same with opposite sign and 1'1 and 1'2 interchanged. This combines
into a term propOltional to p-281P which is precisely cancelled by the contribution from the
last term in (3.32) (note the differcnt arguments of the dilaton pl. Altogether, there remain
the following boundary terms

B(x,X',y)f(' )(1( ')n 1(, )2(" )+ --- x,w,v U x,x,v ,U x,y,v U x,y,w)v-w
B(x', X, y') ( ) ( 2 ( I 1 2 )+---1 x,v,w u x,x,w) S1t u(x,y,v)U(x,y',w)v-w
B(x, y', y) f(' ) ( 1 ( ') 2 ( , I ) n 1 ( , )- --- y,w,v U x,y,v U x,y,w t U y,y,v)v-w
B(x',y,y') (1 2 I 2,)- ---f(y,v,w) u(x,y,v)u(x,y,w) S1t U(y,y,w) )v-w

{U(X,y,V),V(X')}

{V(X) ,U(X',y',w)}

2B(x,x',Yh(x',v) I ( ') 2 (') 1 (' )
p(x')(I-1'2(x',v)) U X,X,V V x n,u x,y,v ,

2B(x',x,y')')'(x,w) 2, 1 2 I

- p(x)(I- ')'2(X,W)) U(x,x,w)v(x)n, U(x,y,w),

f( ) - 1-2')'(x,wh(x,v)+')'2(x,w)
X,V,W = 2() .

1-')' x,w

This result superficially resembles the con'esponding bracket arising in the PCM [24].
In fact, neglecting the coset structure (i.e. formally putting n~= n,= ng) and dropping the
coordinate dependence of the spectral parameters >., equation (3.34) explicitly reduces to the
brackets appearing in the peM.

At first sight, we thus face the same fatal problem: With distinct endpoints x, x', y, y' the
algebra (3.34) is uniquely and well defined, satisfying in particular antisymmetry and Jacobi
identities. The limit to coinciding endpoints on the other hand is obviously ambiguous. E.g.
it is easy to check that

~~:: {b(x,y,v), U(X',yl,W)} i ~~::{b(x,y,v) ,U(X',y"W)} ,

where we have made use of the abbreviation:

O( ) {I for x < y < z
x, y, z = a else (x i y i z) .

We are mainly interested in the modified transition matrices from (3.19). Their Poisson
brackets acquire additional contributions from

In the PCM this ambiguity survives in the limit x, x' ---+ -00; y, y' ---+ 00 with no possibility
to cure this in accordance with antisymmetry and validity of the Jacobi identities [86, 24].
The corresponding transition matrices relating the spatial boundaries however are the main
objects of interest, since they encode the integrals of motion. Several procedures have been



suggested to nevertheless make sense out of the classical Poisson algebra of the peM [38,
31,87].

In our model on the other hand, the coordinate dependence of the spectral parameter 'Y
changes the situation drastically. Namely, since the function f(x, v, w) inherits this depen-
dence. the ambiguity (3.35) may "fade out" in a celtain limit. This happens if at the end-
points x, x' and y, y' the variable spectral parameter 'Ybecomes independent of the constant
one. such that (3.35) becomes an equality. These possible fixpoints of the spectral parameter
are 0, 00 and ±i (cf. (3.5), (3.6)). In this case equation (3.34) shrinks to an algebra related to
Drinfeld's Yangian [28]. We shall demonstrate this for the two choices of Weyl coordinates
(2.20) in tIle next section.

From (3.37) we extract the integrals of motion
_ ~ ~-I -

U±(w) = VoVoo = U(O,oo,w), for wE H±, i.e. for ~w~O,

where the index ± refers to the discontinuity of Voo along the real w-line. The U±(w) are
(G-valued) holomorphic functions in H+ and H_, respectively, and related by

According to (3.24), further integrals of motion descend from the monodromy matrices
(3.9) of Vo and Voo' They may however be expressed in terms of the matrices U±(w): For
real w it is .

3.3 Nonlocal charges and their Poisson algebra
In this section, we analyze the integrals of motion obtained above for the two particular cases
of Weyl coordinates (2.20) assuming the vector field 0I'P to be globally space- and timelike,
respectively. Evaluating the general result (3.34), we obtain the relevant Poisson algebra of
nonlocal charges. The same fundamental structures arise from somewhat different sides.

MBM(W) Mo(w)

(~)!~ (Vo(X,'Y(W+it)) r(Vol (x,'Y-I(w+it))))

F~l !~ (Vo(x,'Y(w+iE)) r(Vol (X,'Y(W-it))))

(3~8) !~ (U+(w) Voo(x,'Y(w+iE)) r(Voo(x,'Y(w-iE))U-(w)f)
(3_.:.1.0) )U+(w) r(U~l(w) (3.40)Nonlocal charges for a spacelike (radial) dilaton

For this paragraph. let us assume that the vector field 0I'P is globally spacelike. We can then
identify p with a radial coordinate x = r E [0, :xl[. This is a common coordinate system for
the description of cylindrically symmetric gravitational waves [69, 79,3]; the symmetry axis
is given by x =O. For pure Einstein gravity, we have already introduced these coordinates in
(2.21). The dual field p is identified with the time:

Throughout this calculation it is important that x > Iw + tl. This ensures that the limits
x-too and €-t0 interchange as well as 'Y(w+it) = 'Y-I(w-it).

Vice versa, (3.40) can be understood as the essentially unique (Riemann-Hilbelt) factor-
ization of MBM into a product of matrices holomorphic in the upper and the lower half of the
complex w-plane, respectively. The symmetry (3.13) of MBM further implies the relation

Let the physical cun'ents Po, Pl falloff sufficiently fast at spatial infinity x -t 00 with
V -t I and behave regularly on the axis x = O. According to (2.28), in four dimensions we
can demand this for the currents which are either related to the oIiginal matrix V from (2.25)
or to the matIix VD carrying some of the the dual potentials. A physically interesting class of
gravitational waves is e.g. described by restricting to regular VD on the symmetry axis [17].

In the sense of (3.22), (3.23) there are thus twO interesting points: x = 00 satisfying (3.22)
and x = 0 with (3.23). According to (3.24) they give rise to the following two solutions of
the linear system:

MBM(W) = MBM(W) .

The monodromy Moo associated to Voo follows from (3.38) and (3.40):

Moo(w) = U;I(W) ~(w) for wE H± .

Vo(x,'Y(x,w)) - V(O)U(O,x,w) = VBM(X,'Y(X,w)),
Voo(x,'Y(x,w)) _ V(oo)U(oo,x,w).

The second equality in (3.37) follows from the behavior of the moving branch cut (cf. Fig-
lire I) in Vob). The matrix Vo is the (unique) solution of (3.1) which as a function of 'Y is
holomOl'phic in the unit disc D+uD_ and thus coincides with VaM from (3.12). The solution
Voob) on the otller hand is the unique one which is holomorphic in the lower half plane
D+UD_ or the upper half plane D_UD+, respectively, depending on the sign of~w. In par-
ticular, Voob(w)) as a function of w is discontinuous along the real w-axis since for x-t 00

the branch cut blows up and cuts the w plane into two halves (cf. (3.18)).

Summarizing, we find that all tlle tl1e integrals of motion identified according to the
discussion in the previous section can be entire] y expressed in tenos of the U± (w ). So far,
we have however not answered the question of their physical content. For tills purpose, we
bring them into a more illustrative form. Starting from definitions (3.17), (3.38)

U±(w) = V(x=O, t) P exp [OOdx(QI + 11 + 'Y:PI - ~ Po) ,Jo -'Y l-'Y

the t-independence may be exploited to calculate this expression for real w at tlle specific
value t = -w (assuming regularity of the currents):

U±(w) = V(x=O,t=-w) Pexp l°Odx (QI(x,-w)±iPo(x,-w)).
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MBM(W) V(X=O,t=-W) r(V-1(x=0,t=-W))
(2__.42)

M(x=O,t=-w), for wElR.,

?owe.ver sensitive to the choice of indices ± at the U's, i.e. to the relative sign between the
Imagmar?, parts of v and w. If 'Y(v) and 1( w) lie in the same of the two regions D+ and D_.
the functIOn f(y, v, w) tends to 1,whereas it tends to -1 otherwise (cf. (3.5».

Thus, we arrive at the following Poisson algebra:

{
I 2 } [0 I 2 ]U± (v) , U± (w) v _uw ' U± (v) U± (w) ,

{
I 2} 0 I 2 ! 2 or
U± (V) , U'F (W) = _U_ U± (V) ~ (W) - U± (V) U'F (W)_U_ ,

V-W v-w
with 0; == O~ - 0, obtained from 0uby applying the involution r in one of the two spaces

0u= t
A

<8ItA, 0; = r(tA) <8ItA = tA <8Ir(tA).

Equations (3.46) build two semi-classical copies of the Yangian algebra that is well
known from other 2d field theories [10, 11, 12J. By semi -classical we mean as usual that
~he Poisson brackets (3.46) coincide with the commutator of the Ii-graded Yangian algebra
m first order Ii. The mixed relations (3.47) appear "twisted" by the involution r with respect
to those coming from the normal Yangian double.

Note that whereas (3.46) remains regular at coinciding arguments, (3.47) obviously be-
comes singular at v = w. However, since U+ and U_ are defmed in different domains, this sin-
gulaIity appears only in the limit on the real line and thus with a well-defined it-prescliption.
In other words. the Poisson algebra (3.46), (3.47) is compatible with the holomorphy prop-
erties of U±( w). For consistency. it may further be checked that the algebra (3.46). (3.47) is
indeed compatible with the the restriction U± (w) E G and with the symmetry (3.41).

Remark 3.4 Let us recall the Poisson bracket (3.28) between the conformal factor Cf and the
integrals of motion U± (w) obtained above:

{U±(w), Cf(X=OO)} = -owU±(w), (3.48)

where we have assumed that the value of the conformal factor on the symmetry axis is fixed
by the boundary conditions [3]. In the context of cylindrically symmetric 3d gravity cou-
pled to scalar fields, the conformal factor exp Cf at radial infinity has a well defined physical
meaning. It contains the deficit angle describing the nontriviality of the asymptotically flat
3d metric and provides a measure of the total energy of the system. The simple form of its
Poisson bracket with the new variables may have further consequences upon quantization
[76].

The ±-sign on the r.h.s. of (3.44) reflects the different limits lim,_++o1(W±it). On the real
w-axis U± (w) thus naturally factorizes into the product of a real and a compact part. The
monodromy matrix MUM captures the real part of (3.44):

. whereas Moo (w) canies the compact part of (3.44).
Equation (3.45) provides a physical interpretation for the new integrals of motion. They

comprise the values of the original field M on the symmetry axis x = 0. Having been
defined as spatially non local charges for fixed t, they gain a definite localization in the two-
dimensional spacetime at fixed x.6

Moreover. this shows that they contain the entire information about the solution. Together
with the fact that P!(x = 0) = 0, which follows from the equations of motion (2.49), the
values on the symmetry axis x =° allow to recover the field V everywhere. In some sense the
initial values on a space like sUiface have been transfOimed into initial values along a timelike
sUiface. Thus. the U± (w) build a complete set of constants of motion for this classical sector
of solutions regular on the symmetry axis.

It remains to compute the Poisson algebra of the integrals of motion U± (w). According to
their definition (3.38) we evaluate the general result (3.34) in the limit x, xf -t 0, y, y' -t 00.

The 6rst four terms become

[
0 1 2 ]-~- , U(v) U(w) ,

v-w

for arbitrary indices ± at the U's.
The next two terms show the ambiguous behavior at coinciding endpoints. Depending

on x < xf or x > xf they give the coefficient

respectively, leaving to different results for different ways of taking the limit xf -t x. Here.
the difference with the peM becomes manifest: Since the spectral parameters depend on the
spatial coordinates, in the limit x, xf -t °both f (x, v, w) and f (xf, W, v) tend to 1 (cf. (3.5».
The sum

Jim (8(x~ x, y)J(x, v, w) + 8(x, Xf,y)J(x', W, v))
x-+x'

Finally, we can also compute the symplectic structure on the Breitenlohner-Maison mon-
odromy matrix MBM, since we have identified this object within the canonical framework. It
follows from (3.46), (3.47) and (3.40) that its matrix entdes fOim the closed Poisson algebra:

{MBM(V) , MBM(W)} = (3.49)

0u! 2 ! 2 0
-- MBM(V) MBM(W) + MBM(V) MBM(W)-U-v-w v-w

! or2 2 or!
- MBM(V)-U- MBM(W)- MBM(W)_9- MBM(V).

V-W v-w
The singuladty at v = w is understood in the principal value sense.

thus is independent of how this limit is taken, keeping e.g. x < xf or x > x' or also x = xf

with 8(x, x, y) ==~.
In a similar way, the ambiguity from the last two terms vanishes. In the limit y, yf -t 00,

the combinations J(y, v, w) and j(yf, w, v) approach the same value. This common value is

6A similar relation holds for the monodromy matrix arising from timelike dimensional reduction (i.e. with
a Euclidean two·dimensional world-sheet E) in tile regular regions of the spacetime [13]. In that setting,
singularilies of tile nonlocal charges in tile speclral parameter plane are directly Iranslated into singularities of
tlle original fields ill space-time.



After some calculation, the general result (3.34) further yields the Poisson algebra of the
MBM here which turns out to coincide with (3.49):

{.MBM(V),MBM(W)} == (3.55)

no 1 2 1 2 n
-- MBM(V) MBM(W)+ MBM(V) MBM(W)-O-V-W V-W

1 n; 2 2 nr 1
- MBM(V)-- MBM(W) - MBM(W)-O- MBM(V) .

V-W v-w

This is by no means a consequence of (3.49), since the matrices MBM in both contexts
descend from rather different definitions.

Via the Riemann-Hilbert decomposition of MBM, discussed in (3.40), one can implicitly
obtain the matrices U±. They will satisfy the Poisson-structure (3.46), (3.47). Thus, together
with (3.54) the final situation appears rather similar to the previous paragraph.

However, tllis result must be taken with some caution. Obviously, (3.54) looses its mean-
ing if M(x, t) diverges as t-i O. Starting from arbitrary initial data at finite t, this divergence
on the other hand is generic. What is actually described with (3.54) and (3.55) is the sec-
tor of the phase space where M(x, t) behaves regularly at t == O. Note, that the canonical
formulation obviously fails to cope with describing this truncated phase space: At t == 0 the
framework breaks down Witll the vanishing Lagrangian (2.45), whereas at finite t the con-
dition of regularity at t == 0 poses highly nontrivial implicit relations between the canonical
coordinates and the momenta. Thus, the results of this paragraph should only be understood
as an indication for some fundamental meaning of the Poisson algebra (3.49), (3.55) beyond
the particular choice of Weyl coordinates (3.36).

Finally, let us mention another rather intriguing point of view for the coincidence of
(3.49) and (3.55). Recall the setting of the spacelike dilaton (3.36) addressed above. In addi-
tion to tile canonical (equal-time) symplectic structure, we could have derived an alternative
Poisson structure with respect to the radius x.8 The calculations of this paragraph show that
these two Poisson structures of one model coincide for the values of the original fields on
the symmetry axis x == 0, i.e. for a complete set of observables. In this sense, these symplec-
tic structures are essentially equivalent. It is tempting to speculate about further exploiting
tile fundamental structure (3.49) even in tile case of a timelike dimensional reduction. i.e.
the reduction to stationary axisymmetric spacetimes, where the canonical time is no longer
present.

Nonlocal charges for a timelike dilatoJl field

Here, we deal with the case of a globally timelike vector field 8"p, which allows to identify
p with the time t. Accordingly, p now desclibes the spatial coordinate x. The distinguished
location x == 0 which has played the role of the symmetry axis r == 0 in the previous paragraph
becomes now the origin t == O. With periodic spatial topology, this is the setting of the so-
called cosmological Gowdy-models (49J.7 We will, however, just treat the asymptotic case
x E ]- 00, 00[. The fundamental structures of the preceding section (the spacelike dilaton)

.rcappear in this context from a somewhat different side. So, for this paragraph we fix

V_oo(x,-y(W) _ V(-oo)U(-oo,x,w),
Voo(x, -y(w)) _ V(oo) U(oo, x, w) .

This time, the branch cut of Fig. I involved in the definition of the solutions (3.51) moves
along the real w-axis without changing its length. Both these solutions turn out to be holo-
morphic inside of tile unit disc D+ UD_ in the -y-plane, thus in fact it is

VBM == V-oo == Voo .

In particular, the objects

U(w) == V_oo(x,-y(w)V.:~,t(x,-y(w» == I (3.52)

superficially analogous to (3.38) are tlivial here.
However, again we have identified VBM among the canonical objects. Its monodromy

matrix MBM(W) for real W is given by

MBM(W) ==!!!?o(VBM(x,-y(W+i~)) r(VB~(x,-y(w-i~»))) , (3.53)

for Iw + xl < t. Unlike (3.40) there is no way to express tllis matrix directly in terms of
certain u-ansition mauices. This is due to the fact that the limits ~ -i 0 and x -i 00 do not
interchange in (3.53).

The mau'ix MBM(W) can be given more explicitly. Since M(w) is independent of x and
t. we may evaluate it at x == -wand in the limit t -i 0. This yields:

MBM(W) == ~~ (pexp l!ZLl(Z,'Y) Pexp -1!zr(L1(z,'Y)))

V(x==-w,t==O) r(V-1(x==-w,t==0))
M(x==-w,t==O) .

Summary

We have shown that the model (2.45) in Weyl coordinates (2.20) is completely desclibed by
a set of integrals of motion U± (w) defined as G-valued functions which are holomorphic in
the upper and the lower half of the complex plane, respectively. They are related by

81n a covariant theory this is a quite natural idea which has been discussed in particular to describe static
settings (16). For the SchwarLschild black hole e.g. one might doubt the distinct role of time in the canonical
fonnalism since x and t change their character being space- and timelike, respectively, inside the horizon.

7See [53, 941 for a recent treaunelll of the Gowdy model in Ashtekar variahles. The two Killing vector
field reductions of pure Einstein gravity in tenns of Ashtekar variables and the metric variables used here are
equivalent [95, 120). The explicit fonnulas of (1201 allow to translate the results from one setting into the other.



With the integrals of motion U± (w) identified in the previous section, one can study the
symmeuies which they generate via their adjoint action in the canonical Poisson structure.
As it turns out [75, 77], this yields a canonical realization of the Geroch group [47] with the
underlying Yangian algebra (3.60), (3.61). The transformations which close into an affine
algebra (the loop algebra 9, cf. (2.35)) do not preserve the symplectic structure. This is a
particular example of the Lie-Poisson action of dressing groups generated by the transition

. matrices of integrable models [113, 6, 84]. For the integrable models studied so far within
the framework of the quantum inverse scattering method, the integrals of motion are encoded
in the eigenvalues of the transition inatrices. Here, in contrast, the transition matrices U± (w)
themselves are conserved charges.

In particular, (3.56) and (3.57) imply that MBM(W) is a symmetric matrix with real matI'ix
entries on the real w axis.

This structure has been revealed explicitly for the two definite choices of Weyl coordi-
nates (3.36) and (3.50), i.e. having fixed the gauge freedom of conformal transformations.
Since, according to (3.26), the U± (w) are invariant under conformal transformations, this
structure extends also beyond these special choices. Its interplay with global properties of
an arbiu'ary dilaton field p remains to be studied.

The Poisson algebra of the U± (w) is given by

The Geroch group and the linear system

In this paragraph, we sketch how the action of the Geroch group may be encoded in an action
on the linear system (3.1). Since our main goal is the canonical realization of the Geroch
group in the next paragraph, we keep the discussion rather brief, referring to [61, 13, 99J for
details.

We have seen the one to one correspondence between solutions V of the original equa-
tions of motion (2.49) and the associated solutions VBM of the linear system (3.1). The latter
allow the factorization (3. IS)

{ U± (v) , U± (W)}

{ U± (v) , U'f (w)} =

into a matrix SBM(W) living in the w-plane and a matI'ix VBZ(-r) living in the I'-plane and
invariant under the involution roo from (3.8). Conversely, this equation shows how to obtain
VBM(-r) from MBM: Decompose MBM according to (3.14) and determine the unique VBZ(-'y)
invariant under roo, such that the product (3.63) as a function of I' is holomorphic inside
the unit disc. Thus, one obtains VBM(-r), which in particular is sufficient to reproduce the
original fields V according to (3.11).

This procedure describes the finite u'aJlsformations of the Geroch group, which generate
an arbitrary solution VBM from the vacuum solution vgM = I. They are parametrized by
G-valued matrices Sew). The group structure is simply given by matrix multiplication:
On a given solution VBM, Sew) acts by left multiplication which in turn induces a right
multiplication to restore the holomorphy inside the unit ')'-disc. The monodromy matlix
MBM transforms as

o r 2 1 2 Og
-g- MBM(V) MBM(W) + MBM(V) MBM(W)--v-w V-W

1 0; 2 2 0; 1
- MBM(V)-- MBM(W) - MBM(W)-- MBM(V),v-w v-w

Remark 3.5 Upon formal expansion around w = 00, the Poisson algebra (3.60) coincides
with the semi-classical Yangian structure which was introduced by Drinfeld [27] in the
framework of Hopf algebras. To describe the Yangian double [28, 82, 11] it is usually con-
venient to take two copies of (3.60) with fomlal expansions around w = 0 and w = 00,

respectively. In (3.60), (3.61) in contrast, the U±(w) do not arise as formal power series but
as definite functions allowing holomorphic expansion in the upper and the lower half of the
complex plane, respectively. The fOlmal expansions around w = 0 and w = 00 hence are no
appropliate paJ·ameuization.

On the algebra level, this action takes the following form: Parametrizing the algebra
action by a g-valued meromorphic function A(w) we define

where lA(-r) is the unique function invariant under roo which restores the holomorphy of
bA VBM(-r) inside the unit disc. The infinitesimal version of (3.64) accordingly reads

bAMBM(W) = A(w)MBM(W) - MBM(w)r(A(w))
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We have now associated a finite transformation of the Geroch group to each element of
the phase space, by which it is generated from the vacuum solution. According to (3.63) the
Geroch group is generated by meromorphic functions S(w) mapping the complex w-plane
into the group G. Denote this group by Goo. The phase space may be understood as an
infinite-dimensional coset space

the solution VBMof the linear system is given by (3.37). As has been discussed above, the
entire symmetry structure also survives relaxing of this gauge choice.

Recall that the U± (w) live in a matrix representation of G, in particular each matrix entry
thus represents an element of C(G). Define in this representation the matrix valued operator

where "ad" denotes the adjoint action via the canonical Poisson structure. To be precise, the
. action of G±(w) on any phase space function f is defined as

. where Hoo refers to the subgroup of G-valued functions on the 1-plane invariant under roo. 9

This subgroup describes the freedom of right multiplication of V(-y) which leaves the asso-
ciated monodromy matrix (3.9) invariant.

The palticular elements VBM may be viewed as a celtain representative system of tltis
coset space (3.67). Their Hoo gauge freedom is fixed (3.63) by demanding holomorphy in-
side of the unit disc in the 1-plane. This is a generalization of the triangular gauge discussed
for the finite-dimensional coset space G/H in (2.25). llte action of the Geroch group as
described above is the action of the coset space (3.67) on itself. In analogy to (2.14) the
linearized action on Goo becomes highly nonlinear on the fixed representation system VBM .

of the coset space. On the algebra level, the action of the symmetry (3.65) is parametrized
by A E gOO,while YA E fJoois required to restore the generalized triangular gauge.

Let us finally recover the structure of the Geroch group that we have encountered earlier
in the model of pure Einstein gravity. ll1ere, the Geroch group has been described as the
affine algebra 9 (2.35) with the action of the generators given in (2.14) and (2.33), (2.34). The
algebra gOOof merom orphic g-valued functions is formally related to 9 by Laurent expansion
around a given point w00

With Wo = 00 the (truncated) Laurent expansion

in matrix indices a, b. Since the U± (w) are integrals of motion, this action is a symmetry
of the equations of motion of the theory. It is illustrative to calculate the transfOimation
behavior of the monodromy matrix MBM according to (3.58) and (3.60), (3.61):

I 2 0 2 2 or
G±(v) MBM(W) = _9- MBM(W) - MBM(W) _9_. (3.70)

v-w v-w
This motivates the definition of the following symmetry operator

G[A] == tr (r 2dV A(v)G+(v) + r dv. A(V)G_(V)) , (3.71)il+ 7f1 it- 2m

for any algebra-valued function A(w) E g, regular along the real w-axis and vanishing as
w -+ 00, where the path £ = £+ U £_ is chosen to encircle the real w-axis, such that £± E H ±

and A(w) is holomorphic inside the enclosed area. Then, we obtain from (3.70)

which coincides with (3.66). This already reproduces the infinitesimal action of the Geroch
group in the canonical framework. Moreover, (3.72) shows that the symmetry group (3.71)
acts transitively among solutions which behave analytically on the symmetry axis p = 0
(ct. (3.59».

Let us check, if we can also recover the action (3.65) on the solution VBM of the linear
system. Evaluating the key formula (3.34) according to the definitions (3.71) and (3.37)
leads to:

yields one half of the affine algebra. Since these A(w) introduce a singularity at 1= 0 they
require a compensating transformation YA according to (3.65) which acts non trivially on
the physical fields eventually obtained from (3.11). The expansion (3.68) leads to explicit
recurrence relations for this action [99]. A closer check of (3.65) shows that indeed the
parameter Al describes the action (2.14) of the zero modes gl8izo, whereas A2 cOll'esponds to
the action (2.33), (2.34) of the elements gl8iz in g. Thus, (3.65) generalizes the action (2.14)
of the zero modes of (2.35) to that half of the affine algebra which acts non trivially on the
physical fields (ct. Remark 2.2). The other half of the affine algebra may be associated with
the Taylor expansion of A(w) around Wo =00 [61, 13, 99J.

The canonical realization of the Geroch group

Here, we present the relation of the Geroch group described in the previous paragraph with
the integrals of motion U±(w) that we have obtained in section 3.3. It turns out that this
provides a natural realization of the Geroch group via the canonical Poisson structure. For
definiteness, we assume the Weyl gauge (3.36) whenever necessary, such that, in particular,

9To pl'operly define IIoo as a subgroup of Goo one should regard (3.67) for fixed values of x and t, with I
and w related by (3.3). See [13, 63] for the maUlematical derails.

12 .(dV ) [VB~A VBM]
l 11'1v-w ~

+ _1-_1_
2
_(w_) 1--d_v- _1_( v_)_ [V-1 A VBM]

1(W) l 211'i(v-w) 1-12(V) BM t '

with the algebra projections [.h, [.le corresponding to the decomposition (2.37). The matrix
A(w) depends on the constant spectral parameter w; in contrast, YA(x, t, 1(w)) depends on
the variable spectral parameter 1 and obviously satisfies

YA(X,t,1(W)) = rOO(YA(x,t,1(W))) = r(YA(x,t,1-I(W))) .
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Thus, we find agreement with (3.65) and have in particular obtained a closed expression for
the compensating f)oo-rotation Y" (-y). Indeed, it follows from the form of Y" (3.73), that the
right multiplication of VBM with YA removes all singuJarities caused by the left multiplication
with A( w) from the unit disc (note that the path e surrounds the unit disc in the ,'plane).

With the symmeu)' operator (3.71) at hand, we can directly calculate the infinitesimal
action of the Geroch group on all the original fields of the model. According to the general
formula (3.29) it follows that:

1dv (2, [- I - ])
l 271"i p(1 _ ,2) V(x) VBMAVBM !

-1 2
d

: (V(x)[VB~AVBM])
1(l) 71"lf !

which corresponds to the expansion (3.68) in tile sense that:

G[Anwn] = !(Gn++Gn-).

This relation follows from evaluating (3.71). There is a slight subtlety here, since strictly
speaking the functions A( w) = Anw" do not belong to the class of functions for which we
have defined (3.71). As the integrand is singular at infinity, definition (3.71) depends on the
precise choice of the contour in this region, which has not been specified above. Expansion
of (3.74) around w = 00 yields the action of these components on the physical fields. With
the asymptotic behavior

11'
,(w) = 2w P - 2w2 pp + ...

1·d
G[A] P±(x) = -2 v

l 71"1

G[A] a = 1~:tr (A8VVBMVB~) ,

in accordance Witll the formula derived in [99]. Formula (3.76) is easily obtained from (3.27).
The algebraic structure of the symmetry operators (3.71) is most conveniently obtained

from (3.72), which immediately gives rise to

VI = ldY p(y)V(y)PO(y)V-1(y) .

Then, (3.74) yields the following action (up to gauge transformations (2.38»:

G[A1w] V A1V,
G[A2w2] V = [A2, VV1V-I) V ,

G[1\2W2] P± = 'f [pv-l 1\2 V, p±) 'f O±P [V-1(x)A2 V(x))!

This coincides with the structure found in (2.31), (2.33) and (2.34) for g = 51(2). In particular,
it may easily be checked, that in this case tile matrix VV1V-I indeed covers the first dual
potentials (2.26) and (2.32).

The associated affine charges may be obtained from a formal expansion of the linear
system (3.1) in the followin~ way: Interpreting (3.1) as a formal power series in w-1, the
particular transition matrix VBM(X, t, ,(w)) from (3.37) admits an expansion according to
(3.80). Performing the limit x -+ 00 in each of the coefficients separately leads to a series

1 1
U(w) == 1+ - U1 +2 U2 +... with Un == lim Vn . (3.82)w w x-+oo

Equivalent fOlms of these infinitesimal symmetry transformations of the Geroch group have
been stated inl5!, 119,99].

The symmeu), action on the conformal factor a is given by

Like in the previous paragraph tlIe symmetry algebra is parametrized by merom orphic g-
valued functions. Half of the affine algebra (2.35) may again be recovered by fOlmal Laurent
expansion around w = 00.

l~x p(x)V(x)PO(x)V-1(x) , (3.83)

!U{ + !l°Odx l°OdY p(x)p(y) [V(x)PO(x)V-1(x) , V(y)PO(y)V-1(y)]

+ ~l~x p2(X)V(x)PI(X)V-1(x) + l~x p(x)p(x)V(x)PO(x)V-1(x) .

It may be checked, that they generate the action (3.81). However, it is impOltant to
notice that in general there is no relation between tlIe formal power series U( w) defined

The commutator on the r.h.s. encodes the half of an affine algebra in its Taylor expansion
around v=oo, w=oo [39]:

1 1
G±(w) = I+-G1±+2G2±+""w w



in (3.82) and the integrals of motion U± (w) from (3.38). This is due to the fact. that the
limits w -t 00 and x -t 00 do not interchange (manifest in the breakdown of the expansion
(3.79) at w = -t+x). In particular, all the Un are real, whereas the U±(w) are complex
with (3.56). Nevertheless, the formal series U( w) generates the same action as the operators
(3.71) defined via the U±(w).

Remark 3.6 The closed expressions (3.74), (3.75) of the symmetry action on the physical
fields contain the pivotal term [VB~J\ VBM] which is hardly computable explicitly. The affine

.expansion (3.68) of the symmetry group has the seeming advantage, that it allows for explicit
expressions of the associated charges (3.83) and the action of the symmetry (3.81). However,
to obtain infinitesimal transformations which are integrated to physically meaningful solu-
tions. the entire formal power series in (3.68) has to be summed up, i.e. the same amount of
work is required. The closed fOlm of (3.71) captures the structure of tile full symmetry group.
In particular, it provides precise control over the deviation of this action from a symplectic
one (cf. (3.90) below) which later on becomes essential for the purpose of quantization.

Remark 3.7 We have given the canonical realization of the symmetry algebra (3.65). Ac-
cording to the discussion above this may formally be embedded into that half of the affine
algebra 9 (2.35) which acts nontrivially on the physical fields. There is no canonical real-
ization of the other half and the central extension k for the following reason: According to
Remark 2.2, the other half of the Geroch group leaves the physical fields V invariant and acts
by shifting the dual potentials encoded in a solution V of the linear system g.l). However,
to set up the canonical framework we had to identify the particular solution VDM as a unique
functional of the physical fields V, which e.g. enabled us to obtain the symplectic suucture
(3.62). There is hence no canonical object which would transform nontrivially while tile
canonical fields are left invariant.

In oilier words. to incorporate the other half of the affine algebra and the cenu'aI extension
of (2.35). the phase space would have to be enlarged by additional gauge degrees of freedom
(colTesponding to IJoo in (3.67)). So far, it is not clear how to achieve this canonically, say,
on the Lagrangian level. See [63, 102] for further discussion.

where X is the vector field related to the action of 9 E G and may be understood as an element
of the associated Lie algebra g. Every infinitesimal action of tllis kind is locally generated
by a charge

and vice versa every action generated as (3.86) is obviously symplectic (due to the Jacobi-
identities). An example of a symplectic action in our model is e.g. given by the action of the
zero modes of the affine algebra (2.14), which is generated by the charges U1 from (3.83).

For the subsequent generalization it is convenient to also state the dual version of (3.85).
The action I >-t X I induces the dual map

such that the group multiplication is a Poisson map. The Poisson structure naturally induces
a Lie-algebra structure on g' (loosely speaking obtained from the differential of (3.88)). The
space G x M then is a symplectic space with the product symplectic structure:

To evaluate the r.h.s. the functions Ii are understood as functions on G with parameter m
and as functions on M with parameter g, respectively. The action of a Lie-Poisson group on
a symplectic manifold M is called a Lie-Poisson action, if (3.84) is a Poisson map. where
G x M is equipped with (3.89). Compared with (3.87), the infinitesimal form of a Lie-
Poisson action gets an additional contribution:DefinitioIl (3.71) implies that the action of tile Geroch group is not symplectic. Rather,

this type of operator generates a Lie-Poisson action. i.e. an action which does not preserve
the Poisson sUucture on the phase space but on the direct product of the phase space with
the symmetry group. In this paragraph, we briefly recall the mathematical concept of Lie-
Poisson actions and show how the canonical realization of the Geroch group matches this
framewOl"k.For the details and proofs we refer to [6, 84].

The action of a Lie group G on a symplectic manifold M is a map

G x M -t M; 9 x m >-t gm . (3.84)

It naturally induces a map C(M) -t C(M) by I >-t I og; I og (m) == I(gm). The action
(3.84) is called symplectic, if for fixed 9 E G it is a Poisson map, i.e. it is compatible with tile
symplectic structure on M:

{II 0 g, 120 g} = {Jb f2} 0 9 ,

The commutator on the r.h.s. refers to the Lie-bracket induced on g'. This explicitly shows
that a nonabelian Lie-Poisson action is not symplectic.

In our model the action of the generators G±(w) is precisely of the form (3.90). Evalu-
ating definition (3.69) yields

where the commutator is understood for the matrix-valued action of G±(w). This coincides
with (3.90). In fact every Lie-Poisson action is at least locally generated by an operator of
the fOlm (3.69) [6, 84); this is the nonabelian generalization of (3.86).



In particular, dressing transformations in normal integrable systems are generated by an
operator (3.69) where U(w) denotes the transition matrix of the Lax connection, the eigen-
values of which give charges in involution. In our model in contrast the matrices U± (w)
are integrals of motion themselves and parametrize the entire phase space. Rather than con-
sU'ucting the Lie-Poisson action (3.71) we could alternatively consider the pure symplectic
action of the mau'ix enu'ies of the U±( w) via Poisson brackets. However, though this action
is ce11ainly symplectic, it allows neither explicit exponentiation nor a closed form of the
commutator algebra, in contrast to (3.72) and (3.77).

where j) is one diagonal component of In V.
The general solution of (3.91) is thus parametrized by a real function m(w) or by the

complex functions

Let us illustrate their relation. On the axis x = 0 it is

rp(x=O,t) = [X>dkA+(k)eikt + l°OdkL(k)e-ikt = m(w=-t).

This is nothing but the decomposition of a function on the real line into the sum of two
functions holomorphic in the upper and the lower half of the complex plane, respectively.
Comparing this decomposition to the nonabelian case (3.40), (3.45) we see the embedding
of the abelian case according to

The results of this chapter simplify significantly if the group G is Abelian. In this case, all
equations linearize and allow an explicit solution. Thus. truncating the model to its Abelian
subsector may serve as a simple illustratiOn or may be viewed as a testing ground for issues
like implementing further symmetries or approaching the quantization of the model.

Herc, we illustrate this for G = U(I). In the context of four-dimensional Einstein gravity
(2.21) this cOlTesponds to a diagonal matrix Mob. i.e. cylindrical gravitational waves re-
stricted to collinear polarization. These solutions have already been discovered by Einstein
and Rosen [33]. Quantization of this sector has been studied as a midi-superspace model of
quantum gravity [79. 3.4]. With Euclidean signature of the two-dimensional world-sheet.
this truncation is the one from stationary to static solutions of Einstein's equations.

Like in (2.21) we choose Weyl coordinates (3.36), identifying the dilaton p with the
radius x. Paran1eu'ize M by

exp (m~w) -~(w))

(
.hOOdk A±(k)e±ikt 0 )

exp 0 o - JooodkA±(k)e±ikt

Thus it follows immediately, that m(w) or equivalently the A±(k) form a complete set of
integrals of motion. Let us verify the symplectic structure in these variables. In terms of the
original fields rp the Poisson structure (2.57) reduces to

1
{rp(x) , Otrp(y)} = - 8(x-y) .

x

M == (eop 0) .o e-OP

The Ernst equation (2.22) in this case reduces to the cylindrical wave equation

-o;rp + x-1oxrp + 8;rp = 0,
For the Fourier transforms appearing in (3.95) this implies

{ roodklA+(kl)e+iklv, roo
dk2 A_(k2)e-ik2W} = _1_,

10 h v-w

where Jo denote Bessel functions of the first kind. Another representation of the general
solution of (3.91) is given by

rp(x, t) = i dv. m(v)-y-lovY(v) = - i 2dV. ovm(v) In(-y(v)) ,
i 2m i m

with the spectral parameter "'(from (3.3) and a path e encircling the moving branch cut in the
w-plane (cf. Figure 1). This representation even allows for an explicit solution of the linear
system (3.1):

Upon exponentiation, tllis leads to the abelian version of (3.60), (3.61) and (3.62).
Moreover the action of the Geroch group takes a simple form in this abelian case. Ac-

cording to (3.90), in the abelian case we expect a symplectic action which is generated by

G[AJ = i2dV
A(v)adm(v) ,

i m
with some function A( v). In tlle representation (3.93) this is easily seen to give rise to

i dv m(v) 0 ()
i 21ri "'(v)-"'(w) VI v ,
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idw -1G[A] rp = -;- A(w)-y 8w"'((w).
i 2m
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This coincides with the abelian version of (3.74).
Quantization of the abelian sector is straightforward [3]. The Poisson algebra (3.96)

gives rise to a representation in terms of creation and annihilation operators

Coherent quantum states may be constructed basically in the same way as in fiat space quan-
tum field theory. However, a recent discussion has shown that, interestingly enough, these

. states do not provide coherence of all essential physical quantities [4, 46]. Even though
we know that the linearized structure (3.96) does not appear in the fullnonabelian model,
(3.99) may give a hint on the nature of relevant representations of the operator algebra which
replaces the integrals of motion after quantization. We will return to this point in section 5.3. In this chapter, we show how the results obtained so far may be extended to locally

supersymmetric theories [105). The simplest of these models descends from dimensional
reduction of N = 1 supergravity in four dimensions and leads to an N = 2 superextension of
the bosonic model described in section 2.1 (see e.g. (99)).

Here, we analyze maximally extended N = 16 supergravity in two dimensions. This is
the theory obtained by Kaluza-Klein type dimensional reduction from N = 1 supergravity in
eleven dimensions [21] via N = 8 supergravity in four dimensions (22) and via the N = 16
theory in three dimensions [92). A detailed description of the dimensional reduction to two
dimensions has been given in [62,98, 103].

After introducing the model, we extend the canonical framework of section 2.3 to the
femlionic sector. We give the expressions for the generators of local supersymmetries in
all fermionic orders and work out the full N = 16 superconformal constraint algebra which
extends the conformal algebra (2.62) of the bosonic sector. Finally, we construct nonlocal
charges associated to the linear system. Generalizing (3.26), they are shown to be inv31iant
under local supersymmetry and hence under the full constraint superalgebra. The Poisson
algebra of charges turns out to coincide with the structures that already appeared in the
bosonic sector.

In this section, we describe the superextension of the bosonic model that we have treated in
the previous chapters and set up the canonical framework.

Let us state the field content of d = 2, N = 16 supergravity. The matter sector consists of
128 bosons and 128 fermions which transform in inequivalent (left and right handed) spinor
representations of 80(16). The bosonic fields form the coset space G/H = E8(+8)/80(16),
i.e. they are encoded in a matrix V E E8 with 80(16) gauge freedom (2.38). We denote
the generators of the Lie algebra (8 by XIJ = _XJI with I, J = 1, ... ,16 and yA with
A = 1, ... , 128, corresponding to the decomposition 248 -t 120 ED 128 of (8 into the adjoint
and the fund31uental spinoI' representation of 80(16). The defining relations of (8 are

[XIJ, XI(L] = fJJKXIL _ fJIKXJL + fJILXJK _ fJJLXIK
1 (4.1)

[XIJ,yA] = _~r~JByB, [yA,YB] =~f~'kXIJ 1

where the r~Bdenote the 80(16)-f-rnatrices

f~AriB = fJ~'k+ r~ . (4.2)
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Lagrangian and equations of motion

The Lagrangian of d = 2, N = 16 supergravity is most conveniently obtained by dimensional
reduction of d=3, N = 16 supergravity [92] as described in [98].

I: = _~pE(2)R(2) + 2pE(2)€lJv1iJ~DIJ¢~- ipE(2)XA,.·tDIJ/' + ~pE(2)pIJAP:

- pE(2)xA"('l¢~r~AP: - ipE(2)xA"'l'YIJ¢~r~AP: ' (4.8)

up to higher order fermiollic terms. The first two terms of (4.8) describe two-dimensional
gravity and the N = 16 Rarita-Schwinger extension. The next two terms give the matter
couplings of the 128 fermionic and 128 bosonic fields, respectively; the last terms are of
Noether type to ensure supersymmetry of the action.

In addition, there arise several quartic fermionic terms which we omit here. Although
in principle they may be determined from the higher-dimensional theory, this computation
becomes rather lengthy due to additional fermionic contributions which arise from the elim-
ination of the Kaluza-Klein vector fields.1O Nonetheless. in (4.24) below we give the exact
expressions for the generators of the local supersymmetries, which are sufficient to recon-
stmct all higher order terms systematically as well as to prove exact supersymmetly of the
conserved charges.

The action (4.8) is manifestly invariant under general coordinate transformation in two
dimensions. as well as under the 30(16) transformations

In the adjoint representation of fa these generators are normalized such that

tr (XIJXKL) = -120oJ!L' tr(yAyB) = 600AB.

The full coset structure of the bosonic sector has been described in section 2.2. According to
(2.39) the bosonic current V-181J V is decomposed into

V-181JV = ~Q~JXIJ + p:yA , (4.3)

.exhibiting the 30(16) gauge field Q~J and the P: transfOlming in the left handed spinOI'
representation of 30(16). The fermionic matter part is given by 128 physical fermlOns
which accordingly transfonn in the right handed spinOI'representation of 30(16); they are
denoted by:d with A = 1, ... ,128.

In addition, we have the gravitino ¢~ and the "dilatino" ¢~ which descend from the 3d
gravitino and form the superpartners of the zweibein e~ and the dilaton p, respectively (cf.
(2.5),(2.6». Before we state the Lagrangian, we introduce our spinOI'conventions in two
dimensions.

Spinor conventions We introduce 'Y-matricesin two-dimensions which satisfy the algebra
(in flat indices Q. (3)

(
0 -i)

'Yo = i 0 ' (
-i 0)

'Yl = 0 i ' 3 = (0 1)
'Y 1 0

Ow QIj
owP:
ow¢I

owXA

D±wIJ = 8IJwIJ + Q~KWKJ _ Q~KWKI ,

tr~~wIJp: ,
wIJ¢J,

!rI/.wIJXB
4 AB '

We make use of the Majorana representation where the charge conjugation matrix is C = 'Yo,
such that a Majorana spinoI' obeying 1iJ = ¢TC has two real components. We will use the
decomposition into Majorana-Weyl spinors

with the 30(16)-parameterwIJ(x) = _wJI(x).
In the following we employ the superconformal gauge

l( 3) _ ( ¢± )2' 1 ± 'Y ¢ = ±¢± '

and treat the one component spinors ¢± as real anticommuting variables at the classical
level. Let us also give some usefulmles for the transcription between two component and
one component notation:

which naturally extends (2.8). In this gauge, the two-dimensional spin-connection from (4.7)
reads (up to bilinear fermionic terms)

2i(¢+X_ - ¢-X+) 1iJ'Y3X= -2i(¢+X_ + ¢-X+)

2¢+X+ 1iJ'Y-X= 2¢-X-

w±a(J = 'F€a(J8±G ,

such that in terms of the the one-component spinors introduced above, the covariant deriva-
tive

(8±±~w±Q(J€Q,B)¢'f = (8±+~8±G)¢'f = 8±(¢'fexp(~G)),

may be absorbed by resealing the fermions with the conformal factor. Like in the bosonic
case, the conformal factor then almost completely disappears from the Lagrangian except for
its explicit appearance in the two-dimensional curvature term coupled to the dilaton p.

IOUnlike in (2.16), here, the Kaluza-Klein field screnglbs do not vanisb but are expressed througb bilinear
fennionic tenos. Their elimination from the Lagrangian then gives rise to additional quartic fermionic tenos.

where the spin connection wIJQ,Bis a function of the two-dimensional metric and its super-
partners [106].



We next list the equations of motion in the superconfonnal gauge. The bosonic equations
(2.48), (2.49) are extended to

2ir:/P_(p¢£+x~) - 2ir~AD+(fJ1!;Lx~)

+ 2ipr~JBp.~¢£+1/J~ - 2ipr~~p!NL1/J:

i rIJ rlJ pB A iJ i rIJ rlJ pB A B+"4P AB AB - X+X+ +"4P AB AB + X-X- I

rpApA . (AD A AD A)0+0_"8 = o+o_a = -"2 + _ - t X+ -X+ + X- +X-

The Poisson brackets of the bosonic sector of the model are obtained in the same way as
(2.50) and (2.57) above. With canonical momenta

IJ _ 85 A _ 85
n = 8(ooQ{J) , n = 8(ooPrA) ,

the relations (2.54) and (2.55) receive additional fermionic contributions and in components
take the following form

p,A = _~ (D nA + InlJrlJ p8) _ irI ,.1,1 xA yA + irI .•IJ XA yA (,4.17)o P 1 4 AB 1 AA'I-'2+ + AA '1-'2- - ,

DrnlJ + tr~JBP~nB

- 2ip (1/J~1/J;~-1/J~1/J;~) - *pr~B (x~x~ + x~x~) ~ O.

The first relation gives rise to the bosonic Poisson brackets for the physical fields, the sec-
ond one defines the set of weakly vanishing first-class constraints generating the 50(16)
transfonnations. In analogy to (2.57) we obtain the Poisson brackets

{pt(x), V(y)} - 2~V(x)yA 8(x-y) I

1 IJ B
8p rABPr o(x-y) I

± 1 rIJ QIJ 8( ) ± 1(1 1) 8AB 8'(x-y)8p AB 1 x-y '4 p(x) + p(y)

+ _i_ rlJ rI/. (xAxiJ + XAXB) 8(x-y)16p AB AB + + ,--

+ 2i/~B(1/J~1/J~+-1/J~1/J~_)o(x-y)

+ 4
i
pr~B(1/J£+1/J~++ 1/JL1/J~-)8(x-y)

1 IJ ( )- 8p2 rABiI>lJ (j x-y ,

1 AB ( 1 lJ'f-20rP8 8 x-y) - -2 rABiI>Jj 8(x-y)
4p 8p

i rIJ rIJ ( A iJ A B)+ 16p AB AB X+X+ + x-x- 8(x-y)

+ ~/~B(1/J~1/J~+ -1/J~1/JL) 8(x-y)

+ 4i/~B(1/J£+1/J~++ 1/JL1/J~-)8(x-y) ,

D±(ptx~)

D±¢~
D±(flII;£'fJ

modulo cubic spinor terms.
Like in the bosonic case, there are further equations that descend from the Lagrangian

(4.8) before (super)conformal gauge is adopted. They are to be regarded as constraints aris-
ing with the unimodular components of the 2d metric and the traceless modes of the grav-
itino. respecLively, as Lagrangian multipliers. The resulting expressions are

T±± = -pptp: + 20±po±a ± 2ipPtr~B1/J£±x~ + 2ipX~D±X~ (4.13)

± 2i1/J~D±(p1/J£±) ± 2iP1/)£±D±(1/J~) ~ 0,

S~ = -2D±(flII;£±) + 2po±a1/J£± ± 2PX~r~AP: =f 20±p1/J~ ~ 0, (4.14)

generating conformal and superconfOlmal transfOlmations. Modulo higher order fermionic
terms the superconformal u'ansfonnations of the fields are given by

2' I ArI yA=f rc±X± AA '

2ipc~1/J~±I

=f2ic~1/J~,

o±X~

8±1/J~±
8±1/J~

=fc~r~AP: ,
p-ro±pc~ l

=f (D±c~ + o±ac~)

again modulo cubic spinoI' terms. These are the supersymmeuy transformations which leave
the Lagrangian (4.8) invariant and are moreover compatible with the superconformal gauge
choice (4.10). As an algebra, these transformations close into an N = 16 superconformal
algebra which additionally contains the confonnal and the local 50(16) transfOimations.
It is disti.J1guishedfrom the standard superconfonnal algebras by the fact that it is a soft
algebra. i.e. it appears with field dependent structure "constants". This will be discussed in
more detail in the next section.

{pt(x) ,o±a(y)}

{P:(x) ,o'fa(y)}



i ..
- bAB b(x-y)4p ,

i
± 4p bfJ b(x-y) .

including all cubic fermionic terms. These terms have been reconstructed from the require-
ment of closure of their algebra

{S~(x), S~(y)} = _bIJ (iT±± 'f 21/J:S: - h~X~r~;<I>KL) b(x-y) (4.25)

'f (1/J~S~ + 1/J~S~) b(x-y)

+ h~x~(r~~<I>KJ + ri~<I>Kf) 6(x-y) ,

The fennionic sector as usual requires a Dirac procedure since the fermionic canonical
momenta appear proportional to the fermions themselves. The final brackets are found to be

{X~(x), x~(y)}

{1/J~(x}, 1/J2'±(y}}

.Due to the explicit appearance of the dilaton field in the r.h.s. of (4.21), this fermionic Dirac
procedure also gives rise to the following non-vanishing mixed brackets

{ooa(x), x~(y)}

{OOCT(X},1/J~±(Y)}

1 .
- 2p X~ b(x-y} ,

1 I
--1/J2± b(x-y) ,

p

{S~(x), S:(y)} _blJ (1/Jf+S!: + 1/Ji(-S-f) 6(x-y) (4.26)

+ (1/JLS~ + 1/J2'+S~) b(x-y)
1 A 13rI rKLrJ ",KL « )+4'X+X- AA AB B13'" ux-y.

This again is an exact result, i.e. valid in all fermionic orders. The constraint superalgebra
consistently closes in terms of the Virasoro constraints T±± and the SO(16) constraints <I> I J.
We emphasize, that the closure of this algebra uniquely fixes all the cubic fermionic tenns in
(4.24).

The supersymmetry generators (4.24) are the crucial operators here, since they span the
full constraint algebra. 111US, complete knowledge of these generators is sufficient to prove
gauge invariance of the nonlocal conserved charges in the next section. Moreover. with
(4.24) at hand we are in position to compute e.g. the quartic spinorial contributions to T±±
straight-forwardly. By means of tile super-Jacobi identities

{{S~,S~},<p} = {S~,{S~,<p}} + {S~, {S~,<p}},
we can further directly obtain the conformal transformations generated by the T±± in all
felmionic orders.

With this in mind, we restrict to giving the rest of the superconfonnal algebra only up to
higher order fennionic terms again:

{Po" (x) , x~(y)}

{PoA(x) ,1/J~(Y}}

Since most of these brackets look rather unwieldy, it may be worthwhile to look for
simpler canonical variables. E.g. the modified momenta

commute with all the felmions and with O±CT.Moreover, we notice that the rescaled fennions
p1/Jand p~x commute with OoCTas well.

'f (T±±(x) + T±±(y)) b'(x-y) ,
i r~BP: p!!<I>lJb(x-y) ,

'f~S~(y) 6'(x-y} + D±S~ b(x-y}
l rKLrI pA A",KL « )'f 4' AB BA ±X±'" U x-v ,

{T±± (x) ,S~(y)} ±i r~~r~AP:X~<I>KL 6(x-y} ,

{qP(x) ,S:(y)} ~ WKSJ(x) - bJKSI(X)) 6(x-y),

{<I>lJ(x),T±±(y)} 0,

{<I>IJ(x), <I>KL(y)} (bJK<I>lL_ bIK<I>JL+ blL<I>JK- bJL<I>IK)b(x-y) .

The gauge transfOlmations (4.15) and (4.9) are generated by

b±<P=2iJdXE~(X){S~(x),<p}, and bw<p= JdX~WIJ(X){<I>IJ(X),<p},

{T±±(x) , T±±(y)}

{T±±(x} ,T'Ff(Y)}

{T±±(x} ,S~(y)}In this section, we establish the constraint superalgebra generated by tile superconfOlmai
transfolmations (4.15). As discussed above, tIlis is the part of the original symmetry algebra
of (4.8) which is compatible with the truncation to superconformal gauge (4.10). These
transfonnations close into an N = 16 superconformal algebra which in addition contains the
confOlmal transformations generated by (4.13) and the SO(16} gauge transformations (4.9).
Closure of the supersymmetry algebra is known from general reasoning [106, 92].

To avoid overlap with the general discussion of the constraint algebra in the bosonic case,
we simply state the full expressions for the supersymmetry generators

S~ = ±D1(p1/Ji±) - pO±CT1/Ji±'f p4r~AP: ± o±P1/J~ (4.24)

. .1,) rlJ i .I,J rI J ( A 13 A B)'f lP,//± X± X± - 2 P<f/2± A13 X±X± - X'fX'f

+ 2ip1/Jr1/J~1/J2'± ± 2ip1/J~1/J2'±1/J2''f 'f 2ip1/Ji'f1/J~1/J2'± - 2ip1/J~'f1/J2'±1/J2''f '
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respectively. Conformal coordinate transformations with parameter ~± = ~±(x±) are gen-
erated as in the bosonic model (2.60). One can verify that again T±± generates translations
along the x± coordinates modulo a local SO(16) transformation with field dependent pa-
rameter Qf J.

Remark 4.1 For computation of the canonical Poisson brackets it is necessary to rewrite
'l±± entirely expressed in terms of canonical vatiables. I.e. the time derivatives of the
fermions in (4.13) must be expressed by their spatial derivatives, making use of the fennionic

.equations of motion (4.12)
1 A ( 1 A) 1 1 f rf pAD±(p'X±) ±D1 P'X± .± 'iP'1/J2± AA 'f '

D T D ./,1 I Arf pA
±1/!± ± l'P± - 'iX± AA 'f '

D±(p1/J~±) ±Dl(p1/J~±) ,

where the J.h.s. exhibits confOimal covat'iance whereas the r.h.s consists of canonical vari-
ables. The "canonical" fOim (in contrast to the covariant fonn (4.13» of the energy-momen-
tum constraint is then given by

which may accordingly be referred to as the super-Weyl gauge. Indeed this completely fixes
the conformal and superconformal gauge freedom.

In this section we show that supersymmetric nonlocal conserved charges may be consuucted
in the same way as for the bosonic case studied in the previous chapters. The starting point
is the extension of the linear system (3.1) given in [98, 103]. With the full generators of
N = 16 supersymmetry (4.24) at hand we show that this linear system does not receive any
quartic fermionic corrections but already generates the equations of motion into all orders.
The charges extracted from the transition matlices are invariant under the full gauge algebra
(4.27). Finally, we find that the Poisson algebra of charges coincides with the one obtained
in the bosonic sector (3.60), (3.61), (3.62).

T±± = -pP: P: + 28±p8±G":f 818±p ± 2ipPi'r~iJ1/J~±x~

± 2iPX~DlX~ + 2i1/J~Dl(P1/J~±) + 2ip1/J~±Dl(1/J~) ,

again up to quartic fermionic terms.

The constraint superalgebra (4.25), (4.26), (4.27) is a superconformal extension of the
Virasoro algebra (2.62) with N = 16 supercharges. In conu'ast to the superconfolmal alge-
bras which have been studied in string theory and confonnal field theory, it exhibits some
rather unusual features. Thus, its existence does not conu'adict the well-known absence of
superconformal algebras with N> 4 [108].

First of all, this model does not allow the complete splitting into chiral halves: S+ and
S_ do not commute in (4.26). Another important property of (4.25) and (4.26) is, that they
obviously do not close into a linear algebra in the usual sense. Rather, on the r.h.s the
constraints Si appear with coefficients that explicitly involve the fermionic fields 1{;f atld 1{;~.
This is an example of the "soft" gauge algebras arising in (super)gravity [106, 115].

In addition, no internal chiral currents appear here. A linear superconformal algebra
with N supercharges requires an internal bosonic SO(N current. This is immediately seen
from the super-Jacobi identities involving {Sf, {SJ,SK}}. Vanishing of the 6' conl:1ibu-
tions necessitates the additional current. In (4.25) in contrast, these terms originate from
the additional contributions due to the field dependent structure constants on the r.h.s.. The
SO(16)-current q,TJ which is patt of the gauge algebra in this model is obviously not chi-
ral. Its felmionic part splits into conu'ibutions with conformal weights h+ = 1 and h- = 1,
respectively. Nonetheless, according to (4.27) the total conformal weight of q,TJ is zero. An
underlying reason for this compensation is the fact, that in our model in contrast to the su-
perconformal suing theories not only the fermionic but also the bosonic fields carry SO(16)
charge.

We close this section by stating the super extension of the gauge fixing (2.20) of the
consu'aint superalgebra

p+ = x+, p- = ±x- , 1{;~= 0 , (4.29)

The supergravity equations of motion can be obtained as the compatibility condition of the
following extension [98, 103] of the linear system (3.1) for an E8-valued matrix V:

and the variable spectral parameter, from (3.3).
We emphasize that despite the occurrence of higher order fennionic terms in the equa-

tions of motion, the connection of the linear system (4.30) is only quadratic in the fermions.
All the higher order fermionic terms are generated from it. In super-Weyl gauge (4.29) this
has explicitly been shown in [98], the general prooffollows from the result (4.31) below.

Nonlocal conserved charges

Here, we extend the result (3.26) of the bosonic case to the model with local supersymmeu)'.
The modified transition matlices U(x, y, w) defined in (3.19) commute with the N = 16
supersymmetry generators under the same conditions that were already analyzed for (3.26)
and (3.20).

The behavior of the transition matrices (3.17) under supersymmetry transformations is
the following [105]

{U(x, y; w), Si(z)} 4,B(x,z,y) ( TJ J
p(I±,)2 U X,Zjw)X S±(z)U(z,y;w)
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± 'Ye(x, z, y) XB rI .fJK <I? U(X Z· W)yAU(Z y' W)
p(l _ 'Y2) ± BB BA JK " , ,

± 1 T 'Y X~ r~li(U(x, y; w)yAO(z-y) - yAU(x, y; w)O(z-x))
1±'Y

T -( 4'Y )21/4± (U(x, y; w)XIJo(z-y) - XIJU(x,y;w)O(z-x)) ,
1±'Y

terms in the fermions, this result has already been given in [101]. Thus it remains to check
the cubic felmionic telms.

Throughout this calculation, there appear four different sources yielding cubic felmionic
terms. First they descend from the brackets involving cubic terms in the supersymmetry
generators Si, second from bilinear fermionic terms in the Poisson brackets (4.19) between
P± and P±. Third, they arise from the Poisson brackets involving o±a in Si and at last,
cubic terms enter when partial integration of the 0' telms in (4.33) leads to the appearance of
the connection L1 again .

To give an idea of the calculation we show the cancellation of the cubic terms propor-
tional to 'l/J2±'l/J2±X±in (4.33). According to (4.21) and (4.22) we have

{ () Ii} 'Y rIJ B vlJ « ')L1 'Y ,X± == 2p(1±'YF AliX±," u z-z

4i'Y2 K K A
+ p(l±'YF(1-'Y2) r AA'l/J2±Y o(z-z'),

.with e(x, z, y) from (3.33) above. This result is again valid in all orders of fermions, i.e.
includes all the cubic fermionic terms from (4.24). For the modified u'ansition matrices U it
immediately implies:

{U(x,y;w),Si(z)} ~ l~'Yx~r~li (yyAy-I)U(X,y;w)o(z-x) (4.32)

2'Y . -
- 1 ± 'Y X~ r~liU(x, y; w) (yyAy-l) o(z-y)

± ( 4'Y )2 #.± (YXIJy-l) U(x,y;w)o(z-x)
1±'Y

4'Y J - ( .) ( I J -I) « )T(1±'Y)2'I/J2±Ux,y,w YX Y uz-y.

The r.h.s. vanishes if either the physical fields vanish, or the variable spectral parameter 'Y
does while the fields remain regular (cf. (3.22), (3.23». In complete analogy to the integrals
of motion obtained in the bosonic sector we may hence build conserved charges from the
transition mau'ices with fermionic contributions here.

A similar transformation behavior has been observed in the supersymmetric extension
of the nonlinear a-model [20, 23, 111,36]. There, the bosonic nonlocal charges are invari-
aut under global supersymmetly. In our model, invariance under the local supersymmerry
is an indispensable condition for meaningful observables. since supersymmetly appears as
constraint.

In particular, (4.31) implies, that the connection of the linear system (4.30) does not
receive any quattic cOITections but captures the equations of motion in all felmionic orders:
So fat·, this had only been shown for the (XX)2 terms [98], i.e. in the super-Weyl gauge (4.29)
where these are the only quartic terms arising. Since by supersymmerry transformations
(4.15) any solution can be fixed to obey the super-Weyl gauge, the invariance of the lineat·
system under supersymmetry shows that indeed no quartic corrections arise in the general
case.

The rest of this section is spent for a sketch of the proof of (4.31). The general formula
(3.29) yields

U(z', x, v) {U(x, y, v) ,Si(z')} U(y, z', v) == (4.33)

lY
dz U(z',z,v) {L1(z,'Y(z,v)) ,Si(z')} U(z,z',v) .

to the r.h.s of (4.33). Next, there comes a contribution from the bracket between P± in L1 (,)

and the PX±P± patt of the supersymmerry constraint (4.24), which is due to the quadratic
fennionic terms in (4.19) and reads

{L ( ) Arl pAl -8'Y
2

rMNrl .I.M .I,N AyA
I'Y ,±2PX± AA ± -+ p(I±'YF(1-'Y2) AB BA'I'2±'I'2±X .

Several further relevant terms arise from the Poisson brackets involving the p1/J2±o±a
term in (4.24). Namely, {LIb), ooa} gives rise to several bilinear fermionic terms due to
the brackets (4.20), (4.22) and eventually also due to

{L1('V) ,2pB±a 'l/J2/±} -+ 16i-y2(1 T 4'Y+ 'Y
2

) rN .'l/JI 'l/JN AyA (4.37)
1 1±'Y)4(1-'Y2) AA 2± 2±X .

Finally, the integrand of (4.33) has terms proportional to ozo(z-z') due to

It is straightforward although lengthy to evaluate (4.33) using the form of the supersymmetry
generator (4.24) atld the fundatnental Poisson brackets (4.19)-(4.22). Up to the higher order

± IT'Y rl 'XAyA 0 o(z-z')
1±'Y AA ± z ,
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y-'Y?h? r~BQ~Jb) o(x-y)
2p(1-'YI) (-YI -'Y2)(1-'YI'Y2)

_ 20
AB

('YI(l+'Y?) + 'Y2(l+'YD) o'(x-y)
(1-'Y?)(1-'Y~) p(x) ply)

2'YI'Y2 rlJ <I> o( )
p2(1-'Ym1-'Y?) AB IJ x-y

with 'YI='Y(x, v), 'Y2='Y(Y, w), and the structure constants fTJ,KLMN of 50(16). Translating
this back into tensor notation (2.56) we arrive at

T } 4'Y ./,[( XKI a r( '){L\(t),'f2p811/J2± -t ±(l±IF 'l'2± zU z-z .

Upon partial integration in (4.33) and using (4.30) they give rise to

:r:.E.L Q~KL('Y)rT .xA [XI<L yA] -t 8i'Y2(1'f'Y) rl .fMN1/JM 1/JN XAyA
'2(1±1) ± I AA ±' (1±'Y)5 BA AB 2± 2± ,

-24iI2(1 'fl) rN .1'/ .I.N AyA
(1±1)5 AA'I'2±'I'2±X .

Adding the different terms (4.36), (4.37) and (4.38) finally leads to

8il2 + 16i12(1 'f 4'Y + 12) _ 24iI2(1'f1) = O.
(1±iF{1-12) (1±'Y)4(1-'Y2) (1±1)5

~ p~A( ).I,!< [yA XKI] -t 8iI
2
(1'f'Y) rMIrN .1/JM1/JN XAyA .

'f(1±'Y)2 ± 'Y'I'2±, (1±'Y)5 AB BA 2± 2±

The sum of these two telms yields (again involving some r-matrix algebra (4.2»

and find them to be identical with the Poisson brackets (3.31) obtained above. Thus, we have
shown, that the integrable structure of the bosonic sector of this model completely extends
to its maximal supersymmetric version. The resulting algebra of observables will be (3.60),
(3.61) and (3.62) with E8 valued matrices U±(w) and M(w), respectively.

In particular, the analysis of the symmetry structure from section 3.4 remains valid. With
the generators (3.71) of the affine symmetry at hand, it is straightforward to compute their
action on the fermionic fields, given by the Lie-Poisson action of the affine algebra eg. Let us
however mention an open problem about the supersymmetric version of these symmetries,
that is their transitivity. Whereas in the bosonic sector under certain assumptions on the
phase space we have directly seen that (3.71) generates the full phase space, it is a priori not
clear to which extent this statement holds in the supersymmetric case. This question is es-
sentially related to the completeness of the set of conserved charges, that has been answered
affirmatively only in tlle bosonic sector so far. Maybe, the full answer to this question has to
be postponed until a complete quantum model is at hand (see the discussion in [105]).

We see, how the terms of the type 1/J2 ±1/J2 ±x± from all the different sources eventually cancel.
In a similar way all cubic fermionic telms in (4.33) can be shown to drop out. There remain
only those conu"ibutions which transform "homogenously" under the transition matrix, i.e.
which appear in the first line of the r.h.s. in (4.31).

Poisson algebra of charges

Eventually, we compute the Poisson algebra of the conserved charges that we have obtained
above. As it turns out, it is completely sufficient to compute the Poisson brackets of the con-
nection of the linear system (4.30). Namely, the result below coincides with (3.31) obtained
above in the bosonic sector (i.e. setting all fermions to zero, whereby (4.30) reduces to the
linear system (3.1).

A lengthy calculation gives the followiug Poisson brackets for the components of the
linear system

2'YI'Y2lJ,KLMN (~ ~ )----- QMN(-Yd-QMN('Y2) o(x-y),
P('YI-'Y2)(1-'YI'Y2)

2 1~(I-ID r~JBPf(-Yd 8(x-y)
p(1-12)(-yj-'Y2)(I-II'Y2)

+ ( 'Y1)'Y(2 ) r~Bj3B(-y2) o(x-y) ,
p II -'Y2 1-1112

2(l-l?h? r~~Q~J(-Ydo(x-y)
2p(I-12) (-YI -12)(1-11'Y2)
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and the relation (3.57):

MBM(W) = U+(w)U!(w) = U_(w)UJ(w) = M~M(W).

Understanding the matrix entries of the U± (w) as classical phase space functions, quan-
tization amounts to replacing (5.1), (5.2) by con'esponding commutator relations of an 1i-
graded algebra, such that these relations are compatible with certain quantum analogues of
(5.3) and (5.4). This problem admits the following essentially unique solution [77]:11

The quantization of the Poisson algebra (5.1)-(5.4) is given by the *-algebra generated
by the matrix entries of N x N matrices U±(w) subject to the exchange relations

So far, we have achieved a complete reformulation of the classical model (2.45) in terms
of the transition matrices as new fundamental variables providing a complete set of integrals
of motion. This formulation reveals integrability and the classical symmetries in a beautiful
way. The goal in this chapter is to find the quantum algebra underlying the classical structure
(3.56)-(3.62). We restrict to the model with algebra 9=sl(N). The particular case 9=S[(2)
related to the two Killing vector field reduction of Einstein gravity described in section 2.1
is analyzed in futther detail.

1 2
R(v-w) U± (v) U± (w)

1 2
R(v-w-i1i) U_ (v) U+ (w)

2 1
U± (w) U± (v)R(v-w) ,
2 1

U+ (w) U_ (v)RT(v-w+1ii1i) X(v-w) ,

(5.5)

(5.6)

r(-ih.-v ) r((N+2)ih-v )
R(v) == vI - i1iITN, RT(v) == vI - i1iIT;:" , X(v) == (Nlh) ( Nth)r ..::.!L r (JV+l)lli-v

Nili Nili

with the usual r-function satisfying r(1) = 1, r(x+ 1)=xr(x).
The condition of unit determinant (5.3) is replaced by the quantum determinant

In this section, we present the algebra which upon quantization replaces the Poisson algebra
(3.60), (3.61) and (3.62). An essential additional ingredient is the requirement that the gener-
ators of the quantum algebra must be compatible with some quantum version of the relation
(3.57).

Let us recall the classical algebra of integrals of motion (3.60), (3.61) for 9 = sl(N). The
maximal compact subalgebra of 9 is !) = so(N) and the involution T is given by T(~) = _~T.
It is D.1(N) = ITN - *I with the N2 x N2 permutation operator ITN:

(ITN )ab,Cd= 84d5bc .

Accordingly we define its twisted analogue IT;:" by

(IT;:,.)"b,cd == (_IT'{J+1iI)4b,Cd == _8ac8bd+1i8ab8cd.

qdetU±(w)
'E sgn (0') Ul<T(l)(w- (N-1)i1i)U~<T(2)(w-(N-2)ili) ... U:<T(N)(W)

<TE6N

alld the quantumform of(5.4) is given by

MBM(W) == U+(w)U!(w) = (U+(w)~(w)( = M~M(W) ,

where "T" here simply refers to the transposition of the classical N x N matrices. The
*-operation is defined by

The notation IT'{J here denotes transposition in one of the two spaces in which ITN lives.
The Poisson algebra (3.60), (3.61) then takes the fonn:

[
ITN 1 2 ]-----,U±(v)U±(w) ,

v-w
ITN 1 2 1 2 ITJV

---- U± (v) U'f (w)- U± (v) U'f (w)---- ,
v-w v-w

There are several things to note about the algebra (5.5)-(5.10) before we come to the
proof.

{ U± (v) , U± (w) }

{[1(v) , U'f (w)}

• The algebra (5.5)-(5.9) is isomorphic utlder resealing of Ii with positive real numbers.
Namely, this is absorbed by a resealing of the spectral parameter w. Negative or com-
plex resealing would violate the assumed holomorphy behavior of the U±(w) at least
in the classical limit. 12 We will in the following set Ii= 1.

llFor simplicity we use the same notation for Uleclassical and the quantum operators.
12Upon quantization, the bolomorphy bebavior of the classical functions U± (w) translates into analyticity of

the action of the corresponding operators in dependence of Uleparameter w. This analyticity bowever depends
on the topology of Ule concrete representation space, wbicb bas not been fixed so far.

The U±(w) are related by complex conjugation (3.56) and further resu'icted by the group
propelty:



Depending on the sign of It, there is hence a Z2-freedom in constructing (5.5)-(5.9).
Tlus corresponds to the symmetry (+ H -) of the classical Poisson algebra (5.1)-
(5.4), which is obviously broken after quantization. This freedom might be fixed from
the later requirement of the existence of unitary representations.

• The algebra (5.5), (5.6) is no Hopf algebra. 111is follows already from the absence of
a u'ivial representation of (5.5), (5.6). Even stronger, due to the singularity stmcture of
(5.6) this algebra admits no finite-dimensional representations.

• The essential new ingredient of (5.5), (5.6) is the appearance of the twist T in the
mixed relations which has already appeared in the classical Poisson algebra. It is
basically this peculiarity which requires a new representation theory to be developed.
(U nfortunately, the notion of "twist" has been introduced for several different concepts
fOI' quantum groups in general and even for the Yangians in particular.)

In a unitary representation these matrix entries will thus form self-adjoint operators.
11Jus, MIlM(W) is the natural quantum object that according to (3.59) underlies the
original classical field on the symmetly axis. It satisfies closed exchange relations

1 2
R(v-w) MIlM(V)RT (w-v+(l+-t )i) MIlM(W)

• The definition of the quantum determinant (5.8) is known from the s[(N) Yangian
[56, 80, 97J. It encodes the generators of the center of the algebras (5.5). Here, we
must in addition ensure that qdetU± (w) also lies in the center of the full algebra (5.5),
(5.6). It is this requirement which uniquely fixes the factor X(v-w) in (5.6).

2 T( 2 .) 1 X(v-w)= MIlM(w)R V-W+(l+N)1 MIlM(V)R(w-v) -(--) ,
X w-v

• A central extension of the type appearing in the mixed exchange relations (5.6) (i.e. the
shift of the argument iiJ the quantum R-matrix) has been intl'oduced for quantum affine
algebras in [110J and explicitly for the Yangian double in [65, 54). Here, its value is
uniquely fixed from the requirement of compatibility with (5.9). From tlle abstract
point of view, the central extension takes the critical value at which the antisymmetric
part of M generates a two-sided ideal (cf. (5.16) below), i.e. any representation of the
algebra (5.5), (5.6) factorizes over this ideal. A common shift of both arguments in
the R-matrices of (5.6) may be absorbed by redefinition of U+(w) and (5.9), (5.10),
introducing a relative shift in tlle latter.

The normal (untwisted) Yangian double has a critical value of the central extension at
which it possesses arl infinite dimensional center (110). As we shall discuss in the next
chapter, for N = 2 the algebra (5.5)-(5.8) is in fact isomorphic to the nonnal centrally
extended Yangian double at this critical level.

Associativity Denote by Y± the algebra generated by the the matrix entries of U±(w),
respectively, with exchange relations (5.5). These are two copies of the well-known Yangian
algebra [27J which provides the unique quantization of the Poisson algebra given by (5.1).
Compatibility with associativity is equivalent to the Yang-Baxter equation

for the quantum R-matrices R;j, where the indices i, j denote the two spaces in which R;j
acts non trivially.

Associativity of the full algebra (5.5), (5.6) is ensured by a modified (twisted) Yang-
Baxter equation for RT:

• Recalling remark 3.5, Drinfeld's Yangian and its double are obtained from (5.5) by
expanding U+(w) arId U_(w) ar'ound w = 00 and w = 0, respectively. This however
does not match their holomorphy behavior in our model. Formally treating the algebra
(5.5) only in terms of the generating functions U±(w) (40), we may however adopt
most of the results concerning the Yangian to this case.

In fact, for N = 2, the algebra underlying (5.5) in our case is a degeneration AIi(sl(2))
of the scaling limit of the elliptic affine algebra .A",q(s[(2)) [44, 66J. Again, what
is eventually needed is a modification of this algebra in accordance with the twist of
(5.6).

Validity of the classical version of this equation (i.e. modulo terms in h3) is a consequence
of the fact, that T is an algebra automorphism of g. For tlle quantum R-matrices Rand RT in
(5.7), the twisted Yang-Baxter equation (5.13) follows from

and (5.12) by applying transposition and a shift of the argument in tlle first space.
Thus, whereas the excharlge relations for Y± ar'e uniquely given by (5.5) [27], for the

mixed exchange relations (5.6) we may take the general ansatz

1 2 2 1
R(v-w + c1i) U_ (v) U+ (w) = U+ (w) U_ (v)RT(v-w + C2i) X(v-w) .
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• The symmetry property (5.9) together with definition (5.10) guarantees that the object
MBM(W) == U+(w)U!(w) is symmetric and invariant under the *-map. To be precise,



Central extension The resulting algebra must respect the symmetry (5.9) of M (w). More
precisely we demand the following: Denote the set of antisymmetric matrix entries of MBM

by Ie U(Y+ fiBY_). Then we require that I spans a two-sided ideal in the sense that
. N

V-W-I IT-- (v-w+(k-l)i)AN, (5.19)v-w k=!

This relation ensures that the antisymmeuy of MBM may be consistently imposed without in-
ducing any further relations, i.e. any representation of Y± factorizes over I. Equation (5.16)

. is not influenced by the choice of X but uniquely determines the values of the parameters Cj

in (5.15) to be

it follows immediately, that qdetU± commutes with all matrix entries of U±. The factor on
the r.h.s in (5.19) is most conveniently obtained from evaluating both sides on the particular

, vector el ®el ®e2®" .®eN .
In a similar way, the mixed relations (5.6) eventually yield

o
ANR~l'" ~NAN U_ (v) qdetU+(w)AN

This may be verified straight-forwardly e.g. by evaluating (5.15) and (5.9) in matrix compo-
nents. At tllese values of the Cj the exchange relations between U± and MBM take the closed
form

o
= qdetU+(w)ANU_ (v)ANR;;! ... R;;NAN ,

l 2
X(w-v)R(v-w) U+(V)MBM (w)

! 2
R(v-w-i) U_ (v) MBM (w)

2 !
= MBM(w)W(v-w+(l+Mi)U+(v) , (5.17)

2 !
= MBM(W)RT(v-W+ti) U_ (v)x(v-w),

and indeed imply (5.16). These relations provide a quantization of (3.70) and shall play an
important role for the quantum symmetries.

Quantum determinants The factor X(v) in (5.6) is finally fixed from the requirement that
the quantum determinants from (5.8) commute with evelything such that the relations (5.8)
are consistent with the algebra multiplication. It is known [56, 80] that the qdetU± span the
center of y± respectively, thus X( v) must ensure that they also commute with 1"'1'

/I /I w-v-Ni N . .
AN.ROl··· .RONAN = w-v-(N -l)i IT(v-w + (k-l)I)X(V-w+(k-l)l) AN·

k=l

1 2 N
AN U± (w) U± (w-i) ... U± (w-(N -l)i)
N 2 1

U± (w- (N -l)i) ... U± (w-i) U± (w)AN ,

N .

IT V-I

k=! X(v+ki) = v+(N+l)i'

where AN denotes the antisymmetrizer in the N auxiliary spaces. Upon successive use of
the exchange relations (5.5) this leads to

o
ANRo! ... RONAN U± (v) qdetU±(w)AN

for X( v). Existence and uniqueness of tile solution of this equation follows from the expan-
sion in the limit V -t -ioo (corresponding to Ii -t 0 with the condition that'Sv < 0), where
the first coefficient is normalized according to

o
= qdetU±(w)ANU±(v)ANRo! ... RoNAN,

in order to obtain the correct classical limit (5.2) from (5.6). The function X given in (5.7)
indeed is t1Jeunique solution of (5.20) with this normalization.



The *-struclure It remains to check that the *-operation defined by (5.10) is a conjugate-
linear anti-multiplicative automorphism of the stlUcture (5.5)-(5.9). Compatibility of (5.5)
and (5.6) with (5.10) obviously follows from R(u) = -R(-u), W(u) = -RT(-U),
X(u) = x(u) and the fact that Rand RT are symmetric under pennutation of the two spaces.
Invariance of the restriction of unit quantum determinant (5.8) under the *-map follows from

U~1(w-i)U;2(W) - U~2(w-i)U;1(W)
U~1(W)U;2(W-i) - U;1(W)U~2(W-i)

L sgn(oW;u(N)(w) ... U~u(1)(w+(N-1)i)
uE6N

qdet(14(w+(N-1)i)) ,

where for the second identity we have employed one of the many properties of the quan-
tum delerminant [97]. Finally, compatibility of the symmetry relation (5.9) with the *-map
follows directly from invariance of this relation under *:

is symmetric under transposition and satisfies (5.11).
As mentioned above, for 9 = 5[(2) the involution T is an inner automorphism generated

by conjugation with

(U+(w)U!(w))' = (U+(w)U!(w)( = U+(w)U!(w)

This finishes the proof of consistency of (5.5)-(5.10).

To further illustrate the formulas of the preceding section, we will now discuss the particular
case 9 = 51(2). This is the model which we have described in detail in section 2.1 in the
context of the two Killing vector field reduction of pure 4d Einstein gravity. It deserves
interest as a midi-superspace model for quantum gravity; the corresponding quantum model
has been introduced in [76].

There are several reasons, why the case N = 2 is somewhat distinguished and simpler to
treat compared to higher N. E.g. the involution T is an inner automorphism of 51(2),13 Re-
markably, this leads to an algebra isomorphism between our twisted and the normal Yangian
double, however this is no *-algebra isomorphism.

The exchange relations (5.5), (5.6) for N = 2 read

1 2
R(v-w) U± (v) U± (w)

1 2
R(v-w - i) U_ (v) U+(w)

2 1
U± (w) U± (v)R(v-w) ,

2 1
l4(w) U_ (v)R(v-w + i) X(v-w),

(5.26)

(5.27)

at the critical level k = -2. At this level the center of the Yangian double becomes infinite-
dimensional and is generated by the trace of the quantum cun'ent [110]

1 2
R(v-w) U±(v) U±(w)

1 2
R(v-w - i) U_(v) U+(w)

2 1
U±(w) U±(v)R(v-w),
2 1

U+(w) U_(v)W(v-w + i) X(v-w) ,

(5.21)

(5.22)

with Rand RT from (5.7), where the permutation operator n and its twisted analogue llT are
explicitly given by Recall that the central extension of our structure was precisely detennined by the requirement

(5.16). For N=2 the subspace I is one-dimensional. An explicit calculation shows that be-
yond (5.16), I even lies in the center of the algebra (5.21)-(5.22). Here we see the complete
agreement with the nonnal Yangian double at critical level. We have thus equivalence of the
twisted stlUcture (5.21)-(5.22) with the untwisted (5.26)-(5.27), however supplied with the
somewhat peculiar *-structure:

nT = I _nTl = (~ ~ ~ - ~)
- - 0 0 1 0

-1 0 0 0
Moreover, the function X may be evaluated from (5.7) and shrinks down to

v(v - 2i)
X(v) = (v - i)(v + i)

131ncontrast, for N > 2 the involution r(O = -e is the onter automorphism of sl(N) which corresponds
to renectio[l of the Dyukin diagram.

For higher N this equivalence does not hold. Neither is there an algebra isomorphism be-
tween (5.5), (5.6) and the normal Yangian double, nor does a center emerge at our critical
level, rather criticality is expressed by (5.16).



Remark 5.1 For explicit calculations it is sometimes useful to express the exchange re-
lations (5.21), (5.22) in matrix components ut(w). The mixed relations (5.22) e.g. may
equivalenlly be wlitten as

(1- _i_2_) U::b(v)U:(w) = (1- _i_) U:d(W)U::b(V) (5.30)
(v-w)2 v-w

+ _i_ (U:d(w)u~(v) + obdU.f"(w)U::"'(v))
v-w

+ (V~2W)2 Obd(U:m(W)U~"'(v) - U:"'(w)U::m(v)) .

Interpreting tbe mauix enuies of the U± as creation and annihilation operators, respectively,
the r.h.s. of (5.30) can be viewed as sort of normal ordering [76).

• Is the representation (5.32) irreducible or does it contain ilTeducible parts?

• Is the representation (5.32) unitary with respect to the *-structure given in (5.1O)?

At least the first point can be answered completely, the finite-dimensional representations
of the Yangian are classified by highest weights. Even more explicit results are known for
the special case 9 = s[(2) [19]. All finite-dimensional irreducible representation are gen-
erated by evaluation representations. TIle latter are obtained from evaluating the quantum
R-matrix from (5.7) on the tensor product of a (classical) two-dimensional vector space and
an ilTeducible representation of su(2) [81). To be precise, these representations are labeled
by an insertion point z and the dimension r+ 1 of the representation of su(2); the action of
U_(w) on a basis VO, ••• , Vr is given by

5.3 Representations and symmetries
In this section, we touch the question of representations of the algebra (5.21)-(5.24) that has
been obtained for g=s[(2). First, we note, that (5.21), (5.22) admit no evaluation represen-
tations of the type the normal Yangian (5.5) does [81,19). Replacing U±(w) by R-matrices
involving an additional (quantum) space, does not give a representation of (5.21), (5.22),
since by no combination of Rand RT for U±, (5.22) can be traced back to the twisted Yang-
Baxter equation (5.13). We have already mentioned above the absence of finite-dimensional
representations of (5.5), (5.6).

Recall the abelian sector of the theory. In terms of the operators A± from (3.92), there is
a canonical Fock space representation (3.99). Classically, the embedding of these variables
into the full nonabelian model is obtained via exponentiation

U~I(W) == exp 1'X>dk A±(k)e±ikw . (5.31)

Having quantized the abelian model, we may translate (5.31) back as an operator in (3.99)
and for illustration study its action on the vacuum /0). Whereas U!I(W) leaves the vacuum
invariant, U~L(W) creates a coherent state cOlTesponding to the classical field which on the
axis x = 0 is peaked as a o-function around t = -w. One may speculate, that similar
representations are relevant for the algebra (5.21), (5.22).

A general class of representations is obtained from the following construction. Let V
be a finite-dimensional representation of the Yangian algebra Y_ of (5.21) (generated by the
U_ (w). A representation of the full algebra (5.21)-(5.24) is then given by the space

U(Y+)V / U(Y+)(IV ffi (qdetU+(w)-id) V ffi (qdetU_(w)-id) V) , (5.32)

where we start from the regular representation of U(Y+) and subsequently divide out the
relations (5.23) and (5.24). The action of Y_ on (5.32) is obtained from the exchange re-
lations (5.22) (i.e. explicitly from (5.30» and the defining action from Y_ on V. The fact
that U(Y+) IV and U(Y+) (qdetU±(w) -id) V are representations of L is merely a conse-
quence of (5.18) and (5.16), i.e. valid for any N. For the u'ivial representation Yo= C, tlle
representation (5.32) has the form of a direct generalization of (3.99).

To proceed with this class of representations, there are essentially three points to clalify:

() _ ( .) (W-z-~(2r-k)Vk (r-k+l)vk_l )
U_WVk=!w-z,r ( l( k) ,k+l)Vk+1 w-z+22r- Vk

where we have set V_I == Vr+! == O.The factor f(w-z; r) is chosen such that it ensures tlle
relation (5.23); it may be expressed in tenus of f-functions. We denote this representation
by v.(r). The action of Y_ on the tensor product V}r) 18> vS·) is given by the Hopf algebra
SU1.lctureof the Yangian [27):

U::b(w) (Vk 18> VI) = U::m(W)Vk 18> ~b(W)VI, for Vk 18> VI E v}r) 18> VJs) (5.34)

It can be checked that this "adjoint" representation of Y± on the three symmetric matrix
entries of MBM(WO) coincides with tlle evaluation representation V~~) from (5.33).

The representation theory of the Yangian Y(S[2) is essentially contained in the follow-
ing result [19). Each finite,-dimensional irreducible representation is isomorphic to a tensor
product of evaluation representations. A finite tensor product

N
tOI v(rm)

'<Y Zm '

m=l



The representations (5.32) are thus labeled by the tensor products (5.36). Restrictions
on V(N) may arise from the requirement of "holomorphy" of the action of the U_(w). As
discussed above the action of V(N) should depend analytically on w for w E H_, i.e. ':Sw < O.

We can further evaluate the structure of (5.32). Its simplest elements apart from V(N) are
given by the "single excitations"

are realized as adjoint representations of the corresponding quantum algebra. In our case this
is precisely provided by the relations (5.35). Evaluating the r.h.s. leads to

N

U;b(WO) Vk, with Vk E V(N) == ® Vz~m) .
m.;::l

1 2 1

U±(V-~i+~i) MBM(W) U;1 (v-~i+4i) (5.40)

MBM(W) (I+__i_. i_.)
V-W-I V-W+l

1( 2 2 )(. .)+ -2 ITMBM(W) - MBM(W)W __ 1_. + __1_.
V-W-l V-W+l

Obviously, they again form a representation of Y_, namely V~~) ® V(N). The precise embed-
ding follows from

This explicitly shows that after projecting the first space onto a g-valued function 1\.( v) the
1.h.s. becomes

U.."b(w)MBM(WO) V(N) (u_(w)"n MBM(WO) (u..::-1(w)rm)u,:nb(w) V(N)

(5~5) (U_(wrV~~)) (u,:nb(w)V(N))

(5~4) U.."b(w) (v~~)® V(N)) ,

1 (1 [1 2] 1 )tr I\. (V) U±(v-~i+4i),MBM(W) U;I(v-4i+4i) ,

with classical limit (3.69). The r.h.s. correspondingly reduces to (3.70) with the singularity
at v =W "quantum split" into

where M BM (wo) V(N) encodes a basis of linear combinations of (5.38).
Accol-ding to the criterion (5.37), we see, that the vectors (5.38) for generic Wo fonn an

irreducible representation of L again. In particular, this implies that via the relation (5.23)
it is possible to obtain back all vectors from V(N) by fUither action of L on (5.38). TIlUS,
there is only a discrete set of vectors arnong (5.38) - with Wo related to one of the Zm from
(5.36) by (5.37) - that give rise to potential proper subrepresentations. It remains to study
these vectors separately.

Having analyzed all vectors (5.38), one has almost the full infonnation about irreducibil-
ity of the representation (5.32). This is due to the fact that "higher excitations"

1 I( 1 1)-- -+ - ---+---
v-w 2 v-w+i v-w-i '

where the shifts in the denominators are of order Ii. This may give an indication of how to
defOlID the integration path e in (3.71) after quantization.

The picture obviously is far from being completed, however throughout this section we
have obtained several hints which features we suspect to eventually face. Let us emphasize
the repeated occurence of the discrete shifts in the w-plane - (5.23), (5.35), and (5.41). In
the gravitational context, where according to (3.59) the spectral parameter plane acquires
some space-time meaning, this may give lise to speculating about a natural arising of dis-
crete nonlocal structures [76]. Another allusion in this direction comes from (3.48) which
suggests to represent the confonnal factor a at spacelike infinity by supplying (5.21)-(5.24)
with a derivative operator i8/8w. Its exponential expa (related to the deficit angle and the
matter Hamiltonian in 3d cy lindricall y symmetric gravity) then translates into a discrete step
operator.

According to (5.37), irreducibility of (5.39) is equivalent to the irreducibility of the pairwise
tensor pro<!ucts contained in (5.39) which reduces the analysis to (5.38).

In this way, the question of irreducibility of (5.32) carl be answered. This may result
in further relations to be divided out from (5.32) and/or lead to fUlther resuictions on the
basis representation V(N) from (5.36). The last question concerning unitarity constitutes a
more serious problem. At present, it is not clear' if under certain assumptions, (5.36) can
be equipped with a scalar product such that it is compatible with (5.10) and (5.32) does not
contain states of negative norm. Having outlined the general programme of studying the
class of representations (5.32), we defer the full analysis to later investigations.

We close this section with a remark on the symmetry that may replace the Geroch group
(3.71) UpO.llquantization. It is known [11, 84] that Lie-Poisson symmetries of the type (3.69)



There is a natural Poisson structure on the space of holomorphic connections on the punc-
tured complex plane, that may be formulated in the equivalent expressions:

6 Isomonodromic Structures in Dimensionally Reduced
Gravity

{A:,Af} OijJABcAf, (6.3)

¢'} {AA(-y), AB(J.L)} _ JAB AC(-y) - AC(J.L) (6.4)C "(-J.L '

¢'} {A(-Y),A(J.L) } [r(-Y-J.L),A(-Y)+A(J.L)] , (6..5)

with the structure constants JABC of the algebra 9 and a classical r-matrix r("() = "(-lag,
where ng = tA®tA denotes the Casimir element of g.

The condition (6.2) that restricts the connection to live on the sphere, transforms as a
first-class constraint under this bracket: {QA, QB} = JABC QC.

This chapter is somewhat decoupled from the rest of the thesis. Here, we present the
so-called isomonodromic approach to the model of dimensionally reduced gravity (2.45),
which has been initiated in [70, 71] and elaborated in [72,74, 104]. One of the motivations
of this programme was the seeming dead end of the canonical formalism with the nonul-
tralocal Poisson brackets (2.57). With the results presented in the last chapters we have
however carried out the canonical approach to a much further stage which also appears to
naturally capture the classical symmeu'ies of the model and thus to build a reliable basis for
quantization.

Still, the isomonodromic approach bears several interesting features. First, in relation
with the "two-time" Poisson structure to be introduced it is manifestly two-dimensional co-
variant. It allows application not only to Kaluza-Klein reduction of spatial dimensions but
also to tllOseinvolving the timelike dimension (including e.g. stationary axisymmetric solu-
tions). Further highlights are the decoupling of the chiral halves in the deformation equations
(i.e. commutativity of the two Hamiltonian flows), the quantum group structure of the algebra
of obselvables and the link to (a modified version of) the Knizhnik-Zamolodchikov equations
from confonnal field theory, which arise in the role of the Wheeler-DeWitt equations here.

Holomorphic bracket from gauge fixed Chern-Simons theory

The holomorphic bracket (6.3) is induced by holomorphic gauge fixing of the fundamental
Atiyah-Bott symplectic structure. The first-class constraint (6.2) ensuring A(-y) to live on
the sphere, arises naturally as surviving flatness condition, generating the constant gauge
transformations. Let us shortly describe this relation.

The space of smooth connections on a Riemann surface is endowed with the natural
symplectic form [5]

w = tr J oA 1\ oA ,

where the connection A is split into A..,d,,( + Ayd-y and the o-function is understood as a real
two-dimensional a-function: O(2J(X + iy) == o(x)o(y).

The condition of flatness is F = dA + A 1\ A = 0 and builds an algebra of first-class
constraintsIn this section, we describe a multi-time Hamiltonian formulation of isomonodromic defor-

mations of meromorphic connections on tlle Riemann sphere due to [58]. Quantization of
this system naturally leads to the Knizhnik-Zamolodchikov system [68].

We consider the space of holomorphic Lie-algebra valued one-forms on the punctured
Riemann sphere, that are merom orphic with simple poles on the whole sphere. These forms
may be viewed as connections on a trivial bundle. Introducing local coordinates on the
sphere by marking a point 00, an element A(-y)d"( of this space is uniquely determined by its
poles "(j and the corresponding residues Aj taking values in g:

N

A("() = ~ ~j.. (6.1)
j=1 "( IJ

Holomorphic behavior at infinity is ensured by

Q == ~ Aj = 0 . (6.2)

These brackets and constraints arise naturally from the Chern-Simons action. They may
be extended to punctured Riemann surfaces if the singularities of the connection restrict to
first order poles, leading to o-function-like singularities of the cUivature.[118, 34]

In order to extend these structures to holomorphic connections, first the phase space has
to be enlarged in a natural way from real connections in terms of which Chern-Simons theory
is usually formulated, to one-forms that take values in the complexified Lie algebra, as the
split halfs A..,d,,( and A1d-y described above already do. Then, also the gauge freedom (6.7) is
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{FA(/,), Af(j.l)} -6ADOt6(2)(')'- j.l) + fADe A~(')') 6(2) (')'_j.l)

~ -6ADOt6(2)(/,_j.l).

This matrix can be inverted using Ot1 = -21fi6(2)(')'). With the standard Dirac procedure
7

. (26) one further obtains the holomorphic bracket (6.4) for the remaining valiables A7(')')

[43J.
Note that because of the appearance of the delivative 0t in (6.8), the holomorphic part

of the constrainl~ FA (')') survives as a first-class constraint. Since holomorphic functions on
the sphere are constants, this becomes

change in the parameters of the Riemann sUiface that is required to keep the monodromy data
constant. Treating A(')') and w(')') as functions of /' and /'i, these isomonodromy conditions
impose a formal condition of /,;-independence of the monodromy data T; and Ci•

This requires that the function OiWW-1(')') has a simple pole in /'i: 14

OiW(')') = -Ai w(')').
/'-/'i

enlarged to the con-esponding complex gauge group. We fix this gauge freedom by choosing
the gauge At =0 that makes flatness turn into holomorphy.

The bracket between constraints and gauge-fixing condition is of the fonn:

J FA (/,)d/,dt = J 01AA(/')d/'dt = LA; = QA,
J

Compatibility of these equations with the system (6.10) yields the classical Schlesinger
equations [112]:

oiAi = [Ai, Ai], for j f= i , ok - ~ L [Ai. Ai] (6.13)
/'i - /'i • • - i~i /'i - /'i .

A multi-time Hamiltonian description of this dependence has been given in [58] with the
HamiltoniaJls

H - L tr(AiAi)
•- #i /'i -/'i ' (6.14)

generating the commuting /'i-flows (6.13) in the holomorphic Poisson-bracket (6.3), i.e.

We now describe isomonodromic defonnation on the sphere in terms of the holomorphic
Poisson structure. Consider the system of linear differential equations:

The Poisson sllucture is interpreted as a multi-time structure in the sense that (6.3) is defined
for the residues Ai ({/'i}) at coinciding /'i and translated to different /'i by meaJ1S of (6.15).

Quantization and Knizhnik-Zamolodchikov system

As was noticed by Reshetikhin (109), quantization of this system leads to the Knizhnik-
Zamolodchikov equations, that are known as differential equations for correlation functions
in confonnal field theory [68].

Quantization is perfon-ned straightforwardly by replacing the Poisson structure (6.3) by
commutators. Shifting the /,;-dependence (6.13) of the operators At into the states on which
these operators act con-esponds to a transition from the Heisenberg picture to the Schrodinger
picture in ordinary quantum mechanics. In the SchrOdinger representation the quantum states
Iw) then are sections of a holomorphic V(N) == ®i Vj vector bundle over

Xo == eN \ {diagonal hyperplanes} .

The /'i-independent operator-valued coordinates of Ai are realized as

At = in I ® ... ® tt ® ... ® I

For definiteness we choose some matrix representation of 9 on a vector space Vo, such that
II' (')') accordingly takes values in the exponentiated representation of the associated Lie-
group G.

As A(')') has simple poles, the function w(/,) lives on a covering of the punctured sphere.
Let II' be 1l00malized to w(oo) = I, thereby marking one of the points 00 on this covering.
In the neighborhood of the points /'i, the function II' is given by:

with Wi (')') = 1+ 0(')' -/'i) being holomorphic and invertible. The relation to the residues
of the connection (6.1) is given by Ai = GiT;G;l.

The local behavior (6.11) also yields explicit expressions for the monodromies around
the sing ulatities:

II' (')') H II'(')')Mi , fof')' encircling /'i, with Mi = C;r exp(21fiT;) Ci .

Note that the normalization w(oo) = I couples the freedom of r.h.s. multiplication in the
linear system (6.10) to the left action of constant gauge transfon-nations (6.7) on W. Under
(6.7) thllS II' transforms as II' H gwg-r implying Mi H gMig-1•

The aim of isomonodromic deformation [59] is the investigation of a family of linear
systems (6.10) parameterized by the choice of singular points /'i, that have the same mon-
odromie.s. In other words, one studies the chaJlge of the connection data Ai with respect to a

where tt acts in the representation V;. In this Schrodinger picture the quantum states Iw)
then obey the following multi-time /,;-dynamics

~ 11oilw) = H;iw) = in LJ _'J_ Iw)
#i /'i -/'i

14Thederivative 8i here and in lIJefollowing denOies 8/ 8'Yi, lIJederivative with respect to U,eposition of the
singularity "Ii,



Here, Ojj = tr(tf ® tj A) denotes the Casimir element Og of the algebra g, acting on V;
and Vj. The system (6.17) defines horizontal sections on the bundle of quantum states and
coincides with the famous Knizhnik-Zamolodchikov system [68]. fhMM-1 = 'f2p-18±PA(x±,'Y)! ' (6.23)

'r='fl

~s a corollary of (6.20) and (3.2). Moreover, the linear system (6.20) and definition (6.22)
lJnply:

A = 8'YA A = 2p-18 p A('fl) A _ -18 2A('f1)-'Y(1'f'Y)A('Y)
w 8w ' ± ± 1±'Y' ± - P ±P 1±'Y

For asymptotically flat solutions of (2.22) the linear system (6.20) admits the normalization

Remark 6,1 System (6.17) may be equivalently rewritten in the Heisenberg picture intro-
ducing the multi-time evolution operator UN( {'Y;}) (as the general solution of (6.17» by

'Then in tenus of the variables UNAfUr/ the quantum equations of motion give rise to
higher-dimensional Schlesinger equations with the matrix entries Ai being operators in V.
These equations turn out to be a very special case of the general (dim Vo x dim V(N»)_
dimensional classical Schlesinger system.

In this section, we introduce new fundamental variables for the system of dimensionally
reduced gravity studied in the previous chapters. In terms of the connection of the linear
system (3.1), the equations of motion bear some resemblance with the deformation equations
obtained in (6.13). This suggests to adopt the holomorphic Poisson structure (6.4) which
leads to a two-time Hamiltonian formulation of dimensionally reduced gravity.

Starting from the linear system (3.1) we consider the object

The definition of A as pure gauge (6.21) implies integrability conditions on its compo-
nents, which in particular give rise to the following closed system for A('}'):

lJI(x,t,'YJ == V(X,t)T(V-1(X,t,'Y))

It satisfies the linear system

The main advantage of this system in comparison with the original equations of motion
in terms of M (2.22) is, that the dependence on the coordinates x± is now completely de-
coupled. Once the system (6.26) is solved, it is easy to check that the equations (6.23) are
compatible and the field M restored by means of them satisfies (2.22). This decoupling
of x+ and x- allows to treat (6.26) in the framework of a manifestly covariant two-time
Hamiltonian formalism, where the field A('}') is considered as the new basic object.

For this purpose we equip A('}') with the (equal-x±) Poisson stmcture from (6.5):

{A('}'),A(/l)} = ['Y~g/l,A('}')+A(/l)]'

_1_8 MM-1
1±'Y ±

with the matrix M from (2.42). These linear differential equations have been the basis for
the isomonodromic ansatz.

The main objects we are going to consider as fundamental variables in the sequel are
certain components of the following g-valued one-form

In particular, we are interested in the components

A = A.,d'Y+ A+dx+ + A_dx- = Awdw + A+dx+ + ..Ldx-

where ('}',x±) and (w, x±), respectively, are considered to be independent variables. The
main object in the sequel will be the particular component A.., for which we use the shortened
notation A == A..,.

Moreover, we will restrict our study to that sector of the theory, where A is a single-
valued meromorphic function of -y, i.e. that also A is single-valued and meromorphic in 'Y.
A solution IJI of (6.20) with this propelty is called isonwllodromic, as its monodromies in the
'Y-plane then have no w-dependence due to (6.21). In fact, this sector of the theory already
covers the most interesting physical solutions.

We call the x±-dynamics that is generated by 1l± the implicit time dependence of the fields.
The remaining x±-dynamics is referred to as explicit time dependence.

In general, the variables A('}') themselves are explicitly time-dependent according to
(6.26) and (6.28). The motivation for introducing (6.29) originates from [70], where it has
been shown, that in essential sectors of the theory (simple pole singularities in the connection
A), it is possible to identify a complete set of explicitly time-independent vll.1iables. Let us
briefly recall this.



A(7) =t Aj~X±) ,
j=1 7 7J

where according to (6.20) all 7j satisfy (3.2), i.e. 7j
equations of motion (6.26) yield

Remark 6.3 The Hamiltonian constraints (6.34) are obviously related to the conformal con-
straints (2.58), as also the Poisson structure (6.33) is certainly inspired by (2.50). The fact,
that both, (6.34) and (2.58) differ by a factor of 8±p from their "canonical ancestors" is re-
lated to the nature of the two-time Poisson structure, e.g. required by conformal covariance.
The precise embedding of the two-time structure into the canonical formalism is still some-
what unclear. As remarked above, an honest comparison had to be pelfonned on the space
of observables.

First order poles In this simplest case considered in [70, 71] we assume that A(7) has
only simple poles, i.e.

N2:8±7k8kAj,

k=!

Remark 6.4 The above reduction (6.31) of the original equations of motion shows a re-
markable general feature: the number of dimensions has been effectively reduced from two
to one. Recall that the initial values of the physical fields are usually given on a spacelike
hypersurface, whereas their evolution in the time direction is described by the equations of
motion. Here, on the contrary we have evolution equations for the time direction as well
as for the space direction and the two flows commute. The knowledge of the initial values
of A (-y) at one space-time point is sufficient to reconstruct the whole solution by means of
(6.26).

This may be understood as follows: the spatial dimension which previously provided
the initial data has been traded for an additional dimension parametrized by the spectral
parameter. In fact, given the spectral parameter cunent A(-y) at fixed 7 =±l on a spacelike
hypersurface (which according to (6.23) are nothing but the original currents) allows us
to evolve it in time by means of the equations of motion and into the 7-direction via the
compatibility equations (6.26). Vice versa, given A(-y) at fixed space-time point but for all 1
one can deduce its space evolution from the compatibility equations.

The isomonodromic ansatz (6.30) is finally employed to parametrize the behavior of the
spectral parameter current in the 7-plane by a discrete (even finite) set of variables, such
that the original field theory reduces to an UN-particle" problem (localized in the spectral
parameter plane). In this way we have arrived at an effectively one-dimensional description
of the 2d theory without giving up the nontriviality of the solutions.

with the 'Yk dependence from (6.13). The Poisson brackets (6.27) reduces to

{A~,An = oijfABcAJ ' (6.32)

i.e. in this case, the residues Aj together with the set of (hidden constant) positions of the
singularities {Wj} give the full set of explicitly time-independent variables.

Comparing the equations of motion in this sector (6.31) with the isomonodromic de-
formation equations (6.13) suggests to understand the x± dependence of the residues as an
isomonodromic dependence generated by the two Hamiltonians (6.29).

Remark 6.2 Introduction of the Poisson structure (6.27) has been motivated from the math-
ematical point of view by the similarity of the equations of motion (6.31) with the isomon-
odromic formalism described in the previous section. However, a priori this structure is
not canonically derived from the original Lagrangian (2.45). Dimensionally reduced gravity
allows an alternative Chern-Simons Lagrangian fOlTllulation(72), such that (6.27) may be
obtained from (6.6) by holomorphic gauge fixing. An honest compalison to the canonical
Poisson structure (2.50), (2.57) of (2.45) should be worked out on the space of observables,
where due to spacetime-diffeomorphism invariance at least no principal difference between
one- and two-time structures appeal·s.

Due to the p, p dependence, the singulalities 1i have become field dependent and thus ex-
hibit explicit time-dependence in the sense of (6.29). In order to gain a complete Hamiltonian
descliption, we additionally introduce the following Poisson brackets

{p±, -8±u} = 8±P, (6.33)

where p± refer to the decomposition of pinto left- and right-movers (2.17).15 The dynamics
in x± directions then is completely given by the Hamiltonian constraints C±

C± == -8±u + p-18±ptrA2('fl) T±± ~ O. (6.34)
8±p

Higher order poles The isomonodromic fraluework allows natural generalization to that
sector of the theory, where A(-y) is assumed to be a meromorphic function of 7, which we
shall present here. A further extension of this framework to the full phase space of arbitrary
connections A, that is strongly inspired from the treatment of the simple pole case, has been
sketched in (104).

Assume that A(-y) has higher order poles in the 7-plane:

N Tj Ak(x±)
A(-y) = f;{; (/-1j)k .



However, it turns out that for Tj > 1the variables A7 for k = I, ... Tj -1 have non-trivial
Poisson brackets with fhu, and, therefore, are not explicitly time-independent. The problem
of identification of explicitly time-independent variables can be solved in the following way.
Consider

Recalling that 8±M M-I = 2V P± V-I we see that this condition is indeed suffient to guar-
antee that the matrix M obtained by integration satisfies the symmetry (2.43). The condition
(6.42) takes a simpler form in terms of the variables 11(')') == VA(')')V-\ where it reads

')'211(')')+7(11(*») = o.8"1
Aw(')') = 8wA(')'),

which as a function of w is merom orphic on the twofold covering of the w-plane. Parametrize
. the local expansion of Aw around one of its singularities ')'j as:

rj A{w)k

Aw(')') = L (w ~ w-)k + O((w - Wj)O)
k=1 J

Unfortunately the Poisson structure (6.27) is not automatically compatible with the con-
dition (6.42). We may however treat the whole system as a constrained system, where (6.42)
then builds a set of second-class constraints. Applying the canonical Dirac procedure [26J
finally yields the following modified bracket on tile phase space [74J

1 2

{ 11(')') , 11(J.l)} =

8 A{wJk = {A(W)k 1£ }± J J' ± .

They satisfy the same Poisson structure as the A7 (6.37):

{
<JAB (A{W)k+I-I)C f k I 1

{
(A;WJk)A, (AJ{WJI)B} = OUij C j or + - :'S Tj

for k + I - 1 > Tj

Thus, also in this case one there is a complete set of canonical explicitly time-independent
variables.

1 n I 2

'2 [,),~J.l' 11(')')+ 11(J.l)]

1[ ')'!;.. J.l ~ ]
+ '2 n;, 1-'YJ.l A(')') - 1-')'J.l A(J.l)

This stmcture indeed is compatible with (6.42). There remains the following set of first-class
constraints (contained in (6.44) at "1-+ 00)

Then we find that tile coefficients A(w)k of the local expansion of Aw have no explicit
J .

time dependence, i.e.

which via (6.45) generate the H-gauge transformations (2.65). This is the proper substitution
of (6.25) after implementing the coset structure,

Thus, we have reduced the degrees of freedom so as to match the situation of the coset
model.

The coset structure

To this point the isomonodromic ansatz has ignored the coset structure of tile original model.
The solution M of (2.22) which is obtained from the new basic object A( ')') via (6.23) will in
general not satisfy the original symmetry (2.43) which characterized the coset modeL Thus,
the new description still carries too many degrees of freedom. Here, we show how to cure
this.

As functions of the Oliginal fields, the new variables A(')') have been defined only up to
the freedom (3.4) in the original linear system so far. The entire structure desclibed above re-
mains invatiant under this freedom. As it turns out (71J, the restriction of this multiplicative
freedom which is consistent with tile isomonodromic truncation of this chapter is the condi-
tion (3.16) used in the approach of Belinskii atld Zakharov. In terms of the isomonodromic
objects, this condition reads

In tile model as presented so far, observables can be defined in the sense of Dirac as objects
that have vanishing Poisson bracket wiili all the constraints including the Hamiltoniatl con-
straints (6.34), which even play the most important role here. In two-time fonnalism this
condition shows the observables to have DO total dependence on x±. TIus is a general feature
of a covariant tlleOlY, where time dynamics is nothing but unfolding of a gauge transfOlma-
tion, and observables are the gauge invariant objects.

Regarding the connection A( ')') as fundamental variables of the theory, the natural objects
to build observables from are the monodromies of the linear system (6.21). They are given
as

'lJ('Y)T(W-I(*»)
')'2A(')') + M 7( A(*») M-I

(6.41)

(6.42)
Due to their definition these objects have no total x±-dependence; in the isomonodromic
sector which we treat here, the w-dependence is also absent.

For the simple pole sector let us denote by Mi == Mil tile monodromies corresponding to
the closed paths £i which respectively encircle ilie singularities "Ii and touch in one common
basepoint. The remaining constraint of ilie ilieory which should have vanishing Poisson
bracket with the observables is the generator of the constant gauge transformations (6.25),

The second equation is obtained from derivation of the first. In particular, this last equation
yields



under which the monodromies transform by a common constant conjugation. Thus the set

of Wilson loops

product is fixed to coincide with the ordering that defines (6.54). In accordance with (6.48),
the structure (6.53), (6.54) implies

{tr IT Mi. I k, (ii,"" ik)}

k

builds the set of observables for this sector of the theory.
The Dirac brackets (6.45) define a Poisson stmcture on the monodromy matrices Mj.

Rather then directly computing this bracket, we alternatively first obtain the Poisson suucture
'on the mQnodromy matrices which is implied by (6.27). The Dirac bracket on the space of
observables can then be deduced by simple symmetry arguments.

Let A(,) be a connection on the punctured plane 1/hi,"" IN}, equipped with the
Poisson structure:

{Moo, tr IT Mi.} = 0 .
k

{ A (/) .A (/1)} = [,~g/1' A (/)+ A (/1) ] .

Letfurther \IIbe defined as solution of the lineal' system

Remark 6.6 The evident asymmetry of (6.54) witl1 respect to the interchange of i and j is
due to the fact, that the monodromy matrices are defined by the homotopy class of the path,
which connects the encircling path with the basepoint in the punctured plane. This gives rise
to a cyclic ordering of the monodromies.

The distinguished path [so -t 60] breaks and thereby fixes this ordering. It is remnant
of the so-called eyelash that enters the definition of the analogous Poisson stlUcture in the
combinatorial approach [43, 2], being attached to every vertex and representing some free-
dom in this definition. However, the choice of another path [so -t 00] simply cOiTesponds to
a global conjugation by some product of monodromy matrices: a shift of this eyelash by j
steps corresponds to the transformation

Therefore the restricted Poisson structure on gauge invariant objects is independent of this
path.

Remark 6.7 A seeming obstacle of the structure (6.53), (6.54) is the violation of Jacobi
identities. Actually, this results from heavily exploiting the constraint (6.52) in the calcu-
lation of the Poisson brackets. As therefore these brackets are valid only on the first-class
constraint surface (6.55), Jacobi identities can not be expected to hold in general.

However, the same reasoning shows, that the SU'ucture (6.53), (6.54) restricts to a Poisson
stlUcture fulfilling Jacobi identities on the space of gauge invariant objects. On this space.
the structure reduces to the original Goldman bracket [48] and coincides with the resu'ictions
of previously found and studied structures on the monodromy matrices [43]:

and denote by Mi, .. , , M N the monodromy matrices of \II corresponding to a set of paths
with endpoint So, which encircle Ii,' ..,IN, respectively. Ensure holomorphy of \IIat 00 by
the first-class constraint

(2 1 i 2)
in Mi ng Mi - Mi ng Mi ,

1221 i2 12)
in (Mi ng Mj + Mj ng Mi - ng MiMj - MiMj ng

fo/' i < j ,

where the paths defining the monodromy matrices Mi are ordered with increasing i with
respect to the distinguished path [so -t 00].

Here, we collect several comments on this result, whereas for the proof we refer to [74].

{Mi, Mi}

1 2

{Mi,Mj}

{Mi' Mi}
{Mi,Mj}

2112 1212
Mi /'+Mi + Mi /'_Mi - /'_MiMi - MiMi /'+

122 i 1212
Mi /'+Mj + Mj /'+Mi - /'+MiMj - MiMj /'+

for i < j ,

Remark 6,5 The first-class constraint (6.52) generates constant gauge u'ansformations of
the connection A in the Poisson structure (6.49). In terms of the monodromy matrices,
holomorphy of III at 00 is reflected by

and the symmetric part of /'+ is required to be inng• With /'+ == inng, (6.57) reduces to
(6.53), (6.54) such that our structure is in some sense the skeleton, which may be dressed with
additional freedom that vanishes on gauge invariant objects. On the space of monodromy
matrices themselves, introduction of /'-matrices may be considered as some regulaIization to
restore associativity, whereas the fact that ng itself does not satisfy the classical Yang-Baxter
equation is equivalent to (6.53), (6.54) not obeying Jacobi identities.which in turn is a first-class constraint and generates the action of constant gauge transfor-

mations on the monodromy matrices in the stl'ucture (6.53) and (6.54). The ordeling of this



Remark 6.8 For eventually treating the coset model, the following additional structure is
important. There is an involution T on the set of observables, defined by the cyclic shift
M; >-+ Mi±n, where N = 2n is the total number of monodromies. This involution is an
automorphism of the Poisson structure on the algebra of observables:

In this section we describe different quatization procedures for the isomonodromic sector
of the model with simple poles. For simplicity and illustration we first recall the canonical
quantization of the Poisson brackets (6.32), where the coset structure (6.42) is ignored for a
while [71J. Like the quantization of (6.13) this yields a link to the Knizhnik-zamoldchikov
system. We continue with identifying the quantum analogues of the monodromy matIices
in this representation and work out their algebraic structure. This may be compared with a
direct quantization of the monodromy algebra (6.53), (6.54) or (6.57), respectively. Finally,
we give the necessary modifications to properly include the coset structure of the model
(6.42). .

for XI, X2 being traces of arbitrary products of monodromy matrices. This is a corollary
.of Remark 6.6, as it follows from the invariance of the Poisson structure on gauge invari-
ant objects with respect to a shift of the eyelash that defines the ordering of monodromy
matrices. Like every involution, T defines a grading of the algebra into its eigenspaces of
eigenvalue ±l. In particular, the even part forms a closed subalgebra.

The final goal of this section is the computation of the Dirac bracket on the space of
monodromy matrices. Let us first state the implications of the coset structure on this space.
In the sector of simple poles, (6.41) implies that the singularities appear in pairs with

We briefly describe the quantization of the model in the isomonodromic sector with only
simple poles [71J. Straightforward quantization of the linear Poisson brackets (6.32) leads
to the following commutation relations:

1
"fj=-- ,

"fj+n
Accordingly we represent the p± by multiplication operators, and further define

AJ == il1.tl ' a±(J == in a~± ' (6.66)

where tt acts on a representation "i of the algebra g. Thus, the quantum state 1jJ(p±) in a
sector with given singularities depends on tbe fields p± and lives in the tensor-product

V(N) == VI ® ... ® VN , (6.67)

(where N = 2n is the number of singular'ities), while the corresponding monodromies aroe
related by

To apply the result (6.53), (6.54) the cOll'esponding paths must be chosen pairwise symmetIic
under 1'>-+ ~. This uniquely relates the ordering of the monodromy matIices in (6.54) to the
ordeIing defined by (6.60).

The Dirac bracket now follows from simple symmetry arguments avoiding the direct
computation for objects that aroeinvariant under G-valued gauge transformations (i.e. traces
of arbitrary products of Mj). The involution rOO introduced by (3.8) acts on Mj according to
(6.41) as follows:

of N representation spaces.
The whole "dynarnics" of the theoly is now encoded in the constraints (6.34), which

accordingly play the role of the Wheeler-DeWitt equations here:

and can be written out in explicit form using (6.34), (6.29), (6.66):

a ±) . -1'" f2jk ±a-.± 'I/J(p = 21n p L. (1±'V.)(I± 0) 'I/J(p ) ,
fJ k#j '} l'k

where f2jk is defined as in (6.17).
The other constraint that restricts the physical states arrives from (6.25); in the quantized

sector it is reflected by:

with eigenvalues ±1 under roo, respectively. Since r is an automorphism of the structure
(6053), (6.54), the definition of roo in (6.62) implies (taking into account Remark 6.8)

(L:tJ) 1jJ(p±) = O.
j

The constraints (6061) are equivalent to vanishing of MAS; therefore the part of G-invariant
varoiables surviving after the Dirac procedure is contained in Ms. The former Poisson bracket
(6053), (6.54) on Ms coincides with the Dirac bracket.

The general solution of the system (6.69) is not known. However, these equations turn
out to be intimately related to the Knizhnik-Zamolodchikov system (6.17). Namely, if 'PI<nZ



with the evolution operators UN from (6.18). Having Remark 6.1 in mind, the quantum linear
system may thus be understood as a mixture of the Schlesinger (6.13) and the Knizhnik-
Zamolodchikov (6.17) system, where the former corresponds to the classical vector space Va
with associated insertion I and the latter corresponds to the quantum space (6.67).

In particular, (6.75) shows that the monodromies of (6.73) may be identified among the
monodromies of the Knizhnik-zamolodchikov system with N + 1 insertions. It has been
shown by Drinfeld, that these monodromies in turn are related to the braid group representa-
tions induced by certain quasi-bialgebras [30, 29].

Putting all these things together [74] we obtain the following algebraic structure

is a V(N)-valued function of II, ... "N, which solves (6.17) and the constraint (6.70), and
if further the Ij depend on x± according to (3.3), then

_ rrN (a,j) 4ill!ljj
1/J - a 'PKnZ,

j=1 Wj

solves the consu'aint equations (6.69) [71J. The Casimir operator njj defined above is as-
sumed to act diagonal on the states, for g=.5[(2) for example, this is simply njj = !sj(sj-2),
'classifying the representation.

Quantum monodromy matrices

Having quantized the connection A(f) as described in the previous section, it is a ptiori not
clear how to identify quantum operators cOITesponding to the classical monodromy matri-
ces in this picture. As they are classically highly nonlinear functions of the Aj, arbitrarily
complicated nOlmal-orderillg ambiguities may arise in the quantum case.

We choose a simple convention, replacing the classicallillear system

I 2
R_MiR=IMi

I 2
R+MiR+1Mj

2 'I

Mi~MiR+l ,
2 I

Mj R+ MiR+I
,

where Ru is the universal R-matrix of the so-called Drinfeld-Jimbo quantum enveloping
algebra associated with 9 [27, 57] and u is some automorphism on Vo ® v(N). TIle classical
limit of these R-matrices may be computed and yieldsby formally the same one, where all the arising matrix entries are operators now, i.e. (6.72)

is an operator on Vo ® V(N) where Vo denotes the (classical) vector space, already necessalY
for the definition of (6.10), (6.20) and the (quantum) part V(N) has been defined in(6.67).

We have thereby fixed the operator ordering on the right hand side in what seems to be
a rather Ilatural way. In the same way, we define the quantum monodromy mattices to be
given by

Thus, we have obtained the quantum algebra of the quantum monodromy matrices by
identifying the corresponding operators inside the picture of the quantized holomorphic con-
nection A(f). The classical limit of this algebra coincides with the classical algebra of
monodromy matrices (6.53), (6.54). 1llis shows the "commutativity" of the (classical and
quantum) links between the connection and the monodromies with the corresponding quan-
tization procedures. Let us sketch this in the following diagram:

Remark 6.9 The normalization condition (6.74) generalizes the one we chose in the classi-
cal case (6.51) where the basepoint So was sent to infinity. This generalization is necessary,
because the constt'aint (6.52) is not fulfilled as an operator identity in the quantum case,
which means, that the quantum 'li-function as an operator is definitely singular at I = 00

with the behavior (6.74). Only its action on physical states, which are by definition annihi-
lated by tlIe constraint (6.25) may be put equal to the identity for ,= 00.

Regularized algebra
of monodromies

1 2 1 '1

{M"M,} = (Mir+M; + ... )

We are interested in the algebraic structure of the quantum monodromy mauices Mj

defined by (6.73). This follows from the observation [109] that the quantum linear system
(6.72) is related to the Knizhik-Zamolodchikov systems with N and N+ 1 inseltions, respec-
tively, by

quantization and
quasi-associative

generalilJl1ion

'li(-Y,II,,,,,,N) = ((I® UNI(fl,,,,,IN))UN+I(f,'1>'""N) ,
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Atiyall-Bott symplectic structure
{A.¢(-r),Af(Jj)} ~ 6AB6(2)(,_Jj)

Holomorphic connection
{At,An = 6i;fA~AfIquantization

[At, A?I = iM,;fA~ Af

Iquaotum monodromie.s
via KZrsystml

Classical algebra
of monodromies

1 2 1 '2
{Mi, M,} = ;11' (M, no Mj + ... )

Quantum algebra of monodromies
1 2 '2 1

R+M,R+' M; = M;~MiR+'



The dotted lines in this diagram depict the link to the usual way, quantum monodromies
have been treated. As was sketched in Remark 6.7., their classical algebra can be derived
from the original symplectic structure of the connection up to celtain degrees of gauge free-
dom: for later restriction on gauge invariant objects, this algebra may be described with an
arbitrary classical r-mauix. A direct quantization of this structure is provided by a structure
of the form (6.76), where the quantum R-matrices live in the classical spaces only and admit
the classical expansion % = I + ilir± + O±(1i2) [1,2].

In contrast to this quantum algebra which underlies (6.57), the R-matrices in (6.76) - due
. to the automorphism u - also act non trivially on the quantum representation space. Their
classical mauix entries may be considered as operator-valued, meaning, that the quantum
algebra can be understood alternatively as nonassociative or as "soft". This is in some sense
the quantum reason for the fact, that the classical algebra (6.53), (6.54) fails to satisfy Jacobi
identities. However, note that (6.76) only describes the R-matrix in any fixed representation
of the monodromies; for a description of the abstract algebra, compare the quasi-associative
generalization in [2].

If CPCKZ is a solution of (6.82) obeying the constraint (6.81), aJ1dthe 'Yj depend Oil r
according to (3.3), then

n ( /h)iMljj
1/J = II 'Yjl aV:o CPCKZ ,

3=1 J

solves the constraint (Wheeler-DeWitt) equations (6.80).
The procedure of identifying observables may be outlined just as in the case of the prin-

cipal model. Again the monodromies of the quantum linear system are the natural candidates
for building observables and contain a complete set for the simple pole sector. The actual
observables are generated from combinations of matrix entries of these monodromies that
commute with the constraint (6.81). From general reasoning according to the classical pro-
cedure, relevant objects turn out to be the combinations of G-invariant objects, that are also
invariant under the involution rOO.

Quantum coset model

We have seen that the proper Poisson suucture to be quantized for the coset model is (6.45).
This goes along the same line as the quantization of (6.27) described above.

Having solved the consu'aints (6.42), the number of degrees of freedom is effectively
reduced. The simple poles appear in pairs related by (6.60). Half of the residues of (6.30) is
represented according to (6.65), while the other half is obtained via

Aj = r(Aj+n) .

The constraint equations (6.68) (the Wheeler-DeWitt equations here) take the form

This section is based on [73]. We leave the concrete model of dimensionally reduced gravity
and like in section 6.1 study abstract isomonodromic deformations. The scheme presented
above allows natural extension to Riemann surfaces of genus one. Instead of the Knizhnik-
Zamolodchikov system (6.17) on the sphere, in this case we obtain the link to the Knizhnik-
ZamoJodchikov-Bernard (KZB) system that has appeared in the study of the corresponding
higher genus conformal field theories [8, 9]. The conceptual novelty of twisted functions,
that is introduced in WZW conformal field theories on the torus in order to get a proper
description of the action of inserted affine zero modes in the correlation functions, enters the
game in a very natural way here.

In the context of dimensionally reduced gravity these structures may prove to be impor-
tant in an isomonodromic approach to two-dimensional world-sheets with nontrivial topol-
ogy. This extension would be indispensable for a "stringy" interpretation of the model.

with IF from (3.47). Additionally, the physical states have to be annihilated by the first-class
constraint (6.46):

Holomorph.ic gauge fixing

We start again from a smooth g-valued one-form A on the torus. To simplify notation and
without loss of generality we restrict to the case 9 = 51(2,q. In the explicit formulae we
will use standard Chevalley generators t3, t±. Denote the periods of the torus by 1 and r.

Holomorphic gauge Ay = 0 can not be achieved in general. However, taking into account
our remarks from the previous section, the essential fact is,[41] that a dense subspace of
smooth (O,I)-fOims can be gauged into constants of the form

Modifying (6.71) we can establish a link between solutions of the quantum constraint
equations (6.80), (6.81) (i.e. physical states) and solutions of what we will refer to as the
Coset-Knizhnik-Z3molodchikov (CKZ) system [74]:

acpCKZ = in {L 1+ 'Yk/'Yj o'jk +L 'Yk+ l/'Yj o'ik} cpCKZ'

a'Yj k,pj 'Yj -'Yk k 'Yj'Yk-1

21fi)'~ =--_ 03,
r-r

The holomorphic gauge condition would require an additional gauge transformation of
the kind 9 = exp(21fi),~03)' This is obviously multi-valued on the torus, having a multi-
plicative twist: 9 t-t exp(27fi>'03)g for 'Y encircling the fundamental (0, r)-cycle. The result



of a gauge transformation of this kind is a twist in the remaining holomorphic (I,D)-form
A('y):

A(-y + 1) == ACy) A('y + r) = e21ri,\adu,A(')') . (6.85)

Equipped with these tools we can now start to describe the twisted meromorphic connection
A(')'). Because of its twist properties (6.85), A(')') is of the form:

A±(,),) == LAt£T±2,\(')'-')';), A3(')') == LAtp(')'-')'i) _B3. (6.88)

Define again '1' by the linear system

8'1'(')') = A(')')W('y) . (6.89)

The function '1' will get monodromies Mi and M(O,I) from the right hand side, if')' encircles
')'i onhe (0, 1) cycle of the torus. If')' runs along the (0, r) cycle, '1' will exhibit an additional
left monodromy due to the twist (6.85) of A:

'1'(')') H e21ri'\usW('y)M(o,T) . (6.90)

Under isomonodromic defonnation we will understand the invariance of the right hand side
monodromy data under the change of the parameters of the punctured torus, which are the
singular points ')'i and the period r. The connection data in this case are the residues Ai, the
addi tive constant B3 and the twist A.

Let us first investigate their ')'i-dependence. In addition to the residues of 8iww-1 we
have to determine its twist around (0, r) from isomonodromy conditions. Equation (6.90)
yields:

(8iWW-1) (')') H e2"i'\ >dus (8iWW-1) (')') + 2?ri8iA£T3

This detennines the fonn of the ')'i-dependence of '1' to be:

Even though in plinciple gauge transformations must be defined globally single-valued
in order to conserve physics, in this case the proceeding is justified by the fact, that the noo-
gauge-trivial part of At survives as an arising twist of the holomorphic connection A. This
is how the holomorphic gauge causes the appearance of twisted quantities in a rather natural
way.

Before we start to investigate isomonodromic quantization on the torus, let us collect some
simple facts about twisted meromorphic functions on the torus. A basic ingredient to describe
functions of this kind, is Jacobi's theta-function:

B(,,) == L e27ri(tn'T+n"Y) ,

nEZ

which is holomorphic. twisted as: B(-y+l) = B(')'), B(')'+r) == e-i*+2OY)B(')') and has simple
zeros for I E ~(r+ 1)+ Z + rZ.

Standard combinations are the functions [42J

_ B'(')' - Hr + 1)) .
p('Y) = B('y-~(r+l)) +11r, () B(A - ')' - ~(r + 1))B'(Hr + 1))

and £T,\ ')' == ----~---~---
B(')' + ~(r + 1))B(A - ~(r + 1)) ,

(8iWW-1t(')')

(8iWW-lr (')')
and further on yields the ')'cdependence of the twist parameter A:

8iA == At . (6.92)

We can now proceed as on the sphere in section 6.1. Compatibility of the equations
(6.89) and (6.91) implies the following Schlesinger equations on the torus:

8iA; -A;Aj£T2,\(')'j-')'i)+AiAj£T-2,\(')'j-')'i), for ji-i, (6.93)

8;At LAt Aj£T2,\(')'j-')';) - LAi Aj£T_2,\(')'j-')';) ,
j;ti j-,ti

which have simple poles with normalized residue in ')' == 0 and additive and multiplicative
twist, respectively:

±2AfA;£T±2,\(')'r')'i)Of2AtATP(')'j-')'i)±2BtAT, for ji-i,

±2 L AtA;p(')';-')'j) Of 2 L AtAT£T±2,\(')';-')'j)
j~ j~

Of 2B3 At ± 2Bt At ,

~ L (Ai Aj8,\£T2,\(')';-')'j) - At Aj8,\£T2,\(')'j-')';)) ,
j;ti

These relations can be proved checking residues and twist propelties. All the following
calculations rely on the fact, that merom orphic functions on the torus with simple poles are
uniquely determined by their residues if they are multiplicatively twisted, whereas functions
with additive or vanishing twist are detelmined only up to constants. In generic situation
there are no holomorphic twisted functions on the torus.



the generated 'Yi dynamics of the connection data produces isomonodromic deformation only
up to certain shifts in the gauge orbit.

Finally we study isomonodromic deformation with respect to a change in the period T of
the torus. This can be done in complete analogy with the just treated case. From (6.90) th.e
twist of 8r Il/l~-l around (0, T) turns out to beThe equations (6.92), (6.93) and (6.94) build a system of differential equations that is

automatically compatibel, just as the Schlesinger equations (6.13) on the sphere are. This
may be directly checked by a rather lengthy but straightforward calculation, making repeated
use of (6.86) and (6.87). Compatibility is valid on the constraint surface

that was already implied by consistency of the twist properties of A( 'Y) with the ansatz (6.88).
This constraint here appears in a weaker fonn than on the sphere (6.2). This cOlTespondsto
the fact that the gauge freedom (6.7) has been fixed more rigorously on the torus in order to
diagonalize the twist around the (0, T )-cycle. Here, the remaining constraint (6.95) generates
those gauge transformations which are compatible with (6.84)

As on the sphere, it is possible to formulate the dependence (6.93) as a multi-time Hamil-
tonian structure. The Hamiltonians read

Hi = 2: (2AtA;p(r; - 'Yi) + At Aja-2A(r; - 'Yi) + Ai Aja2A(ri - 'Yi))
#0;
_ 2B3 A3 + 2B3" A3

t tL J'
i

27fi(8rWW-1r(r)

27fi(8rWW-1r(r)

1" ±1-"2 L...- Ai 8Aa±2A(r - 'Yi) ,
i

~2: A;(p(r - 'Yi)2- p(r - 'Yi)) + B; ,
i

1"A+ -8 ( 1" - +-"2 L...- i Ai Aa-2A 'Y;-'Yi) -"2 L...-A; Ai 8Aa2A(r;-'Yi)'
J i

±2: At A;(p(r; - 'Yi)2- p(r; - 'Yi))
i

+ 2:ArAt8Aa±2A(r;-'Yi) ± 2B;A; 1

i

-~2: (At Aj8~a-2A(r;-'Yi) - Ai Aj8~a2A(r;-'Yi)) 1

i,j

This structure arises from holomorphic gauge-fixing of the original bracket (6.6) in the same
way, as does the bracket (6.3) on the sphere. In particular, remembering the origin of A
(6.84), the second equation may be viewed as a reminiscent of (6.6) for the constant modes
of Aoy and At.

In analogy with (6.5) this Poisson structure admits a generalized r-mauix formulation

{Jl('Y),A(P)} = H'Y-p),Jl('Y)+A(P)] -8Ar('Y-w)(2:A;) 1

i
together with a curvature condition for 2~i8;B;- 8rBr. Again, compatibility of the whole
system of differential equations may be shown by a straightforward calculation.

With the Poisson structure already given in (6.97) this flow is generated by the Hamilto-
nian

In some sense this restJicts to a classical r-mau'ix fonnulation on the constraint sulface
(6.95). Validity of the Jacobi identities is expressed by a twisted version of the classical
Yang-Baxter equation.

The Hamiltonians (6.96) show the role of the constants B; as parameters of gauge u'ans-
formations generated by the first-class consu'aint (6.95). This suggests to simply skip these
terms from the Hamiltonians, as is in fact done in the sequel, leading to the KZB equations.
As a consequence, these truncated Hamiltonians only commute up to (6.95), meaning that

~2: (At Aj8Aa-2A('Y; - 'Yi) - Ai Aj8Aa2A(r; - 'Yi))
;,oi

+ ~2: ArA; (p(r; - 'Yi)2- p(r; - 'Yi)) + B3 B3 + 2B; 2:A; ,
iJ j



Quantization and Knizhnik-Zamolodchikov-Bernard system

The canonical quantization of the described Hamiltonian structure now directly leads to the
KZB-system, as we shall finally show. Quantization is again performed straightforwardly
with (6.97) being replaced by

acting on quantum states Iw) that are >'-dependent sections of a V(N) == Q9j Vj bundle over
Xl == {fundamental domain of r} 0 eN \ {diagonal hyperplanes}.

The quantization of (6.93) and (6.102) in the SchrOdinger picture provides this bundle
with the horizontal connection:

~iht~8>.lw) + inL 8Ik/i-"Ij, r, >.) Iw) ,
j#i

iin81lw) + inL 8ij("{i -"Ii> r, >.) Iw) ,
iJ

• We have set up the canonical formalism for a general class of two-dimensional coset
space l1-models coupled to dilaton-gravity, that arise from dimensional reduction of
V31ious gravity and supergravity theories. The canonical Poisson structure (2.57) and
the gauge algebra of constraints (2.62)--(2.63) have served as the starting point for the
entire treatment.

9Hy,r,>.)
9ijb, r, ,\)

~p("I)(t: 0 tJ) + 11-2>.("{)(tt 0 tn + 112>.("{)(ti 0 tn '
~8>.11-2>.("{)(tt 0 tn - i8>.112>.("{)(ti 0 tj)
+ k (p2("{) - p("{)) (t: 0 t]) ,

• A complete set of nonlocal integrals of motion has been identified classically among
the transition mauices of tile associated linear system. They have been shown to be
invariant under the full gauge algebra of constraints (3.26). Moreover, in a rather
direct and unusual way they encode physical information (3.59), which in spite of
their spatially nonlocal origin (3.17) allows localization in the two-dimensional world-
sheet.

acting non-trivially on 11; 3l1d Vj.
This is the KZB connection, found in [8) as system of differential equations for ch31'ac-

ter-valued correlation functions. The form (6.106) coincides exactly with the form presented
in (42) for 5[(2, q. In particular, the telm that includes the derivative with respect to the
twist parameter>. is the explicit analogue of the action of affine zero modes on con"elation
functions in WZW models. We sU"ess again that in contrast to the system (6.17) on the sphere
these Hamiltonians only commute up to the constl"aint (6.95) which implies the fact that the
KZB-connection is flat only as a connection on the subbundle of states annihilated by I:j t],
see [42].

Let u.s close with the remark that this result suggests similar links between the quantiza-
tion procedure of isomonodromic deformations on higher genus Riem31ill surfaces and the
corresponding higher KZB equations [9]. See [55, 83, 117) for fUlther work.

• The classical Poisson algebra of these nonlocal charges is well-defined and in contrast
to the related structures in the flat-space l1-models does not exhibit any ambiguities, in
spite of similar non-ultl"alocal terms in the fundanlental Poisson brackets (2.57). The
coordinate dependence of the spectral parameter (3.3) plays an essential role for this
regularity. The resulting algebra (3.60), (3.61) is related to the (semiclassical) Yangian
double [27, 28).

• Since the nonlocal charges parametrize the phase space (at least in the sector which
admits the particular gauge fixing (3.36», the adjoint action of the algebra of charges
on itself describes a transitive symmetry. The well-known action of the Geroch group
is recovered as the associated Lie-Poisson action. This provides a C3l10nical realization
of the Geroch group, which is an indispensable tool for later quantization.

• We have shown that the entire structure allows generalization to the maximally super-
symmetric extension of the model. The N =16 superconformal constraint algebra has
been worked out, and has been used to prove that the non local charges - obtained in
analogy to the bosonic case - are indeed supersymmetric. As a byproduct, this result
has confirmed that the supersymmetric extension of the bosonic linear system (4.30)
given in [98, 103) does not receive any quartic fermionic conuibutions but already cap-
tures the full supersymmetric theory. The Poisson algebra of charges has been shown
to coincide with the one of the bosonic sector.



• Quantization of the classical stlUctures has been achieved for the coset spaces G /H =
SD(N, R.)/SO(N), resulting in a modified (twisted) version of the Yangian double
with a particular value of the central extension (5.5), (5.6). The pivotal classical object
- the monodromy mau'ix MBM - has been recovered within the quantum algebra as a
classical matrix with self-adjoint operator entlles (5.9).

space as the kernel of the constraint algebra (2.62) and (4.27), respectively, while the quan-
tum nonlocal conserved charges serve as a spectrum-generating algebra relating these states.
So far, we have, in contrast, adopted a rather pragmatic point of view, by directly searching
for the possible quantum algebras that may underlie tlle classical integrable structure, tacitly
assuming that integrability survives quantization. 'This means e.g. that we have neglected
any effects of potential anomalies that may obstruct integrability and the nonlocal symme-
tries in tlJe quantum theory. It is at this stage, that the maximally supersymmetric extension
described in Chapter 4 may play its fun role (since on the level of conserved charges studied
here, we have - somewhat surprisingly - not encountered any essential differences between
the resulting structures in the supersymmetric model compared with the purely bosonic sec-
tor).

In view of potential higher-dimensional interpretations of these models [l 02], it would
further be necessary to generalize the entire framework to arbitrary Riemann surfaces L:
playing the role of the two-dimensional world-sheet. So far, it is even unclear how to ex-
tend the setting to the (seemingly modest) modification of periodic boundary conditions. As
we have discussed in section 3.2, in tlus class of models, periodicity of the physical fields
does not imply periodicity of the connection of the linear system (3.1). The construction of
conselved charges thus has to be modified in some rather nontrivial fashion, Since (3.59)
has shown a link between the world-sheet and the spectral-parameter plane, one would ex-
pect the structures (3.60), (3.61) and (3.62) to be eventually replaced by a Poisson algebra,
which should accordingly be compatible with some periodicity of the nonlocal charges in
the spectral parameter plane.

Another highly interesting generalization would include the extension of the framework
to those models which arise from a dimensional reduction that includes a timelike Killing
vector field, i.e. which are formulated on a two-dinJensional world-sheet L: with Euclidean
signature. At present, it seems rather subtle to rigorously establish a canonical framework
in the sector of stationary solutions where the canonical time-dependence has been dropped
by hand. On tlle other hand, it is celtainly this sector which contains the most interesting
physical solutions, in particular, the black holes.

• The further program of classifying representations of tlJe quantum algebra has been
outlined for the simplest case SL(2,lR). Already on tlJis level, one may recogluze
several features (in particular, tlJe repeated OCCUITencesof discrete nonlocal Suuc-
tures), which e.g. distinguish the model from tile quantization of its linear (abelian)
subsector. The latter has been under active investigation from the point of view of
midi-superspace models of quantum gravity [79, 3).

• Within the isomonodromic approach initiated in [70,71], we have analyzed the al-
gebraic structure of observables on' the classical and the quantum level. For quan-
tization we have exploited the inherent link to a modified version of the KnizJuuk-
Zamolodchikov equations (6.82) making the underlying coset structure manifest. In
the general framework of isomonodromic deformations, we have established a similar
link to the Knizhnik-Zamolodchikov-Bemard equations on the tOIUS.So far, we have
not been able to embed these sUuctures into the canonical framework.

There are many things which remain to be elaborated, An immediate aim is the study
of tlle representation theory of the algebra (5.5)-(5.9) according to the program outlined
in section 5.3. Celtainly, the hope is that the requirement of unitarity with respect to the
*-structure (5.10) will sU'ongly restrict the choice of representations.

Within the appropriate representations, the next goal would be the construction of some
analogue of coherent states. They should exhibit minimal quantum fluctuations around given
classical solutions. The discussion of the symmeu)' structure in sections 3.4 and 5.3 suggests
that the quantum counterpart of the Geroch group (5.40) will playa key role in generating
these states, giving rise to a Hopf algebra generalization of tlle coherent states' concept.
Obviously, the usual (linear) framework of coherent states is too narrow to cope with the
quanlization of Lie-Poisson symmetries. With coherent states at hand, one would finally be
in position to study in detail how quantization affects the known classical solutions of gravity
(at least under the above mentioned reservations).

For the maximally supersymmetric model described in Chapter 4 with the underlying
coset space G/H = £8(+8)/ SO(16), it remains to extend the quantization to higher-dimen-
sional and, in particular, the exceptional Lie algebras. The quantization given in section
5.1 has been strongly supported by many well-known properties of tile Yangian algebras
associated with SL(N,lR). Unfortunately, less is known about the related structures for £8:
see however [18] for the construction of tlJeassociated R-matrix.

An interesting and somewhat complementary approach to the quantum model would in-
volve the consu'uction of tlJe nonlocal charges in a quantum model based on the original
physical CUIl'ents(2.39), (2.57), rather then quantizing (3.60), (3.61) directly. In tlle sense of
[85, 10], one would have to establish the nonlocal charges and their algebra after quantiza-
tion and not before. Physical states would have to be identified in an "unphysical" Hilbert
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