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Abstract
The internal layers of neutron stars are expected to contain several superfluid 
components that can significantly affect their dynamics. The description of 
such objects should rely on hydrodynamic models in which it is possible 
to unambiguously assign the value of the thermodynamic variables from 
microscopic calculations of the properties of matter. In this work we consider 
the phenomenological approach to multifluids modelling championed by 
Carter and, studying the relaxation of the system towards equilibrium, we 
assign a precise thermodynamic interpretation to its variables. We show that in 
thermodynamic equilibrium the equation of state contains less state variables 
than those needed in the phenomenological model, implying the existence of 
a gauge freedom of the theory that can be used to simplify the hydrodynamic 
formulation in the non-dissipative limit. Once this is understood, it becomes 
easy to translate the different multifluid formalisms that have been proposed 
in the literature into Carter’s form. Finally, we show that the usual concepts 
of affinity and reaction coordinates, as they are introduced in chemistry, are 
not affected by the presence of superfluid currents. In an effort to make the 
concepts clear, the formalism is developed step-by-step from first principles, 
providing model examples and several applications of practical relevance for 
the study of superfluid neutron star interiors.

Keywords: fluid dynamics, neutron star, superfluidity

1.  Introduction

Superfluidity in neutron star interiors opens the door to a wide range of exotic scenarios where 
metastable states in which two or more persistent currents can flow with respect to each other 
can be sustained for an extremely long time [1–3]. Therefore, we are forced to extend in a 
relativistic context the notion of fluid to include non-divisible substances which are crossed 
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by more than one independent currents, namely a multifluid. The dynamics of multifluids is 
intrinsically different from that of ordinary mixtures, since in the former case the fluid comp
onents may have a different four-velocity also in the non dissipative limit [4]. Apart from a 
richer dynamics, this fundamental difference introduces new properties also at the thermody-
namic level since equilibrium states supporting persistent currents are possible, and observed, 
in terrestrial superfluid systems [5].

The Lagrangian approach to multifluid hydrodynamics championed by Carter and cowork-
ers provides a powerful covariant formalism to construct phenomenological multifluid models 
[6]. However, our ability to reproduce the dynamics of a realistic system rests ultimately on 
the equation of state, which is usually a product of some microscopic calculations that are car-
ried out in a particular frame. Since multifluid models in general relativity must be considered 
for an accurate modelling of superfluid neutron star interiors, the problem of how to embed 
the information given by a microphysical equation of state within a covariant phenomenologi-
cal model is of primary importance: the wide range of applications spans from equilibrium 
models of stellar structure, see e.g. [7, 8], to the study of stellar oscillations, see e.g. [9, 10], 
pulsar glitches in general relativity, e.g. [11, 12], and cooling models [13].

Leaving aside the major theoretical concern about how to include in a covariant formalism 
dissipative effects (see e.g. [14] for an approach to the issue within the multi-fluid paradigm) 
and elastic components [15, 16] needed to describe the crust of neutron stars [17], also the 
non-dissipative limit of the theory may challenge the current understanding when applied 
to systems containing several species. In fact, we find that a formalism based on a master 
function allows for a gauge freedom when several non-superfluid species are present: the 
sophistication of the action principle, seen as the machinery which encodes the dynamics of 
the multifluid in the adiabatic limit, gives rise to a separation between the physical quantities 
and some redundancies which are required at the mathematical level. Our aim is to provide a 
physically motivated thermodynamic language that is gauge invariant.

The multifluid thermodynamics developed in the present paper is a useful tool not only for 
the description of perfect multifluids, but also to discuss some physical situations in which 
dissipation occurs. As a first application, we employ the gauge freedom to revisit the hydrody-
namical model of [18], which encodes a dissipative force associated with chemical reactions 
in a multifluid. In real neutron stars this additional dissipative mechanism is related to beta 
decays and interactions between protons, neutrons and electrons and it is sometimes referred 
to as ‘rocket effect’ [19], in analogy with the evolution of a rocket whose mass is changing as 
it consumes its fuel.

The paper is organized as follows.
In section 2 we recall the variational approach of [20], see also [4], to set the notation 

and introduce a general phenomenological model for the dynamics of a perfect (i.e. non- 
dissipative) multifluid.

Section 3 is devoted to deriving all the equilibrium properties of a multifluid in contact with 
a heat bath, using only the expression of the energy–momentum tensor derived in section 2, 
the second law of thermodynamics and the irrotationality of the superfluid momentum.

In section 4 we use the tetrad formalism to recast the equations of non-dissipative mul-
tifluid hydrodynamics in a way that only variables with well defined thermodynamic inter-
pretation appear; this reveals the connection between the Lagrangian approach and the one 
developed by [21] and later generalized by [10].

In section  5 we give an example of how it is possible to employ our thermodynamic 
approach to model dissipative phenomena, studying the problem of the relaxation to chemical 
equilibrium in a generic multifluid and showing that the two formulations of [18] and [22] are 
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equivalent. We analyze how the so-called ‘rocket-effect’ changes under a gauge transforma-
tion and use this result to reduce its form to the one proposed by [19] in the low temperature 
limit.

The appendices are devoted to discussing of some issues of practical relevance for neutron 
star modelling. In particular, in appendix C we solve a dictionary problem between two dif-
ferent formulations for the hydrodynamics in the outer core of a neutron star developed by 
[23] and [24].

Throughout the paper we adopt the spacetime signature (−,+,+,+), choose units with the 
speed of light c  =  1 and Newton’s constant G  =  1, use greek letters ν , ρ , σ... for coordinate 
tensor indices.

2.  Relativistic multifluid model

In this section, we briefly review the variational principle for non-dissipative multifluid hydro-
dynamics introduced in [20] and [25]. This allows us to set up notation and to remark some 
subtleties (like the distinction between the Lagrangian and the master function for the system) 
which will be important in the following sections.

2.1. The variational approach for non-dissipative models

The fundamental ingredients in a multifluid theory are the currents, one for each of the chemi-
cal species comprising the system. Those currents are vector fields whose norm represents the 
local density of the relative chemical species2 (measured in the frame in which the species is 
at rest) and whose direction is collinear to its average four-velocity. An additional ‘thermal 
current’ sν  carries information about the local frame, identified by the four-velocity uν  say, 
in which the excitations present in the system thermalize (i.e. have average zero velocity) and 
about the entropy of the system. Hence, it is always possible to write the thermal current as

sν = suν ,
�

(1)

where the scalar s =
√−sµsµ  is the entropy per unit volume measured in the local aforemen-

tioned frame.
For reasons which will become clear in the following section we assume that the remain-

ing independent currents can be divided into two subsets. We suppose that a number l of them 
are forced to comove with the entropy, so we call them ‘s-locked’ and count them with the 
labels A, B running from 0 to l (0 identifies the thermal current). According to this notation, 
the s-locked currents can be written as

nν
A = nAuν .

�

(2)

Since there is no net entropy flow in the frame identified by uµ, no heat transport is measured 
by an observer comoving with the s-locked components.

We assume the remaining k currents to be completely independent; the labels i, h (running 
from 1 to k) are used to count them. Since they can flow in an arbitrary direction we call them 
‘free’ and in general we have

2 In the present context the term ‘chemical species’ denotes a subset of the particles comprising the substance, 
which are grouped according to a non-specified criterion. From a general point of view, it is not necessary that all 
the particles present in the system contribute to the currents (e.g. the electrons in [18]), nor a multiple counting of 
the same particle is forbidden (e.g. the density of ions in [26]). However, the full set of currents (entropy included) 
should give without redundancies the complete information about the local state of matter. This is related to the 
‘chemical gauge’ problem discussed in [26], see appendix B.
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nνi = niuνi ,
�

(3)

where uν
i  can be different from uν . No Einstein summation convention will be used for species 

labels A, B, i, h.
Since we have a total number of 1  +  l  +  k currents, there are 4(1 + k + l) variables that 

may be used to construct a Lagrangian for the system. However, only l + 4(1 + k) of such 
variables are independent, namely sν , nν

i  and the scalars nA. Despite the fact that these are all 
the degrees of freedom required to define completely the local state of the multifluid at a point, 
the fields upon which the action will depend do not need to be so numerous.

The equations of motion in a spacetime region M have to be found by imposing the sta-
tionarity of the total action I with respect to a variation of the fundamental fields of the theory 
[6]. As usual, I is the sum of a matter term Im and of the Einstein–Hilbert action

IEH =

∫

M

R
16π

√
−g d4x ,

�
(4)

where R is the scalar curvature. A boundary term, unessential in the present discussion, is also 
necessary to give a well posed action principle (see e.g. [4]). In this way the Euler–Lagrange 
equations associated to a variation of the components of the metric are

Gνρ = 8πTνρ ,
� (5)where Gνρ is the usual Einstein tensor and

Tνρ = − 2√
−g

δIm

δgνρ
.

�
(6)

Since we are specializing our study to a non-dissipative and non-transfusive model, we follow 
the variational procedure proposed by [20] to ensure the conservation of the number density 
currents. In particular, the conservation laws

∇νnνx = 0 ,
�

(7)

where the label x runs over all the currents (entropy included), should be automatically sat-
isfied both on shell (i.e. on the solutions of the equations of motion) and off shell (i.e. on a 
generic spacetime-matter configuration which belongs to the domain of the action). This is 
done by realizing that the number of particles of type x contained in an infinitesimal volume 
element transported by the four-velocity field uν

x  is conserved: all the information about the 
current is contained, once the initial condition is assigned, into three scalar fields giving the 
comoving (Lagrangian) coordinates of the volume element occupying the point in which they 
are evaluated [4, 20]. Therefore, we impose that the action depends only on the three scalar 
fields Xα

s , for α = 1, 2, 3, describing the worldline congruence associated to uν  and three 
more scalar fields Xα

i  for every free component. In the end, apart from the metric, the total 
action I is a functional of 3(1 + k) independent fields:

I = IEH[ g ] + Im[ g , Xα
s , Xα

i ] .
�

(8)

In this way the s-locked components comove with the entropy both on shell and off shell. It 
is worth anticipating that the fact that the s-locked components and the entropy comove also 
off shell is particularly important as it gives rise to a gauge freedom, discussed in section 4.4. 
In section 4.5 it is shown how this freedom is related to the behaviour of the multifluid out of 
local thermodynamic equilibrium.
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2.2. The master function and the equations of motion

In the previous section we introduced the basis for the most general multifluid theory where 
all the components are uncharged and there are no dissipative phenomena. The Lagrangian L 
for the multifluid is introduced by imposing that the matter action has the local form

Im =

∫

M
L
√
−g d4x .

�

(9)

A general multifluid theory can be obtained by taking every species of the theory, no matter if 
they are independent or not, and constructing the symmetric matrix n2

xy := −nνx nyν. We con-
sider only the upper triangle x � y  comprised of

z =
(1 + k + l)(2 + k + l)

2
� (10)

terms and introduce the master function

Λ : Rz −→ R ,
�

(11)

which is just an auxiliary function (a sort of pre-Langrangian). At this point, the Lagrangian 
density is obtained from Λ as

L[g, Xα
s , Xα

i ] = Λ(−gρν nρx [g, Xα
s , Xα

i ] nνy [g, Xα
s , Xα

i ]) .
�

(12)

We make this distinction between L and Λ, which is usually not found in literature, to remark 
that what matters for the dynamics is the value of L on shell and off shell. On the other hand, 
Λ is an intermediate function that can receive arguments which are incompatible with the 
constraint of comoving s-locked components.

We assume Λ to be differentiable, which means that we are ignoring the possibility of first 
order phase transitions. We define the bulk coefficients

Bx := −2
∂Λ

∂n2
xx

,
�

(13)

where, following [27], we adopt the notation Bs = C for the one associated to the entropy. 
Furthermore, the so-called anomaly coefficients can be cast into a symmetric matrix Axy , 
whose upper triangle is defined as

Axy := − ∂Λ

∂n2
xy

for x < y.

�

(14)

The coefficients Axy  are responsible for the entrainment effect when non-comoving species 
are present in the system, see [28, 29]. The partial derivatives are here interpreted in a strict 

sense: they are derivatives of the master function Λ with respect to its argument n2
xy . However, 

if Λ is seen as a function of all the components of the 1  +  l  +  k currents independently (i.e. 
regardless of the fact that the s-locked currents are forced to comove with the entropy), then it 
can be seen as a function of 4(1 + l + k) variables through the formula

Λ(nνx ) := Λ(−gρνnρx nνy ) .
�

(15)
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Thanks to this operation, the canonically conjugate momenta are defined as

µx
ν :=

∂Λ

∂nν
x
= Bxnxν +

∑
y�=x

Axynyν ,

� (16)
where the sum runs over both the upper and lower triangles. Again, we stick to Carter’s nota-
tion and the momentum µs

ν  related to the entropy current is denoted by Θν.
Following a derivation that is completely analogous to the one delineated e.g. in [4], it is 

possible to prove that the energy–momentum tensor is given by

Tν
ρ = Ψδνρ +

∑
x

nνx µ
x
ρ ,

�
(17)

where the generalized pressure3 Ψ is related to the master function via (see also equation (2.3) 
in [30])

Ψ = Λ−
∑

x

nρxµ
x
ρ .

�

(18)

Finally, the hydrodynamic equations, obtained as Euler–Lagrange equations for the fields Xα
i  

and Xα
s , are

nρ
i ∂[ρ µ

i
ν] = 0 for i = 1, ..., k

l∑
A=0

nρA∂[ρ µ
A
ν] = 0 .� (19)

Once ∇νnνx = 0 is satisfied, the above system of equations implies that ∇ρTρν = 0, an infor-
mation which is already contained in the Einstein’s equations: the Euler–Lagrange equa-
tions associated to the worldline congruence of the entropy is redundant and could be replaced 
by the conservation of the total energy–momentum tensor.

3.  Equilibrium properties of homogeneous systems

Even though it derives from an elegant mathematical framework, the variational model of 
section 2 is phenomenological, in the sense that it captures the formal properties needed to 
describe a multifluid in general relativity, but has no connection with the relevant physical 
properties of matter [22]: to apply it to physical systems, we need to provide a precise thermo-
dynamic interpretation for its quantities.

In this section we show how to derive a thermodynamic description which is consistent 
with the variational model. The following discussion defines, starting from first principles, the 
connection of the phenomenological theory with the microphysics of the system and provides 
a new thermodynamic interpretation of many results which in other treatments required the 
inclusion of dissipation in order to be concretely proved.

3.1.  Equilibrium with a heat bath

In thermodynamics it is conventional to consider a homogeneous macroscopic portion of the 
given substance, small enough to neglect gravity. To implement invariance under translations 

3 The generalized pressure can be defined by considering a stationary flow trough a channel: it is the pressure 
exerted by the fluid on the channel walls. To see this it is sufficient to take an orthonormal basis ea such that e1 is 
normal to the wall: since n1

x = 0  (otherwise the x component would flow through the wall), we have T11 = Ψ.

L Gavassino and M Antonelli﻿Class. Quantum Grav. 37 (2020) 025014
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of the equilibrium state, while working with finite extensive quantities, the fluid is enclosed 
into a cubic volume V = L3 with periodic boundary conditions. This box is a test spacetime, 
whose topology is R× T3, equipped with a chart (t, x1, x2, x3) and the Minkowskian met-
ric η = diag(−1, 1, 1, 1). The periodic boundary conditions read {x j = 0} ≡ {x j = L} for 
j = 1, 2, 3. It is useful to assume that the box is in contact with an ideal heat bath of constant 
temperature ΘH , at rest in the global frame defined by the aforementioned chart, i.e. an effec-
tively infinite mass-energy reservoir characterized by the equation of state

EH(SH) = EH0 +ΘHSH ,
�

(20)

where EH and SH are respectively the energy and entropy of the bath, measured by an observer 
O such that uO = ∂t. Imagine now to put a sub-system M inside the box, with an arbitrary 
initial condition: after an equilibration process involving a complex dissipative evolution par-
tially driven by the interaction with the bath, M will reach a state of thermodynamic equilib-
rium. In particular, the second principle of thermodynamics, together with the conservation 
of the total energy of M plus the bath, implies that M will reach the state which minimizes the 
quantity

F = EM −ΘHSM ,
�

(21)

where EM and SM are the energy and the entropy of the subsystem as measured in the frame of 
O. In section 3.4 we will show that the quantity F, when the multifluid is in thermal equilib-
rium with the heat bath, becomes the Helmholtz free energy of the multifluid. Out of equilib-
rium, however, one should not be tempted to give thermodynamic interpretations to F, because 
the thermodynamic potentials may not be uniquely defined.

Assuming that we can associate an energy–momentum tensor to the substance constitut-
ing the system and that the final equilibrium state is homogeneous, the energy of M can be 
identified as

EM = VT00,
� (22)where the superscript 0 refers to t. Similarly, the total entropy SM is

SM = Vs0 ,
� (23)where, according to (1), s0 is the density of entropy measured by O.

Let us now specialize the analysis to the multifluid case. As a starting hypothesis, the sys-
tem M is prepared in an arbitrary initial condition, namely all the currents can be considered 
to be free. Combining equations (17) and (18) we obtain

T00 = −Λ +
∑

x

n j
xµ

x
j ,

�

(24)

where j  runs over the spatial indices and obeys the Einstein summation convention. Plugging 
these results inside (21) we obtain that the equilibrium state minimizes the function

F = F/V = −Λ +
∑

x

n j
xµ

x
j −ΘHs0.

�

(25)

Explicitly, this minimization condition reads (notice the raised index of the zeroth components 
of the momenta)

δF =
∑

x

(µx0δn0
x + n j

xδµ
x
j )−ΘHδs0 = 0

�

(26)

for any dynamically allowed infinitesimal variation.
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Following [31], let us introduce the manifold of homogeneous macrostates Z , namely the 
set of all the states that can be realized in the box assuming all the currents (entropy included) 
to be free. A point in Z , i.e. a generic macrostate, is identified by specifying the values of 
the variables of state (nνx )x∈C, where C is the set of all the currents. If Λ has non-degenerate 
Hessian matrix in the variables n j

x , the map

(nνx )x∈C �−→ (n0
x ,µx

j )x∈C

� (27)

is a bijection. Therefore, (n0
x ,µx

j )x∈C is an alternative choice of coordinates on Z .
In the absence of quantities that are conserved during the equilibration process, the varia-

tions δn0
x  and δµx

j  in (26) are unconstrained and independent with respect to each other, lead-
ing to the conditions µx0 = 0 for x �= s. This would give the empty space as a unique solution. 
However, the presence of constants of motion imposes some constraints on the macrostates 
that the system can explore and, therefore, on the allowed variations. Only by taking into 
account these constraints it is possible to have non-trivial equilibria: this is explored in the 
following two sections.

3.2.  Equilibration in the non-transfusive limit

Unconstrained variations in (26) give trivial equilibria. On the other hand, non-trivial equilib-
ria are obtained when we restrict the allowed variations on a submanifold in Z .

As a first case, consider the non-transfusive theory, where the number of particles of each 
chemical species is conserved. In this case, we have to consider the subspace in Z  defined by 
the constraints

n0
x =

Nx

V
x �= s,

�

(28)

where Nx is the number of particles of the species x and its value is imposed in the initial con-
ditions in which the system is prepared before equilibration.

Apart from the particle number conservation, the presence of superfluid components in the 
multifluid introduces other constants of motion, whose conservation is directly linked to the 
possibility to have persistent currents at equilibrium [5].

Let us suppose that a generic component x is superfluid. Following [27], in the absence of 
vortices we have to impose that4

∂[ρµ
x
ν] = 0.

�

(29)

This irrotationality condition is interpreted as resulting from the requirement that

µx
ν =

kx

2π
∂νφ

x,
�

(30)

where φx  is the phase of a scalar order parameter for the species x under consideration. Here kx 
is equal to 2π� when x is a Bose fluid, while π� in the case of a Fermi fluid. The key assump-
tion (30) is best justified by its physical consequences, as discussed by [32]: it is indeed the 
covariant form of the Josephson relation for neutral superfluids [26, 33].

4 The irrotationality condition is not contained into the phenomenological model of the previous section, where the 
quantities µx

ν  have no assigned physical meaning. To enforce internal consistency, this physical identification with 
the gradient of a phase has to be done by looking at the equations of motion of the phenomenological model: the 
first equation in (19) tells us that an irrotationality requirement can be imposed on the quantities µi

ν  (and not on 
other combinations different from (16)).
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Take now equation (29) for, say, ρ = 0 and ν = 1 and integrate it along x1:

d
dt

∫ L

0
µx

1(t, x1, 0, 0)dx1 = µx
0(t, L, 0, 0)− µx

0(t, 0, 0, 0).
�

(31)

Periodic boundary conditions imply that the right-hand side vanishes, so that the quantity5

Wx
1 :=

1
kx

∫ L

0
µx

1(t, x1, 0, 0)dx1

�

(32)

must be conserved during the evolution of the system, provided that the interaction with the 
heat bath does not destroy the order parameter anywhere (i.e. there are no zeroes of the order 
parameter). This can be also shown with a simple topological argument. Considering (30), 
Wx

1  is the number of windings of the phase φx  across the torus along the direction 1. Since µx
j  

are smooth functions on the spacetime, also Wx
1  has to vary continuously with time. However, 

the only continuous functions from R  to Z are the constant ones, which implies that Wx
1  is 

conserved during the equilibration process with the heat bath.
For homogeneous configurations, the conservation of the winding numbers (similarly one 

can define also Wx
2  and Wx

3 ) implies the further constraints

µx
j =

kxWx
j

L
.

�

(33)

Therefore, equation (28) tells us that we have to impose δn0
x = 0 for any x, while (33) forces 

us to set δµx
j = 0 when x refers to a superfluid species. With these constraints the condition 

(26) becomes

s jδΘj +
∑
x∈N

n j
xδµ

x
j + (Θ0 −ΘH)δs0 = 0,

�

(34)

where N  is the set of the normal (i.e. non-superfluid) species. Because of its special role in the 
relaxation process, we do not include the entropy in the set N . Thus, the term Θ0δs0 + s jδΘj, 
which in equation (26) is included in the summation over x, has been made explicit here.

Now, the remaining infinitesimal variations appearing in the left-hand side of the above 
equation are free and independent with respect to each other, implying that δF  is zero only if 
all the prefactors vanish. Let us examine the equations we get one by one. First of all, we have

s j = 0 j = 1, 2, 3.
�

(35)

This equation states that the excitations of the system thermalize in a way to be on average 
at rest in the frame of the heat bath. This can also be interpreted by saying that, in conditions 
of thermal equilibrium, the four-velocity uν , defined in (1), identifies the observer in whose 
reference frame the multifluid can be studied using the canonical ensemble.

Secondly, for the normal species we have

n j
x = 0 j = 1, 2, 3 x ∈ N .

�

(36)

Due to the absence of conserved quantities other than the particle numbers, a normal comp
onent initially flowing with respect to the heat bath will be slowed down by an entropic force 
arising from the interaction with the bath, until the flow stops. This, however, does not hap-
pen to the superfluid currents, which can survive at a thermodynamic level as a result of the 

5 This quantity could be defined by integrating the momentum along any path that is homotopy equivalent to a loop 
embracing the torus in the direction x1 exactly once.
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conservation of the winding numbers6 Wx
j . Equations (35) and (36) combined imply that ther-

modynamic equilibrium is reached when all the normal currents comove with the entropy (i.e. 
they are s-locked). Of course this is not necessarily true out of equilibrium, when dissipation 
occurs.

The last equation we get from (34) is

Θ0 = ΘH .
�

(37)

As expected, when the system is in equilibrium with the bath, its temperature must coincide 
with ΘH ; together with (35), this statement assures that the absolute temperature Θ of a mul-
tifluid in thermodynamic equilibrium can be expressed in a covariant fashion as

Θ = −Θνuν .
�

(38)

Clearly, this coincides with the value Θ0 measured by an observer comoving with the s-locked 
components.

3.3.  Equilibration in the presence of transfusion

In the previous subsection we have computed the equilibrium properties of a multifluid in the 
non-transfusive limit. Let us see what happens if we relax this assumption and assume that a 
reaction

∑
x �=s

αxXx �
∑
x �=s

βxXx

�

(39)

can occur and that no other ways to modify Nx are allowed. Here Xx is the name of the chemi-
cal species associated with the current x, while αx and βx are the stoichiometric coefficients. 
Let us introduce the reaction coordinate N, also called in chemistry extent of reaction, which 
counts the number of reactions from the left to the right minus the number of reactions from 
the right to the left, setting the zero on the initial condition. Starting from a state in which the 

particle numbers are N(in)
x , we have

Nx = N(in)
x + (βx − αx)N.

�

(40)

This means that the variations δn0
x = δNx/V  are not forced to be zero any more, but they are 

still not completely free. Instead, they assume the form

δn0
x = (βx − αx)δn0, x �= s,

�

(41)

where we have defined7 n0 := N/V . As discussed in the previous section, the conservation 
of the winding numbers Wx

j  is not affected by the reactions. Hence, in this case equation (26) 
reduces to

6 The superfluid momentum is modified by the motion of physical boundaries or of quantized vortices [34]. This 
may be seen as the physical manifestation of the conservation of the winding numbers in an annulus. It is also 
possible to give a more microscopic interpretation, at least for a bosonic superfluid [35]: as a result of the interac-
tion with the bath, particles may be knocked out of the condensate; this process reduces the amplitude of the order 
parameter associated to condensation, but it will not alter its phase. Hence, changing the momentum of the super-
fluid would require a transition that involves a macroscopic number of particles from one state to another simultane-
ously, a very low probability process.
7 For now, the index 0 of n0 is a pure notation convention. In section 5.1 we give an interpretation of n0 as the zeroth 
component of a virtual current, giving a formal justification for this convention.
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s jδΘj +
∑
x∈N

n j
xδµ

x
j + (Θ0 −ΘH)δs0 +

∑
x �=s

(βx − αx)µ
x0δn0 = 0,

�

(42)

a form which is identical to (34) plus an additional term due to the presence of reactions.
The submanifold of the allowed macrostates is fully described by the variables 

(n0, s0,Θj,µx
j )x∈N , whose variations are independent. This means that equations  (35)–(38) 

remain true, but we get one more condition arising from the presence of the additional term 
in (42),

∑
x �=s

αxµ
x0 =

∑
x �=s

βxµ
x0.

�

(43)

Not surprisingly, this is the conventional formula for the chemical equilibrium. However, we 
obtained more than a well-known result: as (37) provides a first-principles justification of the 
notion of absolute temperature in (38), similarly this relation provides a physical interpretation 
of the notion of chemical potential. In fact, since (35) still holds, we define the thermodynamic 
chemical potentials (i.e. the quantities needed in the equation for chemical equilibrium) as

µ(T)
x := −µx

νuν .
�

(44)

In this way, the chemical equilibrium condition can be written in terms of covariant quantities 
as

∑
x �=s

αxµ
(T)
x =

∑
x �=s

βxµ
(T)
x .

�
(45)

This result is perfectly coherent with [18], where beta reactions in superfluid neutron stars are 
taken into account.

As a final remark, notice that in the above analysis we have treated N as a completely free 
variable, without considering the fact that Nx must be non-negative in (40). The variable N 
should move along a segment whose extrema are reached when we run out of a reactant and 
it can happen that the minimum of the free energy is reached on the border of this segment, 
for example when one reaction always dominates over the other and does not stop until all its 
reactants are transformed into products. In this case equation (45) needs not to be satisfied.

3.4. Thermodynamic potentials

The thermodynamic properties of a system are completely known once an equation of state is 
given. Since all the theory describing a multifluid is determined once a master function Λ is 
assigned, it is usually stated that

Λ = Λ(n2
xy)

�
(46)

represents the equation of state of the multifluid. Even if Λ contains all the information needed 
to describe the system and can be obtained from an underlying relativistic mean field theory 
(see [36] for the multi-component single fluid, [37] for the two-component multifluid and 
appendix A for an extension to the three-component case) its thermodynamic interpretation 
is not obvious. In this subsection we assign a precise thermodynamic meaning to Λ. In doing 
this, we show that all the thermodynamic potentials usually employed in single-fluid thermo-
dynamics can be recovered, and extended, to the multifluid case.

8 Clearly, Q ⊂ Z . For a given temperature of the bath, the equilibration process projects a point in Z  on Q.
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Consider the set Q of all the possible equilibrium macrostates in which we can prepare the 
multifluid by setting the temperature of the bath8. The natural full set of variables which we 
can use to label a point in Q is

(ΘH , NA, Ni, Wi
j )

A=1,...,l
i=1,...,k .

�

(47)

This makes Q a manifold of dimension 1  +  l  +  4k. Assuming proper convexity properties for 
Λ and given that the volume V  is a constant, the map

(ΘH , NA, Ni, Wi
j )

A=1,...,l
i=1,...,k �−→ (n0

A, n0
i , n j

i )
A=0,...,l
i=1,...,k

�

(48)

is a bijection, meaning that both sets of variables can be used to label a point in Q. In par
ticular, if we now consider Λ as a function from Q to R , its differential has the form

dΛ =
l∑

A=0

µA
0 dnA +

k∑
i=1

µi
0dn0

i +
k∑

i=1

µi
jdn j

i ,
�

(49)

where, since the normal components are at rest in the frame of the bath, n0
A = nA (no confusion 

should arise between indexes i and j  because the sum over the former is always explicit and 
for the latter we use the Einstein convention). The internal energy density U of the multifluid 
in thermal equilibrium with a bath is defined to be the energy density T00 (i.e. measured in the 
reference frame of the bath) seen as a function on Q. Combining (17), (18), (35) and (36) it is 
immediate to show that U = T00 can be written as the Legendre transform of Λ with respect 
to spatial part of the superfluid currents,

U = −Λ +

k∑
i=1

µi
jn

j
i .

� (50)
This implies that the natural set variables upon which U depends is

(nA, n0
i ,µi

j)
A=0,...,l
i=1,...,k

� (51)and its differential, employing the definitions (38) and (44), reads

dU = Θds +
l∑

A=1

µ
(T)
A dnA +

k∑
i=1

µ
(T)
i dn0

i +

k∑
i=1

n j
i dµi

j.
�

(52)

This formula alone contains the essence of all the results we collected up to now: since we can 
associate to any superfluid current a conjugate variable that is conserved during the equilibra-
tion process (the momentum), at a thermodynamic level we need to include a dependence on it 
in the equation of state. Moreover, the conservation of the superfluid momentum is the reason 
why, to get the temperature Θ or the thermodynamic chemical potentials µ

(T)
x , the superfluid 

momenta must be fixed when performing the partial derivatives of U.
Now that we identified the internal energy and its natural set of variables, we can make 

further Legendre transformations to define other thermodynamic potentials. If we transform 
with respect to the entropy density we get the Helmholtz free energy density

F = U −Θs,
� (53)whose differential (on the manifold Q) is
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dF = −sdΘ+

l∑
A=1

µ
(T)
A dnA +

k∑
i=1

µ
(T)
i dn0

i +

k∑
i=1

n j
i dµi

j.
�

(54)

Notice that the function F  defined in (25) reduces to the Helmholtz free energy when the 
equilibrium is reached, which justifies the use of the same name.

We can also introduce the grand potential density

K = U −
∑

x

n0
xµ

x0 ,

�

(55)

which, considering equations (50) and (18), is found to be equal to −Ψ. Its differential is

dK = −sdΘ−
l∑

A=1

nAdµ(T)
A −

k∑
i=1

n0
i dµ(T)

i +

k∑
i=1

n j
i dµi

j .
�

(56)

If in the above equation we substitute K with −Ψ we get the generalization of the Gibbs–
Duhem relation for multifluids.

The presence of superfluid components extends the set of possible thermodynamic poten-
tials. For example, the Legendre transform of the internal energy with respect to all the super-
fluid momenta reads

E = U −
k∑

i=1

n j
i µ

i
j,

� (57)
whose differential is

dE = Θds +
l∑

A=1

µ
(T)
A dnA +

k∑
i=1

µ
(T)
i dn0

i −
k∑

i=1

µi
jdn j

i .
� (58)

Comparing equations (50) and (57) we obtain

E = −Λ .
�

(59)

Despite its simplicity, this result plays a central role in our thermodynamic analysis, as it 
unveils the thermodynamic meaning of the master function: it is obtainable by means of 
a Legendre transformation of the internal energy density U with respect to the superfluid 
momenta. From the practical point of view, this procedure is important because it can be used 
to reconstruct the master function directly from an equation of state for the internal energy (or 
from any other thermodynamic potential supplied by a microphysical calculation).

For the sake of completeness we present a further thermodynamic potential,

J = U −
k∑

i=1

n0
i µ

i0,
� (60)

whose thermodynamic differential is

dJ = Θds +
l∑

A=1

µ
(T)
A dnA −

k∑
i=1

n0
i dµ(T)

i +

k∑
i=1

n j
i dµi

j.
�

(61)

The potential J  depends on an interesting set of state variables. In microphysical calculations, 
to define the phases φi of the order parameters, one is usually forced to break the conserva-
tion of the number of particles of the superfluid species [32]. This suggests to work with an 
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ensemble in which the chemical potential µ(T)
i  (which by Josephson relation (30) is propor-

tional to ∂tφ
i) is assigned and n0

i  is computed as a quantum-statistical average. For this reason 
J  is a natural alternative to U in the construction of an equation of state.

3.5. The Euler relation

Like in the thermodynamic study of a simple fluid, it is possible to derive the Euler (or fun-
damental) relation also in the multifluid case (see e.g. the discussion in [4]). Since the Euler 
relation stems from the additive property of the system, its derivation is typically performed 
by employing the thermodynamic potential which is a natural function of all the extensive 
quantities. In our case this thermodynamic potential is E and equation (18) implies that the 
fundamental relation is

E = −Ψ+
∑

x

n0
xµ

x0 −
k∑

i=1

n j
i µ

i
j .

� (62)
It is interesting to recast the fundamental relation in terms of the internal energy:

U = −Ψ+Θs +
l∑

A=1

nAµ
(T)
A +

k∑
i=1

n0
i µ

(T)
i .

� (63)
Since it does not explicitly contain any term associated with the presence of superfluids in the 
right-hand side, this form of the Euler relation is formally identical to the one for a mixture of 
normal fluids. This is due to the fact that the set of natural variables of U, presented in (51), 
contains the spatial components of the momenta per particle, which are intrinsically intensive 
quantities and, therefore, cannot produce the associated terms in the Euler relation.

It is possible to write the fundamental relation (62) also in a manifestly covariant way that 
is, however, less physically transparent. For example, in [38], the name ‘chemical potentials’ 
is assigned to the quantities

µ(C)
x = −µx

νuνx ,�
(64)

where uν
x  is the four-velocity associated to the species x. We use the label C, here, which 

stands for comoving, to distinguish them from those defined in (44), in which we use a T, for 
thermodynamic. According to this definition, the Euler relation becomes (see also [39])

E = −Ψ+Θs +
∑
x �=s

nxµ
(C)
x .

�
(65)

Notice that (65) and (63) are both very similar to the usual Euler relation for a simple fluid. 
However, one must not be tempted to identify E with the thermodynamic energy density as 
this would lead to the confusion between the thermodynamic and the comoving chemical 
potentials, which can assume very different values. An interpretation problem related to the 
different chemical potentials used in the two-fluid models of [23] and [24] is discussed and 
solved in appendix C.

3.6.  Entrainment and thermodynamics

One of the properties of a multifluid is the possibility to have non-collinearity between the 
currents and their conjugate momenta, which gives rise to the so-called entrainment effect. In 
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the formulation presented in section 2 the momenta naturally arise as linear combinations of 
the currents, see (16):

µx
ν =

∑
y

Bxynyν ,

�

(66)

where we have introduced the symmetric matrix Bxy such that

Bxx := Bx Bxy := Axy

�

(67)

for x �= y . On the other hand, if we define the symmetric matrix Bxy to be the inverse of Bxy,
∑

y

BxyByz = δx
z ,

�

(68)

we can write the currents as linear combinations of the momenta:

nν
x =

∑
y

Bxyµ
yν .

�

(69)

This relationship between momenta and currents is the most natural when we start from the 
momentum-based ‘potential variational principle’ instead of the ‘current-based’ one of sec-
tion 2. As pointed out by [30], see also [40] and [41], in the potential variational principle 
the master function of the theory is Ψ = −K written as a function of the scalar products 
µ2

xy = −µx
νµ

yν, in place of Λ = −E  written as a function of n2
xy .

In a thermodynamic perspective, we are interested in writing the normal momenta and 
the superfluid currents as linear combinations of the normal currents and of the superfluid 
momenta. The reason for this is that the normal currents identify the reference frame in which 
the thermodynamic quantities must be computed, while the superfluid momenta enter directly 
into the equation of state as intensive variables. This representation of the entrainment arises 
naturally from a hybrid variational principle which uses X = −J  as the master function, see 
e.g. [30, 42, 43]. The entrainment matrix for this hybrid description can be written with a little 
algebra in terms of Bxy, as pointed out in [40]. It is now important to briefly review and extend 
this set of ideas.

To introduce the hybrid representation, let us separate the normal components from the 
superfluid ones in equation (69), namely

nνA =

l∑
B=0

VABµ
Bν +

k∑
h=1

MAhµ
hν nν

i =

l∑
B=0

MBiµ
Bν +

k∑
h=1

Sihµ
hν ,

� (70)
where A  =  0 stands for s. The three matrices appearing in the right hand side are respectively 
the (1 + l)× (1 + l) symmetric matrix

VAB = BAB,
� (71)the k × k  symmetric matrix

Sih = Bih

� (72)and the (1 + l)× k matrix

MAi = BAi.
�

(73)
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With a little algebra it is possible to show that

µA
ν =

l∑
B=0

(V−1)ABnBν −
k∑

h=1

DA
hµ

h
ν nνi =

l∑
B=0

DB
in

ν
B +

k∑
h=1

Yihµ
hν ,

� (74)
where we have introduced the (1 + l)× k matrix

DA
i =

l∑
B=0

(V−1)ABMBi

� (75)
and the k × k  symmetric matrix

Yih = Sih −
l∑

B,C=0

(V−1)BCMBiMCh.
� (76)

With calculations analogous to those made to obtain the system (74), the superfluid block of 
the entrainment matrix given in (66) is

Bih = (Y−1)ih.
�

(77)

The matrix Yih naturally encodes the notion of entrainment in a thermodynamic context. To 
give a precise meaning to this sentence, let us consider again equation (52). Combining (74), 
(35) and (36) we get

n j
i =

k∑
h=1

Yihµ
hj,

� (78)
which, using the symmetry of Yih, implies

dU = Θds +
l∑

A=1

µ
(T)
A dnA +

k∑
i=1

µ
(T)
i dn0

i +

k∑
i,h=1

Yih

2
d(µhjµi

j).
�

(79)

This tells us that, in a thermodynamic perspective, the interesting part of the entrainment 
matrix is the one that defines the relationship between the superfluid momenta and the super-
fluid currents in the reference frame of the heat bath. In fact, in the following section we show 
that Yih is the only physically important part of the entrainment matrix in a non-dissipative 
theory, while VAB and DA

i have a microscopic interpretation only if one takes into account dis-
sipative effects, so their knowledge is not needed and cannot be uniquely extracted within the 
framework of equilibrium thermodynamics.

4.  Local thermodynamics of perfect multifluids

In this section we seek a formulation of multifluid hydrodynamics in which the thermody-
namic interpretation of the variables is manifest. This is certainly possible for a perfect mul-
tifluid since, in the absence of dissipation, the second principle ensures that the system is in 
local thermodynamic equilibrium. Hence, the formalism developed in section 3 should be 
locally valid in a frame comoving with the entropy.

Before getting into the details, let us comment on how the equations of motion of the phe-
nomenological model of section 2.2 are modified in view of the results of the previous section. 
Clearly the normal currents must be implemented as s-locked currents, while the superfluid 
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ones as free. Moreover, superfluidity imposes the irrotationality of the momenta. Hence, the 
full system of hydrodynamic equations for a perfect multifluid is

∇νnν
x = 0 ∂[ρµ

i
ν] = 0 ∇νTν

ρ = 0.
�

(80)

This system is compatible with equation (19), the only difference is that the irrotationality 
requirement adds a further constraint to the initial condition.

4.1. The local frame of thermodynamics

It is instructive to rework the Lagrangian approach of section 2 with the aid of a tetrad comov-
ing with sµ, i.e. a collection of four vector fields ea = eνa∂ν, a = 0, 1, 2, 3 that are orthonormal9 
and such that e0  =  u. This tetrad represents the local Minkowskian frame of an observer O 
moving with four-velocity u. The components of a generic tensor on this basis can be inter-
preted as the physical quantities seen by O (see e.g. [44]).

The physical motivation for considering this particular tetrad is that the normal currents 

observed by O are n j
A = 0, for A = 0, ..., l. Therefore, a perfect multifluid is locally in a state 

belonging to Q, the manifold of equilibrium macrostates defined in section 3.4. This implies 
that the energy density measured by O coincides with the thermodynamic variable U, namely

uνuρTνρ = U .
�

(81)

Now, equations (38) and (44) define the local temperature and chemical potentials of the mul-
tifluid; in the tetrad formalism they simply become

Θ = Θ0 µ(T)
x = µx0.

� (82)For later convenience we also introduce the two orthogonal projectors

//νρ := −uνuρ = eν0 e0
ρ ⊥ν

ρ:= δνρ + uνuρ = eνj e j
ρ .

� (83)Since these two projectors are complementary, i.e.

δνρ = //νρ+ ⊥ν
ρ ,

�

(84)

they can be used to separate the time and the space parts of a vector in the tetrad frame: the 
tensor //νρ projects any vector along u, while ⊥ν

ρ projects it tangentially to the local present 
of the observer O.

4.2. The emergence of the Landau–Andreev–Bashkin formalism

We now use the tetrad to endow the non-homogeneous phenomenological model with a lan-
guage that is more directly in contact with the microphysics of the system. In pursuing this 
aim, we find that such a language is the one proposed by Gusakov (see [10]), which is the 
multi-component generalization of the single-component superfluid model proposed by Son 
in [21]. While the work of Son provides a natural relativistic extension of the non-relativistic 
two-fluid model pioneered by Tisza and Landau (see e.g [45]), the formalism developed by 

9 The fields ea are assumed to be linearly independent everywhere, so that we can define the matrix ea
ν to be the 

inverse of eνa , which means ea
νeνb = δa

b and eνa ea
ρ = δνρ. Moreover, they satisfy the orthonormality condition 

g(ea, eb) = ηab. In the following, for the tetrad indices we will use the convention that the generic latin indices a 
and b run over all the possible indices (from 0 to 3), while j = 1, 2, 3 are restricted to the spatial ones, in accor-
dance with the convention introduced in the previous section. Einstein summation convention will be applied to 
both a and j  indices.
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Gusakov can be considered as the natural formulation in general relativity of the multifluid 
hydrodynamics pioneered by [29]. For this reason, in the following, we will speak of relativis-
tic Landau–Andreev–Bashkin (LAB) formalism, as opposed to the phenomenological Carter 
formalism of section 2. Here we show how the LAB formalism naturally emerges from the 
Carter’s approach in view of the thermodynamic considerations of section 3.

Let us define the winding vector10 to be the spatial part of the superfluid momentum relative 
to a superfluid species i, namely

wiν :=⊥ρ
ν µi

ρ = µi
je

j
ν .

� (85)With the aid of (84), the superfluid momenta µi
ν  are split as

µi
ν = µ

(T)
i uν + wiν .

� (86)On the other hand, the same operation performed on the superfluid currents nν
i  gives

nν
i = n(T)

i uν +
∑

h

Yihwν
h ,

� (87)
where we have employed equation (74) and the definition

n(T)
i := −uνnνi ,

� (88)which is the the density of the species i measured by O.
Finally, we split the energy–momentum tensor as

Tνρ = Tabeνa eρb = T00eν0 eρ0 + T j0(eν0 eρj + eνj eρ0) + T jj′eνj eρj′ .
� (89)

Thanks to equation (81) and the fact that n j
A = 0 in the tetrad frame, we can identify the vari-

ous components of Tab as

T00 = U T j0 =

k∑
i=1

n j
i µ

i0 T jj′ = Ψη jj′ +

k∑
i=1

n j
i µ

ij′ ,
� (90)

which leads to

Tνρ = (U +Ψ)uνuρ +Ψgνρ +
k∑

i,h=1

Yih(µ
(T)
i uνwρ

h + µ
(T)
h uρwν

i + wν
i wρ

h).
� (91)

Interestingly, this reworking of the energy momentum tensor makes evident that a mixture of 
normal components (i.e. when k  =  0) is equivalent to a perfect fluid. We now can combine 
(79) with (85) and (88) to get an expression for the differential of U that involves only vari-
ables that are manifestly covariant,

dU = Θds +
l∑

A=1

µ
(T)
A dnA +

k∑
i=1

µ
(T)
i dn(T)

i +

k∑
i,h=1

Yih

2
d(wν

i whν).
�

(92)

One can verify that (1), (2), (87), (86), (91), (92) and (80) define a complete (and also redun-
dant) self-consistent system of hydrodynamic equations. Hence, for a generic perfect mul-
tifluid the LAB formalism is completely equivalent to the Lagrangian approach of Carter. 

10 Following Landau’s original terminology, in [10] and [22] the quantity wν
i  is referred to as a ‘four-velocity’ for 

the motion of a superfluid component. Since wν
i
 is not normalized to  −1, we prefer to call it ‘winding vector’ in 

view of equation (33).
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In particular, the equivalence between the Son’s relativistic version of the Landau two-fluid 
model and the Carter’s formalism has already been proven in [4]; here we generalised the 
discussion by considering the most general theory for a perfect multifluid and we provided a 
dictionary to easily translate the two descriptions one into the other.

4.3. The problem of the redundancy of the master function

We cast the perfect multifluid hydrodynamics in a way that only the knowledge of U (or any 
other thermodynamic potential) is required. However, given the expression for U, one would 
like to also have a technique to write the corresponding master function.

Since Λ = −E , the first obvious step is to obtain E from U via the Legendre transform (57). 
However, this is not sufficient to complete the task: Λ is defined as a function of the scalars 
n2

xy , while by making the Legendre transform of U we arrive at E = E(n0
x , n j

i ). Rewriting the 
dependencies correctly may seem straightforward but there is a subtlety which arises from the 
fact that some of the components are s-locked. Before going into the details it is convenient to 
give an idea of where the complication comes from.

Consider a simple perfect fluid at finite temperature, i.e. l  =  1 and k  =  0. The two currents 
of the theory are

sν = suν nν = nuν ,
�

(93)

where nν  is the (s-locked) current of particles. The energy–momentum tensor can be written 
according to the the LAB formalism by setting k  =  0 into (91),

Tνρ = (U +Ψ)uνuρ +Ψgνρ.
�

(94)

According to the LAB formulation, the only microscopic input needed to describe a perfect 
fluid is an equation of state of the form

U = U(s, n),
� (95)whose differential is

dU = Θds + µ(T)dn.
� (96)Now, let us consider the master function

Λ = Λ(n2
ss, n2

sn, n2
nn).

� (97)Combining (50), (35) and (36), it is immediate to find that

U(s, n) = −Λ(s2, sn, n2).
�

(98)

Therefore, to construct a function U that fully describes the fluid, only the behaviour of Λ on 
the surface

n2
sn =

√
n2

ssn2
nn,

�

(99)

is needed. On the other hand, the values of Λ elsewhere constitute a part of the information 
which is completely lost when the Son and Gusakov formulation of hydrodynamics is used. 
In other words, two different master functions Λ and Π which are equal on this surface would 
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produce the same LAB description and, therefore, the same physical theory. This redundancy 
in the arguments of the master function arises because of the collinearity requirement for sν  
and nν : the two functions Λ and Π are equal on all the possible equilibrium macrostates.

The fact that Λ and Π describe the same physical system implies that there is not a unique 
prescription to define VAB: there are many equivalent ways to construct the entrainment 
matrix. This arbitrariness is a peculiarity of the non-dissipative theory. In fact, the behaviour 
of Λ on the macrostates in which sν  and nν  are not locked becomes relevant for dissipative 
models with heat transport. In fact, for dissipative systems the entrainment with the entropy 
component becomes a necessary and physically meaningful element of the description (see 
e.g. [14]). On the contrary, in the non-dissipative limit this arbitrariness may be advantageous 
as it allows to set the entrainment anomaly Asn to zero imposing

Λ = −U(
√

n2
ss,

√
n2

nn).
�

(100)

In this simple case with k  =  0 it does not seem to make any difference the fact that the entrain-
ment matrix is not uniquely defined: since there are no superfluid components, the currents 
are all parallel with respect to each other and any master function we choose will produce in 
the end the same momenta

Θν = Θuν µν = µ(T)uν .
�

(101)

However, in the case of a generic perfect multifluid, not only VAB but also DA
i is not uniquely 

defined; a change of the master function can modify the definition of the normal momenta. 
The following three subsections are be devoted to the analysis of this non-uniqueness of the 
normal momenta. In section  4.4 we study the redundancy problem of the master function 
starting from the action principle, in section 4.5 we analyse its physical interpretation in a 
thermodynamic perspective. Finally, in section 4.6 we provide a practical example in which 
we show how to fix the master function to remove the entrainment associated to the entropy 
in neutron star matter.

4.4.  Mathematical explanation of the redundancy

Let us consider, for a generic multifluid, two different functions Λ and Π from Rz to R . The z 
real arguments of these functions are the numbers n2

xy , considered as independent variables. If 
the normal species are forced to comove with the entropy, i.e. when

nνA = nA
sν

s
,

� (102)
the arguments of Λ and Π are no more free, but satisfy the conditions

n2
Ax =

nA

s
n2

sx.
�

(103)

Assume that Λ and Π are equal when the above constraints are satisfied but that are different 
on an out of local equilibrium macrostate of the multifluid. Remembering that the normal 
currents comove with the entropy both on and off shell, according to equation (12) we have

L[g, Xα
s , Xα

i ] = Λ(−gρν nρx [g, Xα
s , Xα

i ] nνy [g, Xα
s , Xα

i ])

≡ Π(−gρν nρx [g, Xα
s , Xα

i ] nν
y [g, Xα

s , Xα
i ]).�

(104)
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This means that, since the energy–momentum tensor and all the hydrodynamic equations are 
calculated only imposing the stationarity of the action, the choice between Λ and Π does not 
affect the physics of the perfect multifluid, in the sense that they give rise to the same physical 
theory: both can be used to construct the same equations of motion and energy–momentum 
tensor, which can then be used to uniquely derive the LAB description of the system by using 
the method of section 4.2.

However, the choice between Λ and Π can modify concretely the normal momenta. To see 
this, consider a perfect multifluid on shell, choose a point of the spacetime and compute the 
component µA

j  in the basis introduced in section 4.1, for A �= s, directly from the master func-
tion. By definition n j

A = 0, so that

µA
j =

∂Λ

∂n j
A

∣∣∣∣
n j

A=0
= lim

h→0

Λ(n j
A = h)− Λ(n j

A = 0)
h

,
�

(105)

where all the remaining na
x  are kept fixed. Since the derivative is computed for sj   =  0, the 

quantity Λ(n j
A = h) is the master function evaluated on a macrostate in which the currents nν

A 
and sν  are not parallel with respect to each other: performing the above derivative implies that 
we are exploring a domain in which Λ may differ from Π.

The freedom to choose the master function on the macrostates in which one (or more) 
s-locked current does not comove with the entropy can be seen as a gauge freedom of the 
non-dissipative theory. Only performing a gauge fixing (i.e. assigning the master function in 
a neighbourhood of the equilibrium) it is possible to define uniquely the normal momenta. 
Notice that only the spatial part ⊥ρ

ν µA
ρ of the normal momenta is affected by a gauge-fixing 

of the master function. In fact, the previous argument is no more valid for µA
0, because the vari-

ation of the argument is performed in the direction of the entropy:

µA
0 =

∂Λ

∂n0
A
= lim

h→0

Λ(n j
A = 0, n0

A + h)− Λ(n j
A = 0, n0

A)

h
.

�

(106)

Also the superfluid momenta are uniquely determined, because in the corresponding deriva-
tion we have to move the superfluid current keeping the normal ones collinear. This justifies 
the statement, made in section 3.6, that in a non-dissipative theory Yih is the only physically 
meaningful part of the entrainment matrix. Stated in other words, according to equation (77) 
only the block Bih of the full entrainment matrix Bxy is gauge-independent.

Since the choice between Λ and Π does not affect the energy–momentum tensor, the trans-
formations µA

j −→ µ̃A
j  produced in the passage from Λ to Π, are not completely free, but must 

satisfy some constrains. In fact, the currents produced by considering the two different gauge-
fixing must satisfy

s0Θj +

l∑
A=1

n0
Aµ

A
j + = s0Θ̃j +

l∑
A=1

n0
Aµ̃

A
j .

�

(107)

This can be proven by considering the general expression of Tνρ in (17), together with the fact 

that the energy–momentum tensor (in particular T0
j) and the superfluid momenta are gauge-

invariant quantities. We can use the above constraint to make explicit what happens when a 
gauge transformation is performed:

µ̃i
ν = µi

ν µ̃A
ν = µA

ν + πA
ν Θ̃ν = Θν + ζν ,

�
(108)
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where

sνπA
ν = 0 ζν = −1

s

l∑
A=1

nAπ
A
ν .

� (109)
Therefore, the gauge transformation arising from a different choice of the master function 
amounts to a redistribution of the spatial part of the momentum between the normal currents.

Finally, let us remark that the gauge-freedom discussed here should not be confused with 
the notion of chemical gauge introduced in [26], as discussed in appendix B.

4.5.  Gauge-invariant quantities

The fact that two different master functions (say the Λ and Π of the previous subsection) may 
produce the same LAB description of a given multifluid system can be used to understand in a 
physical perspective why some quantities are invariant under the gauge transformation (108). 
Let us examine them one by one.

According to (108), the superfluid momenta are not affected by a gauge fixing of the master 
function. It is therefore possible to interpret them as gradients of the phases φi (i.e. to assign 
them a physical interpretation that is beyond the Carter’s phenomenological approach).

Now, consider equations  (91) and (92), which define the natural variables of the LAB 
description. Equation (108) tells us that the differentiated variables (i.e. nA , n(T)

i  and wν
i ) in 

the right-hand side of (92) are gauge-invariant: since U is gauge invariant, so are also all its 

derivatives, namely Θ = −Θνuν, µ(T)
x = −µx

νuν  and Yih. In particular, the fact that Θ and µ
(T)
x  

are gauge-invariant further justifies their interpretation as the absolute temperature and the 
chemical potentials of the system.

Also the generalized pressure Ψ = −K is a gauge invariant, as it can be obtained from U 
via Legendre transform. In brief, all the quantities that naturally appear in the LAB description 
must be gauge-invariant (i.e. are unaffected by a gauge fixing of the master function).

Finally, the normal currents do not explicitly appear in (92). Even if equation (17) seems to 

suggest that the knowledge of µA
j  is required to construct the energy–momentum tensor, there 

is no need to specify them, due to the fact that the symmetry of the energy–momentum tensor 
T0j = T j0 yields

l∑
A=0

n0
Aµ

A
j +

k∑
i=1

n0
i µ

i
j =

k∑
i=1

µi0nij.
�

(110)

This proves that the only part of the normal momenta whose knowledge is explicitly required 
is the thermodynamic chemical potential.

To give a physical interpretation of this kind of gauge freedom we may start interpreting µA
j  

as the average momentum per particle of the species A. Now, without a microphysical insight 
it is difficult, in equilibrium thermodynamics, to separate the contribution which comes from 
the elementary excitations and should strictly contribute to Θj from the genuine momentum 
of the species A. This ambiguity describes the absence of a entirely macroscopic criterion to 
distribute the momentum between the normal components in the non-dissipative limit of the 
theory: the only prescription to uniquely assign the entrainment matrix is to consider a dis-
sipative theory in which the normal currents are not forced to comove with the entropy. In this 
case, the heat contribution to the energy–momentum tensor contributes to fix the entrainment 
matrix, see e.g. [14].
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On the other hand, if the purpose is to construct a theory for a given perfect multifluid, it 
is possible to take advantage of this fundamental gauge freedom to choose a master function 
that is particularly convenient for the specific system under study.

4.6.  A practical example of gauge fixing

The minimal model of superfluid neutron stars consists of two distinct interpenetrating dynam-
ical components, one normal (l = 1) and one superfluid (k = 1), see e.g. [17]. Following [18], 
the superfluid current nν

n  is comprised of free neutrons, while the normal current nν
p  can be 

defined as the remaining part of the conserved total baryon current. In this subsection we 
exploit the gauge freedom to show that there is no loss of generality in tuning such a minimal 
model in a way that the entropy does not carry any entrainment, namely

⊥ρ
νΘρ = 0.

� (111)Consider the generic master function

Λ = Λ(s2, n2
pp, n2

nn, n2
sp, n2

sn, n2
pn) ,

� (112)so that the most general form of the momenta is

µn
ν = Bnnnν +Asnsν +A pnnpν

µ p
ν = B pnpν +Aspsν +A pnnnν

Θν = Csν +Aspnpν +Asnnnν .� (113)

In the absence of dissipation we must impose sν = s npν/np and the above definitions become

µn
ν = Bnnnν +

(
Asn s

np
+A pn

)
npν

µ p
ν =

(
B p +Asp s

np

)
npν +A pnnnν

Θν =
(
C s

np
+Asp

)
npν +Asn nnν .

�

(114)

Therefore, at this level every conjugate momentum is expected to depend on all the currents 
of the theory. However, a convenient gauge fixing can be performed as follows: the s-locking 
property of the normal component implies

n2
sp =

√
s2 n2

p n2
sn =

n2
pn

√
s2

√
n2

p

,

� (115)

so that it is possible to define an alternative master function Π as

Π(s2, n2
pp, n2

nn, n2
pn) := Λ

(
s2, n2

pp, n2
nn,

√
s2 n2

pp,
n2

pn

√
s2

√
n2

pp

, n2
pn

)
.

� (116)
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Under the hypothesis that the model is defined by the specification of Λ, the use of Π is com-
pletely admissible because both master functions produce same Lagrangian density L. Now, 
the entrainment matrix is not gauge independent; in particular, the diagonal coefficients B̃x 
obtained as derivatives of Π, are linked to the ones obtained from Λ via

B̃n = −2 ∂Π
∂n2

nn
= Bn .

B̃ p = −2 ∂Π
∂n2

pp
= B p +Asp s

np
−Asn s n2

pn

n3
p

C̃ = −2 ∂Π
∂s2 = C +Asp np

s +Asn n2
pn

s np
.� (117)

Regarding the off-diagonal coefficients, Π does not depend on n2
sp and n2

sn , implying that

Ãsp = Ãsn = 0.
� (118)The entrainment is now described only in terms of a single anomaly coefficient:

Ã pn = − ∂Π

∂n2
pn

= A pn +Asn s
np

.

� (119)
The calculation of the new momenta is straightforward and it is possible to verify that

µ̃n
ν = µn

ν µ̃ p
ν = µ p

ν +
s

np
Asn

[
nnν −

n2
pnnpν

n2
p

]
Θ̃ν = Θν −Asn

[
nnν −

n2
pnnpν

n2
p

]
.

� (120)
The above system of equations  is presented in the form (108), giving the immediate 
identification

πν =
s

np
Asn

[
nnν −

n2
pnnpν

n2
p

]
ζν = −

np

s
πν = −Asn

[
nnν −

n2
pnnpν

n2
p

]
.

�
(121)

The result of the gauge transformation in (120) can be written in a more elegant way with the 
aid of the two complementary projectors defined in (83),

µ̃n
ν = µn

ν µ̃ p
ν = µ p

ν +
s

np
(⊥Θ)ν Θ̃ν = (//Θ)ν .

� (122)
Thanks to this more geometrically transparent form, it is easy to notice that, since

πν =
s

np
(⊥Θ)ν ,

�

(123)

also the first relation of (109) is automatically satisfied, as it should be. Moreover, from the 
last expression in (122), it is also evident that we have redefined the entrainment to satisfy 
(111). This completes the proof that, given an arbitrary Λ and provided that np �= 0, it is 
always possible to make a gauge-fixing which removes the entrainment from the entropy.

Finally, it is possible to verify with direct calculations that Θ, µ
(T)
x , Ynn, Ψ, Tνρ and the 

hydrodynamic equations are left unchanged by the above transformations. This proves that Λ 
and Π produce the same hydrodynamic model when the LAB formalism is used.
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The importance of this example is represented by the fact that it shows how the gauge can 
be used to simplify the hydrodynamic model, removing the redundancies. A further practical 
application that exploits the gauge freedom of the system is presented at the end of section 5.1.

4.7.  Constructing the master function from a given equation of state

We now present two simple examples of how to assign Λ(n2
xy) for a system described by a 

given equation of state. For simplicity, we assume to know E (if the microscopic analysis of 
the system provides a different thermodynamic potential it is sufficient to perform a Legendre 
transformation).

Tisza–Landau two-fluid model (l  =  0, k  =  1)
[42] proposed a relativistic version of the Tisza–Landau model for Helium-II: we briefly dis-
cuss this model for a single component superfluid at finite temperature and provide a practical 
formula to set the master function.

	The two currents of the theory are sµ, describing the gas of excitations, and a free current 
nµ. In general, the master function has the form

Λ = Λ(s2, n2, n2
sn) ,

�
(124)

so that there is no gauge freedom here: n2
sn  carries all the information about the relative speed 

between the two components. All we need to do is to rearrange the variables in order to make 
everything dependent only on three scalars that could be conveniently used in a thermody-
namic potential. Let nµ = n0eµ0 + n1eµ1  be the particle current expressed in the frame in which 
excitations have average zero velocity; the potential E may be given as a function of three 
thermodynamic variables as

E = E(s0, n0, n1) .
�

(125)

Noticing that

s0 =
√

s2 n0 = n2
sn /

√
s2 ,

�
(126)

it is immediate to write n1 in terms of the fundamental scalars s2, n2 and n2
sn  as

n1 =
√

(n0)2 − n2 .
�

(127)

We conclude that, given the thermodynamic potential in (125), a consistent hydrodynamic 
theory can be constructed starting from the master function

Λ(s2, n2, n2
sn) = −E

(√
s2,

n2
sn√
s2

,

√
(n2

sn)
2

s2 − n2

)
.

�

(128)

Alternatively, if the internal energy is provided, say U = U(s, n0,µ1), the first step to obtain 
the master function is to perform the Legendre transform E = U − n1µ1 and then to make the 
change of variables presented above.

Andreev and Bashkin model (l  =  0, k  =  2)
We now consider the mixture of two superfluid species at finite temperature. Such a system 
was early considered by [28] as a multicomponent generalization of the Tisza–Landau model, 
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refined by [29] for a superfluid 3He–4He mixture and used to construct a Newtonian descrip-
tion of the matter in the outer core of a neutron star by [46]. We label the two species by p  and 
n; the corresponding currents, say nν

p  and nν
n , are both free (again, there is no gauge freedom 

since l  =  0). In this case, the general form of a master function is

Λ = Λ(s2, n2
pp, n2

nn, n2
sp, n2

sn, n2
pn) .

�
(129)

It is convenient to choose a tetrad comoving with the gas of excitations such that the number 
of non-zero components of the two free currents is minimized, say n2

p = n3
p = n3

n = 0. Hence, 
let us suppose that an equation of state of the form

E = E(s0, n0
p, n0

n, n1
p, n1

n, n2
n)

�

(130)

is given as the result of a microscopic study of the system. Similarly to the previous example, 
we perform the change of variables

s0 =
√

s2 n0
p = n2

sp/
√

s2 n0
n = n2

sn/
√

s2

�

(131)

and

n1
p =

√
(n2

sp)
2

s2 − n2
pp.

�
(132)

The computation of n1
n and n2

n requires some extra effort. Since the projector ⊥ introduced in 
(83) can be rewritten as

⊥ν
ρ = δνρ +

sνsρ
s2 ,

� (133)
it is immediate to find

(⊥nn)
a = (0, n1

n, n2
n, 0) .

� (134)A contraction with  −npa gives

n2
pn −

n2
snn2

sp

s2 = −n1
nn1

p ,
� (135)

which can be cast into the form

n1
n =

n2
snn2

sp − s2n2
pn

√
s2
√

n4
sp − n2

pps2
.

� (136)
Finally, we use the identity

n2
nn = (n0

n)
2 − (n1

n)
2 − (n2

n)
2

� (137)to obtain

n2
n =

√
n4

sn

s2 −
(n2

snn2
sp − s2n2

pn)
2

s2(n4
sp − n2

pps2)
− n2

nn.
� (138)
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We conclude that the covariant hydrodynamic theory for a mixture of two superfluid species 
generated by the equation of state E can be constructed starting from the master function

Λ(s2, n2
pp, n2

nn, n2
sp, n2

sn, n2
pn) = −E(s0, n0

p, n0
n, n1

p, n1
n, n2

n) ,
�

(139)

where the arguments of E are seen as functions of the scalars n2
xy  by means of (131), (132), 

(136) and (138).
This hydrodynamic model is the basis for many models of neutron star interiors, see e.g. 

[47]. Even if a proper description should be built starting from (at least) a (l = 1, k = 2) mul-
tifluid that includes the normal electrons, the superconducting protons and the superfluid neu-
trons, see e.g. [48], a two-fluid description is often preferred. For example, [24] consider a 
Newtonian effective (l = 0, k = 2) uncharged fluid at zero temperature, in which one current 
is comprised of superfluid neutrons and the other one is a superfluid protons in a neutralizing 
bath of electrons that plays no dynamical role. The same approach has been used also by 
[23], where a useful Newtonian formalism to account for entrainment in superfluid neutron 
stars has been developed. In appendix C we show how to translate the Lagrangian formal-
ism of Prix and collaborators into the Hamiltonian one developed by [24], showing that this 
operation is more transparent if one considers both the descriptions as low-energy limits of 
the relativistic multifluid theory.

5.  Chemical reactions

The thermodynamic language developed in the previous sections is a useful tool not only for 
the description of perfect multifluids, but also to discuss some physical situations in which 
dissipation occurs. In section 5.1 we review the covariant treatment of dissipation that occurs 
when matter is transformed from one constituent to another due to chemical disequilibrium 
developed by [49] and applied to beta reactions in neutron star interiors in [18], see also [50] 
for an analogous formulation in a Milne–Cartan framework. In section  5.2, as a practical 
application, we invoke the gauge freedom to simplify the rocket term present in the hydrody-
namical model of [18] and use the result to prove that in the low temperature limit it reduces to 
the one considered by [19]. Finally, in section 5.3, we try to rederive the Carter and collabora-
tors’ approach from a purely thermodynamical argument, providing a justification and insight 
for this treatment of dissipation induced by chemical reactions.

5.1.  Chemical reactions in almost-perfect multifluids

Consider the generic perfect multifluid presented in section 4 and imagine to switch on a 
chemical reaction, defined by (39). If the reaction is slow compared to all the other equilibria-
tion processes, such as the friction between the normal components, we can impose that the 
multifluid is still in local thermodynamic equilibrium with respect to every degree of freedom 
apart from the chemical fractions [51]. Within this scenario, we can work under the assump-
tion that all the normal currents are still s-locked and that viscous effects are negligible. We 
refer to this substance as an almost-perfect multifluid: the only form of dissipation is due to 
chemical reactions, there is no shear viscosity and no heat flow is measured in the frame of the 
normal components. In other words, the normal components still behave as a mixture that can 
be modelled as a perfect fluid but the presence of chemical reactions alters the chemical frac-
tions (of both normal and superfluid species) and produces a gain in entropy. In this physical 
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situation, the energy–momentum tensor keeps the form (17), which implies the following 
relation

∇ρTρ
ν =

∑
x

[µx
ν∇ρnρx + 2nρ

x∂[ρµ
x
ν]].

� (140)

Since the equations ∇ρTρ
ν = 0 and ∂[ρµi

ν] = 0 are still valid and that nρ
A = nAuρ, we obtain

∑
x

µx
ν∇ρnρ

x + uρ
l∑

A=0

2nA∂[ρµ
A
ν] = 0.

� (141)
A contraction of the above equation with uν  gives

Θ∇νsν = −
∑
x �=s

µ(T)
x ∇νnνx .

�

(142)

In section 3.3 we introduced the reaction coordinate N = n0V  as a global quantity which 
counts the net number of reactions from the left to the right. Now, in a hydrodynamical frame-
work, we need to introduce an associated local analogue. A convenient way to do this is to 
employ the method of the virtual charges: consider (39) and imagine to add a fictitious par-
ticle of charge  +1 any time a reaction from the left to the right occurs (similarly, a particle 
of charge  −1 is added when the reaction proceeds in the opposite direction). These fictitious 
particles are just tools to keep track of the reactions: they appear in the point of the space-
time where the reaction event happens and, once created, are supposed to be advected by the 
entropy current.

We define the reaction current nν  to be the particle number current of the  +1 charges 
minus the one of the  −1 charges. Since nν = nuν , the net density of fictitious charges n coin-
cides with the quantity n0 that was introduced in section 3.3. This is a useful mathematical 
construction because, for any x �= s, it allows us to define the conserved currents

Jνx := nν
x − (βx − αx)nν .

�

(143)

The conservation laws ∇νJνx = 0 are just the local differential version of equation (40) and 
can be used to rewrite (142) as

Θ∇νsν =
∑
x �=s

(αx − βx)µ
(T)
x ∇νnν .

�

(144)

The left-hand side describes the production of heat as a result of chemical reactions. The 
second principle of thermodynamics and the requirement of causality impose that ∇νsν � 0, 
which allows us to write

if
∑
x �=s

αxµ
(T)
x >

∑
x �=s

βxµ
(T)
x =⇒ ∇νnν � 0,

if
∑
x �=s

αxµ
(T)
x <

∑
x �=s

βxµ
(T)
x =⇒ ∇νnν � 0.� (145)

This is just the statement that the reactions proceed from the side having higher chemical 
potential to the other one: (145) is the local, covariant version of Le Châtelier’s principle. 
Clearly, when chemical equilibrium is reached, see (45), the reactions in the two directions are 
balanced, implying that there is no net production of fictitious charge,
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if
∑
x �=s

αxµ
(T)
x =

∑
x �=s

βxµ
(T)
x =⇒ ∇νnν = 0 .

�
(146)

Following [18], we assume that not too far from chemical equilibrium the reaction rates 
are proportional to the unbalance between the chemical potentials (to ensure the validity of 
Le Châtelier’s principle, the constant of proportionality Ξ must be a positive coefficient). 
Rewriting (141) using the conservation of Jνx  we obtain

∇νnν = Ξ
∑
x �=s

(αx − βx)µ
(T)
x =: r

Θ∇νsν = Ξ

[∑
x �=s

(αx − βx)µ
(T)
x

]2

l∑
A=0

2nρ
A∂[ρµ

A
ν] = −Θν∇ρsρ +

∑
x �=s

(αx − βx)µ
x
ν∇ρnρ.

�

(147)

The right-hand side of the first equation is called reaction rate and will be denoted by r in 
the following. The new quantity r describes the coupling between the hydrodynamic and the 
chemical evolution of the multifluid.

The presence of superfluid currents has an interesting consequence on the evolution of the 
system: a relative motion between the species gives rise to an extra term in the hydrodynamic 
equations, the so-called rocket effect, see [52] and [19]. In fact, the third equation of (147) can 
be seen as an equation of motion for the variable uν : the vector

Rν := −Θν∇ρsρ + r
∑
x �=s

(αx − βx)µ
x
ν

�

(148)

describes the acceleration of the normal components. This rocket effect results from the fact 
that the transfusion process produces an overall redistribution of the momenta between the 
various species. Notice that Rν vanishes when all the species comove, as can be seen by using 

(144) with the assumption that Θν = Θuν and µx
ν = µ

(T)
x uν.

5.2.  How to model chemical reactions in the zero temperature limit

Under a gauge transformation of the type (108), the system of dynamical equation (147) writ-
ten in terms of the gauge-fixed momenta must be equivalent to the original one. In fact, to 
derive it we only invoked the the energy–momentum conservation and the irrotationality of 
the superfluid momenta, which are gauge invariant properties of the system. However, the 
two sides of the third equation in (147) are not separately gauge invariant: the rocket term 
transforms as

R̃ν = Rν −
l∑

A=1

rAπ
A
ν ,

�

(149)

with
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rA := sρ∇ρ

(
nA

s

)
= (βA − αA)r −

nA

sΘ
r2

Ξ
.

�

(150)

Furthermore, it is possible to check that the left-hand side of the third equation  of (147) 
changes in the same way,

l∑
A=0

2nρ
A∂[ρµ̃

A
ν] =

l∑
A=0

2nρ
A∂[ρµ

A
ν] −

l∑
A=1

rAπ
A
ν ,

� (151)
ensuring that a gauge transformation leaves the overall equation unchanged, as expected.

Realizing that the rocket term R̃ν is a gauge dependent quantity is particularly important 
in the modelling of chemical reactions in neutron star interiors in the zero temperature limit, 
as done e.g. by [19]. Strictly speaking, chemical reactions cannot be consistently introduced 
in a zero temperature formalism simply because, as it is evident from the second equation in 
(147), they are associated to an increase of entropy. However, it is possible to perform a gauge 
fixing in a way that (111) holds; in this way equation (148) becomes

Rν = r
∑
x �=s

(αx − βx)⊥σ
νµ

x
σ ,

�

(152)

where the dependence on ∇ρsρ has been eliminated. On the other hand, with this gauge choice 
we have that Θν = Θuν, which goes to zero in the low temperature limit11. It follows that it 
is possible to drop the the A  =  0 term in the sum on the left hand side of (147): this provides 
a justification of the zero temperature form of the rocket effect used in the analysis of neutron 
star oscillations made by [19].

Equation (152) is the relativistic version of rocket term derived by [52] in a Newtonian 
framework (see equation (177) therein) under the assumption of zero entrainment with the 
entropy. However, we have proven that it is always possible to impose the condition (111) 
by means of a gauge fixing, so that there is no need to invoke it as a simplifying assumption.

5.3. Thermodynamic approach

In this subsection we give an alternative derivation of the Le Châtelier’s principle (145) and 
of the first two equations in (147) following a purely thermodynamical approach. Our aim is 
to convince the reader that the common scheme adopted in chemistry to study reactions in a 
mixture of normal species (see e.g. [53]) is not modified by the presence of currents associated 
to superfluid species.

Let us consider a box in contact with an ideal heat bath, as described in section 3.1. Assume 
that the multifluid has been prepared in an homogeneous initial configuration and that the 
reaction is sufficiently slow compared other equilibriation processes. More precisely, the reac-
tions have to be so slow that the evolution of the system is a quasistatic transformation mov-
ing across the manifold γ ⊂ Q of the homogeneous macrostates in which every degree of 
freedom, apart from the chemical fractions, assumes its equilibrium value. This construction 
formalizes the concept of quasi-equilibrium described in [54], see also [51].

For simplicity, we consider a single reaction channel, defined by a particular relation of 
the type (39) and involving an arbitrary number of components. Hence, γ  must be a one- 
dimensional manifold and can be parameterized by a single variable: for this purpose it is 

11 With a different gauge fixing the thermal momentum Θν may not go to zero in the low temperature limit. Instead, 
it may diverge in order to keep the product sΘj finite, as can be seen from equation (109) for ζν.
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natural to choose n0, as it is the parameter that measures the extent in which the reaction 

proceeds. In particular, remembering that (n0, s0,Θj,µx
j )x∈N  is the full set of the 5  +  3l inde-

pendent variables of state that are compatible with the constants of motion, see section 3.3, the 
curve γ  is implicitly defined by the 4  +  3l constraints

s j = 0 n j
A = 0 Θ = ΘH .

�

(153)

In principle, these constraints can be used to parametrize Θj, µA
j  and s0 as functions of n0.

Since the system evolves along γ , all we need to know is the set of values F(n0) assumed 
by the free energy on this curve. Combining equations (26), (41) and (153) with the fact that µi

j 
are constants of motion, it is possible to show that the differential of the free energy on γ  reads

dF =
∑
x �=s

(βx − αx)µ
(T)
x dn0,

� (154)
which leads us to introduce the affinity of the reaction12

A := − dF
dn0 =

∑
x �=s

(αx − βx)µ
(T)
x .

�
(155)

If the minimum of F  does not fall on the border of the domain of n0 (as discussed in sec-
tion 3.3), the equilibrium is defined by the minimum of F  over γ , i.e. when A = 0. That is 
obviously just another way to write equation  (45). Reinterpreting (155) in the view of the 
LAB formalism introduced in section 4.2, it is immediate to show that A = 0 gives exactly 
the chemical equilibrium condition used by [22] for an electron, proton and neutron mixture, 
see equation (44) therein.

Now, let us suppose that the initial fractions are slightly out of equilibrium, so that we can 
expand F  around the equilibrium value of the extent parameter n0

eq,

F(n0) ≈ Feq +
1
2
F ′′

eq(n
0 − n0

eq)
2, with F ′′

eq :=
d2F

d(n0)2

∣∣∣∣
n0=n0

eq

> 0.

�
(156)

In this case the affinity can be approximated as

A = F ′′
eq(n

0
eq − n0).

�

(157)

The second principle of thermodynamics forces n0 to evolve towards the equilibrium value, 
namely

A > 0 =⇒ n0
eq > n0 =⇒ dn0

dt
> 0

A < 0 =⇒ n0
eq < n0 =⇒ dn0

dt
< 0 ,� (158)

where the precise meaning of the parameter t is provided by the construction in section 3.1. 
Hence, this result is the homogeneous (purely thermodynamic) version of equation (145).

12 The affinity is usually defined by means of the Gibbs free energy because in chemistry reactions typically occur 
at constant pressure. However, in section 3 we assumed a definite control volume V , so we work with the Helmholtz 
free energy.
13 Now that we are dealing with the kinetics of the reaction channel, we need to require that the presence of the heat 
bath does not alter the speed of reaction. This means that it does not act as a catalyzer nor as a inhibitor.
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To advance in the analysis we need to include some kinetic considerations about the speed 
of the reaction. As we said, the evolution of the system is assumed to be a sequence of states 
which are in equilibrium with respect to all the variables (but with assigned fractions), so that 
r can be regarded as a thermodynamic variable itself, and we can write13

dn0

dt
= r(γ, n0).

�

(159)

The dependence on the particular curve γ , defined by the initial state in which the system is 
prepared, implicitly defines the dependence on the constants of motion that are conserved 
during the evolution towards equilibrium. Now, if we assume that we are near equilibrium, it 
is possible use the equation (157) to write r as a function of A . An expansion of r near A = 0 
leads to the formula

r ≈ ΞA , Ξ = Ξ(γ) > 0.
�

(160)

We have obtained the homogeneous version of the first equation  in (147). Notice that this 
formula is in complete accordance with equations  (45) and (50) of [22] and equation  (44) 
of [18], providing a purely thermodynamic justification for both approaches (that may seem 
different only because these two studies have been developed by using two quite different 
languages).

To complete the analysis of the hydrodynamical scheme proposed by Carter and collabora-
tors, we have to combine (155), (159) and (160) to find that the heat produced by the chemical 
reactions contributes to the variation of free energy according to the law

dF
dt

= −ΞA2,
� (161)

which is in accordance with the second equation of (147).
There is an interesting final remark to make: in the above analysis we have assumed that 

the interaction with the heat bath drives the system towards thermal equilibrium with respect 
to the variables s0 and µA

j  faster than with respect to the chemical fractions. This neutralizes 
the action of the rocket term because, as a result of an ideally instantaneous damping of nor-
mal flows in the frame of the bath, the normal species are not allowed to accelerate. For this 
reason, the third equation in (147) cannot be derived in a purely thermodynamic study: it can 
arise only in an hydrodynamical treatment. The present analysis of an homogeneous system 
is, therefore, only complementary to the one of Carter and collaborators. We can exploit the 
absence of the rocket term in the present treatment to solve exactly equation (159), finding a 
formula for the time-scale of the reactions, namely

A(t) = A(0)e−t/τeq ,
�

(162)

where the equilibration time is

τeq =
1

ΞF ′′
eq

.

�
(163)
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Therefore, the presence of the rocket term in the hydrodynamic formulation tells us that the 
dynamics of the reaction and the motion of the components are coupled on the same time-
scale τeq. This leads to the practical complication that these two effects cannot be studied 
separately unless all the species comove.

6.  Conclusions

We have developed a thermodynamic language for a mixture of superfluid and normal spe-
cies in general relativity, without any approximation regarding the smallness of the relative 
currents between the components. Our strategy and findings can be summarized as follows:

	 (i)	�The central idea of our analysis has been introduced in section 3.1, where we consider an 
homogeneous subsytem in contact with an heat bath. We define the total free-energy in 
terms of three parameters: the temperature of the bath and the entropy and energy of the 
subsystem, see (21). The link with the phenomenological model of section 2.1 is in the 
association of the entropy with the density relative to one of the currents (that we called sµ 
beforehand) and of the energy with the appropriate component of the energy–momentum 
tensor, namely equations (22) and (23).

	(ii)	�Additional links between the state variables of the homogeneous subsystem and the phe-
nomenological model can be provided by considering the quantities conserved during the 
equilibration process. Of particular interest is the constraint arising from the irrotation-
ality requirement of the superfluid momenta: although the presence of persistent currents 
breaks the concept of comoving reference frame, we find no difficulties in defining the 
thermodynamic properties of the system.

	(iii)	�The absolute temperature and the chemical potentials are defined by considering the rel-
evant physical process (the equilibration with a heat bath in section 3.2 and the relaxation 
to chemical equilibrium in 3.2).

	(iv)	�The thermodynamic language developed for the homogeneous system is embedded into 
the non-homogeneous phenomenological model thanks to the tetrad formalism, leading 
to the LAB formalism developed by [21] and [10].

	(v)	�Finally, we described how the phenomenological approach acquires a gauge freedom 
when its dynamics is restricted to field configurations that are consistent with local 
equilibrium macrostates. However, the thermodynamic quantities (i.e. the quantities that 
appear in the LAB formalism) turn out to be gauge invariant. This has interesting conse-
quences on the entrainment matrix and we provided a concrete example of gauge fixing 
in 4.6 by considering the neutron star crust model of [18].

During our discussion we rediscovered some results already known in the literature, provid-
ing further justification that is complementary to the one in the original works. In particular, 
we derived a chemical equilibrium condition that is consistent with both the one proposed by 
[18] and the one of [22]. Furthermore, we have shown in section 5.3 that the usual concepts of 
affinity and reaction coordinates, as they are introduced in chemistry, are not affected by the 
presence of superfluid currents.

Building on the present formalism, it is possible to extend our work in two main directions.
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First, following [46] and [55] it may be interesting to include the effect of quantized vorti-
ces providing a description of the kind required for application to relativistic rotating neutron 
stars. The presence of a vorticity field can have interesting consequencies from the thermo-
dynamic point of view, as it is a further degree of freedom that breaks the isotropy of the sys-
tem and contributes to the energy density of the system. In fact, the procedure to extract the 
statistical meaning of hydrodynamic quantities defines a rigorous way to study any additional 
degree of freedom in the equation of state. As we have shown here, in fact, it represents a sim-
ple strategy to provide an unambiguous microscopic interpretation to quantities appearing in 
phenomenological models revealing possible redundant information they may carry.

Secondly, it is tempting to extend the analysis carried out in section 5.1 to study the emer-
gence of reaction-induced viscosity in relativistic models. In upcoming works, the same 
approach will be applied to the study of dissipation, shown to arise directly from the imple-
mentation of out-of-equilibrium degrees of freedom in the equation of state. If the ideas pre-
sented in section 5.3 are properly extended, our framework has the potentiality to be applied to 
a wide range of problems in relativistic astrophysics, ranging from various explosive scenarios 
to the internal layers of neutron stars.
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Appendix A.  Extracting the master function from a RMF model

In section 4.7 we considered two basic examples of how to obtain the master function from a 
given thermodynamic potential. Here we expand the discussion and sketch a strategy that can 
be used when the microscopic theory provides directly the energy–momentum tensor. This 
is the case of the relativistic mean field (RMF) technique, a method used to extract the equa-
tion of state starting from the Lagrangian of the quantum fields of interest [36]. In this sense, 
the RMF is a way to deal with the problem of how to connect the microscopic scale, where 
one speaks in terms of interacting boson and fermion fields, and the fluid scale, where matter 
is contiuous and described in terms of thermodynamic variables.

The RMF can be used to construct the internal energy of the system when there are no rela-
tive currents (this case U = −Λ = T00 in the rest frame of matter). If a single relative current 
between the species is present into the system, obtaining Λ is less trivial but still possible: 
indeed, [37] generalized the RMF procedure for a mixture of superfluid neutrons and super-
condicting protons in the outer core of a neutron star starting from a mean field model for the 
nucleons and their interactions.

In brief, in the RMF the energy–momentum tensor Tνρ and the currents nν
x  of the fluid 

are calculated as mean field averages of the relative microscopic counterparts. Then, Tνρ and 
nν

x  have to be combined algebraically in order to extract Λ(n2
xy) and the thermodynamic vari-

ables of interest. Here, we address this algebraic problem when there are three independent 
current fields nν

1 , nν
2 , nν

3 , namely two relative currents between the species. This situation 
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can be obtained in three cases: (l = 0, k = 3) in the zero temperature limit, (l = 0, k = 2) at 
finite temperature and (l = 1, k = 2) in the zero temperature limit. In the following, the spe-
cies 2 and 3 are always considered superfluid; the three possibilities are distinguished by the 
nature of the species 1 which may be a further superfluid, the entropy, or a normal component. 
Suppose that the current one-forms

nx := nxν dxν for x = 1, 2, 3
�

(A.1)

are linearly independent and define the one-form N as14

N := ∗(n1 ∧ n2 ∧ n3).
� (A.2)Using the properties of Hodge duality, it can be proven that

Nν nν
x = 0 Nν Nν = det[n2

xy],
�

(A.3)

where det[n2
xy] is the determinant of the 3 × 3 symmetric matrix n2

xy . Since N is orthogonal by 
construction to every current, we use it to extract the generalised pressure from the energy–
momentum tensor:

TνρNνNρ = Ψ det[n2
xy] .

�

(A.4)

Taking the trace of the energy–momentum tensor,

Tν
ν = 3Ψ+ Λ ,

�

(A.5)

we obtain that the master function can be constructed as

Λ(n2
xy) = Tν

ν − 3 Tνρ Nν Nρ

det[n2
xy]

.

�
(A.6)

Thanks to this method we can easily see what happens when the independent currents are 
more than three (i.e. the system can support more than two relative currents between the 
components): in this case there are are infinite possible algebraic ways of combining the cur
rents to give the same energy–momentum tensor and it is not possible to use them to uniquely 
reconstruct Λ. The reason is that with four linearly independent currents there is no field Nν 
which is orthogonal to every nν

x , implying that it is impossible to extract algebrically the gen-
eralized pressure by using only the energy–momentum tensor and the currents.

Appendix B.  Chemical gauge in an arbitrary perfect multifluid

In this appendix we generalize the idea of chemical gauge introduced in [26] to a generic per-
fect multifluid. According to the Carter formalism, the fundamental fields used to formulate 
the hydrodynamic description are the currents nν

x . As anticipated in section 2, a chemical spe-
cies is a subset (labelled by x) of the total amount of particles that, in general, may not reflect 
the real chemical composition of matter, as was earlier pointed out by [30]. In principle, it is 
possible to redefine the fundamental currents of the theory using a different prescription to 
assign each particle to a certain subset x (the entropy has not to be considered a chemical spe-
cies, so it cannot be redistributed).

14 The symbol ∗ is the Hodge duality operator: for a generic three-form ω , the dual-
ity is defined as (∗ω)µ = ενρσµ ωνρσ/3! and εαβγδ =

√
−g perm(αβγδ) is the volume four-form. Since 

(n1 ∧ n2 ∧ n3)νρσ = 3! n1
[νn2

ρn3
σ], we have that Nµ = ενρσµnν

1 nρ2 nσ3 . The linear independence of the one-forms nx 
ensures that N is not zero.
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Immagine now to start with a theory in which the particles have been grouped into l  +  k 
subsets. The theory has a chemical gauge freedom if it is possible to redistribute the particles 
(according to a fixed rule) among the subsets. Clearly, not every redistribution rule is allow-
able. However, let us start by considering the most general rule,

ñνy =
∑
x �=s

Zx
ynνx ,

� (B.1)
where Z is an invertible (k + l)× (k + l) matrix whose components are functions of all the 

scalars n2
xy . The possibility to perform such a transformation simply reflects the freedom to 

choose the coordinates of the master function, so it does not alter the equations of motion. The 
matrix Zx

y, however, is not completely arbitrary because of the further (physically motivated) 
subdivision of the currents into s-locked and free: the redefined currents ̃nν

A still have to behave 
like normal currents, while the new momenta µ̃i

ν  must be related to their order parameters. To 
implement the fact that the subdivision into s-locked and free currents should be preserved, 
we have to enforce that

ñνA = ñAuν
∂Λ

∂ñν
i
=

∂Λ

∂nν
i

.
�

(B.2)

The first condition implies Zi
A = 0. The second one is more subtle and explicitly reads

∑
x �=s

(Z−1)i
xµ

x
ν +

∑
x,y�=s

µx
ρñρy

∂(Z−1)y
x

∂ñν
i

= µi
ν .

�
(B.3)

The simplest way to satisfy the above equation is to require Zi
h = δi

h and that the full matrix 
Z does not depend on the superfluid currents. Hence, equation (B.1) reduces to

ñνA =

l∑
B=1

ZB
AnνB ñν

i =

l∑
B=1

ZB
in

ν
B + nν

i ,
�

(B.4)

with ZA
x = ZA

x(nB, s). There is a further constraint which is worth noticing, related to the con-
servation of the currents. Suppose that there is a conserved current Jν  and that each particle 
of the species x carries a formal charge qx. This gives the constraint

Jν =
∑
x �=s

qxnνx =
∑
x �=s

qxñνx .

�

(B.5)

A comparison with (B.1) tells us that 
∑

y Zx
yqy = qx. However, considering that Zi

x = δi
x, we 

see that the only non-trivial condition implied by (B.5) is
∑
x �=s

ZA
xqx = qA .

�

(B.6)

Furthermore, to have complete chemical gauge invariance ZA
x should be constant along the 

worldlines: only in this way ∇ν ñνx  vanishes, giving rise to a Lagrangian description which is 
completely equivalent to the one obtained using the nν

x . In particular, the energy–momentum 
tensor, as defined by (17) is invariant with respect to such a change of chemical basis.

To provide an explicit example, we show how the transformation (B.4) comes down to the 
chemical gauge transformation considered in [26], see equation (2.23) therein. Carter and col-
laborators considered three species in the crust of a neutron star, two s-locked (the ions that 
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constitute the crustal lattice, I, and the protons, p ) and one free (the neutrons, n) and perform 
the change of variables,

ñνI = nνI ñν
p = acnνp ñν

n = (1 − ac)nνp + nν
n ,

�

(B.7)

where ac = ac(nI , np) and the conserved current Jν  is the total baryon current nν
b = nνp + nν

n  
(namely q p = qn = 1, qI = 0). Clearly, this transformation has the general form (B.4), where 
Z must fulfill also the additional constraint (B.5).

Appendix C.  An example of Hamiltonian formulation in the Newtonian limit

In this appendix we address the practical problem of how to translate two different Newtonian 
formulations, the one of [23] and the one of [24], for the hydrodynamics of the outer core of 
a neutron star under conditions when both neutrons (n) and protons (p ) are superfluid. Since 
the model has been formulated for matter at zero temperature, there is no entropy current, i.e. 
both formulations are consider two superfluid species at zero temperature (i.e. k  =  2, l  =  0). 
Our aim is to provide a clear example of how a fully covariant theory may be used to build a 
bridge between two Newtonian theories that are apparently different. Moreover, the construc-
tion of a clear dictionary between these two different approaches has its practical usefulness 
for the reader interested in the modelling of neutron star interiors.

C.1. The Newtonian limit of the Carter formalism

Let us briefly review, following [52], how to obtain the Newtonian limit of the Carter for-
malism15. To make the discussion more concrete, we stick to the case (k  =  2, l  =  0) for two 
superfluid species at zero temperature. In fact, the zero temperature case with two independent 
currents is of practical interest as it provides the basic framework to model neutron star interi-
ors (see e.g. [7–9, 12, 38]). We start by writing the potential E as a function of the rest frame 
densities of protons np  and neutrons nn and of the relative speed ∆,

dE = µ(C)
p dnp + µ(C)

n dnn + αd∆2,
� (C.1)

where µ
(C)
x  are the comoving chemical potentials defined in 64. It is easy to show that the 

quantity α is related to the anomaly coefficient via

α =
1
2
A n2

np Γ
2 =

1
2
A nn np Γ

4 ,
� (C.2)

where Γ = n2
np = (1 −∆2)−1/2 is the Lorentz factor associated to the relative motion between 

the two species. With the perspective of taking the Newtonian limit we write E as

E = mnp + mnn + Ẽ(np, nn,∆2) ,
�

(C.3)

where m is the mass per particle of the mixture (this definition of m allows us to forget about 
the electrons that, in principle, should be present into the system and define a third fluid). The 
differential of Ẽ is, then,

15 Strictly speaking the formalism of [52], which generalizes the model of [23], is the Newtonian counterpart of 
the relativistic hydrodynamical description of superfluid neutron stars of [38]. The difference with respect to the 
language adopted by Carter is mainly in the definition of the entrainment parameters: the approaches of Carter and 
Prix are completely equivalent and it is possible to translate one into the other.
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dẼ = µACP
p dnp + µACP

n dnn + α d∆2 ,
� (C.4)where

µACP
x = µ(C)

x − m
� (C.5)is the non-relativistic version of the comoving chemical potential.

Following the notation used by [24], we denote with µACP
x  the chemical potential used in 

[56], as well as in [52]. Considering that

nx =
√
(n0

x)
2 − n2

x ≈ n0
x −

1
2

n2
x

n0
x

,
� (C.6)

the total master function reads

Λ ≈ −mn0
p − mn0

n +
mn2

p

2n0
p
+

mn2
n

2n0
n
− Ẽ(n0

p, n0
n,∆2) .

� (C.7)
The Newtonian master function is defined as the relativistic one deprived of the rest-mass 
energy density contribution, namely

Λ̃ := Λ+ mn0
p + mn0

n =
mn2

p

2n0
p
+

mn2
n

2n0
n
− Ẽ .

� (C.8)
Now, following definition (16),

µ p
j =

∂Λ

∂n j
p
=

∂Λ̃

∂n j
p
= mvpj −

2α
n0

p
(vpj − vnj)

µn
j =

∂Λ

∂n j
n
=

∂Λ̃

∂n j
n
= mvnj −

2α
n0

n
(vnj − vpj),� (C.9)

where

v j
x =

n j
x

n0
x� (C.10)

is the velocity of the species x. For later convenience we introduce also the symbol

εx :=
2α
mnx� (C.11)

which allows us to rewrite (C.9) in the form

µx
j = m[(1 − εx)vxj + εxvyj] x �= y .

�

(C.12)

The entrainment parameters α and εx  have, in general, an explicit dependence on the relative 
speed ∆. However, in [24] the entrainment coefficients are supposed, coherently with a low 
velocity limit, to be functions only of the densities, so that we should perform a first order 
expansion around ∆2 = 0, namely (see C.4)

Ẽ(n0
p, n0

n,∆2) ≈ Ũ(n0
p, n0

n) + α(n0
p, n0

n)∆
2 ,

�

(C.13)

16 We recall that if all the species comove E coincides with U, see (57), so Ẽ(n0
p, n0

n,∆2 = 0) = Ũ(n0
p, n0

n).
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where the quantity Ũ is the non-relativistic energy density for comoving species as measured 
in their common frame16.

C.2.  Introducing the Hamiltonian

As a first step, we introduce the concept of Hamiltonian for a two-fluid system (the multifluid 
generalization should be obvious). This is done by considering the energy–momentum tensor 
in a certain frame but, since in the model of Kobyakov and Pethick there is no entropy current, 
we are forced to use an observer O that is completely generic. The energy density measured 
in the frame O can be obtained as

HO = T00 = −Λ + n j
pµ

p
j + n j

nµ
n
j ,

� (C.14)which is the Legendre transform of Λ with respect to n j
x . Its differential reads

dHO = µ p0dn0
p + µn0dn0

n + n j
pdµ p

j + n j
ndµn

j .
�

(C.15)

Again, before taking the Newtonian limit we subtract the rest mass, defining the Hamiltonian 
density

H̃O := HO − mn0
p − mn0

n .
�

(C.16)

Taking the differential of both sides it is evident that

dH̃O = µO
p dn0

p + µO
n dn0

n + n j
pdµ p

j + n j
ndµn

j ,
� (C.17)where

µ̃O
p = µ p0 − m µ̃O

n = µn0 − m,
�

(C.18)

are the non-relativistic chemical potentials in the frame of O, not to be confused with the 
thermodynamic (44) or the comoving (64) ones. Finally,

H̃O = −Λ̃ + n j
pµ

p
j + n j

nµ
n
j

� (C.19)is the analogous of (C.14) in the Newtonian limit.

C.3.  Connection between the Lagrangian and Hamiltonian approaches

Using the definition of the momenta in (C.9), it is possible to prove the useful identity,

1
2

n j
pµ

p
j +

1
2

n j
nµ

n
j =

mn2
p

2n0
p
+

mn2
n

2n0
n
− α∆2 ,

�

(C.20)

that, used with (C.8) and (C.13), allow to cast the energy density given in (C.19) into the form

H̃O = Ũ +
1
2

n j
pµ

p
j +

1
2

n j
nµ

n
j .

�

(C.21)

This expression highlights the separation into a kinetic and an internal part, see with equa-
tion (10) in [24]. This separation leads naturally to define a new chemical potential for each 
species as

µKP
x :=

∂Ũ
∂n0

x
for x = n, p ,

� (C.22)
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which coincides with the thermodynamic chemical potential µ
(T)
x  in the limiting case in which 

all species comove. The label KP is used to stress that this is the notion of chemical potential 
used by [24].

To complete the dictionary we need to relate the two formulations of entrainment: in [52] 
the notation (66) is used, while (69) is preferred in [24]. Inverting (C.12), it is immediate to 
obtain

n j
x =

nKP
xx

m
µxj +

nKP
xy

m
µyj with x, y = {n, p}, x �= y ,

�

(C.23)

where the diagonal element of the nKP
xy  entrainment matrix are

nKP
pp =

n0
p(1 − εn)

1 − εp − εn
nKP

nn =
n0

n(1 − εp)

1 − εn − εp
,

� (C.24)
while the off-diagonal ones are

nKP
pn = −

n0
pεp

1 − εp − εn
nKP

np = − n0
nεn

1 − εp − εn
.

� (C.25)

Here, the coefficients nKP
xy  do not depend on the relative speed and obey, as it should be, to the 

symmetry condition nKP
np = nKP

pn . They, also satisfy, considering (C.11), the equations

nKP
pp + nKP

pn = n0
p nKP

nn + nKP
np = n0

n,

which can be derived directly from the Newtonian limit of the relativistic equation T0j = T j0, 
namely

n0
pµ

p
j + n0

nµ
n
j = m(npj + nnj).

�

(C.26)

Now that we know how to translate the entrainment coefficients, we can come back to the 
Hamiltonian for the system and rewrite (C.21) in the form

H̃O = Ũ(n0
p, n0

n) +
n0

p

2m
µ2

p +
n0

n

2m
µ2

n −
nKP

np

2m
|µp − µn|2 ,

�

(C.27)

which, remembering equation (C.17), implies

µ̃O
x = µKP

x +
µ2

x

2m
−

∂nKP
np

∂n0
x

|µp − µn|2

2m
.

�

(C.28)

This relation allows to link the notion of chemical potential used by Kobyakov and Pethick to 
the chemical potentials in (C.18).

C.4. The problem of the chemical potentials

In [57], the Euler-like equations for the two-fluid system derived in [24] are compared with 
those expected in the context of Prix’s theory. Kobyakov and Pethick finds out that they coin-
cide if it is true that

µACP
x − 1

2
mε2

x∆
2 = µKP

x −
∂nKP

np

∂n0
x

|µp − µn|2

2m
.

�

(C.29)
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This is a non-immediate translation problem whose solution can be conveniently found by 
considering that the two formulations are the Newtonian limit of the same relativistic theory.

Let us use equations (C.5) and (C.18) into the definition of the comoving chemical poten-
tials (64):

mx + µACP
x = (mx + µ̃O

x ) u0
x − µxj u j

x .
� (C.30)The Newtonian limit of the above equation is immediately obtained thanks to the fact

u0
x ≈ 1 +

1
2

v2
x u j

x ≈ v j
x,

�
(C.31)

so that, neglecting higher orders and imposing the approximation mx ≈ m, equation (C.30) 
reduces to

µACP
x = µ̃O

x +
1
2

mv2
x − µxjv j

x .
�

(C.32)

Employing equations (C.28) and (C.12), we finally arrive at

µACP
x =µKP

x −
∂nKP

np

∂n0
x

|µp − µn|2

2m
+

µ2
x

2m
+

mv2
x

2
− µxjv j

x

=µKP
x −

∂nKP
np

∂n0
x

|µp − µn|2

2m
+

1
2

mε2
x∆

2 ,� (C.33)

which is what we wanted to prove.
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