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Abstract
In the subject of black hole chemistry, a broad variety of critical phenomena 
for charged topological black holes (TBHs) with massive gravitons (within 
the framework of dRGT massive gravity) is discussed in detail. Since critical 
behavior and the nature of possible phase transition(s) crucially depend on the 
specific choice of ensemble, and, in order to gain more insight into criticality 
in the massive gravity framework, we perform our analysis in both canonical 
(fixed charge, Q) and grand canonical (fixed potential, Φ) ensembles. It is 
shown that, for charged TBHs in the grand canonical ensemble, the van der 
Waals (vdW) phase transition could take place in d � 5, the reentrant phase 
transition (RPT) in d � 6 and the analogue of triple point in d � 7,  which 
are different from the results of the canonical ensemble. In the canonical 
ensemble, the vdW phase transition is observed in d � 4, the vdW type phase 
transition in d � 6 and the critical behavior associated with the triple point 
in d � 6. In this regard, the appearance of grand canonical P − V  criticality 
and the associated phase transition(s) in black holes with various topologies 

depend on the effective topological factor k(GC)
eff ≡ [k + m2

gc2
0c2 − 2(d3/d2)Φ

2] 

instead of k in Einstein’s gravity, where k is the normalized topological factor 

(k(C)
eff ≡ [k + m2

gc2
0c2] plays this role in the canonical ensemble of TBHs in 

massive gravity). Such evidence gives the (grand) canonical study of extended 
phase space thermodynamics with massive gravitons a special significance.
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1.  Introduction

Asymptotically anti-de Sitter (AdS) black holes admit certain phase transitions in Einstein’s 
gravity, e.g. Hawking–Page phase transition (a transition between the AdS spacetime and the 
AdS black hole) [1] is observed for a variety of asymptotically AdS black hole configurations 
such as Schwarzschild-AdS, Reissner–Nordström-AdS (RN-AdS) and Kerr (-Newman) AdS 
ones [1–4]. Seeking for a transition from a black hole phase to another phase, the van der 
Waals (vdW) behavior has been found for charged-AdS [2, 3, 5] and Kerr (-Newman) AdS 
black holes [4, 6, 7]. Further investigations on the phase transition between black hole phases 
have been revealed that the reentrant phase transition (RPT) present in liquid crystals and 
multicomponent fluids [8] can occur for Kerr-AdS black holes in d � 6 dimensions [6]. In 
addition, the small/intermediate/large black hole (SBH/IBH/LBH) phase transition associated 
with the triple point was found for multi-spinning Kerr-AdS black holes ( in d � 6) [9] which 
is interpreted as solid/liquid/gas phase transition typical of many materials. These critical 
behaviors have been observed in a vast range of black hole configurations including nontrivial 
electromagnetic fields [10–12] and higher order curvatures [13–24]. But the story is differ-
ent in dRGT massive gravity theory [25, 26] since all topological black holes (TBHs) can 
experience critical behavior and phase transition due to the massive graviton self-interaction 
potentials [27–33]. From the AdS/CFT perspective [35, 36], it leads to new prospects for 
investigating critical behavior of TBHs since there exists a dual interpretation in the gauge 
field theory (CFT) living on the AdS boundary.

These analogies between the standard thermodynamic phase transitions and the black hole 
ones have been found in the extended phase space (varying cosmological constant as pressure, 
Λ = −8πP  [37]) [5, 6, 9, 11–14, 16, 18–24, 27, 28, 30–33] and in some cases in the non-
extended phase space (fixed cosmological constant) [2–4, 17, 29, 34]. For example, Reissner–
Nordström-AdS black holes possess a first order phase transition with swallowtail behavior 
which closely resembles the well-known vdW phase transition in fluids in both non-extended 
[2] and extended [5] phase spaces with the same critical exponents as the vdW system. But, 
these analogies in the non-extended phase space are confusing since some black hole’s inten-
sive (extensive) quantities have to be identified with irrelevant extensive (intensive) quantities 
in the fluid system; for example, the identification between the fluid temperature and the U(1) 
charge of RN-AdS black holes [2, 3] is really puzzling. By employing the extended phase 
space, these kinds of mismatches will be eliminated [5]. Motivated by this fact, the extended 
phase space thermodynamics (first established in [37] and then developed in [38–42]) is of 
direct interest for the present day, and, from this perspective, black holes can be understood 
from the viewpoint of standard chemistry, known as Black Hole Chemistry [43].

In Einstein’s gravity, charged or rotating AdS black holes only admit phase transition in 
canonical (fixed Q or fixed J) ensemble [5, 44] whereas, as we will see in this paper, this 
statement is no longer valid in massive gravity. However, for spherically symmetric black 
holes in Einstein’s gravity coupled with nonlinear electromagnetic sources such as power 
Maxwell invariant (PMI) electrodynamics, P − V  criticality is observed in both canonical 
(fixed U(1) charge) and grand canonical (fixed U(1) potential) ensembles of the extended 
phase space [12]. Using the canonical and grand canonical analysis, it was shown that the non-
extended phase space of the charged-AdS black holes in dRGT massive gravity accepts first 
order phase transitions in a way reminiscent of vdW systems [29]. Moreover, AdS black hole 
solutions within the framework of higher curvature gravities exhibit rich (non) extended phase 
space with the associated critical behaviors in both canonical and grand canonical ensembles 
[13–16, 18–22, 33, 45]. Therefore, it seems geometrical modifications of general relativity 
(such as massive gravity, Lovelock gravity, F(R) gravity, ...) or the presence of nontrivial 
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energy-momentum tensors (such as PMI or Born–Infeld electrodynamics) are mandatory to 
have black hole phase transitions in the grand canonical ensemble where electric potential Φ 
or angular velocity Ω are fixed.

One of the geometrical modifications of general relativity (GR) is the dRGT massive grav-
ity which is regarded as a consistent extension of Einstein’s GR with an explicit mass term 
for spin-2 gravitons [25, 26]. This alternative theory of gravity modifies GR in the large scales 
(IR limit) and has some nice properties such as being ghost free [26, 46], in agreement with 
recent observational data of LIGO collaboration [47, 48], and the ability to explain the cur
rent observations related to dark matter [49] and also the accelerating expansion of universe 
without requiring any dark energy component [50, 51]. On the other hand, the possibility of 
embedding massive gravity in an ultraviolet-complete theory like string theory is indicated in 
[52]. In this paper, the authors considered 4-dimensional AdS solutions of IIB string theory in 
which the lowest spin-2 mode has a tiny mass (mg), and explicitly showed that massive AdS4 
gravity is a part of the string theory landscape [52]. For these reasons we regard massive grav-
ity as a class of theories that merit further exploration.

Massive gravity theories need an auxiliary reference metric ( fµν) to define a mass term for 
massless gravitons [48, 53], and, in principle, one can construct a special theory of massive 
gravity for each choice of reference metric [54]. Massive gravity theories in AdS space with 
a singular (degenerate) reference metric have been particularly useful in the context of gauge/
gravity duality, where a finite DC conductivity obtains when studying the dual boundary the-
ory [57, 62, 63], in contrast to massless gravity theories such as Einstein and Gauss–Bonnet 
ones with infinite DC conductivity [64–67]. On the other hand, AdS black hole solutions in 
massive gravity theories can effectively describe different phases of condensed matter systems 
with broken translational symmetry such as solids, liquids, (perfect) fluids etc [61, 68–70]. 
As reported in [28], one can build a gravitational theory dual system with this property and 
then see if it can thermodynamically simulate the critical behavior of those condensed matter 
systems as well. To do that, it is shown that in parallel with everyday thermodynamics, one 
has to insert a P − V  term for the AdS black hole systems and this can be done in the context 
of BHC [43] by extending the thermodynamic phase space [37]. One of the interesting cases 
is the chemistry of charged TBHs in massive gravity, since these black objects can be viewed 
as effective dual field theory of different types of charged condensed matter systems. Hence 
in this paper, we study charged BHC with massive gravitons with three reasonable reasons/
goals: (i) considering TBHs in a more complicated environment via modified gravity, here 
dRGT massive gravity, leads to more possibilities for investigation. (ii) In the context of BHC 
via dRGT massive gravity, since holographic phase transitions take place in both canonical 
and grand canonical ensembles (as will be shown here), we can learn more about the effect 
of ensemble one is dealing with and keep track the outcomes of critical phenomena in each 
ensemble, separately. (iii) We intend to generalize the results of neutral massive TBHs to the 
charged cases and see what happens when a U(1) charge is added. On the other hand, the 
inclusion of a U(1) charge is equivalent to state that the charged TBHs may resemble those 
critical behaviors present in charged condensed matter systems.

So far, all studies related to the extended phase space thermodynamics and critical behav-
iors (only for vdW phase transition) of charged TBHs in massive gravity have been performed 
in the canonical ensemble. In addition, for the other types of phase transitions such as the RPT 
or triple point phenomena, only the uncharged (neutral) TBHs have been studied [28, 31]. In 
this regard, the RPT and triple point phenomena are not yet observed in the charged black 
holes of massive gravity. Here, we explicitly consider the effects of U(1) charge and potential 
to investigate the associated P − V  criticality and bring out several important results. Since 
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the specific choice of ensemble has an important role on the criticality and nature of possible 
phase transition(s), it is of great interest to generalize these studies in the extended phase space 
of TBHs to the grand canonical ensemble. In fact, as we will explicitly show that a certain 
critical behavior in a specific d-dimensional spacetime could be present or absent depending 
on the nature of the ensemble one is dealing with.

Taking the above mentioned motivations into account, we intend to develop the extended 
phase space of the dRGT black hole solutions in the grand canonical ensemble along with 
the canonical ensemble by applying suitable boundary conditions. Our purpose is to discover 
which properties of AdS black holes are universal and which ones show a dependence on 
the spacetime dimensions and the ensemble. To do that, this paper is structured as follows: 
first, in section 2, considering the full nonlinear theory of dRGT massive gravity in higher 
dimensions, we present exact charged black hole solutions with appropriate boundary condi-
tions. Then, in section 3, the subject of charged black hole chemistry in massive gravity is 
investigated in the canonical ensemble. Afterward, in section 4, the context of charged black 
hole chemistry in massive gravity is promoted to the grand canonical ensemble, and then, in 
section 5, we compute the associated critical exponents in both canonical and grand canoni-
cal ensembles. Finally, in section 6, we finish our paper with some concluding remarks and 
summarize the results.

2.  Action, field equations, and topological black holes

The total action, IG, for a gravitating system consists of three terms as

IG = Ib + Is + Ict,� (2.1)

where Ib, Is  and Ict are called the bulk action, the surface term (boundary action), and 
the counterterm action, respectively. The bulk action for dRGT massive gravity on the 
d = (n + 2)-dimensional background manifold M in the presence of negative cosmological 

constant (Λ = − d1d2
2�2 , with the AdS radius �) and Maxwell invariance F  is

Ib = − 1
16πGd

∫

M
ddx

√
−g [R − 2Λ−F + m2

g

d−2∑
i=1

ciUi(g, f )],� (2.2)

where F ≡ FµνFµν, and Fµν  is the Faraday tensor which is constructed using the U(1) gauge 
field Aν  as Fµν = ∂[µAν]. In the above action, mg is the graviton mass parameter, ci’s are 
massive couplings which are arbitrary constants, gµν is the physical metric, and fµν is a fixed 
second rank symmetric tensor as an auxiliary reference metric to define a mass term for mass-
less spin-2 particles (i.e. gravitons). As shown in [25, 26], gravitons become massive without 
any ghost problem [46] if one adds the interaction potentials Ui  to the Lagrangian density of 
Einstein’s gravity4. The graviton interaction terms are symmetric polynomials of the eigenval-
ues of d × d matrix Kµ

ν =
√

gµλfλν  and may be written as5

Ui =

i∑
y=1

(−1)y+1 (i − 1)!
(i − y)!

Ui−y[Ky],� (2.3)

4 This statement holds in higher dimensions as well. The higher dimensional extension of the massive (bi)gravity, 
including higher order graviton’s self-interactions, is discussed in [55, 56] which confirms the absence of ghost 
fields using the Cayley–Hamilton theorem.
5 Our notation is a little different with [25, 26, 46] and is in agreement with [27, 57, 58].
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in which the square root of K stands for matrix square root (i.e. (
√
K)µλ(

√
K)λν = Kµ

ν) and 
the rectangular brackets denote traces, [K] = Kµ

µ. Some explicit form of Ui’s are given as

U1 = [K],

U2 = [K]2 − [K2],

U3 = [K]3 − 3 [K] [K2] + 2 [K3],

U4 = [K]4 − 6 [K]2 [K2] + 8 [K] [K3] + 3 [K2]2 − 6 [K4],

U5 = [K]5 − 10 [K] 3[K2] + 20[K]2 [K3]− 20[K2] [K3]

+ 15 [K][K2]2 − 30 [K] [K4] + 24 [K5],
...

�

(2.4)

Using the variational principle, the electromagnetic and gravitational field equations of the 
bulk action (2.2) can be obtained. Varying the bulk action with respect to the dynamical metric 
(gµν) and gauge field (Aν) results

δIb = − 1
16πGd

∫

M
ddx

√
−g[Gµν + Λgµν + m2

gXµν − Tµν ]δgµν

+
1

8πGd

∫

∂M
dd−1x

√
−hnαhµνδgµν,α

− 1
4πGd

∫

M
ddx

√
−g[∇µFµν ]δAν

+
1

4πGd

∫

∂M
dd−1x

√
−hnµFµνδAν ,

�

(2.5)

where nµ is a radial unit vector pointing outwards and hµν is the induced metric of the bound-
ary (∂M)6. In the above expression, Tµν and Xµν  are the consequences of varying the Maxwell 
invariant and graviton interaction potentials with respect to the gµν as below

Tµν = −1
2

gµνF + 2FµλFν
λ,� (2.6)

Xµν = −
d−2∑
i=1

ci

2

[
Uigµν +

i∑
y=1

(−1)y i!
(i − y)!

Ui−yKy
µν

]
,� (2.7)

where, in our notation, Ui−y = 1 if i  =  y . The explicit form of Xµν  can be presented as

Xµν = − c1

2
(U1gµν −Kµν)

− c2

2
(U2gµν − 2U1Kµν + 2K2

µν)

− c3

2
(U3gµν − 3U2Kµν + 6U1K2

µν − 6K3
µν)

− c4

2
(U4gµν − 4U3Kµν + 12U2K2

µν − 24U1K3
µν + 24K4

µν)

− c5

2
(U5gµν − 5U4Kµν + 20U3K2

µν − 60U2K3
µν + 120U1K4

µν − 120K5
µν) + ...

�

(2.8)

6 It should be noted that, in the massless limit of massive gravity, some problematic boundary terms induced by 
the bulk action appear and one should introduce novel boundary counterterms which dominate over the Gibbons–
Hawking term and cancel those terms [59]. In the present work, considering the massive graviton case, no further 
boundary term is needed since all the new fields of massive gravity enter the action with the first derivative, so do 
not alter the equations of motion.
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As a result, the gravitational and electromagnetic filed equations  of the bulk theory are 
obtained as

Gµν + Λgµν + m2
gXµν = −1

2
gµνF + 2FµλFν

λ,� (2.9)

∇µFµν = 0.� (2.10)

According to the variation of the bulk action (2.5) and asking for a well-defined variational 
principle, one has to appropriately cancel the boundary terms by use of adding surface term(s), 
Is . To do so, the Gibbons–Hawking action, IGH, can remove the derivative terms of gµν nor-
mal to the boundary and is given by

IGH =
1

8πGd

∫

∂M
dd−1x

√
−hK,� (2.11)

where K is the trace of extrinsic curvature of boundary, ∂M. On the other hand, the electro
magnetic boundary term has to be eliminated by use of imposing boundary condition or pro-
posing another surface term. There are two possibilities which define the fixed potential and 
the fixed charge ensembles at infinity as

δAν |∂M = 0 ←→ fixed potential ensemble
Is = IGH + IEM ←→ fixed charge ensemble
� (2.12)

where IEM is a new surface term that is needed to remove the electromagnetic boundary term 
in (2.5), and, consequently, to fix charge on the boundary, with the following explicit form

IEM = − 1
4πGd

∫

∂M
dd−1x

√
−hnµFµνAν .� (2.13)

We refer to the such gravitating systems with fixed charge and fixed potential boundary con-
ditions at infinity as the canonical and the grand canonical ensembles, respectively, which 
is common in literature. In our considerations, these boundary conditions will be imposed 
separately in order to compare the results of black holes’ PV  criticality in both canonical and 
grand canonical ensembles.

To find topological (AdS) black holes, we make use of the following  
d(= n + 2)-dimensional line element ansatz

ds2 = −V(r)dt2 +
dr2

V(r)
+ r2hijdxidxj (i, j = 1, 2, ..., n),� (2.14)

where the line element hijdxidxj is the metric of n-dimensional (unit) hypersurface with the 
constant curvature d1d2k and volume ωn with the following forms

hijdxidxj =





dx2
1 +

d−2∑
i=2

i−1∏
j=1

sin2xjdx2
i (k = +1)

d−2∑
i=1

dx2
i (k = 0)

dx2
1 + sinh2x1

d−2∑
i=2

dx2
i

i−1∏
j=2

sin2xj (k = −1)

� (2.15)
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in which 
∏y

x ... = 1 if x  >  y . Another line element ansatz is necessary for the reference metric 
fµν. We are primarily interested in building an effective field theory by use of the gravitational 
language which could describe some properties of different phases of matter. It has been 
indicated in a series of papers [57, 68–70] that the black hole solutions of Einstein’s gravity 
minimally coupled with a number of N scalar fields (φa) on AdS space can describe different 
types of matter (such as solids and fluids) in a covariant way. In such theories, the number 
of independent scalar fields (known as Stückelberg fields) is less than the number of space-
time dimensions d (i.e. N  <  d). After the (unitary) gauge fixing φa = δa

µxµ, the field structure 
of such theories are equivalent to a family of massive gravity on AdS with a singular and 
(spatial) degenerate reference metric, i.e. a reference metric with vanishing tt and rr entries 
on the diagonal form. Remarkably as emphasized in [71], the holographic language of mas-
sive gravity with a singular reference metric in terms of Stückelberg fields [60, 61, 68–70] is 
related to the language of gauge field theories for liquid crystals [71, 72], which shows a deep 
connection between these theories, and it becomes more manifest using BHC as speculated in 
[28]. On the other hand, in view of gauge/gravity duality, massive gravity on AdS space with 
a singular (degenerate) reference metric is dual to homogenous and isotropic condensed mat-
ter systems which leads to a boundary theory with the finite DC conductivity [57, 62, 63], a 
desired property for normal conductors that is absent in massless gravity theories [64–67]. For 
these reasons, massive gravity with a singular reference metric is of direct interest to us. So we 
make use of the following singular and (spatial) degenerate ansatz [29, 57]

fµν = diag
(
0, 0, c2

0hij
)

,� (2.16)

in which c0 is a positive constant. Since fµν depends only on the spatial components hij of 
the spacetime metric, the theory do not preserve general covariance in the transverse spatial 
coordinates x1, x2, ..., xd2 . This choice of the reference metric establishes a subclass of dRGT 
massive gravity theories, called as the reduced massive gravity [60, 61], that is ghost free and 
admits exact black hole solutions on AdS [57, 62, 63, 73].

Nevertheless, it is possible to find black hole solutions with a nonsingular reference metric (in 
which the tt and rr components of the reference metric are non-zero), but the analytic solutions 
can be found only for some specific values of massive coefficients (see [74–80] for more details). 
The reference metric in these black hole solutions is assumed to be the Minkowski metric which 
means that diffeomorphism breaks along all of the temporal and spatial directions. Assuming 
the Minkowskian reference metric, spherically symmetric black hole solutions were found in 
[74, 75] and in the limit of vanishing graviton mass they go smoothly to the Schwarzschild and 
RN black holes on de Sitter space. Asymptotically flat black hole solutions were found in [76] 
and they are potentially considered as the viable classical solutions for stars and black holes in 
massive gravity, but the curvature diverges near the horizon of these solutions. However, black 
hole solutions with non-singular horizon were introduced in [77]. There exist other interesting 
black hole solutions including charged and rotation parameters that were the subject of [78–80]. 
It should be noted that all of these solutions have been found in 4-dimensions. In addition, 
the author of [55, 56] found out Schwarzschild–Tangherlini–(A)dS in five-dimensional massive 
gravity as well as in massive bi-gravity with assumptions that the reference metric is compatible 
with (for massive gravity) or proportional (for massive bi-gravity) to the physical one.

Using the ansatz (2.16), the interaction terms Ui  are calculated as

Ui =
(c0

r

)i i+1∏
j=2

dj,� (2.17)
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in which we have used the convention di  =  d  −  i (throughout this paper, this convention will 
be used). Considering the above relation, it is inferred that there are at most (d − 2) potential 
terms (Ui) in a d-dimensional spacetime and all the higher-order terms vanish identically. 
Therefore, the upper bound (d  −  2) exists for summation in equation (2.7) in all dimensions.

Solving the Maxwell field equations (2.10) yields the U(1) gauge field as

Aµ =
(
φ− q

d3rd3

)
δ0
µ,� (2.18)

in which q is a constant related to the total electric charge of spacetime. The constant φ is 
obtained by the regularity condition [81, 82] at the horizon (r  =  r+ ), i.e. At(r+) = 0, which 

leads to φ = q
d3rd3

+

. The electric potential Φ of the black hole spacetime is actually electrostatic 

potential difference between the horizon and the boundary at infinity. We choose the event 
horizon as the reference (i.e. Φ = 0 as r → r+). Thus, the electric potential can be measured 
at the infinity with respect to the horizon as

Φ = Aµχ
µ|r→∞ − Aµχ

µ|r→r+
=

q

d3rd3
+

,� (2.19)

where χ = ∂t is the temporal Killing vector. Moreover, the electric charge can be obtained 
using the Gauss’ law as

Q =
ωn

4π
q.� (2.20)

Now, the gravitational field equations (2.9) can be solved using the metric ansatz (2.14). 
To do that, the rr-component of equation (2.9) is enough for our purpose to obtain the metric 
function V(r). The rr-component of equation (2.9) is given as

d2d3 (k − f (r))− d2r
(

df (r)
dr

)
− 2Λr2 − 2q2r−2d3 + m2

g

d−2∑
i=1

( ci
0ci

ri−2

i+1∏
j=2

dj

)
= 0.

� (2.21)
Consequently, the metric function V(r) is obtained as

V(r) = k − 2Λr2

d1d2
− m

rd3
+ m2

g

d−2∑
i=1

( ci
0ci

d2ri−2

i∏
j=2

dj

)
+

2q2

d2d3r2d3
,� (2.22)

where m is a positive constant related to the finite mass of spacetime. This solution is valid to all 
orders in arbitrary dimensions, and, simultaneously, satisfies all components of equation (2.9).

The existence of essential singularity of the spacetime is confirmed by computing the 
Kretschmann scalar which is

RαβγδRαβγδ =

(
∂2V(r)
∂r2

)2

+ 2d2

(
1
r
∂V(r)
∂r

)2

+ 2d2d3

(
V(r)− k

r2

)2

.� (2.23)

Taking into account the metric function V(r), it can be found RαβγδRαβγδ ∝ r−4d2 near the 
origin (r → 0+) and, for r �= 0, all the curvature scalars are finite. This curvature singularity 
cannot be eliminated by any coordinate transformation, while can be covered by an event hori-
zon, r+ (V(r+) = 0). The roots of the metric function V(r) = grr = 0 specify the number of 
horizons, and, as reported in [33, 58, 83], the metric function V(r) could have more than two 
roots. So the multi-horizon black hole solutions are found in massive gravity and we assume 
that r+ is the event horizon radius of the black hole solutions, i.e. the largest real positive root 
of V(r) = 0.
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The Hawking temperature of the black hole spacetimes can be obtained by applying the 
definition of surface gravity [88] or employing the Euclidean formalism [1, 36]. Considering 
the latter, by the analytic continuation of the Lorentzian metric (2.14) to Euclidean signature, 
i.e. tE = it, we get

ds2
E = V(r)dt2

E +
dr2

V(r)
+ r2hijdxidxj.� (2.24)

The above Euclidean metric has a conical singularity at the horizon (r  =  r+ ), so regularity 
condition near the horizon requires that the Euclidean time be periodic, i.e. tE ∼ tE + β (oth-
erwise the expansion of the Euclidean spacetime around r  =  r+ shows a conical singularity). 
Thus, one obtains the Hawking temperature of the obtained TBHs in the canonical ensemble 
as

β−1 = T =
1

4π
∂V(r)
∂r

∣∣∣∣
r=r+

=

d2d3k − 2Λr2
+ − 2q2r−2d3

+ + m2
g

d−2∑
i=1

(
ci

0 ci

ri−2
+

i+1∏
j=2

dj

)

4πd2 r+
,

� (2.25)

and, for the case of grand canonical ensemble (fixed Φ), using q = d3Φrd3
+, it is given by

β−1 = T =

d2d3k − 2Λr2
+ − 2d2

3Φ
2 + m2

g

d−2∑
i=1

(
ci

0 ci

ri−2
+

i+1∏
j=2

dj

)

4πd2 r+
.

� (2.26)

Working in the Euclidean formulation (for more details see [84–87]), the semi-classical 
partition functions of TBHs may be evaluated using the following path integral over the 
dynamical metric (g ≡ gµν) as

Z =

∫
D[g,ϕ]e−IE[g,ϕ],� (2.27)

in which D denotes integration over all paths, ϕ is considered as matter fields and IE repre-
sents the Euclidean version of the Lorentzian action IG by implementing the Wick rotation, 
tE = it. In next sections, we will explicitly evaluate semi-classical black hole partition func-
tions in both canonical and grand canonical ensembles by employing the appropriate bound-
ary conditions. This facilitates the study of thermodynamics of TBHs.

3.  Black hole chemistry in canonical ensemble

3.1.  Canonical partition function

The gravitational partition function in the canonical (fixed charge) ensemble is defined by 
following path integral

ZC =

∫
D[g, A]e−IE[g,A] � e−Ion-shell(β,Q),� (3.1)

in which A and Ion-shell represent the gauge field (Aµ) and the on-shell gravitational action, 
respectively. The most dominant contribution of the partition function originates from sub-
stituting the classical solutions of the action, i.e. the so-called on-shell action by applying 
the saddle-point approximation. To do that, one has to first compute the total on-shell action 
(Ion-shell) in the Euclidean formalism. In the case of the canonical ensemble, we need to add 
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the electromagnetic surface term IEM to the action, i.e. IG = Ib + IGH + IEM + Ict. Here, 
we compute the on-shell action using the Hawking–Witten prescription (the so-called sub-
traction method [1, 36]), and so, we only need to evaluate the on-shell bulk action plus the 
electromagnetic surface term (IEM) as the associated boundary condition with the fixed charge 
ensemble.

In order to have a finite gravitational partition function, following Hawking–Witten pre-
scription, we subtract the on-shell action of the AdS background without black hole (referred 
to as IAdS), i.e. setting m  =  Q  =  0 in equation (2.22), from the on-shell action of the black hole 
spacetime (referred to as IBH) and compute the explicit form of on-shell action in Euclidean 
signature. That leads to free energy difference as

F ≡ ∆F = β−1 (IBH − IAdS) ,� (3.2)

in which the zero point energy of the boundary gauge theory (based on AdS/CFT duality) 
is canceled. Now, we briefly explain how to compute the on-shell action of charged TBHs 
in dRGT massive gravity. First, the Ricci scalar (R) is obtained using the gravitational field 
equations (2.9) as

R =
1
d2

(
2Λd + 2m2

gX + d4F
)

, X ≡ gµνXµν .� (3.3)

Using this equation and the explicit form of interaction potentials (2.17), the bulk Lagrangian 
presented in (2.2) is explicitly calculated as

Lbulk ≡ R − 2Λ−F + m2
g

d−2∑
i=1

ciUi(g, f ) =
2
d2

(2Λ−F) + m2
g

d−2∑
i=1

(i − 2)
ci

0ci

ri

i+1∏
j=3

dj,� (3.4)

in which the following identity [28] has been used

2
i+1∏
j=3

dj +

i∑
y=1

(−1)y i!
(i − y)!

i−y+1∏
j=2

dj = (i − 2)
i+1∏
j=3

dj,� (3.5)

where 
∏y

x ... = 1 if x  >  y . Substituting the classical solutions, equations (2.22) and (2.18), the 
on-shell bulk action for the TBH spacetimes with the fixed charge boundary condition can be 
computed after a long and tedious calculation as

IBH =
βωn

16πGd

[
2
�2 rd1 − m2

g

d−2∑
i=1

(i − 2)ci
0ci

d − i − 1
rd−i−1

i+1∏
j=3

dj −
4q2

d2rd3

]R

r+

,� (3.6)

in which ‘R’ is an upper cutoff on the radial integrations in order to regularize the action, and 
will be canceled at the end. In the above calculation, we have used the electromagnetic surface 
term, IEM, in the Euclidean signature as

IEM = − 1
4πGd

∫

∂M
dd−1x

√
hnµFµνAν =

βωn

16πGd

[
4q2

d3rd3
+

]
.� (3.7)

Repeating the same procedure for the AdS background in massive gravity (without any matter 
or electromagnetic field, i.e. setting Q  =  m  =  0), one obtains

IAdS =
β0ωn

16πGd

[
2
�2 Rd1 − m2

g

d−2∑
i=1

(i − 2)ci
0ci

d − i − 1
Rd−i−1

i+1∏
j=3

dj

]
,� (3.8)
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with the period β0. Both AdS and black hole spacetimes at r  =  R must have the same geom-
etry, i.e. β0V0(R)1/2 = βV(R)1/2, which leads to

β0 = β

(
1 − m�2

2rd−1 + O(r−2(d−1))

)
.� (3.9)

Using this fact and the following identity [28]

1
d2

i∏
j=2

dj +
i − 2

d − i − 1

i+1∏
j=3

dj = (i − 1)
i∏

j=3

dj,� (3.10)

the renormalized on-shell action in the canonical ensemble is eventually computed as

Ion-shell ≡ lim
R→∞

(IBH − IAdS)

=
βωnrd3

+

16πGd

[
k −

r2
+

�2 +
2(2d − 5)q2

d2d3r2d3
+

+ m2
g

d−2∑
i=1

( (i − 1)ci
0ci

ri−2
+

i∏
j=3

dj

)]
.

� (3.11)

3.2. Thermodynamics

Thermodynamic quantities are straightforwardly extracted form the obtained partition func-
tion. Using the canonical partition function, equations (3.1) and (3.11), the mass of the black 
hole is computed as (setting Gd  =  1)

M = − ∂

∂β
lnZC =

d2ωn

16π
rd3
+

[
k +

( r+
�

)2
+ m2

g

d−2∑
i=1

( ci
0ci

d2ri−2
+

i∏
j=2

dj

)
+

2q2

d2d3r2d3
+

]
,

� (3.12)

where, in the extended phase space (Λ = − d1d2
2�2 = −8πP), has to be interpreted as the black 

hole enthalpy, M ≡ H . The above black hole mass is in agreement with the ADM mass form
ula as

M =
d2ωn

16π
m,� (3.13)

in which the constant m is obtained from V(r+) = 0 (see equation (2.22)), and thus, the same 
result as equation (3.12) is obtained. Working in the extended phase space, the free energy in 
the canonical ensemble is obtained as

G = β−1 lnZC(T , P, Q) = M − TS

=
ωnrd3

+

16π

[
k −

16πPr2
+

d1d2
+

(4d − 10)q2

d2d3r2d3
+

+ m2
g

d−2∑
i=1

( (i − 1)ci
0ci

ri−2
+

i∏
j=3

dj

)]
,

� (3.14)
which, in fact, is the Gibbs free energy of the AdS black hole. Using the obtained free energy, 
the other thermodynamic variables (i.e. V , Φ and S) can be easily computed (notice that r+ 
is understood as a function of P and T according to equation  (2.25)). The thermodynamic 
volume is given by

V =

(
∂G
∂P

)

T ,Q
=

ωn

d1
rd1
+ .� (3.15)
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The electric potential can be calculated using the following thermodynamic relation as

Φ =

(
∂G
∂Q

)

T ,P
=

q

d3rd3
+

,� (3.16)

which is in agreement with the equation (2.19). Finally, the black hole entropy is given by

S = −
(
∂G
∂T

)

P,Q
=

ωn

4
rd2
+ ,� (3.17)

which satisfy the so-called area law and is in agreement with the relation S = β(M − G) as 
expected.

In conclusion, the obtained thermodynamic quantities satisfy analytically the first law 
of thermodynamics in the Gibbs energy representation, i.e. dG = −SdT +ΦdQ + VdP . 
Furthermore, one can use the Legendre transform G  =  M  −  TS to write down the first law in 
the enthalpy representation as dM = TdS +ΦdQ + VdP, in which the temperature and ther-
modynamic volume are respectively obtained using T = (∂M/∂S)P,Q and V = (∂M/∂P)S,Q in 
agreement with equations (2.25) and (3.15). Finally, using these ingredients, it can be derived 
that obtained thermodynamic quantities obey the extended Smarr formula as

(d − 3)M = (d − 2)TS + (d − 3)ΦQ − 2PV +

d−2∑
i=1

(i − 2)Cici,� (3.18)

where the conjugate potentials (Ci) corresponding to the massive couplings (ci) are given by

Ci =

(
∂M
∂ci

)

S,P,Q,cj �=i

=
ωn

16π
m2

gci
0rdi+1

+

i∏
j=2

dj.� (3.19)

As a result, the extended Smarr relation suggests that one should take into account 
ci’s as the new thermodynamic variables. This leads to the extended first law as 

dM = TdS +ΦdQ + VdP +
∑d−2

i=1 Cidci. Comparing equation (3.18) with [37, 89], the same 

result for the Smarr formula in the extended phase space is obtained if one invokes the method 
of scaling argument as

(d − 3)M = (d − 2)
(
∂M
∂S

)
S + (d − 3)

(
∂M
∂Q

)
Q − 2

(
∂M
∂P

)
P +

d−2∑
i=1

(i − 2)
(
∂M
∂ci

)
ci,�

(3.20)
with the following scalings for the thermodynamic quantities

[M] = Ld−3, [ci] = Li−2, [P] = L−2, [S] = Ld−2, [Q] = Ld−3.� (3.21)

3.3.  Holographic phase transitions

Using equation (2.25), the canonical equation of state of charged TBHs is calculated in the 
extended phase space as

P =
d2T̃
4r+

−
d2d3k(C)

eff

16πr2
+

−
m2

g

16π

d−2∑
i=3

(ci
0ci

ri
+

i+1∏
j=2

dj

)
+

q2

8πr2d2
+

,� (3.22)

in which the effective topological factor k(C)
eff  has been introduced as
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k(C)
eff ≡ [k + m2

gc2
0c2],� (3.23)

and T̃  is the shifted Hawking temperature [28, 30, 31, 33] with the following explicit form

T̃ = T −
m2

gc0c1

4π
=

d2d3k − 2Λr2
+ − 2q2r−2d3

+ + m2
g

d−2∑
i=2

(
ci

0ci

ri−2
+

i+1∏
j=2

dj

)

4πd2r+
.

� (3.24)

The inflection point(s) of isothermal curves in P − v diagrams determine the critical 
point(s), i.e. by applying the following relations

(
∂P
∂v

)

T
= 0 ⇐⇒

(
∂P
∂r+

)

T
= 0,

(
∂2P
∂v2

)

T
= 0 ⇐⇒

(
∂2P
∂r2

+

)

T

= 0,
�

(3.25)

where the specific volume v is proportional to r  +  as v = 4r+�d2
P /d2 [5, 11, 28, 30, 31, 33]. 

So, because of the dependency between r+ , v and the thermodynamic volume V , criticality in 
one of P  −  r+ , P − v or P − V  planes indicates criticality in the others. On the other hand, 
since the essential information of the phase transitions encodes in the G  −  T diagrams, so we 
mainly discuss based on the isobaric curves of these diagrams in the next sections.

Implementing equation (3.25) for the equation of state (3.22) leads to

d3k(C)
eff r2d3

+ + m2
g

d−2∑
i=3

(
i(i − 1)ci

0cir2d−i−4
+

i+1∏
j=3

dj

)
− 2(2d − 5)q2 = 0.� (3.26)

As will be shown, the number of physical critical point(s) of the above equation  specifies 
the type of phase transition. In the following, we will analyze the canonical ensemble holo-
graphic phase transitions in massive gravity theory case by case with detail. In advance, it 
should be noted that our considerations are for all types of charged TBHs (with k = 0,±1). 

In fact, according to the given equations in this section, the combination k(C)
eff ≡ [k + m2

gc2
0c2] 

as an effective topological factor always appears. If we find a set of parameters related to a 
critical behavior in a charged-AdS black hole system with a specific event horizon geometry, 
one can always obtain the same critical behavior in another black hole system with different 

horizon geometry. The only necessity is that the same value must be provided for k(GC)
eff , which 

is always possible by varying the massive constant c2. Consequently, the same critical points 
with the same critical behavior are found for the case of the spherical, planar, and hyperbolic 
black holes. This is a remarkable property of TBHs in massive gravity (first indicated in [28]).

3.3.1.  van der Waals (vdW) phase transition.  The vdW phase transition in the context of 
massive gravity is widely discussed before in [27, 29, 30]. But here, we try to generalize the 
analytical results to higher dimensions. To have the vdW phase transition, one (physical) 
critical point is needed. This phenomenon can commence to appear in d � 4 dimensions. In a 
4-dimensional spacetime, only the first two massive couplings (c1 and c2) are present. So, we 
can simply assume that the first two massive couplings are non-zero and the others vanish in 
higher dimensions. Of course, according to equation (3.26), one can always find one (physi-
cal) critical point associated with the vdW behavior by use of an appropriate fine tuning of 
massive parameters. Here, using equation (3.26), we apply the first approach which leads to 
the following critical point equation
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d3k(C)
eff r2d3

+ − 2(2d − 5)q2 = 0.� (3.27)

The critical horizon radius is obtained easily as

rc =

(
2(2d − 5)q2

d3k(C)
eff

) 1
2d3

,� (3.28)

in which the constraint k(C)
eff > 0 must be satisfied. According to the later constraint, there is no 

limitation on the value of the U(1) charge in Einstein (mg  =  0) or massive gravity. Evidently, 
in the massless limit of gravitons (mg  =  0) which leads to the Einstein gravity, no phase trans
ition and critical behavior take place for charged TBHs with Ricci flat or hyperbolic horizon 
geometries (i.e. k = 0,−1).

Regarding equation (3.28), the critical pressure and temperature are computed as

PC =
d2

3k(C)
eff

16πr2
c

,� (3.29)

and

T̃C =
d2

3k(C)
eff

(2d − 5)πrc
.� (3.30)

Now, using these critical quantities, we can easily plot the vdW behavior of phase trans
ition for a set of TBHs. In (figure 1), G  −  T diagrams for the isobaric curves near the criti-
cal point are depicted. As seen, for the range P  <  PC, the characteristic swallowtail form is 
observed which closely resembles the vdW phase transition in fluids. For the range P  >  PC, 
the isobars correspond to the ideal gas with a single phase. Moreover, the presented example 
is a generic feature of all types of TBHs.

Using v = 4r+/d2  in the geometric units, the obtained thermodynamic quantities at the 
critical point satisfy the following universal ratio

PCrc

T̃C
=

2d − 5
16

⇐⇒ PCvc

T̃C
=

2d − 5
4d2

,� (3.31)

in which the shifted Hawking temperature (T̃ = T − m2
gc0c1/4π) is used and the constraint 

k(C)
eff > 0 which imposed from equation (3.28) can ensure the positivity of T̃C . Interestingly, 

the obtained critical ratio does not depend on the topology of the event horizon. This exactly 
matches with the universal ratio of RN-AdS black holes in Einstein’s gravity, and in d  =  4 
dimensions, the universal ratio of vdW fluid, i.e. 3/8, is obtained too. Obviously, in terms of 
the standard Hawking temperature (T), the universal ratio will be a function of graviton’s mass 
(mg). Regarding this case, one finds the standard universal ratio as

PCvc

TC
=

(2d − 5)d2
3k(C)

eff

d2

(
4d2

3k(C)
eff + (2d − 5)m2

gc0c1rc

) .� (3.32)

It is interesting to note that expanding the above universal ratio around the infinitesimal values 
of the graviton’s mass (mg) yields

A Dehghani and S H Hendi﻿Class. Quantum Grav. 37 (2020) 024001



15

PCvc

TC
=

2d − 5
4d2

{
1 −

(2d − 5)m2
gc0c1

4d2
3k

(
2(2d − 5)q2

d3k

) 1
2d3

+ O(m4
g)
}

,� (3.33)

which only is true for the case of spherical symmetry (k  =  +1). According to equation (3.28), 
when the geometry of event horizon is planar or hyperbolic (i.e. k = 0,−1), the zero limit 
(mg → 0) of critical radius does not exist anymore and thus one is not allowed to expand 
the universal ratio PCvc/TC  around mg  =  0. This shows the drastic effect of event horizon’s 
geometry in the massless limit (mg  =  0) of massive gravity as expected. It is natural since 
we know that there is no criticality for planar or hyperbolic black holes in Einstein’s gravity. 
Consequently, since the expansion around mg  =  0 is not permissible (for k = 0,−1), it can be 
inferred from equation (3.28) that a lower mass bound is needed to have a positive definite 
critical radius and the subsequent critical behavior for Ricci flat or hyperbolic black holes.

3.3.2.  Reentrant phase transition (RPT).  We now discuss the reentrant behavior of phase 
transition (first seen in [6, 11]) in the canonical ensemble. As stated in [33], the RPT phenom
enon can appear when the equation of state could give birth to two critical points in which the 
associated pressures and temperatures are positive definite, but, it is seen that only one of these 
critical points referred to as (TC, PC), is physical and the other one is unphysical since it cannot 
minimize the Gibbs free energy. By further studying the phase space, it will be evident that a 
virtual triple point (TTr, PTr) and another critical point (TZ, PZ) emerge. As a result, three sepa-
rate phases of black holes appear. The critical points (TZ, PZ) and (TC, PC) are, respectively, the 

Figure 1.  vdW phase transition in the canonical (fixed charge) ensemble: G  −  T diagram 
for a spherical black hole with [k  =  +1, c2  =  0], or a planar black hole with [k  =  0, 
c2  =  1], or a hyperbolic black hole with [k  =  −1, c2  =  2]. The other parameters have 
been set as d  =  4, mg  =  1, c0  =  1, c1  =  1, and q  =  1. Critical data: (TC = 0.122 894, 
PC = 0.003 316).
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endpoints of the zeroth-order and first order coexistence lines. Moreover, the first order and 
the zeroth-order coexistence lines join at the virtual triple point (TTr, PTr).

In the context of massive gravity, it seems that the phenomenon of RPT may be observed 
when higher order interactions of massive gravitons up to the third interaction terms are con-
sidered (which is possible in d � 5 dimensions). But we speculate this is not the case. Using 
equation (3.26), the equation of critical point(s) in five-dimensional spacetime reads (setting 
c0  =  1)

m2
gc2r4

+ + 3m2
gc3r3

+ − 5q2 = 0,� (3.34)

in which, without loss of generality, it is assumed that k  =  0 (so we have k(C)
eff = m2

gc2
0c2). Also, 

m2
g can be absorbed into the massive couplings c1 and c2. Analyzing equation (3.34) by math-

ematica software [90] shows that this equation could possess two critical points according to 
the following conditions

0 < q2 < − 37

5 × 28

c4
3

c3
2

, c2 < 0, c3 > 0,� (3.35)

in which it is assumed that r+   >  0. But, the pressures corresponding to the obtained critical 
roots must be positive definite, i.e. P  >  0, and this later condition cannot be satisfied for both 
roots simultaneously. In fact, by combining equation (3.34) with the condition P  >  0, a critical 
radius is obtained with the following fine tuning

0 < q2 < − 34

5 × 24

c4
3

c3
2

, c2 < 0, c3 > 0,� (3.36)

and another one can also be found as

c2 > 0, c3 > 0, or c2 > 0, c3 < 0.� (3.37)

Examining the above conditions, it is seen that the first root requires c2  <  0 while the second 
root requires c2  >  0. So there are no combinations of the parameters at the same time where 
both roots are solutions. Thus, the phenomenon of RPT cannot take place in d  =  5 dimen-
sions. Now, following this procedure, we can discuss RPT in 6-dimensions. As summarized 
in table 1, in a six-dimensional spacetime, there are eight possibilities for the sign variations 
of massive coupling constants c2, c3 and c4. Only in the cases of (1) and (5), two roots can 
be found. But, the same as RPT in five-dimensions, one cannot find any region in the phase 
space where both roots and the associated pressures are positive definite (but, interestingly, 
a region with three physical critical points are found which is the subject of section 3.3.4). 
Thus, in 6-dimensions, the RPT phenomenon does not take place in the canonical ensemble 
of massive gravity’s charged TBHs. This analytical procedure does not work in the case of 
higher dimensions, i.e. d � 7, since the critical point equation has mathematically a more 
complicated structure. So we applied numerical analysis and did not find any evidence that 
shows spacetime dimensions with the range d = 7, 8, 9 can exhibit reentrant behavior for 
phase transition as well. Motivated by this, we speculate that charged TBHs may not exhibit 
RPT in the canonical ensemble of charged TBHs in massive gravity (at least in d = 4, 5, 6 and 
possibly in d = 8, 9 dimensions). Whether or not such phenomenon exists for massive grav-
ity’s TBHs in higher dimensions (d � 7) remains an open question.

3.3.3. Triple point and small/intermediate/large black hole (SBH/IBH/LBH) phase  
transition.  Here, we present the first explicit demonstration of the triple point, typical of 
many materials in nature, in charged TBHs with massive gravitons which takes place in d � 6 
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dimensions. The analogue of triple point in the neutral black holes of massive gravity was 
reported in [28], in which this phenomenon takes place in dimensions with the range d � 7, 
and necessarily one needs to consider up to the five graviton self-interaction potentials. But 
here, in the canonical ensemble, we explicitly show that this critical behavior can be observed 
for charged TBHs in spacetimes with d � 6 in which only the first four graviton self-interac-
tion terms are present. According to the table 1, in order to have the analogue of triple point 
in massive charged TBHs in the canonical ensemble, we have to consider the sign variations 
presented in the case (3). We assume that the first four potential terms are nonzero and the rest 
of them vanish, i.e. ci  =  0 for i � 5. This leads to the following critical point equation

d3k(C)
eff r2

+ + 3d3d4m2
gc3

0c3r+ + 6d3d4d5m2
gc4

0c4 − 2(2d − 5)q2r−2d4
+ = 0,� (3.38)

which predicts three physical critical points. By physical we just mean that the associated 
pressures and temperatures are positive definite (but always, one of those critical points cannot 
minimize the Gibbs free energy). This is shown in figure 2, where we have depicted the G  −  T 
diagram for various isobaric curves. For pressures in the range P < PC1, we first observe the 
swallowtail (vdW) behavior which indicates the first-order phase transition. This is the trans
ition from the LBH region to the SBH one. Then, for the isobars with PTr < P < PC2, two 
swallowtails indicating the appearance of two first-order phase transitions is observed which 
implies three-phase behavior. This is the SBH/IBH/LBH phase transition that resembles the 
solid/liquid/gas phase transition in usual substances. Finally, as displayed in figure 2, the two 
swallowtails eventually merge at the gravitational triple point (TTr, PTr) by further decreasing 
the pressure.

3.3.4.  vdW type phase transition.  As stated in the previous section, the equation  of state 
(3.38) could possess three critical points in which the associated pressures and temperatures 
are positive definite. The three-phase behavior associated with the triple point takes place 
when two critical points referred to as (TC1, PC1) and (TC2, PC2), can minimize the Gibbs free 
energy but the third one cannot. Interestingly, another critical phenomenon can happen when 
two critical points cannot minimize the Gibbs free energy but the other critical point can do 
this. In fact, this situation had already appeared in section 3.3.2, the case (3) for the sign varia-
tions of massive coefficients in table 1. This kind of phase structure yields a critical behavior 
which here is referred to as vdW type phase transition and can be obtained by use of varying 
the electric charge of TBHs. This situation is similar to that seen in [91] for the spherically 
symmetric charged-AdS black holes (in the canonical ensemble) within the framework of 

Table 1.  The sign variations in d  =  6 and the associated critical roots (points) of 
equation  (3.26). In this table, by ‘physical root’ we mean that both temperature and 
pressure associated with the critical root are positive definite.

Case c2 c3 c4 Roots Physical roots

 (1) + + +  2 1
 (2) + + −  1 1
 (3) + − +  3 1 or 3
 (4) + − −  1 1
 (5) − + +  2 1
 (6) − + −  1 1
 (7) − − +  1 1
 (8) − − −  0 0
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Gauss–Bonnet gravity, exactly in d  =  6 dimensions. We confirm that this phenomenon hap-
pens in the context of massive gravity as well, and, interestingly it starts to appear in d � 6 
dimensions for all types of TBHs7.

Our investigations show that, for a certain range of parameters, there is a lower bound 
for the electric charge (Qb1) and there may also be an upper bound for it (Qb2), where for 
Qb1 < Q < Qb2, the triple point behavior can be observed. For Q < Qb1 and Q > Qb2, one 
of the physical critical points changes to an unphysical critical point which cannot minimize 
the Gibbs free energy and consequently the triple point behavior is replaced by the vdW type 
phase transition. Now, we illustrate this situation for a set of TBHs in figure 3. For this purpose, 
we have altered the electric charge parameter of the previous subsection (related to figure 2) 
from q  =  0.8 to q  =  0.5. Obviously, a first order phase transition takes place for pressures 
in the range PC2 < P < PC1 and by further decreasing the pressure, i.e. PC3 < P < PC2 , an 
anomaly appears in the shape of the standard swallowtail behavior. A close-up of this anomaly 
is depicted in figure 3, which looks like the reentrance of phase transition. This anomaly does 
not lead to any new BH phase (or equivalently a phase transition) since it cannot minimize 
the Gibbs free energy, hence we only observe the standard SBH/LBH phase transition. This 
can be verified by studying the corresponding P  −  T diagram. In figure 4, the coexistence line 

Figure 2.  Triple point in the canonical (fixed charge) ensemble: G  −  T diagram for 
a spherical black hole with [k  =  +1, c2  =  −0.1], or a planar black hole with [k  =  0, 
c2  =  0.9], or a hyperbolic black hole with [k  =  −1, c2  =  1.9]. The other parameters 
have been set as d  =  6, mg  =  1, c0  =  1, c1  =  1, c3  =  −0.8, c4  =  0.5 and q  =  0.8. Critical 
data: (TC1 = 0.138 126, PC1 = 0.011 428), (TC2 = 0.131 100, PC2 = 0.004 501) and 
(TTr = 0.128 365, PTr = 0.003 801).

7 It should be noted that the authors of [91] have studied the P − v criticality of charged black holes for the case of 
αGB = 1, which is very limited. As they stated, in the case of arbitrary Gauss–Bonnet coupling constant, one may 
find this phenomenon in higher dimensions as well.
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of the P  −  T diagram corresponding with the figure 3 is depicted, which proves that only the 
two-phase behavior exists. But, for pressures in the range PC3 < P < PC2 , the coexistence line 
is curved more than any other area. In the standard P  −  T diagrams associated with the vdW 
behavior, the coexistence curve is thoroughly smooth and uniform.

4.  Black hole chemistry in grand canonical ensemble

4.1.  Grand canonical partition function

The grand partition function (ZGC) of the gravitational system could be defined by a Euclidean 
path integral over the tensor field gµν and vector field Aµ as follows

ZGC =

∫
D[g, A]e−IE[g,A] � e−Ion-shell(β,Φ),� (4.1)

where β is the inverse of Hawking temperature in terms of the fixed potential, equation (2.26). 
In the grand canonical ensemble, the electric charge (Q) fluctuates, but the associated potential 
(Φ) is fixed at infinity. By imposing the fixed potential boundary condition, δAν |∂M = 0, this 
ensemble is established. Thus the so-called grand potential referred to as GΦ, can be defined 
using the grand partition function. The same as before, we will utilize the subtraction method 
in order to evaluate the grand canonical on-shell action. Following the approach presented in 
section 3.1, the on-shell action for the bulk theory of TBHs is computed as

Figure 3.  vdW type phase transition in the canonical (fixed charge) ensemble: the 
G  −  T diagram for a spherical black hole with [k  =  +1, c2  =  −0.1], or a planar 
black hole with [k  =  0, c2  =  0.9], or a hyperbolic black hole with [k  =  −1, c2  =  1.9].  
The other parameters have been set as d  =  6, mg  =  1, c0  =  1, c1  =  1, c3  =  −0.8, c4  =  0.5 
and q  =  0.5. Critical data: (TC1 = 0.312 557, PC1 = 0.177 989, rc1 = 0.810 774),   
(TC2 = 0.131 126, PC2 = 0.004 508, rc2 = 3.341 090) and (TC3 = 0.126 626, 
PC3 = 0.002 673, rc3 = 1.933 764).
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IBH =
βωk

d−2

16πGd

([
2
�2 rd−1 − m2

g

d−2∑
i=1

(i − 2)ci
0ci

d − i − 1
rd−i−1

i+1∏
j=3

dj

]R=∞

r+

− 4
d3

d2
Φ2rd3

+

)

� (4.2)
in which ‘R’ is an upper cutoff. In the above relation, the fixed potential boundary condition at 
infinity, i.e. At(r = ∞) = Φ(r+), is used. The on-shell action of AdS background within the 
massive gravity framework (without any matter or electromagnetic field) is obtained the same 
as before in equation (3.8), which is repeated below for convenience

IAdS =
β0ωn

16πGd

[
2
�2 Rd1 − m2

g

d−2∑
i=1

(i − 2)ci
0ci

d − i − 1
Rd−i−1

i+1∏
j=3

dj

]
.� (4.3)

Demanding both spacetimes have the same Hawking temperature (or equivalently the same 
geometry) at r  =  R, i.e. β0V0(R)1/2 = βV(R)1/2, then subtracting the on-shell action of the 
AdS background from the on-shell action of the TBHs, one obtains

Ion-shell ≡ lim
R→∞

(IBH − IAdS)

=
βωnrd3

+

16πGd

[
k −

r2
+

�2 − 2
d3

d2
Φ2 + m2

g

d−2∑
i=1

( (i − 1)ci
0ci

ri−2
+

i∏
j=3

dj

)]
.

� (4.4)

Figure 4.  vdW type phase transition in the canonical (fixed charge) ensemble: P  −  T 
diagram for a spherical black hole with [k  =  +1, c2  =  −0.1], or a planar black hole with 
[k  =  0, c2  =  0.9], or a hyperbolic black hole with [k  =  −1, c2  =  1.9]. The other param
eters have been set as d  =  6, mg  =  1, c0  =  1, c1  =  1, c3  =  −0.8, c4  =  0.5 and q  =  0.5. 
Critical data: (TC1 = 0.312 557, PC1 = 0.177 989, rc1 = 0.810 774), (TC2 = 0.131 126,   
PC2 = 0.004 508, rc2 = 3.341 090) and (TC3 = 0.126 626, PC3 = 0.002 673, 
rc3 = 1.933 764).
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4.2.  Extended phase space thermodynamics

Working in the extended phase space, the grand canonical potential GΦ (sometimes is called 
Gibbs free energy in grand canonical ensemble) which depends on T, P, and Φ, is calculated as

GΦ = β−1 lnZGC(T , P,Φ) = M − TS − ΦQ

=
ωnrd3

+

16π

[
k −

16πPr2
+

d1d2
− 2

d3

d2
Φ2 + m2

g

d−2∑
i=1

( (i − 1)ci
0ci

ri−2
+

i∏
j=3

dj

)]
,

� (4.5)

in which we have set Gd  =  1. Moreover, it is seen that the Gibbs free energy in the canonical 
ensemble is related to the grand potential using a Legendre transform as

GΦ(T , P,Φ) = G(T , P, Q)− ΦQ.� (4.6)

The above relation is a guideline to find the correct first law of thermodynamics as 
dGΦ = −SdT + VdP − QdΦ. This can be confirmed via the standard thermodynamic rela-
tions which will be briefly explained. The thermodynamic variables Q, V  and S are extracted 
from the grand potential GΦ as

Q = −
(
∂GΦ

∂Φ

)

T ,P
=

ωn

4π
q,� (4.7)

V =

(
∂GΦ

∂P

)

T ,Φ
=

ωd2

d1
rd1
+ ,� (4.8)

and

S = −
(
∂GΦ

∂T

)

P,Φ
=

ωn

4
rd2
+ .� (4.9)

The above thermodynamic variables are in full agreement with the previous results, i.e. equa-
tions (2.20), (3.15) and (3.17), that we have obtained before. Therefore, we deduce that all 
intensive and corresponding extensive variables satisfy the first law of black hole thermody-
namics in the grand potential representation. The extended Smarr formula does not depend 
on the ensemble one is dealing with, thus the same relation as before in equation (3.18) is 
obtained again. Moreover, according to section 3.2, if one considers the massive coupling 
constants as the new thermodynamic variables, the first law in the grand potential representa-

tion is generalized as dGΦ = −SdT + VdP − QdΦ+
d−2∑
i=1

Cidci.

4.3.  Holographic phase transitions

The grand canonical equation of state is obtained as

P =
d2T̃
4r+

−
d2d3k(GC)

eff

16πr2
+

−
m2

g

16π

d−2∑
i=3

(ci
0ci

ri
+

i+1∏
j=2

dj

)
,� (4.10)

where, in this ensemble, the effective topological factor k(GC)
eff  and the shifted Hawking temper

ature T̃  are given by

k(GC)
eff ≡ [k + m2

gc2
0c2 − 2(d3/d2)Φ

2]� (4.11)

A Dehghani and S H Hendi﻿Class. Quantum Grav. 37 (2020) 024001



22

and

T̃ = T −
m2

gc0c1

4π
=

d2d3k − 2Λr2
+ − 2(d3Φ)

2
+ m2

g

d−2∑
i=2

(
ci

0ci

ri−2
+

i+1∏
j=2

dj

)

4πd2r+
.

� (4.12)

Obviously, in the Einstein limit, i.e. mg → 0, we cannot observe any critical behavior, which 
means that there does not exist criticality in the grand canonical ensemble of AdS black holes 
in GR with or without the linear electromagnetic Maxwell fields.

The critical point occurs at the spike like divergence of specific heat at constant pressure 
i.e. an inflection point in the P − v (or equivalently P  −  r+ ) diagram and can be found by 
using equation (3.25) which for the grand canonical equation of state (4.10) leads to

2k(GC)
eff rd4

+ + m2
g

d−2∑
i=3

(
i(i − 1)ci

0cird−i−2
+

i+1∏
j=4

dj

)
= 0.� (4.13)

Now, to be more specific, following section 3, we analyze the equations of state and holo-
graphic phase transitions for case by case of TBHs with detail. As before, we generally con-
centrate on the isobaric curves of G  −  T diagrams since all the essential information about the 
critical behaviors can be extracted from them. In addition, equations (4.10) and (4.13) help 

us to find that the combination k(C)
eff ≡ [k + m2

gc2
0c2] in the canonical ensemble is replaced by 

the k(GC)
eff ≡ [k + m2

gc2
0c2 − 2(d3/d2)Φ

2] in the grand canonical ensemble. So the same critical 

behavior with the same critical points would be found for the case of the spherical, planar, and 

hyperbolic black holes if the same value for k(GC)
eff  are provided. In this view, TBHs in massive 

gravity at their critical point may be indistinguishable.

4.3.1.  vdW phase transition.  In order to observe the vdW behavior in a given black hole 
spacetime, one physical critical point must exist in the thermodynamic phase space which 
minimize the Gibbs free energy. Within the framework of the grand canonical ensemble, this 
can be obtained in the spacetime dimensions with the range d � 58. In d  =  5, only the first 
three massive couplings (c1, c2 and c3) appears. Regarding equation  (4.13) and following 
the approach presented in section 3, the critical point of the massive charged TBHs can be 
obtained from the root of following relation

k(GC)
eff r+ + 3d4m2

gc3
0c3 = 0,� (4.14)

in which we have assumed that, in higher dimensions, the other massive couplings ci (i � 4) 
vanish. This is the simplest way to find the vdW behavior in arbitrary dimensions, and, of 
course, it is permissible to consider higher order graviton self-interaction terms and then 
observe a vdW phase transition by using a fine tuning of massive couplings. Considering 
equation (4.14), the critical radius is easily obtained as

rc =
3d4m2

gc3
0c3

k(GC)
eff

,� (4.15)

with the following constraints on the parameters

8 Comparing with the vdW critical behavior in the canonical ensemble, it is seen that, in d  =  4, only canonical vdW 
phase transition can take place.
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c3 > 0 ↔ Φ2 <
d2[k + m2

gc2
0c2]

2d3
,� (4.16)

and

c3 < 0 ↔ Φ2 >
d2[k + m2

gc2
0c2]

2d3
.� (4.17)

As seen, there are two strict limitations on the value of the U(1) potential, Φ. According to 
these constraints, one has to assume [k + m2

gc2
0c2] > 0 when c3 is positive definite, while there 

is no such constraint when c3 is negative. As we will see in a moment, the first constraint 
(4.16) does not lead to vdW phase transition since the associated pressure and temperature 
are negative definite. The thermodynamic pressure and temperature at the critical point (4.15) 
are given as

PC = −
d2d3d4m2

gc3
0c3

16πr3
C

,� (4.18)

and

T̃C = −
3d3d4m2

gc3
0c3

4πr2
C

.� (4.19)

According to the above relations, the massive coupling c3 must be negative definite, so the 
condition (4.16) does not lead to criticality at all.

In figure 5, according to equations  (4.15)–(4.17), the massive coupling coefficients and 
U(1) potential Φ have been adjusted in a way to produce a vdW behavior. As the canonical 
ensemble case, the swallowtail behavior is observed for pressures in the range P  <  PC which 
indicates the existence of two-phase behavior. As seen, the single phase behavior takes place 
for pressures in the range P  >  PC.

The obtained critical data, equations (4.15), (4.18) and (4.19), satisfy the grand canonical 
universal ratio as

PCrc

T̃C
=

d − 2
12

⇐⇒ PCvc

T̃C
=

1
3

.� (4.20)

Interestingly, the universal ratio at critical point when is written down in terms of the critical 
specific volume (vc) and the shifted Hawking temperature (T̃C), i.e. PCvc/T̃C , is constant and 
does not depend on the spacetime dimensions (d). To our knowledge, till now, this case and 
the case of charged-AdS BHs in the PMI-Einstein gravity (see [12]) are the only examples of 
such a BH spacetime with a constant universal ratio. At this stage, the standard universal ratio 
may also be written as

PCvc

TC
=

d3d4c3
0c3

3d3d4c3
0c3 − c0c1r2

c
.� (4.21)

Expanding the above universal ratio around the small values of graviton mass yields

PCvc

TC
=

1
3
+

m4
gc4

0c1c3d2
2d4

d3(d2k − 2d3Φ2)
2 + O(m6

g).� (4.22)
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But, it does not mean that the massless limit of massive gravity in the grand canonical ensem-
ble leads to the outcome of Einstein’s gravity. In fact, according to equation (4.15), the critical 
radius vanishes in the massless limit (mg  =  0), as expected, since there exists no grand canoni-
cal criticality for TBHs in Einstein’s gravity. So the massless limit (mg  =  0) of equation (4.22) 
does not appear at all since there is not any critical point at this limit.

4.3.2.  Reentrant phase transition (RPT).  As stated in [33], in order to have a RPT phenom
enon, the critical point equation must admit two positive critical radii in which the associated 
pressures and temperatures are positive definite, while only one of the critical points referred 
to as (TC, PC), can minimize the Gibbs free energy. Simply, a real and inhomogeneous poly-
nomial equation of second-degree of r+ can produce two critical radii. This is permissible in 
d � 6 dimensions which implies the first four massive couplings (c1, c2, c3 and c4) have to be 
nonzero. Assuming that these massive couplings (c1, c2, c3 and c4) are nonzero and the other 
couplings vanish in higher dimensions, one gets

k(GC)
eff r2

+ + 3d4m2
gc3

0c3r+ + 6d4d5m2
gc4

0c4 = 0.� (4.23)

The above equation of critical point can be solved simply as

rc1 , rc2 =
−3d4m2c3

0c3 ±
√
∆

2k(GC)
eff

, ∆ > 0,

∆ = −24k(GC)
eff (d4d5m2c4

0c4) + (3d4m2c3
0c3)

2.

� (4.24)

Figure 5.  vdW phase transition in the grand canonical (fixed potential) ensemble: 
the G  −  T diagram for a spherical black hole with [k  =  +1, c2  =  2], or a planar black 
hole with [k  =  0, c2  =  3], or a hyperbolic black hole with [k  =  −1, c2  =  4]. The other 
parameters have been set as d  =  5, mg  =  1, c0  =  1, c1  =  1, c3  =  −3 and Φ = 0.1. 
Critical data: (TC = 0.237 321, PC = 0.013 086).
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It is obvious that the above relation can predict one or at most two positive critical radii for 
the equation of state of TBHs. Since the reentrant behavior of phase transition takes place 
whenever the critical point equation possesses two positive roots, so looking for this case, the 
following conditions should be satisfied

rc1 + rc2 =
−3d4m2c3

0c3

k(GC)
eff

> 0, rc1 rc2 =
6d4d5m2c4

0c4

k(GC)
eff

> 0.� (4.25)

According to the above constraints, when the effective topological factor k(GC)
eff  is positive defi-

nite, two critical points can be found assuming that c3  <  0 and c4  >  0, and when k(GC)
eff < 0, 

one has to assume c3  >  0 and c4  <  0.
Now, using the obtained information, we illustrate a typical example of the RPT phenom

enon in the grand canonical ensemble. In figure 6, the G  −  T diagrams for a set of charged 
TBHs are depicted. As seen, two new critical points referred to as (TZ, PZ) and (TTr, PTr), 
emerge in the thermodynamic phase space. For pressures in the range PZ < P < PC , a first 
order phase transition occurs as temperature decreases. For PTr < P < PZ, as temperature 
decreases monotonically, a first-order phase transition is initially observed, and then, a finite 
jump (discontinuity) appears in the global minimum of the Gibbs free energy, which displays 
the zeroth-order phase transition. This behavior is exactly the standard RPT in the subject of 
black hole chemistry seen in many black hole spacetimes before. This phenomenon reminds 
us of those critical behaviors present in multicomponent fluids and liquid crystals [8]. In addi-
tion, comparing with [28], this phenomenon occurs qualitatively in the same dimensions as 
neutral TBHs.

4.3.3. Triple point and small/intermediate/large black hole (SBH/IBH/LBH) phase  
transition.  In the grand canonical ensemble, the analogue of triple point may be found when-
ever the TBH equation of state is supplemented by higher order interacting potentials of mas-
sive gravitons up to the fifth interaction terms. Hence, assuming that the only first five massive 
couplings are nonzero, equation of critical point (4.10) reduces to the following polynomial

k(GC)
eff r3

+ + 3d4m2
gc3

0c3r2
+ + 6d4d5m2

gc4
0c4r+ + 10d4d5d6m2

gc5
0c5 = 0.

�
(4.26)

Investigation of the exact solutions of three critical points is not possible analytically, and so 
we apply the numerical techniques. To do that, we have suitably tuned the massive couplings 
to produce three critical points, in which two of them are physical and one of them cannot 
minimize the Gibbs free energy. The corresponding critical behavior via the G  −  T diagram 
is depicted in figure 7. Obviously, a critical triple point (TTr, PTr) emerges, and, consequently, 
three-phase behavior appears. Qualitatively, this critical behavior is the same as its counterpart 
in the canonical ensemble. But, in d  =  6 dimensions, the triple point behavior can solely take 
place in the canonical ensemble. In addition, this phenomenon occurs qualitatively in the same 
dimensions as neutral TBHs.

4.3.4.  vdW type phase transition.  Here in parallel with section 3.3.4, we discuss the vdW 
type phase transition in the grand canonical ensemble. For this phenomenon, the essential 
requirement is the existence of three (possible) critical points for the equation of state (4.10) 
in which only one of them minimizes the Gibbs free energy. Elementally, this can happen by 
varying the parameter space of the theory in spacetime dimensions which triple point phenom
enon takes place (since for the case of triple point, the equation of state admits three possible 
critical points). So one can draw a conclusion that the vdW type behavior and triple point 
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phenomenon always show up in the same spacetime dimensions. To see this, we can alter the 
electric potential parameter (Φ) of the previous example in section 4.3.3 (related to figure 7) 
from Φ = 0.2 to Φ = 0.3. In this case, the critical point equation (4.13) still admits three (pos-
itive) critical radii in which the associated temperatures and pressures are positive definite. 
However, only one of the critical points referred to (TC1, PC1), is physical since it is the only 
critical point that minimizes the Gibbs free energy. The corresponding critical phenomenon 
can be understood using the G  −  T and P  −  T diagrams illustrated, respectively, in figures 8 
and 9 explicitly confirm the vdW type phase transition in the grand canonical ensemble. This 
phenomenon persists in higher dimensions (d � 7) as well.

5.  Critical exponents

Critical exponents (α, β, γ  and δ) determine the behavior of thermodynamic quantities in the 
neighborhood of critical points, so various critical exponents imply different behaviors in the 
phase diagrams. So far, in the realm of Statistical Mechanics, it has been confirmed that these 
exponents do not depend on the microscopic details of a physical system, and they are highly 
affected by spatial dimensions, symmetries and the range of interactions [92, 93]. Let us now 
compute them in the subject of charged black hole chemistry in massive gravity following the 
approach of [5, 11].

In order to obtain the critical exponents, hereafter, we work with the thermodynamic 
quantities in terms of the following variables

Figure 6.  RPT in the grand canonical (fixed potential) ensemble: the G  −  T diagram 
for a spherical black hole with [k  =  +1, c2  =  −0.2], or a planar black hole with [k  =  0, 
c2  =  0.8], or a hyperbolic black hole with [k  =  −1, c2  =  0.2]. The other parameters 
have been set as d  =  6, mg  =  1, c0  =  1, c1  =  1, c3  =  −1, c4  =  0.9 and Φ = 0.1. Critical 
data: (TC = 0.237 321, PC = 0.013 086), (TZ = 0.110 0131, PZ = 0.001 7463) and 
(TTr = 0.109 9575, PTr = 0.001 724).

A Dehghani and S H Hendi﻿Class. Quantum Grav. 37 (2020) 024001



27

p ≡ P
PC

, τ ≡ T − TC

TC
, w ≡ v − vc

vc
, ρc ≡

PCvc

TC
.� (5.1)

The exponent α specifies the behavior of the specific heat at constant volume as

Cv = T
(
∂S
∂T

)

v
∝ |τ |−α.� (5.2)

Using the relations of the entropy in different ensembles, equations  (3.17) and (4.9), it is 
inferred that Cv = 0 since the entropy does not depend on T, and so, we have α = 0 in both 
canonical and grand canonical ensembles.

The exponent β determines the behavior of the order parameter η on the isotherms as

η = vl − vg ∝ |τ |β .� (5.3)

To compute this exponent, first, we expand the equation of states in the canonical and grand 
canonical ensembles, equations (3.22) and (4.10), near the critical point

p = 1 +
τ

ρc
(1 − w) + h(v, ci, q)w3 + O(tw2, w4),� (5.4)

where the function h(v, ci, q) takes different forms in different ensembles. This function in the 
canonical ensemble is given by

h ≡
m2

gc0c1 − 4πTC

4πPCvc
− 42d(2d − 3)d1d5

2q2

πPCv2d2
c

+
4d3k(C)

eff

d2πPCv2
c
+

40m2
gc3

0c3d3d4

d2
2πPCv3

c
+

320m2
gc4

0c4d3d4d5

d3
2πPCv4

c
+ O

(
1
v5

c

)
,

� (5.5)
while in the grand canonical ensemble it reads as

Figure 7.  Triple point in the grand canonical (fixed potential) ensemble: the G  −  T 
diagram for a spherical black hole with [k  =  +1, c2  =  0.8], or a planar black hole 
with [k  =  0, c2  =  1.8], or a hyperbolic black hole with [k  =  −1, c2  =  2.8]. The other 
parameters have been set as d  =  7, mg  =  1, c0  =  1, c1  =  1, c3  =  −1.8, c4  =  1.3, 
c5  =  −0.7 and Φ = 0.2. Critical data: (TC1 = 0.168 188, PC1 = 0.009 558), 
(TC2 = 0.163 2424, PC2 = 0.604 562) and (TTr = 0.161 867, PTr = 0.570 678).
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h ≡
m2

gc0c1 − 4πTC

4πPCvc
+

4d3k(GC)
eff

d2πPCv2
c
+

40m2
gc3

0c3d3d4

d2
2πPCv3

c
+

320m2
gc4

0c4d3d4d5

d3
2πPCv4

c
+ O

(
1
v5

c

)
.� (5.6)

As will be clear, the final results do not depend on the function h(vc, ci, q) and so the details of 
this function is not important at all. Differentiating the expansion (5.4) for a fixed τ < 0 yields

dp =
(
− τ

ρc
+ 3h(v, ci, q)w2

)
dw.� (5.7)

Using the above relation and Maxwell’s equal area law (
∮

vdP = 0), one finds
∫ ws

wl

wdp =
−τ

2ρc
(w2

s − w2
l ) +

3h
4
(w4

s − w4
l ) = 0,� (5.8)

where wl and ws denote the volume of large and small black holes, respectively. Now, using 
equation (5.4) and the fact that the pressure of different black hole phases keeps unchanged at 
the critical point, we get

1 +
τ

ρc
(1 − ws) + h(v, ci, q)w3

s = 1 +
τ

ρc
(1 − wl) + h(v, ci, q)w3

l .� (5.9)

Equations (5.8) and (5.9) admit a unique nontrivial solution as ws = −wl =
√

−τ
ρch . Therefore, 

the behavior of the order parameter η is obtained simply as

Figure 8.  vdW type phase transition in the grand canonical (fixed potential) ensemble: 
the G  −  T diagram for a spherical black hole with [k  =  +1, c2  =  0.8], or a planar black 
hole with [k  =  0, c2  =  1.8], or a hyperbolic black hole with [k  =  −1, c2  =  2.8]. The other 
parameters have been set as d  =  7, mg  =  1, c0  =  1, c1  =  1, c3  =  −1.8, c4  =  1.3, c5  = 
−0.7 and Φ = 0.3. Critical data: (TC1 = 0.153 181, PC1 = 0.004 8008, rc1 = 5.452 78),  
(TC2 = 0.141 182, PC2 = 0.000 604 27, rc2 = 1.976 26) and (TC3 = 0.140 511, 
PC3 = 0.000 212 91, rc3 = 2.353 57).
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η = vl − vs = vc(wl − ws) = 2vc

√
−τ

ρch
∝ |τ |1/2,� (5.10)

which, according to equation  (5.3), confirms that β = 1/2 for both canonical and grand 
canonical ensembles.

The exponent γ  is extracted from the definition of the isothermal compressibility near the 
critical point given by

κT = −1
v
∂v
∂P

∣∣∣∣
T
∝ |τ |−γ .� (5.11)

Considering both ensembles, we differentiate the expansion of equations of state (5.4) to get

∂P
∂v

∣∣∣∣
T
=

−Pcτ

ρcvc
+ O(tw, w2),� (5.12)

and then, by using ∂v
∂P

∣∣
T =

(
∂P
∂v

∣∣
T

)−1, we obtain

κT = −1
v
∂v
∂P

∣∣∣∣
T
∝ ρcvc

PC

1
τ

.� (5.13)

According to equation (5.11), this relation confirms that γ = 1 for both canonical and grand 
canonical ensembles.

Figure 9.  vdW type phase transition in the grand canonical (fixed potential) ensemble: 
the P  −  T diagram for a spherical black hole with [k  =  +1, c2  =  0.8], or a planar black 
hole with [k  =  0, c2  =  1.8], or a hyperbolic black hole with [k  =  −1, c2  =  2.8]. The other 
parameters have been set as d  =  7, mg  =  1, c0  =  1, c1  =  1, c3  =  −1.8, c4  = 1.3, c5  =  −0.7 
and Φ = 0.3. Critical data: (TC1 = 0.153 181, PC1 = 0.004 8008, rc1 = 5.452 78),  
(TC2 = 0.141 182, PC2 = 0.000 604 27, rc2 = 1.976 26) and (TC3 = 0.140 511, 
PC3 = 0.000 212 91, rc3 = 2.353 57).
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The exponent δ, which specifies the shape of the critical isotherm, is defined as

|P − Pc| ∝ |v − vc|δ .� (5.14)

This exponent obtains easily by putting τ = 0 in the expansion (5.4), which leads to

P − PC =
PCh(v, ci, q)

v3
c

(v − vc)
3.� (5.15)

Comparing with equation  (5.14), we find δ = 3 for both canonical and grand canonical 
ensembles.

To sum up, the critical exponents are obtained as α = 0, β = 1/2, γ = 1 and δ = 3 for both 
canonical and grand canonical ensembles, the same as van der Waals fluid. In addition, the 
same results for the critical exponents in the (grand) canonical ensemble would be obtained if 

one uses the definition of w in terms of thermodynamic volume V  as w ≡ V−VC
VC

.

6.  Conclusion

In the context of gauge/gravity duality, AdS BH solutions of dRGT massive gravity are dual 
to homogeneous and isotropic condensed matter systems with broken translational invariance 
[57, 62, 63]. More importantly, as indicated in a series of papers [57, 68–70], AdS BH solu-
tions in massive gravity theories can effectively describe certain properties of different types 
(phases) of matter (solids, liquids etc) such as elasticity. Motivated by these facts, we exten-
sively explored the chemistry of charged BH solutions of dRGT massive gravity with a suit-
able degenerate reference metric in the extended phase space and remarkably found a range of 
novel phase transitions in various ensembles close to realistic ones in real world.

To be more specific, we introduced the U(1) charged TBHs in arbitrary dimensions by 
considering the full nonlinear theory of dRGT massive gravity with all the higher order gravi-
ton self-interactions. We evaluated the renormalized on-shell action in both canonical (fixed 

Table 2.  Holographic phase transitions in canonical (fixed charge) and grand canonical 
(fixed potential) ensembles.

Phase transition (PT) Canonical ensemble Grand canonical ensemble

vdW PT in d � 4 in d � 5
RPT not seen in d � 6
Triple Point in d � 6 in d � 7
vdW type PT in d � 6 in d � 7

Table 3.  Summary of universal ratios in the canonical and grand canonical ensembles. 
For the canonical ensemble, the results are derived up to two interaction potentials, 
O(U2). But in the case of grand canonical ensemble, the results are up to O(U3).

Universal ratio in terms of 
the shifted Hawking  
temperature

Universal ratio in terms of the 
standard Hawking  
temperature

Canonical ensemble PCrc

T̃C
= 2d−5

16 ⇐⇒ PCvc

T̃C
= 2d−5

4d2
PCvc
TC

=
(2d−5)d2

3k(C)
eff

d2

(
4d2

3k(C)
eff +(2d−5)m2

gc0c1rc

)

Grand canonical 
ensemble

PCrc

T̃C
= d−2

12 ⇐⇒ PCvc

T̃C
= 1

3 PCvc
TC

=
d3d4c3

0c3

3d3d4c3
0c3−c0c1r2

c
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charge) and grand canonical (fixed potential) ensembles with appropriate boundary conditions 
to obtain the corresponding semi-classical partition functions. By extracting the thermody-
namic quantities from the partition functions in both canonical and grand canonical ensem-
bles, we have shown these quantities satisfy the extended first law of thermodynamics in 
different representations. In addition, the validity of the Smarr formula in the extended phase 
space has been checked for this class of charged TBHs.

Next, since critical behaviors and nature of possible phase transition(s) are crucially 
dependent on the specific choice of ensemble, we focused on holographic phase transitions 
in various ensembles. In this regard, we explicitly demonstrated that vdW phase transition 
(in d � 4), vdW type phase transition (in d � 6) and the SBH/IBH/LBH phase transition 
associated with the triple point (in d � 6) are present in the canonical ensemble. Here, the 
absence of the phenomenon of RPT in this ensemble is interesting (we proved this claim in 
d = 5, 6 analytically, and, by using numerical investigation in d = 7, 8, 9 dimensions, this 
phenomenon did not find too. Whether or not such phenomenon exists for higher dimensional 
TBHs (d � 7) in the canonical ensemble remains an open question.). In the case of the grand 
canonical ensemble, we observe the vdW critical behavior (in d � 5), RPT (in d � 6), vdW 
type phase transition (in d � 7) and triple point (in d � 7) in contrast to Einstein’s gravity 
which only phase transition takes place in the canonical ensemble of charged or rotating BHs. 
So, these critical phenomena may commence appearing in diverse dimensions depending on 
the ensemble one is dealing with. Here for convenience, we have summarized the final results 
in table 2.

These results show that, within the framework of massive gravity, critical behav-
ior and phase transition(s) of charged-TBHs in the grand canonical ensemble are quali-
tatively the same as the uncharged (neutral) black holes. In fact, in the case of the grand 
canonical ensemble, the scalar potential (Φ) is absorbed into the effective topological factor 

k(GC)
eff ≡ [k + m2c2

0c2 − 2(d3/d2)Φ
2], and thus, for a certain range of Φ, holographic phase 

transitions are obtained in the same dimensions as neutral black holes [28] in massive gravity. 
Here, it should be emphasized that the critical behavior of charged TBHs in massive gravity 

at the critical point are indistinguishable if the effective topological factor k(C)
eff ≡ [k + m2c2

0c2] 
in the canonical ensemble or k(GC)

eff  in the grand canonical ensemble have the same value while 
keeping other parameters fixed.

Motivated by the fact that some characteristic features of universality class of phase trans
itions such as the critical exponents or universal ratio may depend on the ensemble or the 
spacetime dimensions, we discussed the universal ratio of critical phenomena at the critical 
point and also their critical exponents in both ensembles. In the canonical ensemble up to 
two interaction potentials O(U2) (or equivalently O(c2)), it is found that the universal ratio 
belongs to the universality class presented in equation (3.31) which only depends on the spa-
cetime dimensions whenever it is written down in terms of the shifted Hawking temperature. 
In d  =  4, one arrives at 3/8 for this ratio, exactly the same as vdW fluid. This result is the same 
as Einstein’s gravity, but holds for all types of massive gravity’s TBHs in the same manner, 
in contrast to the Einstein gravity in which only spherical black holes admit criticality. In the 
grand canonical ensemble up to three interaction potentials O(U3) (or equivalently O(c3)), the 
critical ratio belongs to another universality class (4.20) whenever it is written down in terms 
of the shifted Hawking temperature. Interestingly for this case, the universal ratio is constant 
for all types of TBHs, i.e. it is independent of spacetime dimensions or any other parameter. 
Note that, according to equations (3.30) and (4.19), the shifted Hawking temperature at the 
critical point is always positive. On the other hand, the universal ratio in both ensembles is a 
function of massive gravity’s parameters (mg and ci) and spacetime dimensions (d) whenever 
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it is written down in terms of the standard Hawking temperature (see equations (3.32) and 
(4.21)). So, the universal ratio depends on the specific choice of ensemble. These results are 
summarized in (table 3) for convenience.

Furthermore, considering all the higher-order self-interaction potentials of massive grav-
itons in arbitrary dimensions, we examined the associated critical exponents in the grand 
canonical ensemble and proved that they match to those of charged TBHs in the canonical 
ensemble (i.e. α = 0, β = 1/2, γ = 1 and δ = 3, exactly the same as vdW fluids). So, all 
kinds of TBHs in massive gravity have the same critical exponents in arbitrary dimensions 
which indicates the universality class independent of the spacetime dimensions and also the 
ensemble one is dealing with.

In conclusion, the nature of TBH phase transitions depends on the ensemble and also spa-
cetime dimensions. The RPT phenomenon only appeared in the grand canonical ensemble, 
while the rest of the critical phenomena (vdW, triple point and vdW type) appear in both 
ensembles, but they commence to show up in different dimensions (summarized in table 2). 
The universal ratio also depends on the ensemble and spacetime dimensions (summarized in 
table 3). However, the critical exponents, which are the same as the exponents of vdW fluid, 
depend on neither spacetime dimensions nor ensemble.
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