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Abstract
We present a formulation of quantum mechanics based on the theory of orthogonal polynomials.
The wavefunction is expanded over a complete set of square integrable basis where the expansion
coefficients are orthogonal polynomials in the energy and physical parameters. Information about
the corresponding physical systems (both structural and dynamical) are derived from the properties
of these polynomials. We demonstrate that an advantage of this formulation is that the class of
exactly solvable quantum mechanical problems becomes larger than in the conventional formulation
(see, for example, table 3 in the text). We limit our investigation in this work to the Askey
classification scheme of hypergeometric orthogonal polynomials and focus on the Wilson
polynomial and two of its limiting cases (the Meixner–Pollaczek and continuous dual Hahn
polynomials). Nonetheless, the formulation is amenable to other classes of orthogonal polynomials.

Keywords: tridiagonal representation, orthogonal polynomials, recursion relation, asymptotics,
energy spectrum, phase shift

1. Introduction

In physics, we are accustomed to writing vector quantities (e.g.
force, velocity, electric field, etc) in terms of their components
in some conveniently chosen vector space. For example, the
force


F is written in three dimensional space with Cartesian

coordinates as ˆ ˆ ˆ

= + +F f x f y f z,x y z where{ }f f f, ,x y z are the

components of the force along the unit vectors{ ˆ ˆ ˆ}x y z, , . These
components contain all physical information about the quantity
whereas the unit vectors (basis) are dummy, but must form a
complete set to allow for a faithful physical representation. In
fact, we can as well write the same force in another coordi-
nates, say the spherical coordinates with basis {ˆ ˆ ˆ }q jr, , , as

ˆ ˆ ˆ


q j= + +q jF f r f f ,r where { }q jf f f, ,r are the new com-
ponents that contain the same physical information. And so on,
where in general we can write ˆ


å=F f x .

n n n The basis (unit
vectors) { ˆ }xn is chosen conveniently depending on the sym-
metry of the problem (e.g. rectangular, spherical, cylindrical,
elliptical, etc). It is basic knowledge that if two unit vectors are
independent then they can be, but not necessarily, orthogonal
(i.e. ˆ ∣ ˆ dá ñ =x xn m nm), however they cannot be collinear (i.e.

ˆ ∣ ˆá ñ = x x 1n m for ¹n m). Therefore, the chosen basis set must
be complete and consisting of independent elements but they
do not have to be orthogonal to each other.

In quantum mechanics we can also think of the wave-
function ( )y x as a local vector and write it in terms of its
components { }fn along some local unit vectors (basis) { ( )}f xn
as ( ) ( )åy f=x f x .

n n n All physical information about the
system are contained in the components (expansion coeffi-
cients) { }f .n On the other hand, the basis set { ( )}f xn is dummy
but, in analogy to the unit vectors in the above example, must
be normalizable (square integrable) and complete. If the phy-
sical system is also associated with a set of real parameters{ }m ,
then the components of the wavefunction at an energy E could
be written as parameterized functions of the energy, { ( )}mf E ,n
and the state of the system becomes

( ) ( ) ( ) ( )åy f=m mx f E x . 1E
n

n n

We have shown elsewhere [1] that if we write
( ) ( ) ( )e=m m mf E f E P ,n n0 where ε is some proper function of E

and { }m , then completeness of the basis and energy normal-
ization of the density of state make { ( )}emPn a complete set of
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Table 1. Asymptotics (  ¥n ) of most of the continuous polynomials in the Askey scheme of hypergeometric orthogonal polynomials. The polynomials are shown in the second column in their
orthonormal version. The asymptotics of the Wilson polynomial is obtained here in section 2 whereas the asymptotics of the continuous Hahn polynomial is derived in [9]. The asymptotics of the
Meixner–Pollaczek and continuous dual Hahn polynomials are obtained in [1]. The rest are well known.

Polynomial Orthonormal version x Asymptotics [1, 9] τ ξ ( )q x ( )j x

Laguerre !
( )

( )
n +

nn
L x

1 n
n

x 0 ⎡⎣ ⎤⎦( )( ) n- +p-n A x nxcos 2L
1 4

2
1
2

1 4 1 2 x2 0

Jacobi

( )

! ( )
( ) ( )

( )´

m n
m n

m n
m n

m n

+ + +
+ +

+ +
+ +

P xcos

n n

n

2 1

1

1

1 1

,

n

n n

p  x 0 ⎡⎣ ⎤⎦( ) ( )( ) m+ - +m n p+ +A x n xcosJ
1

2 2
1
2

0 1 x 0

Meixner–Pollaczek ( )qmP x;n Î x ( ) [ ( )]q d- +-n A x n x n xcos logMP MP
1 2 1 2 1 θ −x

Continuous Hahn P ( )nm x a b; ; ,n Î x ⎡⎣ ⎤⎦( ) ( ) ( )d- + - +p-n A x n x a b n xcos 2 logH H
1 2

2
1 2 1 p 2 ( )- + -x a b2

Continuous dual Hahn ( )mS x a b; ,n
2 x 0 ( ) [ ( )]d+-n A x x n xcos logdH dH

1 2 1 2 ** 0 x
Wilson ( )nmW x a b; ; ,n

2 x 0 ( ) [ ( )]d+-n A x x n xcos 2 logW W
1 2 1 2 ** 0 2x
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orthogonal polynomials with an associated non-negative
weight function ( ) [ ( )]r e =m mf E .0

2 That is,

( ) ( ) ( ) ( )ò r e e e e d=m m mP P d . 2n m n m,

Therefore, we can rewrite the wavefunction expansion
(1) as follows

( ) ( ) ( ) ( ) ( )åy r e e f=m m mx P x . 3E
n

n n

In cases where ( ) ( )f s~x x x ,n
n this formula suggests

that the wavefunction could also be considered as the gen-
erating function of the energy polynomials { ( )}emP .n In their
treatment of quasi-exactly solvable systems, Bender and
Dunne were among the first to realize this fact [2].

Building on our past and recent experience in dealing
with various physical systems [1, 3–9], we limit the current
investigation of the energy polynomials to the Askey classi-
fication scheme of hypergeometric orthogonal polynomials.
We focus on the Wilson polynomial and two of its limiting
cases [10]: the Wilson→continuous dual Hahn ( F F34 23 )
and the Wilson→Meixner–Pollaczek (  F F F34 23 12 ).
There is another chain in the Askey diagram that deals with
the discrete version of hypergeometric orthogonal poly-
nomials. At the top of this chain sits the Racah polynomial and
it includes in the limit other discrete polynomials like the
Meixner, Krawtchouk, Hahn, dual Hahn, etc. Now, the con-
nection between scattering and the asymptotics (  ¥n ) of
continuous orthogonal polynomials is well-stablished [11–13].
Using this connection, scattering information about the sys-
tem, whose wavefunction is written as shown by equation (3),
is readily available from the asymptotics ( )em

¥P .n Table 1
shows a list of the asymptotics of most of the continuous
polynomials in the Askey scheme of hypergeometric ortho-
gonal polynomials. The asymptotics of the Wilson polynomial
is obtained in section 2 below whereas the asymptotic of the
continuous Hahn polynomial is derived in appendix B of [9]
(see equation (37) therein). The rest are either well known or
derived elsewhere (see, for example, the appendix in [1] where
the asymptotics of the Meixner–Pollaczek and continuous
dual Hahn polynomials were obtained). We should note that
throughout this paper we deal with the orthonormal version of
orthogonal polynomials where the right-hand side of the
orthogonality relation (2) is d ,n m, the corresponding three-term
recursion relation is symmetric, and ( )e =mP 1.0 Due to the
prime significance of the Wilson polynomial (being at the top
of the Askey scheme), we present the derivation of its
asymptotics in section 2. We should note that despite the fact
that the Meixner–Pollaczek and continuous dual Hahn poly-
nomials are limiting cases of the Wilson polynomial, we could
not use the asymptotics of the Wilson polynomial because we
cannot interchange this limit with the asymptotic limit. Table 1
suggests that all orthogonal polynomials relevant to our study
are those with the following asymptotic behavior

( ) ( ){ [ ( ) ( ) ( )]

( )}
( )

e e q e j e d e» + +

+

m t m x m-

-

P n A n n

O n

cos log

,

4

n

1

where τ and ξ are real dimensionless constants with the value
of τ being dependent on the type of normalization of
the polynomial, which we consistently choose as ortho-
normalization where the right-hand side of the orthogonality
relation (2) is dn m, and ( )e =mP 1.0 In the asymptotic formula
(4), ( )emA is the scattering amplitude and ( )d em is the phase
shift. For the polynomials listed in table 1, the values of the

parameters τ and ξ belong to the sets { }t Î 0, , ,1

4

1

2

{ }x Î 0, , 11

2
and we observe the following three alternative

scenarios:

(1) ( )q e ¹ 0, ( )j e = 0.
(2) ( )q e = 0, ( )j e ¹ 0.
(3) ( )q e ¹ 0, ( )j e ¹ 0.

In the third scenario, the simultaneous presence of the
logarithmic term ( nlog ) and power term ( xn ), like in the case
of the Meixner–Pollaczek and continuous Hahn polynomials,
is very interesting and a source of curiosity. The under-
standing of this behavior and its physical implication should
be very fruitful. Unfortunately, we do not have the needed
expertise to address this issue at present.

Bound states, if they exist, occur at a set (infinite or
finite) of energies that make the scattering amplitude vanish.
That is, the kth bound state occurs at an energy ( )e=E Ek k

such that ( )e =mA 0k and the corresponding bound state
wavefunction is written as1

( ) ( ) ( ) ( ) ( )åy w e e f=m m mx Q x , 5k k
n

n k n

where { ( )}emQn k are the discrete version of the polynomials
{ ( )}emPn and ( )w em

k is the associated discrete weight function.
That is, ( ) ( ) ( )å w e e e d=m m mQ Q .

k k n k m k n m, Sometimes, the
quantum system consists of continuous as well as discrete
energy spectra simultaneously. In that case, the total wave-
function is written as follows

( ) ( ) ( ) ( )ò åy yY = +m m m- -x t x E x, e d e , 6Et
E k

E t
k

i i k

and the appropriate polynomial orthogonality becomes

( ) ( ) ( ) ( ) ( ) ( )

( )
ò år e e e e w e e e

d

+

=

m m m m m mP P P Pd

. 7

n m k k n k m k

n m,

Now, the type of orthogonal polynomials associated with
a given physical system depends on the structure of its energy
spectrum: purely continuous, purely discrete or a mix of both
and on whether the discrete energy spectrum is infinite or
finite. Table 2 summarizes this association.

In the conventional (textbook) formulation of quantum
mechanics, the potential function plays a central role in

1 There is an alternative, but equivalent, method for obtaining the energy
spectrum from the phase shift by calculating the poles of the corresponding
scattering matrix. That is, the phase shift angle at those energies becomes
half-odd integer of π making the tangent of the phase angle diverge.
Frequently, such condition occurs when the argument of the gamma function
that appears in the phase shift becomes a negative integer (or zero)
corresponding to the energy level in the spectrum. This alternative method is
addressed in the book by Landau and Lifshitz [14] and recently by Chen et al
in [15, 16], etc.

3
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providing physical information about the system. Hence, in
the present formulation, the set of orthogonal polynomials
replaces the potential function in this role. In fact, it is more
than just that. As we shall see below, the orthogonal poly-
nomials also carry kinematic information (e.g. the angular
momentum) whereas the potential function does not.

Since the polynomials that are relevant to our work
satisfy the general orthogonality relation (7) and have the
asymptotic behavior (4) then Favard’s theorem [17] dictates
that such polynomials must satisfy a three-term recursion
relation of the form ( )e e =mPn  ( ) ( )e e+ +m m m m

- -a P b Pn n n n1 1

( )em m
+c P ,n n 1 where >m mb c 0n n for all n. Of course, not all

polynomials satisfy three-term recursion relations. In fact,
some satisfy higher order recursions (e.g. four-term and five-
term). However, such polynomials are not in the scope of our
present study. Consequently, the three-term recursion relation
dictates that the basis set { ( )}f xn must produce a tridiagonal
matrix representation for the corresponding wave operator. As
such, the matrix wave equation becomes equivalent, and
amenable to the said recursion relation. In this paper, we leave
out technical details but include the most relevant information
concerning orthogonal polynomials in the Appendices.
Interested readers may consult cited references for the deri-
vation of applicable results, especially [1, 3].

In the following section and due to the prime significance
of the Wilson polynomial that sits at the top of the Askey tree
of the hypergeometric class of orthogonal polynomials, we
derive its asymptotics using the Darboux’s method and show
that it agrees with the original work of Wilson [18] and with
the second scenario of formula (4). In sections 3–5, we pre-
sent several examples of orthogonal polynomials from the
Askey scheme of the hypergeometric type and derive prop-
erties of the corresponding physical systems. Finally, we
conclude in section 6 by making relevant comments and
discussing related issues. Throughout the paper, we adopt the
atomic units, = = M 1.

2. Asymptotics of the Wilson polynomial

We write the Wilson polynomial in a different notation from
that which is given by equation (1.1.1) on page 24 of [10] as
follows

⎛
⎝⎜

⎞
⎠⎟ ( )

˜ ( ) ( ) ( )
( ) !

n
m m

m n m m
m n m m

=
+ +

+

´
- + + + + - + -

+ + +

m

8

W z a b
a b

a b n

F
n n a b z z

a b

; ; ,

, 1, i , i
, ,

1 ,

n
n n

n

2

34

where z 0. We can relate this notation to that in [10] as
˜ ( )n =mW z a b; ; ,n

2 ( ) ! ( ) ( )m n m n+ +W z a b n a b; , , , .n n n
2 If

( )m n >a bRe , , , 0 and non-real parameters occur in con-
jugate pairs, then the generating function of these Wilson
polynomials becomes (see equation (1.1.12) in [10])

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

˜ ( )

( )

å n
m n

m n
=

+ +
+

´ - -
+

m

=

¥

W z a b t F
z z

t

F
a z b z

a b
t

; ; ,
i , i

i , i
. 9

n
n

n

0

2
12

12

Now, we apply the Darboux method to this generating
function to obtain the asymptotics of ˜ ( )nmW z a b; ; , .n

2 The
method is described in section 9 of chapter 8 in [19]. In
addition, we also need the contiguous relation (equation (7) of
Ex. 21 in [20])

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( ) ( )

( )

+ - = - +

- - -

10

a b c F a b
c

z a z F a b
c

z

c b F a b
c

z

, 1 1,

, 1 ,

12 12

12

and the Euler transformation [20]

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )= - - -- -F a b

c
z z F c a c b

c
z, 1 , . 11c a b

12 12

Moreover, we will also employ the Gauss sum (Theorem
18 in section 32 of [20])

⎜ ⎟⎛
⎝

⎞
⎠ ( ) ( )( ) ( )

( ) ( )
= - - >G G - -

G - G -
F a b

c
c a b, 1 , Re 0. 12c c a b

c a c b12

The contiguous relation (10) makes the first F12 on the
right side of the generating function (9) equal to

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( )( )

( ) ( )

m
m n

m n

m
m n

m n

+ -
+ + +

+

- -
+ - +

+

z
z t F

z z
t

z F
z z

t

1

2i
i 1

1 i , i

i
i , 1 i

. 13

12

12

Table 2. The orthogonal polynomial(s) associated with a given
physical system as a function of the structure of its energy spectrum.
Note the matching of the spectra of the physical system and that of
its corresponding orthogonal polynomial except when the physical
system has a mix of a continuous and an infinite discrete energy
spectrum then there is a need for two polynomials to represent the
system: a continuous one and a discrete one with infinite spectrum.

Energy spectrum Polynomial spectrum

Discrete Discrete

Continuous Finite Infinite Continuous Finite Infinite

✓ ✗ ✗ ✓ ✗ ✗

✗ ✗ ✓ ✗ ✗ ✓

✓ ✓ ✗ ✓ ✓ ✗

✓ ✗ ✓ ✓ ✗ ✗

✗ ✗ ✓
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We use the Euler transformation (11) to rewrite the first
term inside the square bracket above as

⎛
⎝⎜

⎞
⎠⎟( )( ) ( )m

n m
m n

+ -
- - -

+
-z t F

z z
ti 1

1 i , i
. 14z2i

12

Therefore, the first F12 term on the right side of the
generating function (9) becomes

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( ) ( )( )

( )

m
m n

m n
-

+ -
- - -

+

-

-
-t

z
z t F

z z
t

1

2i
i 1

i , 1 i

complex conjugate .

15

z
z

i
i

12

In accordance with the Darboux method, the dominant
term in a comparison function for the t-expansion of
this factor becomes its limiting value at =t 1. The Gauss
sum (12) evaluates the above F12 at =t 1 as

( ) ( )
( ) ( )

( ) ( )
( ) ( )

=m n
m n m

m n
m n

G + G +
G + + G + +

G + G
G + G +

.z

z z

z

z

z

z z

1 2i

1 i i

2i

i

2i

i i
Thus, expression

(15) near =t 1 becomes

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( ) ( )
( ) ( )

]

( ) ( )∣ ( )∣
∣ ( ) ( )∣

[( ) ( )

m n
m n

m n
m n

- -
G + G

G + G +
+

= -
G + G

G + G +

´ - +a

- -

-

-

t t
z

z z

t
z

z z

t

1 1
2i

i i

complex conjugate

1
2i

i i

1 e c. c. , 16

z z

z

z

i i

i

i i

where [ ( ) ( ) ( )]a m n= G G + G +z z zarg 2i i i . Repeating the
same treatment on the second F12 on the right side of
the generating function (9), we obtain the same result as
(16) but with the replacement  -z z, m  a and n  b
giving

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( ) ( )
( ) ( )

]

( ) ( )∣ ( )∣
∣ ( ) ( )∣

[( ) ( )

- -
G + G -
G - G -

+

= -
G + G

G + G +

´ - +b

+ +

+

-

t t
a b z

a z b z

t
a b z

a z b z

t

1 1
2i

i i

complex conjugate

1
2i

i i

1 e c. c. , 17

z z

z

z

i i

i

i i

where [ ( ) ( ) ( )]b = G G + G +z a z b zarg 2i i i . Multiplication
of (16) and (17) gives

( ) ( ) ∣ ( )∣
∣ ( ) ( ) ( ) ( )∣

[( ) ] ( )( ) ( )

m n
m n

G + G + G
G + G + G + G +
´ - + +a b a b- + -

a b z

z z a z b z

t

2i

i i i i

1 e e c. c. . 18z

2

2i i i

Aside from t-independent factors, the comparison function
near =t 1 of the above expression is ( )- -t1 .z2i The

expansion of this term is

( ) ( )
( )

( )å- =
G +

-

=

¥

t
z

n
t1

2i

1
. 19z

n

n n2i

0

Therefore, applying the Darboux method to the gen-
erating function (9) gives the following asymptotics for the
Wilson polynomial

˜ ( )
( ) ( )∣ ( )∣

∣ ( ) ( ) ( ) ( )∣
[ ] ( )( )

n
m n

m n
»

G + G + G
G + G + G + G +
´ +

m

g a b- - +

W z a b

a b z

z z a z b z

n

; ; ,
2i

i i i i

e e c. c. , 20

n

z

2

2i 1 i i

where [ ( )]g = G zarg 2i and we have used ( ) ( )
( )

= G +
G

z n
n z

z
and

( )
( )

»G +
G +

-n .n a

n b
a b Now, using ( ) ( ) ( )+ =a b abarg arg arg ,

( ) ( ) ( )- =a b a barg arg arg and =a e ,b b ai i ln we obtain

A

A

˜ ( ) ( ) ( )∣ ( )∣

{ ( ) [ ( )]} ( ) ( )

n m n» G + G +

´ + +

m

-

W z a b
n

a b z

z n z O n

; ; ,
2

i

cos 2 ln arg i , 21

n
2

1

where A( ) ( ) ( ) ( ) ( ) ( )m n= G G + G + G + G +z z z z a z b z2 .
This finding agrees with Wilson’s result [18]2, which was
obtained using a convexity argument which is especially
well suited to estimating certain hypergeometric series and
their integral analogs. The asymptotics of the orthonormal
version of the polynomial, which is given in appendix C by
equation (C1), could easily be obtained from (21) as

A

A

( ) ( ) { ∣ ( )∣

[ ( )] ( )} ( )

n m n»

´ + +

m

-

W z a b B a b
n

z

z n z O n

; ; , , , ,
2

2 i

cos 2 ln arg i , 22

n
2

1

where

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

m n = m n m m n n
m n

G + G + G + G + G + G +
G + + +

B a b, , , a b a b a b

a b

and we have again used the asymptotic identity
( )
( )

»G +
G +

-n .n a

n b
a b Comparing this asymptotics to formula (4)

leads to the following scattering amplitude and phase shift

( ) ( )
∣ ( ) ( ) ( ) ( ) ( )∣

( )

e
m n

m n
=

G + G + G + G + G
mA

B a b

z z a z b z z

2 2 , , ,

i i i i 2i
,

23

( ) ( ) [ ( ) ( )
( ) ( )] ( )

d e m n= G - G + G +
´ G + G +

m z z z
a z b z

arg 2i arg i i
i i . 24

The scattering amplitude shows that a discrete finite
spectrum occur if m + = -z ki , where =k N0, 1, 2, .., and
N is the largest integer less than or equal to m- . Thus, the
spectrum formula associated with the Wilson polynomial is

( ) ( )m= - +z k . 25k
2 2

2 There is a typo in [18] by which the+sign inside the argument of the
cosine in equation (21) is replaced by a−sign (private communication with
Wilson on July 2016).
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Despite the fact that the Meixner–Pollaczek and con-
tinuous dual Hahn polynomials are limiting cases of the Wilson
polynomial, their asymptotics could not be obtained using the
asymptotics of the Wilson polynomial calculated above simply
because we cannot interchange this limit with the asymptotic
limit. Therefore, those asymptotics have to be derived inde-
pendently. This is done elsewhere (see, for example, the
appendix in [1]).

3. The Meixner–Pollaczek polynomial class of
problems

In this section, we consider the class of quantum systems
whose continuum scattering states are described by the
wavefunction (3) where the expansion coefficients are the
Meixner–Pollaczek polynomials ( )qmP z,n shown in appendix
A by equation (A1).

3.1. The Coulomb problem

We start by choosing the physical parameters in the poly-

nomial as: m = +ℓ 1, q=cos ( )
( )
l
l

-
+

E

E

2 2

2 2

2

2 and =z Z E2 ,

where ℓ is a non-negative integer, Z is a real number and λ is
a positive length scale parameter. Depending on the range of
values of the physical parameters, this system can have a
continuous or discrete energy spectrum. For example, if E is
negative then z becomes pure imaginary and ∣ ∣q >cos 1. As
explained in appendix A, this is equivalent to the replacement
of z zi and q q i , which turns the Meixner–Pollaczek
polynomials into its discrete version, the Meixner poly-
nomials. Substituting these parameters in equation (A7) gives
the following scattering phase shift

( ) ( ) ( )d = G + +E ℓ Z Earg 1 i 2 . 26

Whereas, substitution in equation (A8) gives the following
energy spectrum formula

( )
( )= -

+ +
E

Z

k ℓ

1

2 1
. 27k

2

2

These results are identical to those of the well-known
Coulomb interaction in three dimensions, ( ) =V r Z r, where
r is the radial coordinate, Z is the electric charge and ℓ is the
angular momentum quantum number. The discrete poly-
nomial in the bound states wavefunction expansion (5) is the
Meixner polynomial shown in appendix A by equation (A9).
The requirement on the basis to support a tridiagonal
matrix representation of the Schrödinger wave operator,

( )- + + -+ E,
r

ℓ ℓ

r

Z

r

1

2

d

d

1

2

2

2 2 gives (see section II.A.2 in [3])

( ) ( ) ( ) ( )( )
( )

f l l= lG +
G + +

+ - +r r L re , 28n
n

n ℓ
ℓ r

n
ℓ1

2 2
1 2 2 1

where ( )nL zn is the Laguerre polynomial. This is not the only
exactly solvable problem in the Meixner–Pollaczek poly-
nomial class. Next, we give two other examples; one with
only an infinite bound states spectrum and another with a

continuous as well as discrete finite spectrum (however, in
this class it is exactly solvable only for the discrete bound
states).

3.2. The oscillator problem

For the second example in this class, we take the polynomial

parameters as ( )m = +ℓ1

2

3

2
and w=z Ei 2 , where ω is a

real number. The choice of z as pure imaginary mandates the
replacement q q i so that reality is maintained for the
polynomial (A1) and its recursion relation (A4). As seen in
appendix A, this leads only to bound states and the discrete
Meixner polynomial. The infinite energy spectrum formula is
obtained from equation (A8) as

( ) ( )w= + +E k ℓ2 . 29k
3

2

This corresponds to the well-known energy spectrum of the
isotropic oscillator ( ) w=V r r1

2
2 2 with oscillator frequency ω.

The corresponding eigenstates are written as in equation (5) in
terms of the discrete Meixner polynomial. Moreover, the
requirement that the basis yield a tridiagonal matrix repre-

sentation for the wave operator,- +
r

1

2

d

d

2

2

( ) w+ -+ r E,ℓ ℓ

r

1

2

1

2
2 2

2

gives (see section II.A. 1 in [3])

( ) ( ) ( ) ( )( )
( )/

f l l= lG +
G + +

+ - +r r L re , 30n
n

n ℓ
ℓ r

n
ℓ1

3 2
1 2 1 2 2 22 2

where λ is a length scale parameter such that l w 4 .2

Additionally, the parameter β in the Meixner polynomial (A9) is
obtained as b = q-e 2 where ( )

( )
q = w l

w l
+
-

cosh .2

2

2 4

2 4

3.3. The Morse problem

The final problem in the Meixner–Pollaczek polynomial class
corresponds to the parameter assignments: m e= + -1

2
and

=z u ui 2 ,1 0 where all parameters are real with e < 0,
>u 00 and <u 0.1 Thus, it is required that q q i in

equations (A1) and (A4) turning the polynomial into one of its
two discrete versions. Formula (A8) gives the energy spectrum as

( ) ( )e = - + +k u u2 , 31k
1

2 1 0
2

where =k N0, 1, .., and N is the largest integer less than or
equal to - -u u2 .1 0

1

2
If we introduce an inverse length

parameter α and write a e=E 1

2
2 and a=V u ,i i

1

2
2 then we can

rewrite the spectrum formula (31) as follows

( ) ( )a a= - + +E k V V2 . 32k
1

2
2 1

2 1 0
2
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This, in fact, is the energy spectrum formula of the one-
dimensional Morse potential ( ) = +a aV x V Ve ex x

0
2

1 where
-¥ < < +¥x [21]. The corresponding bound states are
written as in equation (5) in terms of the discrete version of the
Meixner–Pollaczek polynomial with a finite spectrum, which is
the Krawtchouk polynomial not the Meixner polynomial. The
orthonormal version of this polynomial is given in appendix A
by equation (A11). The requirement that the corresponding
basis gives a tridiagonal matrix representation for the wave

operator,- + + -a aV V Ee e ,
x

x x1

2

d

d 0
2

1
2

2 results in (see section
II.A.3 in [3])

( ) ( ) ( )( )
( )

f =
n

n nG +
G + +

-x y L ye , 33n
n

n
y

n
1

1
2 2

where ( ) = ay x e x and n = -
a

E2 .2 Moreover, the parameter

g = q-e 2 in the Krawtchouk polynomial is obtained from
( )
( )

q = a
a

+
-

cosh V

V

2 2

2 2
0

2

0
2 with aV 8.0

2

In this class, we were able to obtain full solutions for two
problems, the Coulomb and the isotropic oscillator. The latter
has only discrete bound states whereas the former has both
discrete bound states as well as continuum scattering states.
Additionally, we were able to obtain only partial solution to
the 1D Morse oscillator. We could find only the discrete
bound states solution but not the continuum scattering states.
In the following section, we will remedy that.

4. The continuous dual Hahn polynomial class of
problems

In this section, we consider the class of problems whose
continuum scattering states are described by the wavefunction
(3) where the expansion coefficients are the continuous dual
Hahn polynomial ( )mS z a b; ,n

2 shown in appendix B by
equation (B1). Throughout this section, we restrict our
investigation to the special case where the two polynomial
parameters a and b are equal.

4.1. The Morse problem

We start by choosing the polynomial parameters as:
m r= + ,1

2
= = n+a b 1

2
and e=z .2 If r > - ,1

2
then μ is

positive and we obtain only a continuous spectrum corresp-
onding to scattering states with the phase shift given in
appendix B by equation (B7) as

( )
( )

( ) ( )

( )

d e e r e

e

= G - G + +

- G +

m

n+

arg 2i arg i

2arg i . 34

1

2

1

2

If we introduce an inverse length parameter α and write
a e=E2 2 and a r=V2 ,2 then this scattering phase shift

reads as follows

( ) ( )
( )

( )

( )

d e = G - G + +

- G +

m
a a a

n
a

+

E E

E

arg 2 arg 2

2arg 2 . 35

V2i 2 1

2

i

1

2

i

2

This is identical to the scattering phase shift associated

with the 1D Morse potential, ( )( ) = +a a aV x Ve e ,x x1

2 2

2 2

with -¥ < < +¥x [22, 23]. Therefore, the continuous
energy scattering states are written as the infinite bounded
sum of equation (3) with the expansion coefficients as

the continuous dual Hahn polynomials ( )er n n+ + +S ; , .n
1

2

1

2

1
2

The requirement that the corresponding basis gives a
tridiagonal matrix representation for the wave operator,

- + + -a a aV Ee e ,
x

x x1

2

d

d 8
2

2

2

2

results in (see section II.B.1
in [3])

( ) ( ) ( )( )
( )

f =
n

nG +
G + +

-n+
x y L ye , 36n

n

n
y

n
1

1
21

2

where ( ) = ay x e .x On the other hand, if r < - 1

2
(i.e.

a< -V 42 ) then μ is negative and the problem has both
continuous as well as discrete energy states and the corresp-
onding wavefunction is given by equation (6). The discrete
energy spectrum is obtained using formula (B8) as

( ) ( )a a= - + +E k V2 , 37k
1

2
2 1

2
2 2

for =k N0, 1, .., and N is the larger integer less than or
equal to ( )a- -V2 .2 1

2
This spectrum formula is identical to

(32) above with a=V 80
2 and =V V .1 Thus, we obtained

here a full solution to the 1D Morse problem for both scat-
tering and bound states whereas the solution obtained in the
previous section was only for bound states.

4.2. The oscillator problem

Next, we make the parameter assignments: m e= - ,1

2

= = n+a b 1

2
and ( )= +z ℓ .i

2

1

2
Thus, we obtain

only bound states whose energy spectrum is given by
formula (B8) as

( ) ( )a= + +E k ℓ2 , 38k
2 3

2

where we have chosen an inverse length parameter α and
wrote a e=E2 .2 This spectrum is identical to that of the 3D
isotropic oscillator (29) above with oscillator frequency
w a= 2 and angular momentum quantum number ℓ. The
corresponding wavefunction is written as equation (5) in
terms of the discrete dual Hahn polynomial. The requirement
that the basis elements should result in a tridiagonal matrix

representation for the wave operator, ( )- + ++
r

ℓ ℓ

r

1

2

d

d

1

2

2

2 2

a -r E,1

2
4 2 gives (see section II.B.2 in [3])

( ) ( ) ( ) ( )( )
( )

f a a=
n

n a nG +
G + +

+ -r r L re . 39n
n

n
r

n
1

1
2 2 23

2
2 2

4.3. The Coulomb problem

Finally, if we choose the parameters as: m = + r
e-

,1

2

= = n+a b 1

2
and ( )= +z ℓi 1

2
where ε and ρ are negative,

then we obtain only bound states whose energy spectrum is

7

Commun. Theor. Phys. 72 (2020) 015104 A D Alhaidari



given by formula (B8) as

( ) ( )= - + +E Z k ℓ2 1 , 40k
2 2

where we have chosen an inverse length positive parameter λ
and wrote l e=E2 ,2 r l= Z . This is identical to the energy
spectrum of the Coulomb problem given by equation (27) above
with a negative electric charge Z and angular momentum
quantum number ℓ. However, the solution here is only for bound
states. The tridiagonal requirement on the basis functions results
in the following realization (see section II.B. 3 in [3])

( ) ( ) ( ) ( )( )
( )

f l l=
n

l nG +
G + +

+ -n
r r L re , 41n

n

n
r

n
1

1
1 22

with l = - E8 .k
2

5. The Wilson polynomial class of problems

In this section, we consider the class of problems whose
continuum scattering states are described by the wavefunction
(3) where the expansion coefficients are the Wilson poly-
nomials ( )nmW z a b; ; ,n

2 shown in appendix C by
equation (C1). Throughout this section, we consider the
special case where the two polynomial parameters a and b are
equal and fixed by certain physical constraints (e.g. the
number of bound states).

5.1. The hyperbolic Pöschl–Teller potential

We start by choosing the polynomial parameters as follows:

n m+ = + + u1 2 ,1

4 1 n m- = - u21

4 0 and e=z ,2 1

2
where all the parameters { }e u, i are dimensionless and real

with u0
1

8
and -u .1

1

8
If - < + +u u2 1 2 ,1

4 0
1

4 1

then μ is positive and the system consists only of continuous
energy scattering states that are written in terms of

( )e nmW a a; ; , .n
1

2
The phase shift associated with these scat-

tering states is obtained using formula (24) as

(
)

( )
( )

( ) ( )

( )

d k k l l

l

l l

= G - G + +

- - + -

´ G + + + - +

- G +

k
l

k
l

k
l

V

V

V V

a

arg 2i arg 2

2 i arg

2 2 i

2arg i ,

42

1

2

1

2

1

4 1
2

1

2

1

4 0
2

1

2

1

2

1

4 1
2 1

2

1

4 0
2

where we have introduced an inverse length scale parameter λ
and wrote l e=E ,2 l=V u ,i i

2 and defined the wave number

k = E2 . On the other hand, if - >u21

4 0 + + u1 21

4 1

then μ is negative and the system consist of both scattering as
well as bound states and the corresponding wavefunction is
written as shown by equation (6). The spectrum formula (25)

results in the following bound states energy eigenvalues

( )
( )

l
l l= - + + + - -E k V V

2
2 1 2 2 ,

43

k

2
1

4 1
2 1

4 0
2

2

where =k N0, 1, .., and N is the largest integer less than or

equal to l- V21

2

1

4 0
2 l- + -V2 .1

2

1

4 1
2 1

2
These results

are identical to those of the 1D hyperbolic Pöschl–Teller
potential ( )

( ) ( )
= +

l l
V x V

x

V

xcosh sinh
0

2
1

2 with x 0 [23, 24]. The
requirement that the basis { ( )}f xn must produce a tridiagonal
and symmetric representation of the Schrödinger wave
operator with this potential gives (see section III.B.1 in [3]3)

( ) ( ) ( ) ( ) ( )( )f = - +a b m n- + -x A y y P y1 1 , 44n n n
a2 1, 1

where

( ) ( )
( ) ( )

= m n m n
m n

+ + + - G + G + + + -
G + G + +m n+ + -A ,n

n a n n a

n a n

2 2 1

2

1 2 1

2a2 1

( ) ( )l= -y x x2 tanh 1,2 a = a, b =2 m n+ - 1

2
and

( )( )s tP yn
, is the Jacobi polynomial.

5.2. The trigonometric Scarf potential

For this problem, we choose n m+ = + + ++ -u u1 ,1

4

n m e- = - u2 0 and ( )= - - ++ -z u u2 1

4

1

4
with

( ) -+ - u u .1

4
Thus, z is pure imaginary and the system

consists only of bound states. The spectrum formula (25) gives

(
) ( )

e = + + + + +

+ - +

+ -

+ -

u k u u

u u , 45

k 0
1

2

1

2

1

4

1

2

1

4

2

where = ¥k 0, 1, 2, .., since μ is always negative for any k.
Thus, the bound states are written as in equation (5) with the
discrete version of the Wilson polynomial, which is the Racah
polynomials, ( )a b gR k; , , ,n

N defined in appendix C as
expansion coefficients. If we introduce the inverse length scale
parameter λ and write e l= E2 2 and l=u V2 ,i i

2 then this
becomes the energy spectrum of the 1D trigonometric Scarf
potential ( ) ( )

( )
= + l

l
-+ -V x V V V x

x0
sin

cos2 where ∣ ∣ p lx 2 [21].
The associated basis that produces a tridiagonal matrix repre-
sentation for the Schrödinger wave operator with this potential
is given by equation (44) with ( ) ( )l=y x xsin , a = +a 1

4

and b m n= + -2 1

2
(see section III.B.2 in [3]).

5.3. The hyperbolic Eckart potential

Now, we make the following choice of polynomial para-
meters: n m+ = + +u1 4 1 ,1 n m e- = - - u2 0 and

e=z .2 If the parameters are such that μ is positive then the
system consists only of continuous energy scattering states
that are written in terms of ( )e nmW a a; ; , .n The corresponding

3 The polynomial Gn
(μν)(z; σ) defined in this paper is identical

to the Wilson polynomial defined here in appendix C

as ( )s+ -
s n m m- - + + +

n+

W z; ; ,n
1

2

1

2

1

2

1

2

1
2
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phase shift is obtained from formula (24) as

(
()

)

( ) ( )

( ) ( )

d e e

e e

e e e

= G - G + +

- + + - G + +

+ + + - G +

u

u u

u a

arg i2 arg

i i arg

i i 2arg i . 46

1

2 1
1

4

0
1

2 1
1

4

0

On the other hand, if μ is negative then the system consists of
both scattering as well as bound states and the corresponding
wavefunction is written as shown by equation (6). The spec-
trum formula (25) results in the following energy spectrum

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥ ( )e = - + -

+
-m n

m n
+ +

+ +k
u

k
u

1

4
. 47k

1

2
0

1

2

2

0

If we introduce the inverse length scale parameter λ and
write e l= E2 2 and =ui lV2 ,i

2 then these results become
identical to those of the 1D hyperbolic Eckart potential [23, 25]

⎡
⎣⎢

⎤
⎦⎥( )

( ) ( )
( )

l l

=
-

+
-

= + -

l l-
V x V

V

V

x

V

x

V

1

e 1 1 e
4

sinh 2

2

tanh 2 2
, 48

x x0
1

1
2

0 0

with x 0. The basis functions corresponding to this
problem are those given by equation (44) with

( ) = - l-y x 1 2e ,x a = a and b m n= +2 (see section III.
B.3 in [3]).

5.4. The hyperbolic Rosen–Morse potential

The fourth and final problem corresponds to the following
selection of polynomial parameters: n m+ = - +B A ,1

2

n m- = + +B A 1

2
and e=z ,2 where A and B are real

dimensionless parameters. Thus, if A is negative then the
system is in the continuum energy state but if A is positive
then the system is a mix of finite discrete bound states and a
continuous energy of scattering states. The corresponding
phase shift and energy spectrum are obtained as follows

( )
( ) ( ) ( )

( ) ( )

d e e e

e e

= G - G - +

- G + + - G +

A

B a

arg i2 arg i

arg i 2arg i , 491

2

( ) ( )e = - -k A , 50k
2

where =k N0, 1, .., and N is the largest integer less than or
equal to m- = A. If we introduce an inverse length parameter
λ and write e l= E2 ,2 then these results correspond to the
hyperbolic Rosen–Morse potential [23]

( ) ( ) ( ) ( )
( )

( )
l

l
l

=
+ + - +

V x
B A A B A x

x

2 2 1 cosh

sinh
, 51

2

2 2

2

where x 0. The basis functions corresponding to this pro-
blem are those given by equation (44) with ( ) ( )l=y x xcosh .

6. Conclusion and discussion

We have shown that by writing the wavefunction in terms of
orthogonal polynomials as shown in one of the three appro-
priate forms given by equations (3), (5) or (6), then all physical
information about the system is obtained from the properties of
these polynomials. However, such polynomials are required to
have the asymptotic behavior shown in equation (4). We found
that the Coulomb, oscillator and Morse potentials are asso-
ciated with the Meixner–Pollaczek and continuous dual Hahn
polynomial classes. We also found that other well-known
exactly solvable problems correspond to the Wilson poly-
nomial class that includes it discrete version, the Racah poly-
nomial. These latter problems include, but not limited to, the
hyperbolic Pöschl–Teller, Eckart, Rosen–Morse and trigono-
metric Scarf potentials. We conclude by making an important
remark and discussing two relevant issues:

• In the process of identifying the quantum mechanical
system associated with a given polynomial, it might
seem that we have made an arbitrary choice of
polynomial parameters. However, those choices are, in
fact, unique and were made carefully to correspond to
the conventional class of exactly solvable potentials.
Had we made an alternative choice of parameters, then
the corresponding quantum system would have been
different and might not belong to the well-known class
of exactly solvable problems. Nonetheless, such alter-
native choices must respect any constraints on the
parameters (e.g. reality and ranges). For example, if we
choose the Meixner–Pollaczek polynomial parameters
as: q = k ml

k ml
-
+

cosh and =z ( )k li ln , where k = E22

and m < 0 then we would have obtained the following
bound states energy spectrum using formula (A8)

( )( )l= m- +E e , 52k
k1

2
2 2

where =k N0, 1, .., and N is the largest integer such
that ( ) m> -m- +e .N The polynomial that enters in the
bound state wavefunction expansion (5) is the discrete
version of the Meixner–Pollaczek polynomial with finite
spectrum, which is the Krawtchouk polynomial. The
energy spectrum (52) does not correspond to any of the
known exactly solvable potentials making such a system
very appealing and motivates us to search for the
associated potential function. That is, doing the inverse
quantum mechanical problem: finding the potential
function starting from the energy spectrum. Such a
problem is highly non-trivial. However, the tridiagonal
representation requirement results in a sever restriction
on the space of solutions of this problem making it
tractable. A procedure to accomplish that and obtain the
potential function analytically or numerically was
developed and applied in [4].

• There is another class of four-parameter orthogonal
polynomials that does not belong to the Askey scheme
of orthogonal polynomials, which was not treated in the
mathematics or physics literature, but it corresponds to
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physical problems that are solvable using our formula-
tion. The class consists of three polynomials, one with a
continuous spectrum designated as ( )( ) a qm nH z; ,n

, and
two of its discrete version with finite and infinite spectra.
So far, it is defined by its three-term recursion relation
that reads as follows [6, 26]

⎡
⎣⎢

⎤
⎦⎥{

}
( )( ) ( )

( )

( )

( )
( )

( )

( )( )
( )

( )( )
( )( )

( )

( )( )
( )( )

( )

q a q q a

a q

a q

a q

= + +

+

+

+

m n m n

n m
m n m n

m n

m n
m n m n

m n

m n
m n m n

m n

+ +

-
+ + + + +

+ +
+ + + + + -

+ + + +
+ + + + + + +

H z z n

H z

H z

H z

cos ; , sin

; ,

; ,

; , ,

53

n

n n n

n n

n n n

n n

n n n

, 1

2

2

2 2 2
,

2

2 2 1 1
,

2 1 1

2 1 2 2 1
,

2 2

where q p 0 . It is a polynomial of degree n in z
and α, which is obtained for all n staring with

( )( ) a q =m nH z; , 10
, and ( )( ) a qm nH z; , ,1

, which is
computed from (53) by setting =n 0 and

( )( ) a q ºm n
-H z; , 0.1

, Setting ºz 0 turns (53) into the
recursion relation of the Jacobi polynomial ( )( ) qm nP cos .n

,

Physical requirements dictate that μ and ν are greater than
−1 and Î z . In section III.A of [3], this polynomial
class was used in solving several physical problems.
These were associated with either new potential functions
or generalizations of exactly solvable potentials. Here, the
term new means that all of these potentials could never be
treated or solved exactly in the literature prior to the
present formulation. Table 3 is a partial list of potential
functions associated with this class showing also the
coordinate transformation y(x) that enters in the basis
elements (44) which supports a tridiagonal matrix
representation for the corresponding wave operator. Note
that the addition of the V1 term in all of these potential
functions prevents them from being exactly solvable in
the standard formulation of quantum mechanics.

• The same formulation outlined above could be extended
to the wavefunction of several variables as long as the

corresponding problem is completely separable. For
example, in three-dimensional configuration space with
spherical coordinates, if we can write the total wavefunc-
tion as ( ) ( ) ( ) ( )y q j q j= Q Fr R r, ,

r

1 then we can apply
the same formulation and write equation (3) as follows

( ) ( ) ( ) ( ) ( )år e e f=m m mR r P r a, 54E
n

n n

( ) ˜ ( ) ˜ ( ) ˜ ( ) ( )åq r e e f qQ =m m
q

m
qq

P b, 54E
n

n n

( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )åj r e e f jF =m m
j

m
jj

P c, 54E
n

n n

where { ( ) ( )}f emr P, ,n n { ˜ ( ) ˜ ( )}f q em
qP, ,n n and { ˆ ( ) ˆ ( )}f j e

m
jP,n n

are the radial, angular, and azimuthal basis and associated
polynomials, respectively. Each basis set must produce a
tridiagonal matrix representation for the corresponding wave
operator

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )- + + - =q m

r

E

r
V r E R r a

1

2

d

d
0, 55r E

2

2 2

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
( )

q

q

- - + +
-

+ -

´ Q =

j
q q

m
q

x
x

x
x

E

x
V E

b

1

2
1

d

d

d

d 1

0,

55
E

2
2

2 2

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

j
j j- + - F =j j

m
j

V E c
1

2

d

d
0, 55E

2

2

where q=x cos . The corresponding 3D separable potential

function is ( )q j =V r, , ⎡⎣ ⎤⎦( ) ( ) ( )q j+ +q j-
V r V V .r r x

1 1

12 2 As

illustration, one may consult [27] where we have applied this
procedure to obtain an exact solution for a problem of this
type and we wrote two alternative solutions to equation (55b);
one in terms of ( )( ) a qm nH z; ,n

, and another in terms of the
Wilson polynomial. In [28, 29], the same was done in two
dimensions for another problem.

Table 3. Partial list of exactly solvable potential functions in the polynomial class associated with ( )( ) a qm nH z; , .n
, The coordinate

transformation y(x) enters in the basis (44) that supports a tridiagonal matrix representation for the corresponding wave operator. The
presence of the V1 term in all of these potentials inhibits exact solvability of the Schrödinger wave equation in the standard formulation of
quantum mechanics.

V(x) x y(x)

( )
( )

( )p
p

p+
-

++ -V
V V x L

x L
V x L

sin

cos
sin0 2 1

- + L x L1
2

1
2

( )px Lsin

⎧⎨⎩
⎫⎬⎭( ) ( ) ( )

[ ( ) ]
-

+ +
-

+ -+ -

x L
V

V

x L

V

x L
V x L

1

1 1
2 1

2 0 2 2 1
2  x L0 ( ) -x L2 12

⎡
⎣⎢

⎤
⎦⎥( )

-
+ +

-
+ -

l
l

l
l

-
+
-

-V V
V

V
1

e 1
e

1 e
1 2e

x
x

x
x

0 1
x 0 - l-1 2e x

( )
[ ( ) ]

( )l
l

l
+ +

+ -
-

+V
V

x

V V x

xsinh

2 tanh 1

cosh2
0 1

2

2
x 0 ( )l -x2 tanh 12

( ) ( )
( )

l
l

l
- +

+
+ -V V x

V V x

x
tanh

tanh

cosh
0 1

2
-¥ < < +¥x ( )lxtanh

( ) ( )
( )

p p
p+ + -+ -V

V

x L

V

x L
V x L

sin cos
cos 20 2 2 1

 x L0 1
2

( )p -x L2 sin 12

( )
( )

( )l
l

l+
-

++ -V
V V x

x
V x

cosh

sinh
cosh0 2 1

x 0 ( )lxcosh
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Appendix A. The two-parameter Meixner–Pollaczek
polynomial class

The orthonormal version of this polynomial is written as
follows (see pages 37–38 of [10])

⎛
⎝⎜

⎞
⎠⎟( ) ( )( )

!
q

m
m

=
- +

-m m q q-P z F
n z

, e
, i

2
1 e , A1n n

n2 i
12

2in

where ( ) ( )( ) ( ) ( )
( )

= + + ¼ + - = G +
G

a a a a a n1 2 1 ,n
n a

a
z is

the whole real line, m > 0 and q p< <0 . This is a poly-
nomial in z which is orthonormal with respect to the measure

( )r qm z z, d . That is,

( ) ( ) ( ) ( )ò r q q q d=m m m

-¥

+¥
z P z P z z, , , d , A2n m nm

where the normalized weight function is

( ) ( ) ∣ ( )∣ ( )
( )

( )r q q m= G +m
p m

m q p
G

-z z, 2 sin e i . A3z1

2 2
2 2 2

These polynomials satisfy the following symmetric three-
term recursion relation

( ) ( ) [( ) ] ( )
( ) ( )

( )( ) ( ) ( )

q q m q q

m q

m q

= - +

+ + -

+ + +

m m

m

m

-

+

z P z n P z

n n P z

n n P z

sin , cos ,

2 1 ,

1 2 , . A4

n n

n

n

1

2 1

1

2 1

The asymptotics (  ¥n ) is obtained as follows (see, for
example, the appendix in [1])

⎡⎣
⎤⎦

{
}

( )

( )

( )
( ) ∣ ( )∣

( )

( ) ( )

q
q m

q m

m q

»
G +

+ G +

- - +

m
p q

m

p

- -

-

A5

P z
n

z
n z

z n O n

;
2 e

2 sin i
cos arg i

ln 2 sin ,

n

z1 2

2
1

1
2

which is in the required general form given by equation (4).
Therefore, the scattering amplitude and phase shift are
obtained as follows

( )( ) ( ) ∣ ( )∣ ( )e q m= G +m p q m-A z2e 2 sin i , A6z1
2

( ) ( ) ( )d e m= G +m zarg i . A7

The scattering amplitude (A6) shows that a discrete
infinite spectrum occurs if m + =zi -k, where =k 0, 1, 2, ...
Thus, the spectrum formula associated with this polynomial is

( ) ( )m= - +z k , A8k
2 2

and bound states are written as in equation (5) where the
discrete version of the Meixner–Pollaczek polynomial is
obtained by the substitution ( )m= +z ki and q q i in
equation (A1). The latter substitution is needed to maintain
reality of the recursion relation (A4). In fact, and as expected,
the substitution q q i makes the asymptotics of (A1) vanish
due to the decaying exponential q-e .n Making these sub-
stitutions in (A1) gives the discrete version as the following
orthonormal Meixner polynomial (see pages 45–46 in [10])

⎛
⎝⎜

⎞
⎠⎟( ) ( )( )

!
b b

m
b=

- -
-m m -M k F

n k
;

,
2

1 , A9n n
n2 2

12
1n

where b = q-e 2 with q > 0 making b< <0 1. The sub-
stitution ( )m= +z ki and q q i in the recursion
relation (A4) together with q b= +

b
2 cosh 1 and

q b= -
b

2 sinh 1 transform the recursion relation (A4) to

( ) ( ) [ ( ) ] ( )
( ) ( )

( )( ) ( )
( )

b b b mb b

m b b

m b b

- = - + +

+ + -

+ + +

m m

m

m
-

+

k M k n M k

n n M k

n n M k

1 ; 1 2 ;

2 1 ;

1 2 ; .

A10

n n

n

n

1

1

The associated normalized discrete weight

function is ( ) ( ) ( )
( ) ( )

w b b= -m m m b
m

G +
G G +

1 .k
k

k
2 2

2 1

k

That is,

( ) ( ) ( )å w b b b d=m m m
=

¥
M k M k; ; .

k k n m n m0 , Due to the exchange

symmetry of n and k in
⎛
⎝⎜

⎞
⎠⎟m

b
- -

- -F
n k,
2

1 ,12
1 the Meix-

ner polynomial is self-dual satisfying the dual orthogonality
relation ( ) ( ) ( )å b b d w b=m m m

=
¥

M n M m; ; .
k k k n m n0 , Now, if we

further take m = -N2 , where N is a non-negative integer,
then the indices n and k in (A9) cannot be larger than N
otherwise the hypergeometric function blows up. Thus, the
discrete Meixner polynomial with an infinite spectrum
becomes the discrete Krawtchouk polynomial with a finite
spectrum whose orthonormal version reads (see pages 46–47
in [10]):

⎛
⎝⎜

⎞
⎠⎟( )( )

( )

!
! ( ) !

g g= - -
-

g
g- -

-K k F n k
N

; , ,

A11

n
N N

n N n

n

1

2

12
1

where we wrote g b= -- -11 1 with g< <0 1 and
=n k N, 0, 1, .., . In writing (A11), we have used

( ) ( )( )
( )

( )
( )

- = = -G -
G -

G +
G - +

N 1 .n
n N

N
n N

N n

1

1
These substitutions

change the recursion relation (A10) to

( ) [ ( )] ( )
( ) ( ) ( )

( )( ) ( ) ( ) ( )

g g g g

g g g

g g g

= + -

- - + -

- + - -
-

+

k K k N n K k

n N n K k

n N n K k

; 1 2 ;

1 1 ;

1 1 ; . A12

n
N

n
N

n
N

n
N

1

1
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The associated normalized discrete weight function is

( ) ( ) ( )
( ) ( )

w g g= - g- G +
G - + G +

1 ,k
N N k N

N k k

1

1 1

k

which is easily

obtained from that of the Meixner polynomial by the sub-
stitution m = -N2 and ( )b g g= - -1 . Then,

( ) ( ) ( )å w g g g d== K k K k; ; .
k

N
k
N

n
N

m
N

n m0 , The Krawtchouk
polynomial is also self-dual and satisfy the dual orthogonality
relation ( ) ( ) ( )å g g d w g== K n K m; ; .

k

N
k
N

k
N

n m n
N

0 ,

Appendix B. The three-parameter continuous dual
Hahn polynomial class

The orthonormal version of this polynomial is (see pages
29–31 of [10])

⎛
⎝⎜

⎞
⎠⎟( )

( )

( ) ( )
! ( )

m m
m m

=
- + -

+ +
m m m+ +

+
S z a b F

n z z
a b

; ,
, i , i

,
1 ,

B1

n
a b

n a b
2

23
n n

n

where
⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( )
( ) ( ) !å= =

¥
F

a b c
d e

z
, ,

, n
a b c

d e

z

n23 0
n n n

n n

n

is the general-

ized hypergeometric function, >z 0 and ( )m >a bRe , , 0
with non-real parameters occurring in conjugate pairs. This is
a polynomial in z2 which is orthonormal with respect to the
measure ( )rm z a b z; , d where the normalized weight function
reads as follows

( ) ∣ ( ) ( ) ( ) ( )∣
( ) ( ) ( )

( )

r
p

m
m m

=
G + G + G + G

G + G + G +
m z a b

z a z b z z

a b a b
; ,

1

2

i i i 2i
.

B2

2

That is,

( ) ( ) ( )ò r d=m m m
¥

S z a b S z a b z a b z; , ; , ; , d .n m nm
0

2 2

However, if the parameters are such that m < 0 and m+a ,
m+b are positive or a pair of complex conjugates with

positive real parts, then the polynomial will have a continuum
spectrum as well as a finite size discrete spectrum and the
polynomial satisfies the following generalized orthogonality
relation (equation 1.3.3 in [10])

( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) !

ò

å

r

m

d

- - +

´ =

m m m

m m
m

m m m
m m

m m

¥

G - G -
G + G -

=
+ +

- + - +
B3

z a b S z a b S z a b z

k

S k a b S k a b

; , ; , ; , d

2 1

; , ; , ,

n m

a b

a b
k

N
k

a b

a b k n m n m

0

2 2

1 2
0

2

1 1 ,
k k k

k k

where ( ) ( ( ) )mº - +m mS k a b S k a b; , ; ,n n
2 and N is the lar-

gest integer less than or equal to m- . It satisfies the following

symmetric three-term recursion relation

( )

( ) [( )( )
( ) ] ( )

( )( )( )
( )

( )( )( )( )

( )

m m
m

m m

m m

= + + + +
+ + + - -

- + + - + + - + + -

´

- + + + + + + +

´

m

m

m

m

-

+

B4

z S z a b n a n b

n n a b S z a b

n n a b n a n b

S z a b

n n a b n a n b

S z a b

; ,

1 ; ,

1 1 1

; ,

1

; , .

n

n

n

n

2 2

2 2

1
2

1
2

The asymptotics (  ¥n ) is (see, for example, the
appendix in [1])

( )
( ) ( ) ( ) ∣ ( )∣
∣ ( ) ( ) ( )∣

{ ( [ ( ) ( ) ( )
( )]) ( )}

( )

m m
m

m

»
G + G + G + G

G + G + G +
´ + G G + G +

´ G + +

m

-

S z a b
n

a b a b z

z a z b z

z n z z a z

b z O n

; ,
2 2i

i i i
cos ln arg 2i i i

i .

B5

n
2

1

This is in the required general form given by
equation (4). Therefore, the scattering amplitude and phase
shift are obtained as follows

( )
( ) ( ) ( )

∣ ( ) ( ) ( ) ( )∣
( )e

m m
m

=
G + G + G +

G + G + G + G
mA

a b a b

z a z b z z

2

i i i 2i
, B6

( ) ( ) ( )
( ) ( ) ( )

d e m= G - G +
- G + - G +

m z z
a z b z

arg 2i arg i
arg i arg i . B7

The scattering amplitude (B6) shows that a discrete finite
spectrum occur if m + = -z ki , where =k N0, 1, 2, .., and
N is the largest integer less than or equal to m- . Thus, the
spectrum formula associated with this polynomial is

( ) ( )m= - +z k . B8k
2 2

Substituting ( )m= +z ki in equation (B1) and redefining
the parameters as m a b= + +2 1, m a+ = +a 1, m +
= -b N , we obtain the discrete version of this polynomial as

the orthonormal dual Hahn polynomial (see pages 34–36
in [10])

⎛
⎝⎜

⎞
⎠⎟

( )

( )

( ) ( )
! ( )

a b

a b
a

=

´
- - + + +

+ -

a
b

+ - +
+ - +

R z

F
n k k

N

; ,

, , 1
1,

1 , B9

n
N

k
N n

n N n
2 1 1

1

23

n n

n

where = + a b+ +z k ,k
1

2
=n k N, 0, 1, 2, .., and either

a b > -, 1 or a b < -N, . The same substitution in (B4)
yields the following recursion relation

⎤⎦
( )

( )

[( )( )

( ) ( )

( )( )( )
( )( )( )( )

a

b a b

a b

a b

+ = + + -

+ + + - + + +

+ + - + - + +

+ + + + - - +

a b+ +

-

+ B10

k R n N n

n N n R

n n N n N n R

n n N n N n R

1

1 1

1 1

1 1 .

n
N

n
N

n
N

n
N

1

2

2

1

4
2

1

1
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The associated normalized discrete weight function is

( ) ( ) ( )( )( ) ( )
( ) ( ) !

w a b b= + a b a
a b b

+ + + + - +
+ + + ++

, 1 . B11k
N

N
k N k

k k

2 1 1 1

1 1
k k

N k1

Therefore, the orthogonality reads:

( ) ( ) ( )å w a b a b a b d=
=

R k R k, ; , ; , .
k

N

k
N

n
N

m
N

n m
0

,

It also satisfies the dual orthogonality

( ) ( ) ( ) ( )å a b a b d w a b=
=

R n R m; , ; , , . B12
k

N

k
N

k
N

n m n
N

0
,

Appendix C. The four-parameter wilson polynomial
class

The orthonormal version of the Wilson polynomial could be
written in terms of ˜ ( )nmW z a b; ; ,n

2 which is given by
equation (8) as follows

⎛
⎝⎜

⎞
⎠⎟

( )

( )

( )

( )

˜ ( )

( ) ( ) ( ) !
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) !

n

n

m n m m
m n m m

=

=

´
- + + + + - + -

+ + +

m

m n
m n

m n m n
m m n n

m

m n
m n

m m m n m n
n n

+ + + + -
+ + + + -

+ + + + +
+ + + +

+ + + + -
+ + + + -

+ + + + + +
+ + +

C1

W z a b

W z a b

F
n n a b z z

a b

; ; ,

; ; ,

, 1, i , i
, ,

1 .

n

n a b

n a b

a b a b n

a b a b

n

n a b

n a b

a b a b

a b a b n

2

2 1

1

2

2 1

1

34

n n n

n n n n

n n n n

n n n

If ( )m n >a bRe , , , 0 and non-real parameters occur in
conjugate pairs, then the orthogonality relation becomes

( ) ( ) ( )ò n n r n d=m m m
¥

W z a b W z a b z a b z; ; , ; ; , ; ; , d ,n m
0

2 2
nm

where the normalized weight function is

However, if the parameters are such that m < 0 and
m n+ , m + a, m + b are positive or a pair of complex con-
jugates with positive real parts, then the polynomial will have a
continuum spectrum as well as a finite size discrete spectrum

and the polynomial satisfies the following generalized ortho-
gonality relation (equation 1.1.3 in [10])

( )

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) !

( ) ( )

ò

å

r n n n

m n n m m m
m n n

m
m m n m m

m n m m

n n d

-
G + + + G - G - G -

G - + G + G + G +

´ +
+ + +

- + - + - +

´ =

m m m

m m

¥

=

C3

z a b W z a b W z a b z

a b a b

a b a b

k
a b

a b k

W k a b W k a b

; ; , ; ; , ; ; , d

2
2 1

2

1 1 1

; ; , ; ; , ,

n m

k

N
k k k k

k k k

n m n m

0

2 2

0

,

where ( ) ( ( ) )n m nº - +m mW k a b W k a b; ; , ; ; ,n n
2 and N is the

largest integer less than or equal to m- . The associated sym-
metric three-term recursion relation is:

The asymptotics of this polynomial is derived in
section 2 above and is given by formula (22). The scattering
amplitude and phase shift are shown in equations (23) and
(24), respectively.

Substituting the zeros of the scattering amplitude, which
reads ( )m= +z ki , into equation (8) and redefining
the polynomial parameters as ( )m g d= + + 1 ,1

2
n =

( )b d g+ - + 1 ,1

2
( )a g d= - + -a 11

2
and =b

( )g d- + 11

2
then we obtain the following discrete version

of the Wilson polynomial

⎛
⎝⎜

⎞
⎠⎟

˜ ( ) ( ) ( )
( ) !

( )

a b g
a g

a b

a b b g
a g

=
+ +

+ + +

´
- - + + + - + -

+ + -

R k
N n

F
n k n k N

N

; , ,
1 1

2

, , 1,
1, 1,

1 ,

C5

n
N n n

n

34

which is a renormalized Racah polynomial (see pages 26–29
of [10]) and the parameter δ is related to the integer N as

( )d b= - + +N 1 . The same substitution results in the
following three-term recursion relation

( ) ( ) ∣ ( ) ( ) ( ) ( ) ( )∣
( ) ( ) ( ) ( ) ( ) ( )

( )r n
p

m n m n
m n m m n n

=
G + + + G + G + G + G + G

G + G + G + G + G + G +
m z a b

a b z z a z b z z

a b a b a b
; ; ,

1

2

i i i i 2i
. C2

2

⎡⎣ ⎤⎦

( )

( )( )( )( )
( )( )

( )( )( )
( )( )

( )( )( )( )( )( )( )
( )( )

( ) ( )( )( )( )( )( )( )
( )( )

m

m n

m n

= + -

-
+ + + + -

-
+ + + +

m m n m m m n
m n m n

n n
m n m n

m

m n m m n n m n
m n m n

m

m n m m n n m n
m n m n

m

+ + + + + + + + + + -
+ + + + + + + + -

+ + - + + - + + -
+ + + + - + + + + -

+ + - + + - + + - + + - + + - + + - + + + + -
+ + + + - + + + + - -

+ + + + + + + + + + + + + + + + + -
+ + + + - + + + + + + C4

z W W

n a b
W

n a b
W

1

2 2
1

2
.

n
n n a n b n a b

n a b n a b

n n a n b n a b

n a b n a b n

n n n a b n a n b n a n b n a b

n a b n a b n

n n n a b n a n b n a n b n a b

n a b n a b n

2 1

2 2 1

1 1 1

2 1 2 2
2

1 1 1 1 1 1 2

2 3 2 1 1

1 1

2 1 2 1 1
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⎡⎣

⎤⎦

( ) ˜ ( )

˜

˜

˜ ( )

( )( )( )( )
( )( )

( )( )( )
( )( )

( )( )( )( )
( )( )

( )( )( )( )
( )( )

b g b g+ - - = + -

-

-

+

+

a g a b
a b a b

b a b g a b
a b a b

a b g a b g
a b a b

a b a b
a b a b

- + + + + + + +
+ + + + + +

+ + + - + + + +
+ + + + +

+ + + + + -
+ + + + + -

+ - + + + + + + +
+ + + + + + +

N k R N

R

R

R

2

. C6

n
N

n N n n n
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The discrete orthogonality reads as follows
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which is formula (1.2.2) in [10] and where
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Therefore, the discrete normalized weight function is
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and the orthonormal version of the discrete Racah polynomial is

Thus,
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