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Abstract

Consistency checks of cosmological data sets are an important tool because they may suggest systematic errors or
the type of modifications to ΛCDM necessary to resolve current tensions. In this work, we derive an analytic
method for calculating the level of correlations between model parameters from two correlated cosmological data
sets, which complements more computationally expensive simulations. This method is an extension of the Fisher
analysis that assumes a Gaussian likelihood and a known data covariance matrix. We apply this method to the
South Pole Telescope Polarimeter (SPTpol) temperature and polarization cosmic microwave background (CMB)
spectra (TE and EE). We find weak correlations between ΛCDM parameters with a 9% correlation between the
TE-only and EE-only constraints on H0 and a 25% and 32% correlation for log(As) and ns respectively. The TE–EE
parameter differences are consistent with zero, with a probability to exceed of 0.53. Using simulations we show
that this test is independent of the consistency of the SPTpol TE and EE band powers with the best-fit ΛCDM
model spectra. Despite the negative correlations between the TE and EE power spectra, the correlations between
TE-only and EE-only ΛCDM parameters are positive. Ignoring correlations in the TT–TE and TE–EE comparisons
biases the χ2 low, artificially making parameters look more consistent. Therefore, we conclude that these
correlations need to be accounted for when performing internal consistency checks of the TT versus TE versus EE
power spectra for future CMB analyses.

Unified Astronomy Thesaurus concepts: Observational cosmology (1146); Cosmic microwave background
radiation (322); Cosmological parameters (339); Cosmology (343)

1. Introduction

Cosmic microwave background (CMB) experiments show
good agreement with ΛCDM (e.g., Bennett et al. 2013; Sievers
et al. 2013; Story et al. 2013; Planck Collaboration VI 2018),
with mild tension reported by the South Pole Telescope
Polarimeter (SPTpol; Henning et al. 2018). However, stronger
tensions emerge when CMB experiments are compared to some
other cosmological experiments. The most notable tension is in
the determination of the present expansion rate of the universe
or Hubble constant, H0. There is currently a 4.4σ tension
between the most recent Planck results (Planck Collaboration
VI 2018) and the cosmological distance ladder measurement
(Riess et al. 2019). When the distance ladder is combined with
strong gravitational lensing time delays by the H0 lenses in
COSMOGRAIL’s Wellspring (H0LiCOW), the discrepancy
with Planck is 5.3σ (Wong et al. 2019). Freedman et al. (2019)
used the tip of the red giant branch as a calibration for type Ia
supernovae and find only a 1.2σ difference from Planck.
However, Yuan et al. (2019) argue that Freedman et al. (2019)
overestimate the Large Magellanic Cloud extinction. Account-
ing for this, their result is in 2.5σ tension with Planck while
consistent at 0.7σ with Riess et al. (2019).

While Planck is the most precise CMB experiment to date,
the Hubble tension persists when data from baryon acoustic
oscillations are combined with other CMB experiments or even
deuterium abundances (e.g., Addison et al. 2018). Additionally,

Planck prefers a 2–3σ larger value of s= WS8 8 0.3
m , which is a

measure of matter clustering, than weak lensing surveys (e.g.,
Abbott et al. 2018; Hildebrandt et al. 2018; Joudaki et al. 2018;
Planck Collaboration VI 2018; Hikage et al. 2019) and cluster

abundance surveys (e.g., Lin & Ishak 2017; McCarthy et al.
2018).
In the last five years, these tensions have sparked a keen

interest in assessing the consistency of cosmological data sets.
For the H0 tension, because any one cosmological experiment
can be removed and not eliminate the discordance, it is unlikely
that the discordance is the result of underestimated or
unmodeled systematics. Nevertheless, these consistency tests
may help illuminate what extensions to LCDM the data prefer.
There are essentially two ways to assess the consistency of

cosmological data sets: (1) comparing the data directly or (2)
comparing the resulting parameter constraints. For CMB
experiments, directly comparing the data can be done at either
the map level (e.g., Louis et al. 2014; Larson et al. 2015; Hou
et al. 2018) or at the power spectrum level (e.g., Hou et al.
2018; Huang et al. 2018; Mocanu et al. 2019). Changing the
multipole moments included in the fit impacts the best-fit
cosmology, and is a valuable internal consistency check
(Addison et al. 2016; Aylor et al. 2017; Planck Collaboration
LI 2017). Additionally, there have been investigations into the
correlations or degeneracies between parameters expected in
LCDM or possible extensions (e.g., Huang et al. 2019; Kable
et al. 2019).
In this paper, we provide a method for determining whether

parameter constraints from correlated data are consistent. These
correlations between parameters arise when data sets or subsets
share correlated noise or sample variance. We derive an
analytic method for calculating the covariance between
parameters from correlated data sets or subsets using a known
data covariance matrix. This is an extension of the traditional
Fisher analysis (e.g., Heavens 2009; Verde 2010), providing a
fast alternative to more computationally intensive simulations
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(e.g., Planck Collaboration LI 2017; Sánchez et al. 2017; Louis
et al. 2019).

We apply this analytic method to CMB temperature and
polarization constraints. Looking at the consistency of temp-
erature and polarization is valuable now that polarization data
provide comparable constraining power on LCDM parameters
(Galli et al. 2014; Henning et al. 2018; Planck Collaboration
VI 2018). Furthermore, we conclude that this analytic method
is applicable to many cosmological data sets.

This paper is organized as follows. In Section 2, we derive
our analytic method for calculating the covariance between
parameters from correlated data. In Section 3, we apply this to
SPTpol TE and EE power spectra to determine the consistency
of the parameter constraints. In Section 4, we discuss the
correlations and consistency between TT, TE, and EE CMB
power spectra for a cosmic variance limited experiment.
Finally, in Section 5, we provide conclusions.

2. Derivation of Analytic Method

The goal of this section is to quantify the correlation between
parameters constrained by two correlated data sets or subsets
with known data covariance. We derive an expression for how
the maximum likelihood parameters deviate from a set of
fiducial parameters in terms of the difference between the data
and the fiducial mean vector. This allows us to compute the
covariance between the parameters from correlated data subsets
in terms of quantities that are known or easy to calculate: the
data covariance and derivatives of the mean vectors with
respect to parameters.

We make the same basic assumptions as in Section 2 of
Huang et al. (2019), namely:

1. We assume a Gaussian likelihood with a data covariance
that is independent of the cosmological parameters, with
parameter dependence only entering through the mean
values.

2. We assume that the data are sufficiently constraining that
they may be treated as a linear perturbation about a
fiducial theory model. Similarly, the maximum likelihood
parameters are treated as a linear perturbation about the
fiducial parameters, for each data subset.

This is equivalent to saying that the maximum likelihood
parameters are Gaussian distributed and that the Fisher matrix
accurately describes the covariance of the maximum likelihood
parameters. Assuming diffuse priors, it follows that the
Bayesian posterior parameter distribution is Gaussian with
the same covariance as the maximum likelihood parameters.
More discussion can be found in Raveri & Hu (2019).

In this case, the log-likelihood can be defined up to a
constant as

( ) ( ( )) ( ( )) ( )m q m q= - - -- d dlog
1

2
, 1T 1

where d is the measured data vector, ( )m q is the theory data
vector given for some parameter vector q, and  is the data
covariance matrix. The derivative of the log-likelihood with
respect to the parameters evaluated at the maximum likelihood
parameter vector is defined to be zero. Namely,

( ) ( ( )) ( )
q

m
q

m q=
¶
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parameter vector is near the fiducial parameter vector, q q» fid,
the theory vector can be Taylor expanded to linear order so that
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where ( )d m q= -d fid .
Note that the derivative of the theory vector is now evaluated

at the fiducial parameter values instead of the maximum
likelihood parameter values. This is true to linear order with the
assumption that d is small. This implies that

( ) ( )m
q

d q q=
¶
¶

- --0 F , 4
T

fid

1
ML fid

where F is the parameter Fisher matrix

( )m
q

m
q

=
¶
¶

¶
¶

-F . 5
T

fid

1

fid

The Fisher matrix is the inverse of the parameter covariance
matrix. Rearranging Equation (4) gives

( )q q m
q

d= +
¶
¶

- -F . 6
T

ML fid
1

fid

1

Taking the expectation value over many realizations of the data
vector d, q qá ñ = á ñML fid as ( )d m qá ñ = á - ñ =d 0fid . The
covariance between maximum likelihood parameters from a
data set X and the maximum likelihood parameters from a data
set Y is determined to be

( )( ) ( ) ( )q q q qá - á ñ - á ñ ñ = M M , 7X X Y Y X T XY Y
ML ML ML ML

where

( ) ( ) ( )m
q

=
¶
¶

- -M F 8X XX
X

X
XX1

fid

1

and ( )( )m m= á - - ñ d dXY X X Y Y T is the block of the data
covariance matrix that describes the covariance between X and
Y. When X and Y are the same, Equation (7) reduces to the
inverse of the Fisher matrix. When X and Y are different
Equation (7) maps the data covariance XY to the parameter
covariance. While we derived Equation (7) in terms of
maximum likelihood parameters, it also describes the covar-
iance of the Bayesian posterior, provided the assumptions at the
beginning of this section hold. See, for example, Chapter 4 and
Appendix B of Gelman et al. (2013).
Note that the covariance of parameters from two correlated

data sets cannot be calculated using a single Fisher matrix
containing two sets of varying parameters (one set for each data
set). This introduces additional coupling between X and Y and
means that, for example, the XX and YY parameter covariance
blocks do not correctly reduce to the inverse of the X-only or
Y-only Fisher matrices.

3. SPTpol: A Worked Example

In the previous section we derived an analytic expression for
the covariance matrix for parameters from two correlated data
sets. In this section, we apply this formula to CMB polarization

2
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data. Galli et al. (2014) showed that constraints from the TE
power spectrum could be more constraining than constraints
from either the TT or EE power spectra individually. While there
is often a focus on the Planck TT power spectrum, constraints
from the Planck TE power spectra are just as constraining
for several of the parameters (Planck Collaboration VI 2018).
The future improvement in LCDM parameter constraints from
the CMB will be from studies of the TE and EE power spectra.
SPTpol provides some of the tightest constraints to date for the
TE and EE power spectra (Henning et al. 2018).

The correlations between the TT, TE, and EE power spectra
come from noise and cosmic variance. The multipole covariance
matrix for a cosmic variance limited CMB experiment is given by

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥=

  
  
  

. 9ℓ

ℓ ℓ ℓ

ℓ ℓ ℓ

ℓ ℓ ℓ

TTTT TTTE TTEE

TTTE TETE TEEE

TTEE TEEE EEEE

The covariance sub-blocks for the TT, TE, and EE power
spectra are approximately given by
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TE EE

EEEE
sky

EE 2

where fsky is the fraction of the sky observed (e.g., Scott et al.
1994; Section 2.6 of Weinberg 2008). It is because of the
correlation between the CMB power spectra that there is a
correlation between the CMB parameter constraints from each
of the spectra.

The covariance at high multipoles includes non-Gaussian
lensing terms (e.g., Benoit-Lévy et al. 2012; Manzotti et al.
2014; Motloch & Hu 2019). We do not include these effects in
Section 4 where we investigate the correlations for the cosmic
variance limited case for a wide range of multipole moments.
Since collaborations will have to include these effects in their
bandpower covariance matrices, it will not be extra work to
include them when calculating the parameter covariance matrix
between different data subsets.

3.1. SPTpol

The SPTpol measures 500 square degrees of the southern
hemisphere sky. Henning et al. (2018) report power spectra at
150 GHz taken over three observing seasons.

The SPTpol collaboration provides binned TE and EE power
spectra, a binning matrix, and a bandpower covariance matrix.1 In
Figure 1, we compare the correlation between TE and EE power

spectra from the bandpower covariance matrix for SPTpol to
another contemporary high-resolution CMB polarization experi-
ment, Atacama Cosmology Telescope Polarimeter (ACTPol; Louis
et al. 2017), and to the cosmic variance limited case. Adding noise
to the bandpower covariance matrix results in weaker correlations
between the TE and EE power spectra. Both experiments follow
the cosmic variance limited case at low multipoles, but as the
covariance becomes dominated by noise, the correlations tend to
zero. Henning et al. (2018) report that the SPTpol TE spectrum is
sample variance limited at ℓ<2050 and the EE spectrum is
sample variance limited at ℓ<1750.
The correlation between the TE and EE spectra is oscillatory

about zero for low multipole moments, but it is negative for
high multipole moments making the two data sets predomi-
nantly negatively correlated. The negative correlation is a result
of the mostly negative values of the TE power spectrum, Cℓ

TE,
at high multipole moments because the correlation for the
cosmic variance limited case is given by

( )
( ) ( ) ( )

( )=
+


 

C

C C C
11ℓ

ℓ ℓ

ℓ

ℓ ℓ ℓ

TEEE

TETE EEEE

TE

TT EE TE 2

because Cℓ
EE is necessarily positive.

SPTpol compared their measured TE and EE power spectra
to the LCDM predicted power spectra using the maximum
likelihood parameters from the fit to the data (i.e., comparing
the data vector d to the theory vectorm). For the joint TE + EE
fit, they report a probability to exceed (PTE) of 0.017,
indicating a poor fit. For TE-only and EE-only they report a
PTE of 0.045 and 0.12, respectively. They conclude that it is
difficult to assess the consistency of the different LCDM
solutions because the parameter constraints exhibit varying
degrees of degeneracy. Motivated by this, we investigate the
parameter consistency of the SPTpol TE-only and EE-only
mean parameter vectors.
We ran three Markov Chain Monte Carlo (MCMC) samplers

on the SPTpol likelihoods including a TE-only, EE-only, and
joint fit using the CosmoMC2 package (Lewis & Bridle 2002).

Figure 1. Correlation coefficient in the TE–EE bandpower covariance matrices
for SPTpol, ACTPol, and the cosmic variance limited case. For SPTpol and
ACTPol, the correlations fall to zero at high ℓ because of noise. The correlation
between the TE and EE data is oscillatory but predominantly negative.

1 https://pole.uchicago.edu/public/data/henning17/ 2 https://cosmologist.info/cosmomc/
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We summarize the mean and 68% credible intervals for a set of
fit and derived LCDM parameters in Table 1. The first five
parameters are fit, while the remainder are derived based on fit
parameters. The parameter θMC is an approximation of the ratio
of the sound horizon to the angular diameter distance to the
surface of last scattering that CosmoMC fits instead of θ*. For
definitions of each of these parameters see Table 1 of Planck
Collaboration et al. (2014). We fix τ=0.078 because the
SPTpol TE and EE power spectra do not add much information
and this is the central value that SPTpol used for their prior.
Note that this artificially tightens the As uncertainty. We use the
same priors on the SPTpol nuisance parameters as Henning
et al. (2018). We use the joint fit cosmology in Table 1
throughout this work as our fiducial model.

3.2. Analytic Solution for SPTpol Maximum Likelihood

In this section, we test the validity of the analytic solution
derived in Section 2. We do this by comparing the covariance
matrix we calculate using the analytic solution to the
covariance matrix we get from maximum likelihood simula-
tions. For our test, we use SPTpol TE and EE power spectra.
For the simulations, we do the following:

1. Calculate the fiducial TE and EE theory spectra and bin
using the SPTpol binning matrices. We calculate these
power spectra using Pycamb, the python wrapper for
CAMB3 (Lewis et al. 2000), and the joint fit mean
cosmology shown in Table 1.

2. Generate 1000 sets of simulated SPTpol band powers
using the fiducial binned spectrum as mean and SPTpol
bandpower covariance matrices drawing from a multi-
variate Gaussian distribution.

3. Run the Maximum Likelihood finding algorithm in
CosmoMC for each case.

4. Show the mean and sample covariance from the
distribution of 1000 best-fit TE-only and EE-only
parameter vectors as red contours in Figure 2.

To calculate the covariance matrix using the analytic
solution in Equation (7), we need to calculate the derivatives
of the TE and EE power spectra with respect to the parameters.
To calculate the derivative matrices, we use a finite difference
method. We calculate TE and EE power spectra using Pycamb
and the parameters { ( ) }q W Wh h A n, , , log ,c b s s

2 2
* . We choose

to use the joint fit mean values given in Table 1 as the fiducial
cosmology. Because we have control over the fiducial
cosmology for both the simulations and the analytic calcul-
ation, we defer further discussion of the effect of the choice of
fiducial cosmology to the next section.
We generate power spectra with multipoles 50�ℓ�4500

for the finite difference calculations of the derivative matrix to
match SPTpol. For the numerical derivative, we use a step size
of 1% but find that there is a negligible change in the
derivatives resulting from changes in the step size from 0.5% to
2% indicating numerical stability of the derivative.
Using the bandpower covariance matrices and the TE and

EE derivative matrices, we calculate the TE and EE parameter
Fisher matrices using Equation (5). We calculate the covariance
between qML

TE and qML
EE using Equation (7). This is a covariance

matrix of 10 parameters which includes TE-only and EE-only
versions of each of { ( ) }q W Wh h A n, , , log ,c b s s

2 2
* . In Figure 2,

we show the parameter contours for a normal distribution
centered at the joint fit mean cosmology with this covariance
matrix in black.
In Figure 2, the upper left and bottom right blocks correspond to

the TE-only and EE-only parameter constraints, respectively. The
consistency between the maximum likelihood simulations and the
analytic solution in these blocks illustrates that the TE-only and
EE-only Fisher matrix approach reproduces the constraining power
of the data. The correlation between the TE-only and EE-only
parameters are shown in the five by five block in the bottom
left portion of Figure 2. The correlations between TE-only and
EE-only parameters are weak: between 10% and 30%. There
is excellent consistency between the maximum likelihood (red)
contours and the analytic solution (black) contours, which shows
that the analytic solution achieves results comparable to the
maximum likelihood simulation method.

3.3. Comparing SPTpol Data

In the previous subsection, we showed that the analytic
solution succeeds for simulated data. In this subsection, we use
the analytic solution to compare the TE-only mean cosmology
to the EE-only mean cosmology from the SPTpol data to
determine whether they are consistent. For the TE-only and
EE-only mean cosmologies we use the corresponding mean
cosmologies from Table 1. For our five parameter vector, we
choose to use H0 instead of θ* as it is more easily related to
other cosmological experiments. We find that this choice

Table 1
Mean Values and 68% Credible Intervals for LCDM Parameters for the MCMC Chains for the SPTpol Joint TE and EE Fit, the SPTpol TE-only Fit, and the SPTpol

EE-only Fit

Parameter Joint (TE + EE) TE-only EE-only

Ωch
2 0.1091±0.0046 0.1186±0.0071 0.1058±0.0072

W hb
2 0.02296±0.00046 0.02336±0.00072 0.02235±0.0011

log(As) 3.025±0.020 3.078±0.037 3.000±0.029
ns 0.998±0.022 0.965±0.030 1.032±0.037
100θMC 1.03992±0.00082 1.0396±0.0012 1.0408±0.0012

100θ* 1.04006±0.00083 1.0396±0.0013 1.0410±0.0012
H0 71.6±2.0 68.3±2.6 72.8±3.4
Ωm 0.260±0.023 0.308±0.039 0.246±0.036
σ8 0.770±0.021 0.813±0.032 0.760±0.035

Note. In all cases we fixed the value of τ to the central value adopted by SPTpol (see the text).

3 https://camb.info/
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makes a negligible difference to either the correlations or
eventual determinations of consistency.

We recalculate the covariance matrix between the TE-only
and EE-only parameters again using the mean cosmology from
the joint fit as the fiducial model and with a multipole range
of 50�ℓ�4500. The constraints on the SPTpol nuisance
parameters are largely driven by their priors, meaning their
contribution to the cosmological parameter covariance matrix is
negligible. To match the SPTpol data, we take into account the
SPTpol aberration in the analytic calculation. The aberration is
due to our motion relative to the CMB rest frame and causes a
small shift in the measured power spectrum, which biases θMC.
SPTpol accounts for this by applying

( )
( )

( )
⎛
⎝⎜

⎞
⎠⎟b q - á ñC C

d C

d ℓ
1

log

log
cos , 12ℓ ℓ

ℓ

where β=1.23×10−3 and qá ñ = -cos 0.4. This aberration
is applied to the theory power spectrum and not to the data.
To compare the TE-only mean cosmology with the EE-only

mean cosmology, we calculate the covariance matrix of the
difference parameters given by

( )– – – –q qá ñ = + - -    , 13T
diff diff

TE TE EE EE TE EE EE TE

where q q q= -diff
TE EE and -X Y is the parameter covariance

matrix between data sets X and Y. For our purposes, these are
just the four sub-blocks of the covariance matrix we calculate
using the analytic solution. Note that in the case of no
correlation between data sets X and Y, – –= =  0TE EE EE TE .
The parameter contours for the difference between TE-only

and EE-only parameter differences are shown in Figure 3. The
expected value of the difference in parameter values is zero.
The mean values in the contours are just the differences

Figure 2. Maximum likelihood parameter vectors from 1000 simulated SPTpol TE and EE power spectra (red), with the predicted distribution from the covariance
matrix calculated using the analytic solution given by Equation (7) (black). The contours are at 1σ and 2σ, and we use wx in place of Ωxh

2. The contours within the
green box show the covariance between TE-only and EE-only parameters. Most of the TE-only parameters are correlated with their counterparts from the EE-only fit
at around the 10% level; however, ( )Alog s and ns have about 30% correlation between TE-only and EE-only.
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between the TE-only and EE-only means shown in Table 1. We
use a Fisher forecast about these mean values with covariance
matrix of the differences shown in Equation (13) to create the
contours. Figure 3 illustrates that the parameter contours are
within 1–2σ of zero.

The SPTpol TE-only and EE-only parameters have a χ2=4.16
for five degrees of freedom (the parameter differences), which
corresponds to a PTE of 0.53. This means that the SPTpol TE-only
and EE-only parameter constraints are consistent. Without
including the correlation between TE-only and EE-only para-
meters, the χ2=3.09 and has a PTE of 0.69, which is still
consistent. Henning et al. (2018) report a PTE of 0.017 between
the LCDM predictions for the TE and EE power spectrum and
their measured TE and EE power spectra. While this is only a mild
tension of 2.1σ, it is still different than the PTE values we find for
the parameters. Since these are both consistency tests of SPTpol
data that assume the L CDM model, one might suspect that they
should yield similar but not identical PTE values. We explore
this below.

To understand this difference in PTE values between
consistency of the parameter and consistency of the power
spectra with LCDM based on these same parameters, we
reexamine the 1000 simulated TE and EE band powers used
in Section 3.2. For each of the 1000 TE and EE simulated
band powers, there is a maximum likelihood parameter
vector. We use the 10 parameter covariance matrix from
Section 3.2 and Equation (13) to calculate the covariance
matrix of the differences which is used to calculate 1000 χ2

and PTE values for the consistency of the parameters. This
provides 1000 simulated versions of what we do for the real
SPTpol TE-only and EE-only parameter vectors in this
section. To simulate the consistency check with LCDM that

SPTpol performed, we compare the 1000 simulated band
powers to the maximum likelihood theory band powers
resulting from the maximum likelihood parameter finder. We
calculate 1000 χ2 and PTE values for the simulated data. See
Section 3.2 for more information about where each of these
elements come from.
We find that there is no correlation between the PTE for the

consistency of the parameters and the PTE for the consistency
of the simulated TE and EE spectra with LCDM predictions.
This statement holds so long as the assumptions made in the
simulations are valid, specifically (1) L CDM is the true model
and (2) the SPTpol bandpower covariance matrix correctly
describes the scatter in the TE and EE spectra. Based on the
simulations, it is not surprising to find that the PTE from the
parameters is qualitatively different from the PTE of the power
spectra with LCDM. This situation can arise because of
statistical fluctuations. In general, evaluating consistency of
both parameters and data is valuable.
For SPTpol, the correlations between the TE-only and EE-

only constraints on parameters are given by

{ ( ) }
{ }

W W
=

H h h A n, , , log ,
9%, 10%, 8%, 25%, 32% .

c b s s0
2 2

These correlations are weak and positive. Because the
correlations are weak, the effect of not including them in
this case is small. The positive correlation between the TE-
only and EE-only parameters is noteworthy because the TE
and EE power spectra or data were negatively correlated.
Both of these points can be seen in the relatively small shift
in PTE from 0.53 to 0.69 when the correlations are not
included.
The positive correlations between TE-only and EE-only

ΛCDM parameters arise because the derivatives of the TE and
EE theory spectra with respect to the ΛCDM parameters
happen to have predominantly opposite signs when weighted
by the bandpower covariance matrices (see Equation (8)). It is
not always the case that the parameter correlations are positive.
For example, we calculate the correlations between TE-only
and EE-only ΛCDM parameters for SPTpol when varying one
parameter at a time and find that W hb

2 produces a negative
correlation.
To investigate the impact of changing the assumed fiducial

cosmology, we recalculate this matrix using the Planck TT, TE,
EE + LowE cosmology given by Planck Collaboration VI
(2018)

{ ( ) }
{ }

W W
=

H h h A n, , , log ,
67.3, 0.120, 0.0224, 3.05, 0.963 .

c b s s0
2 2

For Planck we fix the value of τ=0.054. We find that using the
Planck cosmology can shift the diagonal elements of the covariance
matrix of the differences calculated using Equation (13) by as much
as 25%. Nevertheless, when we calculate the level of correlations
between SPTpol TE and EE parameters using the Planck
cosmology as our fiducial model, we find that the change is only
at the percent level:

{ ( ) }
{ }

W W
=

H h h A n, , , log ,
9%, 10%, 9%, 26%, 33% .

c b s s0
2 2

Figure 3. Parameter contours for the difference of TE-only parameters and EE-
only parameters. The red horizontal and vertical lines indicate zero, which is
the expected value for the differences. The TE-only and EE-only parameter
differences are consistent with zero with a PTE of 0.53.
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We compare the contours from SPTpol shown in Figure 3 to
contours from this Planck cosmology and find good agreement
with an overall shrinking of contour size in the Planck fiducial
model case. This implies that the structure of the covariance
matrix remained the same, but the overall size of the covariance
has been reduced. The χ2 and PTE using the Planck TT, TE,
EE+LowE mean cosmology as the fiducial model when
calculating the covariance matrix using Equation (7) are 6.2
and 0.29 respectively. Note that this is consistent with the
overall reduction in the covariance. The important point is that
changing the fiducial cosmology does not qualitatively alter the
consistency of the TE-only and EE-only parameters even if it
does shift the PTE value.

4. The Cosmic Variance Limited Case

In this section, we investigate the level and effect of
correlation for the cosmic variance limited case to check if the
results from Section 3 are specific to SPTpol as well as to
project what future more precise CMB experiments can expect.
We used Pycamb to generate TT, TE, and EE power spectra
about a fiducial cosmology given by the joint fit in Table 1. We
set τ to 0.078. We find that using the Planck fiducial
cosmology results in a negligible shift in the parameters

indicating that the correlations are largely independent of
fiducial cosmology within LCDM. For the multipole covar-
iance matrix, we use the cosmic variance limited multipole
covariance matrix provided in Equation (7). To get the
parameter covariance between parameters from correlated data
sets, we use the analytic solution in Equation (7) where XY is
the sub-block of the full covariance matrix. We calculate the
derivative matrices about the fiducial cosmology using a simple
finite difference method.

4.1. Varying the Multipole Range

We calculate the correlation matrix between all three
combinations of TT, TE, and EE parameter constraints for
variable multipole ranges. We fix the minimum multipole
moment to be ℓ=30 and vary the maximum multipole
moment between ℓ=1000 and ℓ=4500 representing varying
noise levels truncating the effective maximum multipole
moment. The lowest multipole moment is chosen to be
ℓ=30 because this is the minimum mulipole moment where
the likelihood is Gaussian. The results are shown in Figure 4.
We then fix the maximum multipole moment to 2500 and vary
the minimum multipole moment between 30 and 1000. The
resulting plots of correlation coefficients are shown in Figure 5.

Figure 4. The level of correlation between the parameter constraints for H0, Ωch
2, Ωbh

2, ( )Alog s , and ns, for TT-only and EE-only (green), TT-only and TE-only
(blue), TE-only and EE-only (orange) varies as a function of the maximum multipole moment included. The minimum multipole moment was fixed to ℓ=30. In
general the correlation between TT-only and EE-only is the smallest. The correlations are compatible with the correlations found for SPTpol indicating that the SPTpol
results are not unique. In all panels, there is a nonregular oscillatory structure that results from the TT, TE, and EE peaks being offset from one another.
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The correlations between the parameters from each of the
various spectra combinations vary as a function of both
maximum and minimum multipole moment included. In
general the correlations for both TT–TE and TE–EE range
from ≈0% to ≈50%. The correlations between the TT–TE and
TE–EE parameters are mostly positive regardless of the
multipole range included. There are three exceptions to this
that all involve TE–EE correlations of Ωbh

2 and are near
ℓ=1200 in Figure 4 and near ℓ=400 and ℓ=1000 in
Figure 5. The correlations between TT–EE are generally the
weakest ranging from −5% to 12%. This is because there are
weaker correlations between the TT and EE power spectra.
Again there are a range of multipoles where the correlations
between TE–EE for Ωbh

2 are less than the correlations TT–EE
for Ωbh

2. There is an oscillatory structure in both Figures 4 and
5; however, there is not a regular period. This is a result of the
TT, TE, and EE power spectra having peaks that are offset
from one another.

The weak correlations found for SPTpol in Section 3.3 are
compatible with the correlations found in the cosmic variance
limited case. This indicates that the level of correlations is not
unique to SPTpol and in general weak correlations between
parameters from different CMB power spectra should be
expected. This poses an interesting question: if the correlations
are weak, can we ignore them for the purposes of assessing
consistency? In the next subsection we investigate the impact

of not including these correlations on PTE values when making
comparisons.

4.2. Impact of Neglecting Parameter Correlation in
Consistency Checks

We determine the effect of not including the correlation
between the parameters from correlated data subsets on the
eventual PTE value for consistency of parameter differences
with zero. To do this, we utilize the relation between maximum
likelihood and fiducial parameters found in Equation (6).
Equation (6) shows that the maximum likelihood parameter
vector θML can be calculated in terms of a set of fiducial
parameters, θfid, and a data vector, d. Again, we use the
SPTpol joint fit as our fiducial cosmology. We calculate theory
TT, TE, and EE power spectra over the multipole range
30�ℓ�2500, and then use the cosmic variance limited
multipole covariance matrix shown in Equation (9) to generate
10,000 TT, TE, and EE power spectra from a normal
distribution. Using these power spectra as the data vector d in
Equation (6), we have 10,000 TT, TE, and EE maximum
likelihood parameter vectors. Note that this is equivalent to
running the CosmoMC maximum likelihood finder for each of
the 10,000 TT, TE, and EE power spectra.
We calculate two parameter covariance matrices for the

cosmic variance limited case using Equation (7). In the first
case, we include the correlation between the data encoded in

Figure 5. The level of correlation between the parameters constraints forH0, Ωch
2, Ωbh

2, ( )Alog s , and ns, for TT-only and EE-only (green), TT-only and TE-only
(blue), TE-only and EE-only (orange) varies as a function of the minimum multipole moment included. We fix the maximum multipole moment to be ℓ=2500. In
general, the correlations are weak (<40%), which is consistent with what we found for SPTpol. In all panels, there is a nonregular oscillatory structure that results from
the offset in the TT, TE, and EE peaks.
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the  sub-block of the multipole covariance matrix. In the
second case, we set this correlation between the power spectra
to zero. We calculate the χ2 and PTE values for each
combination of power spectra for all 10,000 realizations using
both the parameter covariance matrix with correlations between
the spectra and the parameter covariance matrix without
correlations between the spectra. Histograms of the PTE values
are shown in Figure 6.

The probability distributions for the PTE values should
be uniform, which is what we find when we include the
correlations as evidenced by the good agreement between the
blue histograms and the black dashed line in Figure 6. The PTE
histograms for TE–EE and TT–TE show a strong preference for
larger PTE values or smaller χ2 values in the case of no
correlation. This follows because the correlations between
these parameters are positive. Therefore, not including
correlations will bias the χ2 to lower values or larger PTE
values. Note that this is the worse of the two possibilities as
making the parameters look more consistent than they are could
result in an important systematic error being obscured. The
TT–EE case also appears to have a trend preferring larger PTE
values in the no correlation case, but it is much weaker. This is
likely a result of the weaker correlation between the TT and EE
power spectra.

5. Conclusions

We derived an analytic expression for the covariance
between model parameters from two correlated data sets. This
analytic solution is an extension of the Fisher analysis with the
added condition of a Gaussian likelihood. These assumptions
can be applied to a wide variety of cosmological data sets. We
showed using SPTpol simulations that the analytic solution

returns results in good agreement with the maximum likelihood
simulation method.
We found that despite the fact that the TE and EE power

spectra are negatively correlated, the ΛCDM parameters from
TE-only are positively correlated with the parameters from EE-
only. We tested the consistency of the TE-only and EE-only
parameters using the analytic solution and Equation (13) and
found a PTE of 0.53 indicating the parameters are consistent.
We further found that there is no correlation between
consistency of the power spectra with LCDM predictions and
consistency of the LCDM parameters resulting from the power
spectra. For SPTpol, the correlations between the TE-only and
EE-only determinations of H0 is only 9%; however, the
correlations for log(As) and ns are larger at 25% and 32%.
We investigated the correlations between TT, TE, and EE

power spectra as a function of the multipole range for the
cosmic variance limited case. We found that the correlations
between the TE-only and the TT-only or EE-only power
spectra varied between 0% and 50% indicating weak levels of
correlations. Of the LCDM parameters, log(As) and ns will
have the largest correlations between TE-only and either TT-
only and EE-only. The correlations between the TT-only and
EE-only parameters are generally <10% in magnitude. This
implies that future high-resolution EE constraints will be
largely independent of Planck TT constraints. Therefore, EE
constraints will provide valuable new information that will
constrain cosmological parameters and possible extensions to
cosmological models (e.g., Lin et al. 2019; Poulin et al. 2019).
We investigated the consequences of not including the
correlation. Because the correlations are generally positive,
the effect of not including the correlations is to erroneously
make the parameters look more consistent than they are. We
therefore recommend that these correlations be calculated and
reported in future CMB analyses.
In this work, we quantified the consistency of subsets of

CMB data, but this analytic solution has a wide variety of
applications. For example, this method is applicable for
different CMB experiments with sky overlap (e.g., Louis
et al. 2019). It could also be applied to other cosmological
measurements provided the assumptions listed in Section 2
hold, for example, to check consistency across subsets of a
supernova survey (e.g., different redshift bins) where systema-
tic uncertainties are correlated across all the supernovae (e.g.,
Scolnic et al. 2018).
The analytic solution complements simulations. Equation (7)

provides a quick way to calculate what the expected level of
correlation should be between parameters from correlated data
sets. This analytic solution could be used in lieu of simulations
or as a check that the simulations are working. Moreover, the
analytic solution can be used as a check to gauge the impact of
changing the model without the need to rerun potentially
computationally intensive simulations.

This work was supported in part by NASA ROSES grants
NNX16AF28G, NNX17AF34G, and 80NSSC19K0526. We
acknowledge the use of the Legacy Archive for Microwave
Background Data Analysis (LAMBDA), part of the High
Energy Astrophysics Science Archive Center (HEASARC).
HEASARC/LAMBDA is a service of the Astrophysics
Science Division at the NASA Goddard Space Flight Center.
This research project was conducted using computational
resources at the Maryland Advanced Research Computing

Figure 6. Distribution of PTE values resulting from χ2 tests of the consistency
of 10,000 simulated parameter differences with zero. In blue, we take the
correlation between the two spectra into account while in the red we do not.
The black dashed line represents a uniform probability density function. There
is a clear preference for TT–TE and TE–EE for larger PTE values or smaller χ2

values indicating that ignoring this parameter correlation will bias comparisons
to look more consistent. There is a weaker trend for TT–EE resulting from a
weaker correlation between the TT and EE power spectra.
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