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Abstract
The q-deformed loop gravity framework was introduced as a canonical 
formalism for the Turaev–Viro model (with Λ < 0), allowing to quantize 3D 
Euclidean gravity with a (negative) cosmological constant using a quantum 
deformation of the gauge group. We describe its application to the 2-torus, 
explicitly writing the q-deformed gauge symmetries and deriving the reduced 
physical phase space of Dirac observables, which leads back to the Goldman 
brackets for the moduli space of flat connections. Furthermore it turns out that 
the q-deformed loop gravity can be derived through a gauge fixing from the 
Fock–Rosly bracket, which provides an explicit link between loop quantum 
gravity (for q real) and the combinatorial quantization of 3D gravity as a 
Chern–Simons theory with non-vanishing cosmological constant Λ < 0. A 
side-product is the reformulation of the loop quantum gravity phase space 
for vanishing cosmological constant Λ = 0, based on SU(2) holonomies and 
su(2) fluxes, in terms of ISU(2) Poincaré holonomies. Although we focus on 
the case of the torus as an example, our results outline the general equivalence 
between 3D q-deformed loop quantum gravity and the combinatorial 
quantization of Chern–Simons theory for arbitrary graph and topology.
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(Some figures may appear in colour only in the online journal)

Introduction

Three-dimensional gravity is the ideal test bed for quantum gravity in four space-time dimen-
sions. Indeed, 3D gravity is a topological theory, with no local degree of freedom—no gravita-
tional wave per se, and 4D gravity can be formulated as an almost-topological theory through 
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the Plebanski action [1–3] or the McDowell–Mansouri action [4, 5]. More precisely, every 
solution to the vacuum 3D Einstein equations has constant curvature given by the cosmologi-
cal constant and, in particular, are flat in the case of a vanishing cosmological constant. Then, 
the theory only has global degrees of freedom reflecting the non-trivial topology of space-
time, the boundary geometry and the coupling of matter fields to gravity. This reformulation 
of 3D gravity as a topological field [6] allows for an exact quantization. We can then compare 
the various quantization schemes proposed for quantum gravity, test the matter-geometry cou-
pling at the quantum level and clarify some conceptual issues arising in higher space-time 
dimensions, thereby gaining much insight into 4D quantum gravity.

Let us have a look at the various quantization schemes for 3D gravity. First, 3D gravity 
can be written as a Chern–Simons theory [6, 7]. Its canonical quantization is known as the 
combinatorial quantization [8–11], whereas the path integral approach for Chern–Simons has 
been developed by Witten [6]. From another starting point, 3D gravity, defined by the Palatini 
action in its first order formulation, can be quantized through a canonical quantization scheme 
as loop quantum gravity, or directly as a path integral leading to the Ponzano–Regge state-sum 
for a vanishing cosmological constant [12–16] and the Turaev–Viro topological model for a 
non-vanishing cosmological constant [17]. For a vanishing cosmological constant, most of the 
approaches have been shown to be equivalent at the end of the day [18, 19].

For the Chern–Simons formulation of 3D gravity, the combinatorial quantization formal-
ism has been developed for an arbitrary gauge group [8, 9, 11, 20] and quantum groups sym-
metries arise for any choice of spacetime signature and sign of the cosmological constant. The 
theory of quantum groups and Hopf algebra offers a powerful mathematical tool to describe 
3D quantum gravity and the question whether such a mathematical feature is fundamental 
is legitimate. For a vanishing cosmological constant, it has also been shown, in the context 
of the Ponzano–Regge model, that a quantum group structure encodes the symmetries at the 
quantum level [18, 19]. For a non-vanishing cosmological constant, the Turaev–Viro topo-
logical state-sum [17] defined in terms of the representations of the q-deformed Uq(su(2)) 
at q root of unity describes 3D Euclidean quantum gravity with a positive cosmological con-
stant. A relation between the path integral quantization of Chern–Simons and the Turaev–Viro 
model was explicitly given in [21].

In the loop quantum gravity formalism with a non-zero cosmological constant, the appear-
ance of a quantum group as a symmetry group is not straightforward, which complicates 
making a direct connection to the other frameworks. A first link was made in [22, 23], where 
the quantum group structure was used to regularize the Hamiltonian constraint of 3D loop 
quantum gravity for a positive cosmological constant leading back to the Turaev–Viro trans
ition amplitudes. For 3D Euclidean gravity with a negative cosmological constant, it was pro-
posed in [24, 25] to implement the cosmological constant via a q-deformation of the standard 
loop gravity phase space, with the deformation paramater q given in terms of the cosmologi-
cal constant. Then, the quantization of the classical q-deformed phase space and q-deformed 
gauge symmetry, formulated as the Heisenberg double and Drinfeld double of SU(2) naturally 
defines a quantum group structure—Uq(su(2)) with q real. This framework admits an elegant 
interpretation in terms of (classical and quantum) discrete hyperbolic geometry [24, 26] and 
is related to the Turaev–Viro amplitude (generalized for q real) [25]. It thus seems to be a 
promising candidate to understand 3D quantum gravity with a non-zero cosmological con-
stant4. Another open question with this formulation is an explicit relation with the well-studied 

4 Nevertheless, the derivation of this q-deformed loop gravity framework from the Palatini action is still missing. 
Understanding the discretization procedure to go from the Palatini action to the q-deformed phase space might be 
the final ingredient that will allow to describe 3D loop quantum gravity in terms of a quantum group symmetry.
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combinatorial quantization framework for the Chern–Simons theory. One guide at the classi-
cal level is that the phase space structures of both the q-deformed loop gravity phase space and 
the Fock and Rosly phase space [10]—the classical phase space underlying the combinatorial 
quantization—can be written in terms of classical r-matrices, which may imply a link between 
the two approaches.

The goal of this paper is to study the link between loop gravity and Chern–Simons at the 
discrete level. We will focus on the simplest non-trivial compact spacial hypersurface—the 
2-torus. Thus, starting from the q-deformed 3D loop gravity framework applied to the 2-torus, 
we derive the physical phase space of Dirac observables and show that we recover, as expected, 
the Goldman brackets [27]. Then, the second step is the reconstruction of the q-deformed loop 
gravity phase space on the 2-torus from the Fock–Rosly description of Chern–Simons. More 
precisely, we show that loop gravity for a given graph embedded in the 2-torus can be viewed 
as a partial gauge fixing of the Fock–Rosly phase space defined on a larger (that we will call 
‘fatter’) graph. We illustrate the sequences of gauge-fixing between the original graph, the fat 
graph and the fatter graph on figure 1. This serves as a first step to relate the combinatorial 
quantization and the loop quantum gravity scheme for a non-zero cosmological constant. We 
expect that our construction can be directly generalized to arbitrary topologies indicating a 
general equivalence between q-deformed loop quantum gravity and the combinatorial quanti-
zation of Chern–Simons theory.

This paper is organized as follows. In section 1, we first review the loop gravity phase space 
construction with a zero cosmological constant and apply it on the 2-torus. Then, a key step 
toward the deformation of this model is the reformulation of the phase space as a Heisenberg 
double. In this context, the symmetries generated by the constraints (closure (or Gauss) con-
straint and flatness constraint) naturally appear as Poisson–Lie groups. An interesting result 
obtained at this stage is the reformulation of 3D loop gravity with a zero cosmological con-
stant as a canonical theory of a flat Poincaré connection. In section 2, we apply the setup of 
[24] on the torus to build a q-deformed phase space with a negative cosmological constant. 
A set of physical observables—the Wilson loops, are checked to give the Goldman brackets. 
Section 3 contains the main result of the paper. We start with the Fock–Rosly description and 
recover, by an asymmetric gauge fixing, the Poisson structure and constraint system of loop 
gravity described in section 4.

1.  Reviewing the flat case with vanishing cosmological constant

We start by reviewing the canonical analysis for 3D loop gravity with Λ = 0 on the 2-torus. 
This flat model will serve as the point of comparison for 3D loop gravity with a non-vanishing 
cosmological constant. At the kinematical level, the phase space is defined by the holonomy-
flux observables, which define 2D discrete geometries. The dynamics are then implemented 
through the Hamiltonian constraints, which encode the theory’s gauge invariance under 3D 
diffeomorphisms. Applying this framework to the 2-torus, we explicitly construct the kine-
matical phase space for a basic graph embedded on the torus, and solve the Hamiltonian con-
straints to obtain the reduced physical phase space and identify the Dirac observables.

We further show that the procedure, from the kinematical to the physical phase space, can 
be entirely recast in the language of the Heisenberg double algebraic structure, which will be 
the starting point of the generalization to the curved theory with Λ �= 0 as described in [24]. 
This allows to re-write the phase space in terms of ISU(2) holonomies and ISU(2) flatness 
constraints and thus reformulate 3D loop gravity at Λ = 0 as the canonical theory for a flat 
Poincaré connection.

M Dupuis et alClass. Quantum Grav. 37 (2020) 025017
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1.1.  Loop gravity phase space on the torus

1.1.1.  Holonomy-flux phase space for 3D loop gravity.  The phase space for canonical 3D loop 
gravity encodes the basic degrees of freedom of a discretized 2D surface (see [28, 29] for 
a thorough and careful discretization). Considering an oriented graph Γ, the basic building 
block is a T∗SU(2) phase space associated to each link e ∈ Γ. For each oriented link, we 
define a group element ge ∈ SU(2) along the link and a Lie algebra vector xe ∈ su(2) ∼ R3 
thought of as living on the source of the link, as illustrated on figure 2. The group element 
ge gives the holonomy of the SU(2) connection along the edge while the vector xe is the dis-
cretized geometric flux transverse to that edge, defined as the integrated triad along the edge 
of a 2D triangulation dual to the graph.

Decomposing the flux vector on the Pauli matrix basis for Hermitian matrices, xe = xa
eσ

a, 
the T∗SU(2) symplectic structure is explicitly given by the Poisson brackets:

{xa
e , ge} =

i
2
σage, {xa

e , xb
e} = εabcxc

e, {ge, ge} = 0.� (1)

We also define the flux vectors at the target vertex by a parallel transport by the SU(2) holo-
nomy, x̃e = ge � xe = g−1

e xege, satisfying flipped su(2) algebra Poisson brackets:

Figure 1.  The loop gravity phase space is defined on a fat graph, where the links 
of the original graph have been thickened into ribbons. The edges of this fat graph 
are alternatively dressed with fluxes {�, �̃, m, m̃} ∈ SB(2,C) and SU(2) holonomies 
{u, ũ, v, ṽ} ∈ SU(2). The Fock–Rosly phase space on the same fat graph is defined 
entirely in terms of SL(2,C) holonomies {L, L̃, M, M̃, U, Ũ, V , Ṽ} ∈ SL(2,C). We 
study the equivalence of these two formalism. Not only these two phase spaces lead to 
the same Goldman bracket for gauge-invariant observables, but we further show that 
these two phase spaces descend from different gauge-fixings of the same Fock–Rosly 
phase space defined on a ‘fatter graph’ where the nodes of the fat graph have been 
unfolded into 3-valent nodes.

M Dupuis et alClass. Quantum Grav. 37 (2020) 025017
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{xa
e , x̃b

e} = 0, {x̃a
e , ge} =

i
2

geσ
a, {x̃a

e , x̃b
e} = −εabcx̃c

e.� (2)

It can be convenient to also project the SU(2) group element onto the Pauli basis and introduce 
the ‘momentum’ variables:

p0
e =

1
2

Trge, pa
e =

1
2i

Trgeσ
a, ge = p0

e I+ ipa
eσ

a, with ( p0
e)

2 +�pe
2 = 1.

� (3)
In these variables, the Poisson brackets given above in equation (1) now read:

{xa
e , p0

e} = −1
2

pa
e , {xa

e , pb
e} =

1
2
δabp0

e +
1
2
εabcpc

e, { pµ
e , pνe } = 0, µ, ν = 0..3.

� (4)
Now the loop quantum gravity phase space on the graph Γ is defined by considering the 

collection of the independent T∗SU(2) phase spaces living on each link e ∈ Γ and coupling 
them at the graph nodes by a closure constraint -or Gauss law- at each vertex v ∈ Γ:

Ga
v =

∑
e|v=s(e)

xa
e −

∑
e|v=t(e)

x̃a
e .

� (5)

Imposing 
−→G v = 0 amounts to requiring that the incoming flux at the vertex v equals the outgo-

ing flux. This closure constraint generates the gauge invariance under SU(2) transformations 
around the vertex:

{Ga,Gb} = εabcGc,
∀e | v = s(e), {Ga, xb

e} = εabcxc
e,

∀e | v = t(e), {Ga, x̃b
e} = εabcx̃c

e.
� (6)

The symplectic quotient of the product of the edge phase spaces T∗SU(2)E (where E counts 
the number of edges of the graph) by the closure constraint defines the kinematical phase 
space of 3D loop quantum gravity on the graph Γ. In the context of loop quantum gravity in 
3  +  1 dimensions, this holonomy-flux phase space is interpreted as defined discrete three-
dimensional twisted geometries [30] (see also [31–33]). Here, in 3D space-time dimensions, 
these are meant to represent 2D discrete geometries. This becomes explicit once we impose 
the Hamiltonian constraints for 3D loop quantum gravity, implemented as flatness constraints 
for the SU(2) holonomies around loops of the graph, which implies that we can reconstruct a 
2D geometric triangulation dual to the graph (see e.g. [34–36]).

1.1.2.  Holonomy-flux phase space on the torus.  We apply this framework to the 2-torus, 
which is our main object of study. Let us thus introduce the twisted geometry phase space on 

Figure 2.  Holonomy-Flux phase space for 3D loop gravity on a graph Γ. (a) Oriented 
graph Γ. (b) T∗SU(2) phase space on the edge e. (c) Closure constraint at a vertex v.

M Dupuis et alClass. Quantum Grav. 37 (2020) 025017
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the basic graph for the 2-torus, with two edges wrapping around the torus meeting at a single 
vertex and surrounding a single face as illustrated on figure 3.

We associate each edge with a pair of holonomy-flux variables, namely (g, x) on the hori-
zontal edge, as drawn on figure 3, and (h, y) on the vertical edge, equipped with the Poisson 
structure defined in (1),

∣∣∣∣∣∣

{xa, g} = i
2σ

ag,
{xa, xb} = εabcxc,
{g, g} = 0,

∣∣∣∣∣∣

{ya, h} = i
2σ

ah,
{ya, yb} = εabcyc,
{h, h} = 0.

� (7)

The two pairs of variables are independent in the kinematical level,

{xa, yb} = {xa, h} = {ya, g} = {g, h} = 0.� (8)

The vectors x and y  are sitting at the source vertex of their respective link, and we define the 
fluxes x̃ = g � x = g−1xg and ỹ = h � y = h−1yh at the target of the links.

It is useful to introduce the vector Xa ≡ xa − x̃a, which forms a closed Lie algebra with the 
SU(2) holonomy g,

{Xa, g} =
i
2
[
σa, g

]
, {Xa, Xb} = εabcXc, {g, g} = 0,� (9)

or equivalently written in terms of the momentum variables pµ for the group element g:

{Xa, Xb} = εabcXc, {Xa, pb} = εabcpc, { pµ, pν} = { p0, Xa} = 0.� (10)

This Poincaré algebra has two Casimirs, the mass �p 2 = papa (or equivalently p0 =
√

1 −�p 2 ) 
and the spin �X ·�p . Let us point out that the vector X = x − x̃ = x − g � x is orthogonal to �p  
by definition, so that the spin �X ·�p  automatically vanishes. We similarly introduce the vector 
Y = y − ỹ and the momentum variables qµ for the SU(2) holonomy h.

Then we impose the closure constraint -or Gauss law- at the vertex:

Ga = xa − x̃a + ya − ỹa = Xa + Ya = 0,� (11)

which generates SU(2) gauge transformations, that is 3D rotations on the four vectors x, x̃, y, ỹ  
and the SU(2)-action by conjugation on the two holonomies g and h:

g
G∈SU(2)�−→ GgG−1,

h G�−→ GgG−1,

(x, x̃) G�−→ (GxG−1, Gx̃G−1),

(y, ỹ) G�−→ (GyG−1, GỹG−1).
� (12)

Figure 3.  Twisted geometry phase on the 2-torus, parametrized by g, h ∈ SU(2) and 
x, x̃, y, ỹ ∈ R3, as two copies of T∗SU(2) related by the closure constraint inducing the 
SU(2) gauge invariance.

M Dupuis et alClass. Quantum Grav. 37 (2020) 025017
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Taking the symplectic quotient by the Gauss law means both assuming that the variables 
satisfy the constraints Ga = 0 and quotienting by the action it generates, i.e. considering only 
SU(2)-invariant observables.

1.2.  Physical observables on the torus

1.2.1. The Hamiltonian constraint algebra on the torus.  The graph on the 2-torus, with a sin-
gle vertex and two edges wrapping around the torus cycles as on figure 3, defines a cellular 
decomposition for the torus with a single face. The Hamiltonian constraints consist in a flat-
ness constraint around that face, which amounts to imposing the flatness of the SU(2) connec-
tion on the 2-torus:

F = ghg−1h−1 = I.� (13)

While the closure constraints Ga generates SU(2) gauge transformations at the graph vertex, 
the flatness constraints TrFσa generate translations of the flux vectors. Together they define 
a first class system of constraints:

{Ga,Gb} = εabcGc, {Ga,F} =
i
2
[
σa,F

]
, {F ,F} = 0.� (14)

This constraint algebra for 3D loop gravity is identified as the Poincaré algebra.

1.2.2.  Dirac observables and Reduced phase space.  The reduced phase space, or physical 
phase space, consists in the Dirac observables, which commute with both the closure and 
flatness constraints. Since the closure constraint generates SU(2) transformations, amounting 
to 3D rotations on the vectors �x,�p,�y,�q, we can focus on rotation-invariant observables. As a 
result, we identify four independent Dirac observables, namely �x ·�p , �y ·�q , �p 2 and �q 2,

{G,�x ·�p} = {G,�y ·�q} = {G,�p 2} = {G,�q 2} = 0, {F ,�p 2} = {F ,�q 2} = 0,
� (15)

{TrσaF ,�x ·�p} =
1
2

Tr
(
σag(I−F)

)
∼

F=I
0, {TrσaF ,�y ·�q} =

1
2

Tr
(
σaghg−1(I−F)

)
∼

F=I
0,

� (16)
where we have used the definition of the momentum variable for the group elements, 
i�p · �σ = g − p0I and i�q · �σ = h − q0I.

We compute the Poisson brackets between those Dirac observables, substituting �p 2 and �q 2 
by p 0 and q0 for the sake of simplifying the notations,

{�x ·�p, p0} = −1
2
(1 − p2

0), {�y ·�q, q0} = −1
2
(1 − q2

0).� (17)

It is fairly easy to identify Darboux coordinates on this reduced physical phase space:
{
�x ·�p√
�p 2

, 2 arccos p0

}
=

{
�y ·�q√
�q 2

, 2 arccos q0

}
= 1,� (18)

which we interpret as pairs of physical length-angle conjugate variables.
This can be made more explicit by solving the constraints. First of all, the flatness implies 

that g and h commute, i.e. (assuming that they are not the identity) they have the same rotation 
axis, say the unit vector v̂ ∈ S2 on the 2-sphere:

M Dupuis et alClass. Quantum Grav. 37 (2020) 025017
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g = ei θ2 v̂·�σ , h = ei ϕ2 v̂·�σ , p0 =
1
2

Trg = cos
θ

2
, q0 =

1
2

Trh = cos
ϕ

2
.

� (19)
The rotation angles θ and ϕ are Dirac observables, invariant under both rotations and transla-
tions, while the rotation axis v̂ is a gauge variable.

Now turning to the flux vectors, the flatness constraint does not impose any condition 
while the closure constraint imposes that the vector �X + �Y  vanishes. The vector �X  is obtained 
as x − x̃  with x̃ = g � x obtained by rotating x around v̂ by an angle θ. As a result, �X  is 
always orthogonal to the rotation axis v̂ and does not depend on the longitudinal projection 
�x · v̂. Decomposing �x = �x‖ +�x⊥ and similarly �y = �y‖ +�y⊥ in terms of components along the 
direction v̂ and orthogonal to that direction, the vectors �X  and �Y  only depend on the transver-
sal components, �X = �x⊥ − g ��x⊥ and �Y = �y⊥ − g ��y⊥. The closure constraint �X + �Y = 0 
is then a condition on the transversal components of x and y  and actually uniquely fixes �y⊥ 
in terms of �x⊥ at given θ and φ. More precisely, �y⊥ is obtained5 from �x⊥ by a rotation of 
angle (θ − ϕ)/2 + π  and rescaling of the oriented modulus by a factor sin(θ/2)/ sin(ϕ/2). 
The closure constraint is thus solved by choosing the orthogonal projection for the flux along 
one cycle, �x⊥, determining �y⊥ from θ, ϕ and �x⊥, and adding to them arbitrary longitudinal 
components �x‖ and �y‖ in order to obtain solutions for �x  and �y . To summarize, as illustrated 
on figure 4, the longitudinal projections �x · v̂ and �y · v̂ are invariant under translations and are 
Dirac observables, while the orthogonal projection �x⊥, and thus �y⊥, -both in direction and 
norm- are pure gauge.

1.3.  3D Loop gravity as a theory of a flat Poincaré connection

Here, we propose to revisit the standard loop gravity formalism, reviewed above, to reform
ulate the holonomy-flux phase space in terms of Poincaré holonomies. This is achieved in two 
steps. First, we write both SU(2) holonomies and flux vectors as Poincaré group elements. We 
show that the closure constraint and the flatness constraint can be combined together into a 
single Poincaré flatness constraint. The main tool is fattening the graph Γ into a ribbon graph, 
as proposed for q-deformed loop gravity in [24, 37]: the graph links are upgraded to ribbons 
and the parallel transport equation  between the source flux and target flux of each link is 
rewritten as a flatness constraint around the corresponding ribbon. Second, we show that the 
Poisson brackets between the Poincaré group elements are derived from a r-matrix, inherited 
from seeing ISU(2) as a Heisenberg double. This allows to recast the 3D loop gravity phase 
space and constraint algebra at vanishing cosmological constant Λ = 0 using the same struc-
tures as the q-deformed case corresponding to a non-vanishing cosmological constant Λ < 0 .

1.3.1.  Holonomy-flux as a Poincaré holonomy.  The main idea behind reformulating the 3D 
loop gravity phase space in terms of Poincaré holonomies is to consider the flux vectors as 
Poincaré translations in ISU(2) while the SU(2) holonomies define the SU(2) rotations in 
ISU(2). This allows to put the flux vectors and the SU(2) holonomies on the same level and to 
re-package them in a single ISU(2) object.

The crucial step to achieve this is to promote the original graph Γ to the corresponding fat 
graph Γfat, as illustrated on figure 5. The fat graph is defined by thickening the links of the 
graph Γ, there by turning them into ribbons, and similarly enlarging the node into a surface 

5 In the special case when θ = ϕ, the closure constraint simply reduces to �x⊥ +�y⊥ = 0.

M Dupuis et alClass. Quantum Grav. 37 (2020) 025017
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patching the ribbons together. This ribbon graph now has SU(2) group elements running along 
the links on both side of the ribbons, g and g̃ instead of solely g, and the flux vectors are 
attached to new lines transverse to the original link and going around the nodes, as shown 
on figure 5. This method was used in [24, 37] to define the phase space for q-deformed loop 
gravity.

Now we put holonomies g ∈ SU(2) and flux vectors x ∈ su(2) in the same type of objects, 
embedding them in SU(2)× su(2) by promoting SU(2) group elements g to elements (g, 0) 
and flux vectors x to elements (I, x). We endow this larger space with an associative product, 
turning it into the Poincaré group ISU(2) = SU(2)� su(2):

(g1, x1)(g2, x2) = (g1g2, x1 + g1x2g−1
1 ), (g, x)−1 = (g−1,−g−1xg).� (20)

This allows to put the parallel transport conditions along the links, the closure constraints at 
the nodes and the SU(2) flatness constraints on the same footing and write all of them as flat-
ness of ISU(2) holonomies.

First, considering an edge turned into a ribbon, we impose a flatness constraint around the 
ribbon, requiring that the ordered product of the Poincaré group elements around the ribbon 
be equal to I, as drawn on figure 6(a). This ribbon flatness constraint becomes the parallel 
transport condition between source and target flux vectors:

�x
�̃x

v̂

θ

�x‖

gauge
�x⊥

Figure 4.  Length-angle variables. The flux vector �̃x  is obtained by acting with the 
rotation g on the vector �x , i.e. rotating it around ̂v by an angle θ, with the parametrization 
g = ei θ2 v̂·�σ ∈ SU(2). The Dirac observables (in red) are the angle θ and the longitudinal 
projection of �x  on the direction of g, i.e. �x · v̂ = �x ·�p/

√
�p2 . The gauge variables are the 

orthogonal component of the flux vector, �x⊥ (in blue) and the direction of the rotation ̂v.

y

h

x

g

ỹx̃

g̃

g
h h̃

x̃ x

ỹ

y

Figure 5.  We upgrade the original graph Γ by fattening it into a ribbon graph on the 
torus: each graph link becomes a ribbon with SU(2) holonomies running along both its 
sides and flux vectors along its two extremities.
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(I, x)(g, 0) = (g, x), (g̃, 0)(I, x̃) = (g̃, g̃x̃g̃−1), (I, x)(g, 0) = (g̃, 0)(I, x̃) ⇒
∣∣∣∣
g̃ = g
x̃ = g−1xg

.

� (21)
Then the flat graph consists in four faces: two ribbon faces corresponding to the upgraded 
graph edges, one ‘internal’ face corresponding to the thickened graph node and one face corre
sponding to the original unique face of the graph on the torus. The flatness of the Poincaré 
holonomy around the internal face encodes the closure constraint,

(I, x)(I, y)(I, x̃)−1(I,−ỹ)−1 = (I, x − x̃ + y − ỹ) = (I, 0),� (22)

while the flatness around the original face still encodes the SU(2) flatness constraint defining 
the Hamiltonian constraints of 3D loop gravity,

(g, 0)(h, 0)(g, 0)−1(h, 0)−1 = (ghg−1h−1, 0) = (I, 0),� (23)

where we used g = g̃, h = h̃ coming from the ribbon flatness constraints (21).
Assuming the ribbon flatness, we can actually go further and gather both closure and flat-

ness constraints in a single ISU(2) flatness constraint. More precisely, we choose a root vertex 
Ω around the internal face, i.e. one of the four corners of the face corresponding to the original 
graph node as shown on figure 6(b). Then, we define the Poincaré holonomies rooted at that 
point Ω:

A = (I, ỹ)−1(g, 0) = (g,−ỹ), B = (I, x̃)(h, 0) = (h, x̃).� (24)

These two ISU(2) holonomies, A and B, wrapping around the two torus cycles contain the 
exact same information as the original holonomy-flux variables g, h, x, y. We keep the graph 
drawn by these two holonomies and put aside the remaining structure of the ribbon graph: this 
reduces the fat graph back to the original graph, as we can see on figure 6(b). We introduce the 
Poincaré flatness constraint around the single face:

Figure 6.  Ribbon flatness constraints and Poincaré holonomies. (a) The original link 
dressed with the SU(2) group element g, the source flux x and target flux x̃ has been lifted 
to a ribbon. Imposing the flatness of the Poincaré holonomy around the ribbon leads 
back to the parallel transport condition along the original link: the SU(2) holonomies 
along both side of the ribbon are identical, g = g̃, while the target flux x̃ is obtained by 
the action of g on the source flux x. (b) Choosing a root vertex Ω out of the four corners 
around the internal face corresponding to the original graph node, we define two ISU(2) 
group elements A, B, which combine flux vectors and SU(2) holonomies: these carry 
the same data as the holonomy-flux variables on the original graph.
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AB = BA ⇔ (gh,−ỹ + x) = (hg, x̃ − y) ⇔
∣∣∣∣
gh = hg
x − x̃ + y − ỹ = 0

,� (25)

showing that SU(2) flatness and closure are indeed repackaged into a single ISU(2) flatness 
constraint.

This shows how to reformulate the loop gravity holonomy-flux variables into Poincaré 
holonomies, by promoting the graph to a ribbon graph then by choosing a root vertex on the 
ribbon graph around each graph node in order to define ISU(2) holonomies running along the 
original graph. This procedure is a priori straightforwardly generalizable to arbitrary graphs.

The resulting Poincaré group elements, A and B, inherit Poisson brackets from the 3D 
loop gravity Poisson brackets described earlier. We show below that these can be re-derived 
entirely from the perspective of the Poincaré group ISU(2) in terms of the r-matrix associated 
to ISU(2) interpreted as a Heisenberg double. This would conclude the entire reformulation of 
3D loop gravity in terms of a flat ISU(2) connection.

1.3.2.  Poisson bracket between ISU(2) holonomies.  The Poisson brackets for the Poincaré 
holonomies A and B follows from loop gravity brackets:

A = (g,−ỹ), {g, g} = 0, {ỹa, ỹb} = −εabcỹc, {g, ỹ} = 0,� (26)

B = (h, x̃), {h, h} = 0, {x̃a, x̃b} = −εabcx̃c, {h, x̃} = 0,� (27)

as well as the Poisson brackets {A, B} between the ISU(2) holonomies:

{g, h} = 0, {ỹ, x̃} = 0, {ỹa, h} =
i
2

hσa, {g, x̃a} = − i
2

gσa.� (28)

Taking into account the previous analysis of the algebra formed by the closure and flatness 
constraints in the loop gravity phase space, it is clear that the equivalent ISU(2) flatness con-
straint ABA−1B−1 = I define a constraint system of first class.

Using the fat graph tool, we have started from the graph Γ decorated with SU(2) holono-
mies g and h and flux vectors x, y, together with closure and SU(2) flatness constraints, and 
reformulated the 3D loop gravity phase space again on the graph Γ but decorated with ISU(2) 
holonomies A and B, constrained by a single ISU(2) flatness constraint.

Let us underline that A and B mix the flux vectors and SU(2) holonomies belonging to 
different links of the graph according to the combinatorial structure of the fat graph and the 
chosen root vertex Ω on it. This means that A and B are not the ISU(2) group elements fol-
lowing the ribbons:

A, B �= (g, x), (h, y).� (29)

In particular the Poisson brackets {A, A} has a different structure than the Poisson bracket 
{(g, x), (g, x)}. Indeed, in the case of A, its SU(2) component commutes with the translation, 
while in the case of the Poincaré holonomy on the ribbon (g, x) the SU(2) and su(2) comp
onents have non-trivial Poisson brackets inherited from the initial T∗SU(2) structure of the 
loop gravity phase space.

Moreover, there is a trade-off: the non-vanishing Poisson brackets {g, x} around a rib-
bon leads to the non-vanishing of the Poisson bracket {A, B} �= 0. This is a key point of this 
reformulation in terms of Poincaré holonomies: the two ISU(2) do not commute with each 
other, {A, B} �= 0, while the original SU(2) holonomies along the same links did commute, 
{g, h} = 0. The fact that holonomies living on different graph edges nevertheless meeting 
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at a same node commute in the loop gravity phase space while their Fock–Rosly brackets 
does not vanish is the main point of discord between the loop quantum gravity scheme and 
the combinatorial quantization procedure for 3D gravity as a Chern–Simons theory. Here the 
shift of perspective from {g, h} = 0 to {A, B} �= 0 promises a reconciliation between the loop 
gravity and the Fock–Rosly phase spaces and hints towards a way to bridge between 3D loop 
quantum gravity and the combinatorial quantization. We will show in the next section 2 that 
this is indeed the case in general for a non-vanishing cosmological constant, with an explicit 
map between the q-deformed loop gravity phase space and the Fock–Rosly brackets. This is 
the main result of this paper.

1.3.3.  Poincaré group as Heisenberg double and the ISU(2) Poisson bracket.  To antici-
pate the methods used for a non-vanishing cosmological constant, both in the q-deformed 
loop gravity framework or in the combinatorial quantization framework using the Fock–Rosly 
bracket, it is crucial to realize that the brackets between the ISU(2) holonomies, given above 
in equations (26)–(28), can be written in terms of a r-matrix. Indeed, the Poincaré group can 
be considered as a Heisenberg double ISU(2) = SU(2)� su(2). Then, the Poisson structure 
of ISU(2) is encoded in the r-matrix given as the tensor product of the generators of SU(2) 
and su(2) (see e.g. [38, 39]).

We start by representing Poincaré group elements (g, x) ∈ SU(2)× su(2) in terms of 4× 4 
matrices written as 2×2 block matrices6:

(g, x) =
(

g ixg
0 g

)
,� (31)

where g ∈ SU(2) is represented in its fundamental representations as 2×2 unitary matrices and 
x = �x · �σ ∈ su(2) is represented as a 2×2 traceless Hermitian matrix. For x �= 0, the expres-
sion xg is the polar decomposition of an arbitrary 2×2 invertible complex matrix. These pro-
vide a representation of the Poincaré group multiplication:

(g1, x1)(g2, x2) =

(
g1ix1g1

0 g1

)(
g2 ix2g2

0 g2

)
=

(
g1g2 i(x1 + g1x2g−1

1 )g1g2

0 g1g2

)

= (g1g2, x1 + g1x2g−1
1 ).

�

(32)

Each Poincaré group element admits a unique Iwasawa decomposition as the product of a 
translation and a rotation:

(g, x) =
(

g ixg
0 g

)
=

(
I ix
0 I

)(
g 0
0 g

)
= (I, x)(g, 0) = �u with � = (I, x) and u = (g, 0).

� (33)
The generators of the Poincaré Lie algebra are the Ja’s for the SU(2) subgroup and Ea for the 
su(2) subgroup:

6 Another parametrization of Poincaré group elements was used in [24], the spin-1 representation for the SU(2) 
group elements instead of the spin-1

2 used here. It still led to 4 × 4 matrices, but the SU(2) group elements were 
encoded in a 3 × 3 block while the su(2) vectors were written as 3-vectors:

(g, x) =
(

D1(g) �x
0 1

)
,� (30)

with D1(g) the 3 × 3 Wigner matrix representing the SU(2) group element as a 3D rotation acting on 3-vectors.
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Ja =
1
2

(
σa 0
0 σa

)
, u = eivaJa

=

(
g 0
0 g

)
with g = e

i
2 vaσa

= cos
|v|
2
I2 + i

1
|v|

sin
|v|
2

vaσa,

� (34)

Ea =

(
0 σa

0 0

)
, EaEb = 0, ∀a, b, � = eixaEa

= I+ ixaEa =

(
I ix
0 I

)
with x = xaσa,

� (35)
which satisfies the Poincaré algebra commutators:

[Ja, Jb] = iεabcJc, [Ja, Eb] = iεabcEc, [Ea, Eb] = 0.� (36)

Provided with the bilinear form on the Lie algebra isu(2) spanned by the Ea and Ja,

B(M, N) := Tr

[
MN

(
0 I
I 0

)]
, ∀M, N ∈ isu(2),� (37)

which defines a pairing between the rotation and translation generators, B(Ea, Jb) = δab, 
B(Ea, Eb) = B(Ja, Jb) = 0, the Heisenberg double structure defines a r-matrix:

r =
∑

a

Ea ⊗ Ja, r21 =
∑

a

Ja ⊗ Ea,� (38)

which naturally satisfies the classical Yang–Baxter equation7 [38, 39]. r21 denotes the r-matrix 
after swapping the two components of the tensor product, with the implicit convention that 
r  =  r12. Using the standard notation for tensor products, M1 = M ⊗ I and M2 = I⊗ M , this 
r-matrix defines a Poisson bracket on the Poincaré group ISU(2) endowing it with a phase 
space structure:

{�1, �2} = −[r, �1�2], {u1, u2} = −[r21, u1u2], {�1, u2} = −�1ru2, {u1, �2} = �2r21u1,
� (41)

which can be directly written in a compact form as a Poisson bracket for an arbitrary Poincaré 
group element:

D ≡ (g, x) = �u, {D1, D2} = −rD1D2 + D1D2r21.� (42)

Explicitly computing the Poisson brackets between � and u leads back to the T∗SU(2) brack-
ets of the 3D loop gravity phase space for the variables on an edge:

{g, g} = 0, {xa, g} =
i
2
σag, {xa, xb} = εabcxc.� (43)

7 It is straightforward to check that the postulated r-matrix indeed satisfies the classical Yang–Baxter equation:

[r12, r13] + [r12, r23] + [r13, r23] =
∑
a,b

Ea ⊗ [Ja, Eb]⊗ Jb +
∑
a,b

Ea ⊗ Eb ⊗ [Ja, Jb]

= i

(∑
a,b

εabcEa ⊗ Ec ⊗ Jb + εabcEa ⊗ Eb ⊗ Jc

)
= 0,

�

(39)

where we used that EaEb vanishes for all indices a and b. Moreover the symmetric part of the r-matrix, 
rs = (r + r21)/2 defines a Casimir for the Lie group:

rs =
1
2
(r + r21) =

1
2

∑
a

Ea ⊗ Ja + Ja ⊗ Ea,
[
(g, x)⊗ (g, x), rs] = 0, ∀(g, x) ∈ ISU(2).

�

(40)
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In particular, it is interesting that the Poisson bracket {u1, u2} vanishes because u ⊗ u com-
mutes with r for u ∈ SU(2). This Poisson bracket will become non-trivial in the deformed case 
accounting for a non-vanishing cosmological constant.

In order to get the bracket for the target flux x̃, assuming the parallel transport equa-
tion along the edge or equivalently the ribbon flatness constraint amounts to switching from 
the right to left Iwasawa decomposition:

D = (g, x) = (I, x)(g, 0) = (g, 0)(I, x̃).� (44)

Then decomposing the Poincaré group element D = ũ�̃  with actually ũ = u gives similar 
Poisson brackets:

{�̃1, �̃2} = [r, �̃1�̃2], {�̃1, ũ2} = −ũ2r�̃1, {ũ1, �̃2} = ũ1r21�̃2, {ũ1, ũ2} = [r21, ũ1ũ2],
�

(45)
which leads to the switched T∗SU(2) brackets for g̃ = g and x̃:

{g, g} = 0, {x̃a, g} =
i
2

gσa, {x̃a, x̃b} = −εabcx̃c.� (46)

This allows to reformulate the Poisson bracket for the ISU(2) holonomy D = (g, x) going 
along the ribbon in terms of the r-matrix for the Poincaré group seen as a Heisenberg double. It 
turns out that we can also write the Poisson brackets for the ISU(2) holonomies, A = (g,−ỹ) 
and B = (h, x̃), wrapping around the two torus cycles in terms of the same r-matrix but with 
slightly different formulas. It is straightforward to show that8:

∣∣∣∣∣∣

{A1, A2} = −[r, A1A2]

{B1, B2} = [r, B1B2]

{A1, B2} = B2rA1 + A1r21B2.
� (47)

This concludes the reformulation of 3D loop gravity kinematics and dynamics as the canoni-
cal theory of a flat Poincaré connection. The logic and method seem a priori straightforward 
to be generalized to arbitrary graphs beyond the mere torus.

2.  q-deformed loop gravity on the torus

We now turn to the 3D loop quantum gravity with a non-vanishing cosmological constant, 
which is the heart of the present paper. It is based on the phase space with quantum-deformed 
braided gauge symmetries developed in [24, 37]. It deforms the T∗SU(2) phase space for 
the holonomy-flux variables on each link of the standard loop gravity into a SL(2,C) phase 
space constructed as a Heisenberg double. This modifies the r-matrix and renders the SU(2) 
holonomies non-commutative. This deformation defines the 3D loop gravity phase space for 
a negative cosmological constant Λ < 0 (and Euclidean signature) and was shown to provide 
the canonical framework—quantum states and Hamiltonian- for the Turaev–Viro topological 
spinfoam path integral for 3D quantum gravity [25, 26, 40].

We start by reviewing the SL(2,C) phase space on each graph link formulated as ribbons. 
While the holonomies along the edges still live in SU(2), the flux do not live anymore in the 

8 Writing � = (I, x) and u = (g, 0) for the first ribbon and m = (I, y) and v = (h, 0) for the second ribbon, the pairs 
of variables �, u and m, v commute with each other and independently satisfy the Poisson brackets (41). Identifying 
the two Poincaré holonomies as A = (g,−ỹ) = m̃−1u and B = (h, x̃) = �̃v, it is simple to compute their brackets in 
terms of the r-matrix.
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additive abelian9 group defined by the su(2) Lie algebra but now live in the non-abelian group 
SB(2,C). This extends the ISU(2) phase space construction for standard 3D loop quantum 
gravity described in the previous section with a deformation parameter κ entering the Poisson 
bracket through the r-matrix on SL(2,C). We then show how to recover the flat theory when 
the deformation parameter κ is sent to 0.

Gluing the edges together at the graph nodes with deformed closure constraints generating 
a braided non-linear SU(2) gauge symmetry, this defines the deformed holonomy-flux phase 
space for the holonomy-flux observables on an arbitrary graph for 3D loop gravity at Λ �= 0. 
Applying this formalism to the torus, we write down the explicit action of the deformed gauge 
symmetry on the ribbon graph. This allows us to identify simple SL(2,C) holonomies wrap-
ping about the torus’ cycles, whose traces give the Dirac observables and physical phase 
space endowed with the expected Goldman bracket for the moduli space of flat connections 
on the torus. This is the main result of this paper and achieves an explicit relation between the 
3D loop quantum gravity framework and the combinatorial quantization for 3D gravity as a 
Chern–Simons theory.

2.1. The q-deformed holonomy-flux phase space

2.1.1.  SL(2,C) as the deformed holonomy-flux phase space on an edge.  A non-vanishing 
(negative) cosmological constant deforms the phase space. As argued in [24–26, 37, 40], the 
phase space of holonomy-flux variables on a graph link gets deformed from the standard 
T∗SU(2) phase space, equivalent to the ISU(2) Heisenberg double, to SL(2,C). Every group 
element in SL(2,C), written as a 2×2 matrix, admits a unique (left) Iwasawa decomposition 
as the product of a lower triangular matrix and a SU(2) matrix:

D ∈ SL(2,C) =⇒ ∃! (�, u) ∈ SB(2,C)× SU(2) such that D = �u,
�

(48)

with the two subgroups defined as:

�

u

�̃
� �̃

u

ũ

Figure 7.  A graph link in q-deformed loop gravity carries a SL(2,C) group element D. 
Using the Iwasawa decomposition of the SL(2,C) group element D = �u as the product 
of a SB(2,C) element times a SU(2) group element, it defines both the SU(2) holonomy 
along the edge u ∈ SU(2) and a deformed notion of the flux living at the source node 
of the link � ∈ SB(2,C). These deformed holonomy-flux variables are endowed with 
a symplectic structure inherited from the classical r-matrix for sl2, which defines the 
phase space on the edge. The flux at the target node �̃  is defined through the opposite 
Iwasawa decomposition, D = �u = ũ�̃ , where ũ defines the SU(2) holonomy along the 
link with flipped orientation. This transport condition �̃ = ũ−1�u is best reformulated as 
a SL(2,C) flatness condition around a ribbon �u�̃−1ũ−1 = I. Thickening all the links of 
the graph into ribbons defines a ribbon graph, or fat graph, where the nodes are turned 
into polygons connecting the ribbons.

9 The term ‘abelian’ for standard loop gravity refers to the fact that the flux x lives in the vector space R3 with the 
usual abelian addition for vectors. This does not mean that the flux components have vanishing Poisson brackets. 
Indeed, we have {xa, xb} = εabcxc �= 0. Likewise, the term ‘non-abelian’ for q-deformed loop gravity refers to the 
fact that the flux are now group elements in SB(2,C) with a non-abelian group multiplication.
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� =

(
λ 0
z λ−1

)
∈ SB(2,C), (λ, z) ∈ R+ × C and

u =

(
α β
−β̄ ᾱ

)
∈ SU(2), |α|2 + |β|2 = 1.

� (49)
The SU(2) group element u defines the SU(2) holonomy along the graph link, while the 
SB(2,C) group element � is interpreted as a deformed version of the flux vector (at the link’s 
source), as drawn on figure 7.

The Iwasawa decomposition translates to a decomposition of the Lie algebra sl(2,C) as the 
direct sum of the Lie algebras su(2) and sb(2,C). A basis of generators are the Pauli matrices 
σa and the matrices τ a = iκ(σa − 1

2 [σ
3,σa]) = κ(iσa + ε3abσb), with an arbitrary parameter 

κ ∈ R, explicitly:

σ3 =

(
1 0
0 −1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, [σa,σb] = 2iεabcσc,� (50)

τ 3 = iκσ3, τ 1 = 2iκσ− = 2iκ
(

0 0
1 0

)
, τ 2 = −2κσ−,

∣∣∣∣∣∣

[τ 3, τ 1] = −2iκτ 1

[τ 3, τ 2] = −2iκτ 2

[τ 1, τ 2] = 0
� (51)

∣∣∣∣∣∣

[σ3, τ 3] = 0,
[σ3, τ 1] = 2iτ2,
[σ3, τ 2] = −2iτ1,

∣∣∣∣∣∣

[σ1, τ 3] = −2i(τ2 + κσ1),
[σ1, τ 1] = 2iκσ3,
[σ1, τ 2] = 2iτ3,

∣∣∣∣∣∣

[σ2, τ 3] = 2i(τ1 − κσ2),
[σ2, τ 1] = −2iτ3,
[σ2, τ 2] = 2iκσ3.

� (52)
We can see, from the last sets of commutation relations between the σ’s and the τ ’s, that the 
sb(2,C) generators τ a do not transform as a 3-vector under the SU(2) action, as for the ISU(2) 
group in the flat 3D loop gravity phase space presented in the previous section. In fact, the 
commutators [σ1, τ 3] and [σ2, τ 3] involve both σ’s and τ ’s, which means that there is a feed-
back action of the translations on the rotations. This is the technical point which distinguishes 
the deformed phase space from the standard loop gravity phase space for Λ = 0.

The key step is to recognize this double action of the rotations on the translations and vice-
versa as identifying SL(2,C) as the Heisenberg double SL(2,C) = SU(2) �� SB(2,C) (see 
[24] for more details). The Heisenberg double is provided with a bilinear form on the the Lie 
algebra sl(2,C) that pairs together the rotations su(2) generators with the deformed transla-
tion generators:

B(M, N) :=
1

2κ
Im

(
Tr MN

)
, M, N ∈ sl(2,C).� (53)

This bilinear form is such that B(τ a,σb) = δab and B(τ a, τ b) = B(σa,σb) = 0. In this sense, 
τ a and σa are dual to each other. This pairing leads to the r-matrix for SL(2,C):

r =
1
4

∑
a

τ a ⊗ σa =
iκ
4

∑
a

σa ⊗ σa − κ

4
σ1 ⊗ σ2 +

κ

4
σ2 ⊗ σ1 =

iκ
4
(
σ3 ⊗ σ3 + 4σ− ⊗ σ+

)
.

� (54)
The swapped r-matrix is then equal to its transpose,
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r21 =
1
4

∑
a

σa ⊗ τ a, rt = r21, r† = −r21,� (55)

and its symmetric part gives a SL(2,C) Casimir:

rs =
1
2
(r + r21) =

iκ
4

∑
a

σa ⊗ σa, (D ⊗ D) rs = rs (D ⊗ D), ∀D ∈ SL(2,C).� (56)

This r-matrix naturally satisfies the classical Yang–Baxter equation and defines the symplectic 
structure of the Heisenberg double as:

{�1, �2} = −[r, �1�2], {�1, u2} = −�1ru2, {u1, �2} = �2r21u1, {u1, u2} = −[r21, u1u2],� (57)

which can be written in a more compact form in the Poisson bracket for the SL(2,C) group 
element D = �u:

{D1, D2} = −rD1D2 + D1D2r21.� (58)

2.1.2.  Ribbon flatness and parallel transport along the link.  The SL(2,C) Poisson–Lie group 
structure described above encodes the holonomy-flux variables along a graph link, more pre-
cisely the holonomy u ∈ SU(2) flowing along the link and the flux variable at the link’s source 
� ∈ SB(2,C). We would like to also define the target flux. Drawing the link as a ribbon, as on 
figure 7, the target flux �̃  is the SB(2,C) group element living on the edge at the other extrem-
ity of the ribbon. The relation between source and target flux is ensured by a ribbon flatness 
constraint around the ribbon:

R = �u�̃−1ũ−1 = I.� (59)

The ribbon flatness constraint simply means that composing the source flux with the SU(2) 
holonomy is equivalent to composing the SU(2) holonomy running along the other side of the 
ribbon with the target flux, thus yielding a unique SL(2,C) group element along the ribbon 
or graph link:

D = �u = ũ�̃.� (60)

Therefore while the source flux � is given by the left Iwasawa decomposition of the SL(2,C) 
group element D, the target flux �̃  is given by its right Iwasawa decomposition. As shown in 
[24], the Heisenberg double structure gives the Poisson brackets between �̃  and ũ, as above in 
equation (57) for � and u:

{�̃1, �̃2} = [r, �̃1�̃2], {�̃1, ũ2} = −ũ2r�̃1, {ũ1, �̃2} = ũ1r21�̃2, {ũ1, ũ2} = [r21, ũ1ũ2].� (61)

Taking into account that the symmetric part of the r-matrix rs = 1
2 (r + r21) is a SL(2,C) 

Casimir, this gives exactly as wanted the same Poisson bracket for the SL(2,C) group element:

{D1, D2} = r21D1D2 − D1D2r = −rD1D2 + D1D2r21.� (62)

Moreover, since both left and right Iwasawa decompositions are unique, we can view �̃  and ũ 
as functions of � and u defined by �u = ũ�̃ . As shown in [24], a little algebra allows to derive 
the Poisson brackets between the original sector and the tilded sector:
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∣∣∣∣
{�̃1, �2} = 0,
{ũ1, u2} = 0,

∣∣∣∣
{�1, ũ2} = −r�1ũ2,
{ũ1, �2} = r21ũ1�2,

∣∣∣∣∣
{�̃1, u2} = −�̃1u2r,
{u1, �̃2} = �̃2u1r21.

� (63)

We can check that these Poisson brackets properly implement the ribbon flatness constraint10:

{R1, �2} = r21R1�2 −R1r21�2 ∼
R=I

0, {R1, ũ2} = R1rũ2 − rR1ũ2 ∼ 0, {R1, u2} = {R1, �̃2} = 0,

� (64)
so that the ribbon flatness constraint R = I is hardcoded in the symplectic structure of the rib-
bon phase space parametrized by the SU(2) holonomies u, ũ and curved fluxes �, �̃ .

2.1.3.  q-Deformed phase space on a ribbon graph.  We now work with ribbon graphs. A rib-
bon graph is drawn on the canonical surface and trivially embedded, i.e. such that the graph 

•

•

•

•
•

•

•
�1

�2�3

•

u1

u2

u3u4

u5

u6

Figure 8.  A ribbon graph as the thickening or fat version of its skeleton graph in dotted 
line. The links become ribbons with the plain edges carrying SU(2) holonomies and 
the dashed edges carrying the SB(2,C) fluxes. The nodes (black bullets) become little 
polygons in dashed lines. The flatness constraint around each ribbon translates the 
parallel transport condition from the source to the target of the corresponding link. The 
SB(2,C) flatness constraint, for example �1�2�3 = I from the root vertex in blue, around 
each node gives the SB(2,C) closure constraint at that node and generates SU(2) gauge 
transformations for all group elements around that node. On the other hand, the SU(2) 
flatness constraints around large loops, for example u1..u6 = I from the root vertex in 
red, still enforce the flatness constraints of the SU(2) connection as on the original 
skeleton graph and generate SB(2,C) gauge translations.

10 If we start with decoupled variables �, u on the one hand and �̃, ũ on the other hand, the ribbon flatness constraint 
R = �u�̃−1ũ−1 define a 2nd class system of constraints, which fully determine the tilded variables from the original 
ones. Computing the resulting Poisson brackets for �̃(�, u) and ũ(�, u) as functions of � and u gives equation (63). 
Another method would be to compute the Dirac brackets. A lengthy but straightforward calculation allows to check 
that it leads to the same Poisson brackets.
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defines a cellular decomposition of the surface, with every elementary cycle of the graph defin-
ing a region of the surface topologically isomorphic to a disk—a face. We distinguish three 
types of loops, as illustrated on figure 8: the ribbons themselves corresponding to the graph 
links, the vertex loops running around the graph nodes, and the graph loops going around the 
‘large’ faces. The ribbon graph consists in ribbons glued together at the graph nodes.

Having a SL(2,C) phase space on each ribbon, the q-deformed phase space for 3D loop 
gravity on a ribbon graph is defined by the product of those phase spaces together with 
SB(2,C) closure constraints around every graph node and SU(2) flatness constraints around 
graph loop.

More precisely, every ribbon edge is dressed either with a SB(2,C) group element -a 
flux- or with a SU(2) group element -a holonomy. Indeed, the ribbons consist in alternating 
SB(2,C) and SU(2) group elements, �, u, �̃, ũ. The ribbon flatness constraint around each rib-
bon, R = �u�̃−1ũ−1, defines a set of 2nd class constraints, directly taken into account in the 
symplectic structure on SL(2,C) (by assuming that the left and right Iwasawa decomposition 
of a SL(2,C) group element lead to the same Poisson brackets). Consequently, the group ele-
ments belonging to the same ribbon are endowed with the Poisson brackets given above, while 
group elements belonging to different ribbons commute with each other.

Then, as described in details in [24, 37], the vertex loops define SB(2,C) closure con-
straints and the graph loops define SU(2) flatness constraints. Indeed, a vertex loop consists 
entirely in SB(2,C) fluxes, �1, �2, ..., going from corner to corner around the vertex. The flat-
ness around the vertex loop imposes that their oriented product is the identity, �1�2 · · · = I (for 
a detail discussion on sign and orientation conventions, we refer the reader to [24, 37]). These 
SB(2,C) closure constraints are first class and generate the gauge invariance under local 
SU(2) transformations. The SU(2) action is braided by the fluxes: starting from an assigned 
root corner for the vertex loop as drawn on figure  8, if the gauge parameter is the group 

element h ∈ SU(2) at the source of �1, then the gauge parameter at the next corner will be 

h(�1) defined by the braiding relation h�1 = �
(h)
1 h(�1) with �(h)

1 ∈ SB(2,C) and h(�1) ∈ SU(2). 
And so on around the vertex. These gauge transformations can be entirely derived from the 
Hamiltonian flow of the vertex loop flatness constraint defined by the Poisson bracket with the 
properly oriented SB(2,C) product �1�2 . . ..

Finally, the graph loops consists entirely in SU(2) holonomies, u1, u2, u3, ... going around 
a ‘large’ face. The flatness around the graph loop imposes that their oriented product is the 
identity, u1u2u3 · · · = I. These SU(2) flatness constraints are first class and generate a gauge 
invariance under deformed translations [24], which implement the gauge invariance of the 
theory under (space-time) diffeomorphisms. These are the Hamiltonian constraints of 3D loop 
gravity. The flow of the SU(2) flatness constraints and their braiding is described in details in 
[24].

In the present work, we will not review the details of the general structure of those three 
types of SL(2,C) flatness constraints on a generic ribbon graph, but we will focus on the 
specific example of the 2-petal flower graph on the torus, presented below in section  2.2. 
This will allow to present the formalism in the simplest non-trivial graph and show explicitly 
the inner-working of the rotation and translation gauge transformations and their braiding. 
Having identified the gauge transformations will then allow us to define Dirac observables in 
terms of SL(2,C) holonomies and describe the physical Poisson bracket on the reduced phase 
space, finally recovering the Goldman bracket for the moduli space of flat discrete SL(2,C) 
connections.
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2.1.4.  Recovering the standard holonomy-flux in the flat limit.  It was shown in [24] that, upon 
imposing SU(2) flatness constraints around loops of the ribbon graph, the SL(2,C) phase 
space describes discrete 2D hyperbolic triangulations, and it was further proved in [25] that 
quantizing the SL(2,C) phase space leads to q-deformed spin networks for 3D loop quantum 
gravity. These previous works shows that this framework allows to take into account a (nega-
tive) cosmological constant through the deformation of the T∗SU(2) phase space of standard 
loop gravity to the SL(2,C) ribbon phase space and give the identification of the deformation 
parameter κ ≡ c−1G

√
−Λ in terms of the cosmological constant Λ, where G is the gravita-

tional coupling constant and c the speed of light.
Indeed, as on the one hand we have shown in the previous section 1.3 that it is possible to 

reformulate the T∗SU(2) holonomy-flux phase space in terms of the r-matrix of the Poincaré 
gorup ISU(2) considered as Heisenberg double, we can on the other hand reformulate the 
SL(2,C) phase space in terms of a SU(2) holonomy and a flux vector and show that we do 
recover the standard loop gravity phase space in the flat limit κ → 0.

The flux vectors are defined from projecting the SB(2,C) group elements onto the Pauli 
matrices:

� =

(
λ 0
z λ−1

)
, T ≡ ��† =

(
λ2 λz̄
λz λ−2 + |z|2

)
, T0 ≡ 1

2κ
Tr T , Ta ≡ 1

2κ
Tr Tσa,

� (65)
where the 4-vector Tµ lives on the space-like 3-hyperboloid in the 3  +  1 Minkowski space, 

TµTµ = T2
0 −−→

T 2 = κ−2. The deformation parameter κ clearly plays the role of the curva-
ture. The 3D component of Tµ defines the flux vector 

−→
T  at the ribbon source.

We similarly define the target flux vector by projecting the SB(2,C) group element �̃  on 
the Pauli matrices,

�̃ =

(
λ̃ 0
z̃ λ̃−1

)
, T̃ ≡ �̃�̃† =

(
λ̃2 λ̃¯̃z
λ̃z̃ λ̃−2 + |̃z|2

)
, T̃0 ≡ 1

2κ
Tr T̃ , T̃a ≡ 1

2κ
Tr T̃σa.

� (66)
Since �u = ũ�̃  and thus T = ũT̃ũ−1, the SU(2) holonomy ũ transports the source flux vector 
Ta to the target flux vector T̃a as for the flat holonomy-flux variables.

One can write11 the Poisson brackets (57), (61) and (63) explicitly in terms of the flux vec-
tors Tµ and T̃µ, as done in [24, 37]:

{T0, Ta} = {T̃0, T̃a} = {Ta, T̃b} = 0, {Ta, Tb} = −εabcκ(T0 + T3)Tc, {T̃a, T̃b} = εabcκ(T̃0 + T̃3)T̃c,
{T1, ũ} = − i

2κ(T
0 + T3)σ1ũ, {T2, ũ} = − i

2κ(T
0 + T3)σ2ũ, {T3 + T0, ũ} = − i

2κ(T
0 + T3)σ3ũ,

{T̃1, ũ} = − i
2κ(T̃

0 + T̃3)ũσ1, {T̃2, ũ} = − i
2κ(T̃

0 + T̃3)ũσ2, {T̃3 + T̃0, ũ} = − i
2κ(T̃

0 + T̃3)ũσ3.
� (69)

11 In order to compute the Poisson bracket with the flux vectors T and T̃ , we actually need the Poisson brackets with 
the complex conjugate of the SB(2,C) fluxes �† and �̃†. The method used in [24] to derive the Poisson brackets with 
�† and �̃† is to notice that the the SB(2,C) group structure and the sb(2,C) Lie algebra are preserved under the map: 

� �→
(
�†
)−1, �̃ �→

(
�̃†
)

−1, τ a �→ (τ a)†. Thus switching r-matrix r �→ r† = −r21 in the Poisson brackets (57), (61) 

and (63) gives:
∣∣∣∣
{�†1, �2} = −�†1r21�2 + �2r21�

†
1,

{�1, �†2} = −�1r�†2 + �†2r�1,

∣∣∣∣
{�†1, �†2} = [r, �†1�

†
2],

{�†1, �̃2} = 0,

∣∣∣∣
{�†1, u2} = −r21�

†
1u2,

{u1, �†2} = ru1�
†
2,

∣∣∣∣
{�†1, ũ2} = −�†1r21ũ2,
{ũ1, �†2} = �†2rũ1,

� (67)
∣∣∣∣
{�̃†, �̃2} = �̃†1r21�̃2 − �̃2r21�̃

†
1,

{�̃1, �̃†2} = �̃1r�̃†2 − �̃†2r�̃1,

∣∣∣∣
{�̃†1, �2} = 0,
{�̃†1, �̃†2} = −[r, �̃†1 �̃

†
2],

∣∣∣∣
{�̃†1, u2} = −u2r21�̃

†
1,

{u1, �̃†2} = u1r�̃†2,

∣∣∣∣
{�̃†1, ũ2} = −�̃†1ũ2r21,
{ũ1, �̃†2} = ũ1�̃

†
2r.

� (68)
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The difference with the standard flat holonomy-flux brackets of the T∗SU(2) phase space, 
given in (1) and (2), are the rescaling factors λ2 = κ(T0 + T3) and λ̃2 = κ(T̃0 + T̃3). The flat 
limit κ → 0 is an inhomogeneous scaling of the flux 4-vector. As κ is sent to 0, the hyper-

boloid T2
0 −−→

T 2 = κ−2 becomes the flat R3 space, with the inhomogeneous limit κT0 → 1, 
with T0 ∼ κ−1 sent to +∞, while the 3D flux vector Ta remains finite. Up to a global sign 
switch for the Ta and T̃a, this actually sends the SL(2,C) Poisson brackets written above to the 
T∗SU(2) Poisson brackets of standard ‘flat’ loop gravity, given in (1) and (2).

To avoid the subtleties of the inhomogeneous re-scaling limit, we can re-parametrize the 
SB(2,C) fluxes in terms of the sb(2,C) generators:

� = ei jaτ a
, λ = e−

κ
2 j3 , z = −κe

κ
2 j3( j1 + ij2) = −e

κ
2 j3κj+, z̄ = −e

κ
2 j3κj−,� (70)

where ja ∈ R3 is an arbitrary 3-vector. The flat limit κ → 0 is taken keeping the 3-vector j a 
finite:

κT0 = coshκj3 +
κ2

2
eκj3 j+j− κ→0−−−→ 1,

∣∣∣∣
T1 = −j1,
T2 = −j2,

T3 =
− sinhκj3

κ
− κ

2
eκj3 j+j− κ→0−−−→ −j3.

� (71)
Similarly defining the 3-vector j̃a for the target flux �̃ , we recover the T∗SU(2) Poisson brack-
ets (1) and (2) of flat loop gravity in the limit κ → 0:

{ ja, jb} → εabcjc, { ja, ũ} → i
2σ

aũ, {ũ, ũ} → 0,
{̃ja, j̃b} → −εabc̃jc, {̃ja, ũ} → i

2 ũσa, { ja, j̃b} = 0.
� (72)

Reciprocally, the SL(2,C) Poisson brackets (69) define the curved deformation of the T∗SU(2) 
Poisson brackets extending them to take into account a non-vanishing cosmological constant.

2.2.  Deformed Holonomy-flux on the torus

2.2.1.  Ribbon graph on the torus.  We apply the q-deformed loop gravity framework described 
above, with the deformed holonomy-flux phase space provided with the SL(2,C) Poisson 

ũ ũ

u u

v ṽ

v ṽ

�̃ �

m̃

m

•

f1

f2

f3

f4

•••••••

f3ff

•••

f4ff

•••••

Figure 9.  Ribbon graph on the torus, parametrized by �, �̃, m, m̃ ∈ SB(2,C) and 
u, ũ, v, ṽ ∈ SU(2). The ribbons, shaded in grey, are the thickened graph links. The 
ribbon flatness constraints around the faces f 3 and f 4 give the relations between the 
SB(2,C) fluxes at the source and target of the ribbons: R(�) = �u�̃−1ũ−1 = I and 
R(m) = mvm̃−1ṽ−1 = I. The Gauss constraint G = �m�̃−1m̃−1 = I is a SB(2,C) 
flatness around the face f 1 while the holonomy flatness constraint F = ũv−1u−1ṽ = I is 
the SU(2) flatness around the face f 2.
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brackets, to the simple case of the torus as reviewed in section 1 for flat loop gravity with the 
T∗SU(2) symplectic structure.

We draw a ribbon graph on the torus, as depicted on figure  9, dressed with SB(2,C) 
fluxes and SU(2) holonomies. The ribbon graph defines four faces, noted f 1,..,4. The face f 1 
is bounded by the vertex loop running around the graph node. The face f 2 is the large face 
defined by the graph. The two shaded faces, f 3 and f 4, are the two ribbons. The horizontal rib-
bon is decorated by the variables u, ũ ∈ SU(2) along the long edges and �, �̃ ∈ SB(2,C) on 
the short edges. The vertical ribbon is decorated by the variables v, ṽ ∈ SU(2) along the long 
edges and m, m̃ ∈ SB(2,C) on the short edges. The variables associated to the two ribbons, 
(�, u, �̃, ũ) and (m, v, m̃, ṽ), Poisson-commute with each other. And each set of ribbon variables 
is provided with the Poisson brackets, (57), (61) and (63), defined above from the symplectic 
structure on SL(2,C) as the Heisenberg double SU(2) �� SB(2,C).

Flatness constraints around the ribbons amount to the equivalence of the two Iwasawa 
decompositions �u = ũ�̃ , mv = ṽm̃ on both ribbons:

R(�) = �u�̃−1ũ−1 = I,

R(m) = mvm̃−1ṽ−1 = I.
� (73)

These ribbon flatness constraints are second class and already taken into account in the Poisson 
brackets (63).

2.2.2. The constraint algebra.  The two loops around the faces f 1 and f 2 define the closure 
constraint and the SU(2) flatness constraint, which we both root at the same corner around the 
central node of the graph, as drawn on figure 9:

Figure 10.  The SB(2,C) closure constraints G  and the SU(2) flatness constraints 
respectively generate SU(2) gauge transformations and SB(2,C) gauge transformations. 
Since we started with a graph with a single node and a single face, then thickened 
into a ribbon graph, the SU(2) and SB(2,C) gauge transformations respectively act 
at that node and around that face. With the node thickened into a polygon (a square 
here), the SU(2) gauge transformation can be defined as acting by a group element 
g at a root vertex chosen around that polygon and simply transforming the group 
elements on the edges attached to that vertex by the linear group action. This gauge 
transformation is then braided by the SB(2,C) group elements all around the polygon, 
in order to obtain the gauge transformations of the group elements attached to the other 
vertices. Similarly, the SB(2,C) gauge transformations, generated by the SU(2) flatness 
constraint, is braided by SU(2) group elements all around the face. (a) SU(2) gauge 
transformations. (b) SB(2,C) gauge transformations.
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G = �m�̃−1m̃−1 = I,� (74)

F = ũv−1u−1ṽ = I.� (75)

Imposing the ribbon flatness constraints, the closure and the SU(2) flatness constraints, 
amounts to imposing the SL(2,C) flatness around the four faces of the ribbon graph. As a 
consequence, the ordered oriented product of SU(2) and SB(2,C) group elements along any 
path on the ribbon graph does not depend on the path itself but simply on where it starts and 
ends, as for a flat connection theory.

The Poisson brackets of the closure and flatness constraints form a closed algebra and 
therefore define a system of first class constraints:

{F1,G2} = G2r21F1 −F1r21G2, {G1,G2} = −[r,G1G2], {F1,F2} = −[r21,F1F2].� (76)

As shown in [24, 37], G  generate SU(2) gauge transformations (which implement the Gauss 
law of loop quantum gravity) while F  generate the translational gauge transformations (imple-
menting the action of the space-time diffeomorphisms). Finite gauge transformations are 
described below. The goal will then be to identify Dirac observables, that Poisson-commute 
with both closure and flatness constraints.

2.2.3.  Deformed braided gauge symmetries.  The SB(2,C) closure constraint G  generates 
SU(2) action acting at the graph node. Since the node has been fattened, the explicit SU(2) 
action gets braided by the SB(2,C) fluxes and is slightly different at each corner around the 
node.

Let us root the SU(2) transformation at the corner between � and m̃  as on figure 10(a) and 
let us call g ∈ SU(2) the group element of the transformation. This transformation will act 
simply on � and m̃ . But, in order to get its action on m, we need to parallel transport the action 
along the ribbon edge from the source corner of � to the source corner of m. This leads to a 
braiding by the SB(2,C) flux � living on that ribbon edge. As a result, the SU(2) transforma-
tion acting on m is not simply given by the group element g ∈ SU(2) but by a group element 

Ω

A = �ṽ

B = m̃ũ−1

ũ ũ

u u

v ṽ

v ṽ

�̃ �

m̃

m

Figure 11.  SL(2,C) holonomies rooted at the corner Ω. Having chosen the root 
corner around the central polygon and the face for both SU(2) and SB(2,C) gauge 
transformations, these two sets of gauge transformations are combined into a single 
set of SL(2,C) gauge transformations. Then SL(2,C) holonomies going around loops 
starting and ending at that root corner simply transform under the SL(2,C) action by 
conjugation and allow to define simple Wilson loop observables.
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g(�) that depends both on the original transformation parameter g and on the flux �. Doing this 
consistently around the loop vertex gives the following SU(2) gauge transformation:

∣∣∣∣∣∣∣∣∣∣

� → �(g) = g�g(�)
−1

�̃ → �̃(g) = g(m̃)�̃g(�m)−1

m → m(g) = g(�)mg(�m)−1

m̃ → m̃(g) = gm̃g(m̃)−1

,

∣∣∣∣∣∣∣∣∣

u → u(g) = g(�)ug(�m)−1

ũ → ũ(g) = gũg(m̃)−1

v → v(g) = g(�m)vg(m̃)−1

ṽ → ṽ(g) = g(�)ṽg−1

,� (77)

where the gauge transformed flux �(g) ∈ SB(2,C) and the parallelly transported gauge trans-
formation g(�) ∈ SU(2) are uniquely determined in terms of g and � from the left Iwasawa 
decomposition of g� = �(g)g(�). And similarly gm̃ = m̃(g)g(m̃) and m(g)g(�m) = g(�)m.

It is fairly direct to check that the closure and flatness constraint are transformed by con-
jugation to G(g) = gGg−1 and F (g) = gFg−1, so that the conditions G = F = I are invariant 
under SU(2) gauge transformations as expected.

Similarly, the SU(2) flatness constraint F  generates a SB(2,C) action. Rooting again the 
transformation at the corner between � and m̃ , which is also the corner between ũ and ṽ, the 
gauge parameter b ∈ SB(2,C) at the root corner gets braided by the SU(2) holonomies and 
needs to be parallelly transported from one corner to the next, as depicted on figure 10(b). 
Doing so consistently around the large face gives the SB(2,C) gauge transformations as:

∣∣∣∣∣∣∣∣∣∣

� → �(b) = b�b(ṽ−1)
−1

�̃ → �̃(b) = b(ũ)�̃b(ũṽ−1)
−1

m → m(b) = b(ṽ−1)mb(ũṽ−1)
−1

m̃ → m̃(b) = bm̃b(ũ)−1

,

∣∣∣∣∣∣∣∣∣∣

u → u(b) = b(ṽ−1)ub(ũṽ−1)
−1

ũ → ũ(b) = bũb(ũ)−1

v → v(b) = b(ũṽ−1)vb(ũ)−1

ṽ → ṽ(b) = b(ṽ−1)ṽb−1

,

� (78)

where the gauge transformed holonomy ̃u(b) ∈ SU(2) and the transported gauge transformation 
b(ũ) ∈ SB(2,C) are uniquely determined in terms of b and ̃u from the right Iwasawa decompo-
sition of bũ = ũ(b)b(ũ). And similarly ṽb−1 = (b(ṽ−1))−1ṽ(b) and v(b(ũ))−1 = v(b)(b(ũṽ−1))−1. 
These define the deformed translation gauge transformations.

It is also direct to check that the closure and flatness constraint are once again simply 
transformed by conjugation to G(b) = bGb−1 and F (b) = bFb−1, leaving the conditions 
G = F = I invariant under finite SB(2,C) gauge transformations as expected.

2.2.4.  SL(2,C) Holonomies and physical observables.  From the structure of the ribbon 
graph, it is clear that the SL(2,C) group elements running along the ribbons, and used to 
define the symplectic structure, D = �u and D′ = mv do not start and end at the same point. 
It seems more natural to introduce SL(2,C) holonomies that wrap around the cycles of the 
torus and come back to their initial point. Similarly to the definition of Poincaré holonomies 
for standard flat 3D loop gravity introduced earlier in section 1.3, we introduce SL(2,C) holo-
nomies rooted at a corner12 around the graph node, as drawn on figure 11:

A = �ṽ, B = m̃ũ−1, A, B ∈ SL(2,C).� (79)

First, A and B contain all the information about the holonomy-flux variables around the 
ribbons (once we assume the ribbon flatness constraints). There are not the SL(2,C) group 

12 We could consider the SL(2,C) holonomies rooted at any corner. This would not change anything, as long as the 
two SL(2,C) holonomies are rooted at the point.
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elements, D = �u and D′ = mv, around the ribbons but mix the SB(2,C) fluxes and SU(2) 
holonomies of the different ribbons.

Second, their Poisson brackets form a closed algebra,
∣∣∣∣∣∣

{A1, A2} = [r, A1A2],
{B1, B2} = −[r, B1B2],
{A1, B2} = A1rB2 + B2r21A1

� (80)

expressed in terms of the r-matrix similarly as for standard flat loop gravity formulated in 
terms of Poincaré holonomies in (47).

Third, the SB(2,C) closure constraint G  and the SU(2) flatness constraint F  can be repack-
aged in a single SL(2,C) flatness constraint, implying that the two SL(2,C) holonomies A and 
B commute:

G = F = I ⇐⇒ C := ABA−1B−1 = I.� (81)

This is exactly the SL(2,C) constraint for a flat SL(2,C) connection on the torus, as arising 
in the Chern–Simons phase space and its combinatorial quantization. However, due to the 
non-trivial braiding between SB(2,C) and SU(2) group elements which is reflected in the 
non-trivial commutator between the constraints G  and F , the Poisson brackets of the SL(2,C) 
constraint C have a more complicated form than the closed algebra (76) formed by G  and F :

{C1, C2} = [r, C1C2] + A2B2[r21, C1]A−1
2 B−1

2 − A1B1[r, C2]A−1
1 B−1

1 ∼ 0.� (82)

Finally, the two holonomies A and B are rooted at the same vertex. Their gauge transforma-
tions are straightforward. Under both the SU(2) gauge transformations given above in (77) 
and the SB(2,C) gauge transformations given in (78), the SL(2,C) holonomies A and B trans-
form under the action by conjugation:

A, B
g∈SU(2)�−→ gAg−1, gBg−1, A, B

b∈SB(2,C)�−→ bAb−1, bBb−1.
� (83)

Moreover, it is straightforward to check that the SL(2,C) flatness constraint ABA−1B−1 = I, 
together with the Poisson brackets (80), generates these gauge transformations13. This means 
that Dirac observables, invariant under both rotation and translation gauge transformations, 
are simply the components of A and B invariant under conjugation by SL(2,C). This leaves us 
with the two complex Dirac observables given by the two Wilson loops, TrA and TrB. We can 
compute their Poisson bracket using the bracket {A1, B2}:

13 To check that the SL(2,C) flatness constraint C does generate SL(2,C) gauge transformations, we compute the 
Poisson flow of its projection onto the sl(2,C) generators tk ∈ {σa, τ b} with k = 1, .., 6 distinguishing the su(2) 
generators from the sb(2,C) generators. For example, computing the Poisson bracket of TrCtk  with the SL(2,C) 
holonomy A leads to a variation δA corresponding to an infinitesimal SL(2,C) gauge transformation on A:

δεA ≡
∑

k

{εkTr Ctk, A} = εkTr1({A1B1A−1
1 B−1

1 tk
1, A2}) = εk[A, Tr1(A1B1rA−1

1 B−1
1 tk

1)]

+ εkATr1(C1r21tk
1)− εkTr1(r21C1tk

1)A

∼ εk

4
Tr(ABτ aA−1B−1tk)[A,σa] + εkTr(σatk)[A, τ a].

�

(84)

We see that the resulting SU(2) gauge transformations depend non-linearly on the group element A.
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{TrA, TrB} = Tr (A1B2(r + r21)) =
iκ
2
(TrAσa) (TrBσa)

= iκ
(

Tr(AB)− 1
2

TrA TrB
)

.
�

(85)

We recognize the Goldman bracket for gauge-invariant functions on the moduli space 
Hom(π, SL(2,C))/SL(2,C), π being the fundamental group of the surface, with the bilinear 
map identified with (53) up to a constant: B(M, N) = κ Im(Tr MN) for M, N ∈ sl(2,C) [27]. 
This is the desired result since upon imposing constraints on all the faces A and B indeed live 
on the space of flat connections, thus the Wilson loops TrA and TrB are the projection on the 
corresponding moduli space.

Another useful way to formulate the Goldman bracket above is to write it in terms of the 
eigenvalues of A and B. Indeed, A and B commute, so they are simultaneously diagonalizable 
(except in degenerate cases of measure zero in SL(2,C)×2). The logarithm of their eigenval-
ues are canonically conjugate, i.e. they provide Darboux coordinates for the Goldman bracket:

A = U
(

eαα
e−α

)
U−1, B = U

(
eαβ

e−β

)
U−1,� (86)

{α,β} =
iκ
2

⇐⇒ {eα + e−α, eβ + e−β} =
iκ
2
(
eα+β + e−α−β − eα−β − e−α+β

)
.� (87)

At the end of the day, we have shown that the q-deformed loop gravity phase space, pro-
vided with non-abelian SB(2,C) closure constraints and SU(2) flatness constraints, can be 
reformulated as a phase space of discrete SL(2,C) connections with a simple Poisson bracket 
(80) and SL(2,C) flatness constraints (81). The physical phase space is then the moduli space 
of flat SL(2,C) connection with the expected Goldman bracket. Although we have focused 
on the example of the torus, we see no obstacle in extending the method and the results to 
arbitrary ribbon graph and arbitrary orientable surface topology.

This shows that the the q-deformed approach to 3D loop gravity (for q ∈ R), which is the 
canonical framework for the Turaev–Viro model, is consistent with the combinatorial quanti-
zation of 3D gravity (with a negative cosmological constant Λ < 0) as a Chern–Simons theory.

3.  3D Loop Gravity from Fock–Rosly construction

Now that we have reformulated the phase space of 3D (Riemannian) loop gravity with (nega-
tive) cosmological constant in terms of SL(2,C) group elements, it is natural to compare it 
with the Fock–Rosly Poisson brackets introduced in [10]. Indeed, 3D gravity with Λ < 0 can 
be reformulated as a SL(2,C) Chern–Simons theory, then the Fock–Rosly brackets define a 
symplectic structure of the moduli space of flat SL(2,C) graph connections up to SL(2,C) 
gauge transformations. Quantizing this bracket and promoting it to operator commutators 
leads to the combinatorial quantization of Chern–Simons theory [8, 9, 11]. It is thus a recur-
ring theme of the loop quantum gravity framework in three space-time dimensions to recon-
cile it with the Fock–Rosly phase space and thereby with quantum Chern–Simons theory.

At a very simple level, the main mismatch in the symplectic structure is that, on the one 
hand in loop gravity, the SU(2) holonomies on different links Poisson-commute with each 
other, as explained in section 2, while on the other hand in the Fock–Rosly framework, the 
SL(2,C) holonomies on links sharing a node have non-vanishing Poisson brackets. At a first 
glance, this problem seems to be remedied by our definition of SL(2,C) group elements, 
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combining the SU(2) holonomies with the SB(2,C) fluxes, as introduced in (80) in the previ-
ous section. These SL(2,C) group elements do not commute and their Poisson brackets is sim-
ply expressed in terms of the r-matrix. However, a careful analysis shows that these brackets 
do not match the Fock–Rosly brackets.

Thus, the present section aims to underline the differences between the loop gravity phase 
space and the Fock–Rosly approach, explaining why it is natural that the resulting Poisson 
brackets for SL(2,C) holonomies are not the same, but further show that the loop gravity 
phase space can nevertheless be obtained from the Fock–Rosly phase space from a partial 
asymmetric gauge fixing, distinguishing half of the SL(2,C) holonomies as SU(2) holono-
mies and the other half as SB(2,C) fluxes.

3.1. The Fock–Rosly bracket for SL(2,C) graph connections

Let us first quickly review the Fock–Rosly construction introduced in [10]. We work on a 
compact, oriented Riemann surface. We consider a cellular decomposition of that surface and 
focus on the graph defined by its 1-skeleton. For simplicity, we consider a Riemann surface 
without boundaries. We define a graph connection, as in lattice gauge theory, by assigning a 
SL(2,C) group element, or holonomy, to each oriented link of the graph. The Fock–Rosly 
construction provides the space of flat graph connections with a symplectic structure compat-
ible with gauge transformations. More precisely, we impose the flatness of the SL(2,C) con-
nection around every face of the graph and consider equivalence classes under SL(2,C) gauge 
transformations at every node of the graph.

To this purpose, we introduce another combinatorial structure to the graph, a linear order of 
the links around each node. This is visually realized by adding a cilium at each node, signal-
ling the first link from which the links are ordered counterclockwise around the node. On these 
ciliated graphs, we further assign a r-matrix r(n) to each node n. Each r-matrix is decomposed 
as r(n) = rs + ra(n) in terms of its symmetric part 2rs = r(n) + r21(n) and its antisymmetric 
part 2ra = r(n)− r21(n). As the notation suggests, we require that the symmetric parts rs of 
the r-matrices are all the same and do not depend on the node, while their antisymmetric parts 
ra(n) are left free. This allows to define a Poisson structure on the space of graph connections.

Let us call Ge ∈ SL(2,C) the holonomy along the edge e. We call s(e) and t(e) respectively 
the source and target vertices of the edge e. We also call e(s) the part of the edge attached to its 
source vertex s(e) and e(t) the part of the edge attached to its target vertex t(e). Then the Fock–
Rosly bracket {Ge

1, Ge′
2 }FR between the holonomies along two edges e and e′ is defined by 

distinguishing the various configurations (the list below is not exhaustive but representative):

	 •	�For a single edge e with distinct source and target, i.e. s(e) �= t(e):

{Ge
1, Ge

2}FR = ra(s(e))Ge
1Ge

2 + Ge
1Ge

2ra(t(e)).� (88)

	 •	�For a single closed curve e oriented counterclockwise, i.e. s(e) = t(e) and e(s) < e(t):

{Ge
1, Ge

2}FR = [ra, Ge
1Ge

2]+ + Ge
2r21Ge

1 − Ge
1rGe

2.� (89)

	 •	�For two edges e, e′ with the same source but different targets distinct from the source, i.e. 
s(e) = s(e′) but s(e), t(e), t(e′) all three distinct, and e(s) < e′(s):

{Ge
1, Ge′

2 }FR = rGe
1Ge′

2 .� (90)

	 •	�For two closed loops e, e′ intersecting at a single vertex, i.e. s(e) = s(e′) = t(e) = t(e′), 
with the order e(s) < e′(s) < e(t) < e′(t):
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{Ge
1, Ge′

2 }FR = [r, Ge
1Ge′

2 ]+ + Ge′
2 r21Ge

1 − Ge
1rGe′

2 .� (91)

All the Poisson brackets between two non-intersecting edges vanish. Then gauge transfor-

mations at the vertices, Ge �→ Hs(e)GeH−1
t(e) for Hv ∈ SL(2,C), is a Poisson map leaving the 

Fock–Rosly bracket invariant [10]. This means that the Fock–Rosly bracket provides the mod-
uli space of flat graph connection up to gauge transformations with a symplectic structure. 
One further shows the definition of the Fock–Rosly bracket is stable under contraction and 
deletion of edges and leads back to the Goldman bracket [10].

Let us compare the Fock–Rosly and loop quantum gravity approaches. The Fock–Rosly 
phase space is defined on the (ciliated) embedded graph Γ, in the sense that the definition of 
Γ also contains faces (on top of vertices and edges) identified as loops on the graph. It defines 
a discrete version of the Chern–Simons phase space for a discrete SL(2,C) connection. It 
assigns SL(2,C) group elements to the edges of Γ, imposes flatness conditions for those group 
elements around every face of Γ and quotients by the SL(2,C) action at every vertex of the 
graph. It is a priori not defined as a symplectic quotient14.

On the other hand, the loop quantum gravity aims to quantize holonomy-flux variables. On 
the same graph Γ, it assigns SU(2) and SB(2,C) group elements to the edges of the graph, 
with both flatness constraints around the faces and closure constraints at the vertices. The loop 

Ũ Ũ
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Figure 12.  Ciliated fat ribbon graph, or fatter graph for short, on the torus. Vertices 
s(P), s(Q), s(S) and s(T) (in red) are assigned the r-matrix r, while vertices t(P), t(Q), 
t(S) and t(T) (in blue) are assigned r21. At each vertex, a cilium is introduced to fix 
the linear order of the links around this vertex. The cilia are chosen to all look into the 
face f 1.

14 A special case where the Fock–Rosly phase space is nevertheless directly defined as a symplectic quotient is 
the flower graph on a closed oriented connected surface. The flower graph has a single vertex and edges wrapping 
around every non-contractible cycle of the surface, thus forming a single face. Calling (Ai, Bi) the pairs of SL(2,C) 
group elements living on pairs of conjugate cycles, with i running from 1 to the surface genus g, the flatness condi-
tion 

∏g
i AiBiA−1

i B−1
i = I also generates SL(2,C) gauge transformations at the vertex acting by conjugation simulta-

neously on all the group elements. In the specific case of the 2-torus with genus g  =  1, the Fock–Rosly framework 
leads to a symplectic structure defined on SL(2,C)×2//Ad SL(2,C) described in details in the appendix of their 
original paper [10].
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gravity phase space is defined as a symplectic quotient, with the flatness constraints generat-
ing SB(2,C) translations for each face and the closure constraints generating SU(2) rotation 
at each vertex.

From this perspective, the loop gravity phase space looks rather different from the Fock–
Rosly phase space. We have nevertheless seen in the previous section that one can fatten graph 
Γ into a ribbon graph Γfat by turning every edge of Γ into a ribbon and every vertices of Γ into 
polygons to which the ribbons are attached. Now dressing the edges of the ribbon graph Γfat 
with SU(2) and SB(2,C) group elements, the closure constraints and the flatness constraints, 
as well as ribbon constraints encoding the transport of the SB(2,C) group elements by the 
SU(2) group elements across the ribbons, can be all be formulated as SL(2,C) flatness condi-
tions. This allows to reconstruct SL(2,C) group elements on the initial slim graph Γ from the 
SU(2) and SB(2,C) group elements on the ribbon graph Γfat, which satisfy the same SL(2,C) 
flatness constraint as in the Fock–Rosly framework.

However, the resulting Poisson brackets on the SL(2,C) group elements does not match the 
Fock–Rosly bracket on the SL(2,C) holonomies. They nevertheless lead to the same Goldman 
bracket on the moduli space of flat SL(2,C) graph connections on Γ. In order to reconcile 
the Fock–Rosly approach with the loop gravity phase space, it seems natural to work on the 
fat graph Γfat and compare the Fock–Rosly bracket for SL(2,C) holonomies on Γfat with the 
loop gravity phase space. In fact, we explain below that we need to go one step further and 
introduce a ‘ fatter graph’ Γfatter and that the loop gravity on Γfat turns out to result from the 
Fock–Rosly structure on Γfatter by a partial gauge-fixing.

3.2.  Gauge-fixing Fock–Rosly on the fatter graph to recover loop gravity on the fat graph

We consider te Fock–Rosly phase space on the torus on a fatter graph, illustrated on figure 12, 
where we have unfolden the four 4-valent nodes of the ribbon graph into pairs of 3-valent ver-
tices by adding an intermediate edge. This leads to a graph with twelve edges, each decorated 
with SL(2,C) holonomies. We note L, U, L̃, Ũ, M, V , M̃, Ṽ  the eight group elements along the 
ribbon edges, and P, Q, S, T  the four group elements on the new intermediate edges. To sim-
plify the notations, we refer to the edge through the SL(2, C) group element it carries.

In order to recover the loop gravity Poisson structure, we assign the r-matrix r to the source 
vertices of the intermediate edges s(P), s(Q), s(S) and s(T), while we assign the r-matrix r21 to 
their target vertices t(P), t(Q), t(S) and t(T). We further choose all the cilia looking inwards to 
the face f 1 to fix the convention. A different choice of cilia would still lead to the loop gravity 
phase space.

The Fock–Rosly brackets can be read directly from their definition (88)–(91) applied to the 
ciliated fat ribbon graph, or fatter graph for short, shown in figure 12. All the non-vanishing 
Fock–Rosly brackets related to P are

{P1, L2}FR = L2r21P1, {L1, P2}FR = −L1rA2, {P1, U2}FR = −r21P1U2, {U1, P2}FR = rU1P2,
{P1, M2}FR = P1r21M2, {M1, P2}FR = −P2rM1, {P1, Ṽ2}FR = P1r21Ṽ2, {Ṽ1, P2}FR = −P2rṼ1,
{P1, P2}FR = [r, P1P2].

� (92)
Closed holonomies A, B can be reconstructed based on the vertex s(P), as A ≡ UQ−1M−1P−1 

and B ≡ PṼTL. A direct computation shows the Fock–Rosly brackets between A and B are 
indeed the ones given in (89) and (91):

{A1, A2}FR = raA1A2 + A1A2ra + A2r21A1 − A1rA2,� (93)
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{B1, B2}FR = raB1B2 + B1B2ra + B2r21B1 − B1rB2,� (94)

{A1, B2}FR = rA1B2 + A1B2r + B2r21A1 − A1rB2.� (95)

One notices that although these brackets define a different Poisson structure from (80), they 
lead to the same Goldman brackets on gauge invariant observables as the loop gravity phase 
space: Tr ({A1, B2}FR) = Tr (A1B2(r + r21)).

The Fock–Rosly phase space is defined on top of the Poisson brackets given above by 
imposing the flatness of the SL(2,C) connection around the four faces of the fatter graph:

C f1 = TLPMQL̃−1SM̃−1,� (96)

C f2 = UQ−1VS−1Ũ−1T−1Ṽ−1P−1,� (97)

C f3 = LUL̃−1Ũ−1,� (98)

C f4 = MVM̃−1Ṽ−1,� (99)

and quotienting by the SL(2,C) group action at the eight nodes of the graph.
If we look at the Fock–Rosly brackets for the eight group elements L, U, L̃, Ũ, M, V , M̃, Ṽ , 

they are the same Poisson brackets as for the loop gravity phase space parametrized by the 
group elements �, u, �̃, ũ, m, v, m̃, ṽ. The only difference is that the Fock–Rosly brackets involve 
SL(2,C) group elements, while the loop gravity group elements live alternatively in the 
subgroups SU(2) and SB(2,C). Thus, in order to recover the loop gravity phase space, 
we perform a partial gauge fixing of these SL(2,C) group elements. We start at the vertex 
t(T) = s(L) = s(Ũ) and will go around the face f 1. We use the SL(2,C) gauge invariance at 

Figure 13.  Different choices of gauge fixing from the original Fock–Rosly phase 
space result in different reduced phase spaces, but with the same Goldman brackets. 
Capital letters represent SL(2,C) holonomies while {�, �̃, m, m̃} ∈ SB(2,C) and 
{u, ũ, v, ṽ} ∈ SU(2).
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that vertex to fix T = I. Then moving to the following node t(L) = s(U) = s(P), we use the 
Iwasawa decompositions L = �uL and U = �Uu and perform a gauge transformation:

uL�U = �′u′, G = (�′)−1uL,

∣∣∣∣∣∣

L �→ LG−1 = ��′ ∈ SB(2,C),
U �→ GU = u′u ∈ SU(2),
P �→ GP = (�′)−1uLP,

� (100)
thus gauge fixing L to live in SB(2,C) and U to live in SU(2).

Next, at the following node, t(P) = s(M) = s(Ṽ), we perform a SL(2,C) gauge transfor-
mation to gauge fix to P = I. Then we repeat this pair of gauge fixings all around the central 
face f 1. So at the node t(M) = s(V) = s(Q), we gauge fix to M ∈ SB(2,C) and V sin SU(2). 
At the node t(Q) = t(U) = t(L̃) we gauge fix to Q = I. At the node s(S) = s(L̃) = t(Ũ), we 
gauge fix to L̃ ∈ SB(2,C) and Ũ ∈ SU(2). At the node t(S) = t(V) = t(M̃), we gauge fix to 
S = I .

Finally at the last node s(T) = s(M̃) = t(Ṽ), we do not do anything. The flatness condition 
around the face f 1 automatically implies that the group element M̃ lives in SB(2,C) while 
the flatness condition around the face f 2 automatically implies that the group element Ṽ  lives 
in the SU(2) subgroup. Since we do not gauge-fix the group action at the last vertex of the 
graph, we are left with a single SL(2,C) gauge invariance of our partially gauge-fixed group 
variables.

This reproduces exactly the setting of the q-deformed loop quantum gravity variables on 
the ribbon graph, with the group elements �, �̃, m, m̃ ∈ SB(2,C) and u, ũ, v, ṽ ∈ SU(2) satis-
fying the flatness constraints around the 4 faces of the graph:

C f1 = uvũ−1ṽ−1,� (101)

C f2 = �m�̃−1m̃−1,� (102)

C f3 = �u�̃−1ũ−1,� (103)

C f4 = mvm̃−1ṽ−1.� (104)

Since the SL(2,C) group action at the nodes is a Poisson map for the Fock–Rosly symplec-
tic structure [10], it is straightforward to check that the Fock–Rosly brackets on the original 
SL(2,C) group elements L, U, L̃, Ũ, M, V , M̃, Ṽ  directly descend to Poisson brackets on the 
gauge-fixed group variables �, u, �̃, ũ, m, v, m̃, ṽ:

{�1, �2}FR = −[r, �1�2], {u1, u2}FR = −[r21, u1u2], {�̃1, �̃2}FR = [r, �̃1�̃2], {ũ1, ũ2}FR = [r21, ũ1ũ2],
{m1, m2}FR = −[r, m1m2], {v1, v2}FR = −[r21, v1v2], {m̃1, m̃2}FR = [r, m̃1m̃2], {ṽ1, ṽ2}FR = [r21, ṽ1ṽ2],
{�1, u2}FR = −�1ru2, {�̃1, ũ2}FR = −ũ2r�̃1, {m1, v2}FR = −m1rv2, {m̃1, ṽ2}FR = −ṽ2rm̃1.

� (105)
These are precisely the (flat or q-deformed) loop gravity Poisson brackets. C f1 and C f2 are still 
first class constraints generating respectively the gauge invariance under SB(2,C) translation 
and SU(2) rotations, while C f3 and C f4 are second class constraints directly hardcoded in the 
Poisson brackets. This explicitly shows that the loop gravity phase space can be reconstructed 
from the Fock–Rosly description by a specific gauge fixing.

Let us stress that the partial gauge fixing introduced here mapping the Fock–Rosly phase 
space to the q-deformed loop gravity phase space is very different from the gauge fixing usu-
ally done in the Fock–Rosly approach to go from a refined graph to a coarse-grained graph 
(subgraph of the original graph) by simply setting all the extra SL(2,C) group elements to the 
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identity. These different gauge fixing produces different intermediate Poisson brackets, which 
nevertheless all lead to the same Goldman brackets on the SL(2,C) gauge-invariant variables. 
The hierarchy of fat and fatter graphs, with their different Poisson brackets depending on the 
different choices of (partial) gauge fixing, is illustrated in figure 13.

4.  Conclusion

In this present paper, we studied the loop gravity phase space applied to the 2-torus. That is, 
our kinematical phase space was constructed for a graph embedded on the torus. The cases of 
a vanishing cosmological constant and of a negative cosmological constant can be treated in 
a similar way. Indeed, the key step is to recognize that the standard loop gravity phase for a 
zero cosmological constant can be viewed as the Heisenberg double ISU(2) where the Poisson 
brackets are written in terms of a classical r-matrix. This phase space is constrained by the 
closure constraint (Gauss law) and the SU(2) flatness constraint that generate Poisson–Lie 
group symmetries.

Using this compact formalism, we showed that the standard loop gravity phase space can 
be written in terms of Poincaré holonomies constrained by a Poincaré flatness. From this 
reformulation, the definition of gauge-invariant observables of the theory is straightforward. 
This already points out toward a connection between the loop gravity phase space and the 
classical analogue of the combinatorial quantization formulation of Chern–Simons, the so-
called Fock–Rosly phase space. Indeed, for a zero cosmological constant, the Chern–Simons 
gauge group is ISU(2) and the Fock–Rosly phase space variables are Poincaré holonomies 
living on edges of graphs that are constrained by Poincaré flatness on the faces of the graphs.

This equivalence between the loop gravity phase space and the Fock–Rosly phase space is 
made explicit in this paper in the case of 3D Euclidean gravity with a negative cosmological 
constant. For this case, the loop gravity phase space is seen as a deformation of the standard 
loop gravity phase space. More precisely, the Heisenberg double ISU(2) is q-deformed into 
the Heisenberg double SL(2,C) ∼ SU(2) �� SB(2,C) where the deformation q, related to the 
cosmological constant, is introduced to curve the momentum space from R3 to SB(2,C). The 
constraints are now SB(2,C) flatness as well as SU(2) flatness generating Poisson–Lie group 
symmetries. To visualize the phase space variables as well as the constraints, it is natural to 
work with fat graphs, where each edge of the initial graph has been fattened into a ribbon. A 
ribbon constraint is associated to each ribbon and these constraints are solved by requiring 
that the left and right Iwasawa decompositions of the SL(2,C) group element of each edge 
are equal.

In a similar way as in the flat case, we showed that this formulation allows to write the 
q-deformed loop gravity phase space in terms of SL(2,C) holonomies living on the initial 
graph and satisfying a SL(2,C) flatness constraint. Again, this sounds very similar to what 
would be a Fock–Rosly phase space for SL(2,C) Chern–Simons theory (i.e. Chern–Simons 
describing 3D Euclidean gravity with a negative cosmological constant). However, the brack-
ets at this stage are not the same, although Goldman brackets are recovered going to the 
reduced phase space in both approaches. The equivalence between the two phase spaces is 
explicitly shown by going to a ‘fatter graph’ (see previous section for an explicit definition). 
Then, the q-deformed loop gravity phase space and its constraints are regained by a partial and 
asymmetric gauge fixing of the (extended—i.e on the ‘fatter’ graph) Fock–Rosly phase space. 
It is worth noticing that this equivalence requires working with the Fock–Rosly formalism 
defined on a general graph and not on a flower graph as it is very often the case.
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This paper only focused on the simple topology of a 2-torus, i.e our discrete kinemati-
cal phase spaces were defined through graphs embedded on the torus, which is the simplest 
non-trivial case. But we expect that our results and in particular the equivalence between the 
q-deformed loop gravity phase space and the Fock–Rosly phase space naturally generalize to 
manifolds of topology M ∼ R× Σ, with Σ a surface of general genus g (and with punctures). 
We leave this full analysis for future work. This would conclude the convergence of the vari-
ous approaches to the quantization of 3D gravity.
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