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1.  Introduction

Photonic crystals (PCs) are periodic structures that enable 
us to manipulate photon propagation [1] and, with the study 
of such materials, one can have full control of light in all 
electromagnetic spectra [2, 3]. This control is due to the spa-
tial variation of the refractive index and, because of that, they 
display photonic bandgaps (PBGs), that are frequency regions 
where the wave-vector is complex and, as a consequence, 

the electromagnetic wave is evanescent, so it is not allowed 
to propagate through the PC [4]. A great number of PCs can 
be found in nature (dielectrics and metals for example), but 
the left-handed materials, also called metamaterials, that was 
first theoretically proposed in 1964 by the Ukrainian physicist 
Victor Veselago [5], belong to a class of optical materials with 
very interesting optical properties and they are only artifi-
cially obtained (to a review see [6]). This kind of material has 
amazing features such as a left-handed triplet set of vectors �k , 
�E , �H , antiparallel wave and Poynting’s vectors, the ability to 
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amplify evanescent waves, antiparallel phase and group veloc-
ities, simultaneously negative permittivity ε(ω) and permea-
bility µ(ω) for a certain frequency range, therefore yielding a 
negative refractive index (NRI) n = −

√
|ε(ω)||µ(ω)| [7], dif-

ferently of the natural materials that present a positive refrac-
tive index (PRI). The NRI is exhibited by composites made 
of a periodic repetition of elementary ‘cells’ that consists of 
a split-ring resonator and a thin metallic wire, generating a 
negative effective permittivity and a negative effective perme-
ability, respectively [8–10].

Regarding the applications of both PCs and metamaterials, 
they are widely used in an enormous variety of technological 
components such as lasers, guided waves, optical fibers, filters 
and computing, perfect lenses, Raman spectroscopy and solar 
cells [11–13]. Hence, their properties have been extensively 
studied by both theoretical and experimental research groups 
around the world, promising to lead us to the next age of tech-
nological devices based in optics [14].

Moreover, quasicrystals were discovered by Shechtman 
et  al [15] in 1984 and they exhibit a pure point diffraction 
pattern like PCs but with a non-periodic arrangement and 
long-range order of its constituents. In one-dimensional (1D) 
systems, they can be constructed by two or more building 
blocks, represented by letters of the alphabet, following a 
substitution rule according some mathematical sequence: 
Fibonacci, Octonacci, Thue–Morse, double-period, for 
instance [16]. When light propagates in a given medium 
some internal degrees of freedom of the crystal are excited, 
giving rise to hybrid modes called polaritons. So, polari-
tons are quasiparticles consisting of a photon coupled with 
another elementary excitation such as a phonon for solids 
with elastic properties [17], a exciton for a electron–hole pair 
[18], a magnon for magnetic materials [19] and a plasmon 
for metallic composites [20] originating the phonon-polar-
itons, exciton-polatirons, magnon-polaritons and plasmon- 
polaritons, respectively. To a wide and deep review about 
polariton theory, the reader is encouraged to see [21] and the 
references therein. When a metamaterial is considered, the 
excited mixed modes are the plasmon-polaritons and they 
play a important role in the energy band structures, which are 
the most important sources of physical information about light 
propagation inside a given material. In this work, we intend to 
numerically obtain the band structures (frequency versus the 
wave-vector) of the considered superlattices in order to know 
how and when the light is allowed (bulk bands) or prohibited 
(band gaps) to propagate through the multilayered system.

In this work we will investigate the propagation of electro
magnetic waves in 1D photonic quasicrystals (PQCs), where 
the spacial variation of the refractive index is given by a quasi
periodic mathematical sequence. The PQCs studied here are 
generated by the generalized Fibonacci [22] and Thue–Morse 
[23] sequences. These sequences are ruled by the following 
substitutional relations: A → BqA p and B → A (starting with 
B) for Fibonacci; and A → A pBq and B → AqB p (starting 
with A) for Thue–Morse. The letters A and B represent slabs 
of two different materials and the p  and q parameters are posi-
tive and integer numbers. More mathematical details are given 

later, and also can be found in [24, 25]. The constituents of 
the photonic superlattices are a frequency-dependent refrac-
tive index metamaterial (block A) and a non-dispersive and 
non-magnetic dielectric (block B). The theoretical model is 
based on Maxwell’s equations and the transfer-matrix method 
(TMM) [26] which significantly simplifies the algebra of this 
problem. In our results, we present the photonic band spectra 
for TE and TM obliquely incident waves and the frequencies 
for normally incident waves that allow light transmission as 
a function of the ratio of the thicknesses dB/dA for the first 
generations of the quasiperiodic sequences investigated here. 
This paper is organized as follows: in section 2, we present the 
theoretical approach used in this work, that are the 1D photonic 
structure together with Maxwell’s equations and the TMM in 
section 2.1, while the generalized Fibonacci and Thue–Morse 
quasicrystalline structures that were investigated, along with 
wide and deep comments about their most important proper-
ties are discussed in sections  2.2 and 2.3, respectively. The 
numerical results obtained as well as a discussion about the 
main observed results are presented in section  3, while our 
conclusions about the light propagation in the 1D photonic 
quasicrystals studied here are summarized in section 4.

2. The model

2.1.  Maxwell’s equations and TMM

Here we employ the TMM that is a very simple and powerful 
technique to calculate the bulk band spectra of light propaga-
tion in 1D multilayered structures [26], besides, this method 
has a very good agreement with experimental results [27, 
28]. In this work, the photonic crystal is composed by two 

Figure 1.  Schematic representation of the interface between 
two slabs, which correspond two different materials, with their 
respective physical (the electric permittivities and magnetic 
permeabilities) and geometrical (thicknesses of the layers) 
properties. Here, it is also presented the configurations of the 
TE and TM incident waves as well as the forward and backward 
electric and magnetic fields inside each layer.
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materials or media. The medium A is considered a metamat
erial where the effectives dispersives electrical permittivity 
and magnetic permeability are, respectively, given by

εA(ω) = 1 −
ω2

p

ω2 ,� (1)

and

µA(ω) = 1 − F
ω2

ω2 − ω2
0

,� (2)

where ωp/2π = 10 GHz is the plasma frequency (which 
gives λp = 2πc/ωp ≈ 30 mm, that is the plasma wavelength), 
ω0/2π = 4 GHz is the resonance frequency, and F  =  0.56 is 
the fraction, whose value depends only on the geometry of the 
metamaterial [29, 30]. The medium B is a non-dispersive and 
non-magnetic dielectric, which is considered, on this work, 
composed by silicon dioxide (SiO2), and the appropriated 
parameters for this material are εB = 12.3, µB = 1 [31]. For 
both materials, the refraction index is given by nγ =

√
εγµγ  

(here and elsewhere, γ = A or B). From equations (1) and (2), 
one can note that, for ω̄− < ω̄ < ω̄+, both the electrical permit
tivity and the magnetic permeability of the metamaterial are 
negative, which gives us nA  <  0 [32], where ω̄ = ω/ωp is the 
reduced frequency, ω̄− and ω̄+ are, respectively, the lower and 
higher reduced frequencies where the NRI occurs. Taking into 
account the physical and geometrical parameters above cited, 
we have ω̄− = 0.4 and ω̄+ = 0.6. It is important to note that, 
for different materials and geometries, both ω̄− and ω̄+ can 
assume different values [9].

We start the theoretical approach with a case which con-
sists on finding a matrix that relates the amplitudes of the elec-
tric and magnetic fields of a light wave propagating inside a 
material A with the amplitudes of that wave in the juxtaposed 
material B. We solve Maxwell’s equations together with the 
boundary conditions of both electric and magnetic fields at the 
interface in order to determine such matrix. Here, we consider 

the case where both volumetric charge ρ  and surface current 
�J  densities are zero. The geometry of the problem, showed in 
figure 1, is such that the interface between the materials are 
in the x  −  y  plan (perpendicular to the z axis) and the wave-
vector can propagate in the x  −  z plan (perpendicular to the 
y  axis). According to the geometry adopted in figure 1, the 
electric and magnetic fields are given by the superposition of 
forward and backward waves and they can be expressed in 
general by:

�Eγ(�r, t) = (0, Eyγ , 0) ,� (3)

with

Eyγ =
(
E+
γ eikzγ z + E−

γ e−ikzγ z) eikxxe−iωt,� (4)

for TE (or s-polarized) waves, and

�Hγ(�r, t) = (0, Hyγ , 0) ,� (5)

with

Hyγ =
(
H+

γ eikzγ z + H−
γ e−ikzγ z) eikxxe−iωt,� (6)

for TM (or p -polarized) waves. The magnetic field for 
TE polarization is obtained from equation  (3) with 
�H = −(i/µω)�∇× �E, while the electric field is obtained 
from equation  (5) with �E = (i/εω)�∇× �H. The superscript 
plus (minus) sign in equations  (4) and (6) refer to the inci-
dent (reflected) fields. The wave-vector in medium γ  is 
�kγ = (kx, 0, kzγ), with kγ = nγω/c. Thus, the x-component 
is kx = (nγω/c) sin θγ, which is the Snell’s law, while the 
z-component of the wave-vector is given by:

kzγ =
[
k2
γ − k2

x

]1/2
=

[(nγω
c

)2
− k2

x

]1/2

.� (7)

Using Maxwell’s equations  together with the boundary 
conditions for both media and reorganizing the equation sys-
tems in a matrix form we obtain:

(a)

A

A B

A B A
...

(b)

A

A A B

A A B A A B A
...

(c)

A

A A A B

A A A B A A A B A A A B A
...

(d)

A

A B B

A B B A A
...

(e)

A

A BB B

A B B B A A A
...

Figure 2.  Generalized Fibonacci sequences: (a) Fibonacci GM or GFS(1,1); (b) Fibonacci SM or GFS(2,1); (c) Fibonacci BM or GFS(3,1); 
(d) Fibonacci CM or GFS(1,2); and (e) Fibonacci NM or GFS(1,3).
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(a)

A

A B

A B B A
...

(b)

A

A A B

A A B A A B B A A
...

(c)

A

A A A B

A A A B A A A B A A A B B A A A
...

(d)

A

A B B

A B B B B A B B A
...

(e)

A

A BB B

A B B B B B B A B B B A B B B A
...

Figure 3.  Generalized Thue–Morse sequences: (a) GTMS(1,1); (b) GTMS(2,1); (c) GTMS(3,1); (d) GTMS(1,2); and (e) GTMS(1,3).

Figure 4.  TE (right) and TM (left) photonic band spectra for a structure composed by a metamaterial A juxtaposed by a dielectric B for 
the (a) periodic case (2GM = |A|B|), (b) third (3GM = |A|B|A|) and (c) fourth (4GM = |A|B|A|A|B|) generations of the Fibonacci GM 
sequence. The light dispersion curves on vacuum (ω̄ = k̄) and on dielectric (ω̄ = k̄/nB) are represented, respectively, by doted and dash 
doted lines. The solid line corresponds to the light dispersion relation for the metamaterial (ω̄ = k̄/

√
εAµA ), while the horizontal dashed 

line, to the reduced frequency for which the n̄ = 0 gap condition, equation (14), is satisfied. Additionally, the hatched rectangle stands for 
the omnidirectional band gap frequency region.
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(
E+
β

E−
β

)
= MTE

αβ

(
E+
α

E−
α

)
,� (8)

(
H+

β

H−
β

)
= MTM

αβ

(
H+

α

H−
α

)
,� (9)

where

MTE
αβ =

1
2

[
1 + µβαkzαβ 1 − µβαkzαβ

1 − µβαkzαβ 1 + µβαkzαβ

]
,� (10)

and

MTM
αβ =

1
2

[
1 + εβαkzαβ 1 − εβαkzαβ

1 − εβαkzαβ 1 + εβαkzαβ

]
,� (11)

with α,β = A or B, kzαβ = kzα/kzβ, εβα = εβ/εα and 
µβα = µβ/µα. The matrices MTE

αβ and MTM
αβ  are called the 

transmission matrices for TE and TM modes, respectively, 
because they relate the amplitudes of the fields when the wave 
crosses the interface from medium α to the medium β.

On the other hand, the propagation of the light wave within 
of a layer γ , for both TE and TM waves, is characterized by 
the propagation matrix

Mγ =

[
exp(ikzγdγ) 0

0 exp(−ikzγdγ)

]
,� (12)

where dγ  is the thickness of the respective material [30, 33].
For simplicity, if we consider a periodic photonic crystal 

with unit cell |A|B|, the transfer-matrix is M = MAMABMBMBA 
and it is a unimodular 2 × 2 matrix. The matrices MAB and MBA 
for TE and TM polarized waves are given by equations (10) 
and (11), respectively. Now, by using the Floquet–Bloch’s 
theorem, we obtain the dispersion relation for the electro
magnetic waves in the form [34]:

2 cos(QL) = Tr [M] ,� (13)

where Tr[M] is the trace of the transfer-matrix M, Q is the 
Floquet–Bloch’s wave-vector, and L is the size of the unit cell 
(for the periodic case, L = dA + dB).

If we have a non-periodic arrangement of the slabs A and 
B, the light propagation will be strongly affected, resulting in 
new and very interesting photonic band structures. Besides, 
when we use a substitutional recurrence rule, it is known that 
the physical properties are changed and governed by the long-
range correlations [21, 35]. In this work we investigate the 
light band structure in 1D PCs where the slabs A and B are spa-
tially arranged in accordance with the generalized Fibonacci 

Figure 5.  Same as figure 4, but for (a) third (3SM = |A|A|B|A|A|B|A|) and (b) fourth (4SM = |A|A|B|A|A|B|A|A|A|B|A|A|B|A|A|A|B|) 
generations of Fibonacci SM, and (c) second (2BM = |A|A|A|B|) and (d) third (3BM = |A|A|A|B|A|A|A|B|A|A|A|B|A|) generations of 
Fibonacci BM sequences.
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and Thue–Morse sequences, because, by controlling only two 
integer parameters, p  and q, one can obtain new and uncon-
ventional multilayers with a very rich and interesting photonic 
spectra. Also, by just adjusting the values of p  and q, one can 
change the behavior of the whole structure. For example, con-
sidering NA (NB) as being the number of the slabs A (B) in a 
given unit cell, if p   >  q, we have NA > NB and the photonic 
structures will be ruled by the physical properties of the meta-
material medium; otherwise, if p   <  q implies NA < NB and 
the photon propagation is dominated by the physical proper-
ties of the dielectric material as it will be observed from the 
numerical simulations.

Furthermore, we have the average refraction index that is 
given by:

n̄ =
NAnAdA + NBnBdB

NAdA + NBdB
.

� (14)
Since we have a optical metamaterial that exhibits a NRI for 
given frequency range, there is always a wave frequency value 

that turns the average refraction index equal to zero, forbidding 
light to cross the structure, in other words, there is always a 
gap that is called n̄ = 0 gap for this frequency value. This gap 
is of special interest because it can never be achieved by a PRI 
layered medium, where both refractive indexes are positive, 
and it does not change its position when both the widths dA 
and dB are rescaled by the same multiplicative factor, in con-
trast to the gaps in dielectric PCs [30]. By substituting equa-
tions (1) and (2) in (14), one obtain the following equation:
(
1 − F − Λ2) ω̄4 +

[(
Λ2 − 1

)
ω2

0p − (1 − F)
]
ω̄2 + ω2

0p = 0,
� (15)

where ω0p = ω0/ωp and Λ = −nB(NB/NA)(dB/dA). One of 
the solutions of the above equation gives the frequencies that 
satisfy the condition n̄ = 0 as a function of the thicknesses 
ratio dB/dA. By inspection, for the metamaterial considered 
in this work, the only solution with physical meaning, i.e. the 
solution that provides positive frequencies, and satisfies the 
above mentioned condition is

Figure 6.  Same as figure 4, but for (a) second (2CM = |A|B|B|) and (b) third (3CM = |A|B|B|A|A|) generations of Fibonacci CM, and (c) 
second (2NM = |A|B|B|B|) and (d) third (3NM = |A|B|B|B|A|A|A|) generations of Fibonacci NM sequences.
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ω̄ =




[(
Λ2 − 1

)
ω2

0p − (1 − F)
]
+

√[
(Λ2 − 1)ω2

0p − (1 − F)
]2

+ 4 (Λ2 + F − 1)ω2
0p

2 (Λ2 + F − 1)




1/2

.

�

(16)

Figure 7.  Same as figure 4, but for (a) second (2GTM(1, 1) = |A|B|B|A|), (b) third (3GTM(1, 1) = |A|B|B|A|B|A|A|B|) and (c) fourth 
(4GTM(1, 1) = |A|B|B|A|B|A|A|B|B|A|A|B|A|B|B|A|) generations of GTM(1,1) sequence.

It is important to note that the n̄ = 0 gap is a single frequency 
gap, however, Kocaman and co-workes reported, for the first 
time, that the n̄ = 0 gap can emerge in artificial superlattices 
with remarkable agreement with numerical simulations and 
such structures can be used for complete wavefront control for 
arbitrary phase delay lines [36, 37].

On the next two subsections we present and discuss in more 
details the generalized Fibonacci and Thue–Morse sequences.

2.2.  Generalized Fibonacci sequences

The first class of quasiperiodic systems studied here are the 
multilayers built according to the generalized Fibonacci 
sequences (GFSs), whose their five most famous general-
izations are known as the metallic numbers or mean family: 
golden mean (GM), which is the usual Fibonacci sequence, 

silver mean (SM), bronze mean (BM), copper mean (CM) and 
nickel mean (NM). This family of sequences and their mathe-
matical and physical properties are defined by the generalized 
Fibonacci substitution matrix SGF [25]:

SGF =

(
p q
1 0

)
,� (17)

where p  and q are positive integers here and elsewhere. The 
characteristic value of the GFSs, σGF( p, q), represents the 
ratio between the number of building blocks in the j th genera-
tion and the number of building blocks in the ( j − 1)th gener-
ation in the limit j → ∞. This value is defined by the positive 
solution of the quadratic equation (characteristic equation of 
the matrix SGF) [22]:

σ2
GF − pσGF − q = 0,� (18)

J. Phys.: Condens. Matter 32 (2020) 135703
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or, explicitly by:

σGF( p, q) = lim
j→∞

[
Fj( p, q)

Fj−1( p, q)

]
=

p ±
√

p2 + 4q
2

,� (19)

where Fj( p, q) = pFj−1( p, q) + qFj−2( p, q) is the total  
number of building blocks in the j th generation. So, for the  
GM sequence we have σGF(1, 1) = σg = (1 +

√
5)/ 

2 ≈ 1.62, which is the more pure of all irrational num-
bers, known in the literature as the golden ratio; for the SM 
sequence, σGF(2, 1) = σs = 1 +

√
2 ≈ 2.41; for the BM 

sequence, σGF(3, 1) = σb = (3 +
√

13)/2 ≈ 3.30; for the 
CM sequence σGF(1, 2) = σc = 2 and for the NM sequence 
σGF(1, 3) = σn = (1 +

√
13)/2 ≈ 2.30. This metallic num-

bers can also be written as a purely periodic continued frac-
tion expansion [25].

One can construct the quasiperiodic lattice from the matrix 
SGF, in equation (17), which gives the substitutional relation 
(or inflation rule):

(
A
B

)
→

(
p q
1 0

)(
A
B

)
=

(
A pBq

A

)
� (20)

or

A → A pBq and B → A,� (21)

where Ap  (Bq) means that the slab A (B) is repeated p  (q) 
times. Another way to construct the quasiperiodic lattice is 
from a recurrence rule in such way that the j th generation of 
the sequence Sj  is given by:

Sj = S p
j−1Sq

j−2 ( j � 3),� (22)

where S1  =  A and S2 = A pBq for all generalized sequences. 
S p

j (q) represents p  (q) adjacent repetitions of Sj . In figure 2 it 
is shown the growth of the GFSs from j   =  1 to j   =  3.

The metallic mean family can still be classified with a sin-
gular continuous energy spectra and pure point diffraction 
patterns (only the NM sequence has a singular continuous 
Fourier transform). The sequences with pure point Fourier 
spectra can be classified in a more richer fashion depending on 
their properties like the Pisot–Vijayaraghavan (PV) number, 
that is the negative solution of the equation (19) and the deter-
minant of the SGF matrix [22] (to a more detailed explanation, 
see [38]).

The energy and Fourier transform spectra of these lat-
tices are obtained by the corresponding substitution matrix 

Figure 8.  Same as figure 4, but for (a) second (2GTM(2, 1) = |A|A|B|A|A|B|B|A|A|) and (b) third (3GTM(2, 1) = |A|A|B|A|A|B|B|A|A|A|A 
B|A|A|B|B|A|A|B|A|A|A|A| · · · · · · |B|A|A|B|) generations of GTM(2,1), (c) second (2GTM(3, 1) = |A|A|A|B|A|A|A|B|A|A|A|B|B|A|A|A|) 
and (d) third generations of GTM(3,1) sequences (We do not specify the unit cell of the 3GTM(3,1) because it contains 64 slabs. The reader 
can obtain the structure from equations (25) and (26)).
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S regardless the chosen inflation (or recurrence) rule. One 
interesting curiosity is that the SM sequence presented here is 
equivalent (has the same substitution matrix, and therefore the 
same properties) to the Octonacci sequence and if one choose 
a non-common substitution rule like the one presented in [16], 
one can easily see that the obtained structure is exactly equal 
to the structure formed by the SM sequence.

2.3.  Generalized Thue–Morse sequences

The second class of quasiperiodic systems studied in this 
work are the superlattices formed according the general-
ized Thue–Morse sequences (GTMSs). Likewise the GFSs, 

Figure 9.  Same as figure 4, but for (a) second (2GTM(1, 2) = |A|B|B|B|B|A|B|B|A|) and (b) third (3GTM(1, 2) = |A|B|B|B|B|A|B|B| 
|B|B|A|A|B|B|B|B|A|B|B| · · · · · · |A|A|B|B|) generations of GTM(1,2), (c) second (2GTM(1, 3) = |A|B|B|B|B|B|B|A|B|B|B|A|B|B|B|A|) 
and (d) third generations of GTM(1,3) sequences (We do not specify the unit cell of the 3GTM(1,3) because it contains 64 slabs. The reader 
can obtain the structure from equations (25) and (26).

Table 2.  Frequency values in which there is an omnidirectional 
band gap in TE modes from 0 until ω .

Sequence ω̄
ω  
(GHz) Sequence ω̄

ω  
(GHz)

2GM 0.23 14.45 2TM(1,1) 0.17 10.68
3GM 0.26 16.34 3TM(1,1) 0.17 10.68
4GM 0.25 15.71 4TM(1,1) 0.18 11.31
3SM 0.26 16.34 2TM(2,1) 0.18 11.31
4SM 0.26 16.34 3TM(2,1) 0.26 16.34
2BM 0.26 16.34 2TM(3,1)a 0.4 25.13
3BM 0.26 16.34 3TM(3,1)a 0.4 25.13
2CM 0.16 10.05 2TM(1,2) 0.11 6.91
3CM 0.18 11.31 3TM(1,2) 0.16 10.05
2NM 0.12 7.54 2TM(1,3) 0.08 5.03
3NM 0.13 8.17 3TM(1,3) 0.13 8.17

a Indicates the occurrence of the complete band gap.

Table 1.  Frequency values in which the condition of the n̄ = 0 gap 
is satisfied.

Sequence ω̄
ω  
(GHz) Sequence ω̄

ω  
(GHz)

2GM 0.43 27.02 3CM 0.46 28.90
3GM 0.48 30.16 2NM 0.41 25.76
4GM 0.46 28.90 3NM 0.45 28.27
3SM 0.49 30.79 TM(1,1) 0.43 27.02
4SM 0.49 30.79 TM(2,1) 0.48 30.16
2BM 0.51 32.04 TM(3,1) 0.51 32.04
3BM 0.52 32.67 TM(1,2) 0.11 6.91
2CM 0.41 25.76 TM(1,3) 0.08 5.03
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the mathematical and physical properties of the GTMSs are 
defined by the substitution matrix SGTM:

SGTM =

(
p q
p q

)
.� (23)

The ratio between the number of building blocks in the j th 
generation and the number of building blocks in the ( j − 1)th 
generation of the GTMSs is defined by:

σGTM( p, q) =
TMj( p, q)

TMj−1( p, q)
= p + q� (24)

which is also the solution of the characteristic equation, where 
TMj( p, q) = ( p + q) j  is the total number of building block 
on the j th generation (see more details in [24]). Unlike the 
GFSs, where a irrational ratio can be obtained, this ratio is 
always constant and integer. Furthermore, the ratio between 
the number of blocks A (NA) and the number of blocks B (NB) 
is constant too, depending only on the numbers p  and q on 
the generation of the given sequence, that is, NA/NB = p/q 
for any of the GTMSs. That leads to an invariant frequency 
in with occurs the n̄ = 0 gap for each of the sequences, that 
is verified in our numerical calculations showed in section 3.

One can construct the quasiperiodic lattice according the 
GTMSs by using SGTM which gives the following inflation 
rule:

(
A
B

)
→

(
p q
p q

)(
A
B

)
=

(
A pBq

BqA p

)
� (25)

or

A → A pBq and B → BqA p� (26)

where Ap  (Bq) has the same meaning as for the GFSs. The usual 
Thue–Morse sequence (UTMS) is recovered when p   =  q  =  1, 
then, the inflation rule becomes: A → AB and B → BA [39]. 
Another way to construct superlattices according the UTMS 
is from a recurrence rule in such a way that the j th generation 
is given by:

Sj = Sj−1S̄j−1 ( j � 1),� (27)

where S0  =  A, S̄j−1 is obtained from Sj −1 by replacing A for B 
and vice-versa. In figure 3 it is shown the growth of the gener-
alized Thue–Morse sequences from j   =  0 to j   =  2.

The structures constructed following the UTMS have 
a purely singular continuous spectra for both energy and 

Figure 10.  Reduced frequency versus relative width of the medium dB/dA for (a) periodic case, (b) third and (c) fourth Fibonacci GM 
sequence. The red dotted-dashed line represents the frequencies where n̄ = 0 gaps as a function of the ratio dB/dA, which is the plot of 
equation (16).
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Fourier spectrum, therefore, they have a degree of disorder 
between quasiperiodic and random lattices, the first one char-
acterized, likewise periodic structures, by δ-function peaks in 
the Fourier spectra, and the later by a absolutely continuous 
Fourier spectra. Again, to a review of the subject see [38]. The 
UTMS is self-similar, thus, the translational symmetry has 
been replaced by a invariance with respect to multiplicative 
changes of scale, or scaling invariance, with the scaling factor 
being equal to 2. That type of symmetry is nothing but perio-
dicity on a logarithmic scale [24].

3.  Numerical results

In this section, we present the numerical results regarding the 
light wave propagation in 1D PQCs whose spatial arrange-
ment of the building blocks A and B are in accordance to 
the GFS and GTMS. The thicknesses of the materials are 
dA = dB = λp/4 ≈ 7.5 mm.

In figure 4(a) we present the plot of the reduced frequency, 
ω̄ = ω/ωp, versus the reduced wave-vector, k̄ = kx/kp, 
showing the allowed bulk bands (gray shaded areas) and the 
band gaps (white areas) for the periodic case, which also 
correspond to the second generation of the Fibonacci GM 
sequence, whose unit cell is 2GM = |A|B|. We have the 
bulk bands for the TM modes (or p -polarized waves) on left, 
while the TE modes (or s-polarized waves) are displayed on 

right. For TE polarization, one can see that for ω̄ < 0.23 (or 
ω < 14.45 GHz), this configuration display a omnidirectional 
band gap, which is a frequency region where the wave is not 
allowed to propagate through the PC independently of the 
incident angle. As for the TM polarization, we have propa-
gating waves, so that structure can be used to construct ‘on or 
off’ devices by just changing the polarization of the light wave 
[11, 40–44]. Those bands occur due to the overlap of surface 
waves at the interface of the metamaterial-dielectric [30, 45]. 
Additionally, for both TE and TM modes we see backward 
waves in the frequency region 0.4 < ω̄ < 0.6 that are char-
acterized by a negative slope of the allowed photonic band. 
Those waves can also be seen in TM modes for ω̄ > 0.6 but 
around k̄ = 1 they turn into forward waves, that are identified 
by the positive slope of the branches.

For the nA  <  0 region, there are two types of gaps: one 
is the n̄ = 0 gap, which happens in the reduced frequency 
of ω̄ ≈ 0.43 (or ω ≈ 27.02 GHz), and it is represented in 
figure 4(a) by the horizontal dashed line; the other gaps are 
the well-known Bragg’s gaps, which occur due to the destruc-
tive interference provoked by the scattering of the propagating 
waves inside the structure. For ω̄ > 0.6, one can see one 
branch for each polarizations. For TE modes it has a positive 
slope which means that the energy flux is in the same direction 
as the propagation of light, in contrast with the branch for the 
TM modes that present a negative slope, meaning a energy 

Figure 11.  Reduced frequency versus relative width of the medium dB/dA for (a) third and (b) fourth generations of Fibonacci SM,  
and (c) second and (d) third generations of Fibonacci BM sequences.
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flux in an opposite direction to the propagation of light, which 
is characteristic of a structure composed by metamaterials.

In figures 4(b) and (c) we show the photonic band struc-
tures same as in figure 4(a), but now for the third and fourth 
generations of the Fibonacci GM sequence, whose unit cells 
are 3GM = |A|B|A| and 4GM = |A|B|A|A|B|, respectively. 
The frequency regions of occurrence of the omnidirectional 
band gap are ω̄ < 0.26 for third and ω̄ < 0.25 (or ω < 16.34 
GHz and ω < 15.71 GHz, respectively) for fourth generations. 
In the nA  <  0 region the frequency in which the n̄ = 0 gap 
appears are ω̄ ≈ 0.48 for third and ω̄ ≈ 0.46 for fourth gen-
erations (or ω ≈ 30.16 GHz and 28.90 GHz, respectively). As 
expected, all the bands get narrow and narrow and the spectra 
become more fragmented due to the more complex arrange of 
unit cell of the structure as a consequence of the long-range 
correlations induced by the substitutional relations [22].

In figure 5 we see the same as in figure 4, but now for the third 
(figure 5(a)) and fourth (figure 5(b)) generations of Fibonacci 
SM sequence, and the unit cells are 3SM = |A|A|B|A|A|B|A| 
and 4SM = |A|A|B|A|A|B|A|A|A|B|A|A|B|A|A|A|B|, respec-
tively. The second generation of the SM sequence is not 
shown here because it is physically identical to the third gen-
eration of the GM sequence (the unit cells are 2SM = |A|A|B| 
and 3GM = |A|B|A|) which has already been presented 
in figure  4(b). The photonic band structure for the second 
and third generations of the Fibonacci BM sequence are 

presented in figures  5(c) and (d), and whose unit cells are 
2BM = |A|A|A|B|, and 3BM = |A|A|A|B|A|A|A|B|A|A|A|B|A|, 
respectively. In all these figures one can clearly observe a more 
fragmented spectra, specially in the nA  <  0 region.

Also from figure  5, the frequency region of the omnidi-
rectional band gap is ω̄ < 0.26 (or ω < 16.34 GHz) for all 
sequences, i.e. 3SM, 4SM, 2BM and 3BM. Additionally, the 
frequencies for which the n̄ = 0 gap emerges are ω̄ ≈ 0.49 
for both third and fourth generations of SM sequence, while 
ω̄ ≈ 0.51 for second and ω̄ ≈ 0.52 for third generations of BM 
sequence (or ω ≈ 30.79, 32.04 and 32.67 GHz, respectively). 
Besides, as expected, we have more narrower and fragmented 
bulk bands in SM and CM structures than in GM ones, and 
these new bands emerge mostly in a frequency region where 
nA  <  0 because in GM, SM and BM sequences we have more 
building blocks A than B, i.e. NA > NB for these sequences, so 
that the physical properties of the metamaterial dominates and 
the whole structure behave as such.

In figure 6 we plot the photonic band structures for second 
and third generations of the Fibonacci CM (figures 6(a) and 
(b), respectively) and of the Fibonacci NM (figures 6(c) and 
(d), respectively) sequences. The unit cells of these PQCs are 
2CM = |A|B|B|, 3CM = |A|B|B|A|A|, 2NM = |A|B|B|B| and 
3NM = |A|B|B|B|A|A|A|. Here, we see a quite different and a 
very interesting pattern of the bulk bands that were presented 
until now. For frequencies below the resonant one, namely 

Figure 12.  Reduced frequency versus relative width of the medium dB/dA for (a) second and (b) third generations of Fibonacci CM, and (c) 
second and (d) third generations of Fibonacci NM sequences.
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ω̄ < 0.4, the band structures present a similar behavior as in 
figure 4 with some allowed bands for both TE and TM waves. 
However, for ω̄ > 0.4, one can see that the waves start as back-
ward waves and, for a given value of the reduced wavelength, 
they turn into forward waves for TM and some TE modes, 
even in the nA  <  0 region. This occurs because of the strong 
influence of the physical properties of the dielectric slab in 
the whole photonic structure for the CM and NM sequences, 
whose unit cells have, in general, a number of building blocks 
B bigger or, at least, equal to the A ones.

From figure  6, we can also observe that the n̄ = 0 gap 
condition is satisfied for ω̄ ≈ 0.41 (ω ≈ 25.76 GHz) for 
second, and ω̄ ≈ 0.46 (ω ≈ 28.90 GHz) for third genera-
tions of CM sequence while the omnidirectional gap in TE 
modes is in the frequency region ω̄ < 0.16 (ω < 10.05 GHz) 
for second and ω̄ < 0.18 (ω < 11.31 GHz) for third genera-
tions of that same sequence. As for the NM sequence, we 
have the n̄ = 0 gap located in ω̄ ≈ 0.41 (ω ≈ 25.76 GHz) and 
ω̄ ≈ 0.45 (ω ≈ 28.27 GHz) while the omnidirectional gap is 
in ω̄ < 0.12 (ω < 7.54 GHz) and ω̄ < 0.13 (ω < 8.17 GHz) 
for second and third generations, respectively. Besides, it is 
important to mention that, as expected, in this figure we have 
more and narrower allowed bands than in figures 4 and 5 for 
the same generation number because of the increase in the 
number of blocks in the unit cells (see figures 4(b), 5(a), 5(c), 

6(b) and 6(d)). However, a remarkable result is that the new 
bands now emerge outside of the nA(ω) < 0 region due to the 
increase of dielectric slabs in the unit cells.

Now, we present some results regarding the light propaga-
tion in PQCs built in accordance with the generalized Thue–
Morse sequences. Some lower generations of the GTMS’s 
correspond to some structures formed by the GFS’s already 
presented. Namely, the first generation of the GTM(1,1), 
GTM(2,1), GTM(3,1), GTM(1,2) and GTM(1,3) correspond 
to the second generation of the GM, SM, BM, CM and NM 
sequences, respectively, and, because of that, they are not pre-
sented here.

In figure 7(a) we show the photonic band structure for a 
multilayer constructed according the second generation of the 
UTMS, named 2GTM(1,1), whose unit cell is |A|B|B|A|. From 
it, one can see a omnidirectional band gap for the TE modes 
for frequency range ω̄ < 0.17 (or ω < 10.68 GHz), in con-
trast with the TM modes where exists a branch of propagating 
waves and therefore, for that frequency range, this structure 
can also be applied on optical logical devices. For ω̄ ≈ 0.18 
(or ω ≈ 11.31 GHz), a branch emerges for both TE and TM 
modes, and the TM branch get together with the lower one and 
they go asymptotically to the value ω̄ ≈ 0.25 (or ω ≈ 15.71 
GHz), while the branch for TE waves goes asymptotically 
with the dielectric light line. In the nA  <  0 region, for a certain 

Figure 13.  Same as figure 10, but for (a) second, (b) third and (c) fourth generations of Thue–Morse (1,1) sequence.
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critical value of reduced wave-vector k̄, one can see that some 
backward waves turn into forward waves due to the influence 
of the dielectric over the metamaterial, same as it was found 
in figure 6.

In figures  7(b) and (c), we have the same as in 
figure  7(a), but for the second and third generation 
of the GTM(1,1) sequence, and their unit cells are, 
respectively, 3GTM(1, 1) = |A|B|B|A|B|A|A|B| and 
4GTM(1, 1) = |A|B|B|A|B|A|A|B|B|A|A|B|A|B|B|A|. One 
obtain similar conclusions as in figure 7(a), but now with a 
even more fragmented spectra. The reduced frequency for 
which the n̄ = 0 gap emerges for the GTM(1,1) sequence 
is ω̄ ≈ 0.43 (or 27.02 GHz). This value, in contrast with the 
GFSs, is the same for any generation of this sequence because 
the ratio between the number of slabs A and B is NA/NB = p/q 
is constant for all generations. This is a very important prop-
erty of the GTM sequences. Additionally, the frequency range 
for the omnidirectional band gap is ω̄ < 0.17 for second 
and ω̄ < 0.18 for third (or ω < 10.68 and ω < 11.31 GHz, 
respectively).

In figure  8, we present the photonic band structures for: 
(a) second (2GTM(2, 1) = |A|A|B|A|A|B|B|A|A|) and (b) 
third (3GTM(2, 1) = |A|A|B|A|A|B|B|A|A|A|A|B|A|A|B|B|
|A|A|B|A|A|A| · · · · · · |A|B|A|A|B|) generations of GTM(2,1),  
(c) second (2GTM(3, 1) = |A|A|A|B|A|A|A|B|A|A|A|B|B|A|A|A|) 
and (d) third (3GTM(3, 1)) generations of GTM(3,1). The unit 

cell of the 3GTM(3, 1) multilayer forms a too long chain of 
64 letters A and B, and, because of that, we do not specify it 
here. However, the reader can obtain it from equations  (25) 
and (26) or even from figure  3. Here, one can see the con-
centration of the bulk bands between 0.4 � ω̄ � k̄/

√
εAµA  

which is the only region where light can propagate in a infi-
nite metamaterial. Some fewer bands outside this region are 
mainly inside the vacuum cone and this is due to the influence 
of the dielectric, despite the fact that they are almost imper-
ceptible in even low generations. The second and third genera-
tions of the GTM(2,1), labels (a) and (b), likewise all previous 
structures, display a omnidirectional band gap for frequency 
regions of ω̄ < 0.18 (or ω < 11.31 GHz) and ω̄ < 0.26 (or 
ω < 16.34 GHz), but the second and third generations of the 
GTM(3,1), labels (c) and (d), present a complete band gap 
for ω̄ < 0.4 (or ω < 25.13 GHz), which consists in a omni-
directional band gap for both polarizations, in other words, a 
band gap independent of both incident angle and polarization 
of light, so that these structures behave as perfect Bragg’s mir-
rors with very interesting applications such as solar energy 
[46] and dynamic pressure sensing [47]. Additionally, the fre-
quency of the n̄ = 0 gap for the GTM(2,1) is ω̄ ≈ 0.48 and 
for the GTM(3,1) is ω̄ ≈ 0.51(or ω ≈ 30.16 and 32.04 GHz, 
respectively).

From figure  9, where we present the photonic band 
structures for the same generations as in figure  8, but 

Figure 14.  Same as figure 10, but for (a) second and (b) third generations of GTM(2,1), (c) second and (d) third generations of GTM(3,1) 
sequences.
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now for GTM(1,2), in labels (a) and (b), and GTM(1,3), 
in labels (c) and (d). The unit cells of these structures 
are 2GTM(1, 2) = |A|B|B|B|B|A|B|B|A|, 3GTM(1, 2) =
|A|B|B|B|B|A|B|B|A|B|B|A|B|B|A|A|B|B|B|B|A| · · · · · · |B|B|A|A|B|B|  
and 2GTM(1, 3) = |A|B|B|B|B|B|B|A|B|B|B|A|B|B|B|A|. We 
do not present the unit cell for the 3GTM(1, 3) for the same 
reason we explained about figure 8(d). Here, we observe sev-
eral new branches that are narrower in comparison with others 
presented until now, but this fragmentation process occurs 
mainly in ω̄ < 0.4 and ω̄ > 0.6 frequency regions. This is a 
consequence of a greater influence of the dielectric medium, 
which has a predominant presence in the structure, as one can 
see in labels (d) and (e) from figure 3. The frequency for the 
n̄ = 0 gap is ω̄ ≈ 0.41 (or ω ≈ 25.76 GHz) for both GTM(1,2) 
and GTM(1,3) and this frequency almost corresponds to the 
resonance reduced frequency ω0/ωp = 0.4, that is also the 
lower limit of the NRI region. The omnidirectional band gaps 
emerge only for TE modes in the following frequency regions: 
ω̄ < 0.11 (or ω < 6.91 GHz) and ω̄ < 0.16 (or ω < 10.05 
GHz) for second and third generations of GTM(1,2) and 
ω̄ < 0.08 (or ω < 5.03 GHz) and ω̄ < 0.13 (or ω < 8.17 
GHz) for second and third generations of GTM(1,3).

In table  1 it is shown the frequencies of occurrence of 
the n̄ = 0 gap for each sequence while in table  2 it is pre-
sented the frequency range where there is an omnidirectional 
bandgap in TE modes in a summarized way. The complete 

photonic bandgaps, that emerge for 2TM(3,1) and 3TM(3,1) 
multilayers are detached by using the symbol (a) in table 2.

In figures 10–15 we show the reduced frequency as a func-
tion of the ratio of the thicknesses of the materials dB/dA 
for the same generations of the generalized Fibonacci and 
Thue–Morse sequences displayed previously, considering the 
reduced wavelength equals to zero (normally incident wave) 
and a fixed value of dA. In all these figures, the red dotted-
dashed curve is the plot of equation (16) for each one of the 
quasiperiodic structures, i.e. the values of the reduced fre-
quency ω̄  in which the n̄ = 0 gap requirement is satisfied as 
a function of the ratio dB/dA. The bands above this curve do 
not encounter the ones below for the following reason: when 
considering a superlattice whose constituents are PRI and NRI 
materials, there is always a frequency value that turn into zero 
the average refractive index, therefore forbidding light from 
crossing the structure, differently from gap closing, which are 
the points where the gap width vanishes [48].

In general, one have a similar behavior for all investigated 
sequences, that is, as the thickness of the dielectric increases, 
bulk bands above ω̄ > 0.6 that once were in higher frequencies 
start to get narrower and move to a lower frequency region. As 
an example, the second generation of the GM, SM and BM 
sequences, presented in figures 4(a) and (b) (here we remind 
the reader that the 2SM structure is physically identical to 
the 3GM one) and 5(c) can be thought as a periodic structure 

Figure 15.  Same as figure 10, but for (a) second and (b) third generations of GTM(1,2), (c) second and (d) third generations of GTM(1,3) 
sequences.
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but with dB/dA = 1, 2, 3, respectively. So these bands shown 
in figures 4(b) and 5(c) are nothing but the bands shown in 
figure 4(a) that have flattened and shifted to lower frequencies. 
Also, as the generation number increases, the bands start to get 
fragmented but with the same general shape, due to the inherit 
characteristics of the long-range correlations of each quasip-
eriodic sequence. One can still observe that, for a same pair of 
the parameters ( p, q), the values of the reduced frequency ω̄ , 
for which the n̄ = 0 gap occurs, asymptotically tends 0.41 as 
the ratio dB/dA increases, for both GFS and GTMS sequences. 
However, for p   <  q (figures 12 and 15), the ω̄  goes to 0.41 
faster than for p   =  q (figures 10 and 13), and moreover, this 
case tends faster than for p   >  q (figures 11 and 14). Besides, 
the frequencies for the n̄ = 0 gap, considering different gen-
erations, are almost or even exactly the same for Fibonacci 
SM and BM, GTM(1,1), GTM(1,2), GTM(1,3), GTM(2,1) 
and GTM(3,1) sequences, while they are quite different for 
Fibonacci GM, CM and NM sequences.

4.  Conclusions

In this work we have studied the band structures of quasipe-
riodic multilayered photonic systems constructed according 
generalizations of two well know mathematical sequences: 
Fibonacci and Thue–Morse. The PCs are composed of slabs 
from two different media: one is a dispersive optical metamat
erial, while the second is a non-dispersive dielectric (silicon 
dioxide, to be more specific). We have utilized the TMM for 
the theoretical approach and numerical simulations, which 
significantly simplifies the math of the problem. The band 
structure of a system is the most important source of physical 
information about that system, because it shows all values of 
frequency and the parallel component of the wave-vector that 
allows (bulk bands) or not (band gaps) transmission of the 
light wave through the structure. One can also know the direc-
tion of the energy flow by just looking at the slope of the plot, 
that is, if slope is positive (negative) the energy flow is in the 
same (opposite) direction of the propagation of light, where 
the backward waves are characteristics of metamaterials.

We have shown the frequency ranges for which the TE 
omnidirectional band gaps emerge for all structures pre-
sented, except for the GTM(3,1) structures that, instead, pre-
sent a complete band gap, which is a omnidirectional band 
gap independent of polarization, with various practical and 
technological applications. We also studied and presented the 
frequencies in which the n̄ = 0 band gap occurs, that is only 
possible when metamaterials are considered. For the GFS 
sequences the position of this gap changes for each generation 
while for GTMS ones it does not. Another very interesting 
result is the higher concentration of the pass bands inside (out-
side) the nA  <  0 region when there are more (less) blocks A, 
metamaterial, than B, dielectric, in the unit cell. Additionally, 
we have presented an analytical expression for the frequency 
of occurrence of the ̄n = 0 gap as a function of the thicknesses 
ratio dB/dA and the plot of ω̄  versus dB/dA for normally inci-
dent waves. So, we concluded that the values of the reduced 
frequency ω̄ , for which the n̄ = 0 gap occurs, asymptotically 

tends 0.41 as the ratio dB/dA increases, independent of the 
sequences.

Some of the very exciting and amazing applications of pho-
tonic structures based on PRI and NRI materials which have 
been recently investigated are superlens, NRI and invisibility 
cloak [49, 50]; digital metamaterials [51]; among others [52]. 
Therefore, all multilayered structures considered in this work 
can be realized and investigated experimentally and we hope 
that our results can motivate experimental research groups to 
study them.
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