
1

Classical and Quantum Gravity

The Klein–Gordon equation on the 
hyperboloidal anti-de Sitter Schwarzschild 
black hole

Owain Salter Fitz-Gibbon

Department of Applied Mathematics and Theoretical Physics, University of  
Cambridge, Cambridge, United Kingdom

E-mail: os320@cam.ac.uk

Received 2 May 2019, revised 21 November 2019
Accepted for publication 2 December 2019
Published 31 December 2019

Abstract
In this paper we establish energy decay for solutions to the Klein–Gordon 
equation  on the positive mass hyperboloidal anti-de Sitter Schwarzschild 
black hole, subject to Dirichlet, Neumann and Robin boundary conditions 
at infinity, for a range of the (negative) mass squared parameter. To do so 
we use vector field methods with a renormalised energy to avoid divergences 
that would otherwise appear in the energy integrals. For another region of 
the parameter space, we use the existence of negative energy solutions to 
demonstrate linear instability.
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black hole instability, black hole stability, linear waves, topological black 
holes

(Some figures may appear in colour only in the online journal)

1.  Introduction

1.1.  Background and motivation

In recent years, the study of asymptotically anti de Sitter space-times has been brought into 
fashion, particularly in the physics community, because of the so-called AdS/CFT correspon-
dence [1]. These space-times have also attracted the attention of the mathematical community 
because they are believed to have interesting instability properties. Specifically, it is conjec-
tured that arbitrarily small perturbations of AdS initial data can form black holes under the 
evolution of Einstein’s equations: see for example [2–5]. A special case of this conjecture for 
the Einstein-null dust system was proved by Moschidis in [6], and for the Einstein-massless 
Vlasov system in [7].
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A natural first step when considering the full non-linear stability of solutions to the Einstein 
equations  is to study the linear stability problem. That is, the boundedness and decay (or 
growth) of solutions to the linear Klein–Gordon equation,

�gψ +
α

l2
ψ = 0,� (1)

where g is the metric of an asymptotically AdS space-time with AdS radius l. Notice that as 
written above, and with the (−+++) convention used here for the metric, a positive α cor-
responds to a negative ‘mass squared parameter’.

Since asymptotically AdS spaces are not globally hyperbolic, the well-posedness of this 
equation requires that boundary conditions be imposed at null infinity. This amounts to impos-
ing restrictions on the asymptotic behaviour of the solution as r −→ ∞. When Breitenlohner 
and Freedman solved the equation on the exact AdS space-time [8], they found that there 
were two branches of the solution, decaying at different rates towards infinity, leading to three 
natural types of boundary conditions that may be imposed, referred to as Dirichlet, Neumann, 
and Robin conditions. Dirichlet conditions require that the more slowly decaying branch of 
the solution vanishes, and Neumann that the more quickly decaying branch vanishes. Robin 
conditions require that some combination of the two branches vanish. The well-posedness 
of this equation has been established for all three types of boundary conditions, with differ-
ent ranges of α. The work of Holzegel [9] and Vasy [10] established well-posedness in the 
range α < 9/4 with Dirichlet boundary conditions (the latter using techniques of microlo-
cal analysis), and later Warnick [11] proved well-posedness in the range 0 < α < 9/4 for 
Dirichlet boundary conditions and 5/4 < α < 9/4 for Robin and Neumann boundary condi-
tions. Crucially, the Neumann and Robin cases were dealt with using the notion of the twisted 
derivative, which allows certain energy integrals to be renormalised, and which will play an 
important role in the present paper.

An interesting feature of the asymptotically AdS analogue of the Schwarzschild black hole 
is that the horizon geometry need not be spherical; it can also be a flat plane (or the flat torus 
R2/Z2) or a hyperbolic plane (or any genus g � 2 surface which can be obtained as a quotient 
of the hyperbolic plane by a freely acting discrete group of isometries). In the physics litera-
ture, black holes with a ‘non-trivial’ topology are referred to as topological black holes (see 
for example [12]). In [13], Mann showed that quantum mechanical pair production of such 
black holes is possible, and in [14] and [15] Mann and Smith, and Lemos respectively proved 
that such black holes can be formed classically by the gravitational collapse of a dust cloud. 
It is believed that topological black holes are of interest in understanding theories of quantum 
gravity which include topology changing processes [12].

The linear Klein–Gordon equation on the spherical and toroidal (or planar) black holes has 
already been studied in a number of works. In [16], Holzegel and Smulevici proved that for 
solutions to the Klein–Gordon equation on Kerr–AdS, a non-degenerate energy decays slowly 
in time (as an inverse power of the logarithm). In [17], Holzegel and Warnick studied the lin-
ear stability (in the sense of uniform boundedness of solutions of the Klein–Gordon equation) 
of stationary AdS black holes in general, and of the spherically symmetric AdS Schwarzschild 
black hole in particular. The full non-linear (orbital and asymptotic) stability of the spherical 
AdS Schwarzschild black hole was proved in [18] within the class of spherical symmetry. In 
the toroidal case, energy decay for solutions to the linear equation (this time at a polynomial 
rate) was proved in [19] by Dunn and Warnick. It was also proved here that this decay rate can 
only hold with a loss of derivative, due to the existence of null geodesics which remain outside 
the horizon for arbitrarily long times. The non-linear stability (again in the class of toroidal 
symmetry) was proved by the same authors in [20].
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Another interesting feature of the AdS Schwarzschild black hole is that in the hyperbo-
loidal case, the black hole persists for a range of non-positive mass parameter, and that there 
exists a mass Mext < 0 for which the black hole is extremal. This fact makes the hyperboloidal 
black hole a useful toy model when studying extremal or near-extremal Reissner–Nordström-
AdS and Kerr–AdS black holes, as in [21]. We also note that when M  =  0 and α = 2 (the 
conformally coupled case), there exists a non-zero, time-independent solution of the equation. 
This suggests that it might be possible to prove the existence of a hairy black hole solution of 
the coupled Einstein-scalar field system.

In 4+1 dimensions the linear and non-linear stability of the analogue of this space-time 
was investigated numerically by Dias, Monteiro, Reall, and Santos in [21], who used this as 
a toy model to study the instability of rotating black holes to scalar field condensation. They 
found numerically that the black hole is unstable to the condensation of a scalar field, for vari-
ous ranges of the mass squared parameter α and black hole mass M. The linear stability in 
arbitrary d dimensions has been studied in the M  =  0 case by Belin and Maloney in [22], and 
applied to the stability of Conformal Field Theories on negatively curved compact spaces. In 
particular, in 3+1 dimensions they found growing mode solutions in the case 5/4 < α < 2, 
but only when Neumann boundary conditions are imposed; these results are in agreement with 
the arguments in this paper. No growing modes were found for Dirichlet boundary conditions, 
leaving open the question of whether a decay result can be proved for the M  =  0 case when 
Dirichlet boundary conditions are imposed.

From the point of view of the AdS/CFT correspondence, the instability of AdS black holes 
to condensation by (charged) scalar fields can be dual to superconducting phase transitions 
in a field theory on the boundary [23]. The instability of the hyperboloidal AdS black hole to 
condensation by an uncharged scalar field (first shown numerically in [21]) is linked to the 
non-analyticity of Rényi entropy of a CFT in flat space [24]. Specifically, the instability of the 
black hole to scalar hair implies that the Rényi entropy Sn is non-analytic as a function of n.

1.2.  Contents of the paper

The subject of this paper is the Klein–Gordon equation on the 3+1 dimensional hyperboloidal 
black hole. Throughout, we work in coordinates (t∗, r,σ,φ) which are regular at the horizon 
(and where (σ,φ) are coordinates on the hyperbolic plane).

We begin by defining the space-time we will study in section 2. Section 3 examines some 
properties of null geodesics in this space-time. Section 4 discusses the Klein–Gordon equa-
tion, recalling results about well-posedness and proving energy boundedness statements. Our 
two main results on linear instability and energy decay are contained in sections  5 and 6 
respectively.

1.2.1.  Energy boundedness.  The first important result in this paper occurs in section 4, and 
concerns the boundedness of the degenerate energy Et∗ [ψ], defined by equation (94). (Here 
by ‘energy’, we mean a suitably chosen quadratic form of the field and its first derivatives). 
This result says that when the black hole mass M � 0, Et∗ [ψ] � E0[ψ], but if M � 0, then 
Et∗ [ψ] � E0[ψ]. In other words, if the black hole mass is non-negative, then the energy is 
bounded above by its initial value, whereas if the black hole mass is negative, then it is bounded 
below by its initial value. In particular, a solution with negative (resp. positive) initial energy 
when M � 0 (resp. � 0) has energy which remains bounded away from zero. In section 5 it is 
explained how the existence of a solution with energy bounded away from zero implies linear 
instability, and such solutions are constructed in certain regions of parameter space.
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1.2.2.  Regions of stability and instability.  Arguments from [17] and [25] show that if we can 
find a solution of the equation, the energy of which remains bounded away from zero, then 
we must have linear instability (for a precise definition of what is meant by linear instabil-
ity in this case, see section 5.1). The region in the parameter space for which this is possible 
is illustrated here. To most conveniently describe the different regions, we parameterise the 
black hole by the horizon radius r+ = r+(M) and the Klein–Gordon mass by κ =

√
9/4 − α. 

Note that the range 2 � α < 9/4 corresponds to 1/2 � κ > 0.
A summary of our results, at least for Neumann boundary conditions, is expressed in the 

following diagram of the (κ, r+) plane (figure 1). Note that r+ � l corresponds to M � 0. The 
region of linear instability is given by the inequality

r2
+

l2
< 1 − 1

2
· 1 − 2κ

1 − κ
,� (2)

when r+/l � 1, together with all points where r+/l � 1. We would expect the threshold 
of instability for Dirichlet boundary conditions to be higher than for Neumann boundary 
conditions, but the precise region of stability for Dirichlet boundary conditions is yet to be 
determined.

1.2.3.  Energy decay.  In the final section of the paper, we follow the methods of [17] and 
particularly [19] to prove a polynomial decay rate for a non-degenerate energy of solutions of 
the Klein–Gordon equation when M  >  0 and 1/2 � κ > 0. Note that this includes the confor-
mally coupled case κ = 1/2.

In what follows, suppose that ψ is a solution to the Klein–Gordon equation  with 
1/2 � κ > 0 on the exterior of the M  >  0 hyperboloidal AdS Schwarzschild black hole (in 
3+1 dimensions), obeying Dirichlet, Neumann or Robin boundary conditions (with the Robin 
function β non-negative and independent of time) at infinity, and let E [ψ] be the non-degener-
ate energy density defined by equation (113). (When M  >  0 and 1/2 � κ > 0, this energy is 
positive definite.) We begin by proving that this non-degenerate energy is bounded above by 
(a multiple of) its initial value.

Theorem 1.1.  For any time T  >  01,
∫

t∗=T
E [ψ] �

∫

t∗=0
E [ψ].� (3)

The next step is to prove an integrated decay, or Morawetz, estimate.

Theorem 1.2.  For any time T  >  0,
∫

0�t∗�T

E [ψ]
r2 �

∫

t∗=0
E [ψ].� (4)

Remark 1.1.  The weaker weight on the left hand side of this inequality in fact need only be 
applied to the t* derivative. It is interesting to note that in this estimate the integrand on the left 
hand side is 1/r2 times the integrand on the right. This is better than in the toroidal case, which 
requires a factor of 1/r3 on the left. Moreover, in that case the less favourable weights apply to 
the derivatives tangent to the torus, as well as the time derivatives. See [19].

1 Recall that if f , g are non-negative functions, then the statement f (x) � g(x) means that there exists a constant 
C  >  0 such that f (x) � Cg(x) for all x.
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This loss in weight on the left hand side can be removed, provided we control the initial 
energy of ∂t∗ψ.

Theorem 1.3.  For any time T  >  0,
∫

0�t∗�T
E [ψ] �

∫

t∗=0
(E [ψ] + E [∂t∗ψ]) .� (5)

Finally, using a result from [26] (subsequently used in [19]) which involves combining the 
Morawetz estimate above with a quantitative version of the redshift effect taken from [25], we 
are able to conclude the following quantitative energy decay estimate.

1/2 1

rext

M = 0 or r+/l = 1

No Black Hole

Linear Instability

Decay proved

Decay
Expected

κ

r+/l

Figure 1.  The regions of linear stability and instability for Neumann boundary 
conditions.

−
√

3
3 l

√
3

3 l r+

r

p(r)

Figure 2.  The function p(r), with M  >  0.
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Theorem 1.4.  For any time T  >  0, and natural number n ∈ N,
∫

t∗=T
E [ψ] � 1

(1 + T)n

∫

t∗=0

n∑
k=0

E [∂k
t∗ψ].� (6)

Remark 1.2.  In all of the above theorems, the implicit constant depends on the space-time 
parameters (M, l) and the Klein–Gordon parameter α but is independent of ψ and T.

We can contrast the results above with numerical work done in [21] which looks at the 
same problem in 4+1 dimensions and finds evidence of a linear instability occurring for vari-
ous values of α and M, including a range of positive M.

2. The space-time

The metric

g = −
(

k − 2M
r

+
r2

l2

)
dt2 +

dr2
(

k − 2M
r + r2

l2

) + r2dΩ2
k ,� (7)

rext
+ 1

M ext

r+/l

M/l

Figure 3.  The black hole mass M as a function of the horizon radius r+ .

1/l2

r+

r

f(r)/r2

Figure 4.  The function f (r)/r2.
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is a solution of the vacuum Einstein equations with a negative cosmological constant, referred 
to as the anti-de Sitter Schwarzschild black hole [27, 28]. Here M is the black hole mass, l is 
the AdS radius, k = −1, 0, 1 and dΩ2

k is the metric on a two-dimensional surface of constant 
sectional curvature k. In this paper, we will look at the Klein–Gordon equation associated to 
this metric,

�gψ +
α

l2
ψ = 0,� (8)

in the particular case that k  =  −1, on the exterior of the black hole, and where α satisfies the 
Breitenlohner–Friedman bound 0 < α < 9/4 [8]. The cases when k = 1, 0 have been studied 
already in [17] and [19] respectively.

Remark 2.1.  Unlike the cases k = 0, 1 when k  =  −1 there is a black hole for non-positive 

mass, provided that M � Mext := −l/
(

3
√

3
)
. When equality holds in the above, the black 

hole is extremal (see section 3 in [21]). The decay results proved in this paper do not hold 
for non-positive M, however see sections 1.2.2 and 1 for results about linear instability in this 
case.

Putting k  =  −1 in (7) we see that there is a coordinate singularity at any value of r where 
the polynomial

p(r) = r3 − l2r − 2Ml2� (9)

vanishes (see figure 2).

Note that p′(r) = 3r2 − l2, so the stationary points of p  are precisely the points r = ±
√

3
3 l. 

Since p′′(r) = 6r  for all r, we see that r =
√

3
3 l is a local minimum for p  and r = −

√
3

3 l is a 

local maximum. Since p
(√

3
3 l

)
< 0, it follows that p  has precisely one root, say r+ , in the 

interval 
(√

3
3 l,∞

)
. In fact, since p(l) < 0, it must be the case that r+   >  l. Since p(0) < 0 and 

p  has no stationary points in the interval 
(

0,
√

3
3 l

)
, it follows that r+ is the unique positive root 

of p .

Remark 2.2.  If M  <  0, then p  need not have a unique positive root. In this case, we define 
r+ to be the largest positive root. The extremal value of the mass Mext = −l/(3

√
3) corre-

sponds to a horizon radius rext
+ = l/

√
3, and M  =  0 corresponds to r  =  l.

It’s possible to parameterise the metric either by (M, l) or by (r+ ,l). When switching 
between the two it is useful to have a picture of the relation between M and r+  (see figure 3), 
given by

M =
r+
2

(
r2
+

l2
− 1

)
.� (10)

As in the Schwarzschild metric, there is a coordinate singularity at precisely one value of 
the radius, r  =  r+ , representing the black hole horizon and, as in that case, we can perform a 
change of coordinates which allows the metric to be extended to part of the region 0  <  r  <  r+ . 
Define a new coordinate t* by

dt∗ = dt +
2M
r

1(
−1 + r2

l2

) 1(
−1 − 2M

r + r2

l2

) dr.� (11)

O Salter Fitz-Gibbon﻿Class. Quantum Grav. 37 (2020) 025016
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After a short calculation, we see that the metric in (t*,r) coordinates is

g = −
(
−1 − 2M

r
+

r2

l2

)
(dt∗)2 +

4M
r

1(
−1 + r2

l2

)dt∗dr +
−1 + 2M

r + r2

l2(
−1 + r2

l2

)2 dr2 + r2dΩ2
−1.� (12)

For later convenience, we will define the two functions

f (r) = −1 − 2M
r

+
r2

l2
,� (13)

and

g(r) = −1 +
2M
r

+
r2

l2
.� (14)

Since r+   >  l, this metric is regular at the horizon r  =  r+ . We will now formally define the 
Lorentzian manifold (with boundary) (M, g) to be

M = Rt∗ × Rr�r+ ×H2� (15)

with the metric (12), where H2 is the two dimensional hyperbolic plane, with metric

dΩ2
−1 = dσ2 + sinh2(σ)dφ2� (16)

where 0 < σ < ∞ and φ is periodic with period 2π. The non-zero components of the inverse 
metric are

gt∗t∗ = −
−1 + 2M

r + r2

l2(
−1 + r2

l2

)2 , gt∗r = grt∗ =
2M
r

1
−1 + r2

l2
, grr =

(
−1 − 2M

r
+

r2

l2

)
,

gσσ =
1
r2 , gφφ =

1
r2 sinh2 (σ)

.

�

(17)

The volume form is

dVol =
√
−g dt∗ dr dσ dφ = r2 dt∗ dr dω,� (18)

where dω = sinh2 σ dσ dφ is the volume form of the hyperbolic plane. It will be convenient 
to let /∇ denote the covariant derivative on the hyperbolic plane (where we include the factor 
of r2 in the metric).

Remark 2.3.  In the definiton of the manifold (15) above, we could replace the hyperbolic 
plane H2 by any quotient H2/Γ, where Γ is a freely-acting discrete subgroup of Isom(M). 
The resulting manifold would have the same metric but a different topology. In particular, 
H2/Γ may be chosen to be compact, whereas H2 is not. For simplicity, we will consider a 
compact quotient so that we do not need to worry about convergence of integrals over the 
hyperbolic planes. However we could consider the non-compact case by assuming sufficient 
decay in the hyperbolic directions.

2.1.  Some hypersurfaces and their normals

In what follows it will be convenient to define some hypersurfaces and write down their unit 
normal vectors.

O Salter Fitz-Gibbon﻿Class. Quantum Grav. 37 (2020) 025016
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	 •	�Let Σt∗ denote the surface of constant t*. The future-directed unit normal is

na = − 1√
−gt∗t∗

(dt∗)a ,� (19)

		 or with the index raised

na =
√
−gt∗t∗

(
∂

∂t∗

)a

− grt
√
−gt∗t∗

(
∂

∂r

)a

.� (20)

		 The volume element is

dSΣt∗ =
√
−gt∗t∗r2 dr dω.� (21)

	 •	�Let Σ̃r  denote the surface of constant r. The unit normal is

ma =
1√
grr (dr)a ,� (22)

		 or with the index raised

ma =
gt∗r
√

grr

(
∂

∂t∗

)a

+
√

grr

(
∂

∂r

)a

.� (23)

		 The volume element is

dSΣ̃r
=

√
grrr2 dt∗ dω.� (24)

		 Notice that grr −→ 0 as r −→ r+, and gt∗r −→ 2M
r+

1
−1+ r2

l2

 as r −→ r+. It follows that ma 

becomes singular at the horizon r  =  r+ , but the product madSΣ̃r
 is well behaved, and so 

defines a natural vector volume form on the horizon.

3.  Null geodesics

Before beginning the study of the equation, we will look at the null geodesics of the space-
time (M, g). Note that a detailed study of the geodesics of the spherical AdS Schwarzschild 
black hole has been made in [29].

3.1. The equation of motion

In this section, we will show that null geodesics in (M, g) obey a one dimensional potential 
equation. As usual, we begin by using the symmetries of the Hamiltonian to find conserved 
quantities. Let γ  be an affinely parameterised null geodesic (say with affine parameter s), and 
denote the coordinates of γ  by (xµ). The geodesic Lagrangian is

L = gµν ẋµẋν .� (25)

The momentum conjugate to the position variable xµ is

pµ =
∂L
∂ẋµ

= 2gµν ẋν .� (26)

O Salter Fitz-Gibbon﻿Class. Quantum Grav. 37 (2020) 025016
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That is,

pt∗ = −2f (r)ṫ∗ +
4M
r

1(
−1 + r2

l2

) ṙ,

pr =
4M
r

1(
−1 + r2

l2

) ṫ∗ +
2g(r)(

−1 + r2

l2

)2 ṙ,

pσ = 2r2σ̇, and

pφ = 2r2 sinh2 (σ) φ̇.

�
(27)

Since g is independent of t*, the conjugate momentum pt∗ is conserved along geodesics. Define

E =
pt∗

2
= −f (r)ṫ∗ +

2M
r

1
−1 + r2

l2
ṙ = const.� (28)

Inverting the relation (26), we get

ẋµ =
1
2

gµνpν .� (29)

The Hamiltonian is

H = pµẋµ − L = L.� (30)

Plugging (26) in to (30), we obtain the formula for the Hamiltonian in terms of the conjugate 
momenta,

H =
1
4

gµνpµpν ,

=
1
4


− g(r)(

−1 + r2

l2

)2 p2
t∗ + f (r) p2

r +
1
r2

(
p2
σ +

1
sinh2(σ)

p2
φ

) .
�

(31)

It is then easy to see that
{

p2
σ +

1
sinh2(σ)

p2
φ, H

}
= 0,� (32)

and so

h2 =
1
4

(
p2
σ +

1
sinh2(σ)

p2
φ

)
� (33)

is conserved along geodesics. In terms of the velocities, rather than the momenta, we see that

h2 = r4
(
σ̇2 + sinh2(σ)φ̇2

)
.� (34)

Finally, H itself is conserved, and since γ  is null, is in fact equal to zero. Putting this all 
together, we get

0 = H =
E2 − ṙ2

f (r)
+

h2

r2 ,� (35)

O Salter Fitz-Gibbon﻿Class. Quantum Grav. 37 (2020) 025016
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or after tidying up slightly,

ṙ2 +
h2

r2 f (r) = E2.� (36)

Remark 3.1.  Notice that the motion in the hyperbolic plane is decoupled from the radial 
motion, except for the presence of the constant h2 in the equation of motion (36).

3.2.  Gravitational attraction of the black hole

If we differentiate (36) with respect to the affine parameter s we get

ṙ
(

2r̈ +
d
dr

h2f (r)
r2

)
= 0.� (37)

It is easy to check that f (r)/r2 is a strictly increasing function of r, which tends to 1/l2 as 
r −→ ∞ (see figure 4). Therefore, provided that ṙ �= 0, it follows that r̈ < 0. That is, a light 
ray accelerates radially inwards towards the black hole, and the acceleration decreases to zero 
as 1/r3 as r increases to infinity.

3.3.  Absence of constant r null geodesics

As mentioned above, f (r)/r2 is a strictly increasing function of r, and f (r)/r2 −→ 1/l2 as 
r −→ ∞. Since f (r+ )  =  0, it follows that whenever h2/l2 > E2 there is a unique solution 
r0 > r+ to the equation h2f (r)/r2 = E2 . We might then expect there to be a null geodesic 
with r(s)  =  r0 (and ṙ(s) = 0) for all s. In fact this cannot happen, and ṙ(s) cannot vanish on 
any interval (s0 − ε, s0 + ε). To see this we look at the Euler–Lagrange equation obtained by 
varying r,

d
ds

∂L
∂ṙ

− ∂L
∂r

= 0.� (38)

That is,

d
ds


4M

r
1

−1 + r2

l2
ṫ∗ +

2g(r)(
−1 + r2

l2

)2 ṙ


− f ′(r) (ṫ∗)2

−


 ∂

∂r


4M

r
1

−1 + r2

l2
ṫ∗ +

g(r)(
−1 + r2

l2

)2 ṙ





 ṙ − 2r(σ̇2 + sinh2(σ)φ̇2) = 0

�

(39)

or, expanding the first term using the chain rule

 ∂

∂r


4M

r
1

−1 + r2

l2
ṫ∗ +

2g(r)(
−1 + r2

l2

)2





 ṙ +

4M
r

1
−1 + r2

l2
ẗ∗ +

g(r)(
−1 + r2

l2

)2 r̈ − f ′(r) (ṫ∗)2

−


 ∂

∂r


4M

r
1

−1 + r2

l2
ṫ∗ +

g(r)(
−1 + r2

l2

)2 ṙ





 ṙ − 2r(σ̇2 + sinh2(σ)φ̇2) = 0.

�

(40)
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If ṙ(s) = 0 for all s ∈ (s0 − ε, s0 + ε), then the two terms in the square brackets do not con-
tribute, and nor does the ̈r  term, so we’re left with

4M
r

1
−1 + r2

l2
ẗ∗ − f ′(r) (ṫ∗)2 − 2r(σ̇2 + sinh2(σ)φ̇2) = 0,� (41)

which simplifies to

4M
r

1
−1 + r2

l2
ẗ∗ − f ′(r) (ṫ∗)2 − 2h2

r3 = 0.� (42)

Since E = f (r)ṫ∗ when ṙ = 0, we have that ṫ∗(s) = E/f (r0) for all s ∈ (s0 − ε, s0 + ε) (where 
r0 = r(s0)). This is independent of s, so ̈t∗(s) = 0 for all s ∈ (s0 − ε, s0 + ε). Plugging this in,

E2 f ′(r)
f (r)2 =

2h2

r3 .� (43)

Now, rf ′(r) = 2M/r + 2r2/l2, and h2f (r)/r2 = E2  so

2E2
(

M
r
+

r2

l2

)
= 2E2f (r).� (44)

The constant E cannot be 0, since if it were it must be the case that ṫ∗ ≡ 0, and also that h  =  0. 
This in turn implies that σ̇ ≡ 0, φ̇ ≡ 0, and so γ̇ = 0, contradicting the fact that γ̇  is a null 
vector field along γ . Therefore we can divide by 2E2 and rearrange to get

r(s) = −3M for all s ∈ (s0 − ε, s0 + ε),� (45)

which is absurd, since r(s) � r+ by definition. It is therefore impossible for ṙ  to vanish on any 
open interval of the parameter s, as asserted.

Remark 3.2.  If we allowed the black hole mass M to be negative, this does not immediately 
give a contradiction. However, it is quite easy to check that if Mext � M � 0, then −3M � r+, 
and so there are still no constant r null geodesics in the exterior of the black hole.

3.4. Time taken to cross the horizon

Consider an outgoing null geodesic (that is, one for which ṙ > 0). From the equation  of 
motion it follows that

ṙ =

√
E2 − h2

r2 f (r),

= E

√
1 − h2

E2r2 f (r).

�

(46)

Recalling the definition of E,

E = f (r)ṫ∗ − 2M
r

1
−1 + r2

l2
ṙ,� (47)

we see that

ṫ∗ =
1

f (r)

(
E +

2M
r

1
−1 + r2

l2
ṙ

)
.� (48)

O Salter Fitz-Gibbon﻿Class. Quantum Grav. 37 (2020) 025016



13

Dividing ṫ∗ by ṙ  we get

dt∗

dr
=

ṫ∗

ṙ
=

E
f (r)ṙ

+
2M

rf (r)
1

−1 + r2

l2
,

=
1

f (r)
1√

1 − h2

E2r2 f (r)
+

2M
rf (r)

1
−1 + r2

l2
,

=
1

f (r)


 1√

1 − α2

r2 f (r)
+

2M
r

1
−1 + r2

l2


 ,

�
(49)

where in the last line we have defined α2 = h2/E2. We can now integrate this equation from 
r0 to r to get t as a function of r, provided that the denominator does not vanish for any 
r′ ∈ (r0, r), thus

t∗(r)− t∗0 =

∫ r

r0

dt∗

dr
dr,

=

∫ r

r0

1
f (r′)


 1√

1 − α2

r′2 f (r′)
+

2M
r′

1
−1 + r′2

l2


 dr′.

�

(50)

There are three cases, according as h2/E2 < l2, h2/E2 > l2, or h2/E2 = l2.

	 1.	�h2/E2 < l2: In this case, since f (r)/r2 < 1/l2, we have that

1 − α2

r2 f (r) > 1 − h2

E2l2
> 0 (for all r > r+).� (51)

		 Looking at the asymptotic behaviour, we see that

1 − α2

r2 f (r) = 1 − h2

E2l2

(
1 − l2

r2 − 2Ml
r3

)
,

∼ 1 − h2

E2l2
as r −→ ∞.

�

(52)

		 Since f (r) ∼ r2/l2 as r −→ ∞, it follows that

f (r)

√
1 − α2

r2 f (r) ∼
√

1 − h2

E2l2
r2

l2
as r −→ ∞,� (53)

		 so 

(
f (r)

√
1 − α2

r2 f (r)
)

−1 is integrable. Similarly,

1
f (r)

2M
r

1
−1 + r2

l2
∼ 2Ml4

r5 as r −→ ∞,� (54)

		 which is certainly integrable. Therefore,

lim
r→∞

t∗(r) < ∞.� (55)

		 Informally we say that the geodesic reaches r = ∞ in finite coordinate time.
	 2.	�h2/E2 > l2: In this case there is a unique value r∗ > r0 > r+ such that
		 1 − α2f (rmax)/r2

max = 0. It is also true that ṙ  vanishes when r = rmax. Now, as r approaches 
rmax, 1 − α2/r2f (r) behaves like a constant multiple of (rmax − r). But (rmax − r)−1/2 is 
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integrable near rmax, and so in this case r increases to rmax, with t∗(rmax) < ∞, at which 
point ṙ  changes sign, and the geodesic becomes ingoing.

	3. h2/E2 = l2:	� In this case,

1 − α2

r2 f (r) =
α2

r2

(
1 +

2M
r

)
,� (56)

		 and so

1
f (r)

1√
1 − α2

r2 f (r)
∼ l2

r2

r
α

∼ l2

α

1
r

as r −→ ∞.� (57)

		 But this is not integrable! In other words,

lim
r→∞

t∗(r) = ∞.� (58)

		 Informally we say that the geodesic takes an infinite coordinate time to reach r = ∞.
If we look instead at an ingoing null geodesic, that is one for which ṙ < 0 then

ṙ = −E

√
1 − h2

E2r2 f (r).� (59)

Since it must be the case that initially h2f (r0)/r2
0 < E2, and since h2f (r)/r2 is an increasing 

function of r, it follows that h2f (r)/r2 � E2  for all r ∈ (r+, r0). Therefore for r ∈ (r+, r0),

t∗(r)− t∗0 =

∫ r0

r

1
f (r′)


 1√

1 − α2

r′2 f (r′)
− 2M

r′
1

−1 + r′2

l2


 dr′� (60)

and so the coordinate time at which the null geodesic γ  crosses the horizon r  =  r+ , t∗(r+) is 
finite. Combining these two results, we see that the only null geodesics which do not cross 
the horizon in finite coordinate time are those outgoing null geodesics for which h2/E2 = l2, 
which spiral out towards future null infinity, but do not reach it in finite coordinate time.

It is also interesting to note the following proposition.

Proposition 3.1.  Define the vector field

X = r


 ∂

∂r
+

2M
r

1(
−1 + r2

l2

) 1(
−1 − 2M

r + r2

l2

) ∂

∂t∗


 ,

= r
(

∂

∂r

)

Sch
.

�

(61)

If γ  is a null geodesic, then g(X, γ̇) is monotonically decreasing along γ . That is, γ̇ (g(X, γ̇)) < 0.

Proof.  Consider,

γ̇ (g(X, γ̇)) = ∇γ̇ (Xµγ̇
µ)

= γ̇µ∇γ̇Xµ (since γ is a geodesic)
= γ̇µγ̇ν∇νXµ

= γ̇µγ̇ν∇(µXν)

= γ̇µγ̇ν
(
∇(µXν) + βgµν

)
(for any function β, since γ is null).

�

(62)
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It now suffices to find a function β such that the ∇(µXν) + βgµν  is negative definite. We define 
the deformation tensor of X by ΠX

µν = ∇(µXν). A long but straightforward calculation (or an 
appeal to one’s favourite computer algebra package) gives

ΠX = − (Ml2 + r3)

l2r
(dt∗)2

+
l4r(3M + r)

p(r)2 dr2 + r2
(

dσ2 + sinh2(σ)dφ2
)

.

� (63)

If we set β0(r) = Ml2+r3

p(r) , then the (dt∗) 2 terms cancel, leaving

ΠX + β0g = −
(

l2r(r3 + l2r + 4Ml2)
p(r)2 dr2 +

l2r2(3M + r)
p(r)

(
dσ2 + sinh2(σ)dφ2

))
.� (64)

We can now put β = β0 + δβ, where δβ is positive, so that the coefficient of (dt∗) 2 is 
negative, but sufficiently small that the other terms remain negative. A suitable choice is 
δβ(r) = l2r/p(r), giving

ΠX + βg = −

(
dt2 +

l2r
(
r3 + 4Ml2

)
p(r)2 dr2 +

3Ml2

p(r)
r2
(

dσ2 + sinh2(σ)dφ2
))

,

� (65)

which is negative definite. This completes the proof.� □ 

4. The Klein–Gordon equation

The study of the Klein–Gordon in the rest of this paper closely follows the methods and struc-
ture of [17] and [19]. Throughout we will assume that ψ is smooth, but this restriction can be 
lifted by a density argument.

4.1. Twisted derivatives

For a given smooth, positive function f : M −→ R, which we shall refer to as a twisting func-
tion, we define the twisted derivative of a function ψ : M −→ R to be

∇̃µψ = f∇µ

(
ψ

f

)
.� (66)

Note that the twisted ‘derivative’ is not in fact a derivation; that is, it does not obey the product 
rule. This manifests itself in the fact that

∇̃µ (1) = −∇µf
f� (67)

which is not in general zero, but

∇̃µf = 0.� (68)

However the twisted derivative is a tensor, and as with the covariant derivative it satisfies

∇̃ρ (gµνψ) = gµν∇̃ρψ.� (69)

If f  and ψ have the same asymptotic behaviour as r −→ ∞, then the leading order term in 
ψ/f  is annihilated by the derivative, and ∇̃ψ will decay more rapidly than ∇ψ. This will allow 
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the use of energy methods which would otherwise be prevented by the slow decay of some 
solutions towards infinity. Specifically, the standard energy integrals of solutions satisfying 
Neumann boundary conditions do not converge, but the twisted energy integrals do. (See for 
example the introduction of [11]). To this end we will choose

f (r) ∼ r−
3
2 +κ

� (70)
which is the asymptotic behaviour of a solution obeying Neumann boundary conditions (see 
for example [11, 19]).

The formal L2 adjoint of ∇̃, denoted ∇̃†, is given by

∇̃†
µψ = −1

f
∇µ ( fψ) .� (71)

Note that

−∇̃†
µ∇̃µψ =

1
f
∇µ

(
f 2∇µ

(
ψ

f

))
,

=
1
f
∇µ ( f∇µψ − ψ∇µf ) ,

= �gψ − ψ
�gf

f
,

� (72)

so we can rewrite the Klein–Gordon equation in terms of twisted derivatives as

∇̃†
µ∇̃µψ + Vψ = 0,� (73)

where

V = −
(
�gf

f
+

α

l2

)
.� (74)

We refer to the function V  as the potential associated with twisting function f .

4.2. The twisted energy-momentum tensor

For a sufficiently regular function ψ : M −→ R, define the twisted energy-momentum tensor

T̃µν [ψ] = ∇̃µψ∇̃νψ − 1
2

gµν
(
∇̃σψ∇̃σψ + Vψ2

)
.� (75)

This is the same as the usual definition of the energy momentum tensor of a massive scalar 
field, except that the derivatives are replaced by twisted derivatives, and the mass term m2ψ2 
is replaced by Vψ2 . It is clearly a symmetric tensor of type (0, 2) but unlike the usual energy 
momentum tensor it is not in general divergence free. The following basic properties of the 
twisted energy momentum tensor were proved in [17].

Proposition 4.1. 

	 1.	�If ψ ∈ C2 (M → R), then

∇µT̃µ
ν [ψ] =

(
−∇̃†

µ∇̃µψ − Vψ
)
∇̃νψ + S̃ν [ψ],� (76)
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		 where

S̃ν [ψ] =
∇̃†

ν ( fV)

2f
ψ2 +

∇̃†
ν f

2f
∇̃σψ∇̃σψ.� (77)

	 2.	�Let ψ ∈ C2 (M → R) be a solution to the Klein–Gordon equation, and let X be a smooth 
vector field. Define the twisted vector and scalar currents respectively to be

J̃X
µ[ψ] = T̃µν [ψ]Xν ,

K̃X[ψ] = ΠX
µν T̃µν [ψ] + Xν S̃ν [ψ],

� (78)

		 where ΠX
µν = ∇(µXν) is the deformation tensor of X. Then

∇µJ̃X
µ[ψ] = K̃X[ψ].� (79)

	 3.	�If the twisting function f  is chosen so that the associated potential V  is non-negative, then 
T̃[ψ] obeys the dominant energy condition; that is, if X is a future directed causal vector 
field, then so is −J̃X[ψ].

Remark 4.1. 

	 (i)	�Part 1. of this proposition is analogous to the usual formula for the divergence of the 
energy-momentum tensor, except for the additional term S̃[ψ] which means that T̃[ψ] is 
not divergence free even when ψ is a solution of the Klein–Gordon equation.

	(ii)	�If X is a Killing vector field, then ΠX = 0, and if Xf  =  0, then Xν S̃ν [ψ] = 0. If both of 
these are true, then KX[ψ] = 0 and so J̃X[ψ] is a conserved current.

	(iii)	�Because of part 3 of proposition 4.1 above, we shall choose a twisting function f  so that 
V � 0.

4.3.  Boundary conditions

Define κ =
√

9
4 − α. Note that the range 0 < α < 9/4 corresponds to 3/2 > κ > 0, and the con-

formally coupled case α = 2 corresponds to κ = 1/2. We say that a function ψ ∈ C1(M → R) 
obeys

	 1.	�Dirichlet boundary conditions at infinity iff κ > 0 and

r
3
2 −κψ −→ 0, as r −→ ∞.� (80)

	 2.	�Neumann boundary conditions at infinity iff 0 < κ < 1 and

r
5
2 −κ∇̃rψ −→ 0, as r −→ ∞.� (81)

	 3.	�Robin boundary conditions at infinity iff 0 < κ < 1 and

r
5
2 −κ∇̃rψ + βr

3
2 −κψ −→ 0, as r −→ ∞,� (82)

		 for some non-negative, time-independent, smooth function β defined on conformal 
infinity.

The well-posedness of the Klein–Gordon equation with any of the above types of boundary 
conditions was established in [11].
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4.4.  An appropriate choice of twisting function

The simplest possible choice of twisting function is f (r) = r−
3
2 +κ. After a straightforward 

calculation, this gives a potential

V(r) =
M (3 − 2κ)2

2r3 +
3 − 8κ+ 4κ2

4r2 .� (83)

It is easy to check that 3 − 8κ+ 4κ2 � 0 for 0 < κ � 1/2, so this is a suitable choice of twist-
ing function for that range (provided that M � 0). Importantly this range includes the confro-
mally coupled case κ = 1/2. As will be explained in section 1, we do not expect to be able to 
find a twisting function which is suitable for the range 1/2 < κ < 3/2, for all values of M  >  0.

Remark 4.2.  The twisted derivative is introduced in order to deal with divergent energy 
integrals for solutions obeying Neumann and Robin boundary conditions, but is not neces-
sary for Dirichlet boundary conditions (see for example [9]), so the difficulty in finding an 
appropriate twisting function for κ > 1/2 is not in principle a barrier to the decay of solutions 
satisfying Dirichlet conditions.

4.5.  Energy boundedness

4.5.1. The degenerate energy.  Let

T =
∂

∂t∗
.� (84)

Since the metric (12) is independent of t*, T is a Killing vector field. Moreover, since we have 
chosen f  to be a function of r only, Tf  =  0. It follows that

∇µJ̃T
µ[ψ] = 0� (85)

whenever ψ is a solution of the Klein–Gordon equation. Let B[T1,T2]
[R1,R2]

 denote the region of 

M with T1 � t∗ � T2 and R1 � r � R2, where 0 � T1 < T2 < ∞, r+ < R1 < R2 < ∞. 

Integrating equation (85) over B[T1,T2]
[R,1,R2]

 and using the divergence theorem, we get

ẼT2 [ψ; [R1, R2]]− ẼT1 [ψ; [R1, R2]] = F̃R2 [ψ; [T1, T2]]− F̃R1 [ψ; [T1, T2]]� (86)

where

Ẽt∗ [ψ; [R1, R2]] =

∫

Σ
[R1,R2]
t∗

J̃T
µ[ψ]n

µ dSΣt∗ ,� (87)

and

F̃r[ψ; [T1, T2]] =

∫

Σ̃
[T1,T2]
r

J̃T
µ[ψ]m

µ dSΣ̃r
.� (88)

A direct (but rather long) calculation gives

Ẽt∗ [ψ; [R1, R2]] =
1
2

∫

Σ
[R1,R2]
t∗

(
−gt∗t∗(∂t∗ψ)

2 + grr(∇̃rψ)
2 + | /∇ψ|2 + Vψ2

)
r2 dr dω,� (89)

and

F̃r[ψ; [T1, T2]] =

∫

Σ
[T1,T2]
r

(
gt∗r(∂t∗ψ)

2 + grr(∂t∗ψ)(∇̃rψ)
)

r2 dt∗ dω.� (90)
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(Recall that /∇ is the covariant derivative on the hyperbolic plane.)

Remark 4.3.  The formula (89) clearly defines a positive-definite energy if V > 0.

In order to get the fluxes over the whole exterior of the black hole, we will take the limits 
R1 −→ r+ and R2 −→ ∞. Since grr −→ 0 as r −→ r+,

F[ψ; [T1, T2]] := lim
r→r+

F̃r[ψ; [T1, T2]],

=

∫

H[T1,T2]

gt∗r(∂t∗ψ)
2r2

+ dt dω
�

(91)

where H[T1,T2] is the region of the horizon r  =  r+ where T1 � t � T2.

Remark 4.4.  Note that gt∗r  has the same sign as M, and hence so does F[ψ; [T1, T2]].

If ψ obeys Dirichlet or Neumann boundary conditions, then by counting powers of r in the 
metric components it can be seen that

lim
r→∞

F̃r[ψ; [T1, T2]] = 0.� (92)

If instead ψ obeys Robin boundary conditions, then

lim
r→∞

F̃r[ψ; [T1, T2]] = − lim
r→∞

1
2l2

∫

Σ̃
[T1,T2]
r

β∂t∗

((
r−

3
2 +κψ

)2
)

dt∗ dω,

= lim
r→∞

[
− 1

2l2

∫

H2
T2,r/Γ

β
(

r−
3
2 +κψ

)2
dω +

1
2l2

∫

H2
T1,r/Γ

β
(

r−
3
2 +κψ

)2
dω

]
,

(having carried out the integral in t∗)

= − 1
2l2

∫

H2
T2,∞/Γ

β
(

r−
3
2 +κψ

)2
dω +

1
2l2

∫

H2
T1,∞/Γ

β
(

r−
3
2 +κψ

)2
dω.

� (93)
Now define the renormalised energy of ψ at time t* to be

Et∗ [ψ] = Ẽt∗ [ψ; [r+,∞]] +
1

2l2

∫

H2
t∗ ,∞/Γ

β
(

r−
3
2 +κψ

)2
dω,� (94)

where it is understood that if ψ does not obey Robin boundary conditions, then β ≡ 0. Since 
it is assumed that β � 0, Et∗ is positive definite whenever Ẽt∗ is.

Taking the limits R1 −→ r+ and R2 −→ ∞ in (86), we get

ET2 [ψ] = ET1 [ψ]− F[ψ; [T1, T2]].� (95)

It follows that if M � 0, then

ET2 [ψ] � ET1 [ψ],� (96)

and if M � 0, then

ET2 [ψ] � ET1 [ψ].� (97)

(And if M  =  0, then ET2 [ψ] = ET1 [ψ]).
We see that there are two cases to be considered, depending on whether the black hole 

mass M is positive or negative. When M  >  0, the function t∗ �→ Et∗ [ψ] is non-increasing. In 
particular it is bounded above by its initial value. It is in this setting that we will prove that 
for 0 < κ � 1/2, the energy decays polynomially (see theorem 6.1). On the other hand, when 
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M � 0, the function t∗ �→ Et∗ [ψ] is non-decreasing, and in particular is bounded below by its 
initial value.

Remark 4.5.  In the case M  >  0, if a solution ψ has a negative initial energy then its en-
ergy will remain bounded away from zero for all time, and similarly if M  <  0 a solution with 
positive initial energy will remain bounded away from zero. When M  =  0, any solution with 
non-zero energy will remain bounded away from zero. In section 5, we shall use the existence 
of such solutions to demonstrate linear instability in certain regions of the parameter space (as 
illustrated in figure 1)

5.  Linear instability

Having proved energy boundedness (96), we are in a position to show that, provided M � 0, 
the existence of negative energy initial data for the Klein–Gordon equation implies linear insta-
bility, and we will explain exactly what is meant by linear instability here. Similarly, when 
M  <  0 we will show that the existence of positive energy initial data implies linear instability. 
We will then find a region in the parameter space in which such initial data exist.

5.1.  Negative energy implies instability when M � 0

We begin by noting that if a solution ψ to the Klein–Gordon equation has negative energy 
initially

E0[ψ] < 0,� (98)

then in view of (96) it has negative energy for all times t∗ � 0

Et∗ [ψ] � E0[ψ] < 0.� (99)

In particular it is impossible to have Et∗ [ψ] −→ 0 as t∗ −→ ∞, and so we see that the exis-
tence of negative energy solutions provides a barrier to decay. More specifically, consider the 
following result (which appears in [25] as corollary 1.2).

Theorem 5.1.  Suppose that solutions of the Klein–Gordon equation, with boundary con-
ditions fixed, on some asymptotically AdS black hole are bounded in H1 × L2. Furthermore 
suppose that there exists no quasinormal mode on the imaginary axis. Then for any solution ψ 
of the Klein–Gordon equation with initial data in D1(A) ∼= H2(Σ0), we have

‖ψ‖H1(Σt∗ ) + ‖∂t∗ψ‖L2(Σt∗ ) −→ 0 as t∗ −→ ∞.� (100)

Remark 5.1.  Here H1 and L2 are the twisted Sobolev spaces defined in [11]. They are 
defined in the same way as the usual Sobolev spaces, but with twisted derivatives replacing 
ordinary partial derivatives.

We also note that lemma A.1 from [26] implies that if s is a quasinormal mode on the 
imaginary axis, then s  =  0.

The contrapositive of this theorem, combined with the fact that a negative energy solution 
cannot tend to zero tells us that if there exists a negative energy solution, then either

	 1.	�There exists a quasinormal frequency on the imaginary axis, which in view of the above 
must be zero, giving a solution which is constant in time, or
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	 2.	�No uniform boundedness statement holds.

It is in this sense that we say that the existence of a negative energy solution implies linear 
instability.

Remark 5.2.  Exactly the same argument applied to (97) shows that when M  <  0 the exist-
ence of a positive energy solution implies linear instability.

5.2. The existence initial data leading to instability

In this section, we will find a sufficient condition on M and κ for the existence of negative 
energy initial data when M � 0. We moreover show the existence of positive energy initial 
data whenever M � 0. If M and κ obey one of these condition, then we can conclude from the 
previous section that there is linear instability.

Recall that for solutions obeying Dirichlet or Neumann boundary conditions, the initial 
energy is given by the formula

E0[ψ] =
1
2

∫

Σ0

(
−gt∗t∗(∂t∗ψ)

2 + grr(∇̃rψ)
2 + | /∇ψ|2 + Vψ2

)
r2 dr dω.� (101)

The first three terms in the integrand are clearly non-negative, but the potential

V(r) =
M (3 − 2κ)2

2r3 +
3 − 8κ+ 4κ2

4r2
� (102)

may be negative when either κ > 1/2 or M  <  0. Setting ψ(r) = f (r) causes the first three 
terms to vanish and carrying out the integral in r, we get

E0[ψ] =
1
4

Vol
(
H2/Γ

)
(3 − 2κ) r−3+2κ

+

(
M +

1 − 2κ
4 (1 − κ)

r+

)
.� (103)

For κ < 3/2, the sign of this quantity is determined by the sign of the term in brackets,

S := M +
1 − 2κ

4 (1 − κ)
r.� (104)

We can express M in terms of r+ as

M =
r+
2

(
r2
+

l2
− 1

)
.� (105)

Plugging this into (104) and rearranging slightly, we see that

S =
r+
2

(
r2
+

l2
−
(

1 − 1
2
· 1 − 2κ

1 − κ

))
.� (106)

Thus E0[ψ] < 0 if and only if

r2
+

l2
< 1 − 1

2
· 1 − 2κ

1 − κ
.� (107)

Since M � 0 corresponds to r+/l � 1, we see that there is linear instability provided that

1 �
r2
+

l2
< 1 − 1

2
· 1 − 2κ

1 − κ
.� (108)
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(Indeed, whenever this inequality is satisfied we can obtain a negative energy solution by solv-
ing the equation with initial data f (r), and conclude that we have linear instability.)

Similarly E0[ψ] > 0 if and only if

r2
+

l2
> 1 − 1

2
· 1 − 2κ

1 − κ
,� (109)

and hence there will be instability when

1 �
r2
+

l2
> 1 − 1

2
· 1 − 2κ

1 − κ
.� (110)

In fact, by working slightly harder we can find positive energy initial data whenever M � 0. 
The idea is that since the only term in the energy that can be negative is the one involving Vψ2 , 
we can proceed as follows: let

ψ(t∗, r,σ,φ) =
{

f (r), for r > R,
Ψ(t∗, r,σ,φ), for r � R.� (111)

The integral over r  >  R will involve only the term Vψ2  and so will be negative. However for 
R sufficiently large we can make it as small as we please. By making |Ψ| sufficiently small we 
can also ensure that the integral of the Vψ2  term over r � R is, although negative, as small we 
please. It now suffices to take Ψ to oscillate sufficiently rapidly in the hyperbolic directions 
so that the integral of 

∣∣ /∇Ψ
∣∣ outweighs the two negative terms. Then E0[ψ] > 0 and we have 

linear instability as claimed.
This is illustrated in figure 1.

5.3. The case M  =  0

Before finishing, a few remarks about the physically interesting M  =  0 (or equivalently 
r+   =  l) case are in order.

5.3.1.  Linear scalar hair when M  =  0.  It is a simple calculation to check that if M  =  0 and 
κ = 1/2 (the conformally coupled case), then setting ψ(r) = 1/r  we have

�gψ +
α

l2
ψ = 0.� (112)

That is, there is a non-zero time-independent solution to the Klein–Gordon equation (or linear 
scalar hair, in the language of the physics community) which obeys Neumann boundary con-
ditions. In particular, this solution does not decay in time, so we have linear instability. This 
is consistent with (108).

5.3.2.  Growing modes when M  =  0.  In [22] growing mode solutions were found in the case 
M  =  0 and 1/2 < κ < 1, but only when Neumann boundary conditions are imposed. This 
agrees with our argument, as putting M  =  0 in (104), we see that E0[ψ] < 0 if and only if 
1/2 < κ < 1. However, no growing modes were found in [22] for Dirichlet boundary condi-
tions. The question of whether a decay result can be proved for the M  =  0 case when only 
Dirichlet boundary conditions are imposed remains open, as does the question of decay in the 
M  =  0, 0 < κ < 1/2 case.
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6.  Decay rates

In this section we will only consider the case M  >  0 and 0 < κ � 1/2 so that the twisting 
function f (r) = r−

3
2 +κ gives a positive potential V .

6.1.  Non-degenerate energy boundedness

The renormalised energy is degenerate at the horizon, in the sense that as r −→ r+, grr −→ 0, 

so that Et∗ [ψ] does not control 
(
∇̃rψ

)
2. For M  >  0 degeneracy can be removed using the 

celebrated redshift effect of Dafermos and Rodnianski [30]. Define the non-degenerate renor-
malised energy density of ψ by

E [ψ] = 1
r
ψ2 + r4

(
∇̃rψ

)2
+ (∂t∗ψ)

2
+ r2

∣∣ /∇ψ
∣∣2 .� (113)

Note that the coefficients in E have the same asymptotic behaviour as the coefficients in the 
degenerate energy, but without the degeneracy at the horizon. We then obtain the following 
theorem, the proof of which is to be found in section 3.3 of [30].

Theorem 6.1.  (Non-degenerate energy boundedness) Consider the Klein–Gordon equa-
tion (8) on the Lorentzian metric (7), for fixed M  >  0, l  >  0 and 0 < κ � 1/2. There exists a 
constant C  >  0 (depending on M, l and κ) such that for any solution ψ of the Klein–Gordon 
equation, obeying Dirichlet, Neumann, or Robin boundary conditions at infinity, and for any 
T1 < T2,

∫

ΣT2

E [ψ] dr dω � C
∫

ΣT1

E [ψ] dr dω.� (114)

6.2. The Morawetz estimate

In this section, we will prove an integrated decay estimate for solutions of the Klein–Gordon 
equation. To do so, we will use energy methods. These methods were first used by Morawetz 
for the obstacle problem in Minkowski space in [31] and [32]. More recently they were applied 
in the study of Schwarzschild black holes in [33] and [30].

Theorem 6.2.  Consider the Klein–Gordon equation (8) on the Lorentzian metric (7), for 
fixed M  >  0, l  >  0 and 0 < κ � 1/2. There exists a constant C  >  0 (depending on M, l and κ) 
such that for any solution of the Klein–Gordon equation with 0 < κ � 1/2, and any T1 < T2,
∫

B[T1,T2]

(
1
r
ψ2 +

1
r2 (∂t∗ψ)

2
+ r4

(
∇̃rψ

)2
+ r2

∣∣ /∇ψ
∣∣2
)

dt∗ dr dω � C
∫

ΣT1

E [ψ] dr dω.� (115)

The proof of this theorem requires lemmas 6.1 and 6.2. We shall present the proof of 

theorem 6.2 assuming these, and then give the somewhat technical proofs of the two lemmas.

Lemma 6.1.  Define vector fields

X = rh(r)
∂

∂r
, Y = k(r)

∂

∂t∗
,� (116)
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and set

J(X,Y ,w1,w2)
µ [ψ] = T̃µν [ψ]Xν + w1(r)ψ∇̃µψ + w2(r)ψ2Xµ − T̃µν [ψ]Yν ,

=: J(X,w1,w2)
µ [ψ]− k(r)J̃T

µ[ψ],
�

(117)

where h, k, w1, and w2 are arbitrary smooth functions of r, to be determined later. We refer to 
J(X,Y ,w1,w2) as a modified current.

Then,

−∇µJ(X,Y ,w1,w2)
µ [ψ] =St∗t∗ (∂t∗ψ)

2
+ Srr

(
∇̃ψ

)2
+ St∗r∂t∗ψ∇̃rψ

+ SH2

∣∣ /∇ψ
∣∣2 + S00ψ

2 + S0t∗ψ∂t∗ψ + S0rψ∇̃rψ,
�

(118)

where,

St∗t∗ =

[
l2
(
(1 − κ) r5 − (1 − 2κ) l2r3 + (5 − 2κ) l2Mr2 − κl4r − (1 − 2κ)Ml4

)
h(r)

r (r2 − l2)3

+
r
(
r2 − l2

) (
r3 − l2r + 2Ml2

)
h′(r)

2r (r2 − l2)3 + w1(r)grr + 2gt∗rk′(r)

]
,

Srr =

[
2
(
κr3 + (1 − κ) l2r + (3 − 2κ)Ml2

)
h(r)− 3r

(
r3 − l2r − 2Ml2

)
h′(r)

2l2r

− w1(r)grr
]
,

St∗r =

[
2Ml2

(
(1 − κ) l2 − (2 − κ) r2

)
h(r)− r

(
r2 − l2

)
h′(r)

r (r2 − l2)2 − 2w1(r)gt∗r + 2f (r)k′(r)

]
,

SH2 =−
[
(1 − κ) h(r) +

rh′(r)
2

+ w1(r)
]

,

�

(119)

S00 =

[
r
2

h′(r)V(r)− rw2(r)h′(r)

−

[
M (3 − 2κ)3

4r3 +
(1 − κ)

(
3 − 8κ+ 4κ2

)
4r2 + rw′

2(r) + 2κw2(r)

]
h(r)

−

[
3 − 8κ+ 4κ2

4r2 +
M (3 − 2κ)2

2r3

]
w1(r) + rw2(r)h′(r)

]
,

S0t∗ =− gt∗rw′
1(r), and

S0r =− [grrw′
1(r) + 2rh(r)w2(r)] .

Lemma 6.2.  Define vector fields X, Y and modified current J(X,Y ,w1,w2) as in lemma 6.1. 
Then, provided that h(r)  =  o(r2), h(r)w1(r) = o(r2), and h(r)w1(r)  =  o(r), k(r) is bounded, 
and that w2(r) = k2/r3, where 0 � k2 < r+V(r+)/2,

∫

B[T1,T2]
−∇µJ(X,Y ,w1,w2)

µ [ψ] dVol � C
∫

ΣT1

E [ψ] dr dω� (120)

for some constant C independent of T1 and T2.
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Proof of theorem 5.1.  We begin by noting that if we can pick a modified current satisfying 
the conditions of lemma 6.2, which also satisfies

1
r
ψ2 +

1
r2 (∂t∗ψ)

2
+ r4

(
∇̃rψ

)2
+ r2

∣∣ /∇ψ
∣∣2 � Cr2

(
−∇µJ(X,w1,w2)

µ [ψ]
)

� (121)

for some positive constant C, then the proof is complete. For then integrating this inequality 
with respect to dt∗ dr dω and using lemma 6.2, the result follows. The difficulty in this proof 
lies in choosing the functions w1, w2, h and k so that these conditions, particularly (121), all 
hold. In fact, this will have to be done in two stages, using two modified currents: one to con-

trol all but the 
∣∣ /∇ψ

∣∣2 terms on the left hand side of (121), and another to control the remaining 

term.
We begin by simplifying matters and setting h(r) ≡ 1. Because we do not wish to consider 

the 
∣∣ /∇ψ

∣∣2 term, we will take w1 such that this term vanishes. That is, set w1(r) ≡ − (1 − κ). 

Plugging these choices into (118), we get the following slightly simpler equation,

−∇µJ(X,Y ,w1,w2)
µ [ψ] =

[
l2
(
l2r3 + 3Ml2r2 − l4r + Ml4

)

r (r2 − l2)3 + 2gt∗rk′(r)

]
(∂t∗ψ)

2

+

[
κr3 + (1 − κ) l2r + (3 − 2κ)Ml2

2l2r
+ (1 − κ) grr

](
∇̃rψ

)2

+
(3 − 2κ) (4k2 − M (3 − 2κ))

4r3 ψ2

+

[
−

2Ml2
(
κr2 + (1 − κ) l2

)

r (r2 − l2)2 + 2f (r)k′(r)

]
∂t∗ψ∇̃rψ +

2k2

r2 ψ∇̃rψ.

�

(122)

We choose k′ so that the coefficient of ∂t∗ψ∇̃rψ vanishes. That is, take

k′(r) =
1

f (r)
2Ml2

(
κr2 + (1 − κ) l2

)

r (r2 − l2)2 > 0.� (123)

Note that this gives a positive contribution to the (∂t∗ψ)
2 term, and does not affect any other 

terms. The only remaining cross term is ψ∇̃rψ, which we will deal with using Young’s in-
equality with an ε. For each fixed value of r, we have

∣∣∣ψ∇̃rψ
∣∣∣ � −

(
ε(r)ψ2 +

1
4ε(r)

(
∇̃rψ

)2
)

.� (124)

Pick ε(r) = ε0/r, for some constant ε0 > 0. Then

−2k2

r2 ψ∇̃rψ � −2k2ε0

r3 ψ2 − k2

2ε0r

(
∇̃rψ

)2
.� (125)

Our next goal is to pick ε0 so that these terms can be absorbed by the ψ2 and 
(
∇̃rψ

)
2 terms 

respectively. At this stage we will have to treat the cases 0 < κ < 1/2 and κ = 1/2 separately. 
To begin with, let us suppose that 0 < κ < 1/2. Looking at the ψ2 term first,
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(3 − 2κ)
(
2k2 − 1

2 M (3 − 2κ)
)

2r3 − 2k2ε0

r3 =
(3 − 2κ)

(
(2 − δ) k2 − 1

2 M (3 − 2κ)
)

2r3 ,� (126)

where we have defined the positive number

δ =
4ε0

(3 − 2κ)
.� (127)

Recall that k2 must be chosen in the range

0 � k2 < r+V(r+)/2 =
M (3 − 2κ)2

4
+

(
3 − 8κ+ 4κ2

)
r+

8
.� (128)

Since κ < 1/2,

M (3 − 2κ)2

4
>

M (3 − 2κ)
2

,� (129)

and therefore there is an η0 > 0 such that

M (3 − 2κ)
2

+ η0 <
M (3 − 2κ)2

4
.� (130)

Set

k2 =
M (3 − 2κ)

2
+ η,� (131)

for some 0 � η � η0, and take δ = 1. Then

(3 − 2κ)
(
(2 − δ) k2 − 1

2 M (3 − 2κ)
)

2r3 =
(3 − 2κ) η

2r3 > 0.� (132)

Moreover, looking at the 
(
∇̃rψ

)
2 term, note that

k2

2ε0r
=

1
r

2
3 − 2κ

(
M (3 − 2κ)

2
+ η

)
,

=
M + η′

r
,

�

(133)

where η′ = 2η/ (3 − 2κ). Choosing η′ < aM/2, (where a  >  0 is small) which is possible 
since η may be as small as we please, we see that

κr3 + (1 − κ) l2r + (3 − 2κ)Ml2

2l2r
− k2

2ε0r
,

>
κr3 + (1 − κ) l2r + (1 − a − 2κ)Ml2

2l2r
,

> 0,

� (134)

providing we choose 0 < a < 1 − 2κ, which is possible since κ < 1/2. Putting this all to-
gether, we have that
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−∇µJ(X,Y ,w1,w2)
µ [ψ] =

[
l2
(
l2r3 + 3Ml2r2 − l4r + Ml4

)

r (r2 − l2)3 + 2gt∗rk′(r)

]
(∂t∗ψ)

2

+

[
κr3 + (1 − κ) l2r + (1 − a − 2κ)Ml2

2l2r
+ (1 − κ) grr

](
∇̃rψ

)2

+
(3 − 2κ) η

2r3 ψ2.
�

(135)

It is then easy to see that

−∇µJ(X,Y ,w1,w2)
µ [ψ] � c

(
1
r4 (∂t∗ψ)

2
+ r2

(
∇̃rψ

)2
+

1
r3 ψ

2
)

,� (136)

for some sufficiently small constant c  >  0.

Now suppose instead that κ = 1/2. This time, the ψ2 term is

2k2 − M
r3 − 2k2ε0

r3 =
2k2 (1 − ε0)− M

r3 ,� (137)

and we must choose k2 in the range 0 � k2 < M. Writing k2 = θM , where 0 � θ < 1, we see 
that it if we have θ (1 − ε0) > 1/2, then the coefficient of ψ2 will be positive. Similarly, the 

coefficient of 
(
∇̃rψ

)
2 is

r3 + l2r + 4Ml2

2l2r
− k2

2ε0r
+

1
2

grr =
ε0

(
r3 + l2r

)
+ Ml2 (4ε0 − θ)

2l2ε0r
,� (138)

which is certainly positive provided that 4ε0 − θ > 0. If we take (for example) ε0 = 1/4 and 
θ = 5/6, then both these inequalities hold, and we can again conclude (136).

We will now look for a current which is able to control the 
∣∣ /∇ψ

∣∣2. In order to eliminate as 

many of the other terms as possible, set h(r) ≡ 0 and k(r) ≡ 0. This gives a divergence,

−∇µJ(X,Y ,w1,w2)
µ [ψ] =w1(r)grr (∂t∗ψ)

2 − w1(r)grr
(
∇̃rψ

)2
− 2w1(r)gt∗r∂t∗ψ∇̃rψ

− w1(r)
∣∣ /∇ψ

∣∣2 − gt∗rw′
1(r)ψ∂t∗ψ − grrw′

1(r)ψ∇̃rψ

− w1(r)

[
3 − 8κ+ 4κ2

4r2 +
M (3 − 2κ)2

2r3

]
ψ2.

�

(139)

We now use the fact that we control ψ2 as well as the squared t* and r derivatives (with ap-
propriate weights). In order to control a positive quantity, we need to choose w1 to be negative, 
and in order to have the right weight in front of the (∂t∗ψ)

2 term, we need to w1 to decay at 
least as fast as 1/r2. Taking w1(r) = −1/r2, it is then easy to see that

1
r2

∣∣ /∇ψ
∣∣2 � −∇µJ0,ŵ1,ŵ2

µ [ψ] + C
(

1
r4 (∂t∗ψ)

2
+ r2

(
∇̃rψ

)2
+

1
r3 ψ

2
)

,� (140)
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for some positive constant C. Therefore,

1
r
ψ2 +

1
r2 (∂t∗ψ)

2
+ r4

(
∇̃rψ

)2
+
∣∣ /∇ψ

∣∣2 � Cr2
(
−∇µJ(X,Y ,w1,w2)

µ [ψ]−∇µJ0,ŵ1,ŵ2
µ [ψ]

)
.� (141)

Upon integrating, we have the required inequality.� □ 

Proof of lemma 6.1.  As above set

X = rh(r)
∂

∂r
, Y = k(r)

∂

∂t∗
,� (142)

and

J(X,Y ,w1,w2)
µ [ψ] = T̃µν [ψ]Xν + w1(r)ψ∇̃µψ + w2(r)ψ2Xµ − T̃µν [ψ]Yν .� (143)

This proof is a (rather long) calculation. We will consider each term separately. The first term 
is,

∇µ

(
T̃µ

ν [ψ]Xν
)
= K̃X[ψ],

= ΠX
µν T̃µν + S̃νXν .

� (144)

Using the formula for S̃  in terms of f (r) and V(r), we calculate

S̃νXν = rh(r)S̃r,

= h(r)
[
(3 − κ)V(r)ψ2 − 3 − 8κ+ 4κ2

8r2 ψ2 +
3 − 2κ

2
∇̃σψ∇̃σψ

]
.

� (145)
Now we will look at the term involving the deformation tensor. Define a new tensor 
Q = ΠX − h(r)g. It turns out that Q has no dσ or dφ terms, and

gµνQµν = −h(r) + rh′(r).� (146)

It is then a brief calculation to get

Qµν T̃µν [ψ] =

[
Qµν +

1
2
(h(r)− rh′(r)) gµν

]
∇̃µψ∇̃νψ

+
1
2
[h(r)− rh′(r)]V(r)ψ2.

�

(147)

And using the formula for the twisted energy-momentum tensor, we get

gµν T̃µν [ψ] = −∇̃σψ∇̃σψ − 2V(r)ψ2.� (148)

Putting these three equations together, we get

∇µ

(
T̃µ

ν [ψ]Xν
)
= Qµν T̃µν [ψ] + h(r)gµν T̃µν [ψ] + S̃νXν ,

=

[
Qµν +

1
2
(h(r)− rh′(r)) gµν +

1 − 2κ
2

h(r)gµν
]
∇̃µψ∇̃νψ

+

[(
(3 − 2κ)

2
V(r)− 3 − 8κ+ 4κ2

8r2

)
h(r)− r

2
h′(r)V(r)

]
ψ2.

�

(149)
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Next, we look at the second term,

∇µ

(
w1(r)ψ∇̃µψ

)
= w1(r)ψ∇µ∇̃µψ +∇µ (w1(r)ψ) ∇̃µψ.� (150)

By a calculation very similar to that in the proof of lemma 5.2 in [19], we get

∇µ∇̃µψ =

[
3 − 8κ+ 4κ2

r2 +
M(2 − 2κ)2

2r3

]
ψ +

3 − 2κ
2r

∇̃rψ.� (151)

Therefore,

∇µ

(
w1(r)ψ∇̃µψ

)
= w′

1(r)ψ∇̃rψ + w1(r)∂µψ∇̃µψ

+

[
3 − 8κ+ 4κ2

r2 +
M(2 − 2κ)2

2r3

]
w1(r)ψ2 +

3 − 2κ
2r

w1(r)ψ∇̃rψ,

= w′
1(r)ψ∇̃rψ + w1(r)∇̃µψ∇̃µψ − w1(r)ψ∇̃µ1∇̃µψ

+

[
3 − 8κ+ 4κ2

4r2 +
M(2 − 2κ)2

2r3

]
w1(r)ψ2 +

3 − 2κ
2r

w1(r)ψ∇̃rψ,

� (152)

where we have used the formula ∂µψ = ∇̃µψ − ψ∇̃µ1 to express the partial derivatives in 
terms of twisted derivatives. Notice that

∇̃µ1∇̃µψ = ∇̃r1∇̃rψ =
3 − 2κ

2r
∇̃rψ,� (153)

and that

∇̃rψ = gt∗r∂t∗ψ + grr∇̃rψ.� (154)

Putting this in (152) we get

∇µ

(
w1(r)ψ∇̃rψ

)
=w1(r)gt∗t∗ (∂t∗ψ)

2
+ w1(r)grr

(
∇̃rψ

)2

+ 2w1(r)gt∗r∂t∗ψ∇̃rψ + w1(r)
∣∣ /∇ψ

∣∣2 + w′
1(r)g

t∗rψ∂t∗ψ

+ w′
1(r)g

rrψ∇̃rψ +

[
3 − 8κ+ 4κ2

4r2 +
M(2 − 2κ)2

2r3

]
w1(r)ψ2.

�

(155)

The third term is

∇µ

(
w2(r)ψ2Xµ

)
= w′

2(r)ψ
2Xr + 2w2(r)ψ∂rψXr + w2(r)ψ2∇µXµ,

= [rw′
2(r)h(r) + 2κw2(r)h(r) + rw2(r)h′(r)]ψ2 + 2rw2(r)h(r)ψ∇̃rψ,

�
(156)

where we have used the formula

∇µXµ =
1√
−g

∂µ
(√

−gXµ
)

� (157)
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to calculate the divergence. For the fourth term, again using the formula for the divergence of 
the twisted energy-momentum tensor, we have

∇µ
(

T̃µν [ψ]Yν
)
= ΠY

µν T̃µν + S̃νYν ,

= ΠY
µν T̃µν , (the second term vanishes since ∂t∗ f = 0),

= 2gt∗rk′(r) (∂t∗ψ)
2
+ 2f (r)k′(r)∂t∗ψ∇̃rψ.

� (158)

Putting these four terms together completes the proof.� □ 

Proof of lemma 6.2.  Integrating −∇µJ(X,Y ,w1,w2)
µ [ψ] and using the divergence theorem, 

we get
∫

M[R1,R2]
[T1,T2]

−∇µJ(X,Y ,w1,w2)
µ [ψ] dVol =

∫

Σ
[R1,R2]
T2

J(X,Y ,w1,w2)
µ [ψ]nµ dSΣT2

−
∫

Σ
[R1,R2]
T1

J(X,Y ,w1,w2)
µ [ψ]nµ dSΣT1

+

∫

Σ̃
[T1,T2]
R1

J(X,Y ,w1,w2)
µ [ψ]mµ dSΣ̃R1

−
∫

Σ̃
[T1,T2]
R2

J(X,Y ,w1,w2)
µ [ψ]mµ dSΣ̃R2

.

� (159)

As before, we will take the limits R1 −→ r+ and R2 −→ ∞. Using the formulas (20) and (23) 
for nµ and mµ, it is straightforward to calculate

J(X,w1,w2)
µ [ψ]nµ = 0,� (160)

and

J(X,w1,w2)
µ [ψ]mµ =− rh(r)

2
gt∗t∗

√
grr (∂t∗ψ)

2
+

rh(r)
2

√
grr

(
∇̃rψ

)2

− rh(r)
2
√

grr

∣∣ /∇ψ
∣∣2 + w1(r)

gt∗r
√

grr ψ∂t∗ψ + w1(r)
√

grrψ∇̃rψ

+
rh(r)√

grr

(
w2(r)−

1
2

V(r)
)
ψ2.

�

(161)

It is now easy to check by counting powers of r, using the asymptotic behaviour imposed by 
Dirichlet, Neumann or Robin boundary conditions, and the assumptions on h, w1 and w2 in the 
statement of the lemma, that

lim
R2→∞

∫

Σ̃
[T1,T2]
R2

J(X,w1,w2)
µ [ψ]mµ dSΣ̃R2

= 0.� (162)

Now, using the fact that grr −→ ∞ as r −→ r+ so that the 
(
∇̃rψ

)
2 and ψ∇̃rψ terms vanish 

in the limit, we get
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lim
R1→r+

∫

Σ̃
[T1,T2]
R1

J(X,w1,w2)
µ [ψ]mµ dSΣ̃R1

=

∫

H[T1,T2]
w1(r+)gt∗rψ∂t∗ψr2

+ dt∗ dω

+

∫

H[T1,T2]


 r+h(r+)(

−1 +
r2
+

l2

)gt∗rr2
+ (∂t∗ψ)

2 −
r3
+h(r+)

2

∣∣ /∇ψ
∣∣2 + h(r+)

(
r3
+w2(r+)−

r3
+

2
V(r+)

)
ψ2


 dt∗ dω,

�
∫

H[T1,T2]
w1(r+)gt∗rψ∂t∗ψr2

+ dt∗ dω +
r+h(r+)(
−1 +

r2
+

l2

)F[ψ; [T1, T2]]

+

∫

H[T1,T2]

(
h(r+)

(
r3
+w2(r+)−

r3
+

2
V(r+)

)
ψ2

)
dt∗ dω.

�

(163)

By Young’s inequality,

w1(r+)ψ∂t∗ψ � εψ2 +
w1(r+)2 (∂t∗ψ)

2

4ε
,� (164)

for ant ε > 0. Therefore

lim
R1→r+

∫

Σ̃
[T1,T2]
R1

J(X,w1,w2)
µ [ψ]mµ dSΣ̃R1

�


w1(r+)2

4ε
+

r+h(r+)(
−1 +

r2
+

l2

)

F[ψ; [T1, T2]]

+

∫

H[T1,T2]

(
h(r+)

(
r3
+w2(r+)−

r3
+

2
V(r+)

)
+ εgt∗r

)
ψ2 dt∗ dω.

� (165)

Setting w2(r) = k2/r3, with 0 � k2 < r3
+V(r+)/2, we see that the second term can be made 

negative provided we choose ε sufficiently small. For such an ε, we have therefore
∫

B[T1,T2]
−∇µJ(X,w1,w2)

µ [ψ] dVol � CF[ψ; [T1, T2]] � CET1 [ψ].� (166)

Finally, the terms involving J̃T [ψ] are bounded exactly as in the proof of energy boundedness.
� □ 

6.3.  Integrated decay without weight loss

It is possible to restate the Morawetz estimate theorem 6.2 so that the radial weights are the 
same on both sides of the inequality. The price that is paid is that the right hand side also 
includes the energy of ∂t∗ψ.

Theorem 6.3.  Consider the Klein–Gordon equation (8) on the Lorentzian metric (7), for 
fixed M  >  0, l  >  0 and 0 < κ � 1/2. There is a constant C  >  0 (depending on M, l and κ) 
such that for any smooth solution ψ to the Klein–Gordon equation, satisfying Dirichlet, Neu-
mann or Robin boundary conditions at infinity,
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∫

B[T1,T2]
E [ψ] dt∗ dr dω � C

∫

ΣT1

(E [ψ] + E [∂t∗ψ]) dr dω.� (167)

The proof uses the following Hardy-type inequality, which is lemma 5.3 in [19].

Lemma 6.3.  Let R  >  r+ . Then there is a constant C  >  0 such that

∫ ∞

r+
φ2 dr � C

(∫ ∞

r+

φ2

r
dr +

∫ ∞

R

(
∇̃rφ

)2
r2 dr

)
� (168)

for all smooth functions φ : [r+,∞) −→ R such that limr→∞
√

rφ = 0.

Proof of theorem 6.3.  From the Hardy inequality (168), and the original Morawetz esti-
mate theorem 6.2, it follows that

∫

B[T1,T2]
ψ2 dt∗ dr dω � C

∫

ΣT1

E [ψ] dr dω.� (169)

Since 
[
∂t∗ ,�g +

α
l2
]
= 0 , it follows that ∂t∗ψ is also a solution of the Klein–Gordon equation, 

and therefore we can apply equation (169) to get
∫

B[T1,T2]
(∂t∗ψ)

2 dt∗ dr dω � C
∫

ΣT1

E [∂t∗ψ] dr dω.� (170)

The 
(
∇̃rψ

)
2 term appears with the same weight on both sides in (6.2), so the only remaining 

term to bound is the 
∣∣ /∇ψ

∣∣2 term with the correct weight. To do so, we use a modified current 

as in the proof of theorem 6.2. We will choose the current so that 
∣∣ /∇ψ

∣∣2 has a positive coef-
ficient in minus the divergence, and all the cross terms vanish. The fact that we control ψ2 and 
all its other derivatives means that we will then be able to control the other derivatives. Using 
the formula (118), and setting h(r) ≡ 1, w1(r) ≡ − (1 − 2κ), w2(r) ≡ 0 and choosing k(r) so 
that the ∂t∗ψ∇̃rψ cross term vanishes. This choice means that the leading order term in the 
coefficient of ψ2 appears with a positive sign and so can be discarded. The cross terms all van-
ish, and the remaining terms all have the same weights as in the bounds above. This completes 
the proof.� □ 

6.4.  Quantitative decay

We have now done enough to establish a quantitative decay estimate for a solution of the 
Klein–Gordon equation.

Theorem 6.4.  Consider the Klein–Gordon equation (8) on the Lorentzian metric (7), for 
fixed M  >  0, l  >  0 and 0 < κ � 1/2. There is a constant C  >  0 (depending on M, l and κ) 
such that if ψ is a solution of the Klein–Gordon equation satisfying Dirichlet, Neumann or 
Robin boundary conditions, then

∫

Σt

E [ψ] dr dω �
C

(1 + t)n

n∑
k=0

∫

Σ0

E [∂k
t∗ψ] dr dω,� (171)

for any n ∈ N.

The proof of this theorem is exactly as in [19].
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