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Abstract

The advent of the ep collider HERA at the DESY research center has opened a wide kine-
matical window for the study of the Deep Inelastic Scattering (DIS) processes etp — et X.
Recent measurements of the structure function F, of the proton have confirmed the fact
that the Bjorken scaling which arises from the naive Quark-Parton Model is broken in the
limit where the scaling variable, a-Bjorken, is small. It also revealed that F, grows ex-
ponentially with @-Bjorken at low z. The standard picture of parton evolution, based on

the DGLAP equations, reproduces this steep rise if it is used with an appropriate set of

I, parametrizations. However these parametrizations include “ad-hoc” assumptions on the
non-perturbative behaviour of the structure functious and depend on a large set of phe-
nomenological parameters.

The steep rise can also be reproduced by using a different perturbative treatiment for the
parton evolution. This treatment, based on the BFKL evolution equations, dilfers from the
standard DGLAP picture by the lack of ordering in the transverse energy of the emitted
partons. Unlike DGLAP, the BFKL picture reproduces the steep rise of £, without assum-
ing any particular shape of the structure function in the non-perturbative domain.

In order to gain an insight on parton dynamics in DIS at low @ and discriminate between
these two pictures, jet observables are used as they are expected to be closely related to the
hard scattering and depend only slightly on the hadronization effects. Two jet observables
are studied here in more details: the azimuthal correlation between the two leading-order
jets and the cross section of the forward jet production. The measured cross sections are
corrected for detector effects and compared to several DIS Monte Carlo models and next-to-
leading ovder simulations over a wide kinematic range. The results are evaluated in the light
of the BFKL and the DGLAP pictures. The experimental results are compared to other
models of parton evolution as well, like the Colour Dipole Model (CDM), the Linked Dipole
Chain (LDC) and the resolved photon model in DIS.

Résumé

L’arrivée du collisionneur positron-proton HERA au centre de recherche DESY a ouvert
de nouveaux horizons dans I'étude des processus de diffusion inélastique profonde (DIP)
etp — et X. Les mesures récentes de la fonction de structure , du proton ont confirmé
le fait que P'échelle de Bjorken, conséquence du modeéle nail quark-parton, est brisée pour
les petites valeurs de la variable d’éclielle @-Bjorken. Ces expériences ont également révélé
que F, croit exponentiellement avec @ dans la limite on x est petit. Le modele standard
de I'évolution partonique, basé sur les équations DGLAP, reproduit cette croissance rapide
s'il est employé avec les paramétrisations modernes des fonctions de structure. Cependant,
ces paramétrisations forment des hypotheéses sur le comportement des fonctions de structure
dans les domaines cinématiques qui ne sont pas calculables selou la théorie des perturbations
et dépendent par conséquent d’un grand nombre de parameétres phénoménologiques.

On peut également reproduire la croissance “aigue” de F en utilisant un autre traitement
perturbatif de ’évolution partonique. Celui-ci, basé sur 'équation d’évolution BFKL, differe
du modele standard DGLAP par I'absence d’arrangement dans I'énergie transverse des par-
tons émis durant la collision. Contrairement & DGLAP, BFKL décrit la croissance de Fy
sans faire d’hypothese sur la forme que cette fonction de structure doit adopter dans les
domaines non perturbatifs.

Des observables basés sur les “jets” sont utilisés pour explorer la dynamique partonique dans
la région cinématique caractérisée par les petites valeurs de x. Ces observables sont censés
décrire de fagon précise la dynamique partonique puisque les effets de I'hadronisation y sont
faibles. Deux observables de jets sont étudiées ici: la corrélation entre les deux jets du pre-
mier ordre et la production de jets vers I'avant. Les sections efficaces sont mesurées pour ces
deux observables et comparées aux prédictions de différentes simulations aprés correction des
effets du détecteur. Les résultats sont discutés a la lumiere des différents modeles DGLAP et
BFKL. D'autres modeles sont pris en considération, comme le Colour Dipole Model (CDM),
le Linked Dipole Chain (LDC) et le modele de photon résolu en DIP.
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Chapter 1

Introduction

Particle physics is the science of the basic building blocks and the fundamental interactions
of nature. Considerations of symmetry have helped scientists to describe the various forces
and particles which have been recorded all along the history of science in the framework of
the Standard Model. The goal of this model is to reproduce a maximum number of observable
phenomena, from the properties of sub-atomic particles to cosmological considerations, with
a reduced number of theoretical predicates (describing the most empirical properties with
the least number of parameters is the general aim of all sciences). So far, four forces account
for all the interactions which occur in nature: the gravitationnal force, the electromagnetic
force, the weak and the strong forces. These forces act on the fundamental constituents of
matter through a gauge field carried by gauge bosons, which are particles of various masses
and integer spins. The strength of the coupling and the spin of the gauge boson define the
interaction. For instance, gravitation is carried by “gravitons” of spin 2 and is the weakest
of all forces, although its macroscopic properties are the most dramatic of all. The rest of
the particles participating in the interactions and then building all the known matter of the
universe, at least in the current shape of the Standard Model, have Lalf-integer spin and
are classified into two groups: the leptons and the hadrons. The first group is mostly char-
acterized by its sensitivity towards the electro-weak interaction and its inability to interact
through the strong force. Particles like electrons and neutrinos are part of this group. The
second group, the hadrons, can interact through the strong force and are in fact bound states
of fundamental particles called quarks. The proton and the neutron are examples of hadrons.
Stable hadrons and leptons, namely protons, neutrons and electrons constitute the atom, the

building block of the long evolution process giving rise to our familiar environment.

Of all the interactions listed in the Standard Model, the strong force has the largest cou-
pling strength and its description is therefore most challenging. As a matter of fact, the
stronger the force, the weaker is our ability to observe and characterize the properties of
the particles sharing this interaction, as the well-known perturbative treatment which helps
finding out the amplitude of the interaction mechanism is only valid in the limit where the
particles can be considered as “free”. The strong force is carried by the spin 1 gluons,
which have the intriguing property of coupling to each other through an additional quantum
number, the colour charge. Together with the incoming of the theory of colour, the con-
cept of “quark” came out as the fundamental object taking place in the strong iuteraction
mechanisin. The strong force is then described through the exchange of coloured gluons
between coloured quarks in the framework of Quantuin Chromodynamics (QCD). The most
fundamental property of this theory is that the quarks are never observed as free particles
but always in a bound state. This property, called confinement, is at the basis of all known
models aiming at describing the behavior of quarks and gluons. However, in the limit of
large momentum transfer, these particles can be described as “free” and therefore pertur-
bative calculations can be applied. The quarks and gluons then evolve towards the final
state hadrons, first through a perturbative mechanism controlled by the so-called “evolution
equations”, then within a phase called “hadronization” and which is not calculable through
perturbative theory. The first, perturbative part of this evolution is the object of this study
and will be described in detail in chapter 2.

The experimental study of the properties of QCD is only achievable through the observation
of the final state particles, i.e. after the hadronization phase. As this is not calculable, one
needs models to reproduce it. These models can also implement the various perturbative
schemes which can be probed, according to a specific set of approximations, and are usually
given in the form of event generator of Monte Carlo simulation. This will be described in
more detail in chapter 3.

As the size of the effects which are probed is extremely small, an optical microscope would
not be capable of detecting them, even with a very good resolution. Probing the parton
dynamics of QCD requires very large energies and specific processes, like Deep Iuelastic
Scattering (DIS), which consists of a high momentum transfer collision between a probe,
which is often a lepton, and a hadronic target. Deep inelastic processes are characterized by
two variables, which parametrize the parton density of the proton: the momentum transfer of
the collision called @?, which is also the inverse square of the momentum of the exchanged



boson, and the so-called “scaling variable”, a-Bjorken or zp 7', which can be seen as the
fraction of the momentum of the parton participating iu the interaction with respect to
the mormentum of the hadron (in the frame where the hadron is moving very fast so that
its mass can be neglected). Since the carly 70’s, many experiments investigated these DIS
processes, thereby proving the composite nature of the proton, but none of them could probe
such a wide phase space window as the HERA accelerator. The ZEUS detector which must
satisfy the requirements set by the difficult kinematic region to be probed, and the HERA
accelerator will be described in chapter 4. The eveut selection, to target a specific phase

space region, will be described in chapter 5.

The quarks and gluons are not observable directly in the detectors, as for instance are
the electrons and the wuous. However, their properties can be probed through the use of
phenomenological objects called jets, defined as collimated streams of particles, related to the
fundamental constituents which are present during the perturbative phase of the collision.
These objects will e defined in chapter 6, and two methods to use them in order to determine

the properties of the parton dynamics at Jow 2 will be presented in chapters 7 and 8.

In the rest of this work, we will follow the standard notation and refer to @3, simply as 2 unless otherwise
specified

Chapter 2

Basics of Perturbative QCD:
Various Models of Parton Evolution

One of the main challenges of the experimental study of the strong interactiou theory, Quan-
tum Chromodynamics (QCD), is to relate the properties of the basic constituents of the
theory, the quarks aud the gluons, to the properties of the observed particles, the hadrons,
which are bound states of these fundamental elements. A major step towards a global un-
derstanding of the evolution of the fundamental partons towards final state hadrons was the
discovery by Altarelli and Parisi in 1973 of asymptotic freedom [1] and the possibility to use
the short range interactions to apply perturbative calculations to the hadronic system. One
of the most important phenomenological successes of this theory was the accurate description
of the deep inelastic scattering of a lepton off a hadron and in particular the explanation of
the breaking of simple Bjorken scaling. A large number of experimental tests in fixed target
as well as collider experiments already confirmed most of the predictions made in various
kinematic limits. However the HERA collider, built from 1988 to 1992, can now push further
down these limits and explore phase space regions which are at the boundaries of the range of
validity of the standard descriptions of the parton evolution mechanism. These new regions,
close to the so-called “Regge” limit, can still be described in a perturbative way, but with
different tools, and with phenomenological implications which are expected to differ from
the standard ones, as will be explained in this chapter.

The main question of this work is whether this new perturbative domain can be reached
within the limits of HERA and whether the conclusions drawn from the measurement stand
firm with respect to non-perturbative physics.



2.1 Fundamental Properties of the Strong Interaction

Before entering into the details of QCD and Deep Inelastic Scattering (DIS), we shall briefly
review the fundamental predicates on which the theory is based. Although DIS provided the
strongest experimental evidence for the existence of quarks and gluons, these fundamental
constituents were part of the theory of the strong interaction before, but their interpretation
in terms of real particles, rather than theoretical concepts and part of the SU(3) theory,
was uncertain. Moreover, the main properties on which QCD lies, like the concepts of
colour and coufinement, were inferred without a deep understanding of the structure of the
hadrons. Today, thanks to new experimental evidence and much theoretical progress, both
in perturbative and non-perturbative QCD, the nature of the partons and their evolution
into the colour singlet states called hadrons is much better understood. On the other hand,
the understanding of confinement, for instance, has not really improved since its introduction

in the mid-60’s.

In this section, we will review the concept of confinement, as well as its theoretical basis,
the notion of colour. Finally, we will see how, in spite of that property, asymptotic {reedom
enables theorists to perform perturbative calculations on partonic mechanisms.

2.1.1 Hadron Spectroscopy: the Concept of Colour

The basis of our understanding of the particles involved in strong interactions (the hadrons)
comes from the results of hadrou spectroscopy. Without any assumption about their internal
structure, the accounting of the observed hadrons suggested a classification based on their
mass aud quantum numbers. This classification, known as the “eight-fold way” was per-
formed in 1961 independently by Gell-Mann and Ne’eman [2]. The hadrons are divided into
two groups, according to whether their spin (i.e. the “internal” angular momentum of the
particle at rest) is an integer (the mesons) or half-integer (the baryons). Each one of these
groups is subdivided into two sub-groups, ouce again according to the spin of the particles
(this is for the “light particles”, without orbital angular momentum), J” (where J is the
spin and P, the parity quantum number of the hadron, noted + or — for P = +1 and —1
respectively): 07, 17 for the mesons and %+, ;H for the baryons. The fundamental key to
interpret this classification is to realize that mesons come as singlet or octet in the 0~ and
1~ groups while hadrons are seen as singlet, octet or decuplet (see table 2.1 for a listing of
the light hadrous). The important point is that 1, 8 and 10 are dimensional representa-

Mesons | Baryons
JTL O 1 7 -;
KT(491) K°F(8092)  p(938) AT (1232)
KO(498) K*°(896) m(940)  A*(1232)
a+H(140)  pH(768)  A(1116)  A°(1232)
A0(135)  p°(768) TH(1189) A~ (1232)
a=(140)  p~(768) T(1193) T+(1383)
K°(498) K*(896) T-(1197) TV (1384)
K-(494) K*(892) Z=°(1315) £-*(1387)

(

=7(

T

polus

n(549)  w(782) E-(1321) E°*(1532)
i'(958)  ®(1019) 2
O~ (1672)

—*

Table 2.1: List of the light hadrons, mesons and baryons in singlet, octet and decuplet groups.
The mass in GeV/c* is given in brackets.

tions of the SU(3) group of three-dimensional unitary matrices. This observation has lead
Gell-Mann and Zweig [3] in 1964 to suggest the idea of a fundamental triplet of SU(3) which
could explain the formation of all known hadrons, using the following combination rules:

mesons: ¢q=3@3=108
baryons : ¢ =3®33=1H8d8® 10.

This fundamental triplet consists of three spin 1/2 particles: the quarks. These quarks come
in three flavors up (u), down (d) and strange (s). The puzzling fact is that, unlike all other
particles they have fractional charge: u has +%, d and s have —%.

Besides, although the strong interaction Hamiltonian obeys naturally the SU(3) symmetry,
the origin of this symmetry is unknown and therefore, the physical meaning of its constituents
was put to doubt until the early 70’s and the first DIS experiments; quarks were then merely
considered as a mnemonic tool which helped building up the various hadronic wave functions.

The SU(3) theory has however a drawback as it predicts the existence of the At and
7, made respectively of three u and three s quarks. Considering the quantum numbers of
each one of the quarks (spin and flavour) and knowing that these quarks are fermions, this
violates the Pauli uncertainty principle which states that two fermions can not occupy the
same quantum state (in this case two of the u quarks must have the same spin and therefore

all their quantum numbers are identical). To solve this puzzle, Greenberg introduced in

6



1964, the concept of colour charge and the colour wave function [4]. Colour is an additional
quantum number carried by the quark. There are three basic colours: red (r), green (g) and
blue (), corresponding to the three colour states in which the quark can be found. To these
three colours correspond three anti colours 7, § and b which react. with the colour states the
same way as charges react with anti-charges. The vector of the colour exchange mechanisim
is a spin-1 particle: the gluon (which is therefore the vector of the strong interaction, similar
to the photon in Quantuin Blectrodynamics, QED). Gluons themselves carry a colour charge

and can therefore couple to each other, unlike photons in QED.

An additional assumption arises from the concept of colour: the hadrons observed in nature
do not carry a colour charge, which comes to say that the hadron are always found in a colour
singlet state. This hypothesis leads to the so-called colour confinement [5] and restricts the
number of quark systems to only ¢ and ggg. From this comes the name QCD, Quantum
Chromodynamics, that is the part of quantuin mechanics which studies coloured objects and

the mechanisms of colour exchange.

2.1.2 Confinement and Asymptotic Freedom

We saw how the hypothesis of confinement of quarks arises from the concept of colour: only
colour singlet objects can be observed as free particles in nature so quarks, which are in a
colour octet state, can only exist in a confined state, that is as part of a combination. This
translates into the shape of the potential of the strong interaction: in QED, the Coulomb
potential decreases as 1/r to infinity (at leading order). By contrast, in QCD, the hypothesis
that the strength of the interaction rises at large distances generates a non-Coulomb potential
which rises to infinity at large distances. The QCD potential can be written as [6]:

V(r) = —constant - a1 + Vi (), (2.1)

Here, c, is the coupling parameter of the strong interaction, which yields the strength of the
interaction (similar to ay, in QED); Vi(r) is the non-Coulomb part of the potential. It is
assumed that this property of the strong interaction arises from the fact that, contrary to
QED, the vectors of the interaction, the gluouns, are colour charged and can therefore couple
to each other, increasing the eflective coupling strength at long distance [5].

In this context, no perturbative calculation describing the behavior of quarks and gluons was
possible, as it would require to expand the QCD Lagrangian in series of ayy, and the magnitude
of the coupling tern would be such that the series would diverge. The real birth of QCD

happened in 1973, with the discovery of asymptotic freedom [1] which enabled perturbative
calculations to be used to describe the quarks and the gluons. This is the property which
states that the strength of the interaction (the magnitude of the coupling constant) decreases
at very short distances (around 0.1 fm). In this limit, quarks and gluons can be treated as
free particles. Some attempts of explanation for this effect exist: one of them deals with
the fact that, similarly to the electron in QED, polarizing the vacuum and creating new
electrical charges, the gluon creates in the surrounding vacuum new colour charges. The key
point is that these colour charges couple to each other creating colour distributions which
overlap at short distances. In this case the interaction strength is smaller than from point
charges, so that the effective strength tends to zero and the colour charges can be considered
as free particles. Another explanation considers the relative diamagnetic and paramagnetic
contributions of the gluons, which couple to the maguetic field of the polarized vacuum
through their spin [7].

2.1.3 Renormalization Group Equation and Running Coupling
Constant

The two properties of confinement and asymptotic freedom reflect themselves in the behavior
of the coupling strength of the strong interaction potential: ;. They actually translate into
the fact that ¢, varies as a function of the scale of the process () (e, is said to “run” with
the scale (). This scale is defined as being the largest dimensional parameter of the process,
so that all the dimensionless parameters are defined with respect to it.

This is however not the only type of scale which can be defined in quantum field theory:
after having applied perturbative expansion to a large order, the perturbative series starts to
diverge. In other words, at higher order, the series diverges. Because of the small wavelength
of the particles participating in the interaction in this limit, this behavior is called ultra-
violet divergence. In order to suppress these divergences, a cut-off has to be introduced in
the form of a scale called the renormalization scale 1. As p is an arbitrary parameter, any
physical process of the process should be independent of them. It can be shown (see for
instance [7]) that the scale dependence of a variable enters through the dependence of the
coupling constant «, on the scale Q. The renormalization group equation, which determines
the running of the coupling constant is a consequence of that and can be written as [7]:

Q% = f(cy,). (2:2)
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The f(ex,) is referred to as the “beta” function and can be calculated in a perturbative
manner. By expauding it in perturbative series, the following equation is obtained:
O ) )
Q (%; = —bya® — by — byad — - -+, (2.3)

where by, by, by, ... are known terws of the perturbative series (the perturbative expansion is

commonly expressed as a function of 4 terms with gy = dwby, ) = 16720, By = 6dr®by,...).
If only the first term of this expansion is taken into account, the value of (@) can be
expressed as a function of ay(p), at a fixed reference scale (which can be for instance the
renormalization scale):

L () ;
(Q) = 14 avg (1) bolm (Q2/ 11%)” (24)

The coeflicient by is equal to 7'; (11 - %'n./), were n; is the number of quark flavours in the
theory. If n; is smaller than 17 (which is the case in the SU(3) theory), the coefficient by
is positive and therefore «y, decreases when @ becomes large aud oue recovers the property
of asymptotic freedom. Should the number of flavours be larger than 17, c, would increase

at large @ and QCD would not be an asymptotically free theory. By contrast, the coupling

strength in QED can be expressed as:

CY(‘JII
- — L S [
aam(Q) = 1 i ﬂuu.l”.gl. (20)

125" mi
There, the coefficient in the denominator is negative and e, (Q) grows as @) grows and
unlike QCD, QED is not an asymptotically free theory.

2.2 DIS: the Success of the DGLAP Equations

The best laboratory to study the theory of the strong interaction is the proton itself. Provided
that swall enough distances inside the proton can be probed, its fundamental constituents
can even be studied. This is the concept behind deep inelastic scattering (DIS), whereby
a high-energy lepton collides against a hadron target. Provided that the momentum of the
exchanged boson, @ is larger than the inverse size of the hadron, the inner structure of the
target can be revealed, and in particular the momentum distribution of its constituents.
These momentum distributions can be parametrized in the form of structure functions and

compared to theoretical predictions.

The first DIS experiments took place in SLAC (Stanford Linear Accelerator Center) in
the late 1960’s [8] aud revealed a number of discoveries, in particular the invariance of

9

the structure function of the proton with respect to the momentum transfer between the
scattered electron and the target proton. This structure function was found to be only
dependent on the momentum fraction of the struck constituent of the proton z. This “scale
invariance” was interpreted as an evidence that the scattering involved point-like particles
ingide the proton: the partons. In 1969, following a model created by Feynman in 1968 (the
parton model [9]), Bjorken and Paschos identified the partons with the quarks described in
the previous chapter [10].

The breaking of this scale invariance, also called “Bjorken scaling”, at low momentum trans-
fer ()? was observed in the muon-proton scattering, BCDMS [11] and NMC [12] at CERN and
then in ep scattering at HERA. It was the first evidence that the simple parton model was
a crude approximation and that more complex diagrams (the next-to-leading-order (NLO)
corrections) had to be considered.

Several DIS experiments after the pioneering SLAC experiment took place in the CERN
and FNAL institutes. These experiments could probe the structure function of the proton
over an extended kinematic range, but none of them could match the HERA experiment,
the world’s first ep collider, where the center-of-mass energy of around 300 GeV enables to
reach new kinematic ranges and probe new kinematic regimes.

2.2.1 The Quark-Parton Model (QPM)

Basic DIS Variables

The simplest and first order Feynman diagram to be considered in the deeply inelastic
scattering of a lepton off a proton is shown in figure 2.1.

There, the incoming lepton (of momentum k) exchanges a virtual boson (momentum ¢) with
the target hadron (momentum p), which disintegrates into a number of particles. If &' is the
momentum of the scattered lepton, p' the total momentum of the proton system after the
collision, s the square of the total center of mass energy of the collision and t the squared
energy trausfer of the collision, the system is kinematically defined by the set of equations:

¢¢=(k-FK)?=@-p) =t (2.6)
s=(k+p)’ ~4E,E. (2.7

Here E is the energy of the incoming lepton. At leading order, the virtual boson scatters
off one of the three valence quarks of the proton. In this picture, called the Quark-Parton
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Figure 2.1: Deep inelastic scattering between the virtual photon and the proton in the Quark
Parton Model.

Model, the total cross section of this process can be described by two independent variables.

By convenience, Lorentz invariant parameters have been chosen:

Q2= ¢, (2.8)
Q .
o= g 2.9
- 2p-q P4
Two other variables are usually introduced:
p= 858 (2.10)
my,
q-p
Y = ——. 2.1
et (2.11)

If £’ is the energy of the outgoing lepton in the rest frame of the proton, » and y can be
shown to be respectively the total and relative energy transfer between the lepton and the
target hadron:
v=FE -E, (2.12)
E-F

y=—g (2.13)

Using the Mandelstam variables, one can show that x, y and @Q? are not independent but

related to the square of the center of mass energy s by the relation:
Q* = 3y, (2.14)
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The important feature of the QPM is that the partons are supposed to act as free particles,
without interaction. Besides, if the proton moves very fast in the center of mass frame, the
transverse momentumn of the partons inside the proton can be neglected with respect to their
longitudinal momentum. In this context, the variable x can be shown to be equal to the
momentum fraction of proton carried by the struck quark. In the experiment, the variables
z, y and Q? can be recoustructed from the energies and angles of the scattered lepton and the
hadronic system. Three reconstruction methods exist, which are described in the appendix
A: the electron method, which relies ouly on the scattered electron (positron) information,
the Jacquet-Bloundel, which takes into account only the hadronic energy and average angle
and the double angle method which combines both and relies on the angles of the scattered
lepton and the hadronic system. According to the equation 2.8, Q? is the negative square
of the momentum transfer and determines the scale of the process. As a matter of fact, the
resolution power of the photou is given by its wavelength A: the smaller A, the smaller is
the distance that the photon can probe within the proton. Through Heisenberg uncertainty
principle, it can be shown through the De Broglie wavelength, that:

B _1_ 1 i i - 20u%

TN e o

(2.15)

This shows that the larger Q? is, the smaller is the wavelength of the photon and therefore
the larger is the resolution power of the exchanged boson.

DIS Cross Section and Structure Function

The cross section of the DIS process can be shown (for instance in 7] or [13]) to depend on
two terms, one related to the electromaguetic vertex, calculable to all orders in Quantum
Blectrodynamics (QED) aund another one, at the proton vertex, which can not be fully
calculated in perturbative QCD (pQCD). In the case of a virtual photon exchange, the cross
section can be parametrized the following way ':

do dra?

dedQ)® ~ wQ? (1 = y) o, Q) + s Fi(z, Q7)) (2.16)

where Iy and F, are two independent structure functions, parametrizing the momentumn
distribution of the partons inside the proton. o is sometimes written as a function of a

VIf Z or W are involved in the process, a third terms appears which takes into account the amount of
parity violation of the system. :
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longitudinal structure function, featuring the absorption by the proton of a longitudinally

polarized virtual photon: Fy, = Iy — 2xl7.

dgy edman s N e
wd? = W[(l =y + ) Q%) = S Fife, Q%) (2.17)

Iy, is often neglected with respect to Fy. Indeed it vanishes in the QPM, due to the Callan-
Gross relation [14] (which state that spin 1/2 quarks cannot absorh longitudinally polarized
photons):

F, = 22F,. (2.18)
The structure function F, cannot be calculated from the fivst principles, as it receives con-
tributions from the long-range, non-perturbative part of the QCD Lagrangian, but it can be
parametrized as a function of the contributions from the various quark flavours:

F=g Ze'ffi(:z;, Q4 (2.19)

where ¢; is the charge of the quark of flavour ¢ and f; is the distribution of probability to
find the quark i with the momentum fraction x. In the QPM, the partonic cross section
& can be similarly parametrized and a partounic structure function 17} can be defined. The
amplitude of the collision: e(k) + q(p,) — e(k') + q(p,) can be computed and Fy can be
derived (see [7, 13]):

Fy = 11:636(:1: —€), (2.20)
where € is the momentum fraction carried by the struck quark. This is conform to the idea
that the photon collides against point like constituents of the proton (of fractional charge
¢,) and therefore, at a given x, F, is independent of Q*, which can then be written as:

Fy(x, Q%) — Fy(x). (2.21)

The measurement of this structure function has been performed on an extended range of
@ and @7 by several experiments and in particular the ZEUS experiment [15] at HERA.
The result of the F%, measurement for different bins of x is shown in figure 2.2. The trend
expected by the Bjorken scaling is seen at high (* and high z, where the F} distribution is
flat with respect to Q?, in different bins of . At lower z, however, systematic deviations
from this scaling can be observed. A closer look at the plot would show that the amount of
deviation from the Bjorken scaling is proportional to InQ?. The scaling is said to be broken
in logarithms of @%. One can also show that in the small-x limit, £, follows a power law
as a function of z, such as: Fy ~ 2™, where A ~ 0.3. This behavior can not be explained

within the limits of the QPM.
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Figure 2.2: Measurement of the structure function of the proton Fy as u function of Q% in
various bins of . Together with the ZEUS measurement are presented H1, NMC, E665 and
BCDMS measurements.
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2.2.2  Scaling Violation and Factorization Theorem

Ou top ol the basic hypotheses of QCD, the QPM makes assumptions on the dynamic of
the hadron collision, namely the absence of transverse momentum for the partons iuside
the proton and the absence of interactions between these partons. In the QPM, the proton
is made of three valence quarks (it is said to be completely valence-like). This is however
only true at high @)%, where the longitudinal momentum of each one of the quarks within the
proton is much larger than their transverse momentum (the proton is then said to be moving
in the infinite mowmentum frame), so that their interaction can be neglected. At lower Q*
and lower x, the quark can emit a gluon, which can in turn change the quark’s transverse

momentum. The photon can then couple directly to the emitted gluon.

Several additional Feynman diagrams have to be considered to take into account these high-
order effects. The leading-order diagramns are shown in figure 2.3 and reflect the possible
modes of coupling between the virtual photon and the partons within the proton; the photon
can couple directly to the quark before (or after) the gluon emission: this diagram is called
QCD Compton or QCDC (by relerence to the “QED Compton” process where the photon
couples to the lepton and is then re-emitted). The photon can also couple directly to the
incoming gluon, giving rise to a quark-antiquark pair, through the Boson Gluon Fusion

(BGF) mechanism.

These diagrams show that at low x, the parton which is probed is not a fundamental con-
stituent, but it has a structure related to its history (which can start within the proton itself).
These fluctuations, which form the real history of the probed parton are large at small x;
here @ cannot refer any more to the momentwm fraction of the original constituent, but to
that of the propagator involved in the photon coupling. The smaller x is, the larger is the
probability that the propagator parton arises froin the fluctuation of another parton, rather
than from the primordial constituent of the proton). Because Q* determines the resolution
power of the process (remember that W is proportional to the inverse wavelength of the
virtual photon), as @? becomes larger, so does the number of partons resulting from these
fluctuations which can be observed. Therefore the effective density of partons within the
proton, and hence the magnitude of the structure function F,, will rise with the resolution
power @* at small x. This is the intuitive idea behind the concept of scaling violation.

In order to quantify this effect, the cross sections of each one of these processes, o, have to
be evaluated. But at this point, one faces two problems: first, the structure functions of the
proton can not be calculated from pQCD, because the partons are confined within the proton
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Figure 2.3: Three modes of parton-photon coupling at leading order in ay:a) and b) QCD
Compton, ¢) Boson Gluon Fusion.

and part of the observed cross section then comes from long-range, non-calculable processes.
On the other hand, the calculation of the partonic cross section (when considering only the
collision between the original parton and the virtual photon; for instance v* + ¢ — g+q
in the diagram 2.3 a)) leads to logarithmic divergences. Several techniques exist to get rid
of these divergencies (see for instance [7, 13]), involving the use of cut-off or dimensional
regularization (changing the number of space-time dimensions in order to regularize the
divergent integral). These divergences occur when one of the partons of figure 2.3 is either
soft (k = 0) or collinear to its parent parton (kr = 0). In both cases the emitted parton has
a long wavelength (this is why they are referred to as infra-red divergences) and corresponds
to the long-range physics which has been described in the previous section, namely the
processes where vy is large and pQCD calculations cannot be applied any more.

The fmportant result which has been obtained is that both problems, divergencies of the
partonic cross section and impossibility to derive Fy from the first principles, are due to
the same cause, the failure of applying perturbative QCD outside the scope of asymptotic
freedom, that is to say, outside the limits of short-distance interactions. To solve this puzzle,
one introduces a non-calculable (“bare”) parton distribution, at a certain scale pp (the
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“factorization” scale): q(wx, %), which is related to the probability of finding a parton with
momentum fraction x within the proton. This distribution is convoluted with the partonic
cross section & (x, p%), according to the factorization formula:

oprs = Y a(x, 1p) ® 6(x, ui), (2.22)

1
where i runs over the type of partons (gluons and various quarks flavours). The factoriza-
tion theorem states that this formula is true for any kind of processes and that (v, i)
is universal, i.e. it does not depend on the type of collision or on the diagram which is

cousidered.

The introduction of the scale o enables the solution of the divergencies the following way:

e If the transverse momentum kp of the emitted parton is larger than the factorization
scale pp (typically 1-2 GeV), it is included in the calculation of the partonic cross

section 0.

e il kp < pup, then the parton is “absorbed” into the bare parton distribution.

In practice, the exact determination of the parton distribution ¢(z, u%) requires the inte-
gration over a large number of diagrams, which can be summarized in the gluon ladder of
figure 2.4. This involves integrations over the transverse momenta kg of the emitted par-
tons along the gluon ladder shown in figure 2.4, so that the real parton distribution is a
combination of many distributions depending on the transverse momenta of the emitted

partons:
. ~;/.7,. (lk‘l l“f.- (”(;2 . 'ﬁ‘i\ (ll\.z
2 Tk ¢ T2 T\
&, 1) = — f(x, k = f(x, kr2) - —=f(x, kryp)- 2.23
(e, 1) / i, I T.l)/ W f(w, kr2) / 2, f(w, kryn) (2:23)

Here f(w,kr,) is the parton distribution unintegrated over the gluon ladder (related to the

probability to emit a parton with momentum fraction z and transverse momenturm kr.n)-
By requiring the parton emissions to be strongly ordered, so that:
QR>ki,> >k, >k, (2.24)

one can reorder the integrals and perform the integration over the n “rungs” of the gluon
ladder (see [16]). Only in this case, equation 2.22 can be solved numerically while the full

dependence over each of the transverse momenta of the emitted gluons is lost.
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Figure 2.4: Gluon ladder representing the sum of all the Feynman diagrams contributing to
the DIS cross section. The momenta of all the gluon rungs are written to the right of the
gluon line. From energy-momentum conservation, we obtain the relation v < x, < --- < z.

2.2.3 'The DGLAP Equations and the Leading Log Approximation

From equations 2.22 and 2.16, one can in principle obtain an expression for the structure
function of the proton F,. But the determination of the exact value of F; is still bound
to uncertainties: first, there is a non-perturbative, that is a non-calculable, part in this
expression corresponding to the contributions from the long-distance part of the strong
interaction to the total DIS cross section. Then, the expression involves an arbitrary scale
i, which delimits the relative contributions of perturbative and non-perturbative physics.
Since this scale is not “physical”, the total cross section should not depend upon it. Finally,
as we saw in the previous paragraph, some approximations are made which restrict the phase
space available for the parton emissions in order to enable numerical estimations.

As in the case of the strong coupling constant «y, whose scale independence requirement
lead to the renormalization equation, a similar type of equation can be derived for the total
DIS cross section (for convenience, the logarithmic derivative is taken):

do d

e T 42 Sl g2y —
dinpp  dlnpp gq'(l’“’") ® 6i(z, ug) = 0. (2.25)
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One can expand this equation:

“ > (a

dinjp

d . 5
) ® ——di(x, p3) | =0. (22
(llIL/L (@ 165) ® Giliw, 1) + i, 1) @ (llnﬂpo'(’"’ﬂp)) 0 (2.26)

And it can be rewritten as [7]:

T ) = 52 5 [ EP e ) (2.27)
The term [%; is called the splitting function and corresponds to the probability for the parton
i with momentum ¢/” to emit the parton j, with a fractional momentum  (smaller than
¢, in order to conserve energy and momentum). There are four types of splitting functions:
Pyys Pyqy Pyy and Py, (see figure 2.5). They can be expanded in perturbation series:

P(Z (b)) = 65 P5(5) + S2PY(E) + (f;;r)pj(fw (2.28)

The leading order splitting functions have been derived (for instance in [17]) and are given
below for the four type of branchings: ¢ — qg, ¢ — 9¢ and ¢ = gg and g — ¢

Po(@) = ; (11412 > (2.29)
Py (z) = g (U—U;:—)j> (2.30)
P (z) = %(;L-? +(1-2)), (2.31)
0 b l=u s
Poa(w) =6 (1 —a € ) +5(1 - 2). (2.32)

This leads to the famous leading order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (or DGLAP)
equations [18], where only the first order terms of the splitting function are taken into ac-

count:

dai(w, i) _ de o
Tdinpe s o Z/ —Py( ‘hﬁuF) (2.33)

The solution to this equation enables to obtain the parton distribution at any scale Q% if it
is know at a given scale QF (Qf < Q).
The DGLAP equatious have an interpretation in terms of probability: by increasing the

virtuality of the parton ¢ by an amount of lnup, there is a certain probability to resolve its
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Figure 2.5: Splitting functions corresponding to the probability, for a parton with momentum
€L, to split into 2 partons, one having a momentun xP and the other (€ — z)P.

parent parton j, carrying a momentum fraction e (that is £ larger momentum than i) and
with a smaller transverse momentum (see figure 2.6).

In practice, all these approximations lead to retain, in the perturbative expansion of the
parton density q(z, u%), only those terms with a leading (cv,(nQ?)". Therefore, this method
is called the “Leading Logarithm Approximation” or LLA(Q?).

Thus, this picture predicts that each parton evolves independently of all the others in in-
creasing virtuality and decreasing momentum fraction. As we will see in the following, these
approximations are valid only in a certain kinematic range and one of the goals of the present
study is to determine this range of validity.
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Figure 2.6: Schematic representation of the DGLAP equations in terms of Feynman diagram:
increasing the virtuality of the parton with momentumn fraction © enables to resolve its parent
parton with momentum fraction ¢.

2.3 The Low x Region: High Energy Limit and BFKL
Equation

2.3.1 Non Linear Phenomena: Shadowing and Hot Spots

In the previous section, the partonic mechanism of DIS has been pictured as an independent
evolution of a single parton: inside the proton, the parton “on-mass-shell” (this means that
its invariant mass is equal to its rest mass) evolves towards the collision and the coupling
with the photon by successively emitting daughter partons along a gluon ladder, losing
each time a fraction of its total momentum. A look at the fundamental parameters of the
evolution equation, namely the splitting functions (equations 2.28 to 2.31), shows that at

low x, singularities appear:

4 1 4
Pw STl P‘m i 51 P.lm s

1
: LA ey (2.34)
3 &z %

3 4

The branchings which give rise to a gluon are singular, leading to divergent gluon densities
at low 2. In [19], Mueller describes the dynamic of the low @ processes in the following
terms: “At very small values of x, the number densities [of partons] obtained may become
large enough that the quanta overlap spatially, in which case one expects scattering and
annihilation to occur as well as evolution”. In this context, the approximations which lead
to a description of the parton dynamics using linear equations are not valid any more and
the gluous can recombine and annihilate each other. At some point the gluon density might
therefore saturate and evolution cannot occur any more. This process is known as shadow-
ing [19, 20] and leads to a flattening of the structure functions at very low @. This happens

when the transverse area occupied by the gluon? is comparable to the size of a nucleon = R?
(R~ 1 fm). If the gluon density inside the proton occupies a transverse area of the size
of a parton (R ~ 0.4 fm), a different scenario is expected, which is called “Hot Spot” [21].
However all these effects should happen for low values of @, where the uncertainty due to
non-perturbative physics is expected to be large and the measurements of the shadowing
and Hot Spot might be difficult to perform at HERA.

2.3.2 Double Leading Log Approximation and Description of the
Low z Region by the Standard Structure Functions

In the previous section, we saw how, intuitively, the rise of the structure function at low «
can be understood by taking into account the history of the parton involved in the coupling
to the photon, that is, in practice, looking at higher order Feynman diagrams. This leads
to a parton distribution which evolves as (v n(Q?/Q3))", where Q2 is the starting scale, at
which the parton distribution is known. In practice, this means that, in the perturbative
expansion of the parton density in terms of (nQ? and lna—l:, only the terms with a leading
In()? are retained, neglecting the terms involving ind and (nQ*nt. In order to improve the
description of the parton densities at low = and include the lni terms in the distribution,
another approximation is performed when solving the DGLAP equations, which consists in
retaining the most singular lnf terms, when they are accompanied by [n@Q?. This corresponds
to an additional requirement on top of the strong ordering of equation 2.24: the strong
ordering in the momentum fraction of the emitted partons:

T Ty K v B (2.35)

This method is called the Double Leading Log Approximation [22] (DLLA) as it is effectively
summing up terms with large logarithms of )* accompanied by large logarithms of Jl It is
only valid in the limit & — 0 and @* — co. As the gluons dominate the parton densities
within the proton in this low-z region, only the gluon distribution is relevant here. It takes

2
oz, QR = %exp {\l % In (%) In (%) } g (2.36)
: . :

2 1f the photon probes the proton at a scale 9%, it can resolve a transverse size of 1/ and therefore, the
transverse area goes as wg(w, Q?)w/Q?, where g(z, Q?) is the gluon density inside the proton

the following shape:
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From this equation, we can see that, although they predict a @? dependence for I, neither
the Leading Logarithm Approximation, nor the DLLA have the kind of singular behavior in

2~ which can be inferved from the data.

However, the current parametrizations of F, using both leading and double-leading loga-
rithm approximations, manage to describe the data. To achieve this agreement, the common
procedure is to parametrize the structure function at a starting scale Qf (this gives the input
parametrization, as a function of ) and then evolve it according to the DGLAD equations.
The most popular and commonly used parametrizations use the following methods to repro-
duce the singular behavior of I in the data:

o The CTEQ [23] (Coordinated Theoretical and Experimental Project on QCD) and
the MRS [24] (Martin-Roberts-Stirling) groups use singular input, of the form 2~
at a large enough Q2: Q% = 2.56 GeV? for CTEQ and Qf = 4 GeV? for the MRS

parametrizations. Both parametrizations look like:
wqi(w, QF) = AN (1 - z)" P(g, ). (2.37)

Here i is the quark flavour or gluon. P(x,4) = (1-+ey/x+7yx) for MRS and (1-4~y2) for
CTEQ. The various parameters, A;, v, €, A, 1; must satisfy some basic requirements
like flavour sum rules and other momeutuwmn sum rules (see for instance [25] for the
various criteria). The other free parameters are derived from comparison to data at
LEP or at fixed target experiments. The main problems with these methods is the big
dependence on the various parameters: as the inputs are singular, a small change in
the phenomenological parameters might result in dramatic discrepancies.

The GRV (Gliick-Reya-Vogt) group [26] uses flat input at very small starting scale
(@2 ~ 0.3 GeV?): in this picture, the proton is constituted by valence quarks at low %,
the gluons and sea quark being generated dynamically through the DGLAP equations.
The input parametrizations are actually the MRS “valence-like” parametrizations (at
high Q3) evolved backwards towards a smaller scale:

zgi(z, Q%) = A (1 — x), (2.38)

Here again, 4 runs over the type of parton chosen and the various phenomenological
parameters are derived from fits to the data. This method is much less sensitive to the
value of the input parameters, but it uses pQCD (the DGLAP equations) at very small
scales, where non-perturbative effects can be large and contributions from non-linear
phenomena (see previous paragraph) can be important.
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In 1994, the ZEUS collaboration measured the F, of the proton and compared it to the
various paramelrizations [15]. The result of this comparison is shown in figure 2.7. At small
Q% the GRV parametrization lies a little bit above the data points, while the MRS and
CTEQ distributions describe the data well (at Q% above their starting scales).
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Figure 2.7: Structure function Fy of the proton as a function of x in various Q*bins. The in-
deses “ISR” and “SVX” (respectively “Initial State Radiations” and “Shifted Verter Runs”)
refer to specific methods to obtain Fy at very low x and Q?. Together with the ZEUS mea-
surement are presented the results from NMC, EG65, BCDMS and SLAC.
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2.3.3 A Perturbative Origin to the Steep Rise of Fj: the BFKL
Equation

In the previous sections, the structure function of the proton was shown to rise at fixed wx,
as a function of Q2, breaking this way the “Bjorken scaling” which arose from the QPM.
This rise cau be shown to follow a power law: Fy ~ = and it can be reproduced by a
commion set of parametrizations, using the standard DGLAP evolution picture, either by
starting from a singular input at moderate Q*(see previous section), or by chosing a flat
input at very low Q% Although both methods agree with the data, they have drawbacks,
mainly because they apply perturbative calculations in a region where non-perturbative and
non-linear effects can be large. Moreover, we have seen in the section 2.2.3 that the splitting
functions could be expanded iu perturbative series involving terms of lc at high order (in
particular the two splitting functions P, and Py,). The DGLAP equations neglect those
terms in l'n.ﬁ, if they do not come with a large logarithm of Q*. However, at low x, these
terms become large and can not be neglected any more and the DLLA might lead to missing
some of these large logarithms of L, which do not come with a logarithm of @

We have seen that the LLA solution to the DGLAP equations was obtained by restricting
the calculations to the phase space where the parton emissions were strongly ordered in kg
(see equation 2.24), and therefore uses the gluon density zg(x, Q?), integrated over k%. In
order to include the leading ln_% terms in the summation, a different technique has been
developed, which is expressed as a function of the unintegrated gluon density defined as:

2 2
:,;;,(;u,(,z!):/oQ %7— (z, K2). (2.39)

The summation of the leading logarithums of L, taking into account the full dependence on
the kp of the emitted gluons is performed by the BFKL (Balitski-Fadin-Kuraev-Lipatov)
equation [27]:

Of(x, k%) 3oy, [ dk | fla, k?) — f(x,k}) fla, k)
= L Nl e e 5 - - + 2.40
olnt T . /u kot |k — k2| \ kgt + k4, (5
af .'.',k2 " > = SN '
—%l—d - / KK po(kr, k) f(x, k7). (2.41)

As the equation only involves the unintegrated gluon density, it is no longer necessary to
require strong ordering in the parton emissions and the phase space constrained by equa-

tion 2.24 can be widened. However, because the equation sums only leading ln::—: terms, a

strong ordering on w's is required, similarly to the DLLA case:
TR & Sy (2.42)

The BFKL equation is ouly valid in the high energy limit, where s > —t (using the Man-
delstam variables s and ¢ defined in section 2.2.1), that is, at fixed @, in the low x limit.
The derivation of this equation is quite difficult and is beyond the scope of the present work.
It refers to the fundamentals of Regge theory, which has not been discussed here. For a
detailed discussion on Regge theory, derivation and treatment of the BFKL equation, the
reader can refer to [28].

The leading order term I in equation 2.41 is the kernel of the Leading Order BFKL
equation. The solution of equation 2.41 involves the determination of the eigenvalues of this
kernel (it can be shown to be dominated by the largest eigenvalue of K [29]).

The enticing feature of this evolution picture is that the integrated gluon distribution which
is derived follows a power law as a function of x, reproducing the shape of the structure
function F as inferred through the experimental data, without having to make assumptions
on the input parton distribution or to use pQCD at very low Q%

wg(e, Q%) ~ F(Q)a. (2.43)

Here, A has been found to be of the form \ = %‘—HHHZ =~ 0.5. The rise of the structure
function is therefore steeper than what is expected from the experimental data (where it has
been found that F, was rising as 27%?), but this result relies on numerous approximations
and is bound to some uncertainties, so that one can hope to improve this estimation.

First of all, because of the absence of kp ordering, the parton emissions can diffuse in the
non-perturbative region where hadronization uncertainties are large. A cut-off krp has to
be introduced so that Qy < kpo < kr. The result of the equation might therefore depend
on this cut-off.

Next the result given in equation 2.43 has been obtained with a fixed «,. Cousidering a
running «, might lead to a dramatic change of the results, as we just saw that the partons
emitted might have very small k7 and therefore «, can become very large. In any case, a
running o is expected to decrease the value of A [30].

Unitarity corrections have to be envisaged as the parton distributions are singular for z — 0.
However cousidering the running ¢, might reduce this eflect as it is supposed to weight the
distribution towards the infra-red (non-perturbative) limit.
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Contrary to DGLAP, the BFKL equation does not require energy and momentum conserva-
tion at each branching. Implementing this requirement could lead to large discrepancies, in
particular for the hadronic final states distributions (see [31]).

Finally, the most important changes to equation 2.43 might arise from the next-to-leading
order (NLO) corrections to the BI'KL equation. Much work has been done to implement
them in the BFKL kernel [32] and the first estimations yield large and negative corrections.
According to the authors, the BIFIKL equation at next-to-leading order would look like:

0 &€T, AZ o ' 2 - - P - 7 " 2
%11)- = / A’ k(o I 0 (b, Ky) + 2 Kypo(kr, ) f (0, k), (2.44)

leading to the following solution:
2y(ew; Q) ~ F(Q)z A2, (2.45)

Here, the exponent of z is =\ -+ AN ~ 0.03 [33]. At this stage, this number is only a rough
estimate of the expected next-to-leading order corrections effects to the BFKL kernel and
corresponds to the one-loop corrections only. It does not include effects of the running ag
and therelore the value of 0.03 should be considered very carefully. If this is true, this means
that the BFKL picture is unable to describe the steep rise of F, and then the whole picture
is wrong. However, as these NLO corrections are large, one might expect also large NNLO
corrections (Next-to-Next-to-Leading Order), which could be on the other direction [33],
increasing the slope of the predicted F,. In this context, no solid conclusion could be drawn

until one finds small high order corrections.

2.3.4 Attempts to Unify the DGLAP and the BFKL Pictures
Expanding the splitting function terms

One of the goals of the description of the parton evolution is to unify both pictures DGLAP
and BFFKL, as they are valid in complementary phase space regions: high x and high Q?
for DGLAP, low « for BFKL. The validity range of each one of the model, as well as the
kinematic boundaries which limit the use of perturbative calculations and linear equations,

are shown in figure 2.8.

To perform such a task, one might think about including in the DGLAP picture the higher
order terms in lni which appear in the perturbative expansion of the splitting functions.
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Figure 2.8: Validity range for the three evolution equations: LLA(Q?), DLLA and LLA(%).

The general shape of the splitting function P(x) is (see [7, 25]):
S as\" . n 1 m—1
aB{zves)i=n (E) Y An(in-) (2.46)
n=1 A m=—o00 €T

where the negative m terms are finite in the limit 2 — 0. The various models which were
part of the previous discussion correspond to the following approximations:

e n = L: only leading logarithms of )* are retained in the sum. This correspouds to the
LLA(Q?).

e n = 2: this is the so-called next-to-leading logarithm approximation (NLLA), where
the first term in lnn% is taken into account.

e n 2> 1,m = n: this corresponds to the summations of the leading lni terms and
therefore the LLA(L). This can approximate the result of the BFKL equation.
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e n>1,n=morn=1m-+1: it gives the next-to-leading logarithm correction to the Jl
sum. It is called NLLX(%)

e n = 1,m = 1: this is the common point between the LLA(‘J‘—:) and the LLA(Q?) and

corresponds to the DLLA.

The summary of these calculatious is illustrated iu figure 2.9.
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Figure 2.9: The (n,m) plane defining the different kinds of sumimnalions, including the
DGLAP and BFKL pictures.

Angular ordering and the CCFM equation

A second attempt to match BFKL and DGLAP evolution pictures has been performed by
the CCFM group [34] (Ciafaloni-Catani-Fiorani-Marchesini). Unlike the previous splitting
function picture, the CCFM equation deals with an unintegrated gluon density (like the
BFKL equation) and is based upon the idea that partons along the gluon ladder shown in
figure 2.4 are emitted with an angular ordering, so that, if §; is the angle of the i emitted
parton with respect to the original direction of the first gluon emitted in the ladder, f;4, > 6;.
The basis of this idea lies in the concept of colour coherence [35]. The theory of coherent
emissions comes from QED: the starting point is the observation that a photon emitted from
an e*e™ pair could not resolve the internal structure of the pair if it is emitted with an angle
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larger than the angle between the two electrons. As a matter of fact, the transverse separation
p1. between the ete™ can be related to the emission angle of the photon through [17]:

O+ ¢
0,

Here A, is the transverse wavelength of the emitted photon. Therefore, if 6., > @,+.-, the

[)L%/\L

(2.47)

wavelength of the photon is larger than the distance separating the electron-positron pair
and the photon can not resolve each individual charge. It ouly resolves the total electric
charge of the pair, which is zero in this case.

Similarly in QCD, the gluon emitted at large angle by a quark-antiquark pair can not resolve
the internal structure of any one of the quarks or act as if it were emitted by the parent
gluon (see figure 2.10). From this property follows that one can approximate the sequential
emissions of partons along the gluon ladder as being ordered in angle. As the emission angle
of the gluon is related to its energy E and transverse momentum kp through 6 = %, the
partons emitted in the high energy limit or at small , where £ >> ks can be ordered in angle
without being ordered in Ly, so the effects of the BFKL evolution can be approximated. At
moderate = and Q?, ordering in kr is again implied and the result of the evolution should
match the predictions based on the DGLAP equations.

q g39 q
"“’<<%4“ : 0
s = 3
g = % g =
q q ’ q

Figure 2.10: Schematic representation of angular ordering in a QCD cascade due to colour
coherence. The condition of colour coherence is: 0y < 03 and 0y < 0.

Some work is currently made to match the CCEM predictions to the experimental data, but
it has been found that the calculations are very much dependent on high order corrections,
leading to large uncertainties in the description of the structure function of the proton [36, 37].

2.4 Experimental Evidences for a BFKL-like Evolution
Picture

The main purpose of the current study is to evaluate the validity range of the various pictures
discussed above and in particular discriminate between the DGLAP and the BFKL evolution
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schemes. Since the early 90’s, a great deal of work has been performed, especially at the ep

collider HERA, to probe the low-z kinematic range with various observables.

We have seen that the structure function evolved with the DGLAP equations managed to
reproduce quite well the steep rise of F, observed at HERA and in various fixed target
experiments. To do that, the various parametrizations have to take into account the non-
perturbative contributions to the structure functions F either by chosing singular inputs to
the DGLAP equalions, or by starting the evolution mechanism at very low Q% It has then
been concluded (for instance in [38]) that £ is too inclusive a quantity to be sensitive to the
perturbative mechanisms which control the parton evolution. In order to probe the latter, it
might be more suitable to use more exclusive quantities like the ones constructed from the
hadronic final states, that is the hadronic outcome of the ep collision (further details ou the

definition of “hadronic final state” will be provided in chapter 6).

The starting point of all analyses aiming at determining the validity range of the various
evolution pictures in DIS is the difference in the strong ordering requirements between the
different evolution equations and in particular the absence of strong ky ordering in the BI'KL
and CCFM pictures. Another important feature of the BFKL/CCFM pictures is the steep
vise of the gluon density at small z, which makes this kinematic region very sensitive to the

parton evolution scheme.

The main quantities used up to now to probe the partonic mechanisms at small = are the
transverse energy flow in the Hadronic Center of Mass (HCM) distribution, the transverse
momentumn pr spectrum of charged particles, the forward #° meson production, the forward
jet cross sections and the angular correlations between leading order jets in the HCM?®.
Although all these measurements can provide greater insight on small-v physics, they are
bound to the same uncertainty as [y, namely the hadronization and non-perturbative effects,
although it is hoped that these are reduced in the case of hadronic final states.

3 In the following introduction, we will concentrate on measurements performed at HERA and we won't
speak about other attempts, like the one performed by the DO collaboration at Tevatron, to study the
production of a pair of jets at large rapidity interval [39]
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2.4.1 'Transverse Energy Flow in DIS

The first relevant observable to have been studied and measured at HERA is the transverse
energy flow in the central rapidity region of the hadronic center of mass frame 4. The
studies have been performed mainly by the Durham group and explicit calculations were
provided for comparison with the experimental data [40]. The idea is that in the BFKL
picture, a larger amount of transverse energy than in the DGLAP scheme is expected in the
region between the leading order partons (quark box in figure 2.4) and the proton remnaut,
which correspond to the central rapidity region in the HCM. The calculatious have been
performed for # < 107 and have yielded a Fy distribution exhibiting a fairly flat plateau
in rapidity with Er & 2 GeV per unit of rapidity. The same calculations performed with
the DGLAP equations lead to a much smaller amount of transverse energy in the rapidity
plateau (E7 < 0.5 GeV per unit rapidity).

The transverse energy flow was first measured by the H1 collaboration in [41] using the
1993 data of the HERA ep collider (center of mass energy: /s = 296 GeV). The low-x
range was probed by this analysis: 5 < Q? < 100 GeV? and 107" < z < 1072, and the
quantity -,'7%1- was estimated in various bins of @ and Q. A second measurement by the
ZEUS collaboration [42] used the 1994 data sample of HERA with enhanced statistics and
probed a similar kinematic range: @ > 10 GeV? and x < 1073, Both measurements found
trends which were compatible with a BFKL-like dynamics, namely an enhanced amount of

transverse energy in the central region of rapidity in the HCM.

However there were large uncertainties with these results, mostly due to the hadroniza-
tion effects: the data which is collected in the ZEUS and H1 detectors is made of stable
hadrons, which live long enough to reach the main component of the detectors. At this
stage, the long-range physics contributes significantly to the measured effect and the per-
turbative calculations, performed in the limit of short-range physics must be corrected for
all the non-perturbative phenomena which enter into the physics process. As these effects
are not calculable, one is bound to use models to estimate them. These simulations, called
Monte Carlo models because they use random numbers in the process of event generation,
will be discussed in details in the next chapter. In the transverse energy flow analysis, the
DGLAP-based generator LEPTO [43] and the BFKL-like model ARIADNE [44] were used to
estimate the “hadron level” energy flow. The non-perturbative effects included in the Monte
Carlo model can be tuned and the transverse energy flow was found to be very sensitive to

* The rapidity is a longitudinally Loventz invariant measure of the polar angle. In practice, the pseudo-
rapidity 7 is used in the measurement. This quantity will be defined in chapter 4.
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one of LEPTO’s soft effect: the Soft Colour Interaction (SCI) (this effect will be discussed
in some details in the next chapter). By varying the amount of SCI, the LEPTO model was
able to reproduce the transverse energy flow in the central rapidity region (see (45]). The
key point is that 60-80% of the energy flow predicted by this model is produced during the

hadronization phase. By contrast, in a BFKL-like model like ARTADNE, only 30-40% of

the energy flow is produced during the hadronization phase. The parton level predictions,
based on pure BFKL calculations lie, significantly above both models predictions.

The measurement of the transverse energy {low is therefore unable to distinguish between the
DGLAP and the BFKL pictures. Similarly to the I case, the non-perturbative contributions
to this process are too large to draw a conclusion. Oune might then think that the Monte
Carlo models can be used to correct the data to the parton level, and then compare them
directly with the analytical calculations. Unfortunately, these corrections vary considerably
from one model to another and the systematic errors which arise from the model dependence

are too large to allow a statement.

2.4.2 Charged Particle Spectrum

Since the contribution from the non-perturbative phenomena is larger than the predicted
effects of the perturbative evolution in the transverse energy flow analysis, some attempts
have been performed to define observables which are less sensitive to hadronization.

Iu 1995, M.Kuhlen suggested the study of the hard tail of the transverse momentum pp
spectrum of the charged particles, as a way to discriminate between DGLAP and BFKL
pictures [46] (in this context, the term “hard” refers to the large transverse momentum
contributions which are supposed to arise from the perturbative part of the process). The
measurement of the pr spectrum of single particles, instead of the global transverse energy
flow of an event, is expected to be closely related to the parton cascade process, which takes
place before hadronization. In a scenario where this parton cascade is unordered in transverse
momentum, more high pr particles should be produced than in the DGLAP scheme, where
the kp-ordering suppresses this type of particles. The difference with the previous analysis
is that in this case, the expected excess of high pr particles is less likely to come from non-
perturbative effects as these ones happen mainly at low pp (the low transverse momentum
contributions arising from non-perturbative processes are called “soft” effects).

The H1 collaboration measured this hard pr tail in [47] using the 1994 data for 5 < Q* < 50
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GeV? and several x bius from x = 0.0021 to x = 0.00016. The charged particles were
weasured in the forward tracking chamber and were required to originate from the primary
vertex. The result of this measurement is shown in figure 2.11. The two models LEPTO and
HERWIG refer to DGLAP-based simulation, while ARIADNE is a model which incorporates
a non-ordered parton shower (see next chapter). While the data agree with all the models
(DGLAP and BFKL) at high @, the DGLAP-based models exhibit a “softer” pp spectrum
at low x, and ARTADNE, which does not require a strong ordering in the parton emissions
agrees fairly well with the data in each @ bin. These promising results have yet to wait for
accurate theoretical calculations as input to the simulations.

2.4.3 TForward Pion Production

An alternative measurement to the forward jet cross section has been recently suggested
and performed by the H1 collaboration: the study of forward going pions [48]. The basis
of this measurement is the same than for the forward jet analysis: the most forward parton
emitted in the gluon ladder displayed in figure 2.4 is followed through the entire evolution
process and can be found as a single pion in the detector. The theoretical predictions for
this analysis have been performed by the Durham group and can be found in [49].

The H1 analysis measured 7° in the dominant channel: 7% — 7y and within the polar angle:
5¢ < B < 25°. They were required to have an energy L, > 8 GeV and transverse energy
Ery > 1 GeV. The pion production rate as measured in the HI detector was much larger
than the predictions based on the DGLAP equations. As a complementary check, forward
charged particles were also measured, using the forward tracker of the H1 detector and the
results were found to be in good agreement with the 7° production.

2.4.4 Forward Jets and Angular Correlation between Jets

A second class of study focuses on the observation of a single parton, emitted at the bottom
of the gluon ladder shown in figure 2.4. This type of analysis, suggested by Mueller in the
early 90’s [50], is based on the idea that, due to the combined requirements of strong ordering
in kr and ordering in x; (see figure 2.4 for the description of the variables), the cross section
for a parton emitted at large x; and large transverse momentum should be suppressed in the
DGLAP-scheme, while it should be enhanced in the BFKL and CCFM pictures. In practice,
obtaining large x; partons means studying forward going jets, so the objects studied lie in
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the forward region of the detector.

Alternatively, one can study the angular correlation between the two partons at the top of
the gluon ladder (see figure 2.4): if the subsequent parton emissions yield a small overall
traugsverse energy, the two jets should be strongly back-to-back correlated in the hadronic
center of mass frame. If the amount of transverse energy is large, like in the BFKL/CCFM
pictures, then they must lose this back-to-back correlation.

As these two studies form the core of the present work, they will be described in more detail

in chapter 6 and are not developed here.

2.5 From Theory to Experiment

In this chapter, we saw how the various models of parton evolution are supposed to describe
the experimental data and in particular the behavior of the structure function of the proton
F,, within a set of approximations which are valid in some part of the kinematical domain:
high =, high @* for DGLAP, low x and moderate @? for BFKL, both high and low x in
the CCFM picture. Some experimental methods to discriminate between the various models
have also been discussed and two of them will be studied more extensively later (chapters
7 and 8). Unfortunately, in most analyses and in particular in most QCD studies, the sole
understanding of the perturbative theory is not sufficient to interpret the data. To achieve
such an understanding, a more global picture, which also include the effects of hadronization,
has to be considered. Such a picture is avalaible in the Monte Carlo simulation which is both
an extension of the theory as it includes the results of the perturbative calculations as well
as a model for the non-perturbative phase, and an experimental tool, as it is supposed to
picture the distribution of particles as seen in the detector and can implement the response
from the various detector components. The description of the various Monte Carlo models
and in particular the implementation of the different models of parton evolution is discussed

in the next chapter.
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Figure 2.11: Transverse momentum distribution for single charged particles in various bins of
@ and Q*. The data are compared to two DGLAP-based mnodels (LEPTO and HERWIG) and
to ARIADNE, which does not implement strong kp ordering for the parton emissions. The
inner error bars are the statistical errors while the outer error bars represent the systematic
uncertainties.
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Chapter 3

Event generators and Detector
Simulation

The predictions provided by the various evolution pictures presented in the previous chapter
are very useful from a theoretical side to understand the underlying parton dynamics, but
they are very hard to compare to the data extracted from the ep collision at HERA. First,
the data seen by the detector is made of hadrons and the theoretical calculations are mostly
based on parton-level models (i.e. DGLAP and BFKL equations). The necessary step of
hadronization is not analytically calculable and the uncertainty that it adds to the interpre-
tation has to be taken into account. Moreover the theory does not take into consideration
all the detector effects which can alter the results and generate additional uncertainties.

To include these two effects into the interpretation of the data, one has to rely on models,
which are based on the various theory calculations and evolution pictures, but implement the
additional effects. These models are useful for two reasons: they are used to correct the data
for both detector and hadronization effects and they provide themselves a first theoretical
approach on the physics which is being probed and can therefore be divectly compared to the
data. This last point is subject to polemic, as these models have a set of phenomenological
parameters which must be tuned to some well-known distributions, in order to define their
validity range. However it is not known for sure whether these parameters are universal and
can be used in any kind of analysis, although the common understanding is that they should
not be changed from one analysis to another. Another bone of contention is that, although
all the models must have a similar response to the detector effects, the hadronization step
might be very different from one to another. In this case, it might be difficult to determine
which model to compare the data to and what is the real contribution from hadronization
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to the effect to be seen or to the quantity to be measured. For instance, in the case of the
transverse energy flow analysis (see chapter 2), two models were giving the correct description
of the data, although both underlying partonic mechanism and non-perturbative effects were
very different. In this case, the “compensating” effect of soft physics prevented any strong
conclusion about the real nature of the parton evolution.

3.1 DBasics of a Monte Carlo Simulation

The event generators which are used all along in this work and in most analyses in high energy
physics have all a common statistical basis: that is the so-called Moute Carlo method. The
purpose is to simulate a probability distribution, using the random behavior of the physical
variables, as in games of chance, hence the name ‘Monte Carlo’.

The principle of the method is the following: in order to describe the behavior of function f,
for instance a differential cross section, which depends on oue or several variables x, which
can be for instance phase space variables, one uses the integral of the distribution f(x)
and interprets it as being an average. The normalization is taken care of at the end of the
generation process. The integral of the distribution, within the phase space range under
investigation (here defined by the lower limit 2, and the upper limit z,) can be written as:

N

I(z)i= /sz F(8)ds = (xg — 21) < f(x) >= (vy — .L)% > fla) = In. (3.1)

@ i=1

Here the value of the distribution f is known at the N rungs @,y ..., ;.

The integral I can therefore be approximated by a discrete sum Iy. This approach will be
more accurate when the number of points in the sample will be large. The error can be
estimated by the variance of the distribution.

If the various degrees of freedom w; are independent, the Central Limit theorem gives the
value of the variance Vy as a function of the number of integration points N and the mean
I of the distribution:

I=Iy+4/Vy/N (3.2)

Therefore the error on the true value goes as 1/\/N This error is independent of the number
of dimensions (i.e. number of phase space variables) and depends only on the number of
samples one considers. In practice, the following method is used in the process of generating
events: a given random number v is generated from a uniform distribution from 0 to 1
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which corresponds to the integral 1. For each u, the phase space variable x) is obtained so
that In(wx—1) < u < Iy(wg). The probability distribution f(x) is then derived through the
relation: f(xx) = In(ax) = In(2k-1). The method is illustrated in figure 3.1. One can see
that the steeper the distribution is, the more poiuts are needed for the sampling in order
to describe accurately the probability distribution, so that in practice, one generates more

events in the region where the function is rapidly growing.

x=l(u) x

0 i L

X Xew &

Figure 3.1: Schematic representation of the sampling technic used in the Monte Carlo simu-
lation, based on the choice of a random number generator to find the differential probability
distribution f(x).

The phase space available to generate n particles in a Monte Carlo is defined by the Lorentz
invariant: . X
i

1—1_qu “'“‘—‘—‘—“—(ZT VB 2E,)(2r)" (T)o & ;IH) . (3.3)
Where pp is the momentum of the initial particle and p;, the momentum of the i final
state particle. The last term expresses energy and momentum congervation. In practice, the
events are generated within a certain phase space, defined by cuts on the kinematic variables.
These cuts are then the boundaries of the integral of the cross section. To save computer
time, the phase space coordinates are generated once (in the first step of the simulation), on
a uniform grid which depends on the boundary conditions which limit the kinematic region.
The grid also depends on the input parton density which has to be given by the user and

which is used in the subsequent parton evolution. The parton density sets the absolute
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normalization (total cross section) of the process. In the present work, the parametrization
CTEQ4D [23] was used as it described the total event cross section best.

3.2 Models of Parton Evolution

Once a DIS event has heen generated in the appropriate phase space, it must follow the usual
steps of evolution until it reaches the stage of observable. The first part of this so-called
QCD radiation process is to generate a perturbative parton level evolution according to the
standard evolution equations like DGLAP, BFKL and other.

On top of the standard requirements proper to each evolution picture, the Monte Carlo
simulation Las to implement additional criteria to make the evolution realistic on a physics
point of view and therefore describe the full final state observed in the experiment. These
criteria are (usually) subleading corrections to the final cross section, like conservation of
energy and momentum at each parton branching (which is implicit in the DGLAP picture
but not in the BFKL equation) or radiation from quark (which is usually neglected in the
CCFM picture) or heavy quark mass. All this makes the process of generating the parton
evolution a tedious but necessary task.

3.2.1 The Matrix Elements-Parton Shower Model

Most of the current Monte Carlo simulations nse the Matrix Elements -Parton Shower
(MEPS) ansatz to generate the physics processes taking place at HERA. The idea is to use
fixed-order perturbative calculations (up to now only at leading order) and then, simulate
the higher-order processes by a “parton shower” based on a leading logarithm approxima-
tion, like the one obtained from the DGLAP equations. The schematic organization of the
MEPS ansatz is illustrated in figure 3.2.

Matrix Elements

The leading order process in DIS is the QPM: ¢ — ¢ shown in figure 2.1. Tn this process,
there is no gluon vertex aund the process is therefore O(a). The two O(a!) (leading order
QCD) processes are also included in the determination of the matrix elements: the BGF
79 =+ ¢4 and the QCDC y¢ — qg, both shown in figure 2.3. The determination of which
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Figure 3.2: Schemalic representation of the Matriz Elements-Parton Shower ansatz. The
parton shower is divided into initial state and final state radiation.

process is to be used on an event-by-event basis is done through probabilities, given Bt
P+ Py, = 1. The total probability for a specific process to occur is given by the total cross
section of this process within the kinematic region under consideration (and depends also

upon the parton density and the choice of cut-off).

As we saw in the section 2.2.2, the leading order QCD cross sections have logarithm di-
vergencies which correspond to the case where the two partons are emitted collinearly or
when they have very small energy (“infra-red” domain). To get rid of these divergencies,
the Monte Carlo simulation uses the factorization property of the DIS cross section [13] and
integrates the singularities into the parton densities, which are later evolved in the parton
shower phase. Tn practice, the procedure is to impose a cut-off in the phase space. Usually,
the cut-off is applied to the invariant mass distribution of the two leading-order partons
sij = (pi +p;j)*. The cut-off is proportional to the invariant hadronic mass W? = (P + ¢)?
(where P is the four momentum of the proton and ¢, the four momentum of the photon).
The cut-off is expressed by the relation:

Sij < y(:ule'V'l (34)

The cut-off . is a tunable parameter in the package. Its effect is mainly to change the
relative contributions of the three leading-order processes involved in the matrix elements
(see [43] and [51] for a further discussion on the cut-off parameter and some alternative
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implementations in Monte Carlo and NLO calculations). So far, there is no NLO calculation
implemented in the MEPS simulations. The main reason is that, because of the divergencies,
it is quite difficult to interpret the NLO cross section in term of probabilities, as the differen-
tial cross section is not always positive definite [52] (which is mandatory in order to interpret
the integral defined in the previous chapter as an average over a probability distribution).
However, there are NLO predictions on the form of calculation package like MEPJET [53],
DISENT [54] or DISASTER++ [55]. These calculations provide the full NLO corrections to
the 1 and 2 partons emissions, including the virtual corrections.

Parton Shower

As the high-order calculations can not be included in the Monte Carlo simulation, these cor-
rections are approximated by the parton shower processes which are based on the evolution
equations discussed in chapter 2. The standard parton showers are ruled by the DGLAP
equations [18], described in chapter 2. This picture is also called the “collinear limit” as it
features partons evolving towards (or from) the photon coupling and gaining (or loosing) vir-
tuality by successively emitting harder (softer) partons (that is partons with larger (smaller)
transverse momenta). As shown in figure 3.2, the parton shower is in practice split into two
phase, which are indistinguishable from a theoretical point of view (Heisenberg uncertainty
principle) but give a convenient picture of the DIS processes:

e the Initial State Radiation (ISR) pictures the evolution of a constituent of the proton,
initially on mass-shell, which acquires increasing negative virtuality (this is called a
space-like cascade) by emitting successively harder partons and loosing at each branch-
ing a fraction of its total momentum (from momentum-energy conservation). In the
standard application of the collinear limit, this process is actually implemented back-
ward (from the photon coupling towards the parton within the proton). The ISR
corresponds to the evolution of the structure function F, of the proton.

e the Final State Radiation is comparable to the ete™ — ¢ evolution picture. After
the coupling with the photon, the off-shell parton (with a large space-like virtuality)
reduces its mass by successive parton emissions. This is called a time-like evolution
and it goes on until all emitted partons become on-mass-shell again (in practice, until
«, becomes too large to apply perturbative equations).
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The branchings involved in a parton shower are defined by the splitting functions (see chap-
ter 2) in the frame work of the DGLAP picture. In order to implement them in the sim-
ulation, a probability is defined keeping in mind that, if a parton branches in an interval
[¢% + dq?, ¢?], then nothing wust have happened between Q*(at the start of the evolution)
and ¢* (the virtuality of the parton before the branching). The situation is then analog to a
radioactive decay: if dP is the probability that there is an emission between ¢’ +dg? and ¢,
and A2 (Q?), the probability that there is no emission between Q?and ¢?, trauslates into:

dAp(QF) dpP

- —Aqu(Qz)W. (3.5)

dq?
Since the probability 7;; can be written as a function of one of the splitting functions I%;

defined in section 2.2.3, as
, ay dg?
([P,'j = 5;—(]7/ (LIV‘Pij(.‘II), (36)

the solution of this equation gives the “Sudakov form factor” A, (Q*):

’ Q* ak?
Ap2(Q?) = exp (—— /,,'z Sk—"‘ / d:z:%’;[’(m)) (3.7)

The evolution process can therefore be calculated step by step, using the Sudakov form factor
(a detailed description of the Monte Carlo method of evolution can be found in [7]). This is
carried on until the partons reach a small enough virtuality Q4 (on the order of 1-2 GeV e
depending on the simulation). At this point, the evolution is stopped and the hadronization

phase takes place.

Most of the modern Monte Carlo models use the MLLA [56] (modified leading logarithm
approximation) instead of the standard LLA. This new approximation takes into account the
interferences between ISR and FSR. (“final state radiation”), so that the total contribution
of the parton shower is not equal to the sum of the each ISR and 'SR individual contribu-
tions. Moreover coherence effects are implemented in most of the modern simulations. All
these effects improve a lot the description of the data, with respect of the basic picture of

independent parton evolution.

The MEPS-based Monte Carlo used all along the present study are LEPTO 6.5 [43], RAP-
GAP 2.06 [57) and HERWIG 5.9 [58]. All these Monte Carlo simulations implement the
DGLAP evolution picture and are therefore are expected to reproduce its validity range.
Unlike LEPTO and RAPGAP which implement the strict kr-ordering in the parton emis-
sions, HERWIG implements a strict angular ordering in the FSR, while it has an energy and
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angular ordering in the ISR. (in order to take into account coherence effects as accurately
as possible) [58]. HERWIG also uses a different hadronization scheme based on the cluster
model [59] (see below). RAPGAP implements, on top of the standard parton shower, a
“backwards evolution” from the quark box to the photon side, which reproduces the effect
of a resolved photon (this will be developed later in chapter 8).

Another Moute Carlo model, PYTHIA [60], uses the ME-PS method but it has been de-
veloped and checked more extensively for hadron-hadron collisions than for DIS, although a
DIS mode exists. This is why this simulation is not used in this study.

3.2.2 The Colour Dipole Model

Another type of QCD radiation is implemented in the Colour Dipole Model (CDM) [61].
Unlike the previous ansatz, the CDM does not make explicit use of an evolution equation
and Feynman diagram to describe the parton evolution process. Here parton pairs involved
either in e*e™ or in ep collisions are treated as independent dipoles, radiating other partons
which are themselves part of a radiative dipole, as it is shown in figure 3.3. In DIS, the
radiations occur between the struck quark and the proton remmnaunt, therefore all the QCD
cascades can be treated as F'SR. The total phase space for parton emission is limited in
rapidity: y < In(W/Pr), where W is the total amount of energy radiated and Pp, the
transverse momentum of the radiated parton. From the proton side, the phase space is
further suppressed because the proton has a finite size and acts therefore as an extended
antenna, so that the total phase space allowed for radiative emission looks like the one shown
in figure 3.4.

In the CDM, the boundary conditions which restrict the available phase space for evolution
are relaxed, so that a parton radiation can occur at a scale higher than the scale of previous
one (but the emissions are still ordered in rapidity, or, which is equivalent, in z). In this

_ context, the CDM can be seen as a BFKL-like simulation, since it lacks strong ordering in

the parton emissions. This feature should enhance the parton emissions at small x, exactly
as it is expected in the BFKL scheme, although the CDM does not implement literally the
BFKL equation.

The measurement of the di-jet cross section by the H1 collaboration [41, 62] confirmed that
the CDM predicts a much larger rate than the MEPS-based models. Recently, it has been
argued that this increase is due to an “unorthodox” suppression factor in the CDM, with
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Figure 3.3: The QCD cascade as implemented in the Colour Dipole Model. Each pair of
partons is treated as independent radiating dipole.
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Figure 3.4: Available phase space for parton radiation in the Colour Dipole Model. Pr is the
transverse momentum of the emitlted parton and y is ils rapidity.

respect to the MEPS models [63]. This factor is due to the absence of initial state radiation
in the CDM, and the subsequent boundary conditions from the proton side. Instead, the
boundary conditions arise from the fact that the proton emits radiations as an extended
antenna. According to these authors, this creates an increase of hard parton emissions at
small z. In any case, the physics implications of the CDM are not yet fully understood, and
although it offers a convenient alternative to the DGLAP-based models (as it describes the
total jet rate observed in the experiment), it is too premature to state on its correspondence
with the BFKL picture.

In this study, the CDM is implemented in the ARIADNE package [44] (ARIADNE 4.08).
Here, the LO matrix elements are taken from the LEPTO package, while the QCD cascade
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follows the CDM.

3.2.3 The Linked Dipole Chain

Recently, a new model has appeared which enables the implementation of the CCFM equa-
tion in a Monte Carlo simulation: the Linked Dipole Chaiu model (LDC) [64].

As it was shown in section 2.3.4, the CCFM picture interpolates between the DGLAP and
the BFKL schemes, so that first estimations of a BFKL-type effect can be evaluated. This
Monte Carlo simulation has more solid theoretical basis than the CDM, as it is based on an
evolution equation and implements ISR.

The Linked Dipole Chain Monte Carlo (LDCMC) [65] uses the CCFM equation to evolve
the structure function of the proton in the Initial State Radiation. On top of the angular
ordering which restricts the phase space available for radiations, the LDCMC implements
other requirements which are needed in a Monte Carlo simulation, like the conservation of
energy and momentum at each branching, the quark density of the proton and the suppres-
sion factor for heavy quarks. The ISR creates a pattern of color charges which are then
evolved into a final state cascade with the CDM itself.

The LDCMC (version 1.0) implements its own parametrization of the structure functions,
which are described in [65]. It has been compared in [65] to several final state observables
and its predictions lie between ARIADNE and LEPTO. As will be seen later (chapter 8), it
is not yet understood why the LDC does not describe the data.

3.3 Hadronization Phase and Non-Perturbative Effects

The models presented earlier already differ in the perturbative treatment they apply to the
parton cascade. In order to obtain the final state quantities, an additional step has to
be taken, that is transforming the coloured partons into observable colour singlet hadrons.
Unlike the parton cascades, the hadronization models are not based on perturbative calcula-
tions but are phenomenological pictures determined by a set of parameters which are often
obtained by fitting experimental data. This hadronization phase decreases the predictive
power of the Monte Carlo simulation, but is mandatory for a good description of the data.



3.3.1 String Fragmentation

The Lund string model [66] provides the most common picture for the Monte Carlo sim-
ulation. It predicts that a string is stretched between any quark-antiquark pairs created
during the QCD radiation phase, as well as between quark-diquark (proton remnant) pair.
The string creates a uniform QCD field on the order of 1 GeV/fm, which then creates qq
pairs when the stored energy is large enough. The “break points” of the string are the color
triplets ¢ and ¢, while the incident gluons, a color octet state, only produce “kinks” on the
string, thus modifying its energy and momentum at the particular point where the gluon
Lits it, without breaking it (see figure 3.5a). These kinks lead to the rapidity (polar augle)
distributions of the final state particles in the detector. The attractive feature of this model
is the independence of the final result on soft and collinear particles which can be created
during the QCD cascade phase [67].

a) /l h)

i

1 L

Figure 3.5: a) Colour connection between partons in the standard siring model. b) Soft colour
interaction between parton pairs. No string is stretched belween the quark box and the proton
remnant creating o rapidity gap.

The string model is implemented in the LEPTO, ARIADNE, RAPGAP and LDC simulations
via the JETSET package [60]. The various parameters are obtained through fits of the ete”

data.

3.3.2 Cluster Fragmentation
The cluster model [59] uses the property of “preconfinement” of colour to describe the
hadronization phase: in the perturbative limit (high masses), the confinement of a par-

tonic system is local, independent from the type of hard subprocess from Q?. This leads to
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the property of Local Parton-Hadron Duality, meaning that the partons are converted into

Ladrons locally in phase space (this property will be discussed in chapter 6).

In the cluster model, each gluon which arises from the parton shower decays into a pair of
quark-antiquark (or diquark-anti-diquark). Bach parton of the pair is connected by a colour
line to the neighboring parton (this is the planar approximation), thus forming a colour
singlet cluster. This cluster follows the “preconfinement” property, that is, it is independent
of the hard subprocess and the energy scale. The cluster then fragments isotropically (in its
rest framne) into pairs of hadrons, following flavour conservation.

This model is implemented in the HERWIG simulation and has the advantages of having
less phenomenological parameters and of describing well the e'e™ scattering. However, we
will see in chapters 7 and 8 that it does not describe well all the kinematic variables of our
DIS sample, in the kinematic range selected for this analysis.

3.3.3 Soft Colour Interaction

A third kind of non-perturbative effect has been implemented into the LEPTO model: the
Soft Colour Interaction (SCI) [68]. In this model, similar to the Lund string model, all the
partons created perturbatively after the parton shower phase interact softly between each
other and with the colour medium of the proton through colour strings. These interactions
modify the partons’ colour but do not change their momenta. Unlike the strings from
the Lund model, the soft colour counections can be formed between any pair of partons,
including the gluons. This property affects the topology of the subsequent hadronization
strings, thereby modifying the final state distributions. In figure 3.5, the pattern of a soft
colour interaction is compared to the usual Lund string model picture. In the SCI case,
the gluon can couple to the diquark (proton remnant) creating a colour singlet object. On
the other hand, the leading order partons, from the quark box, are also connected by a soft
string, leading to another colour singlet system. In between the two colour singlets, there
is no colour connection, leading to a rapidity gap (no hadronic activity in a large rapidity
interval). Historically, the SCI was introduced to explain the large fraction of DIS events
with a large rapidity gap (around 10%) [69]. The theorists claim [70] that this model is
adequate to describe the events observed at HERA.

A side effect of this model, presented in [70], is the increase of hadronic energy in the forward
region of the detector (corresponding the central rapidity region in the HCM frame). This
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ellect, apparently orthogonal to the previous one, is due to fluctuations created by the soft
colour strings, leading to an increase of energy per unit of rapidity. In section 2.4.1, the
excess of transverse energy in the central rapidity region of the HCM frame was interpreted
as being oue of the possible eflects due to a new kinematic regime, namely the BFKL picture.
The conventional Moute Carlo models, based on the DGLAP equations, were unable to
describe correctly this amount. The implementation of SCI in the LEPTO model enables to
describe the distribution of transverse energy flow observed in the data, without having to
require a new kinematic regime as it is shown in figure 3.6. The data collected by the H1
experiment [41, 71] are compared to the LEPTO model, implementing the SCI and a new
sea quark treatment (SQT) [43]. These two non-perturbative phenomena manage to increase
the relative amount predicted by the LEPTO model, so that this Monte Carlo simulation

matches the rate observed in the data.

In LEPTO, the SCI are handled through a parameter adjustable by the nser. It sets the
probability for a parton to interact through SCI with another parton (or with the proton
remnant). This parameter was tuned to reproduce the relative amount of rapidity gaps
observed in the data and the amount of transverse energy observed at HERA. The value of
this parameter used in this analysis was tuned to describe accurately the rate of events with

a large rapidity gap observed at HERA [68].

3.4 Detector Simulation

After having been generated according to a specilic model, the events need to pass through
a detector simulation before being compared to the data, in order to take into account the
response of the various components. The detector simulation is based ou a fortran package
MOZART [72], itsell based on the GEANT [73] program used in most of the experiments in
high-energy physics. They include all the information about geometry, calibration, position
and energy resolution and other properties, as well as the beam gas effects on the various

part of the detector (see chapter 4).

The triggers, which select “good” events as opposite as background (see chapter 5) were
simulated by another fortran package: ZGANA [74]. Once the events have passed all the
detector and trigger requirements, they are recoustructed (similarly for data and Monte
Carlo simulation) using the ZEPHYR package [72]. At this stage, the events are called
“yeconstructed”, by opposition to “generated” or “hadron level”, before the stage of detector
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Name Hadronization scheme | Parton evolution model Application
LEPTO Lund string model MEPS DIS
ARIADNE | Lund string model CDM DIS
HERWIG Cluster model MEPS DIS and
photoproduction
PYTHIA Lund string model MEPS photoproduction
LDCMC Lund string model LDC DIS
(CCFM and CDM)
RAPGAP Lund string model MEPS DIS
with resolved photon

Table 3.1: List of the Monte Carlo sumulations with the corresponding parton evolution
models and hadronization schemes.

simulation. The comparison between reconstructed and generated events is used to correct
the data for detector effects, evaluate the resolution for a specific kinematic variable and
determine the quality of the reconstruction of the various kinematical variables as well as the
amount of background in the data sample. Finally, it is important to stress that the response
of the detector component should not depend on the model used to generate the events.
In practice, small model dependences are expected, as the components have a different
respouse for different final state distributions aund these model dependences must be taken
into account in the calculation of the systematic errors. A summmary of all the Monte Carlo
models presented here is shown in table 3.1.
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Figure 3.6: Transverse energy flow versus pseudo-rapidity n* defined in the hadronic center

of mass frame in different bins of x and (). The data come from the H1 analysis. The data
are compared to the predictions of LEPTO 6.5, with and without SCL The model has also
been ruraning with a new sea quark treatment (SQT).

Chapter 4

Experimental Setup and Data
Acquisition

4.1 The HERA Accelerator

The experimental observation and study of Deep Inelastic Scattering and related processes
requires probing very small scales or distances. As the observed length is inversely pro-
portional to the energy of the probe, looking at very small scales means using very high
energies. This motivated the construction of the large accelerator HERA (Hadron Elektron
Ring- Anlage), which began in 1984 and was completed in November 1990. It is designed
to accelerate electrons or positrons up to an energy of around 30 GeV and protous up to
around 820 GeV (plans have been made to increase this value to around 920 GeV for the
next running periods), yielding a center of mass energy /s = 314 GeV.

By reference to the fixed target experiments, the physics process going on at HERA is
sometines referred to as a collision between an electron (or positron) probe and a moving
proton target. The traditional experimental studies on DIS were made on fixed target
experiments like the SLAC-MIT (using the Stanford Linear Accelerator Center), BCDMS,
EMC or NMC (in CERN), CCFR (in Fermilab) colliding lepton probes on fixed nuclei. The
main advantage at HERA lies in the value of the center of mass energy, which is much larger
than in the previous accelerators, allowing to probe much a wider kinematic range, going
from very low @ (below 107°) to very high @? (10* GeV?). The kinematic range covered by
HERA and ZEUS is compared to the fixed target experiments in figure 4.1.
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Figure 4.1: inematic range covered by the HERA accelerator as a function of (v,Q*), com-
pared with several fized target DIS experiments. Also shown is the kinematic range accessible
in the ZEUS detector at HERA thanks to the beam pipe calorimeter (BPC) and the shifted
vertex runs (SVTX).

The two main experiments operating on the HERA accelerator are ZEUS and H1, located in
the south and north hall respectively. They first took data in 1992, with an electron energy
of 26.7 GeV and a protou energy of 820 GeV. Two other non-collider experiments, HERMES
and HERA-B make also use the accelerator facilities to study respectively the spin structure

of the nucleon and the CP violation in the B°BY system.

The HERA accelerator is schematically shown in figure 4.2. The electrons (positrons) and
the protons are accelerated in two separate rings using superconducting magnets and housed

in a 6.34 km long tunnel.

Starting from negatively charged hydrogen, H~, brought to an energy of 50 GeV in the
H-, LINAC (linear accelerator), the protons are obtained by stripping the ions of their

53

“HERA  _s=-

Experimentierhalle

NORD/H1 \ 279 1w
\L Volkspark-Stadion

Experimentierhalle
West

Experimentiethalle
SUD/ZEUS

Prolonen-Bypass

Figure 4.2: Layout of the HERA ring and layout of the injection systern.

electrons before injecting them into the DESY III storage ring. At this point, there are
eleven proton bunches separated by 96 ns. The protons are then accelerated to an energy of
7.5 GeV before being transferred to the PETRA (Positronen Elektronen Tandem Anlage),
where seventy bunches are accumulated and accelerated to an energy of 40 GeV before being
transferred to the HERA main ring. This is repeated until 210 bunches are accumulated.
Finally the proton bunches are accelerated to an energy of 820 GeV.

The injection chain for the electrous (positrons) starts in the LINAC, where they are accel-
erated to an energy of 450 MeV. At this energy, they are stored in the positron intensity
accunulator, PTA, where a single bunch of 60 mA is created. They are then transferred to
the DESY II ring and accelerated to 7.5 GeV, before being transferred to the PETRA I ring
where they are accelerated to 12 GeV. There 70 bunches are created, separated by 96 ns.
Finally the electrons bunches are injected in the main HERA ring where up to 210 bunches
can be accumulated (in practice, not all the electron and proton bunches are filled. There
are some unpaired “pilot” bunches generated to estimate the beam gas backgrounds). In
HERA, the electron bunches are accelerated to an energy of 30 GeV.

The electron lifetime is very short (~ 2-3 hours), due to positively charged particles in the
beam pipe which were attracted in the electron beam and scattered against them. This was
solved by inverting the polarities of the magnets and using positrons instead of electrons
(July 1994). The lifetime of the positron beam is much larger: in the order of 8 to 9 hours.
Apart from charged current analyses, this change did not affect the physics process rates at
HERA.



The luminosity obtained in HERA has been continuously increased since the first electron
proton collision in 1992. The present analysis is based on 1995 data, when HERA delivered an
integrated luminosity of 12.3 pb~". Out of this, ZEUS collected about 8 pb™', corresponding
to the period during which the detector was operational and the beam conditions were good
enough for data taking. Aflter subtracting bad runs, due to faulty components or high beam
gas background, we are left with 6.36 pb='. This is the luminosity used all along this study.

4.2 The ZEUS Detector

The exploration of finer structures and smaller scales in high energy physics leads to a growing
degree of complexity in the design of the large detectors, together with larger collaborations
and varieties of competences. The ZEUS detector, operating at HERA, represents a step
forward with respect to the previous generation of detectors (like those operating at the
Tevatron ring and the LEP collider), in particular in view of the size of the collaboration:
more than 450 people coming from 51 institutes in 11 countries are participating in this
effort. Because of its complexity, an exhaustive description of the detector would be too
ambitious taking into account the scale of this work. This description can be found in [75].
ZBUS is a multi-purpose detector, covering most of the 4z solid angle around the collision
point except for the small angle around the beam pipe. Because of the strong asymmetry
in the collision due the boost caused by the difference of energies between the incoming
proton and the positron, the detector is asymmetric: the forward direction, defined by the
direction of the proton is larger and deeper than the rear region, defined by the direction of

the positron.

The coordinate system is orthogonal and right-handed: the center is taken as the nominal
interaction poiut, the Z axis points towards the direction of the proton, Y points upwards
and X towards the center of the HERA ring. The polar angle 6, defined with respect to the
Z axis is therefore 0° for the proton beam and 180 for the positron beam. In most of high
energy physics analyses, the measure of the polar angle is given by a relativistic invariant
parameter (provided that the mass effects are neglected): the pseudorapidity 7 defined as:
n = —ln tan(0/2).

The various components of the ZEUS detector are pictured in figure 4.3: the inner part is
made of a large wire chamber, the CTD (Central Tracking Detector) [76], surrounded by
a superconducting solenoid generating a longitudinal field of 1.43 T. This detector yields
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information about the momenta of the charged particles and enables the collision vertex
reconstruction. The FTD and RTD (forward and rear tracking detectors) are respectively
in front and behind the CTD and provide the same kind of information for particles going
outside the range of the CTD. Further behind the CTD, lies the SRTD [77] (Small Rear
Tracking Device) which improves the detection of positrons scattered at small angles. These
components are surrounded by the uranium scintillator calorimeter or UCAL [78], which
measures the energy deposited by the particles passing the tracking devices. It is divided
into three sections: the FCAL (forward calorimeter) in the forward direction, the BCAL (bar-
rel calorimeter) in the central region around the threshold and the RCAL (rear calorimeter)
in the rear region. A layer of scintillator tiles in front of the FCAL and RCAL, the presam-
pler [79], improves the accuracy of the energy reconstruction by correcting for energy losses
due to showers in the dead material in front of the calorimeter. The calorimeter is enclosed
in a iron yoke made of several 7.3 ¢ thick iron plates which catches the return lines of the
maguetic field and serves as a secondary absorber for the backing calorimeter (the BAC).
This calorimeter measures the energy leakage of the main calorimeter. Finally, on the inner
and outer sides of the yoke, limited streamer tubes are mounted outside the barrel part
(BMUIL, BMUO) and the rear part (RMUI, RMUO). They measure minimum ionizing par-
ticles traversing the calorimeter, mainly muons. They also allow to reject background events
coming from cosmic rays and beam halos (results of the interaction between the protons and
particles in the beam pipe). A forward spectrometer (FMUON) is installed in front of the
FCAL (in the positive Z direction) and allows in addition the precise determination of the
muon tracks.

In the following, the compouents specifically used in this analysis will be shortly reviewed.

4.2.1 The Uranium Calorimeter (UCAL)

The energy reconstruction of an event observed by the ZEUS detector is performed by the
uranium calorimeter. It is the main component of the detector as it determines whether an
event is accepted or not and is thus at the bottom of the trigger chain which will be discussed
in chapter 5. As mentioned above, the calorimeter is divided into rear, barrel and forward
regions (RCAL, BCAL and FCAL) covering respectively a polar angle (pseudorapidity) re-
gion of: 128.1°(-0.72) to 176.5°(-3.49), 36.7°(1.1) to 129.1°(-0.74) and 2.2°(3.9) to 39.9°(1.0).
99.6% of the 4 solid angle around the interaction point is covered, leaving a hole of 20x 20
em? in the forward region and 20x12 cm? in the rear region to allow room for the beam
pipe.
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Figure 4.3: Side view of the various components of the ZEUS detector.

The calorimeter consists of alternating layers of absorber (3.3 mm of depleted uranium) and
active material (2.6 mm thick plastic scintillator plates). Because of its stable radioactive
properties, the uranium noise from the calorimeter is used to check the calibration of the data
acquisition chain and the calibration of the photomultiplier tubes, which record the amount
of energy deposition (known to 1-2% accuracy). The uranium calorimeter also provides
compensation, i.e. the signal response for hadrons and electrons is equal (e/h = 1.00£0.02).
This property improves the energy resolution of the hadrons: under test beam conditions,
the resolution for the hadron jets has been found to be op/E = 0.35/v/E (E is the energy of
the particle in GeV). For the electron, the resolution was measured to be: op/E = 0.18/\/E.

Bach of the calorimeter components is made up of modules of various lengths: there are 23
modules in the FCAL and the RCAL and 32 in the BCAL. The layout of an FCAL module
is displayed in figure 4.4. These modules are further segmented into towers with a front
surface area of 20 x 20 c¢m? in the FCAL and RCAL and 20 x 24 c¢m? in the BCAL.

Each tower is further longitudinally subdivided into hadronic (HAC) and electromaguetic
(EMC) sections: there is one EMC section in RCAL, BCAL and FCAL, two HAC sections
in BCAL and FCAL and one HAC section in RCAL. Each section consists of one or more

cells. Oue cell is divided into two photomultiplier tubes which read the signal given by the
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Figure 4.4: Layout of an FCAL module.

energy deposition in the calorimeter. The EMC sections consist of four cells of 5 x 20 cm?
in the FCAL and the BCAL and two cells of 10 x 20 ¢m? in the RCAL. The HAC section
forms a single cell of size 20 x 20 cin?. The BCAL EMC cells are projective to the interaction
point. This information is particularly crucial for this analysis: as the measure of the polar
angle is done in unit of pseudorapidity, the width of the cell in the (1, ¢) plane will change
accordingly to its position (here ¢ is the azimuthal angle). The crucial point is that 7 is a
logarithmic quantity, so the cells in the forward region, in the (1, ¢) plane are quite large. In
figure 4.5, a cross section of the forward calorimeter is shown in the (n, ¢) plane in one real
event. For this example, the HAC cells only are displayed. The black circle defines a jet,
which is now seen as a cluster of cells with a radius R=1 in the (1, ¢) plane. The full dots
represent the energy deposition in the cells which are associated with the jet in this event,
while the small open dots represent the energy deposition in a cell which is not associated
with the jet. The radius of the full and open dots is proportional to the amount of energy
deposited in the cell (if the dot is not in the center of the cell, it means that the energy has
been deposited in another HAC section or in a EMC cell). The increase in the size of the
cell is very noticeable for > 2. This results from a certain lack of accuracy in the position
reconstruction, especially in the HAC sections, which are not segmented.

The calorimeter has been designed to fully contain 95% of the hadronic (jet) energy and
98% of the electromagnetic showers (in average for the highest energy particles produced).
The parameter which defines the containment depth of the electromaguetic shower is the
radiation length Xy. This is the average distance for an electron to lose 63% (1/e) of its
energy (in the EMC cells, it is equal to 0.74 cm). The EMC cells have a radiation length of 25
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Figure 4.5: Cross section of the HAC cells of the FCAL in the (n, ¢) plane. The black dots
represent the energy deposition i cach cell. The black circle defines a cluster of cells with a
radius of 1.

Xy. The hadronic showers are given in units of interaction length A. The absorption length
in the three sections of the calorimeter is: 7.14 (FCAL), 4.92 (BCAL) and 3.99 (RCAL).

Besides energy and position information, the calorimeter provides a good time measurement:
the time resolution for a calorimeter cell with an energy deposition above 3 GeV is gy =

1.5/\/EE) @ 0.5 ns.

Every particle reaching the calorimeter has to cross a certain amount of inactive (“dead™)
material where it deposits some of its energy by interacting with the particles of the medium.
Therefore the measured energy in the calorimeter is not equal to the true energy of the
produced particles (the correction method in the case of hadron jets will be reviewed in
chapter 7). In the front and rear calorimeters, a segmented scintillator array (the presampler
detector) has been installed to correct for the energy loss of the positron: the presampler
measures the multiplicity of particles created by the showering of the incoming positron in
front of the F/RCAL aud uses it to correct for energy losses on an eveut-by-event basis.
The result of the presampler correction on a test sample of 25 GeV electrons is shown in
figure 4.6 [79].
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Figure 4.6: Energy distributions for 25 GeV electrons before and after the presampler cor-
rections.

4.2.2 The SRTD

The small rear tracking detector is installed in front of the RCAL and cover a polar angle
domain of 162° to 176°: a region mostly not covered by the other tracking detectors. Its
goal is to improve the measurement of the positron energy and position, when it is scattered
at low angles. This corvespouds to the kinematic region of low Q?* as Q* = 4E, Ecos*(0/2),
where E, is the energy of the scattered positron, E,, the energy of the incoming positron
and 0, the angle of the scattered positron (the formula is given by the electron method, see
appendix A). It is therefore particularly suitable for low-Q*and low-a studies.

The SRTD cousists of two layers of scintillator strips (the same material as for the ZEUS
calorimeter has been chosen for the scintillators). It is divided in four quadrants in the XY
plane of 24 x 44 cm?. The scintillation light is transported to the photomultiplicator tubes
via light guides. The scintillator strips have a fine segmentation, so that in average the
position resolution of the positron is better than in the calorimeter (it is approximately 0.3
cm, while in the RCAL it is only 1 ¢m in average). The energy resolution of the positron in
the SRTD is 0 = 26%/E,, where Ey is the energy of the positron in GeV.

4.2.3 The Central Tracking Detector

The central tracking detector is mostly used in this analysis to measure the value of the vertex
position in this analysis. Generally, it enables the reconstruction of the four momentum of
the charged particles tracks. The CTD consists in a cylindrical drift chamber of inner radius
of 16.2 em and outer radius of 85.0 ¢cm and length 241 em. It is made of 72 cylindrical layers
arranged into 9 superlayers. The odd-numbered superlayers have axial wires (parallel to
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the beam line) while the even-numbered superlayers have stereo layers (tilted by £5? with section) was prescaled in the following years (1996 and 1997), leading to numerous statistical
respect to the beam line to provide a measurement of the Z position of the track). It is filled problems in the analysis. This is why we restricted ourselves to 1995 data set in this work.

with a gas mixture of argon, CO2 and ethane.

The resolution of the CTD in 1995, in the (r, ¢) plane was about 230 yun and 2 mm on the Z
axis. The resolution on the transverse momentum is: o(p,)/p, = \/(().O()S )%+ (0.0016)?,
where p, is in GeV/c.

4.2.4 The Luminosity Monitor

The luminosity is measured in ZEUS through the radiative emissions of real photons from
the positron: ep — ¢'py. This process, known as Bremsstrahlung, has been calculated by
Bethe and Heitler [80] in 1934: the total cross section for a Bremsstrahlung radiation by a
relativistic photon of energy £ and producing a photon of energy E, is given by:

do o E ; . 4E,EE 1
= ety e b ol E-2 In———— — = .
i, devenr; BE, (E/E'+ E'/ /3)( 11“_me“E7 2) (4.1)

E' is the energy of the positron after the photon radiation, m, and mn, are the mass of the

proton and the positron respectively and v, is the QED coupling strength.

The monitor cousists in a lead-scintillator calorimeter situated 107 m down the beam line
with respect to the nominal interaction point. Its resolution is o(E)/E = ”‘—\/%’“ The
acceptance of the calorimeter A (determined by Monte Carlo studies), together with the
total rate R of radiative photons observed in a run and the integrated cross section (quoted
above) of the process yield the total luminosity of the run by the formula:

R

L=

(4.2)

4.3 Data taking

The data used in this study were collected by the ZEUS detector in 1995, with an integrated
luminosity of 6.36 pb~', which corresponds to nearly three times as much luminosity than
in 1994. No big detector upgrade has been undertaken between 1993 and 1997, but the
high luminosity available from the HERA accelerator has made it difficult to trigger on
every physical process, especially after 1996. The trigger channel used in this work (see next
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Chapter 5

Event Selection

5.1 On-line Triggers

Most of the events seen by the ZEUS detector at HERA do not come from the ep scattering
but are the results of interactions between the particles in the beam and the residual gas
in the beam pipe, or of halo interactions (interactions between the protons and positrons
and particles trapped in the beam lines). Some of the events observed are also the result of

cosmic rays passing through the detector.

Because of these high background rates, it is necessary to build a sophisticated trigger system
which filters the interesting physics events out of the noise. Furthermore, these high rates
require a decision time short enough, so that the readout electronics and the transfer of data
to the storage system can handle them. As it is impossible to make such a decision within the
HERA bunch crossing time of 96 ns, the trigger system is subdivided into three levels: the
GFLT, GSLT and TLT (global first and second level triggers and third level trigger). The
purpose of it is to reduce the incoming rate, which is on the order of 10 MHz to a few Hz at
the end of the chain. Fach trigger has to make a decision on whether to keep or to reject the
event. The first level trigger uses simple algorithms which allow it to make crude decisions
in a very short time. The higher levels use more elaborate algorithms and criteria so that
they can make a finer selection in a slightly longer period. In order to reduce the dead time
due to the decision making, the first level trigger is pipelined, which means that the data
are stored in 52 buffers at a rate of 10.4 MHz before being send to the GSLT. The various
components of the GFLT process in parallel the algorithms in order to select the event and
send back their decision to the GFLT which then passes the eveuts further down the chain
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or clears the buffers, according to a decision based on a combination of all the components
decisions. Once the event has been processed by the GFLT and the GSLT, it is transferred
to the event builder which combines all the information of the various components into one
eveut record. The data is then transferred to the third level trigger (TLT) which makes the
final decision and reduces the data set to a few events per second. A simplified diagram of
the three-level trigger system at ZEUS is shown in figure 5.1. Also shown is the expected
reduction rate at each level.
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Figure 5.1: Schematic organization of the three-level trigger system in ZEUS.

The description of the various cuts made to select the events considered in this analysis is
presented below.



5.1.1 GFLT

At the first level trigger, the information on the energy deposit in the ZEUS calorimeter
is respounsible for selecting the events which will be further processed. The calorimeter is
therefore the most crucial componeut of the ZEUS detector as it appears at the bottom of
the event selection chain. The GFLT consists of a logical “OR” between the various parts
of the calorimeter, the selection being based on several energy thresholds: the total energy
of the electromagnetic sections has to be larger than 4.8 GeV in the barrel (central) region
(BEMC), or 3.4 GeV in the rear calorimeter(REMC). The events are also triggered if an
isolated positron (defined as a set of up to four trigger towers surrounded by silent triggers)
is found with an energy larger than 2 GeV. An output rate of 1 kHz is expected after the
first level trigger. The rates are adjustable by varying the thresholds, depending on the

luminosity and the running conditions.

5:1.2 /GSLT

The main goal of the secoud level trigger is to reject the beam gas background to obtain a
cleaner physics sample and lower rates. As for the first level trigger, the main component for
the event selection is the calorimeter. In Deep Inelastic Scattering, two variables are used

to trigger on the events:

e The total transverse energy of the calorimeter, calculated using the variable 6 = ' —
Py = ¥, Ei(1—cos0;), where the sum is carried over all the calorimeter cells. In a fully
contained DIS event, following energy counservation, the quantity ¢ must be equal to
twice the energy of the incoming positron, that is 2:27.5 = 55 GeV. In photoproduction,
where the positron goes undetected down the beam pipe, the § distribution peaks at
lower values, around 30 GeV. In DIS, the events are selected by applying a loose cut on
this variable: I'— Pz, > 24 GeV, where E, is the energy of a phioton detected in the
lumi monitor, to take into account possible electromagnetic radiation of the positron.
The E — Pz distribution in DIS and in photoproduction is shown in figure 5.2, together

with the nominal value of the cut (see section 5.3).

e The calorimeter timing offers a powerful way of discriminating beam gas fromn physics
events, thanks to the good time resolution of the measurement (I ns for cells with an
energy above 1 GeV). In an ep scattering process, as the origin of time in an event is
taken at the nominal interaction point, the timing difference between the FCAL and the

RCAL will be small. On the other hand, if the events are coming from the proton-beam
gas and given that the proton heam moves in the forward direction, the rear calorimeter
will record an early energy deposition. This is why the cuts Trear, — Trear > 8 1s and
[Trear] < 8 us are used to reject beam-gas events. The events originating from the
positrou beam gas (interaction of a positron with a beamn gas particle) are removed by
cutting on the FCAL timing: [Trear] < 8 us. This cut provides with a very powerful
way of discriminating between the beam gas background and the outcome of the ep
collision as is shown iu figure 5.3.
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Figure 5.2: I — Py distribution in the ZEUS data and in two Monte Carlo simulations. The
DIS Monte Carlo model is shown as a gray histogram, while the photoproduction one is in
black.

An additional loose cut on the Z vertex allows further heam-gas related background rejection
(the event vertex reconstructed by the CTD is required to be within 100 cm from the nominal
interaction point, if there are at least two tracks pointing towards it in the CTD).

The SLT reduces the event rate to about 100 Hz and transfers the various parameters of the
event, to the event builder.

5.1.3 TLT

The final ou-line event selection is performed by the third-level trigger (TLT). At this stage,
more elaborate algorithms can be used for the selection (like jet or positron finders) as
the processing time constraints are relaxed. In the present study, the events triggered are
required to have £ — Pz + I, > 30 GeV (similarly to the SLT requirement). A positron,
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Figure 5.3: RCAL and FCAL time distributions.

found with the on-line algorithm such as ‘Local’ [81] or ‘Elec5’ [82], is required to be found
with an energy larger than 4 GeV. Additional cuts on the position of the detected positron

were applied.

Iu 1995, because of the high rate due to the high luminosity, some of the trigger slots
used were pre-scaled. In practice, the selection requirement on the events were tight-
ened (the box cut applied to the positron was increased from (12,6) cm to (14,14) cm
in the (X,Y) plane - for the reason for this box cut, see section 5.2). This can cause
problems when computing cross sections as the observed cross section per run might vary
from one period to another and depend on the reduction factors coming from the pres-
election. In figure 5.4, the first plot shows how this affected the rate of events over lu-
minosity per run: a clear step shows up for the run numbers above 12750. However,
just by applying a cut on Q? (Q* > 7 GeV?), the effect practically disappears, the av-
erage cross section per run is approximately flat and does not depend any more on the
run number.  As the kinematic region considered in this analysis is constrained to be

Q% > 10 GeV?, the eflect of the prescaling is not important.

Alter applying the on-line selection, the data sample in 1995 contains 7.6 X 10° events.

67

>
" 04 = 2 2
‘B = 0.14 Q" >7GeV
S 035 Noncul 5
= 0.12 |
g 03
=
=025 | ‘ } 1l | ' ‘
wn 3 | 0.08 “ i |“
E 0.2 " ) m : A‘I |
> 015 | 196
LR - |
: 0.1 ;_ ' w“t b *F"%f‘ || 0.04
0.05 £ 0.02
T (TR M [ il e g il
12000 13000 14000 12000 13000 14000
un INr. un INr.

Figure 5.4: Number of events per run, divided by the luminosity of the run (in nb™') without
and with a Q* cut in the 1995 data, using the TLT as explained in the teat.

5.2 Positron Reconstruction

Before turning towards the off-line cuts which determine the final event sample, we shall
consider one of the crucial point of this analysis, that is the reconstruction of the positron
energy and position. In DIS, the accuracy of the reconstructed kinematics of an event
depends on the reconstruction of the scattered lepton parameters (energy and position)
since the method used to determine the kinematic variables &, y and Q? is based on the
positron variables (see appendix A).

The reconstruction algorithm used for the positron finding is called SINISTRA and is de-
scribed in detail in [83]. This algorithm is a neural network simulation based on calorimeter
cells and more specifically on the concept of islands: these are clusters of cells, gathered
around a single local maximum which approximate a single particle shower in the calorime-
ter. Only the cells neighboring (in the 3 dimensions) the local maximum are taken into
account. To increase efficiency, only well isolated islands are considered, for which all the
surrounding cells have no significant energy deposit. The positron finder is based on a prob-
abilistic method: the energies in the PMT’s of the tower surrounding the local maximumn
constitute a “neural” network, from which a probability Ps; is extracted. Ouly electromag-
netic cells are considered in the elaboration of the network. If the probability is close to
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0, the algorithm assumes that the island has been created by a hadrou. If the probability
is close to one, it assumes that the island has been created by a positron (it can also be a
phioton). The energy of the positron is then the sum of the energies of the cells in the island.
lu this analysis, the probability cut of the algorithm, in order to identify the island as a

positron, has been set to Py > 0.9.

The position of the positron is also calculated by an algorithim finder, except in the cases
where the positron has been detected in the SRTD, in which case, only the SRTD information
is taken into account. In the first case, the position of the positron is determined by fitting
the energy weighted distribution of the shower. This fit becomes however inaccurate close
to the beam pipe. The positron scattered at low angles (close to the beam line) can also
lose part of its energy in the heam pipe. To reject those positrons, a “box” cut has been
performed on the positron position in the (X,Y) plane: |X| > 13 cm and |Y| > 8 cm. The
positions of the scattered positrons with hits in the SRTD and with calorimeter information

only are shown in figure 5.5. The SRTD hits are shown as black dots. The shape of these

hits shows the characteristic acceptance of the SRTD.

Figure 5.5: Positron position in the calorimeter and the SRTD in the transverse (X, Y)
plane. The positron is found with the SINISTRA algorithm. The gray dots represent hits for
the positrons in the calorimeter, while the black dots are hits of the positrons in the SRTD.

5.3 Off-line Selection

We saw up to now Low the detector selects on-line the event sample and how the reconstruc-
tion of the positron energy and position is described, which allows in order to determine
accurately thereafter the kinematic variables in the events and at the reconstructed level of
the Monte Carlo simulation.

Another set of cuts is applied off-line to further constraint the data sample. These cuts can be
roughly divided into two groups: the “cleaning cuts” which are applied at the reconstructed
level only and which provide us with a cleaner, background-free sample of the experimental
and simulated data, and the “phase-space cuts”, which determine the value of the total
cross section within the phase space of investigation. Unlike the former set, these latter cuts
are applied at both levels, reconstructed and generated level and are used as well in the
theoretical calculations. The first set of cuts does not appear at the theoretical level (which
does not know about the detector). The loss of events due to these cuts is therefore part of
the overall efficiency of the reconstruction (see section 7.3.3).

Cleaning Cuts

After the on-line selection, not all the runs and events are conserved for data processing.
Some of the events (or even entire runs) are removed on behalf of criteria like holes (local
losses of sensitivity) in the calorimeter during the data taking period, part of the trigger
being off, high voltage or timing problems. These runs are removed in the first stage of the
processing period to save computer time and space.

Some basic, general checks are then performed to remove characteristic events which can
occur in paralle] to the normal ep scattering:

e Compton events: the elastic QED compton process occurs when an electron or positron
scatters off a real photon, and both particles are detected in the calorimeter. The pro-
ton is left unscattered and goes undetected in the forward beam pipe. The signature for
this type of event is the presence of two electromagnetic condensates and the fact that
the energy ratio of each one of the condensates to the total energy in the calorimeter
is larger than a certain value (here we take 0.9). These events are removed from the
sample. The effect is however quite small in the current sample (ou the order of 1%).

o Events with a cosmic muon in the detector are rejected.
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o Fvents with sparking cells, i.e. cells which can produce wrong signals due to sparks
recorded in the PMT’s are rejected if a high energy isolated cell is found in the calorime-

ter.
The other cleaning cuts performed on the reconstructed sample (data and simulation) are:

o 35 < £ — P < 65 GeV: the variable £ — Pz has been described earlier (section 5.1.2).
The lower cut is however performed in order to remove photoproduction background,
where the positron disappears undetected, and the event is not fully contained in the
detector (therefore the variable £ — I, peaks at lower values). The upper cut is set
to remove beam-gas events and misreconstructed vertex which can artificially increase

the value of I — ;.

e To further remove heam-gas background, a cut on the vertex position has been per-
formed: |VT'X(Z)| < 50 ¢, with respect to the nominal interaction point.

e The variable y, is proportional to the scattering angle of the positron (see appendix
A). In order not to mix the reconstructed positron with a low energy, forward going

photon, the following cut is applied: yq < 0.8.

e Finally, the cut on the positron position, described in section 5.2, is applied: |X| > 13

cm or |Y] > 8 cm.

Phase Space Cuts

The second set of cuts, which determine the phase space under investigation in the forward
jet study and in the study of the angular correlation between jets, is:

o The positron is required to be found with an energy larger than 10 GeV.

o The y;p variable (see appendix A) gives the relative amount of hadronic energy in the
central region of the detector. Any measurement with a large amount of energy in
the forward region and no energy in the central region would be too sensitive to the
proton remnant, whose contribution lies mainly in the forward region. DBesides, the y
variable represents (in the QPM) the fraction of energy transferred from the leptonic
to the hadronic system. A large y ensures an easier interpretation of the results in
terms of perturbative physics. In the di-jet analysis (angular correlation between jets,
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chapter 7), the measured jets lie in the central region of pseudorapidity, therefore a cut
of yyp > 0.04 is enougl to ensure a sufficient amount of energy in the central region. In
the forward jet study, the jet probed lies mostly in the FCAL. To ensure a reasonable
amount of energy in the BCAL, the cut has been raised to y;5 > 0.1.

e A Q? cut is applied in the di-jet analysis, @* > 10 GeV?, in order to make sure that the
process cau be treated in a perturbative manner. In the forward jet study, the phase
space under investigation is restricted to @* > 12.5 GeV? by other cuts (see section

6.2.2 for the detailed explanation).

e The goal of both analyses is to probe a wide range in x, therefore the kinematic cuts
for the two analyses are:

~ Angular correlation between jets: 107 < 2 < 1072,

— Forward jet study: 4.5 x 107 < & < 4.5 x 1072,

The exact value of these cuts depends on the resolution of the z variable and the choice
of the binning. This will be discussed in each of the relevant analysis chapters (7 and
8).

The phase space region under investigation in each one of the analyses is shown in figure 5.6.
In figure 5.7, the main kinematic variables x, y and Q* are compared to the predictions of
some of the Monte Carlo models discussed in the previous chapter: ARIADNE 4.08, LEPTO
6.5 and HERWIG 5.9 (the cuts are the ones used in the di-jet analysis. The same conclusions
stand when using the other set of cuts). The comparison is performed at the detector level,
all cleaning cuts being included. The agreement between data and the various models is
very good, which does not come as a surprise as we are only evaluating here the total cross
section of the phase space under consideration, driven only by the structure function Fy of
the proton in DIS. These plots are therefore an evidence on how well F, is reproduced by
the various Monte Carlo models.

The final samples considered, including the jet cuts will be discussed in chapter 6.
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Figure 5.6: Kinematic boundaries for the phase space region under investigations for a) the
forward jet study and b) the study of the correlation between jet. The lines correspond to
the kinematic cuts. Some points are outside the range. This is due to the bin size and the
resolution of the kinematic variables.
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Figure 5.7: General kinematic variables in data and Monte Carlo simulations after the clean-
ing cuts and within the phase space defined by the di-jet analysis (angular correlation between
jets) that is Q* > 10 GeV?, 107" < x < 1072, Ey > 10 GeV and y > 0.04. The data are
shown as black dots and the Monte Carlo simulations as histograms. Statistical errors only.



Chapter 6

Jet Physics in DIS at HERA

6.1 Introduction to Jet Studies in QCD

6.1.1 Hadronic Final States Observables and Jets

Uulike lepton, photons, W or Z bosons, partons cannot be either observed directly or recon-
structed in a detector. Their very existence arises from theoretical concepts, in particular
from group theory. But in order to relate the experimental observations to the theory, some
quantities need to be defined, which should carry information about the underlying parton
processes. In addition to obvious experimental constraints (the quantities must be detected
unambiguously and separated from the background present in the detector), these observ-
ables must obey some theoretical requirements without which no stable conclusion can be
drawn. The most important of them is to make sure that effects due to soft (low energy)
and collinear particles are small. As has been shown in section 2.3.1, these particles lead
to divergent partonic cross section in the standard Feynman graphs and special techniques
(cut-off, dimensional regularization) have to be applied to remove these divergencies. This
is why any observable whose value depends on these soft and collinear particles cannot have
an unambiguous theoretical treatment. This leads to the property of “infra-red safety”: A
quantity S which depends on a certain number of particles momenta (pif, ph, -+, pf', - -+, ph)
is said to be infra-red safe if its value does not change when a particle is added which is

either collinear to one of the pf* or which has a vanishing momentum (pf = 0).

=]
(=28

This can be translated by the mathematical formula:
S,,+| (p}llip“;x Ry pr, S iy (]- =y /\)pitv /\P::) T Srl(p‘llvp"llx ik !péli =y !')x) (61)
where A is a real number between 0 and 1.

For instance the multiplicity of charged particles in an event is not an infra-red safe quantity
but the transverse momentum Pr spectrum of these particles is. The search for “infra-red
safe” quantities in deep inelastic scattering is one of the most important efforts to relate
theory to experiment. A standard example of “infra-red safe” quantity is the total inclusive
cross section of the process, oy: as the soft and collinear contributions cancel out when
summing over all contributions, adding a soft or collinear particle does not change the value
of oy Other quantities can be derived from the so-called “hadronic final state” of a process,
which is, in HERA, one of the possible states of the hadronic energy in which the proton
can fluctuate after the collision with the probe, the virtual photon. This corresponds to
the projection of the proton wave function on a particular state. The sphericity of an event
or the angular distribution of the energy in the detector are examples of hadronic final
state quantities which implement the requirement of “infra-red safety”. These quantities
relate the global properties of an event to the theoretical framework and allow predictions
to be tested accurately on an event-by-event basis. They can be predicted by perturbative
QCD but the calculations are more difficult and less rigorous than for oy, and the influence
of hadronization can be large so that a definitive statement on parton level properties is
sometimes hard to make and dependent on long range physics (see chapter 2).

An attempt to improve the correspondence between quarks, gluons and the final states
observables leads to the definition of the “jets”. These objects are collimated subsystems in
an event, often (but not always) clustered according to the energy deposition in the detector.
They differ from the previous quantities by the fact that they are closely related to the history
of a single parton evolution and therefore less likely to be sensitive to the non-perturbative
fragmentation processes. This argument relies on the property of local “hadron-parton”
duality [84], that is the observation that long range processes, which are respousible for the
hadronization mechanism, create a small amount of transverse energy in the detector and
therefore do not affect the topology of the high transverse momentum partous; the jets which
are subsequently observed by clustering final state particles (hadrons) will therefore have a
transverse momentum close to the formerly created partons.

Like the former observables, jets are known to be infra-red safe quantities and therefore
reliable theoretical predictions on the jet cross sections or on the angular distribution of
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the jets can be made. Experimentally, jets are usually defined as clusters of calorimeter
cells. They can also be defined in the theoretical frameworks as a clusters of four-momenta
partons coming from QCD radiations or of final state particles after Ladronization. But the
correspondence between the real parton four-momenta and the jet energy and position is
not perfect, as the jet is always defined according to an algorithm which merges the various
particles in the event. The relation hetween the partons and the jets might strongly depend

on the choice of the algorithm.

6.1.2 Standard Definitions and Jet Algorithms

One of the first attempts to use jets to relate experimental results to theoretical predictions
was performed by the JADE collaboration using the “minimal invariant mass” or JADE
algorithm [85]. To define a jet, this algorithm loops over any pair of particles p; in the
sample. If the minimum invariant mass of a parton pair is smaller than a fraction y of the
center of mass energy of the event (ys, where s is the center of mass energy of the collision),

the partons are merged into a new object:
(pi +p;)? = 2E;E;(1 — cosby;)) < ys, (6.2)

where i and j run over all the particles in an event. The algorithm then keeps merging
particles until all pairs of “particles” have an invariant mass larger than ys. All the thus
remaining pseudo-particles are then called “jets” (experimentally, at HERA, one introduces
an extra particle carrying infinite momentum in the direction of the incoming beam in order
to simulate the proton remnant and merge the particles close to the proton beam line to
the remnant). This simple algorithm has however shortcomings when describing soft parton
emissions (that is emissions of partons with a small amount of energy, often collinear to the
parent parton) and leads to the creation of spurious (“ghost”) jets which momenta does not
coincide with an approximately collinear set of particles [86]; in figure 6.1, one can see an
example of such creation of “ghost” jet: the two soft gluons are merged into a jet whose
momentuin does not coincide with any of the hard partons momenta. Such a behavior creates
large discrepaucies between the jet cross sections and the NLO predictions at parton level.

To overcome these problems, a new algorithm has been suggested: the “Durham” or “kr”
algorithm [87) which clusters particles in the same way as the Jade algorithm but instead
of comparing the invariant mass of the two particles, it compares the minimum relative

transverse energy of the two-parton system to a cut-off yeu:

2min(E?, bf)(l - ¢0s0i) < Yeuts (6.3)
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Figure 6.1: The gluons 1 and 2 are merged into the jet 12. The event is then classified as a
three-jet event, although there are only two hard partons.

The ., introduced here depends on some arbitrary scale of the process (which can also
be taken as a constant). As in the previous case, a pseudoparticle of infinite momentum
in the z direction can be introduced to simmulate the proton remmant. The jet fractious
which are obtained with this algorithin are in better agreement with the predictions of
perturbative QCD. However, this algorithm has some experimental drawbacks which will be
briefly discussed in chapter 8 and its performances in the forward region are limited.

The two previous kinds of jet algorithms belong to the so-called “cluster” type. Because of
their theoretical and experimental limitations, a second class of algorithm is preferred: the
“cone” type [88]. In the previous cases, all the energy available in the collision was assigned
to a jet (which could possibly be the proton remnant). Here, a fraction of the total available
energy, contained in a fixed solid angle, is called a jet if the total transverse energy in this
solid angle is larger than some cut-off (usually a few GeV. The value of this cut-off Ermin
and the comparison with the scale of the process will be discussed later). Therefore some of
the available energy of the process can be found outside the jets.

One of the first attempts to use such algorithm was performed by Steerman and Wein-
berg (89): they classified a final state as a two-jet system if all but a fraction € of the total
energy available was coutained in a pair of cones of half angles §. This allowed comparisons of
jet cross sections with leading order predictions. At next-to-leading order, the contribution
of the three-jet systems become significant and the comparison breaks down.

A more flexible way to define a jet with the cone algorithm is to introduce a distance R, as
R= \/(Arfl)'z + (An)?, where A¢ is the difference of azimuthal angle between the object to
be merged and the “seed” of the jet (which later becomes the center of the cone) and A,
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the difference in pseudorapidity. All the objects within a coue radius R (usually taken to 1
in HERA) are merged and a jet is found if the sum of the transverse energies of these objects
is larger than the cut-ofl By . The kinematic parameters of the jets are defined according

to the Snowmass convention [90] or “pp” scheme:

Er=7Y Er; (6.4)
i€Jel
n= Z E’r_ﬂ)i/ET, (65)
1€Jel
b= > Eribi/Er. (6.6)
i€Jel

In this case, the convention defines the transverse momentum as

Py = [P+ Pt = \[(Ercosg)? + (Brsing)? = Er. (6.7)

The jets are therefore massless by construction. This algorithm is easy to use and fairly
intuitive (in this study, the algorithm used is PUCELL. Its exact implementation of the
algorithu in the current study will be described in the appendix B). It has however short-
comings from a theoretical side. The properties of the coue jets depend on the number
of particles in the jet, and differences can occur when comparing partons (where there are
usually a few particles only) to hadrons (where the number of particles in a jet is usually
quite large) [91]. Depending on its width, a one-jet event at parton level (which occurs for
instance when clustering two partons into a jet) can become a two-jet event at hadron level.
To deal with this problem, a phenomenological parameter, Ry, has been introduced, which
sets a limit to the maximal distance between two partons in a jet [92] (instead of 2R). Ry,
is selected at both experimental and theoretical levels and its value is tuned in the central

region of the detector so that the jet rates at both levels match.

6.1.3 Examples of Jet Physics at HERA in DIS

For more than a decade, jets have been used extensively in Deep Inelastic Scattering. These
objects are ideal to probe perturbative QCD, as the amount of hadronization correction is
expected to be small [93]. The determination of QCD parameters, like the strong coupling
parameter o, (%) has been presented as an ideal field to test their performance [94]. But jets
are also used to probe non-perturbative quantities like the gluon density of the proton [95]
and the internal properties of jets can be used to study the different, fragmentation properties
of quarks and gluons, in particular through jet shapes [96].

9

Determination of

As we saw in section 2.2.1, in the QPM (quark parton model), the process yqg — ¢ gives
rise to a oune-parton system, that is a one-jet systemn if the parton is resolved as a jet. In
the first order of «y, the diagrams pictured in figure 2.3 give rise to a two-jet system. In
the HERA convention, such a system is called “2+1” jet event, the “2” referring to the
two hard jets and “+17, to the associated proton remnant. In the first order of ay, two
diagrams contribute to the total cross section: the Boson Gluon Fusion (yg — ¢g) and the
QCD Compton (yq — qg). The determination of the strong coupling e, can be made by
measuring the rate of 2+1 jet events, starting at high Q% where the QCDC dominates. As
will be shown in the next subsection, at low @? and low z, the BGF process is used to
determine the gluon density of the proton. The 241 rate is delined as: Ry = ‘:7—2(:%, where
a4 18 the cross section for the 2+1 jet production and oy, is the total cross section in the
same phase space under consideration. At leading order, the 241 jet cross section can be
expressed as:
dog{)

dady o

where ¢;; coutain the hard matrix elements coefficients and the contribution of the parton

- Qg (6.8)

density. The first index ¢ refers to the jet multiplicity including the remnant and the second
index j refers to the order of «v. «y is therefore the only free parameter in this expression.

However, we saw in section 2.1.3 that at leading order in c, the process was very dependent
on the renormalization and factorization scales. In order to determine the renormalization
scheme unambiguously, the cross section has to be evaluated in the NLO in a4 (O(a?)):

NLO
doyyi

By ey -+ e - 0, (6.9)

The 2+1 jet rate in the experimental data must be corrected to the parton level in order to
be compared to the NLO calculations, which are provided by adjustable user routines.

In 1994, the ZEUS experiment measured the jet rates using the Jade algorithm and compared
the results to two programs: DISTET [97] and PROJET [98]. In order to describe the 2+1 jet
kinematics, 5 independent kinematic variables are needed (remember than in the QPM, the
141 jet cross section depends only on two independent variables @ and Q?); these variables
are z, y (which were already defined in the QPM), x,, ¢ and z, where, using the same
convention than in section 2.2.1:

(0] @
Tp=——=7 6.10
*pg € (5.10)
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where £ is the fraction of the proton’s four momentum I carried by the incoming quark of

momentuim p:

p=Ll, (6.11)

P D By = D2y
z; = e (6.12
¥ P-q Zi:l,z(b’i =054 )

where p; is the four momentum of parton j. The variable z is then taken as z = min; 5(2i, 22).

Iinally ¢ is the azimuthal angle between the parton plane and the lepton scattering plane

in the hadronic center of mass.

To determine the oy parameter, the measurement was performed in the kinematic region [94]:
120 < Q% < 3600 GeV?, 0.01 < x < 0.1 and 0.1 < y < 0.95. An additional cut has been set
on the z variable in order to remove regions sensitive to infrared and collinear singularities:
0.1 < 2 < 0.9. The values of the jet rates in different Q* bins can be found in [94]. The jet
rates were compared to the NLO calculations as a function of several jet variables (2, x,, the
transverse momentum pr and the invariaut mass of the two-jet system ;). In figure 6.2,
one can see that the data are in good agreement with the theory calculations. Finally, the
determination of ¢y, has been performed by varying the scale Agep until the best fit to Iy

was obtained (see figure 6.3).

The value of «, at the mass of the Z¢ was found to be (for Agep = 200 GeV):
vg(Mzo) = 0.117 % 0.005(stat) 1503 (systeey) £ 0.007(systmeory),
which is close to the world average 0.119 £ 0.002 [99].

Gluon Density from Jets

In the QPM, half of the momentum of the proton is carried by the gluons. Measuring the
gluon content of the proton is therefore an inportant test of QCD. These measurements can
be performed indirectly by fitting the Q? slopes of the structure function F, of the proton
[100], but are limited in the  range. A direct method to measure the momentum distribution
of the gluon content of the proton from the 2+1 jet rate has been proposed in [101]. At
leading order in «y, two processes contribute to the two-jet production as we saw in the
previous section: the BGE and the QCDC processes. With an appropriate set of cuts, one
can obtain a sample enriched with BGI" events, where the gluon couples to the exchanged
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Figure 6.2: Comparison of the 2+1 jet rate as a function of four kinematic variables with the
NLO predictions: a) z, b) x,, ¢) pr and d) m;;. The data points are corrected to the parton
level and are plotted with statistical errors only.

boson to give rise to two quark jets (see figure 2.3). At leading order, the momentum fraction
of the gluon participating in the interaction, z, is given by:
zg = z(1+m/Q%), (6.13)
where m;; is the invariant mass of the quark-antiquark pair.
At low x, the 2+1 jet cross section can be written as:
o241 = (G (2, Q%) - Cper + Agene), (6.14)

where Cpgr is a coefficient which can be computed in pQCD and Agene is the background
due to the QCDC process. The strong coupling is assumed to be known and taken from
the Particle Data Book (PDG) world average. The function G(x,Q?) can therefore be
determined when compared to the Monte Carlo prediction using the formula:

(%) meas G (2, Q)M Lare

G €z, Q2 meas — )
G f@)me Lpara

(6.15)

where the subscript MC refers to the distribution obtained in the Monte Carlo simulation,
[(x) is the distribution of z, as a function of x and £ is the luminosity of the sample. To
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Figure 6.3: Measured v, in three different Q? regions. The dashed curves represent o with
Agen = 100,200 and 300 GeV. The statistical error bars correspond to the inner bars and
the sumn in quadrature of statistical and systematical errors are the thin error bars.

wmake this comparison, the data must be corrected to parton level as in the previous section.
Thig involves, as we said earlier, large uncertainties due to hadronization effects.

The ZEUS collaboration has measured the , distribution, using the cone algorithm (radius
of 1) in the laboratory system and in the center of mass [rame to determine the 2+1 jet cross
section [95]. The measurement covered the kinematic range: 0.01 < x < 3-0.03, @* > 10
GeV? and 0.005 < @, < 0.1. The jets have been selected if their pseudorapidity 7 was less
than 2 in the laboratory frame and —0.5 in the HCM frame (for experimental purposes: the
forward region is quite diflicult to handle as we are going to see in the following). Their
transverse energy was required to be larger than 3.5 GeV in the laboratory frame and 4 GeV
in the HCM. The background due to the QCDC process and to the QPM (where one of the
jets is coming from energy fluctuations due to hadronization eflects) was determined by the
Moute Carlo simulation.

The H1 experiment performed a similar analysis [102] at smaller z: 0.0003 < 2 < 0.0015.
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The x, range was: 0.002 < z, < 0.2. The measurement confirmed the steep rise of the gluon
density at small @ (which has been seen by indirect measurements).

Recent progress on this analysis focus on comparing the data to the NLO corrections which
are now available in programs like MEPJET [53], DISENT [54] or DISASTER++ [55]. These
allow a more precise comparison with the 24-1 jet rate in the data. However until now, the
data revealed a jet rate about 30% higher than the NLO predictions [103] (this problem will
be addressed in the chapter 7).

Other attempts focus on measuring the gluon densities at lower z and x, where indirect
measurements are limited by large systematic errors. However, the various effects leading to
the 2+1 jet production are not yet clear in this extreme region and a better understanding
of perturbative QCD and hadronization is needed before completing this effort. The current,
analysis is an example of such an attempt to understand this difficult region.

Jet Shapes in DIS

Not only the jet rates and cross sections can be predicted by pQCD, but also the internal
structure of the jets. Using a cluster algorithm, one can for instance increase the resolution
power of the jet to observe smaller “sub-jets” within a jet. This is consistent with the
theoretical concept that the jet width is not only arising from smearing in angle due to
hadronization but also from the clustering of several partons within a jets [104, 105]. PQCD
also predicts that the width of a jet depends on the type of parton (quark or gluon) which
initiates the process; thus gluon jets are predicted to be broader than quark jets, which is due
to a property of the gluon-gluon coupling which stronger than the gluon-quark coupling [106].

In 1995, the ZEUS collaboration has measured the differential and integrated jet shape for
neutral and charged current in DIS, using the cone algorithm (radius 1). The differential
jet shape is defined as the average fraction of the jet transverse energy that lies inside an
annulus in the 7-¢ plane of inner (outer) radius r — Ar/2 (r + Ar/2):

. Brju(r — Ar/2,r + Ar/2)
/ Njgls jels ET,ch("' = R) ¥

(6.16)

where the radius of the cone jet is R and Erjo(r — Ar/2, 7+ Ar/2) is the transverse energy
in the given annulus. Njey is the total number of jets in the sample.

The integrated jet shape is defined as the average fraction of the jet transverse energy that
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lies inside an inner cone of radius r concentric with the jet axis:

o) = L s~ B
‘/(7) i Nj(’Lyj‘,Zla E’]T"cl.(r M R). (617)

The measurement was performed for Q% > 100 GeV2 The jets were required to have a
transverse energy E—{f" > 14 GeV a pseudorapidity lying within: —1 < 7/** < 2. Figures 6.4
and 6.5 present respectively the differential and integrated jet shapes compared to various
Monte Carlo predictions in bins of Ep and 7. The jets become narrower with increasing
Ep, which is consistent with the QCD predictions. All the models are in good agreement
with the data, except PYTHIA which exhibits too narrow jets. These results were compared
to the pp measurements from DO and CDI* [107, 108] and to the ete™ measurements from
OPAL [109]. The HERA jets were found to be narrower than the pp jets, which is consistent
with theoretical expectations, as there is a larger gluon jet contribution at the Tevatron
than at HERA. The measured jet shapes of ZEUS were similar to the e*e™, where the
jets are mostly quark initiated. This shows the universality of the QCD radiation for a

quark-initiated process.
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Figure 6.4: Measured differential jet shapes corrected to hadron level, as a function of the
transverse energy of the jet, E»’rc‘, and the pseudo-rapidity of the jet, 17, compared to
three Monte Carlo predictions: PYTHIA (dotted lines), ARIADNE (solid lines) and MEPS
(dashed lines). The data are shown as black dots. The errors which are displayed are the
sum in quadrature of the statistical and the systematic errors.
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Figure 6.5: Measured integrated jet shapes corrected to hadron level and compared to three
Monte Carlo predictions: PYTHIA (dotted lines), ARIADNE (solid lines) and MEPS
(dashed lines), as in figure 6.4.

6.2 Jets as a Probe of Parton Dynamics at Low z.

The low 2 regime is one of the most difficult and challenging phase space regions to study for
both inclusive and final state analyses. As an example, out of the three analyses presented in
the previous sections, two (the jet shape analysis and the «, determination) limit themselves
to the extreme high-Q?/high-x region, and the third one (determination of the gluon density),
which probes lower Q? values, has experimental and theoretical uncertainties such that it
cannot go down beyond x =~ 1072, As it was shown in section 2.3.1, the reason is that multi-
gluon production dominates at these values of & and @?, so that the standard perturbative
picture of the parton evolution breaks down. Contributions from nou-perturbative effects,
such as Soft Colour Interaction (see section 3.3.3) or hadronization effects make it difficult
to interpret the results as pQCD effects. A better understanding of this kinematic regime
is therefore mandatory to extract information on the various parameters and distributions
predicted by pQCD.

The use of hard jets in this region is an excellent alternative to inclusive analyses. It should
decrease the sensitivity to hadronization effects and improve the interpretation in terms of
pQCD predictions. As it was meutioned in chapter 2, two jet analyses (among others) were
suggested to study the parton dynamics: the angular correlation between jets [110] and the
forward jet production [111]. The strategy in particular aims to discriminate between the
two leading order set of equations describing parton evolution in DIS: the DGLAP and the
BFKL pictures. A description of these two analyses is given below.

6.2.1 Angular Correlation Between Jets

We saw in section 2.2 that the evolution equation describes the time scale between the
long-range processes such as hadronization and the short-range processes such as leading
order QCD matrix element calculations. This intermediate phase space can be pictured as
in figure 2.4. At low , the BGIF" is the main diagram contributing to the jet production,
this is why the t-channel propagator, which initiates the process, in figure 2.4 is drawn as
a gluon ladder. In figure 6.6, the two possible cases of such processes are pictured. In
case a), either there is no parton emission from the gluon ladder or these parton emissions
do not yield a large overall transverse momentum. This is typically the case at high z,
where the momentum of the gluon propagator is large, or in the DGLAP picture, where the
parton emissions with large kr are suppressed due to the requirement of strong ordering in
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transverse momenta. The two leading order jets are carrying all the transverse momentuin of
the process and must therefore be strongly back-to-back correlated in the hadronic center of
mass system in order to conserve energy and momentum. In case b), some transverse energy
is carried by the gluon rungs emitted from the gluon ladder. This can happen if the ky of
the partons is randomly distributed along the gluon ladder as in the BFKL picture. There,
the two leading order jets are carrying ouly part of the total transverse momentum of the
process. In the HCM frame, this will translate as a weakening of the azimuthal correlation
between these two jets as the remaining transverse momentum can be compensated by the kyp
of the higher order partons. This effect must increase as @ (or @,) becomes smaller because
multi-gluon emissions are becoming predominant. Therefore, at small instead of having
A¢ distributions peaked at the value of 7, broader azimuthal distributions are expected.
However, in practice, these distributions can also be accounted for NLO processes where a
third hard jet can balance the transverse momentum of the other two leading order jets.
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Figure 6.6: a) Dijet production through the BGF process. No initial state parton emission, or
no ky production in the gluon ladder: in the HCM, the two jets are back-to-back correlated. b)
Dijet production with parton emissions. The overall kr produced by the initial state emissions
balances the kr of the two leading order jets in the hadronic center of mass frame.
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Calculation at leading and next-to-leading order have been performed in [110] using the
PROJET package and the A¢ dependence of the di-jet cross section Las been evaluated [or
Q? > 10 GeV?. The jets were required to have EZ > 10 GeV2 For the NLO calculations,
the third jet was required to be B2 < 10 GeV?, so that it simulates a relatively soft parton.
It should be added that in these calculations, both the NLO and the BFKL predictions
have been made at parton level without using a jet algorithm. A one-to-one correspondence
between the parton and the jet was assuined. Figures 6.7 show the dependence of the
differential cross section on the variable ¢ for two values of (? and three values of x. In
the region where A¢ ~ m, the two jets usually have low momenta. This leads to larger
hadronization corrections and this is why this region is not shown in the figures. The NLO
distributious are falling sharply for A¢ < 2.8, whereas the BFKL curve exhibits much
broader tails. At the parton level, this distinctive effect can be interpreted as a clear signal
of the BFKL dynamics.

In order to reproduce this effect in the data, the cone algorithm as described earlier is used
with a radius of 1, in order to determine the two leading order jets. The jets are found in the
laboratory frame and then boosted to the HCM frame to find out the values of the kinematic
parameters (Er, E and ) in this frame.

In the DGLAP scheme, the parton emissions are ordered both in @je and in kg, while they
are only ordered in zj, in the BFKL scheme. In order to select the two leading order
partons, the jets are therefore sorted in the HCM according to their pseudorapidity n (which
is equivalent to sort the jets by x;.) and the two jets with the highest n are marked as the
leading order partons. These jets are compared if they obey the following criteria:

e In order to have reasonably hard jets, the transverse momentum in the laboratory
frame is required to be E7,; > 4 GeV, and Epy > 6 GeV. The indices 1 and 2 are not
specific for the jet selected. This only means that one of the jets is required to have a
transverse energy larger than 4 GeV and the other, larger than 6 GeV. The reason of
this asymmetric cut will be explained in section 7.3.2.

e As the ¢ distribution is observed in the HCM frame, the transverse energy of the jets
in this frame is also required to be within EfffM > 4 GeV, and Eff§™ > 6 GeV.

e In order to reconstruct accurately the jets, in a region far enough from the proton
remnant and where the position resolution is not degraded by the size of the calorimeter
cells, the pseudorapidity 7 of the jets in the laboratory frame is required to be within
-2<y<2.2
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Pigure 6.7: Differential two-jels cross section as a function of A, the difference in azimuthal
angle between the two jets in the HCM frame. The curves represent the BFKL predictions
while the histograms show the NLO calculations (using the program PROJET) for various
values of x and Q*.

e A cut is applied on the diflerence between the pseudorapidity of the jets in the HCM
frame: AnM > 1.2. The reason of this cut will be explained in the next chapter, as

well as its consequences on the theoretical predictious.

e Finally, to make sure that the selected jets are coming from the box diagram and not
from radiations from the gluon ladder, a requirement is set on the pseudorapidity of
the jets in the HCM frame: 57M > (.

The last cut was suggested by theorists working the subject [112]. Unfortunately, there is
not so far a BFKL Monte Carlo model which could optimize these cuts. All the information

relies omx theoretical calculations.
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6.2.2 Forward Jets

A second attempt to probe the parton evolution is the study of forward jets at low z:. The
method was proposed by Mueller in [111] and studied by the Durham group in [38]. In order
to probe the parton dynamics at low z, the strategy is to look at the bottom of the gluon
ladder pictured in figure 6.8.

Qz,xzh '
X, wvsves P
X4 Foor Praa
4 Forward jet
gooeer Large Py large x,

@

Figure 6.8: Forward jet production in DIS. pr is the transverse momentum of the emitled
parton and x; is the fraction of longitudinal momentum. The forward jet is the parton with
the largest xje.

The last parton emitted is treated inclusively as a probe of the dynamics of the process. The
idea comes once again from the difference in the ordering of the parton emissions between
the DGLAP and the BFKL schemes. In the DGLAP picture, the last parton emitted has the
smallest transverse momentum pr of all (because of the strong ordering in pr requirement)
and the largest fraction of longitudinal momentum, xj,. This also means that this jet is
the most forward one, as xje = Pz/Pproton = B - €050/ pyroton- The larger x;¢ is, the closer
the process is to the so-called high energy limit [113]. This can be shown by looking at the
partou-photon center of mass energy (x; is the fraction of longitudinal momentum of this
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first jet, py = xp is the momentum of the parton 1 aund ¢ is the momentum of the photon):

S, (6.18)

oy 2 2014 > 20D g .

Therefore, if xj, > x, the partonic cross section becomes very large. Besides, because of

the ordering in the transverse energy ol the emitted partons, if this parton has a momentum
pr comparable to the scale of the process (here @?), this emission will be suppressed in the
DGLAP scheme. On the other hand, the BI'KL scheme predicts a random py distribution
along the gluon ladder. The evolution is nevertheless strongly ordeved in wj,. The last
emitted parton, with the highest x;,, can therefore have a pj. of the order of Q.

Therefore the two following requirements suppress the phase space for a DGLAP-based
evolution, while they enhance the contributions of a possible BFKL-type process:

o 2~ (Y2

® Ljy > T

The forward jet cross section has been formally calculated in [113] and numerical estimations

have been performed. It has beeu found to be:

Tiet Atn2 2N Q? "
Oerward jeb ™ (4) (—;) : (6.19)

@ Vi

Where p is an exponent depending on the factorization scale of the process and N, is the
number of active colors. Let’s note that the forward jet cross section grows like the gluon
density: in section 2.3.3, we showed that xg(x, Q%) =~ 74, with A = %}lln? = 0.5.

Expanding the expouent in eq. 6.19, we obtain:

2 2\ Hu
{1+ 4{7.210,,( f") +3 [“ A 41;:21%( "')] e } (%) . (6.20)
]

This is the standard perturbative expansion in terms of leading lu( ) predicted by the BFKL
equation. The first term of this expansion (‘1’) corresponds to the emission of a forward
parton on top of the fixed matrix elements calculated from the quark box to which the
photon couples. It is therelore similar to the NLO calculations in the DGLAP perturbation
theory. The second term corresponds to the emission of a second parton between the forward
going parton and the quark box. Fach higher term of the perturbative expansion corresponds
to a new gluon emitted between the forward jet and the leading order partons coming from
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the matrix elements. Because it is a leading ln(;“,) expansion, each new gluon is emitted far
in 7. (aud therefore in rapidity) from the previously emitted partons, leading to parton
emissions strongly ordered in rapidity. Nevertheless, because of the NLO corrections to
the BFKL kernel (see chapter 2), we expect that this strong ordering in rapidity breaks
down. The results would be a total cross section growing as: o ~ o~ O+ where AN is
the outcome of the NLO corrections (large and negative) to the BFKL kernel. This would
result in a much flatter and smaller cross section. However, so far, the NLO corrections have
only be evaluated for the total cross section [32]. Their application to specific hadronic final
states is 10t yet certain and the above estimation can at best be taken as a rough estimate.

Experimentally, to select the forward jets in the data, the cone algorithm with a radius 1 is
used, as in the previous analysis, and the following cuts are set:

® Zje > 0.036. This cut selects high energy jets at the bottom of the gluon ladder (it also
makes sure that we probe higher orders of ). At low x, it enhances the contributions
from a BFKL-type evolution. The value of 0.036 is set to be roughly consistent with
the other kinematic cuts (Ep and 7).

0.5 < BEr’/Q* < 2. Together with the previous one, this cut suppresses the phase

space for DGLAP evolution. Within the cone algorithm, the transverse energy and the

transverse momentun are equal.

e The jet selected is required to lie in the target region of the Breit frame': Pepreie = 0
This cuts prevents the leading order jets from the quark box from contributing to the
Jet cross section. This can happen at high x, where 24, ~ x.

e To make sure that we uevertheless observe hard jets, a cut on the transverse energy
Ep > 5 GeV is necessary.

The pseudorapidity is required to lie within the range: 0 < 7 < 2.6. The lower cut is
not really needed as the requirement on ;. selects jets with n > 0.5. The upper cut
is needed for experimental reasons. First, the jets have to be fully contained in the
calorimeter and the last cell is at 5 ~ 3.7. Besides, the correlation between detected
and true jets is getting worse at 7 > 2.6 (see figure 6.9). This is due to the bad position
resolution in the forward region of the calorimeter, as an effect of the granularity of
the cells (see section 4.2.1). Finally, because of the original boost, the proton remnant
deposits a lot of energy in the forward region and the separation of the forward jet

'For a definition of the Breit frame, see appendix C
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from the remnant is quite difficult in this region. This issue will be treated in the next

sesction.
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Figure 6.9: Correlation between the pseudorapiditics at the detector level and at the hadron
or true level. All the cuts (section 6.2.2) but the one on the jet pseudorapidity have been
applied. The vertical and horizontal lines correspond to the value of the n cut. At njq > 2.6,
the correlation starts to worsen.

6.3 Some Properties of the Jets in the Forward Region

The forward region of the ZEUS calorimeter is known to be very challenging to study and
it is excluded from most of the physics analyses made at ZEUS. The three main reasons for
this are: the hole in the detector due to the beam pipe and the energy loss which follows,
the presence of the proton remnant, and the reconstruction accuracy which is limited by the
coarse granularity of the calorimeter cells. As we want to study jets which can be very close to
the beam pipe, it is important to check that their behavior can be predicted from a theoretical
and an experimental sides. These jets might also receive contributions from the proton
remnant- One of the goals of this section is to estimate how large these contributions can be.
Unfortunately, there is no model for the behavior of the proton remnant, the dissociation
being bound by too many uncertainties (the boost, the effect of the hadronization...). So

far, it has not been possible to make a quantitative prediction for the average amount of
energy which arises fromn the remnant. The following arguments will therefore be mainly
qualitative; their purpose is to convince ourselves that the measured jets are not merely
energy Huctuations of the remmant. The study will be performed with the cuts defined in

previous section (forward jets).

6.3.1 Energy Flow around the Jets

The first check which is performed is the study of the energy flow around the forward jets.
All the calorimeter cells with a significant energy deposition are cousidered with respect to
the position of the center of the jet and averaged over all events with a forward jet. As the
cone algorithm has a radius defined as a function of the pseudorapidity n and the azimuthal
angle ¢, it is natural to express the position of the calorimeter cells as a function of these
two variables. In the following, the difference between the pseudorapidity of the jet and the
cell pseudorapidity is called An: An = 150 — 1een. The forward direction (direction forward
with respect to the jet position) lies therefore in the negative values of As. The difference
between the azimuth of the jet and the azimuth of the cell is called Ad: A¢p = ¢jer — e
In figure 6.10, the transverse energy flow in the 1995 data with respect of the jet position is
plotted as a function of An and A¢. This transverse energy flow is plotted in various 7 bins,
where 7 is the pseudorapidity of the forward jet. The energy belonging to the jet is plotted
as the shaded area. Up to 7 of 2.5, the jet appears to be very well separated from the energy
activity in the rest of the calorimeter (represented by the blank histogram). For 7 = 2.5,
the jet can still be fairly well separated [rom the rest of the event, but this becomes more
difficult for 2.6 < 7 < 2.8. There, the jet looses its sharp peak structure and becomes much
wider. An excess of energy which does not belong to the jet is visible in the region forward
to the center of the cone and can barely be distinguished from the energy inside the jet.

To better estimate the eflect of the amount of energy forward to the jet’s center (which could
possibly arise from a contribution of the proton remnant), a cross section of the previous
plot is shown in figure 6.11. Here, the transverse energy flow is plotted versus An only, the
amount of transverse energy being integrated over the full A¢ range (full line histogram)
and the region where —1 < A¢ < 1 (dashed histogram). The characteristic peak structure
of the transverse energy appears in all the 7 bins, indicating the jettiness of the object found.
However, for n > 2, a second peak appears on the left of the jet axis (that is in a region
which is forward with respect to the center of the jet). This second peak moves closer to the
jet center in the high n regions and finally merges with the primary peak for 5 > 2.6. This
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structure is very well reproduced in the Monte Carlo simulation (see figure 6.12).

Interpreting this feature in terms of proton remnant is not so straightforward. One has first
to remember the structure and the shape of the calovimeter cells (see chapter 4). In the
forward region, these cells becomes wider and the gap between two cells becomes large. The
position of a given cell in the calorimeter is given from the data base by the center of this
cell. Therelore, the wider in angle the cell is, the larger the uncertainty on the position
becomes. Part of the gap between the two peaks can come from the empty space which lies
between two cells in the forward region of the calorimeter . When the jet is very forward
(typically 7 > 2.6), it merges these very wide cells and the position reconstruction becomes
unaccurate, which may explain its flattening and widening. However the contribution from
the energy of the proton remmnant in the forward region is also quite important and must be

taken into consideration for a correct interpretation of the results.

6.3.2 Jet Shapes

The contribution of the proton remmnant and the accuracy of the jet reconstruction should
also reflect themselves in the internal structure of the jet. A usual way to look at the internal
properties of the jet is to study the jet shape. In section 6.1.3, the integral and differential jet
shapes were defined: they picture the width of the jet and reflect how well it is collimated.
At low x, we expect a much more important contribution from gluons than from quarks,
and therefore, for reasons quoted above, we expect the jets to be quite large.

Iu figures 6.13 and 6.14, the differential jet rates in [y and 7 bins are plotted for the data and
the Monte Carlo simulations. The differential jet rate is defined as above in equation 6.16.
All the cuts of the forward jet analysis, defined in section 6.2.2, have been applied (except
for the 7 cut on the last plot on figure 6.14). The first noticeable feature of these plots is
that the differential jet shape is more irregular than in the plots presented in section 6.1.3,
especially at high 7 and low Er. Furthermore, the amount of energy observed in the higher
r/R bins of each plot is much larger than in the previous plots, meaning that a substantial
amount of energy lies outside the cone radius of 1. However, the core of the jets is still
hard which means that the energy is in average collimated around the ceunter. Another
characteristic feature of these plots is that the jets tend to hecomes broader when they are
more forward (cf. figure 6.14) and less energetic (cf.figure 6.13). This is in agreement with
the QCD predictions for jets.
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These features are quite well reproduced by the ARIADNE model, while LEPTO does not
describe the differential shapes as well and tends to find more energy in the tails of the jets.

The integrated jet shapes are shown in figures 6.15, 6.16 and 6.17. The same definition
as in section 6.1.3 is taken. In figure 6.17, the integrated jet shape at a radius r = 0.5R
is shown (half-way to the full width of the jets). These plots lead to the same conclusion
as the previous ones: the width of the jet decreases with increasing pseudorapidity and
with increasing transverse energy. The increase of the integrated width with increasing Ep
is well in agreement with the QCD prediction [114]. Once again, the ARIADNE Model
reproduces the jet shape fairly well, whereas the LEPTO Mounte Carlo yields systematically
wider jets. If the width of the jet is a signature of its harduness, and therefore its relation to
the hard perturbative physics, the data and ARTADNE exhibits more perturbative-like jets
than LEPTO.
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PFigure 6.11: Transverse energy flow in the calorimetler around the jet in the data. The
shaded histograms show the cells belonging to the jet. The full line histogramns show all the
cells in the calorimeter, integrated over all A¢. The dashed histograms picture the cells in
the calorimeter integrated over |A¢| < 1.

Figure 6.10: Transverse energy flow around the center of the jet as a function of A and
Ap. Tlhe shaded region represents the cells belonging to the jet, while the open histograms
picture all the cells in the calorimeter.
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Figure 6.12: Transverse energy flow in the calorimeter around the jet in the Monte Carlo
simulation (detector level). The shaded histograms show the cells belonging to the jet. The
full line histograms show all the cells in the calorimeter, integrated over all A¢. The dashed
histograms picture the cells i the calorimeter integrated over |A¢| < 1.
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Chapter 7

Angular Correlation between Jets

7.1 Introduction

In the previous chapters, we explained why a better understanding of the low-x physics is
a crucial step towards a global understanding of pQCD and how the jet observables could
help us reaching this goal. In this chapter, the angular correlation between two jets in the
hadronic center of mass frame will be studied. The correlation between the azimuthal augles
of the two leading order jets, in this frame, is supposed to give a hint on the underlying
parton processes [110]. The main purpose is to test the validity range of the DGLAP
evolution picture. According to these evolution equations, the overall transverse momentum
carried away by the higher order partous (beyond leading order in ) is small. Therefore the
two leacling order jets must be approximately back-to-back in the transverse plane over the
entire kinematic range. In another type of evolution scheme, the BFKL evolution picture,
the tramsverse momentum of the high-order partons could be comparable to the one of the
leading order jets. Therefore, the correlation between the leading-order jets should become
weaker when the multigluon emissions become large. This is the case when the scaling
variable x or the momentum [raction carried by the gluon w, (described in the section 6.2.1)
is small. To study these processes, some cuts were applied which were described in the
section 6.2.1 and are summarized in the table 7.1. The aim of this analysis is to study the
azimuthal angle A¢p between the two leading order jets in bins of v and x, and see if, going
to small x and z, values, one can really observe a significant weakening of the azimuthal

correlatron.

The strategy used in this analysis is standard in high-energy physics and will be the same for

107

Ea > 10 GeV
y > 0.04
Q?* > 8 GeV?

Elet >4 GeV, Ek% , > 6 GeV
TG > 4 GeV, EfISM > 6 GeV
-2 < bt <22
WY >0
AHEM 5 19
1t < 1072

1073 < 2, < 10!

Table 7.1: Selected phase space region for the cross section measurement.

the next study on forward jet: the data will be first compared to the Monte Carlo predictions
at detector level. The Monte Carlo model which describes the data best will be used for the
detector corrections. Once corrected back to hadron level, the data will be compared to the
various simulations and some first conclusions on the validity of the models will be drawn.
Finally, the data will be corrected for hadronization effects (to “parton level”) in order to
be compared to the NLO calculations.

7.2 Comparison between the Data and the Monte Carlo
Simulations

The data which are obtained in ZEUS need to be corrected for detector effects: all the sub-
components of the detector have a finite acceptance, a certain resolution and the background
arising from the beam gas can contribute to spoil the accuracy of the measurement. The
usual method to correct the data is to use the Monte Carlo model, which includes a full
simulation of the detector through the GEANT package (see chapter 3). The geometrical
acceptance and the resolution of each one of the subcomponents of the detector are imple-
mented in the simulation, as well as the beam gas background. The comparison betweenthe
“true” level, where no detector is present, and the detector level (after the simulation of all
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the subcomponents) provides the tool for the corvections. The technics and results of these
corrections will be discussed in the next section. But before correcting the data with the
Mounte Carlo simulation, one needs to make sure that the model describes fairly accurately
all the distributions observed in the data. If this is not the case, the results of the correction

might be inaccurate or completely wrong,.

It is extremely important that the Monte Carlo model describes the data in the particular
phase space under investigation. We saw in section 5.3 that all the models provide a good
description of the overall DIS kinematic variables. This is not enough to safely use any
of these models to correct the data. For example, a model like LEPTO which does not
have the super-symmetry implemented could not be used in a leptoquark search, but could
still describe the general kinematics of the event iu this type of analysis. In figure 7.1, the
differential cross section of the events at detector level, within the phase space defined by
the cuts in table 7.1, is compared (o six general kinematic variables: @?, the energy of the

scattered lepton By, yip, £ — Pz, v and x,.

The data points are compared to three Monte Carlo models: ARIADNE 4.08, LEPTO 6.5
and HERWIG 5.9. The striking feature of these plots is that none of the Monte Carlo
describes the absolute normalization of the data. ARIADNE predicts a cross section which
is 25% too large, whereas LEPTO and HERWIG predict a much too small cross sections (by
about 40%). In figure 7.2, the comparison is made between some jet variables in the data
and in the Monte Carlo models: the transverse energy of the jets in the laboratory frame,
the transverse energy in the HCM [rame, the pseudorapidity in the laboratory frame and
the pseudorapidity in the HCM frame (all these variables are used in the selection of the
final sample). There again, none of the models cau reproduce the absolute normalization of
the data in this phase space region. The reason for this is still unclear. All the Monte Carlo
models have been tuned to describe the hadronic final states in several distributions, like the
hadronic energy flow versus the pseudo-rapidity, but fail to describe these ones. This is also
the case in other di-jet analyses (like the determination of the gluon density [115]).

This normalization between data and Monte Carlo is however not critical. The correction
factors are ratios between the true and the detector levels and the absolute normalization
cancels out to the first order. It is however crucial that the shape of each one of the dis-
tributions agrees with the data, otherwise, migrations of events from bin to bin are not
properly taken into account and the corrections might be biased. The shape comparison
between data and Monte Carlo simulations is shown in figures 7.3 (for the general kinematic
variables quoted above) and 7.4 (for the jet variables). Here ARIADNE and LEPTO give
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Figure 7.1: Comparison between the data (shown as full dots) and Monte Carlo simulations
Jor six variables: a) Q*, b) Ew, ¢) ysp, d) E = Pz, ¢) logiz, [) logrox,. The data are
displayed as full dots. ARIADNE is shown as a full line, LEPTO as a dashed line and
HERWIG as a dotted line. Errors shown are statistical only.

an accurate description of the shape of most of the variables considered (except for the
z, distribution in ARIADNE and both pseudorapidity distributions in LEPTO which seem
shifted). These models can therefore be used for correcting the variables for detector effects.
HERWIG, lhowever, fails completely in describing the shape of the distribution, so it can
not be used to determine the detector corrections.
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7.3 Detector Correction

Once the Monte Carlo models which describe the experimental data, have been determined,
the correction procedure is fairly straightforward. The first step is the jet energy correction,
in order to minimize the differences between the model predictions and the experimental
data, using the Monte Carlo simulations. Then, the same simulations are used to evaluate the
acceptance correction, purity and efficiency of the sample, by a simple comparison between
what has been generated (the true physics process) and what has been observed after the
detector simulation. These numbers will be used to correct the data for both acceptance

and migration.
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Figure 7.3: Shape comparison between the data (shown as full dots) and Monte Carlo simu-
lations for siz variables: a) Q*, b) Eu, ¢) yyp, d) E — Py, e) logix, f) logioz,. The data
are displayed as full dots. ARIADNE is shown as a full line, LEPTO as a dashed line and
HERWIG as a dotted line. Errors shown are statistical only.

7.3.1 Jet Energy Correction

The energy correction is a quite usual step in the study of hadronic final states, and in
particular in jet analyses. This is not strictly speaking mandatory for the final results. As
a matter of fact, the full acceptance correction should also take into account the effects of
energy loss in the calorimeter due to dead material (see chapter 4). For instance, let’s consider
a jet generated with a transverse energy Er, larger than some minimum value E—?‘l"’"’ /o
ensure that the jet comes from hard processes and not merely from energy fluctuation inside
the calorimeter. Let’s assume that due to dead material, the jet loses part of its energy and

is observed with an energy I} < E;“H’[ I The jet will not participate in the observed jet
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distribution but will be included in the generated jet distribution. After looping over all
the jets (and assuming that the energy loss is the only cause of discrepancy between true
and reconstructed level), the number of jets ending up in the observed distribution will be
smaller than the number of jets ending up in the true distribution. Therefore, the amount
of jets which are lost due to energy loss in the detector is part of the overall efficiency of the

detector reconstruction.

If the model would describe the data perfectly, there would not be a need for such a correction.
Unfortunately no model can pretend to reproduce exactly the energy loss within the detector
s0 that discrepancies between simulation and reality are always present. DBesides, there is
at ZEUS an uncertainty on the total energy scale wheu comparing data and Monte Carlo
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simulation [116] (the data are off by 5% in the BCAL and 3% in the RCAL, compared to the
GEANT simulations. The eunergy scale discrepancy in the FCAL is known less accurately
but is believed to be on the order of 3% as in the RCAL). This systematic shift in the energy
distribution could therefore bias the correction.

Therefore such a correction has to be applied for any energy deposition in the calorimeter
and in particular for the jets. In figure 7.5, the relative difference between detector level
and generator level jets if displayed (after all the cuts listed in table 7.1. The energy of the
generated jets is 13%-16% larger than the energy of the reconstructed jets. This discrepancy
is due to the energy loss of the jets in dead material in front of the calorimeter (see section
4.2.1). A standard and unified method for correcting this effect has yet to be determined
in ZEUS. A number of ZEUS notes exist on the subject (see [117], [118], [119], [120] and
[121] for a non-exhaustive list), but it is not the object of the present research to perform
a comparative study of the various methods which have been tested so far. The method
presented here (the same will be used in the next analysis “forward jets in DIS”) has the
advantage of providing corrections which are little affected by the statistical fluctuations.
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Figure 7.5: Relative difference between the true and the observed (transverse) emergy in the
ARIADNE 4.08 model. The systematic shift between true and observed energy distribution
s due to energy loss in dead material.

These corrections are known to be dependent on the geometry of the detector, so they
are determined in various regions of pseudorapidity. Five regions have been selected, with
approximately the same amount of statistics and dead material: —2 < 5 < —1.2, =1.2 <
1< =05 -05<7n<10,10<yp<1b5,16<n<2and2<n<22,

114



In cach oue of these regions, the correction factors C(E('}‘;') are averaged over the polar
and azimuthal angle of the jets, whicli is reasonable as the plysics is symmetric in ¢. The
corrections are computed independently for £ and Ey in different bius of E and Ep. The

(transverse) energy of the detector level jets was then corrected using the general formula:

L s L : ey FIRUE
EG9" "= C(EG) x E(’,;-‘j’, where C(Lu(',;.‘)") = —r. At the detector level, the sample used
“ry

for the correction is obtained by applying all the selection cuts to the events except the
energy aud trausverse energy cuts which are to be a little bit looser. The latter is important
in order not to bias the correction by effects which are due to jets which will not end up
in the final sample. The hadron jet is then selected within some loose cuts and matched to
the acceptable detector jet by applying a distance criteria in the (7,¢) space: the hadron jet
which has the smaller distance R = /Any? + A¢? with respect to the detector jet is chosen
to compute the correction factor. An additional cut is performed to reject events where the
closest hadron jet is still too [ar from the detector jet: ,l? < 1. In order not to bias the
sample, a gaussian distribution is fitted to the ratio %lig;—l in each EG¢*) aud 4P bin, so
that the hadrou jets which are wrongly matched to the d%éector jets are sitting on the tail of
the distributions and thus do not contribute to the overall correction factor. In fig. 7.6, the
values of these correction factors are shown as a function of the transverse energy in several
bins of pseudorapidity (as the shape of the correction was flat as a function of the energy,
the raw data were simply multiplied by a single number in the various 7 bins to account for
the total energy loss). The correction is applied by multiplying bin by bin the energy (or
transvexse energy) of the jet observed in the detector by the result of the fit.

7.3.2 Resolution of the Kinematic Variables

Before Tooking at the final value of the acceptance correction which will be applied to the
data, it is important to evaluate the various contributions to this acceptance. The main
one is the resolution of the various kinematic variables which are used in the cuts. These
resolutions limit the purity and efficiency of the sample and can lead to large acceptance

corrections.

The estimation of these resolutions is also important in order to determine the bin width
of the final distributions. This bin width should be chosen large enough as to minimize
migratious from bin to bin (so that the final acceptance looks flat). In figure 7.7, we show the

relative resolutions for the two variables @ and x,. The relative resolution for an observable

Correction Factor
S

-
T Ir}

T

L

-

B

Correction Factor
& 8
U e I

1
i(
I

1.05

0.95 ; -2<n<-1.2

| -1.2<n<-0.5 | -0.5<m<1
o R CERE O R A [l e S SR T S e
5 10 15 Ly 10 15 5 10 15
E, (GeV) E, (GeV) E (GeV)

13

[
o

= s e s

S

11
1.05
1
095 1= 1enets [~ 1.5<m<2 [~ 2<n<2.2
0.9 TR RTINS ) o o T (o i 10 e e B S A
5 10 15 5 10 15 5 10 15
E, (GeV) E, (GeV) E,(GeV)

Figure 7.6: Transverse energy correction in various 1 bins. The result of the fit is used to
correct the detector level distributions (in the data and in the Monte Carlo model).

X is defined as:
X X Det __ “(Had

o X Pet '
The @ resolution is discoutinuous in the two largest x bins. This is a feature of the electron

(7.1)

reconstruction method: the resolution on the the reconstruction of the value of x depends
on the value of y [122]. At small y, the & resolution diverges with the electron method. At
large x, smaller values of y are sampled and therefore the x resolution worsens a lot. The
average resolution is around 16%. The z, resolution is much worse (around 23 %), because
¥, is a combination of event and jet variables which all have a large resolution.

In figures 7.8 and 7.9, the resolution of the azimuthal angle Ap"EM  between the two highest
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Figure 7.7: Relative resolution for two variables « and wx,. All the cuts listed in table 7.1
have been applied. These values were obtained by fitling o gaussian to the distribution in
each bin. The error quoted is the error on the fil.

7"CM jets, is shown. The resolution is defined by:

5Ap = Apfrén — Ddpén (7.2)

In figure 7.8, all the cuts have been applied except the one on Ay (the difference between
the pseudorapidity of the two jets in the TICM). The striking feature of this plot is that a
second peak appears to the left of the main one, in the low §¢"“" bins. This means that
in most of the events, the two selected detector jets are not identified as the two hadron
level jets. In these bins, the two detector jets are very close to each other, separated only
in pseudorapidity in the HCM. When two jets are close in pseudorapidity and in azimuth,
their distance in the (1,¢) plave is small and, providing that this distance is also small
in the laboratory frame (which is the case for the cone algorithm as it is longitudinally
invariant), it might happen that they merge to give one jet once reconstructed at detector
level. In figure 7.8, the second peak appears for negative values of dA¢, so the azimuthal
angle between the two jets at detector level is much smaller than the one for the two jets
at hadron level. What actually happens is pictured in figure 7.10. Most of the leading
order jets are emitted back to back. After reconstruction, it might happen that a generated
jet is reconstructed as two smaller jets. In the limit where the azimuth between the two
reconstructed jets is small, the configuration presented in figure 7.10 might dominate and
give rise to a large amount of di-jets at detector level unrelated to the two hadron level
jets. The only solution to this problem is to make sure that the two jets are far enough in
pseudorapidity, so that these “broken” jets do not contribute. This is achieved by applying
a cut on the difference on the pseudorapidity between the two jets at detector and hadron
level as in figure 7.9. In this plot, the second peak is much reduced (although not conipletely
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Figure 7.8: Resolution for the variable A¢, the azimuthal angle between the two leading order
jets before the cut in Any. 6A¢ = (A@)Pe — (A¢p)7el. All the cuts listed in table 7.1 have
been applied except the cut on An"eM.

suppressed). Most of the jets found at detector level are there effectively related to the
hadron level jets.

Finally, it must be added that cutting on a minimum Ay in the HCM might not be a correct
thing to do. As a matter of fact, the wider the gap in pseudorapidity between the jets
becomes, the larger is the probability for a BFKL-type evolution between the two jets. The
two jets would therefore not be auy more at the top of the gluon ladder and the difference
of azimuthal angle would not reflect the parton evolution. This is however the only viable
solution from an experimental point of view with this type of algorithm. With another choice
of radius (for instance R=0.7, as in DO [39]), the situation is similar, although the number
of uncorrelated jets is a little bit smaller. Nevertheless, in any case, the cut on AnfCM is
mandatory. We must add that the analysis was also performed with the kp algorithm but
the resolutions of the jet variables were even worse.

All these considerations, together with the requirement that there should be a reasonable
amount of statistics in each bin, lead to the selected bin size displayed in table 7.2.

As we are mainly interested in studying the properties of the di-jet system in each one of
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Figure 7.10: Ezample of di-jet configuration in which the two hadron level jets 1 and 2 do
not match the detector level jets 1 and 2. The latter come from hadron jet 1 which “breaks
up” at the reconstruction level.
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Figure 7.9: Resolution for the variable A, the azimuthal angle between the two leading order
jets after the cut in A1 0AD = (Ad)Pet — (Ag) 1. All the cuts listed in table 7.1 have been

applied.

the x and x, bins, it is important to check that these properties do not vary from bin to
biu due to the detector resolution. In tables 7.3 and 7.4, the relative or absolute resolutions
for various jet kinematic variables is shown in the three bins of 2 and x, (this is the result
of a gaussian fit applied in each one of the distributions). As expected from the detector
specifications, the transverse energy resolutions are around 15% while the 7 and ¢ resolutions
vary from 5 to 10% over the whole detector range. It is important to stress that the variation
of the resolution of a given variable from one % (x,) bin to another is quite small (maximum
2-3%), so that the detector response does not influence too much the behavior of the di-jet

Table‘ 7.3: (Relative) resolution for five jet variables EXb, EHCM glab ) HCM - gHCM = gq ¢
function of x.

7.3.3 Acceptance correction, Purity, Efficiency

Finally, an acceptance correction is performed and the events are corrected for efficiencies
and purities. The final cross section is expressed in bins of z, x, and A¢, therefore the
correction factors are expressed in these bins.

In order to correct the data, a bin-by-bin method has been applied: the acceptance correction
factor in each bin is the ratio of generated over the reconstructed number of events in this

system from one bin to another.

X range

0.0001-0.0006

0.0006-0.0020

0.0020-0.0100

T, range

0.0010-0.0075

0.0075-0.0200

0.0200-0.1000

T, range 0.001 < x, < 0.0075 | 0.0075 < w, <0.02 | 0.02 <z, <0.1
OB Eie 0.150 + 0.003 0.150 + 0.003 0.150 £ 0.002
SERCM BN 0.150 -+ 0.002 0.160 + 0.003 0.160 + 0.002
o 0.061 & 0.005 0.065 + 0.002 0.055 & 0.001

ot = 0.084 + 0.009 0.110 % 0.002 0.120 £ 0.002

i ki 0.080 + 0.009 0.120 + 0.003 0.110 & 0.003

[[Ag range [ 0.0-0.78 [ 0.78-1.18 | 1.18-1.57 [ 1.57-1.96 | 1.96-2.35 [ 2.35-2.75 | 2.75-3.14 |

Table 7.4: (Relative) resolution for five jet variables Ei®, EFCM  qlab pHCM  4HCM

Table 7.2: Final bin size for x, x, and A¢ after resolulion considerations.
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function of x,.
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bin (Ngi—jers means number of di-jets):

Nui-jus at hadron level in true variables in the relevant phase space
Nyizjers at detector level in reconstructed variables after all the cuts
(7.3)

In this method, the number of jets in one bin is assumed to be independent from the number

acceptance =

of jets in the other bins when comparing hadron and detector levels. However, this is not

rigorously true as a jet generated in one bin can be reconstructed in another bin because of

the finite resolution of the detector. This migration effect has been taken care of by taking
the size of the x, x, and A bins at least twice as large as the resolution of each one of these

variables (see previous section).

The correction factors, purities and efficiencies are shown (in bins of « and ;) in fig. 7.11
and 7.12 are defined on an event-by-event basis and with the ARIADNE simulation in the

following way:
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Figure 7.11: Acceptance correction for the di-jet system as a function of x and x,,.

Purity is the ratio of events generated and detected in one bin over the total number of
detected events in this bin:

Nii—jeis found at detector level AND at hadron level after all cuts

7.4
Nii—jers found at detector level after all cuts A

purity =
Efficiency is the ratio of events generated and detected in one bin over the total number of
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generated events in this bin:

o Nyi—jus found at detector level AND at hadron level after all cuts
ef ficiency = :

Nui—jets found at hadron level after all cuts

(7.5)
Therefore, a jet which is found at detector level is called an impurity if there is no corre-
sponding jet at hadron level, within the set of cuts of the analysis and inside the same z
and ¢ bin. Similarly, if there is 1o jet in the detector, although there is one fulfilling all the
selection criteria at the generator level, this will reduce the efliciency of the di-jet detection.
Both quantities are calculated after energy and transverse energy correction. They reflect
the experimental limits of the di-jet detection.

In figure 7.12, we also show the effect of the migration ou the correction factors, efficiencies
and purities: the black dots represent the values of these quantities when no migration
between the bins is considered either in A¢ ov in z, the open dots show these same values
when migration between A¢ bins is considered and the [ull squares show these values when
migratious are allowed both in z and in A¢. Although the values of the bins are consistent
with the resolution of the displayed variable, the correction due to bin-by-bin migration is
quite large, especially in A¢. This means that the tails of the gaussian distributions are
large and ultimately, the resolution of the variable is not gaussian. Figure 7.12 also shows
that the effect of migration in the variable z, is extremely large. This indicates that the
@ty resolution is very coarse and once again, the resolution distribution is barely a gaussian.
The first bins of the w, distributions show no purity or efficiency. This means that no event
has been generated in this x, bin and reconstructed in the same bin. Applying a bin-by-bin
correction to these events is meaningless as the value of the corrected cross section would
only reflect the way the Monte Carlo simulation is handling the bin-to-bin migration rather
than the behaviour of the experimental data. Because of that, we decided not to present the
x, distributions.
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Figure 7.12: Purity and efficiency for the di-jet system as a function of x and x,. The
various symbols correspond to the constraint on the migration: with full dots, no migration
is allowed between the bins, in open dots, migration is allowed between A¢ bins and in full
square, migration is allowed between v and A¢ bins.

123

7.4 Azimuthal Correlation between the two Leading
Order Jets

7.4.1 Detector and Hadron Level Comparison

The azimuthal correlation between the two leading order jets in the data compared to the
Monte Carlo predictions at detector level is shown in figure 7.13. The binning in = and in
A¢ was defined in the previous section. The detector level cross section is defined as:

Det
do™* ]Vwcnt.v

dA¢dx i Lo DzA(AP)

(7.6)

where Ly, is the luminosity in the sample, Ax the bin size in the variable @ and A(A¢)
and the bin size in Ag.
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Figure 7.13: Uncorrected di-jet cross section as a function of A¢ in three x bins in data
and Monte Carlo. The data are shown as full dots and the Monte Carlo simulations as
histograms: ARIADNE is shown as a full line, LEPTO as a dashed line and HERWIG as a
dotted line. For all plots, statistical evrors are shown as thick error bars, and statistical and
systemnatic errors added in quadrature as thin error bars.

As in section 7.2, no Monte Carlo simulation can describe the data. ARIADNE leads to a
cross section larger than the data’s in the largest A¢, while the MEPS models, LEPTO and
HERWIG predict too small cross sectious.

To get rid of the under-determination due to the detector effects, the hadron level cross
section of the di-jet system in bins of & and A¢ is defined as:

ddhad _ N(:ue,nl,s
dAGdr ~ LigaAcr ATA(DP)

(7.7)

124



where Lguw, Az and Ag are defined above. A is the acceptance correction which is shown

in figure 7.11, using the ARIADNE simulation.

The corrected cross section is shown in figure 7.14 for the three  bins considered.
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Figure 7.14: Di-jet cross section corrected for detector effects (hadron level) as a function of
Ad in three & bins in data and Monte Carlo. The data are shown as full dots and the Monte
Carlo simulations as histograms: ARIADNE is shoun as a full line, LEPTO as a dashed
line and HERWIG as a dotted line. The shaded area corresponds to the systematic error due
the energy scale uncertainty. Statistical errors are shown as thick error bars, and statistical
and systemalic errors added in quadrature as thin error bars.

The couclusions are the same than for the uncorrected results: no Monte Carlo simulation
describes the absolute value of the data cross section over the full @ range. From this figure,
it is also difficult to judge on the amount of correlation between the two jets and compare
it in different @ bins. For a clearer analysis of the effect, the distributions are normalized
to the highest A¢ bin in the data and in the Monte Carlo simulations. The results are
shown in figure 7.15. The A¢ distribution in LEPTO in the highest 2 bin is broader than
in ARIADNE. However, in this bin, no weakening of the azimuthal correlation between jets
is expected, as the evolution length, in the DGLAP picture as well as in the BFKL scheme,
is small. Therefore, this effect can only be due to the combined effects of hadronization
smearing and angular resolution of the jets. In the highest @ bin, the data points lie in
between ARIADNE and LEPTO predictions, so no conclusion can be drawn here. In the
lowest two & bins, the A¢ distributions stay the same within the ervor bars. It is therefore
impossible to make a statement on a possible weakening of the correlation between the two

jets, either in the data or in the Monte Carlo simulatious.

In figure 7.16, the distribution of the mean A¢ at hadron level is plotted in bins of . The
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Figure 7.15: Di-jet cross section corrected for detector effects (hadron level) as a function
of A¢ in three x bins in data and Monte Carlo. All the histograms have been normalized
to the highest A¢ bin. The data are shown as full dots and the Monte Carlo simulations
as histograms: ARIADNE is shown as a full ine, LEPTQ as a dashed line and HERWIG
as a dotted line. The shaded area corresponds to the systematic error due the energy scale
uncertainty. Statistical errors are shown as thick error bars, and statistical and systematic
errors added in quadrature as thin error bars.

mean value is defined here as:

Li Adiw;
T Wi :

where w; is the weight of the distribution in the bin A¢ (that is the number of events in this

< Af >= (7.8)

bin) where ¢ runs over all the A¢ bins. The error quoted is the variance of the mean sample,
taken as the variance of the A¢ distribution divided by the sample size, that is the number
of entries in the distribution (for a demonstration of this general result, see [123]). In figure
a), the mean value is plotted as a function of x, while in figure b) the distributions of the
mean has been normalized to the largest @ bin. As observed in figure 7.15, the distribution
seems to fall down faster in ARIADNE thau in LEPTO, however the effect is not significaut

as it lies within the error bars.

7.4.2 Parton Level Comparison

To be able to relate the results of the analysis to the theoretical predictions, we must correct
for the hadronization uncertainties. In practice however, correcting for hadronization effects
is not as easy as correcting for detector elfects. Every event generator has its own way of
treating the parton shower evolution and the fundamental concept of parton can vary from
one generator to another. As an attempt, the data have been corrected to parton level
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Figure 7.16: a) Mean value of A¢p plotied versus x. b) Mean value of Ap normalized to the
largest x bin. The data are shown as full dots and the Monte Carlo simulations are shown as
histograms: ARIADNE is shown as a full line and LEPTO as a dashed line. Errors shown
are stalistical only.

using the ARIADNE model as it describes the data somewhat better than LEPTO (see
figure 7.13). The corrected cross section is then defined as:

arlon
do® Nawnlvs

. , 7.9
(111"(1A(/) LtlulvuAggfr"l:‘mA(tw'v'AJ‘.A(A(ﬁ) ( )

where AP*'en g the amount of hadronization correction. The corrected cross sections can
also be compared to NLO programs like MEPJET, DISENT or DISTASTER++. However,
it is known that in the NLO calculations, there are divergences which appear mostly when the
two leading order jets are correlated back-to-back. When plotting the di-jet cross section as
a function of any variable other than Ag¢, the divergencies are not visible as they are smeared
out in each bin. They are however well appareut in the A¢ bins as shown in figure 7.17. A
negative cross section is even found around A¢ ~ 7. This is due to infra-red divergences
inherent in the theoretical calculations. In order to be able to include the largest A¢ biu,
we must then use a binning large enough, so that the divergences caucel out. In practice,
oue can achieve this by taking the largest A¢ bin such that the number of events entering
this bin is at least equal to the sum of all the events in the distribution, excluding this
bin [124]. This is the case for our plots, so normnalizing all the distributions to the last bin in
the NLO calculations is safe. This problem is believed to be the cause of the bad description
of the di-jet rate by the various NLO packages (see the previous chapter). Recently, the H1
collaboration showed that taking asymmetric transverse energy cuts for the di-jet systemn

127

reduces significantly these divergencies [125]. The use of these asymmetric cuts has indeed
lead to a good description of the di-jet rate in the data by the NLO calculations. This is why
the two jets have beeu selected with different transverse momentum cuts (see table 7.1).
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Figure 7.17: Di-jet cross section as a function of Ag¢ in the NLO calculations (MEPJET
package) in the back-to-back range. All the cuts listed in table 7.1 have been applied,

The final cross sections corrected with ARIADNE 4.08 are shown in figure 7.18. Together
with the data cross sections and the Monte Carlo predictions, the NLO calculations as
produced by the MEPJET package are shown. The values of the NLO cross sections agree
with the data in the last bins of A¢ (for A¢g ~ ) but disagree at small A¢ values. The small
bump in the MEPJET in the smallest  bin is simply due to poor Monte Carlo statistics
and should not be taken too seriously.

Lu figure 7.19, all the cross sections have been normalized to the highest A¢ bin. No sizable
difference is observed between the various Monte Carlo simulations and the data. The Ag
distribution in the data is broader and wider than the MEPJET predictions in the low 2
bins, which is a sign that the jets are more correlated in MEPJET. However, the dependence
on the model and the similarity of the behaviors of LEPTO and ARIADNE at hadron and
parton levels prevent us from drawing strong conclusions from this effect.
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Figure 7.18: Di-jet cross section corrected for detector and hadronization effects (parton
level) as a function of A¢ in three x bins in data and Monte Carlo. The data are shown
as full dots and the Monte Carlo simulations as histograms: ARIADNE is shouwn as a full
line, LEPTO us a dashed line and HERWIG as a dotted line. MEPJET is shown as a full
line. The shaded area corresponds to the systematic error due the energy scale uncertainty.
Statistical errors are shown as thick error bars, and statistical and systematic errors added
in quadrature as thin error bars.

7.4.3 Systematic Uncertainties

A detailed explanation of the calculation and the size of the systematic uncertainties can be
found later in chapter 8. We try here to determine the main contributions to these errors of
this analysis. Four main types of systematics are studied and included in the evaluation of

the hadron and parton level cross sections:

e the dependence of the corrections ou the model: to study this systematic effect, all the
corrections have been performed using the LEPTO model (versus ARIADNE).

e the energy scale of the calorimeter: the energy scale has been changed by 5% to
account for the uncertainty of the correction (see section 4.2.1).

e Systematics on the hoost: as the analysis is performed in the HCM frawe, it is impor-
tant to check the influence of the boost. The error on the boost from the laboratory
frame to the HCM frame depends mainly on the error of the determination of the
energy of the positron. To study this error, we computed the positron energy in a dif-

129

S 1L+ zuUsDaa 1 |, HERWIG 59 1l
E - - ARIADNE 4.08 & F — MEPJET 2.0
g | -ueeroes [ ; 1 ;
E 10 ¥n / 10 Ir
5] L :"
S .2__ )
2 10 F
g [ T
3
L ' L 10 &= L 1 L i
0 2 i 0
0.0001<x<0.0006 0.0006<x<0.002 0.002<x<0.01

Figure 7.19: Di-jet cross section corrected for detector and hadronization effects (parton
level) as a function of A¢ in three x bins in data and Monte Carlo. All the histograms have
been normalized to the highest A bin. The data are shown as full dots and the Monte Carlo
simulations as histograms: ARIADNE is shown as a full line, LEPTO as a dashed line and
HERWIG as a dotted line. MEPJET is shown as a full line. The shaded area corresponds to
the systematic error due the energy scale uncertainty. Statistical errors are shown as thick
error bars, and statistical and systematic errors added in quadrature as thin error bars.

ferent way, using the double-angle method (see appendix A). The value of the energy
. . & . 2 1
of the positron, using the Q% , method is: Ey = T(?fﬂ?o—)v where F, is the value of

the positron beam and 6, is the scattering polar angle of the positron.

e The resolution on the jet variables was tested by adding or subtracting the value of
each jet cut by one standard deviation from the resolution (one sigina) of the variable
considered. The summary of these changes is in table 7.5.

Jet variable | Nominal cuts Changed cuts
EP%p | min 4 (6) GeV min 4.6/3.4 (6.9/5.1) GeV
P5iea | min 4 (6) GeV | min 4.64/3.36 (6.95/5.05) GeV

An max 2.2 max 2.26/2.13
e min 0. min 0.1/ —0.1

Table 7.5: Systematic checks on the jet variables. In parenthesis are shown the values of the
transverse eneryy cut for the second jet (asymanetric cuts).
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All the systematic effects but the ones related to the energy scale have been added in quadra-
ture to the statistical errors. The energy scale systematic, being correlated with the other
systematic uncertainties, is shown as a shaded band. In all the bins, the dominant systematic
effects ave the dependences on the model and on the boost. The value of the systematics,
together with the value of the data cross section corrected to hadron level is shown in ta-
ble 7.6.

Ap-range Hﬂ‘fﬁ + stat. & syst. [ub]
0.0001 < = < 0.0006 | 0.0006 < = < 0.002 | 0.002 < = < 0.010

0-078 19.4+4.11%0 48+1.2%8, 0.63 +0.2+9!
0.78 - 1.18 184+ 52198 78+23%%2 0.70 +0.3+99
1.18 - 1.57 30.1+7.9%7 7.0842.0%}8 Lab 0 b0k
1.57 — 1.96 53.6 + 10*8 21.2+4.2%F)2 2.45 £ 0.6+93
1.96 - 2.36 103 + 14 11! 29.1+4.21%8 3.05+0.6%)2
2.36 - 2.75 351+£26%7, 109 £8.5% %4 125 +1.1+23
2.75 - 3.14 1000 + 41+ 2 408 £ 16 1% 55.4 +2.8% %9

Table 7.6: Cross section values and errors for the corrected data (hadron level).

7.5 Summary

The azimuthal correlation between the two leading order jets has been evaluated and cor-
rected to the hadron and parton levels in three bins of . The cross sectiou is however affected
by large migrations in the A¢ bins. Moreover, because of the internal resolution of the jet
(that is the jet radius), a cut must be applied in A"“M which can hide the weakening of the
azimuthal correlation between the leading order jets in the data when reaching small value
of z. No major difference between the DGLAP-based models as in LEPTO, and ARIADNE,
which implements a BI'KL-like, non-ordered parton evolution, has been observed.

At hadron level, the data are consistent with both models within the error bars. HERWIG,
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however exhibits a much more correlated di-jet system. But this model does not reproduce
properly the detector level distributions in the data and must therefore be rejected in our
kinematic range. As HERWIG and LEPTO implement the same kind of DGLAP-based
mechanism in the parton shower, this is a hint that the non-perturbative effects are domi-
nant in this analysis. The interpretation of the results is therefore quite model-dependent.
Moreover, because the DGLAP-based models and the ARIADNE simulation are consistent
with each other and with the experimental data, testing new models like LDC or RAPGAP
is not necessary for this analysis.

The data have been corrected to parton level, and compared to NLO calculations. In general,
the experimental di-jet system seems to exhibit a smaller amount of azimuthal correlation
than the one obtained with the NLO calculations, for the low values of 2. This is consistent
with the predictions of BFKL. However, the model dependence, included into the correction
to the parton level aud the agreement of the data with LEPTO at hadron level prevent a
strong conclusion to be made out of this observation.

The main obstacle to this analysis is the fact that the azimuthal resolution of the jet is of
the same order as the size of the expected effect. The measurement is therefore bound by
a fundamental uncertainty, as to whether the effect observed is due to the dynamics of the
partonic process or to a feature of the reconstruction of the di-jet system. Moreover, the
choice of the cuts does not enable us to isolate a phase space region small enough to distin-
guish between the contribution from a non-ordered parton evolution, and the contribution
from the standard picture, ordered in transverse momentum.
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Chapter 8

Forward Jet Cross Section

8.1 Introduction

The previous chapter showed that an indirect measurement of the parton evolution, through
the study of the azimuthal correlation between the two leading order jets, did not give a
positive BFKL signal. The main problem was that the resolution of the jet (its cone radius)
was ol the order of the resolution of the effect, that is the azimuthal correlation between
the jets. In this chapter, a second attempt is performed to study the parton dynamics by
looking directly at the outcome of the parton evolution, i.e. following a parton arising from
the evolution process rather than the effects of this parton evolution on the leading order

jets.

The strategy of the analysis was explained in section 6.2.2. The aim is to study the forward
jet cross section and compare it to various evolution models. If the jet, emitted in the forward
direction, has a transverse energy comparable to the four-momentum of the exchange boson,
the jet cross section must be suppressed in the low @ limit in the usual DGLAP picture. In
the BFIKL scheme, however, the cross section is expected to rise as a power of {, and therefore
a clear signal might be expected. We saw in chapter 6 that the rise of the forward jet cross
section, in the BFKL picture, is weakened by NLO corrections. However, no prediction on
the size of these corrections has been made yet and it is interesting to evaluate the cross

section in the data.

The cuts for the forward jet analysis have heen explained in section 6.2.2. They are summa-
rized in table 8.1. The final purpose is to evaluate the forward jet cross section in bius of x,
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and probe in particular the low @ region. The plan of this chapter is essentially the same than
the previous one: the cross sections at detector level are first compared to the various Monte
Carlo predictions. Then the various corrections are applied to the data: energy corrections,
acceptance, purity and efficiency. The various systematic errors are then discussed. Finally
the cross sections are obtained at hadron and parton level, to be discussed and interpreted
in the light of the Monte Carlo predictions and the various theoretical calculations.

e > 10 GeV
y>0.1
Nt < 2.6
E’["Jﬂl_ > 5 GeV
T ge > 0.036
0.5 < E"?’,Jel./csz2 <2
Pzaa(Breit) > 0 GeV/c
4.5 10« wicdi5= 1072

Table 8.1: Selected phase space region for the cross section measurement.

8.2 Comparison between the Data and the Monte Carlo
Simulations

In this analysis, we are mostly interested in the absolute value of the jet cross section in
the selected phase space. In figure 8.1, some general kinematic variables (@2, ysm, Ev and
I; — Py) are compared to three Monte Carlo predictions: ARIADNE 4.08, LEPTO 6.5 and
HERWIG 5.9. To obtain these plots, all the cuts presented in table 8.1 have been applied.
Contrary to what was shown in the previous chapter, ARIADNE describes fairly well the
data. Both the shape and the absolute normalization are well reproduced. On the other
hand, the MEPS-based models, LEPTO and HERWIG, exhibits a cross section which is in
average 40% too small compared to the data. This is a first hint that the physics implemented
in these Monte Carlo models does not yield a good description of the hard process in the
phase space under consideration.

In figure 8.2, the jet variables, which are used in the cuts (i.e. Er, n, Tje and E2/Q?), are
compared to the Monte Carlo predictions. In these plots, all the cuts defined in table 8.1 have
been applied to the selection procedure, except the one on the plotted variable. This allows
a study of the cross section outside the region where the contributions due to a BFKL-type
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Figure 8.1: Shape comparison between the data (shown as Jull dots) and Monte Carlo simu-
lations for four variables: a) Q*, b) B, ¢) yip, d) £ — Pz. The data are displayed as full
dots. ARIADNE is shown as a full line, LEPTQ as o dashed line and HERWIG as a dotted
line. Statistical errors only.

dynamic are expected to dominate. The shaded area corresponds to the region outside the
kinemadtic limits of the phase space defined by table 8.1.

Ouce again, the variables are fairly well described by ARIADNE, whereas LEPTO and
HERWIG yield a cross section too small by around 40%. The last plot of figure 8.2, d), is
particularly revealing. The variable E2/Q? is plotted in an extended range and compared
to the various Monte Carlo predictions. In section 6.2.2, the importance of this variable
was stressed: for the forward jets, it gives an indication on the type of ordering which is
considered. One can basically distinguish three regions in this plots, which correspond to

three types of evolution mechanism:
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Figure 8.2: Shape comparison between the data (shown as full dots) and Monte Carlo sim-
ulations for four jet variables: a) Ep, b) n, ¢) tju, d) E3/Q*. The data are displayed as
full dots. ARIADNE is shown as a full line, LEPTO as a dashed line and HERWIG as a
dotted line. Statistical errors only. The shaded region corresponds to the value of the variable
outside the kinematic domain defined by the cuts of table 8.1.

o ()° >> EZ: in this region, the scale of the process is set by the four momentum of
the exchange boson. This is consistent with the DGLAP picture. The forward jet has
there a low Ep with respect to Q? and the models and the experimental data converge
to the same value. This corresponds to the high @? limit where the DGLAP scheme
is known to give correct results.

o () ~ E2: this is the region we are interested in. There, the DGLAP mechanism
is suppressed due to the requirement of strong ordering and the two MEPS models
exhibit much smaller cross sections than the data, while ARIADNE, which has not
implemented the requirement of strong ordering, describes the data correctly.
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o ()? << B2: this is the most intriguing phase space region. The scale of the process is
set by the transverse momentui of the forward jet. A backward evolution is possible,
from the quark box to the virtual boson, which is similar to the photoproduction case.

In this region, none of the Monte Carlo models describes the data.

As ARIADNE describes the data best, this Monte Carlo simulation is used to perform the

detector corrections.

8.3 Detector Correction

8.3.1 Energy Correction

As for the previous analysis, an energy correction is applied to the data as well as to the
detector level of the Monte Carlo simulation. The method is very similar to the one presented
in the section 7.3.1 so we refer the reader to it for more details. The difference is that the
energy correction, here, is averaged over all the pseudorapidity range of the jets, rather than
dividing the sample on different » bins. This is justified as the 7 range of the jets is small
and limited to the forward calorimeter (cf. figure 8.2). The value of the euergy corrections
is shown in figure 8.3. Once again, the (transverse) energy of the jet found in the detector

is multiplied by the corresponding value from the fit.
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Figure 8.3: Jet energy correction factors, defined as Eﬁfj“/E(’%”)“, as a function of the energy

and the transverse energy. The Monte Carlo used for this plot is ARIADNE 4.08.
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8.3.2 Resolution of the Kinematic Variables

The phase space of this analysis is constrained by a variety of cuts which are determined by
the performance of the detector. Each cut can indeed be associated with a certain purity
and efficiency which depends on the resolution of the variable on which this cut is applied.
Therefore, when all the cuts are applied to get the final sample, the overall purity and
efficiency are reduced by a certain amount which depends on the nunber of cuts applied and
the resolution of each variable used in the cuts.

As the final distribution is investigated in bius of x, it is very important to determine its
resolution, in order to obtain the bin size of the final distribution. In table 8.2, the resolution
of x in each selected bin is shown. The width of the bins is set to be at least twice the
resolution in x in order to account for migrations from bin to bin. The last bins are larger
in order to have a reasonable amount of statistics.

@ range (x107%) [ 0.45-0.8 [ 0.8-1.4 [ 1.4-2.5 | 2.5-4.5 [ 4.5-8 | 8-14 | 14-25 [ 25-45
alz) 0T 0.07 0.16 0.41 0.78 1.5 | 36 | 47 12

Table 8.2: Size of the bins in x and resolution of x in each of the bins.

The resolution of four jet variables is shown in figure 8.4: Erp, 7, o and E2/Q% As in
chapter 7, the absolute aud relative resolution on the variable X are defined as:
R =P R (8.1)

AN U Pt By Hod
T e
The typical relative E7 resolution of the jet is 11 % whereas the 7y, resolution is around

(8.2)

0.1. The ¢ resolution is around 6.5 - 1072, The worst resolution is in E%/Q?: it is around
25%. As all these variables are included in the analysis cuts, these resolutions strongly affect

the purities and efliciencies of the final sample, especially the EZ/Q? resolution (see below).
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8.3.3 Acceptance Correction, Purity, Efficiency

The bin-by-bin correction pmcedﬁre, similar to the one used in the azimuthal correlation
analysis, is performed liere. We refer the reader to section 7.3.3 for more information. The
value of the purities, efficiencies and acceptance correction factors are shown in figure 8.5.
The purities and efficiencies are typically on the order of 20-30%. These values are limited
by the resolution of the cuts which are applied ou the jet variables, in particular the cut
on E2/Q% When this cut is removed, the values of the purity and efficiency increases by
30-50%,depending on the @ bin (see figure 8.6).
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As a consistency check, the same values are computed using the LEPTO model. They are
Figure 8.4: Resolution for 4 jets variables. A = ()rrup - ()perrcror. ARIADNE was used shown in figure 8.7. Both efficiency and purity are slightly smaller than the values obtained
to produce this plot. with ARIADNE but the value of the correction factors remain fairly consistent showing that

the choice of the model has only a small influence on the detector corrections.
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Figure 8.6: Hadron to detector purities, efficiencies and (bin by bin) correction facton? of I'.h,e
event sample for the analysis based on the cone algorithm. The cut on the variable E%/Q%is
removed. These values have beeni obtained with the ARIADNE model.
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Figure 8.7: Hadron to detector purities, efficiencies and (bin by bin) correction factors of the
event sample for the analysis based on the cone algorithm. These values have been obtained
with the LEPTO Monte Carlo.
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8.4 Forward jet Cross Sections

Before turning towards the final aim of the study, the comparison of the corrected results to
the theoretical calculations, we shall have a brief look at the uncorrected distributions. In
section 8.2, some uncorrected distributions were presented and compared to various Monte
Carlo distributions. The behavior of the E%/Q? distribution turned out to be quite mean-
ingful on the behavior of the parton evolution at various values of Q2.

The uncorrected differential jet cross section is calculated as:

do " Nevents
Ll R

(8.3)

where Lgq, 15 the integrated luminosity of the sample, Ax is the bin size in the variable z
and Neyents, the number of events in the Az bin.

In figure 8.8, the uncorrected differeutial forward jet cross section in the data is compared
to the three Monte Carlo predictions obtained with ARIADNE, LEPTO and HERWIG. The
trend which appears in the plots shown in the previous section is confirmed: ARIADNE
describes the data best, while LEPTO and HERWIG, the two Monte Carlo models based on
the DGLAP equations, exhibit significantly smaller cross sectious.

Figure 8.9 pictures a typical event containing a forward jet in the ZEUS detector. A large
amount of transverse energy is seen in the forward calorimeter, corresponding to the forward
jet, together with a fraction of energy in the barrel calorimeter (which can be attributed
to the leading order parton or current jet). A positron is clearly reconstructed in the rear
calorimeter.

8.4.1 Hadron Level Comparison

The cross section corrected to hadron level is calculated in the following way:

do N, cvents

;ﬁ o leal.uAcarrAJ:. (84)

Liata and Az have been defined above and A, is the acceptance correction which is shown

in figure 8.5. The values of the cross section corrected to the hadron level are displayed in
table 8.3, together with the statistical and systematic errors.
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Figure 8.8: Differential cross section as a function of x for the uncorrected data (CONE
algorithmn and all cuts applied). Data are shoun as full dots and Monte Carlo as histograms.
Only statistical errors are shown.

The data corrected to hadron level are compared to the Monte Carlo simulations in fig-
ure 8.10a). There, four Monte Carlo simulations are plotted together with the data: ARI-
ADNE 4.08, LEPTO 6.5, HERWIG 5.9 and the new model LDC 1.0 described in section
3023

As in the previous section, ARIADNE is the only model which reproduces the data in
absolute cross section, including the low-z limit. The two MEPS-based models exhibit a
smaller cross section. This is expected as these Monte Carlo simulations do not implement.
the type of hard physics which is probed here. The larger value of the cross section measured
in the data is a first clear experimental hint that higher order contributions to the leading
order DGLAP equations contribute significantly to the partonic processes.

The figure 8.10 b) shows the same differential cross section but with a logarithmic y scale.
This is made in order to emphasize on the high-z region. LEPTO, ARIADNE and the
corrected data converge, while HERWIG does not. In this region, the convergence is indeed
expected between the data and the DGLAP-based models given that the evolution parameter
for BFKL, that is the evolution length in which the BFKL-type dynamics can contribute, is
suppressed by a factor (n®), where w is on the same order as zj,. HERWIG however still

does not agree with the data. A tentative explanation is given below.
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Figure 8.9: Picture of an event found in the ZEUS detector and containing a forward jet. The
display is divided in three parts corresponding to three different views in the ZEUS detector:
the XZ plane is the largest one, the top right one is the transverse cross section containing
the track pattern in the CTD and energy deposited in the BCAL and on the bottom right side,
the amount of transverse energy deposited in the calorimeter is shown in the (n,¢) plane.

The LDC model, which implements the CCFM equation, does not describe the data either
at low 2. This is a puzzle since this Monte Carlo simulation implements the type of hard
physics expected to give rise to the BFKL-like effects. The comparison between LDC and
the data in other analyses (jet rates, transverse energy flow) shows the same kind of results:
LDC predicts a cross section (or absolute rate) which generally lies between ARIADNE and
LEPTO (cf. [126]). As the structure function used to generate the LDC events is different
from the other simulations (cf. chapter 3), an attempt was performed to compare the jet
rates only. The forward jet rate is defined by:

arj
Rf.‘i = _]1
Tot

where g, is the total cross section determined in the phase space under consideration and
ayj, the cross section for the events containing a forward jet. As both cross sections depend
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L-range :lT‘I’ + stat. £ syst. [nb] | syst. (Er . —scale) [nb]
4.5-107*-8.0-10~* L0 0t (~5.9, +18)
8.0-107* - 1.4-1073 96.2 + 6,57 52 (~8.1, +7.8)
14410725 °10™2 778+ 4.7+32 (—4.2, +7.0)

2:5- 107" = 451073 Jddi kg v (—2.1, +2.6)
4.5-107% ~ 8.0- 1073 L F1.00 (=12 +1.3)
8.0-107% - 1.4.1072 BL63 - 0iad0dt (=0.7, +0.2)
14-107? - 2.5-1072 21650251 343 (—0.03, +0.20)
25-1072% - 4.5- 102 0.65 4 0.09 510 (—0.00, +0.05)

Table 8.3: Cross section values and errors for the corrected data after all the cuts defined
in table 8.1. The last colummn shows the systematic error due to the energy scale uncertainty
of the calorimeter, which s not mcluded in the central columnn. It corresponds to the shaded
band in figure 8.10.

on the structure function F, of the proton, the ratio must be independent of F, in the first
order. The forward jet rate in the data is plotted in figure 8.11 and compared to ARIADNE,
LEPTO and LDC. Here, it can be seen that the forward jet rate in the LDC model lies in
between ARIADNE and LEPTO. The previous result (for the total cross section) is therefore

confirmed and LDC does not describe the data results.

In the high-x region of figure 8.10 a), LDC does not converge to the value of the data cross
section but to HERWIG’s predictions. This might result from the requirement of strong
ordering in the emission angle of the partons along the gluon ladder, requirement which is
similar to the implementation of the colour coherence in HERWIG. In this case also, the
emitted parton is supposed to lie within a cone around the parent parton. At high-z, both
features of HERWIG and LDC must be similar [127].
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Figure 8.10: a) Differential hadron level forward cross section as a function of x. b) Same
as a) but in double logarithmic scale. The cross section is measured in the reqion: 1ja< 2.6,

Tre> 0.036, 0.5 < E%'Jel/Q'z <2, Erjea>5 GeV, Ey > 10 GeV, y > 0.1. Statistical errors

are shown as thick error bars, and statistical and systematic errors added in quadrature as
thin error bars. The errors due to the uncertainty of the jet energy scale are correlated for
the different « bins and therefore not included in the error bars but gwen as the shaded band.
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Figure 8.11: Corrected forward jet rate in the data compared to three Monte Carlo simula-
tions. The data are shown as full dots. Errors shown are statistical only.
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8.4.2 Comparison at Parton Level and Discussion of the Results

The ultimate goal of this study is to probe the perturbative expansion of the partonic evo-
lution. The BFKL calculations, as well as the MEPJET NLO predictions, only take into
account this perturbative region, ignoring the hadronization phase.

In the Monte Carlo simulation, the parton level, as defined in chapter 3 is not such a well
defined quantity. The partons are taken at the end of the parton shower (or dipole radiation
in the case of ARIADNE), at a scale where non-perturbative effects can be large. The
comparison between the parton level in the various Moute Carlo used and the theoretical
calculations is shown in figure 8.12 within the set of cuts defined in table 8.1.

Parton level

| et ]
£ 160 |-
ARIADNE 4.08
=) =Wy
pe 140 —-=  LEPTO6S
% I e i e +  IERWIG 59
. 100 Tl Lbe i
BFKL LO
80 No jet algorithm
________ " st *
60 % et
40 MEPJET NLO
20
0

Figure 8.12: Predictions of the NLO and the BFKL calculations together with the Monte
Carlo predictions at parton level. The theory predictions are shown as smooth curves, while
the Monte Carlo cross sections are shown as histogram: ARIADNE is shown as a thick line,
LEPTO as a dashed line, HERWIG as a dotted line and LDC as a thin line. The band
shown for the NLO predictions corresponds to the possible range on the renormalization and
factorization scales.

The NLO predictions within the factorization (renormalization) scale 0.25K3 < i p) < 2K7
are in good agreement with the parton level of the DGLAP-based Moute Carlo simulations',

VI is the sum of the transverse momenta of the partons in the Breit frame. The choice of the scale K7
is performed in accordance with the minimal sensitivity criteria, see [128].
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meaning that in this kinematical domain, the parton showers discussed in section 3.2.1
reproduce correctly the NLO effects in terms of shapes and total cross sections. These cross
sections are however strongly suppressed with respect to the full BFKL calculations. The
predictions using only the first term of the BI'KL calculations comes closer to the DGLAD
and NLO predictions. This corresponds to the term in {n(z/@je) in the BEKL resummation,
and is therefore the equivalent to the NLO corrections to the DGLAP equations. The slight
discrepancy which is observed between the BFKL first term and the MEPJET predictions
can be due to a normalization uncertainty in the BFKL picture and is currently under
investigation (oue can show that the absence of jet algorithm in the NLO prediction does
not change significantly the value of the forward jet cross sectiou [115]). ARIADNE lies in
between the DGLAP-based predictions and the BFKL predictions. The LDC Monte Carlo
exhibits a larger cross section than the MEPS Monte Carlo simulations, but still much smaller
than ARIADNE. It is indeed consistent with the NLO predictions. Efforts are currently

performed to understand the reasons for this discrepancy with the BFIKL predictions.

Belore comparing these predictions to the data, care must be taken of the hadronization
corrections. To this end, a bin-by-bin correction is used and the partonic cross section in

the data is defined by: ‘
(lCT N(:wmls

B narlon s
dx Edulufll'(‘u'r 'v“::urrA:l"

Avarton is the correction from the hadron to the parton level. These corrections are however

(8.5)

model dependent. In figure 8.13, the hadronization corrections are plotted for the four Monte
Carlo simulations we compared to the data. The striking feature of the plot is the disagree-
ment between the corrections for the DGLAP-based models (HERWIG and LEPTO) and
the BFKL-like models (ARTADNE and LDC). The latter present small and flat corrections
over the full x range, whereas the former have very large corrections at small x. This does
not really come as a surprise, as the DGLADP-based models do not have the kind of hard
physics which can describe the topology of the event within the selected phase space. In
order to generate a jet of order o or higher with a trausverse energy comparable to the
Q? of the event, the DGLADP- based simulations would need to implement NLO corrections.
Without that, the jets which are generated in the parton shower have a small transverse

momentum by construction.

The correct procedure would require to take iuto account the model dependence of the
hadron-to-parton correction factors into the calculation of the systematic errors. Lacking
two models which describe correctly the data at hadrou level, we are bound fo estimate this
error with one of the MEPS model. The diflerence between the data corrected to parton level
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Figure 8.13: A" Hadron to parton correction factors for the phase space region defined

corr
by the cuts listed in table 8.1, for four different Monte Carlo simulations: ARIADNE 4.08,
LEPTO 6.5, HERWIG 5.9 and LDC 1.0.

with ARTADNE and with LEPTO is shown in figure 8.14. In case a), the data corrected with
ARIADNE, agree fairly well with this Monte Carlo and are much above the DGLAP-based
predictions. In the second case (b), the correction factors are calculated with LEPTO and
the data cross sections lie much below the ARIADNE predictions (but are still larger than
the LEPTO predictions by a factor 1.5 to 2).

Of course, correcting the data cross sections with a Monte Carlo which does not describe
them is not quite a valuable procedure. However, so far, only one Moute Carlo could match
the data, so that a large uncertainty remains in the interpretation of the data corrected to
parton level.

The above results yield finally another puzzling fact: from the hadron-to-parton correction
factors, it is seen that LEPTO and HERWIG predict a large amount of jets at the hadron
level which do not have a corresponding partner at the parton level. That is, most of the
jets predicted by LEPTO at hadron level and at low x arise from some “energy fluctuation”
of non-perturbative nature. To estimate the origin more exactly, we try to compare LEPTO
generated jets with and without the Soft Colour Interactions described in section 3.3.3. The
comparison with the data cross sections corrected with LEPTO (with the flag SCI turned
on) and the LEPTO predictions with and without SCI is shown i figure 8.15. At hadron
level (a), the absence of SCI makes a big difference (almost a factor two in the lowest = bins),
whereas at parton level (b), the discrepancy is hardly noticeable (but this is expected as the
SCI is a long range effect, taking place after the parton shower). Thus, a large number of
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Figure 8.14: Parton level differential cross section as a function of x for the duta corrected
Jor detector and hadronizalion effects. Data are shown as full dots and Monte Carlos as
histograms (the cuts listed in table 8.1 have been applied. The thick error bars on the data
points are the statistical errors and the full error bar (in thin line) is the systematic +
statistical error added in quadrature. The eneryy scale error is represented as a hashed
area around the data points. a) Data corrected with the ARIADNE Monte Carlo. b) Data
corrected with the LEPTO Monte Carlo.

the jets that are predicted by LEPTO at hadron level arise from a purely non-perturbative
phenomenon, as a consequence of an excess of energy in the forward region produced by
a different string topology (see section 3.3.3). This is confirmed by the comparison of the
hadronization corrections shown in figure 8.16. The hadron-to-parton corrections are shown
for ARTADNE, LEPTO with SCI and LEPTO without SCI. There again, the hadronization

corrections are much larger when the SCI flag is turned on instead of off.
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Figure 8.15: Forward jet cross section (corrected with LEPTO including soft colour inter-
actions) compared to LEPTO with and without SCI at hadron level (a) and parton level(b).
All the cuts defined on table 8.1 have been applied. The data are shown as full dots and
the Monte Carlo simulations as histograms: LEPTO with SCI is shown as a full line his-
togram and LEPTO without SCI is shown as a dashed line histogram. The statistical errors
are shown as thick error bars. The systematic error added in quadrature with the statistical
errors are shown as thin lines.
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Figure 8.16: Hadron to parton corrections for the phase space region defined by the cuts listed
in table 8.1 for ARIADNE /.08, LEPTQ 6.5 with and without SCI.
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8.4.3 General Systematic Checks

Some systematic checks are performed in order to test the stability of the results against
fluctuations arising from an inaccurate description of the data from the model. In order
to evaluate the amplitude of these fluctuations, the Monte Carlo simulation with which the
detector corrections have been performed, ARIADNE, is used. The systematic checks are
then added in quadrature as they are expected to be independent from each other (except
for the energy scale determination, see below). The value of the systematic error for each

cut (if this ervor ig significant) is shown in figure 8.17 and 8.18.

o A first category of checks deals with the “cleaning cuts” described in section 5.3 (i.e.
the event selection cuts which are corrected for at hadron level), in order to test their
influence on the hadron level cross sections. As these cuts are corrected for, their
value should not matter. But because of the small deviations of the model from the
data, the change in the correction factors does not always compensate the change
in the data cross section. The list of these checks is given in table 8.4. All these
changes prove to have a very insignificant effect and are therefore not displayed in the
summary figure 8.17 (except for the £ — Pz cut which also tests the photoproduction

background).

The recoustruction of the vertex by the CTD is checked by moving the Z position of
the reconstructed vertex by a value equal to the resolution (in the beam direction) of
the CTD (0.4 ¢m). The position of the cells is then a little bit shifted, whicl leads
to different value on the position of the positron and the jets. The effect of this change

is shown in figure 8.17.

The uncertainty on the energy scale of the calorimeter was taken into account by
adding £5% of energy of the jets; this corresponds in average to the uncertainty oun the
total energy scale in the ZEUS calorimeter (see section 7.3.1). This yields a systematic
error of about 1 to 15 %. As this error is expected to be correlated with the others,
in particular, with the checks on the jet variables, it is not added in quadrature as the

other but represented as a band around the jet cross sections.

The uncertainty on the positron energy scale is checked by increasing and decreasing

the positron energy by £1%. This is negligible in the lowest x bins but yields an error
of 2 to 10% in the highest ones.

e To test the jet recoustruction, all the jet variables used in the determination of the
final cross section are changed at detector level (in the data and in the Monte Carlo
simulation) by one standard deviation of the mean. The summary of these changes is
shown in table 8.5 and the result of the changes are displayed in figure 8.18.

A special treatment on radiative corrections is also performed. It will be detailed in
the next subsection.

e Finally, to test the dependence on the model itself, the correction to hadron level is
performed with the LEPTO model instead of ARIADNE. But we face a problem here:
LEPTO does not describe the behavior of all the jet variables, in particular B%/Q2.
Using this model to correct the data would result on an overestimate of the systematic
error. In order to turn around the difficulty, LEPTO has been reweighted according to
the £%/Q? distribution obtained in ARIADNE. The weight (which corresponds to the
ratio of cross sections normalized to the shape, between LEPTO and ARIADNE) has
been applied at both hadron and detector levels in LEPTO. If no hadron level jet was
found in the event (withiu the set of cuts presented in table 8.1), the hadron level jet
which was the closest to the detector level jet in the (7, ¢) plane was used to get the
weight. This yields a systematic error much smaller than the one which is obtaiuned
without reweighting.

Nominal cuts Changed cuts
35 < E— Py <65GeV | 40 < E — Pz < 65GeV
VT X7| < 50 cm VT X 7| < 60(40) cm
Y < 0.8 Yo < 0.95
Box cut (13cm,8cm) | Box cut (14cm,l14cm)

Table 8.4: List of systematic checks on the cleaning cuts. On the last row, the box cut
corresponds to the cut performed on the positron position as measured by the calorimeter or

the SRTD.

[ Nowinal cuts Changed cuts
Bt 5 GeV | BRt > 55/4.5 GeV
X7 >0036 7 At > 00427003
7% <28 2101 /25
BT <2 |E /07" <24]iB
E2/Q*" > 05 | B2/Q?"" > 0.6/0.4

Table 8.5: List of systematic checks on the jet variables.
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Figure 8.17: Relative systemnatic error for each of the general checks done in each of the
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8.4.4 Radiative Corrections

Most theoretical calculations and Monte Carlo predictions in Deep Inelastic Scattering are
performed at the Born level of QED. This means that, in these calculatious, the scattering
lepton does not emit a Bremsstrahlung photon before (initial state) or after (final state) the
collision with the proton. This is justified by the fact that QED radiations are suppressed

by an order ., and are not expected to contribute much in the total cross section.

In practice however, the Bremsstrahlung radiations can have sizable effects on both the value
of the kinematic parameters and the total cross section. Although initial and final state
radiations are undistinguishable from a theoretical point of view, their effects are different
on the correction factors: the photon emitted after the collision between the lepton and the
proton is often emitted collinear to the scattered lepton and therefore the measured leptonic
energy in the calorimeter includes both the energy of the scattered lepton and the energy
of the radiated photon. On the other hand the initial state radiation have a more dramatic

effects on the kinematical variables than the final state Bremsstrahlung.

The implementation of QED effects in a Monte Carlo package is used to correct data and
Monte Carlo for the distortions of the kinematic variables Q?, x and y created by a radiative
photon. These radiations also affect the absolute value of the cross section of the events in
the generator. To estimate the size of such a variation at generator level, two samples were
generated, one with QED radiations and one without. This check has been performed with
the HERACLES package [129], on events generated with ARIADNE. HERACLES generates
QED radiatious to the order «,,. No NLO QED radiations are implemented, but these
ones are known to have a very small effect. The relative difference between the two sample
cross sections is shown in figure 8.19. All the cuts listed in table 8.1 have been applied.
The two cross sections, with and without radiative corrections, are very similar. There is
no systematic shift between these cross sections and the relative difference is +=10% or less.
Therefore, the QED elfects on the forward jet cross section can be neglected.
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Figure 8.19: Cross section comparison between the forward jets generated with radiative
corrections (ogrp) and without (0o ). The upper plot pictures the differential cross section,
while the bottom plot is the relative difference between the cross sections.

8.4.5 Dependence of the Results on the Jet Algorithm Used

Although the value of the jet cross sections at detector and hadron levels depend on a large
number of factors, an inclusive study of all the parameters involved in the determination
of the forward jet cross section would be a long and tedious task beyond the scope of the
present study. The aim of this section is just to present two of the factors which may change,
if not the physics message of the analysis, at least the absolute meaning that one could give
to it.

One of the crucial problems of this analysis is that, in order to evaluate a parton level
effect, we make use of an algorithm which is supposed to improve the agreement between
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the parton and the hadron levels. As we saw in section 8.4, this was not a trivial, one-to-one
correspondence, so that diflerent algorithms may give different answers. In figure 8.20, the
data cross sections (obtained with the algorithm PUCELL) are compared to the predictions
al ARTADNE performed with three different jet algorithin: PUCELL (which was used all
over the analysis) and two algorithms [requently used at ZEUS: EUCELL and PXCONE.
The diflerence between the algorithms lies mainly in the way they treat the energy shared
between two overlapping jets. For iustance, the minimum fraction of energy shared required
for merging two jets is different from one algorithm to another. Iu figure 8.20 a), all the
algorithms are used with the same cone radius 1. There is about a 30% spread on the
value of the cross section. When the jets are generated with different radii, all the results
can match as in fignre 8.20 b), leading to the following correspondence: PUCELL (R=1)
= PXCONE (R=1.2) = EUCELL (R=0.9). It must be added hLere that the radius of the
jets were properly tuned to some well known distributions, but as we saw in chapter 6, the
internal structure of the jets is different in the forward region. Finally, the parton level
calculations (either BFKL or CCFM) are also subject to to theoretical uncertainties which

can lead to comparable discrepancies.
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Figure 8.20: Hadron level jet cross sections in the data (obtained with the PUCELL al-
gorithme) compared to the predictions of ARIADNE 4.08 obtained with three different jet
algorithms: PUCELL, PXCONE and EUCELL. a) All the algorithms use the same radius.
b) Different radii are used.

159

Similarly, varying the cone radius of the PUCELL algorithm by # 20% can lead to a 30%
spread of the cross section, as can be seen in figure 8.21. There is no definitive “best choice”
for the determination of the cone radius or the algorithm used. The most natural criteria is
the correspondence between hadron and parton level jets.

Hadron level jet cross section

)
B
w ' «  ZEUS Dat
u 4 D ata
T 0
2 —1_ ARIADNE 4.08
100
T i PUCELL R=1
80 |- + 3 ARIADNE 4.08
- " PUCELL R=0.8
N P N ] :  ARIADNE 4.08
R | [ i PUCELL R=1.2
W |-
o A
20 |-
0 Tt
w?

X

Figure 8.21: Hadron level jet cross sections in the data (obtained with the PUCELL algo-
rithm) compared with the predictions by ARIADNE 4.08 obtained with PUCELL and three
cone radii: 0.8, 1 and 1.2.
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8.4.6 An Alternative Explanation: the Equivalent Photon Ap-
proximation (EPA)

Recently, another attempt to explain the excess in the forward jet cross section with re-
spect to the standard DGLAP model predictions (and the NLO calculations) has been pre-
sented [130]. The evolution mechanism that it involves is based upou the equivalent photon
approximation (EPA): if the scale which is probed by the hadron jet is larger than the four-
womentum squared Q? of the photon, one might then be able to resolve the structure of the
ploton, even at moderate Q? (Q* > 10 GeV?). In this case, Q* ceases to be the natural
scale of the process and a DGLAP-like process can take place, picturing an evolution from
the hard jet (which sets the scale) to the photon side. This backward evolution is pictured

in figure 8.22.

—=e ¢ EPA

pdf from the photorf—=__
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Figure 8.22: Schematic description of the equivalent photon approzimation. The factorization
scale on the proton side being larger than Q?, one can resolve the structure of the photon.
Here PDF means Parton Distribution Function.

In order to generate this kind of events, a new Monte Carlo simulation has been presented,
RAPGAP [57], which uses the “Schiiler-Sjostrand”, SaSgam, parameterization [131] for the
structure function of the photon at high @*. Within this framework, two samples must be
added (as in photoproduction): a direct part, which pictures the standard DGLAP evolution,
as in LEPTO and HERWIG, and the resolved part, which implements the EPA. In figure 8.23,
the comparison between the data cross sections corrected at hadron level and the predictions
obtained by RAPGAP and LEPTO is presented. The direct process is consistent with
LEPTO’s prediction, while the sum of direct and resolved processes describes well the data
(at least, as good as ARIADNE). There is however some nuance to bring to this result: in
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order to have any contribution from the photon structure, the factorization scale for the
photon side, 1, has to be much larger than the (* of the photon (in figure 8.23, the scale is
taken to be pf +@Q?, p? being the sum squared of the transverse momenta of the leading order
partons). Similarly, the “amount of resolved photon” which contributes to the forward jet
cross section changes when the scale is changed: in figure 8.24, the same process is considered
with three different scales: Q?/2 + p?, Q* + pf and 4 - Q? + p?.
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Figure 8.23: Differential hadron level jet cross sections in the data (obtained with the PU-
CELL algorithm) compared with the predictions by RAPGAP 2.06 implementing direct and
resolved processes.

Whereas the direct component of the process does not change inuch, the resolved cross
section depends considerably on the scale. Tndeed there is no resolved part when the scale
is set to ()%, while the resolved component dominates over the direct one when the scale is
set to 4-Q? - p?. The phenomenological input to the model is therefore very important and
this makes the predictive power uncertain. However, a resolved component in the photon
is certainly a possible explanation for the forward jet excess and NLO corrections for the
resolved part of the process are expected and could improve the accuracy of the predictions.
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Figure 8.24: Hadron level jet cross sections obtained with RAPGAP 2.06 (resolved and direct
processes) for three different choices of scale.

8.5 Extending the Kinematic Region of Interest

In section 8.1 of this chapter, the E2/Q? distribution of the forward jet was shown to be a
good estimator for the various parton evolution mechanisms which can take place in DIS.
Three kinematic regimes have been determined, when comparing the various data points
to the models at detector level: the region where the DGLAD picture is valid, Q2 =Bz,
the region where the contributions from higher order processes and BFKL-type processes
dominate, Q* ~ E% and the region where the hard scale is set by the transverse energy of
the jets £% > Q%

For a better understanding of these various regimes, the E7./Q* distribution of figure 8.2
has been corrected to hadron level. As the resolution of the variable E%/Q? is quite large
in the forward jet analysis, the bin size has been doubled. The correction factors are shown
in figure 8.25. The average efliciencies and purities are 40%. The maximum values of the
purities and efficiencies lie in the high Er limit, which is expected as the high Er jets are easy
to measure and provide a clean sample. The minimum value of the purities and efliciencies
is found in the region Ef ~ @2, which corresponds to the phase space under investigation
in the rest of this chapter. This is due to the fact that both Er and @* have relatively low
values. In this plot are also shown the values for efficiencies and purities where the events
are not required to be generated and reconstructed in the same bin (see section 7.3.3). This
is equivalent to say that the the migration from bin to bin of E2/Q? between generated
and reconstructed level is not included in the definition of purity and efficiency. From the
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difference between the two values (with and without the requirement of being generated and
reconstructed in the same bin), one can infer the average amount of bin-to-bin migration of
the sample, which is typically between 10% and 20%.
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Figure 8.25: Efficiency, purily and correction factors for the E3/Q? distribution of the for-
ward jets. All the cuts listed in table 8.1 , but the one on E2/Q* have been applied. The black
dots correspond to the real purity and efficiency. The open dots correspond to the values of
purities and efficiencies when bin-to-bin migration is allowed.

Once the data have been corrected, they are compared to some Monte Carlo models in
figure 8.26. The same simulations as for the x distribution are shown: ARIADNE 4.08,
LEPTO 6.5, HERWIG 5.9 and LDC 1.0 (the systematics checks are similar to those which
were performed for the previous distribution). The same trend as at the detector level is
observed: the same three kinematic regimes shows up in the corrected E/Q? distribution.
The DGLAP-based models, as well as ARIADNE and LDC are valid for ? > E%., while only
ARIADNE describes the data at E2 ~ Q*. In the third region, the LDC model describes the
data best, although it exhibits a smaller cross section over the full range. LDC is the only
model which treats forward evolution (from the on-shell parton at the proton side to the
virtual photon) and backward evolution (from the hard, virtual jet to the “softer” photon)
on a similar footing, as the evolution properties are symmetric with respect to the photon-
proton axis. However, since LDC does not reproduce the data cross section in a region
where it should (E2/Q? ~ 1), to conclude on an eventual backward evolution towards the
photon side is still too premature. Similarly, the comparison with the RAPGAP model (see
section 8.4.6) is made in figure 8.27. There also, the additional resolved contribution from
the photon improves the description of the data. As in the case of LDC, the data exhibits
smaller cross sections than the model. Once again, the predicted cross section depends on
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the scale selected and no strong conclusion can be drawn.
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Figure 8.26: Differential hadron level forward cross section as a function of E3/Q?*. All the
cuts listed in table 8.1 , but the one on E3./Q? have been applied. The two vertical lines show
the limits of each kinematical regime (see text). The statistical errors are shown as thick
error bars, and statistical and systematic errors added i quadrature as thin error bars. The
correlated errors due to the uncertainty of the jet energy scale are given as the shaded band.

8.6 The kr Analysis

This analysis has also been performed with the k¢ algorithm (see [132]), but the experimental
results have proven to be disappointing. In the analysis, the resolution parameter, ye, is
set equal to 0.5 (see section 6.1.2). The absolute scale used during the clustering process
is Q*p, at the reconstructed level and Q% .. at the generator level. The jet clustering is
done in the Breit frame (the four momenta of the particles are boosted to the Breit frame
where the clustering is done, the jets are then boosted back to the laboratory frame where
the cuts are applied and the cross sections are evaluated). The exact cuts listed on table 8.1

are applied to the jet.

The comparison between the jet cross sections at various level of the reconstruction process
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Figure 8.27: Differential hadron level forward cross section as a function of E%/Q?, compared
to the RAPGAP predictions (scale p? = P} + Q?). The statistical errors are shown as thick
error bars, and statistical and systematic errors added in quadrature as thin error bars. The
errors due to the uncertainty of the jet energy scale are given as the shaded band.

(detector level, hadron level and parton level) is shown in figure 8.28. The difference between
hadron and parton level cross sections indicates that the objects found at hadron level are
mostly not coming from hard processes (as in the case of LEPTO, with the cone algorithm).

The cross section at detector level is much larger than at hadron level, especially in the
smallest @ bins, indicating that most of the objects found after clustering the cells of the
calorimeter not only do not correspond to any hard physics, but are not even related to any
generator level quantity. This translates into the values of purities and efficiencies of the
jets, shown in figure 8.29. At low x, they are typically of the order of 10% or less and the
correction factor is about 2. This time, not only the resolution of each variable used in the
cuts enters into account in the determination of the purities and efficiencies, but the nature
of the jet found in the calorimeter is not related to the hadron level. This can be shown
when comparing quantities found at hadron and detector level.

In figure 8.30, the correlation between the pseudorapidity of the “true” jet, found at generator
level is plotted versus the pseudorapidity of the detected jet. For > 2.2, the ky algorithm
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Figure 8.28: Differential parton, hadron and detector level forward jet cross sections obtained
with the ARIADNE 4.08 simulations, using the kp algorithm.

finds after the reconstruction a large amount of jets which are not correlated with the jets
found at the generator level. The jets at hadron level are in average more forward than the
detector jets and therefore do not survive the maximum 7 cut of 2.6. These hadron level
jets are actually receiving contributions from the forward region, possibly {rom the proton
remnant, which shift the overall pseudorapidity to the forward region. Other evidences
exist which make us think that the Ay algorithm, in this implementation, can not make a
clear distinction between the forward jet and the remnant in the forward region of rapidity
(cf. [L32]). One of the explanations which can be advanced is that the Q? scale used by the
algorithm to perform the clustering in the Breit frame is not suited in this kinematic region.
As a matter of fact, in the phase space region probed, one does not expect that Q? sets the
scale of the hard process (in fact this should not be the case by construction, as the analysis
is performed in the region where the transverse energy squared of the jet is on the order
of ). The behavior of the correction factors suggests a similar explanation, as they come
closer to one at high x, where )? is larger and might be the correct scale of the process.

The determination of the real scale of the process and its implementation into the ko al-
gorithm, to find forward jets in DIS, is therefore not straightforward and then no strong

conclusion can be drawn from this analysis.
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Figure 8.29: Purity, efficiency and correction factors for the forward jets obtained with the
k¢ algorithin.
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Figure 8.30: Correlation between the pseudorapidity of the hadron and the detector level jets
with the ky algorithm. All the cuts listed in table 8.1, but the one on T)jer are applied. The
dashed lines show the value of the pseudorapidity cuts.
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8.7 Summary

The forward jet cross section has been measured in the 1995 data with the cone algorithm,
using the ZEUS detector. The internal structure of the jets has been studied and the data
cross sections have been corrected for detector effects using standard Monte Carlo simu-
lations. The comparison between the corrected data and the Monte Carlo simulation for
E2/Q* ~ 1 shows that the DGLAP-based MEPS models, LEPTO aud IHERWIG, fail to
describe the absolute jet cross section in the data, while the ARIADNE model, which does
not implement the same type of parton evolution, strougly ordered in Fr, describes the data
accurately. This strong discrepancy is a hiut that in the low « limit, there are hard pro-
cesses not implemented in the MEPS models. The nature of these hard processes can ouly
be determined when the hadronization elfects are subtracted from the measurements. The
LDC model, which implements literally the CCEM equation and should therefore match the
BFKL predictions at low @, is unable to reproduce the experimental cross sections.

At high z, the LEPTO and ARTADNE model converge and reproduce the experimental cross
sectious, but LDC and HERWIG still exhibit smaller cross sections. One explanation could
be the requirement of strong angular ordering which is implemented in both latter models.

The NLO calculation, as implemented in MEPJET, are in good agreement with the predic-
tions of the DGLAP-based processes, LEPTO and HERWIG, and show much smaller cross
sections than ARIADNE. For the comparison to the data, a hadronization correction has
been applied, but it has been found very model dependent, as the correction factors are
very diflerent between LEPTO and ARIADNE. The existence of large correction factors in
LEPTO at low z is again an evidence that the hard processes which are probed are not
implemented in this model. The Soft Colour Interaction is an example of a non-perturbative
process which contributes significantly to the forward jet rate in LEPTO.

An attempt to use a contribution of the resolved photon into the determination of the cross
section successfully describes the value of the forward jet cross section but is bound to a

large scale dependence, which make the conclusions uncertain.

The study of the forward jet cross section in an extended range of £2./Q)? revealed three
kinematic regions, depending on the scale of the process: 1) E2/Q? < 1: the scale is set by
@* and all the predictions converge to the experimental distributions, I1) E%/Q* ~ 1: the
DGLAP approximation is not valid any more and ARIADNE is the only model describing
the data, III) EZ/Q* > 1, the hard scale is set by the transverse energy of the jet, as
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in photoproduction, and no model reproduces the data, except the RAPGAP model, very
dependent on the factorization scale.

The measurement of the forward jet cross section is bound by several uncertainties, such as
the dependence of the result on phenomenological parameters (e.g. the radius of the cone)
or the uncertainty on the corrections to parton level which currently makes the comparison
with theoretical calculations performed at the parton level valid only within to about + 30%.
The ideal method of comparison would be to use the exact same algorithm in the theoretical
calculations as in the data, but the BFKL calculations do not implement this scheme yet.
This present level of accuracy is also expected in the calculations, so that the results are still
meaningful in terms of hard physics processes.



Chapter 9

Conclusions

Low-z physics in Deep Inelastic Scattering has long been known as oune of the best place
to study the dynamic of parton evolution. In this region of the phase space, the parton
emissions, which can be treated perturbatively thanks to the property of asymptotic freedom,
are extremely seunsitive to the approximations which are performed in the various parton
evolution schemes. The standard DGLAP evolution, which resums log Q* terms only and
then predicts parton emissions strongly ordered in transverse momentum, is expected to fail
in this region, while the new pictures, based either on the summation of logarithms of 11
(BFKL scheme) or on the angular ordering of the parton emissions (CCFM scheme) are
both expected to yield good results. The theoretical studies which have been performed on
the comparison between the various schemes predict that at low values of x, the difference

is dramatic.

However, this phase space region is also extremely sensitive to the long-range physics, dom-
inated by the property of confinement and nou-calculable through the standard wethods, so
that the extraction of the proper QCD effect from the huge non-perturbative background
is the main challenge of all analyses whose goal is to study the parton dynamic at low w.
The choice of the variable used in order to probe the parton dynamic is then of a crucial
importance and the effects of non-perturbative physics on this variable must be checked
carefully. As a matter of fact, the influence of loung-range physics on inclusive quantities like
the proton structure function and the transverse eunergy flow can not be disentangled from
the perturbative evolution. Therefore no conclusion on which type of parton evolution takes
place and which set of approximations is valid can be drawn fromn such inclusive variables.

Jet variables are sensitive to QCD effects aud less influenced by non-perturbative physics.

11

However the experimental definition of a jet is dependent on a certain algorithm. Up to
now, the jets were used at HERA only in the high @* range and with fairly large transverse
momenta, so that the systematics of the jet algorithm were reduced by the fact that the
jets probed were very collimated. At low w, these effects are not so well known. Although
a lower cut on the transverse momentum is supposed to reduce the effects of soft physics
on the final cross sections or angular distributions, this problem might bounce back through
the dependence on the algorithm. However, jets are closely related to the details of the
parton evolutions as their four momenta are supposed to reproduce those of the hard partons
through the property of local parton-hadron duality and are therefore privileged objects to
probe them.

In this work, the study of the parton dynamics at low x has been performed with two methods
using the jets observables. The first method is an attempt to probe indirectly the underlying
parton evolution by measuring their effects on the angular correlation of the two leading
order jets. As the analysis focuses on the tail of the azimuthal correlation, in the region
where both jets are very close to each other in the transverse plane, the uncertainties due
to the cone jet algorithm must however be removed by a cut which reduces the sensitivity
to the various modes of parton evolutions. When comparing the measured distributions to
the DGLAP-based Monte Carlo simulations, LEPTO or HERWIG, no large discrepancy is
found, and the ARTADNE model which implements some of the features of a BFIKL-like
evolution, is also consistent with the former Monte Carlo models.

The second measurement aims at looking directly at the partonic emissions by focusing on
a single parton, at a higher stage of the evolution (and for this reason, named forward jet).
The emission rate of this type of parton is largely suppressed in a DGLAP-based picture,
so that the value of the forward jet cross section can give an indication of the validity range
of this model. Indeed, the measured hadron level jet cross sections exhibit a clear excess
with respect to LEPTO and HERWIG in the low-z limit, even with all the non-perturbative
effects turned on. This cross section agrees moreover with the predictions of the ARIADNE
simulation, which is attributed to the effects of a parton evolution, non-ordered in transverse
momenta. The disagreement with a first release of a CCFM-based simulation like the LDC
model is still a puzzle, as this picture implements the kind of physics which is expected
in this kinematic region. The answer may come from the high z limit, where both LDC
and HERWIG converge in cross sections and lie much below the data cross sections. One
hypothesis is that the coherence effects, strictly implemented in each one of these models
and handled by the angular ordering of the parton emissions, are restricting the available
phase space for emission, leading to too small cross sections.
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An alternative explanation of this excess of forward jets with respect to the DGLAD pre-
dictions was provided by the RAPGAP model, which predicts that, when probing high Er
jets, one can resolve the structure of the photon. The forward jets would then be the con-
sequence of the existence of a “photon remnant” which has yet to be studied in detail in
DIS. The attractive feature of this model is that it reproduces the data cross sections over
the full E2/Q* range, while all the other models fail for B3/Q* > 2. This is indeed the
region where the effects of a resolved photon are expected to appear as Er is the hardest
scale of the process which makes this case similar to photoproduction. On the other hand,
for B2/Q* < 0.5, Q% is the hard scale and all the models converge.

Ideally, the study of the parton dynamic should involve a parton level comparison between
the data and the theoretical predictions (for all the models). In practice, this comparison
is bound to very large uncertainties due to the model dependence of the hadronization
correction. This is once again the consequence of the influence of the large non-perturbative
effects at low x, which alfect the jets properties. A better understanding of these effects is

mandatory for a more conclusive study of this kinematic regiou.

In summary, as expected, the jets are less sensitive to hadronization effects than the other
observables and more sensitive to the perturbative evolution, so that the forward jet analysis
provides us with the evidence that HERA reaches the region where the standard DGLAP
models are no longer valid. The next generation of event generators, with a more accurate
implementation of non-perturbative effects such as soft colour interaction and colour coher-
ence should improve the interpretation of these results in terms of hard physics and reduce

the uncertainty due to the hadronization phase.
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Appendix A

Reconstruction of the Kinematic
Variables

In chapter 2, the main variables which are determining the kinematics of the event were pre-
sented: the virtuality of the scattered photon @2, the scaling variables = (which corresponds
to the momentum fraction of the struck quark in the QPM) and y, the energy transfer from
the leptonic to the hadronic system (in the rest frame of the target hadron). These variables
are defined by the set of equations:

Q==K =(-p+p)=-¢, (A1)
.
_ap

B 7y (A.3)

Here, the variables k and &’ correspond respectively to the positron momenta before and
alter the collision p and p’ are likewise the proton momenta before and after the collision
while ¢ is the momentum of the scattered photon in the laboratory frame. These variables
are displayed in figure A.1, together with 6, the angle of the scattered positron and 7, the
angle of the ‘current’ jet, namely the struck parton in the QPM.

To determine these variables from a HERA event, the three most common methods are:
the electron method, which uses only the information given by the scattered positron, the
Jacquet-Blondel method, which uses only the hadronic energy information of the event and
the double angle method, which reduces the energy fluctuations by considering only the
angles of the two systems.
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Figure A.1: Deep inelastic scattering between the virtual photon and the proton in the QPM.

The couservation of energy and momentum, which enables the determination of the kinematic

variables reads:

L B E,
0 | E'sinb.cosg, G A
4 =K 3 i 4
. 0 ¢ E'sinf sing, *q dy (A9)
- —E'cos0, (1}
e E), E,
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i ) v By siny,singy q Iy (A-5)
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A.1 The Electron Method

This is the easiest method to obtain z, y and Q?. By simply identifying the positron variables

with the variables presented in equations A.1, A.2 and A.3, we obtain the following set of

equations:
2 = 2BE'(1 + cosb.) (A.6)
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Yl Tk cosf.) (A.7)
. B E'(1+ cosl.)
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Here P is the momentum of the incoming proton. The method gives the best results for
y ~ 1, where the energy fluctuations do not affect too much the values of z and Q? (see [122)).
Usually, a cut on y (y > 0.01) is needed in order to have good resolutions for the kinematic
variables. Overall, the electron method gives the best resolution of x and Q? over all the
kinematic range considered in this analysis and is therefore the one we chose to use in this

thesis.

A.2 The Jacquet-Blondel Method

This method uses exclusively the information from the hadronic system to determine the
kinematic variables. It is useful in Charged Current events (CC) where the scattered neu-
trino can not be measured. Otherwise, this method is dependent on the hadronic energy
fluctuations and usually gives a poor resolution for z and ()?, as it relies on the resolution
of the hadronic energy which is in all cases poorer than the positron resolution.

The variables are determined by identifying the variables on equations A.1, A.2 and A.3 with

the hadronic variables:
Ey(1 — cosyy)

Yip = 5 (A.9)
: Tibui)t + (Zipya)®
g = 1)—-4/55 ) (A.10)
( 2
Typ = % (A.11)
sYsm

Although the Jacquet-Blondel method is rarely used to determine = and Q?, the variable
yyp is often identified with .

A.3 The Double Angle Method

The third reconstruction method relies ouly on the angles of the leptonic and hadronic system
after the collision. The purpose is to have a reconstruction method very little dependent of
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the energy fluctuations of each one of the systems, and therefore, of the calibration of the

calorimeter.

In the QPPM, the consgervation equatious listed in A.4 and A.5 can be written:

Eunergy conservation: E,+E=FE'+E, > xP+E=FE'+E,
Longitudinal momentum conservation: x> — E = E'cosl, + Ejcosy),.
Transverse momentum conservation: E'sinf, = E)sinyy,.

Therefore, the energy of the scattered positron can be expressed as a function of 7, 6, and

E:
siny,

B, = 2E— 5 3
24 sinl, + siny, — sin(0, + )

(A.12)

Substituting the positron energy in the equations given by the electron method, one obtains

the various kinematic variables as a function of €, and ,:

ginl,(1 — cosy)

== - - A.13
o sty + sinbly — sin(l, + ) ( )

; : siny, (1 + cost,)
@ = AEP e B . A4
dna stny, + sinb, — sin(l, + v,) ( )
o = . S8+ oind, + sinldy + ) (A.15)

—E: sty + sind. — sin(6, + )
The main problem with this method is to determine the angle ,. The calculation uses the
integrated energy and position of the hadronic system:

e (Zg Pzr.i)2 + (Zt Pw')2 I (Z: E; - Ez,i)2
T T Paa P+ (D4 B+ (21 Bs — Bag)?

Here P; and E; are the momentum aud eunergy of the hadronic cell ¢ (the positron cells are

(A.16)

removed {rom this calculation). This can be shown to be in first order independent ol the
energy fluctuations. However, at low x, the determination of the position of the hadronic
system becomes inaccurate and the method gives poor resolution. In figure A.2, the relative
resolution of # and @? is shown for the two reconstruction methods ‘electron’ and ‘double
angle’ using the Monte Carlo “True” value. The resolutions are plotted iu the kinematic
region of the forward jet analysis, namely Q% > 12.5 GeV? 4.5-107* < & < 4.5- 107,
Ey > 10 GeV and y > 0.1.
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Figure A.2: Relative resolution for the variables © and Q? with the two reconstruction methods
‘electron’ (EL) and ‘double angle’ (DA). The cuts applied are Q* > 12.5 GeV?, 4.5- 10~ <
x<4.5:-107%, Eyx > 10 GeV and y > 0.1.
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Appendix B

The PUCELL Jet Algorithm

The jet linding performed in the two analyses presented here is based on the cone algorithm,
implementing the standard Suowmass convention (see section 6.1.2). The jets are found
either by applying the algorithm on calorimeter cells or on the four momenta of the particle
generated in the Monte Carlo simulation.

This algorithm, PUCELL [133] is one of the most commonly used within the ZEUS collab-
oration. It proceeds via the following steps:

Step 1: The cells (particles) are sorted out according to their transverse energy. A pointer
is set to all cells which have a transverse energy larger than a certain seed energy (
Er o > B3t (=0.5 GeV)). These are the seed cells.

Step 2: Around each seed cell, the distance to each other cell,
R = \/(1/“"“"‘ — peell)2  (seed — geell)2 i computed. if B < 1, then the cell is merged

into an new object, a “pre-cluster”, whose trausverse energy, pseudorapidity and az-

imuthal angle are defined by the equations 6.4, 6.5, 6.6, yielding the quantities: 77¢,
&, Er ju. The list of all cells contributing to the pre-cluster is kept in an array.

Step 3: The seed is then reset with 7*¢¢? = 77t and ¢eeed = piet,

Step 4: The cells are merged as in step 2 with the new seed. The list of cells thus obtained is
compared to the one obtained in step 2. If the lists are the same, the merging procedure
is stopped and the algorithm moves to step 5. If the list differs, the algorithm goes
back to step 3. A maximum number of iterations (75) is given above which the jet

finding is stopped.
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Step 5: Omnce step 3 is complete, some of the cells might be commmon to several cluster. The
energy of the overlapping region is estimated by summing up the energies of the cells
in the overlap region. If the sum of the energies is larger than a fraction (usually set
to 75%) of the energy of the smallest cluster, the two jets are merged. If it is smaller,
each cell is assigned to its closest cluster.

Step 6: The cluster is now formed and its position and energy are now re-evaluated according
to equations 6.4, 6.5 and 6.6. The jet is then formed by taking only cells within a radius
of 1 from the center.

Step 7: All the remaining jets are re-ordered according to increasing transverse energy.

180



Appendix C

Reference Frames

In the various analyses presented in this study, dilferent refereuce frames were used to de-
seribe the various variables involved. The phase space which is probed is mainly defined
by Lorentz invariant parameters, Q?* and z, so that the total inclusive DIS cross section is
frame independent (this is true for £ as well). However, in jet studies, the phase space is of
particular importance as the kinematic variables used to define jets are usually not Lorentz

invariant.

The three frames appearing in this work are: the laboratory frame, the photon-proton Center
of Mass frame (or Hadronic Center of Mass frame or HCM frame) and the Dreit frame. They

are described below and the correspondence between them is given.

C.1 The Laboratory Frame

The most natural frame to perform an operation in an analysis (like jet finding) is the
Jaboratory frame, that is the frame of the ZEUS detector. The 7 direction is set by the
direction of the proton beam, Y points upwards (in the vertical plane) and X lies in the

horizontal plane, pointing towards the center of the HERA ring.

[u this frame, the momenta of the proton and of the positron are:

820.0 27.52
0 0
II)pralrtm = 0 ) P)luaitrun = 0 (Cl)
820.0 —27.52
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The four momentum of the photoun is defined as the difference between the momentum of the
scattered positron and Iygiron. In order to conserve energy and momentum, the transverse
momentum of the hadronic system must balance the transverse momentum of the scattered
positron.

In both studies performed here, the jets are found in this frame. This means that the
clustering algorithin is performed on four-momenta defined by the cells of the detector. This
is more natural from an experimental point of view as the cell configuration in another frame
might be very different from the one in the detector. Besides, the reconstruction of the jets
in the laboratory frame is independent from the reconstruction of the scattered positrou,
which is not the case in the other frames.

C.2 The Center of Mass Frame (HCM)

In general, from the theoretical point of view, it is easier to perform calculations without
taking into account the boost due to the difference of momentum between the two particles
taking part in the collision. This problem does not exist in the LEP ete™ environment, but
it is crucial in the ep collisions.

The hadronic center of mass system accounts for this. If P is the momentum of the proton
and ¢, the momentwn of the exchanged boson in the laboratory frame, P and ¢ their
momenta in the HCM frame, it is defined by the condition:

P4+d=0. (C.2)
So the boost is defined by the j3:
= P+
B = = C.3
Eprutun of 1'17 ( )
The transformations are defined as usual, with the v parameter: y = —'1—]733’ using the
following set of equations ': s
E'=vy(E~-§-p) (C.4)
¥ =7~ FE) (C5)

The 7 axis is usually defined by the position of the exchanged boson.

! the prime(’) indices refer to the coordinate system in the frame of transformation
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Photon Proton

« PR P2

Figure C.1: The Hadronic Center of Mass (HCM) system.

In the HCM frame, the total hadronic transverse momentum is 0 by construction. The total
invariant mass of the system is W? = (P + ¢)?. In the HCM frame, the current hemisphere
is defined by the direction of the struck quark and the target (fragmentation) hemisphere
is defined by the direction of the proton remnant. Both are not necessary collinear to each
other. This would be ouly true in the QPM, where the struck quark coes not carry an

intrinsic transverse energy within the proton.

C.3 The Breit Frame

The Breit frame has been defined by analogy with the e*e™ experiments, where the quark-
antiquark pair is created back-to-back, with the same overall momentum (see figure C.2).

e q

q | e q

Figure C.2: ete™ scallering.

In an ep scattering process, the Breit frame is defined so that the current and target hemi-
sphere (in the QPM) are collinear and carry the same momentum. It can be shown that
this condition is fulfilled if the exchanged boson is completely space-like, that is with no
energy and a momentum —@ (so that Q? = —¢%), so that we can write its four-momentum
as: (0,0,0,—@Q). In this case, il the proton comes with a four momentum (£, 0,0, £,). and
the struck quark as a four momentum xP (in the QPM) so that #P = (Q/2,0,0,Q/2),
then because of momentum and energy conservation, the outgoing quark momentum will be
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al = (Q/2,0,0,-Q/2) (see figure C.3), according the equation:

Q/2 0 Q/2

0 0 0

0 + 0 = 0 (C.6)
Q/2 -Q -Q/2

In this case, the outgoing quark is reverted, reminding of the back-to-back correlation of the
ete™. Assuming that the rest of the proton is not affected by the collision (which is a good
approximation in the QPM), the Breit frame defines two hemispheres in the ep collision: the
“target” (or fragmentation) hemisphere, which is defined for pz p,ei > 0 and is oriented along
the proton direction in the Breit Frame, and the “current” hemisphere (for pz e < 0),
which is defined along the struck (leading order) quark. This distinction between target and
current is only exact in the QPM and is approximative at leading order of «,. Nevertheless,
the frame is useful in practice to identify the jets which are probed (either LO jets or part
of the gluon ladder).

Y (O»an,'Q)

(Q2,0,0,-Q/2)

xP(Q/2,0,0,Q/2)

Proton, P

Figure C.3: The Breit frame (in the QPM).

In order to perform the transformation to the Breit frame, the photon direction has first to
be rotated to lie in the negative 2’ direction. The positron scattering plane usually defines
the (X',2’). The Lorentz transformation to the Breit [rame is defined by the [3" vector:

= q+ 2xp

st e ol
E, + 2 Eppoi0n’ ©n
where E, is the energy of the photon in the laboratory frame. The boost to the HCM or
to the Breit [rame have many theoretical advantages, as the calculations are easier in these
frames and the interpretation in terms of hard and soft physics are more straight forward.

Some jet algorithms (for instance the ky [87]) cluster the four momenta of the particles found
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in the Breit frame as the comparison between the transverse momentum of the jet and the
scale of the process is easier there (c¢f. chapter 6). Nevertheless, the experimental uncertainty
due to the boost, and in particular the large dependence of the results on the reconstruction
of the positron, is often the dominant contribution of the inaccuracy of the measurement
(see for instance [134]). This is why this study has been performed in the laboratory frame.
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Appendix D

Glossary

Expression | Meaning Page
QCD Quantum Chromodynamics; theory of the strong interaction 2
DIS Deep Inelastic Scattering 2
QED Quantum Electrodynamics; theory of the electroweak interaction %
NLO Next-to-Leading Order corrections 10
QPM Quark-Parton Model; lowest order in DIS 12
QCDC QCD Compton; first order in oy in DIS 15
BGF Boson Gluon Fusion; first order in «y in DIS 15
DGLAP Dokshitzer-Gribov-Lipatov-Altarelli-Parisi; evolution equations 19
LLA Leading Logarithm Approximation 20
DLLA Double Leading Logarithm Approximation 22
CTEQ Coordinated Theoretical Experimental project on QCD; 23
set of structure functions
MRS Martin-Roberts-Stirling; set of structure functions 23
GRV Gliick-Reya-Vogt; set of structure functions 23
BFKL Balitzki-Fadin-Kuraev-Lipatov; evolution equation 25
CCFM Ciafaloni-Catani-Fiorani-Marchesini; evolution equation 29
HCM Hadronic Center of Mass frame 31
LEPTO Monte Carlo simulation based on the MEPS model 32
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l—E;)ressiou Meaning Page
ARIADNE | Monte Carlo simulation based on the colour dipole model 32
MEPS Matrix Element-Parton Shower model (LEPTO and HERWIG) | 40
MEPJET Next-to-Leading order calculation package by Mirkes et al. 42
DISENT Next-to-Leading order calculation package by Seymour et al. 42
DISASTER. | Next-to-Leading order calculation package by D. Graudenz 42
ISR. Initial State Radiations 42
FSR. Iinal State Radiations 43
HERWIG | Monte Carlo simulation based on the MEPS model 43

and using the CLUSTER. model for hadronization

CDM Colour Dipole Model (ARIADNE) 44
LDC Linked Dipole Chain model 46
SCI Soft Colour Interactions in the LEPTO simulation 48
CTD Central Tracking Detector 55
SRTD Small Rear Tracking Detector 56
FCAL Forward Calorimeter 56
BCAL Barrel Calorimeter 56
RCAL Rear Calorimeter 56
HAC Hadronic cells in the calorimeter 57
EMC Electromagnetic cells in the calorimeter 57
GFLT Global First Level Trigger 63
GSLT Global Second Level Trigger 63
TLL Third Level Trigger 63
PUCELL Type of Cone algorithm used to define a jet 79
PDF Parton Distribution Function 161
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