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Abstract
New integrable B2 model with off-diagonal boundary reflections is proposed. The general
solutions of the reflection matrix for the B2 model are obtained by using the fusion technique. We
find that the reflection matrix has 7 free boundary parameters, which are used to describe the
degree of freedom of boundary couplings, without breaking the integrability of the system. The
new quantization conditions will induce the novel structure of the energy spectrum and the
boundary states. The corresponding boundary effects can be studied based on the results in this
paper. Meanwhile, the reflection matrix of high rank models associated with Bn algebra can also
be obtained by using the method suggested in this paper.
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1. Introduction

The exactly solvable model has many applications in con-
densed matter physics, theoretical and mathematical physics
[1, 2]. The typical quantization conditions of the energy
spectrum is the periodic boundary conditions [3, 4]. In 1988,
Sklyanin proposed the reflection matrix and reflection
equations to describe the integrable open boundary conditions
[5]. From then on, the exactly solvable models with boundary
reflection have attracted a lot of interest.

The integrable quantization conditions are very impor-
tant. Many interesting phenomena such as the boundary
bound states and novel elementary excitations are found in the
integrable models with open boundary conditions. For this
purpose, the first step during the study is to obtain the solution
of the reflection equation. From the reflection matrix, one can
construct the corresponding exactly solvable models. Mean-
while, if the reflection matrix has the off-diagonal elements,
the U(1)-symmetry of the system is broken and the number of
particles with an intrinsic degree of freedom are not con-
served, which induces many interesting phenomena such as
the spin-flipped effect and helical elementary excitations.
Motivated by these aspects, many works have been done on
the solving the reflection equation [6–14].

The Bn vertex model can be related to the +O n2 1( )
quantum spin chain and have many applications in the

+O n2 1( )-sigma models. For an example, the O(3) vertex
model is equivalent to the isotropic spin-1 XXX model or the
O(3)-sigma model, which has been well studied. For the higher
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rank case, the model with period and diagonal boundary have
been solved by using the analytical or algebraic Bethe ansatz
method. However, the integrable Bn open chain associated with
off-diagonal reflection matrices has more integrable boundary
interactions terms and the corresponding eigen-states involve
more structures. Therefore, it is interesting to investigate the most
generic (or off-diagonal) reflection matrices of the Bn models.

In this paper, we study the integrable quantization condi-
tions of the B2 model by using the method of fusion. Starting
from the fundamental spinorial representation, we obtain the
general solutions of reflection equations. We find that the
reflection matrix has 7 free boundary parameters, which are used
to describe the degree of freedom of boundary couplings,
without breaking the integrability of the system. Based on them,
we give the model Hamiltonian of integrable B2 model with off-
diagonal boundary reflections. The new quantization conditions
will induce the novel structure of the energy spectrum.

The advantage of method suggested in this paper is as
follows. The symmetry of the system can not be broken by
the fusion. Thus, the number of free boundary parameters
remain unchanged during the fusion. The number can be
calculated easily from the fundamental representation because
the dimension of the fundamental one is lower. All the
algebras of the fused representations are the same. Second, all
the parameterizations are uniform by using the fusion. Third,
the fusion can also be used to solve the energy spectrum. For
example, the fusion can supply the closed operator production
identities of the fused transfer matrices, which are necessary
to construct the T−Q relations. Forth, the results can be
generalized to the Bn case easily.

This paper is organized as follows. In section 2, we
introduce the spinorial R-matrix of the B2 model. The general
solution of the spinorial reflection equation is also obtained.
In section 3, we generate the vectorial R-matrix of the B2

model by using the fusion. In section 4, we calculate the
general solution of the vectorial reflection matrix. In
section 5, we discuss the degenerate cases. In section 6, we
construct the integrable model Hamiltonian based on all the
above ingredients. Concluding remarks are given in section 7.

2. Spinorial representation

The fundamental R-matrix of the B2 model is the spinorial one
defined in the space Ä¢ ¢V V1 2 with the form [15]
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1, 2, 3, 4{ } and ti denotes the transposition in the space Vi.
The spinorial R-matrix satisfies the Yang-Baxter equation
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In order to describe the boundary reflection, we should
introduce the reflection matrix -K us ( ) defined in the auxiliary
space. The spinorial R-matrix (1) and the reflection equation

-K us ( ) satisfy the reflection equation
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where η, ζ and ci, (i=1, 2,L, 8) are the boundary parameters
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The dual reflection matrix +Ks is constructed by the
reflection matrix -Ks as

= - - z h z h
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meters characterizing the boundary couplings at the
other side. They are not independent and satisfy the con-
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The dual reflection matrix satisfies the dual reflection
equation
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unchanged,
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We note that the number of free parameter in (12) and (14)
is 7.

3. Fusion

In this section, we consider the fusion [16–23], which can be
carried out because the spinorial R-matrix (1) degenerates into
the projector operator at the point of = -u 1
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Next, taking the fusion in the auxiliary space, we obtain
the vectorial R-matrix of B2 model
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which is defined in the 5-dimensional auxiliary space and
5-dimensional quantum space. Detailed calculation shows
that the elements of the vectorial R-matrix read [24]
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where r = - -u u u13
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4. General solution of vectorial reflection matrix
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The integrable model Hamiltonian is constructed by the
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4 1 8 ,

4 1 4 ,
1

8
32 1

4 1

2 8 2 4 1 .

25

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

11

3 6 7 8
2 2

2 5 1 4

12 2 4 7 7

13 1 7 3 4 2 2 2

14 3 1 2 3

15 2
2

3 7

21 1 5 8 8

22

3 6 7 8
2 2

1 4 2 5

23 3 5 2 8 1 1 1

24 3 8 1
2

25 3 1 2 3

31 4 8 1 6 5 5 5

32 2 6 5 7 4 4 4

33 7 8 3 6
2 2 2

1 4 2 5
2

34 3 5 2 8 1 1 1

35 1 7 3 4 2 2 1

41 6 4 5 6

42 6 7 4
2

43 2 6 5 7 4 4 4

44

3 6 7 8
2 2

1 4 2 5

45 2 4 7 7

51 6 8 5
2

52 6 4 5 6

53 4 8 1 6 5 5 5

54 1 5 8 8

55

3 6 7 8
2 2

2 5 1 4

( ) { ( ) ( )

[
( )]}

( ) [( )( ) ]

( ) [( )( ) ]

( ) [( )( ) ]
( ) ( ) ( )
( ) [( )( ) ]

( ) { ( ) ( )

[
( )]}

( ) [( )( ) ]

( ) ( ) ( )
( ) [( )( ) ]

( ) [( )( ) ]

( ) [( )( ) ]

( ) [( )( )

( )( ) ]

( ) [( )( ) ]

( ) [( )( ) ]

( ) [( )( ) ]
( ) ( ) ( )

( ) [( )( ) ]

( ) { ( ) ( )

[
( )]}

( ) [( )( ) ]
( ) ( ) ( )
( ) [( )( ) ]

( ) [( )( ) ]

) [( )( ) ]

( ) { ( )

( )[
( )]}

( )

4
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The corresponding dual reflection matrix is

= - - z h z h
+ -

K u K u
3

2
, 26v v

c c, , , ,i i
⎜ ⎟⎛
⎝

⎞
⎠( ) ∣ ( )˜ ˜ ˜

which satisfies the dual reflection equations

- + - - -

= - - - - +

- + - - -

= - - - - +

¢ ¢
+

¢
+

+
¢ ¢

+
¢

+ +

+ +

R u v K u R u v K v

K v R u v K u R u v

R u v K u R u v K v

K v R u v K u R u v

3

3 ,

3

3 . 27

sv s vs v

v sv s vs

vv v vv v

v vv v vv

1 2 1 21 2

2 1 2 1 21

12 1 21 2

2 12 1 21

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

5. Degenerate cases

Now, we consider some special cases of the general solutions
(24) and (26). If the boundary parameters satisfy

z h

z h

= = = = =

= = = = =

c c c

c c c

0, ,

0, , 28

1 2 8

1 2 8˜ ˜ ˜ ˜ ˜ ( )



the reflection matrices (24) and (26) degenerate into the
diagonal ones [25]

z z
z z
z z
z z
z z

= ¢ + - ¢ - -
¢ + + ¢ - -
¢ + + ¢ - -
¢ + + ¢ - -
¢ + + ¢ - +

-K u diag u u

u u

u u

u u

u u

1 4 1 4 ,

1 4 1 4 ,

1 4 1 4 ,

1 4 1 4 ,

1 4 1 4 , 29

v¯ ( ) [( )( )
( )( )
( )( )
( )( )
( )( )] ( )

z z

z z

z z

z z

z z

= ¢ + + ¢ + +

¢ - - ¢ + +

¢ - - ¢ + +

¢ - - ¢ + +

¢ - - ¢ - -

+K u diag u u

u u

u u

u u

u u

7 4 5 4 ,

5 4 5 4 ,

5 4 5 4 ,

5 4 5 4 ,

7 4 5 4 , 30

v¯ ( ) [(˜ )(˜ )
(˜ )(˜ )
(˜ )(˜ )
(˜ )(˜ )
(˜ )(˜ )] ( )

where z z¢ = -1 and z z¢ = -1˜ ˜ .

For the constant solution (12) of spinorial reflection
matrix, the fusion relation (23) degenerates

+ -

= +

¢ ¢ ¢
-

¢ ¢ ¢
-

¢ ¢

á ¢ ¢ñ
-

P K u R u K u P

u K u

1

4
2

1

4
3

4
, 31

s ss s

v

1 2
5

2 1 2 1 1 2
5

1 2

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

˜ ( ) ˜

˜ ( ) ( )

which gives another degenerated vectorial reflection matrix

-K v˜ with the elements

z zh h

z

z h

h

z

z zh h

z h

h

z h

z h

z h

z h

z h

h

z h

z zh h

z

h

z h

z

z zh h

= - - -

- + - + -

= +

=- - - +

=- - +

=- +

= +

= - - -

- + - - -

= + + -

= -

=- - +

= - + +

= + - - +

= + -

- + + + +

= + - - +

=- - - +

=- -

= -

= + - - +

= - - -

- + - - -

= +

=- +

=- -

= - + +

= +

= - - -

- + - + -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

K u c c c c c c

c c u u

K u u c c c

K u u c c c c c

K u u c c c

K u u c c c

K u u c c c

K u c c c c c c

c c u u

K u u c c c c c

K u c c c u

K u u c c c

K u u c c c c c

K u u c c c c c

K u c c c c u

u c c c c

K u u c c c c c

K u u c c c c c

K u u c c c

K u c c c u

K u u c c c c c

K u c c c c c c

c c u u

K u u c c c

K u c c c u

K u u c c c

K u u c c c c c

K u u c c c

K u c c c c c c

c c u u

1

2
2

2 4 1 8 ,

4 ,

2 2 ,

4 ,

4 ,

4 ,
1

2
2

2 4 1 8 ,

2 2 ,

4 ,

4 ,

2 2 ,

2 2 ,
1

2
2 4 1

4 1 ,

2 2 ,

2 2 ,

4 ,

4 ,

2 2 ,
1

2
2

2 4 1 8 ,

4 ,

4 ,

4 ,

2 2 ,

4 ,
1

2
2

2 4 1 8 . 32

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

11 2 5 7 8 3 6

1 4
2 2

12 2 4 7

13 3 4 1 7 2

14 3 1 2

15 2
2

3 7

21 1 5 8

22 1 4 7 8 3 6

2 5
2 2

23 3 5 2 8 1

24 3 8 1
2

25 3 1 2

31 4 8 1 6 5

32 5 7 2 6 4

33 1 4 2 5

2 2
7 8 3 6

34 3 5 2 8 1

35 3 4 1 7 2

41 4 5 6

42 6 7 4
2

43 5 7 2 6 4

44 1 4 7 8 3 6

2 5
2 2

45 2 4 7

51 6 8 5
2

52 4 5 6

53 4 8 1 6 5

54 1 5 8

55 2 5 7 8 3 6

1 4
2 2

˜ ( ) [ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ( ) ˆ ˆ ˆ ˆ ]
˜ ( ) ( ˆ ˆ ˆ ˆ )
˜ ( ) [ ˆ ˆ ˆ ˆ ˆ (ˆ ˆ)]
˜ ( ) ( ˆ ˆ ˆ ˆ )
˜ ( ) ( ˆ ˆ ˆ )
˜ ( ) ( ˆ ˆ ˆ ˆ )

˜ ( ) [ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ( ) ˆ ˆ ˆ ˆ ]
˜ ( ) [ ˆ ˆ ˆ ˆ ˆ (ˆ ˆ)]
˜ ( ) ( ˆ ˆ ˆ )
˜ ( ) ( ˆ ˆ ˆ ˆ )
˜ ( ) [ ˆ ˆ ˆ ˆ ˆ (ˆ ˆ)]
˜ ( ) [ ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ)]

˜ ( ) [ ( ˆ ˆ ˆ ˆ )( )

( )(ˆ ˆ ˆ ˆ ˆ ˆ )]
˜ ( ) [ ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ)]
˜ ( ) [ ˆ ˆ ˆ ˆ ˆ (ˆ ˆ)]
˜ ( ) ( ˆ ˆ ˆ ˆ)
˜ ( ) ( ˆ ˆ ˆ )
˜ ( ) [ ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ)]

˜ ( ) [ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ( ) ˆ ˆ ˆ ˆ ]
˜ ( ) ( ˆ ˆ ˆ ˆ )
˜ ( ) ( ˆ ˆ ˆ )
˜ ( ) ( ˆ ˆ ˆ ˆ)
˜ ( ) [ ˆ ˆ ˆ ˆ ˆ (ˆ ˆ)]
˜ ( ) ( ˆ ˆ ˆ ˆ )

˜ ( ) [ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ( ) ˆ ˆ ˆ ˆ ] ( )

All the matrix elements are the polynomials of u. We note that
the degree of polynomials in equation (32) is lower than that
in equation (25). Again, the dual transformation (26) between

+K v˜ and -K v˜ remains unchanged

= - - z h z h
+ -

K u K u
3

2
. 33v v

c c, , , ,i i
⎜ ⎟⎛
⎝

⎞
⎠˜ ( ) ˜ ∣ ( )ˆ ˆ ˆ ˆ̃ ˆ̃ ˆ̃
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6. The B2 model with integrable open boundaries

Now, we have all the ingredients to construct the integrable
B2 model with open boundary conditions. The interaction in
the bulk is described by the monodromy matrix constructed
by the vectorial R-matrices as

=T u R u R R u , 34vv vv
N

vv
0 01 02 0( ) ( ) ( ) ( )

where V0 is the 5-dimensional auxiliary space and
Ä ÄV V VN1 2  is the 5N-dimensional physical space. Con-

sidering the boundary reflection, the transfer matrix of the
system is

= -+ - -t u tr K u T u K u T u . 35v v
0 0 0 0 0

1( ) { ( ) ( ) ( ) ( )} ( )

From the Yang-Baxter equation (21), reflection
equation (22) and dual reflection equation (27), one can
prove that the transfer matrices with different spectral
parameters commute with each other, [t(u), t(v)]=0.
Therefore, t(u) serves as the generating function of all the
conserved quantities of the system. The model Hamiltonian
can be obtained by taking the derivative of the logarithm of
the transfer matrix

å x

=
¶

¶

= + ¢

+ +

=

=

-

+
-

+

+

H
t u

u

H K

tr K H

tr K
constant

ln

1

2
0

0

0
. 36

u

k

N

kk
v

v
N

v

0

1

1

1 1

0 0 0

0 0

( ) ∣

( )

{ ( ) }
( )

( )

Here the first term = ¢+ + + =H R ukk kk kk
vv

u1 1 1 0[ ( )] ∣ describes
the coupling in the bulk. The second and third terms
describe the external magnetic fields at two boundaries
with x= ´-K id0v

1 ( ) . Substituting the values of vectorial
R-matrix (20), the reflection matrix (24) and the dual one
(26) into the Hamiltonian (36) and choosing the suitable
parameterization, the explicit form of the Hamiltonian can
be obtained. The corresponding eigen-energy could be
calculated by the off-diagonal Bethe ansatz method
[26–28].

7. Discussion

In this paper, we study the integrable quantization conditions
of the B2 model. Starting from the fundamental spinorial R-
matrix, we obtain the vectorial R-matrix by using the fusion
technique. The general solutions of the vectorial reflection
equations are obtained and the corresponding structures are
analyzed. We find that the reflection matrix has 7 free
boundary parameters, which are used to describe the degree
of freedom of boundary couplings, without breaking the
integrability of the system. Based on them, we give the model
Hamiltonian of integrable B2 model with off-diagonal
boundary reflections.

Appendix

The general solution of the matrix -K us ( ) may have 16 non-
zero elements

=

+
+

+
+

-K u

c u c u c u c u
c u c u c u c u
c u c u c u c u
c u c u c u c u

1
1

1
1

,

A.1

s

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

( )

where cij are the non-zero boundary parameters. Substituting
equation (4) into the reflection equation (3), the left hand side
of equation (3) should be equal to the right hand side of
equation (3), which give the constraints among the boundary
parameters. For simplicity, we use the index method

=

left hand side of equation 3

right hand side of equation 3 , A.2

jl
ik

jl
ik

[ ( ) ]

[ ( )] ( )

where i, k are the row indices and j, l are column indices.
Considering the matrix element 24

11( ), we have

- - + + - =c c c uv u v u v u v
1

4
3 2 2 0.

A.3

14 12 34( ) ( )( )( )

( )

Because equation (A.3) is valid for all the values of u and v,
thus the coefficient must be zero, which gives c34=c12. We
note that ¹c 014 . From the condition that the matrix element

34
11( ) in both sides of equation (3) should be equal, we have

+ - + + - =c c c uv u v u v u v
1

4
3 2 2 0,

A.4

14 13 24( ) ( )( )( )

( )

which gives c24=−c13. From the matrix element 13
22( ), we

have

- - + + - =c c c uv u v u v u v
1

4
3 2 2 0,

A.5

23 21 43( ) ( )( )( )

( )

which gives c43=c21. The matrix element 33
12( ) gives

+ - + + - =c c c uv u v u v u v
1

4
3 2 2 0,

A.6

32 31 42( ) ( )( )( )

( )

which reads = -c c42 31. From the element 12
24( ), we have

- + - + +

+ + +
+ + +

+ + + =

uv u v u v c c c c c c

c c c c u c c u
c c u c c u c c v

c c v c c v c c v

1

8
3 2 2 3 3 3

3 2 4
4 2 2

2 4 4 0.

A.7

11 14 12 24 13 34

14 44 11 14 12 24

13 34 14 44 11 14

44 14 12 24 13 34

( )( )(

)
( )

Substituting relations (A.3) and (A.4) into (A.7), we obtain

+ -

´ + + + - =

c c c uv u v

u v u v

1

8
3 2 2 3 2 2 0, A.8

14 11 44( ) ( )

( )( ) ( )

6
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which gives = -c c11 44. Considering the element 13
21( ), we

have

- - + - +

+ + + +
+ + +
+ + + =

uv u v u v c c c c

c c c c c c u c c u
c c u c c u c c v
c c v c c v c c v

1

8
3 2 2 3 3

3 3 2 4
4 2 2
2 4 4 0. A.9

12 31 22 32

32 33 34 42 22 32 12 31

42 34 32 33 22 32

33 32 12 31 34 42

( )( )(

) ( )

Substituting relations (A.3) and (A.6) into (A.9), we have

- + -

´ + + + - =

c c c uv u v

u v u v

1

8
3 2 2 3 2 2 0, A.10

32 22 33( ) ( )

( )( ) ( )

which gives = -c c22 33. From the element 12
12( ), we obtain

- + - + +

+ + +
+ + +
+ + +

+ + =

uv u v u v c c c c c c

c c c c u c c u
c c u c c u c c u
c c v c c v c c v

c c v c c v

1

8
3 2 2 3 3 3

3 2 2
2 2 4
2 2 2

2 4 0.

A.11

11 12 12 22 13 32

14 42 11 12 12 22

14 31 13 32 14 42

11 12 12 22 14 31

13 32 14 42

( )( )(

)
( )

Substituting relations (A.6), (A.8) and (A.10) into (A.11), we
have

- - + +

´ - + + + - =

c c c c c c c c uv

u v u v u v

1

8
3 2 2 3 2 2 0, A.12

14 31 13 32 12 33 12 44( )

( )( )( ) ( )

which means

= - -c
c

c c c c c c
1

. A.1344
12

13 32 12 33 14 31( ) ( )

The matrix element 12
11( ) gives the constraint

- - + - + +

+ + +
+ + +
+ + +

+ + =

uv u v u v c c c c c c

c c c c u c c u
c c u c c u c c u
c c v c c v c c v

c c v c c v

1

8
3 2 2 3 3 3

3 2 2
2 2 4
2 2 2

2 4 0.

A.14

11 21 21 22 23 31

24 41 11 21 21 22

23 31 13 41 24 41

11 21 21 22 23 31

13 41 24 41

( )( )(

)
( )

With the help of relations (A.4), (A.8), (A.10) and (A.12), we
obtain

- - + +

´ - + + + - =

c
c c c c c c c c c c c c

uv u v u v u v

1

8

3 2 2 3 2 2 0.

A.15

12
14 21 31 12 23 31 13 21 32 12 13 41( )

( )( )( )
( )

Then we have

= + -c
c c

c c c c c c c c c
1

. A.1632
13 21

14 21 31 12 23 31 12 13 41( ) ( )

Considering the element 11
13( ), we have

- + - + +

+ + -
+ + +
+ - +

+ + =

uv u v u v c c c c c c

c c c c u c c u
c c u c c u c c u
c c v c c v c c v

c c v c c v

1

8
3 2 2 3 3 3

3 2 2
2 2 4
2 2 2

2 4 0.

A.17

11 13 12 23 13 33

14 43 11 13 14 21

12 23 13 33 14 43

11 13 14 21 12 23

13 33 14 43

( )( )(

)
( )

With the help of relations (A.5), (A.8), (A.12) and (A.15), we
get

+ - + +

´ - + + + - =

c
c c c c c c c c c c c c c

uv u v u v u v

1

8
2

3 2 2 3 2 2 0,

A.18

21
14 21

2
12 21 23 13 23 31 13 21 33 13

2
41( )

( )( )( )
( )

which gives

= - - -c
c c

c c c c c c c c c c
1

2
.

A.19

33
13 21

13 23 31 13
2

41 14 21
2

12 21 23( )

( )

After long calculations of all the other matrix elements, we
can not obtain new constraint any more. Therefore, the 16 non-
zero elements in the reflection matrix -K us ( ) must satisfy above
9 constraints and only 7 parameters of them are free. For
simplicity and comparing with previous results, we denote

z h= - = - = - = - = =
= - = = = = - =

= = = =

c c c c c c c
c c c c c c c c c

c c c c c c c c

, , ,
, , ,

, , , .

A.20

11 44 22 33 12 34 1

13 24 2 21 43 4 31 42 5

14 3 41 6 23 7 32 8

( )

Then we arrive at equation (4).
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