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1.  Introduction

In recent years, Additive Manufacturing (AM) has attracted 
increasing attention for industrial applications. Additively 
produced parts exhibit innovative shapes, complex features 
and lightweight structures that are difficult or even impossible 
to produce with conventional processes [1]. However, these 
advantages come with a possible cost: internal defects due 
to printing error and residual and thermal stresses. Despite 
significant technological advances, the defect ratios are still 
too high with respect to conventional production systems. To 
solve these problems, online sensing and process monitoring 
are needed to determine the quality and stability of the process 
during the layer-wise production of the part.

Traditionally, online flaw detection techniques of 3D 
printing include infrared melt pool monitoring, ultrasonic 
monitoring systems, and strains and residual stress measure-
ment. Infrared melt pool monitoring [2] detects the size and 
temperature profile of the molten pool during the process of 
printing to judge whether there were defects based off expe-
rience. Infrared methods [3] monitor radiation given off by 
the melt pool formation during the powder bed fusion (PBF) 
process, and predict the occurrence of the defects through 
the size, shape and temperature of the melt pool. Kanko et al 
[4] monitored the melt pool morphology based on a low-
coherence interferometric imaging technique, which allows 
for high-speed, micron-scale, morphology measurements 
that are robust to interference from the processing laser light. 
Ultrasonic monitoring system [5] have been integrated into 
EOS technology machine to record the ultrasonic signals 
generating longitudinal waves and evaluate the frequency 
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behaviour on successive layer build-ups using a fast-Fourier-
transformation. The proposed approach provides qualitative 
in-process information regarding residual stresses and part 
porosity. In addition, the use of strain gages mounted on the 
build platform measure the strains and residual stress in the 
metal components [6]. The strain changes in a build platform 
can be measured when SLS-induced layers are successively 
milled off. Kleszczynski et al [7] investigated the use of an 
accelerometer mounted in the recoating system to measure 
its vibration during the printing process. They [8] combined 
the acceleration measurements and image-based edge anal-
ysis for the detection of super elevated edges and possible 
recoater wear. Patatri et al [9] placed two coplanar electrical 
contacts on the exterior surface of the structure. The capaci-
tance decreases as the number of defects increases. In addi-
tion, capacitance measurement has been used for sensing the 
stress in a 3D-printed polymer structure [10].

The above techniques predict the occurrence of the defects 
by monitoring the physical attributes of the 3D printing pro-
cess, which determine the quality and stability of the process. 
However, these methods use indirect methods of monitoring 
the printing process, and their accuracy is relatively low.

In recent years, the use of machine vision to directly mon-
itor defects in the 3D printing process has begun to increase 
[11]. These machine vision approaches are primarily based 
on 2D vision. In early studies, several attempts to use monoc-
ular cameras for two-dimension geometric measurements and 
defect detection were made [12]. Kruth et al [13] used a com-
bination of a visual inspection camera system and a melt pool 
monitoring system. They then took advantage of the inspec-
tion camera system to inspect the deposition of the powder. 
Pioter [14] proposed a novel real-time 3D temperature map-
ping method, which can be applied to active thermography 
analyses. Straub [15] proposed a method for assessing the 
quality of 3D print during production, utilizing five cam-
eras. The main idea of the method assumes comparisons of 
the in-process object to the model of the final object using 
the pixel-by-pixel method. Okarma et  al [16] assumed that 
the assessment should not be based on the comparison with a 
reference image. They proposed an approach for the no-refer-
ence quality assessment of 3D prints based on the analysis of 
the gray-level co-occurrence matrix (GLCM) and the chosen 
Haralick features. Later, some studies considered the catego-
rization of potential error sources [17] and verification of the 
deposited powder and fusion layers [18].

The above studies demonstrate that online 2D geometric 
signatures monitoring improves the process’s robustness, 
stability and repeatability and characterizes the geometry of 
the internal part [19]. However, online monitoring methods 
working with 2D images are susceptible to ambient light and 
printing material color, whose robustness is relatively poor.

Recently, there have been a few 3D vision sensing methods 
for geometric measurements and defect detection during the 
AM process [20]. Holzmond [21] exhibited the use of a 3D 
digital image correlation (3D-DIC) system as an online meas-
urement technique to monitor the surface geometry of a print 
part. The quality assurance system based on fused filament 
fabrication (FFF) requires adding a layer of paint between 

each printed layer, or using specific material for printing, 
since it is impossible to add an additional step to the print 
process or use fixed materials. Villarraga [22] scanned the 
printing parts using an XCT machine and created a 3D model. 
This 3D model was compared with the standard CAD model 
for discrepancies. However, XCT exhibits a set of challenges 
[23, 24] such as its relatively slow speed and high costs com-
pared to other measurement techniques. Zhang [25] presented 
an online surface topography of laser powder bed fusion using 
fringe projection. They demonstrate that the technique is 
able to measure surface topography of the powder bed layers 
during fabrication. Li [26] presented an enhanced phase meas-
uring profilometry (EPMP) to monitor 3D surface topography 
and 3D contour data of the fusion area.

Although 3D vision sensing methods acquire large amounts 
of data and quickly detect the onset of defects and process 
errors [27], they have their own problems. These approaches 
only categorize the detection piece based on deviations 
from their respective nominal CAD model, which can only 
detect large defects and have poor robustness for noise data. 
Therefore, it is difficult to apply this to the actual production.

In this work, an online flaw detection method in the AM 
process is proposed based on a fringe projector. Outliers are 
abnormal points that have significant differences in 3D local 
features between corresponding model points. 3D local fea-
tures are characterized by two evaluations indexes, namely 
FPFH feature [28] and the deviation of the coordinates and 
normal vector, which accurately describe the topography 
around the point. Even for printing parts with complex shapes, 
normal points representing the printed part will not be con-
sidered as outliers. After analyzing the outliers extracted 
from the defect point cloud and the defect-free point cloud, 
we found that the defect point cloud has the characteristic of 
aggregation. Disperse outliers may be caused by noise, while 
clustered outliers are more likely to be defects. Therefore, 
different from the existing methods, a region-based defect 
detection method is proposed. The preprocessing surface is 
divided into hundreds of subregions, and each small subre-
gion contains dozens of 3D points. Each subregion, instead of 
each point, is detected as a basic unit, because a single point is 
susceptible to environmental factors and measurement errors, 
while a subregion containing hundreds of points represents a 
domain with greater stability.

The main contributions of the research reported are 
two-folded:

	 1.	�A novel region-based defect detection approach is pro-
posed to improve detection accuracy for 3D data with 
noise. Existing methods independently determine whether 
each pixel is a defect point based on its depth deviation. 
Different from the existing methods, our method deter-
mines whether it is a defect by analyzing each subregion 
based on the idea that the outliers representing defects are 
clustered, while outliers representing noise are dispersed.

	 2.	�Practical algorithms are presented to implement the 
proposed region-based defect detection approach. 
Specifically, we proposed using the region segmenta-
tion algorithm, voxel cloud connectivity segmentation 
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(VCCS), to divide the detection area into hundreds of 
subregions based on 3D coordinates and geometric fea-
tures, as well as the fast point feature histogram (FPFH) 
feature to describe each subregion for detection.

The remainder of this paper is organized as follows. The 
next section (section 2) introduces the online printing detec-
tion system including the print setup and model point prep
aration. Section  3 presents the preprocessing to remove the 
measurement errors and outliers and smooth surface for the 
scene data. Section 4 divides the surface into subregions and 
uses two evaluation indexes to detect and extract the defects.

2.  Online printing detection system

To monitor the surface topography of the printing object, 
once the process of printing each layer is completed, the 
digital light projector (DLP LightCrafter 4500) will project 
a series of sinusoidal fringe images onto the printing area. A 
complementary metal-oxide semiconductor (CMOS) camera 
(FLIR FL3-U3-13E4M) will be used to capture the fringe 
images synchronously. The specifications of the camera and 
the projector are represented in the table 1. The setup of the 
camera is configured to ensure the largest depth of the field 
in order to uniform the point cloud density and capture the 
maximum number of layers in focus. Generally, the point 
cloud density decreases with the distance from the camera. It 
is ensured that the camera is perpendicular to the print area to 
the greatest extent possible. The aperture is stopped down as 
low as possible while still being able to discern the gray and 
white squares on the calibration board and all sources of glare 
is minimized. We keep the projection area in focus and lock 
the aperture and focus. Also, the camera and projector should 
be separated by 20 to 45° angle, as formed by the printing 
parts being scanned. A schematic representing a characteristic 
online 3D monitoring of geometric signatures in the fused 
deposition modeling (FDM) process is shown in figure 1. This 
configuration provides the most illumination.

In this paper, the point cloud acquisition system takes 
advantage of structured light to achieve 3D photography of 
objects by manipulating lighting conditions. 3D printing part 
in view of both the camera and the projector will cause dif-
ferent rays from the camera and projector to intersect one 
another. This intersection can be calculated using phase-
shifted ray information from the projector along with the 
detected ray information from the captured images. Figure 2 

shows three photographs of objects under different phases, 
and the decoded point cloud.

In this paper, the printing parts are produced using a FDM 
type 3D printer (KCMEL 18 pro). FDM type printers are 
widely used for their low cost, high availability, and ease of 
modification. We use polylactic acid (PLA) as the printing 
material, which is fed into a heated nozzle that extrudes fila-
ment onto a plate-form or previously deposited filament. The 
parts are printed layer-by-layer, starting from the bottom layer 
and finishing on the top [29]. Additively produced parts exhibit 
innovative shapes, complex features and lightweight structures 
that are difficult or even impossible to produce using conven-
tional processes. However, these advantages come with a pos-
sible cost: internal defects due to printing error and residual 
and thermal stress [30]. Therefore, developing a novel online 
monitoring technique is vital in order to keep the stability of 
the process under control on a layer-by-layer basis.

To detect microflaws from 3D printing parts, it is very 
important to obtain an accurate and dense standard CAD point 
cloud in advance for comparison with the extracted structural-
light point cloud. We convert the G-code file which is sliced by 
Cura 14.01 to a.pcd file using a slightly modified open source 
program gcode2pcd. We can simulate the print line according 
to the information from the print file and sample to produce 
a point cloud using the visualization toolkit (VTK) open 
source library. Each layer of the point cloud can be extracted 
for detection during the print process. Figure 3 shows that the 
CAD model (a), simulated CAD point cloud(b), and single 
slice point cloud (c).

3.  Preprocessing

3.1.  Outliers removal

Due to the interference of the measurement environment, 
the surface reflection of the measured workpiece, etc, there 
are inevitably measurement errors that lead to sparse outliers 

Table 1.  The specifications of the camera and digital light projector.

Device Specifications

Camera FLIR FL3-U3-13E4M
Image resolution 1280  ×  1024 pixels
Lenses HIK MVL-HF0628M-6MP
Focal length 12 mm
Digital light projector (DLP) DLP LightCrafter 4500
DLP resolution 912  ×  1140 pixels
Software Visual C+++PCL 1.8

Figure 1.  Schematic diagram for online monitoring of geometric 
signatures in the FDM process.
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which may corrupt the results. The algorithm mainly employs 
following steps to remove and correct the outliers.

Step 1: Remove the points of no interest and outliers generated 
by ambient light interference. Since the region of interest 
is the top layer of printing, the removal of the point cloud 
in the nontop layer region can significantly improve the 
efficiency of subsequent algorithms. Since the print area 
is known, the maximum and minimum distance is set 
as the distance threshold to determine whether a point 
belongs to the detection area.

Step 2: Remove the outliers caused by objects reflecting 
light. This type of outliers can be solved by performing 
a statistical analysis on each point’s neighborhood. First, 
for a point (pi) of the point cloud, count the nearest k 
points (pi1, pi2...,pik) of point pi and compute the mean 
distance from it to all its neighbors. The mean distance of 
the K-nearest neighbor points of the point pi is calculated 

as dmeani =
∑k

j=0 dij/k. It is assumed that the resulting 
distribution is Gaussian with a mean distance and a 
standard deviation. The mean distance is calculated as 
dist =

∑Num
i=0 dMeani/Num, and the standard deviation 

is calculated as σ =
»

1
Num

∑Num
i=1 (dist − dMeani). Num 

is the number of the point cloud in the detection area. 
All points whose mean distances are outside the interval 
[dist  −3σ, dist + 3σ] can be considered as outliers and 
trimmed from the dataset.

3.2. Top layer segmentation

To compare the point cloud with the model file, the top layer is 
assumed to be planar (Z coordinate value remains unchanged in 
the same layer printing process), and the top layer point cloud 
is fit to a plane. The plane fit was performed using Random 
Sample Consensus (RANSAC) which works under the assump-
tion that the data contains inliers (data can be adjusted to the 
model) and outliers (data that does not fit the model). The algo-
rithm is nondeterministic: every iteration, the accuracy of the 
result improves. The process of the algorithm is as follow:

	 I	�Select points at random equal to the minimum number of 
points required for the given model.

	 II	�Solve the plane coefficient according to the selected 
points.

	 III	�Determine the number of the points in the tolerance 
threshold range conform to the plane model.

Figure 3.  CAD point cloud (a) the CAD model, (b) the simulated CAD point cloud, and (c) the single slice point cloud.

Figure 2.  Generation of the point cloud (a)–(c) are three photographs of the objects under different phases, (d) the decoded point cloud.
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	 IV	�If the number of the points is within a specified threshold 
recalculate the coefficients of the plane, otherwise termi-
nate the algorithm.

	 V	�Repeat steps 1–4 until either the maximum number of 
iterations is reached, or step 4 terminates the algorithm.

3.3.  Surface smoothing based on moving least square (MLS)

It is inevitable that measurement errors and outliers exist in 
the dataset. Some of the data irregularities (caused by small 
distance measurement errors) are very hard to remove using 
statistical analysis. The goal of this step is to correct these 
small errors and smooth surface. This step is very important 
because it improves the accuracy of the local information. 
MLS is a method of reconstructing continuous functions from 
a set of unorganized point samples by calculating a weighed 
least squares measure biased towards the region around the 
point at which the reconstructed value is requested [31]. MLS 
is useful for reconstructing a surface from a set of points. By 
applying the MLS algorithm, we can obtain more accurate 

intrinsic properties of the surface such as the normal and cur-
vature shown in figure 4.

The process of the algorithm is as follows:

	 I	�Local reference domain H for the interpolating point p is 
generated using k-d tree and the anticipated feature size.

	 II	�The reference domain H for p is used to compute a local 
bivariate polynomial approximation to the surface in the 
neighborhood of p. Consider a function: Rn �→ R and 
a set of points S = {pi, fi|f(pi) = fi} where pi are points 
adjacent to point p belonging to Rn and fi ∈ R. The error 
function of point p is described as equation (1):

fMLS (pi) =
∑

i

(||f (pi)− fi||)2
Θ(||p − pi||) .� (1)

	 III	� Compute the coefficients of a polynomial approximation 
f  so that the weighted least squares error is minimized.

f̂ = min(fMLS (xi)) = min (||f (xi)− fi||)2
Θ(||x − xi||).

� (2)

Figure 4.  Surface normal estimation (a) original point cloud using PCA, and (b) smoothed point cloud using MLS.

Figure 5.  A planar point cloud with a microflaw: (a) initial view of the flaw, (b) zoomed view of flaw.

Figure 6.  A planar point cloud has data that falls outside tolerance limits due to (a) noise data and (b) the existence of a flaw.
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In equations  (1) and (2), the function Θ is a smooth, 
monotone decreasing function, which is positive throughout 
the entire space. In this article we use a Gaussian function: 

Θ(d) = e
−d2

h2 , where h is a fixed parameter reflecting the 

anticipated spacing between neighboring points.

4.  Defect detection process

As a consequence of the high dimensional accuracy require-
ment of 3D-printing objects, it is vital that the online-detec-
tion process demands a corresponding detection accuracy. 
However, in order to ensure a real-time response and robust-
ness, the measurement accuracy and noise cannot satisfy 
the detection accuracy of the 3D printing. Traditionally, the 
approach for detecting the presence of the abnormalities (for 
the Z axis coordinate deviation from the nominal) is not always 
effective, because the single threshold detection method has 
limitations that a large detection threshold will bury minor 
defects, while a small detection threshold will detect exces-
sive pseudo-defects.

For example, consider the 3D data (represented as a point 
cloud of deviations from a nominal CAD geometry) shown 
in figure  5(a), where a surface flaw appears in the bottom 
left corner. The zoomed view of the surface flaw is shown 
in figure 5(b). There is a microflaw that cannot be detected 
directly with a large threshold.

In contrary, if a small detection threshold is applied, any 
data point exceeding the tolerance limit cannot be identified 
as noise or a defect. For instance, consider two simulated 
point clouds given in figure 6, where any point greater than 
the threshold is displayed as black and any point below the 
threshold is displayed as white. Figure 6(a) is actually a flaw-
less surface while there are several black points caused by 
noise in the image. Figure 6(b) is a surface with defects, so 
obviously there are black points due to defects in the image. 
Therefore, we cannot identify whether a surface is flawless or 
not based just on the test results.

To accurately detect the microflaw whose magnitude is 
smaller than noise, we came up with a theory that the conv
ergence of abnormal points may be caused by defects, while 
disperse abnormal points are more likely to be caused by 
noise. Therefore, based on the above theory, a region-based 
evaluation approach is presented, which applies regional divi-
sion of the detection area, and detects the subregion sepa-
rately. We regard each subregion instead of each point as a 
detection unit, and the number of abnormal points within the 
subregion as an evaluation for potential defect-region extrac-
tion. A single point is susceptible to environmental factors and 
measurement errors, while a subregion containing hundreds 
of points represents a domain with greater stability. Also, the 
local 3D surface descriptor FPFH is applied to describe the 
local topography, which simultaneously improves the detec-
tion speed and accuracy.

4.1.  VCCS-based potential defect-region division

In this paper, the detection area point cloud is divided into 
hundreds of subregions, where each subregion contains 
dozens of points that represent a set of the detection domain. 
Since region-based detection has a higher detection stability 
than direct detection (coordinate deviation method), segmen-
tation algorithms aim to group points in the detection scene 
into perceptually meaningful regions that conform to the 
surface of the object to be detected. Recently, unsupervised 
segmentation has been widely researched in point cloud pro-
cessing. Region-growing algorithms take advantage of the 
normal vector and curvature to realize segmentation, which 
is unable to resist noise interference. Marjov random field 
(MRF) merge relational low-level context within image with 
object level class knowledge, which have drawback that com-
putational cost rises sharply with increasing number of nodes. 
Plane Model Segmentation is based on RANSAC plane fitting, 
which cannot block adjacent points with different features.

We apply a novel method, VCCS [32], which takes advan-
tages of the 3D geometry provided by structure-light point 
cloud to generate superclusters that conform to the surface of 
the object to be detected. VCCS is able to cluster adjacent 
points with similar local low-level features into one subre-
gion, while assuring a regular distribution of the subregions. 
In addition, it keeps the speed comparable to state-of-the-art 
methods.

This is accomplished using a seeding methodology based 
on 3D space and a flow-constrained local iterative clustering 
which uses 3D coordinates and geometric features. Adjacency 
is a key element for the VCCS, as it clusters neighboring 
points with similar local feature. In this work, we transform 
the point cloud into voxelized 3D space with a given reso-
lution Rvoxel. All points in the voxel are represented by the 
center of the voxel’s interior point cloud. The adjacency graph 
is constructed for the voxel cloud by searching the voxel kd-
tree. To select a set of seed points, we divide the space into a 
voxel grid at a given size Rseed, which is significantly larger 
than Rvoxel. The voxels closest to the center of each grid are 
selected as the initial seed points. Based on the selected seed 
points, we take advantage of the adjacency graph by searching 
for voxel that has the smallest gradient.

We adopt the following notion to represent the voxel at 
index i within the voxel cloud V  of voxel resolution r :

Vr (i) = F1...n,� (3)

where F  contains a feature vector that includes n point fea-
tures (location, normals).

The gradient is calculated in equation (4):

G (i) =
∑

k∈Vadj

||V (i)− V(k)||
Nadj

.� (4)

Vadj represents the adjacent voxels of the seed point, and 
Nadj is the number of the adjacent voxels.
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VCCS voxels are clustered by a 7D space, and given in the 
following notion:

F = [x, y, z, xnorm, ynorm, znorm, curvature]� (5)

where x, y, z are 3D coordinates, and xnorm, ynorm, znorm,
curvature are surface normal information. To calculate the dis-
tances in feature space, we normalize our spatial distance Ds 
with the longest distant of the adjacent voxel that is 

√
3Rseed. 

The normal distance Dn is the Euclidean distance in normal 
vector space. This leads us to equation (6) for the normalized 
distance D:

D =

 
wsD2

s

3R2
seed

+ wnD2
n� (6)

where ws, wn control the weight of the space distance, and 
normal similarity respectively.

The algorithm adopts the iterative method assigning voxels 
to clusters. First, we select the voxel closest to the cluster 
center, and grow outward from it to adjacent voxels. The 
feature space distance from each of these to the seed point 
defined in equation  (6) are calculated. If the distance is the 
smallest, the cluster will absorb it and assign a fixed label. 
We add its neighbor that is further from the seed to the search 
queue for this label using the adjacency graph. To ensure each 
cluster grows at the same time, one seed absorbs a new voxel 
at a time, and the next seed is processed. Clusters will process 
iteratively outwards until it reaching the edge of the search 
queue.

After the search for all cluster adjacency graphs has fin-
ished, we update the centers of each cluster by calculating the 
mean of all its constituents. As clusters tend to stabilize after 
a few iterations, we simplify the process with four iterations 
in this paper.

4.2.  FPFH-based defect extraction

The defects of the divided supervoxels are identified by two 
new evaluation indexes of FPFH based on local points feature 
and the deviation of the coordinates and normal vector.

FPFH, a local geometrical feature, are pose-invariant fea-
tures that describe the local surface model properties of points 
using combinations of their k-nearest points. If the local sur-
face is not flat, FPFH feature represents the plane model fea-
ture differently. If the difference is larger than a threshold, the 
supervoxels are considered to be in a potentially bad area.

The calculation of FPFH is as follows. To begin with, for 
each point p, all of p’s neighbors enclosed in the sphere with a 
given radius r  are extracted (k neighborhood). For each query 
point pi we compute the relationships between the point itself 
and its neighbors. We define a Darboux uvn frame for every 
pair of points pi and pj ( j is the index of the neighbor points) 
and their estimated normal ni and nj, u  =  ni, v = (pj − pi)× u, 
w = u × v. The features indicating the differences between 
the two local topographies are described in equations (7)–(9). 
We compute the angular variation of ni and nj and call this the 
SPFH.

α = v · nj� (7)

ϕ = (u · (pj − pi))/||pj − pi||� (8)

θ = c arctan(w · nj, u · nj).� (9)

Then, we redetermine its k neighbors and use SPFH values 
to weight the final histogram of p as FPFH.

FPFH ( p) = SPFH ( p) +
1
k

k∑
i=1

1
wk

· SPF(pk).� (10)

Where the weight wk represents the distance between the 
query pi and the neighbor point pk , which decreases as the 
distance increases.

Since defects are characterized by the deviation between 
the scene and the model, the deviation of the coordinates 
and normal vector are used as the second evaluation. Firstly, 
scene points are projected onto the model plane, two types 
Euclidean distances are calculated as the projection distance 
dproj (distance from the scene point to the projection plane) 
and neighbor distance dneigh (distance from the projection 
point to the nearest neighbor in the model). The model dia-
gram is shown in figure 7.

Also, the normal and curvature calculated by MLS are 
compared with the model, defined as dnorm and dcurv where wp, 
wn and wc control the influence of the deviation in the projec-
tion distance, normal and curvature respectively, and r  is the 
resolution of the model point cloud.

Ddim =

®
wp · dproj + wn · dnorm + wc · dcurv, dneigh < r

fixed great number, dneigh > r .

� (11)

The quality of the divided multiple subregions are evalu-
ated based on the FPFH feature and the deviation of the coor-
dinates and normal vector. Detection quality of the detection 
area is combined by every subregion. The FPFH features of 
the subregion are regarded as the criteria for determining 
whether the surface topography of the corresponding subre-
gions is similar with the model surface.

To represent the distance between the model feature and 
the corresponding subregion feature, we use the Histogram 
Intersection Kernel:

d (FPFHµ1, FPFHµ2) =

nrbins∑
i=1

min
(
FPFHi

µ1
, FPFHi

µ2

)
.� (12)

Figure 7.  Schematic diagram of the projection model: the red point 
is the scene point, the blue point is the projection point, and the 
black points are the model points.
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If the distance between two features is larger than the 
threshold, the subregion of the detection area is considered 
to be a potential defect region. Similarly, the distance Ddim  
based on the deviation of the coordinate and normal vector 
directly represents the actual difference between the model 
and scene. The potential defect regions are calculated using 
Ddim  criteria. In most situations, the defects are contained in 
the subregion, which have relatively obvious differences from 
the model. The calculation of the FPFH feature and the devia-
tion of the normal vector are shown in figure 8.

5.  Experiments

To verify the accuracy and effectiveness of the proposed 
online flaw detection system of the FDM process, experiments 
are conducted with different types of defects including holes, 

bumps, and curling. In these experiments, defects in the real 
printing process and artificial design defects are detected.

Measurement resolution is directly related to the density 
and accuracy of the point cloud. The density of the point 
cloud depends on the resolution of the projector (generally the 
camera resolution is much higher than that of the projector) 
and the size of the projection area. In this paper, the point 
cloud acquisition system uses devices that include a projector 
DLP Lightcrafter 4500, and a CMOS camera FLIR FL3-U3-
13E4M, which can acquire approximately 2000 points cm−2, 
the distance between adjacent points is approximately 0.2 mm.

In order to understand how difficult it is to detect and recog-
nize a microflaw on a printing part, figures 9(a) and (b) represent 
two examples with defects that can be detected. Figure 9(a) is 
a picture of a real object from a medical device model, which 
has two curling defects (size: 7 mm  ×  0.9 mm  ×  0.7 mm, 

Figure 8.  Calculation of FPFH feature and deviation of normal vector.

Figure 9.  Examples from the database in: (a) curling defects on printing medical instruments (size: 7 mm × 0.9 mm × 0.7 mm, 3 mm × 
0.6 mm × 0.3 mm), (b) hole defects (size: 3 mm × 2.5 mm ×0.4 mm) which are designed on the CAD model and a curling defect (size: 
6 mm × 1.5 mm × 0.4 mm).
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3 mm  ×  0.6 mm  ×  0.3 mm). Figure 9(b) shows a paddle with 
a hole (size: 3 mm  ×  2.5 mm ×0.4 mm) which is designed on 
the CAD model, and a curling defect (size:6 mm  ×  1.5 mm  
×  0.4 mm). There are corresponding local enlarged views of 
the defects.

5.1.  Evaluation of the FPFH estimation based on MLS

The 3D surface local descriptor FPFH is the evaluation index 
in the region-based detection which represents the points’ 
local regional feature. The precision of the feature calculation 

directly influences the results of the detection. In this section, 
we evaluate how the computation of the FPFH is affected 
when PCA (principal component analysis) or MLS method-
ologies are used. (PCA-based FPFH is a traditional method 
while MLS-based FPFH is a refined method). In order to 
verify the FPFH accuracy on different surface topography, 
figures 10(a)–(c) shows three surface topographies with dis-
tinctive features: a plane area without flaw, a plane area with a 
bump (size: 2 mm × 1.5 mm × 0.2 mm), and a plane area with 
a hole (size: 2 mm × 1.5 mm × 0.2 mm). In addition, the bump 
and the hole are located in the same area.

Figure 10.  Three different surface topographies created from the same point cloud: (a) plane area without flaw; (b) plane area with a bump; 
(c) plane area with a hole.

Figure 11.  Comparison of the results for calculating FPFH using the MLS versus PCA method, both on the model and object at the same 
area. (a) Point on the plane area; (b) point on the bump area; (c) point on the hole area.
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In order to evaluate the robustness to noise for calculating 
the FPFH, in figures 11(a)–(c) we show a comparison between 
the results of calculating the FPFH using the MLS versus the 
PCA method both on the model and object at the same area. In 
addition, the parameters of the two algorithms are set to be the 
same: taking the data in the range of 1.0 mm into considera-
tion. Figures 11(a)–(c) show that as for model point, the red 
dotted line and the blue dotted line calculated by two meth-
odologies are almost overlapped, for there is no noise inter-
fering with the result. Although robustness to noise is one of 
the most important factors to 3D local descriptor, noise can 
be more or less interfere with the accuracy of the descriptors, 
especially for dense point clouds. For the object point cloud, 
there are measurement errors caused by factors, such as noise 
due to reflecting light, and the measuring accuracy. It is vital 
to use a methodology that can resist the influence of noise and 
accurately represent the surface topography.

In figure 11(a), the blue solid line represents FPFH using 
MLS method which is more consistent with the ground truth 
than red solid line. Figure 11(b) represents the point on the 
bump area. Figure 11(c) represents the point on the hole area. 
FPFH using MLS method is closer to the ground truth. It can 
be seen that through the proposed method, a better FPFH acc
uracy in different surface topographies is obtained, especially 

in uneven topography. The conventional PCA method directly 
calculates the normal vector of the points and estimates the 
local feature. A high-density point cloud arranges compact and 
can be influenced significantly by small measurement errors. 
The function of MLS is to correct small errors and smooth 
surface. This step is very important because it improves the 
accuracy of the local information. Consequently, FPFH esti-
mated based on MLS will increase the accuracy and effective-
ness of the segmentation.

5.2.  Evaluation of the potential defect area segmentation

In order to evaluate the detection accuracy of the combina-
tion between the VCCS and the refined FPFH, it is compared 
with the VCCS, the conventional FPFH and the region grow 
method with different topographies. A combination of the 
VCCS and FPFH, which is the key step of detection, is vital 
for overall detection accuracy and efficiency. The regional 
topography’s changes caused by microdefects are too small to 
be extracted as defects, which lead to leak detection. On the 
other hand, due to the presence of noise, some normal regions 
are detected as defect areas not only increase the workload of 
the fine detection process, but also increase the possibility of 
false detection.

Figure 12.  The results of the detection by three methods. (a) Point cloud renderings of four different topographies that contain various 
defect types; (b) the detection results of the region grow method; (c) the detection results of VCCS and conventional FPFH; (d) the 
detection results of the proposed method.
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Figure 12 represents the results of the coarse detection by 
the three methods. Figure  12(a) shows the point cloud ren-
derings of four different topographies, which contain var-
ious defect types (holes, bumps, and curling). Figure  12(b) 
shows the result of region grow method [33]. Figure  12(c) 
presents the results by the VCCS and convention FPFH, and 
figure  12(d) shows the results based on VCCS and refined 
FPFH. Compared with the last three columns, it is obvious 
that our method is superior to the other methods. Although tra-
ditional methods can detect defect contours more accurately, 
this does not matter since the fine detection can extract flaws 
precisely. However, because of the noise it has many scattered 
false detection. Furthermore, the results by VCCS and con-
ventional FPFH also include false detection and inaccuracy 
results. The above two methods are, to some extent, affected by 
the unstable normal vector in the edge region. Consequently, 
our proposed method has a greater performance.

5.3.  3D surface topography monitoring of the printing part

In order to accurately detect the surface topography of the 
printing part, there are three different types of data that are 
essential for characterizing the defects information: (1) the 
original point cloud, (2) the potential defect point cloud, 
which has been extracted in section  5.2, and (3) identified 
points belonging to the flaw.

In this section, the projection model is used to evaluate 
whether defects exist in each subregion. We synthetically take 
the projection distance, the difference of the normal vector and 
curvature into consideration, and extract outliers from poten-
tial defect areas. In case of more than one defect, a Euclidean 
cluster algorithm clusters all outliers to obtain the number of 
the defects. For each point in a defect region, we estimate the 
values ∆z (pi) = zp(ideal) − z(pi). The extreme point of the 
defect is determined by max{|∆z (pi)|} among all points from 

Figure 13.  Some examples of detection results based on simulation point cloud. The first line shows the point cloud rendering, the second 
line shows the results of the defective surface based on the proposed method.

Figure 14.  Detection results by two methods. (a) Real picture of the objects to be detected, (b) point cloud rendering of the top layer, (c) 
detection results by the region grow methods, and (d) detection results by the proposed method.
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the defect region. The sign of ∆z (pi) determines if the defect 
is a bump or a hole. A bump is detected when ∆z (pi) is posi-
tive and a hole is detected when ∆z (pi) is negative.

In order to evaluate the full methodology of online flaw 
detection proposed in this paper, we randomly generate 0–2 
defects at any position on the basis of the existing point cloud 
with noise. Artificial defects include the following types: 
holes, bumps, cracks. In addition, all these defects area are less 
than 6 mm2, and the max depth is less than 0.3 mm. Figure 13 
shows some examples of the detection results based on the 
simulation point cloud. The white point is the original point 
cloud, and the yellow point is identified point belonging to 
the flaw. Eight yellow lines form the defect bounding box. As 
shown in figure 13, the proposed online flaw detection method 
can detect objects with arbitrary shapes. Also, our method can 
extract the number of defects and locate it.

In order to validate the performance of the proposed 
approach, the region grow method is used for comparison. In 
figure 14, (a) is the real picture of the objects to be detected, 
(b) is the point cloud rendering of the top layer, (c) is the 
results by the region grow methods, and (d) is the results of 
the proposed method. Comparing the last two columns, it is 
obvious that our method is superior to the other ones. We can 
observe that the size and shape of the defects detected by our 
method are more consistent with the real defects under the 
same point cloud density and accuracy conditions. The pro-
posed method can accurately detect microdefects whose area 
is larger than 6 mm2 and whose height deviation is 0.2 mm 
based on our point cloud acquisition system. In addition, our 
methods can resist the error detection caused by edge area and 
noise.

It is vital for online detection whether single-layer detec-
tion speed is greater than the corresponding printing time. 
Generally, single-layer printing time and detection time 
increase with an increasing printing area. In this paper, the size 
of the printing model is approximately 120 mm × 60 mm. The 
point cloud process time for each layer is significantly shorter 
than the printing time. Time of online detection consists of 
point cloud acquisition and processing, and the corresponding 
times are 0.83 s and 1.21 s, respectively, for a point cloud with 
approximately 1 million points. All measurements were con-
ducted on an Intel Core i5 3.4 GHz processor. However, it 
takes 40 s which is significantly greater than the detection time 
for each layer printing. Therefore, our method can fully meet 
the requirements of online detection in terms of speed.

6.  Conclusion

In this paper, we presented a novel point cloud idea that the 
outliers representing defects are clustered while outliers rep-
resenting noise are discrete, and practical algorithms were 
presented to implement the proposed region-based defect 
detection approach. The proposed methodology is divided 
into two main processes. The first process is subregion seg-
mentation. In this step, the printing part’s surface is segmented 
into hundreds of subregions which represent a set of detection 
domains. The segmentation algorithm takes advantages of the 

3D geometry provided by structure-light point cloud to gen-
erate subregions that conform to the surface of the object to 
be detected. In the next process, we applied two evaluation 
indexes, namely, FPFH feature and deviation of the coordi-
nates and normal vector to identify defects. Surface smoothing 
based on MLS and local descriptor FPFH are presented to 
the extracted potential defect area in coarse detection, and a 
projection model is used to evaluate whether defects exist in 
each potential area. Experiments are conducted on real data 
captured by strcuture light system on the printing parts. The 
experimental results demonstrate that our approach is scal-
able, accurate and robust for point cloud with noise and can 
detect different types of defectd, such as holes, bumps, cracks.

The key findings of the study can be summarized as follows.

	(1)	�Structure light-based 3D vision is effective in real-time 
direct defect detection in 3D printing. Compared with 
existing indirect detection methods, such as infrared melt 
pool monitoring, ultrasonic monitoring systems, strains 
and residual stress measurement, it is more accurate and 
reliable.

	(2)	�The aggregation of outliers is an important characteristic 
of a defect. Noise inevitably exists in the point cloud 
acquired by the structure light system. However, the 
noisy outlier points are dispersed, while the defect outlier 
points are clustered. This important characteristic can 
help to distinguish a defect from noise.

	(3)	�Dividing the point cloud into hundreds of subregions 
and extracting its local features for defect detection can 
greatly improve the detection robustness. Different from 
traditional methods using a single point as the detect unit, 
the region segmentation and description steps can utilize 
the aggregation characteristic of defect outliers, which 
leads to the accurate detection of the microflaw whose 
deviation amplitude is even smaller than noise.

Acknowledgments

This research was supported by the National Natural Sci-
ence Foundation of China (51775498, 51775497), and 
Zhejiang Provincial Natural Science Foundation of China 
(LY17F030011).

ORCID iDs

Xinyue Zhao  https://orcid.org/0000-0002-7184-0985
Zaixing He  https://orcid.org/0000-0003-0577-8009
Shuyou Zhang  https://orcid.org/0000-0001-9023-5361

References

	 [1]	 Lanzotti A, Grasso M, Staiano G and Martorelli M 2015 The 
impact of process parameters on mechanical properties of 
parts fabricated in PLA with an open-source 3D printer 
Rapid Prototyp. J. 21 604–17

	 [2]	 Berumen S, Bechmann F, Lindner S, Kruth J-P and Craeghs T 
2010 Quality control of laser- and powder bed-based 

Meas. Sci. Technol. 31 (2020) 035011

https://orcid.org/0000-0002-7184-0985
https://orcid.org/0000-0002-7184-0985
https://orcid.org/0000-0003-0577-8009
https://orcid.org/0000-0003-0577-8009
https://orcid.org/0000-0001-9023-5361
https://orcid.org/0000-0001-9023-5361
https://doi.org/10.1108/RPJ-09-2014-0135
https://doi.org/10.1108/RPJ-09-2014-0135
https://doi.org/10.1108/RPJ-09-2014-0135


X Zhao et al

13

additive manufacturing (AM) technologies Phys. Procedia 
5 617–22

	 [3]	 Doubenskaia M A, Zhirnov I V, Teleshevskiy V I, Bertrand P 
and Smurov I Y 2015 Determination of true temperature 
in selective laser melting of metal powder using infrared 
camera Mater. Sci. Forum 834 93–102

	 [4]	 Kanko J A, Sibley A P and Fraser J M 2016 In situ 
morphologybased defect detection of selective laser melting 
through inline coherent imaging J. Mater. Process. Technol. 
231 488–500

	 [5]	 Bamberg J, Spies M, Dillhöfer A, Rieder H and Hess T 2014 
Online monitoring of additive manufacturing processes 
using ultrasound Proc. of the 11th European Conf. on 
NonDestructive Testing pp 6–10

	 [6]	 Gorden M, Zhang K and Collette M 2018 The strain 
amplification sensor: a 3D-printable stand-alone strain 
gauge for low-cost monitoring Struct. Control Health 
Monit. e2145

	 [7]	 Kleszczynski S, Zur Jacobsmühlen J, Reinarz B, Sehrt J T, 
Witt G and Merhof D 2014 Improving process stability of 
laser beam melting systems Proc. of the Frauenhofer Direct 
Digital Manufacturing Conf.

	 [8]	 Kleszczynski S, Zur Jacobsmühlen J, Sehrt J T and Witt G 
2012 Error detection in laser beam melting systems by high 
resolution imaging Proc. of the Solid Freeform Fabrication 
Symp.

	 [9]	 Chakraborty P, Zhao G and Zhou C 2018 Unprecedented 
sensing of interlayer defects in three-dimensionally printed 
polymer by capacitance measurement Smart Mater. Struct. 
27 115012

	[10]	 Chakraborty P, Gundrati N B, Zhou C and Chung D D L 2017 
Effect of stress on the capacitance and electric permittivity 
of three-dimensionally printed polymer, with relevance to 
capacitance-based stress monitoring Sensors Actuators A 
263C 380–5

	[11]	 Makagonov N G, Blinova E M and Bezukladnikov I I 
2017 Development of visual inspection systems for 3D 
printing 2017 IEEE Conf. of Russian Young Researchers in 
Electrical and Electronic Engineering (EIConRus) (https://
doi.org/10.1109/EIConRus.2017.7910849)

	[12]	 Li Y, Li Y F, Wang Q L, Xu D and Tan M 2010 
Measurement and defect detection of the weld bead based 
on online vision inspection IEEE Trans. Instrum. Meas. 
59 1841–9

	[13]	 Craeghs T, Clijsters S, Yasa E and Kruth J-P 2011 Online 
quality control of selective laser melting Proc. of the Solid 
Freeform Fabrication Symp. (SFF) 2011

	[14]	 Hellstein P and Szwedo M 2016 3D thermography in non-
destructive testing of composite structures Meas. Sci. 
Technol. 27 124006

	[15]	 Straub J 2015 Initial work on the characterization of additive 
manufacturing (3D printing) using software image analysis 
Machines 3 55–71

	[16]	 Okarma K and Fastowicz J 2016 No-reference quality 
assessment of 3D prints based on the GLCM analysis 2016 
21st Int. Conf. on Methods and Models in Automation 
and Robotics (MMAR) (https://doi.org/10.1109/
MMAR.2016.7575237)

	[17]	 Zur Jacobsmühlen J Z, Kleszczynski S, Schneider D and 
Witt G 2013 High resolution imaging for inspection of 
laser beam melting systems Proc. of the 2013 IEEE Int. 
on Instrumentation and Measurement Technology Conf. 
(I2MTC) (Minneapolis, MN, 6–9 May 2013) pp 707–12

	[18]	 Erler M, Streek A, Schulze C and Exner H 2014 Novel 
machine and measurement concept for micro machining 
by selective laser sintering Proc. of the Int. Solid Freeform 
Fabrication Symp. (Austin, TX, 4–6 August 2014)

	[19]	 Du S-C, Huang D-L and Wang H 2015 An adaptive support 
vector machine-based workpiece surface classification 
system using high-definition metrology IEEE Trans. 
Instrum. Meas. 64 2590–604

	[20]	 Neef A, Seyda V, Herzog D, Emmelmann C, Schönleber M 
and Kogel-Hollacher M 2014 Low coherence interferometry 
in selective laser melting Phys. Procedia 56 82–9

	[21]	 Holzmond O and Li X 2017 In situ real time defect detection 
of 3D printed parts Addit. Manuf. 17 135–42

	[22]	 Villarraga H, Lee C, Corbett T, Tarbutton J A and Smith S T 2015 
Assessing additive manufacturing processes with x-ray CT 
metrology Proc. ASPE 2015 Spring Topical Meeting: Achieving 
Precision Tolerances in Additive Manufacturing pp 116–21

	[23]	 Thompson A, Maskery I and Leach R K 2016 X-ray computed 
tomography for additive manufacturing: a review Meas. Sci. 
Technol. 27 072001

	[24]	 Warnett J M and Titarenko V 2016 Towards in-process x-ray CT 
for dimensional metrology Meas. Sci. Technol. 27 035401

	[25]	 Zhang B, Ziegert J, Farahi F and Davies A 2016 In situ 
surface topography of laser powder bed fusion using fringe 
projection Addit. Manuf. 12 100–7

	[26]	 Li Z and Liu X 2018 In situ 3D monitoring of geometric 
signatures in the powder-bed-fusion additive manufacturing 
process via vision sensing methods Sensors 18 1180

	[27]	 Grasso M and Colosimo B M 2017 Process defects and in situ 
monitoring methods in metal powder bed fusion: a review 
Meas. Sci. Technol. 28 044005

	[28]	 Rusu R B, Blodow N and Beetz M 2009 Fast point feature 
histograms (FPFH) for 3D registration Proc. of the IEEE 
Int. Conf. on Robotics and Automation (ICRA) (Kobe, 
Japan, 12–17 May 2009) pp 3212–7

	[29]	 Xinhua L, Shengpeng L, Zhou L, Xianhua Z, Xiaohu C and 
Zhongbin W 2015 An investigation on distortion of PLA 
thin-plate part in the FDM process Int. J. Adv. Manuf. 
Technol. 79 1117–26

	[30]	 Zhang Y and Chou Y K 2006 Three-dimensional finite 
element analysis simulations of the fused deposition 
modelling process Proc. Inst. Mech. Eng. B 220 1663–71

	[31]	 Levin D 2004 Mesh-independent surface interpolation 
Geometric Modeling for Scientific Visualization ed G Farin 
(Berlin: Springer) pp 37–49

	[32]	 Papon J, Abramov A, Schoeler M and Worgotter F 2013 Voxel 
cloud connectivity segmentation—supervoxels for point 
clouds The IEEE Conf. on Computer Vision and Pattern 
Recognition (CVPR) pp 2027–34

	[33]	 Jin H, Yezzi A J and Soatto S 2004 Region-based segmentation 
on evolving surfaces with application to 3d reconstruction 
of shape and piecewise constant radiance Computer 
Vision—ECCV 2004 (Berlin: Springer) pp 114–25

Meas. Sci. Technol. 31 (2020) 035011

https://doi.org/10.1016/j.phpro.2010.08.089
https://doi.org/10.1016/j.phpro.2010.08.089
https://doi.org/10.1016/j.phpro.2010.08.089
https://doi.org/10.4028/www.scientific.net/MSF.834.93
https://doi.org/10.4028/www.scientific.net/MSF.834.93
https://doi.org/10.4028/www.scientific.net/MSF.834.93
https://doi.org/10.1016/j.jmatprotec.2015.12.024
https://doi.org/10.1016/j.jmatprotec.2015.12.024
https://doi.org/10.1016/j.jmatprotec.2015.12.024
https://doi.org/10.1002/stc.2145
https://doi.org/10.1088/1361-665X/aae16e
https://doi.org/10.1088/1361-665X/aae16e
https://doi.org/10.1016/j.sna.2017.07.008
https://doi.org/10.1016/j.sna.2017.07.008
https://doi.org/10.1016/j.sna.2017.07.008
https://doi.org/10.1109/EIConRus.2017.7910849
https://doi.org/10.1109/EIConRus.2017.7910849
https://doi.org/10.1109/TIM.2009.2028222
https://doi.org/10.1109/TIM.2009.2028222
https://doi.org/10.1109/TIM.2009.2028222
https://doi.org/10.1088/0957-0233/27/12/124006
https://doi.org/10.1088/0957-0233/27/12/124006
https://doi.org/10.3390/machines3020055
https://doi.org/10.3390/machines3020055
https://doi.org/10.3390/machines3020055
https://doi.org/10.1109/MMAR.2016.7575237
https://doi.org/10.1109/MMAR.2016.7575237
https://doi.org/10.1109/I2MTC.2013.6555507
https://doi.org/10.1109/I2MTC.2013.6555507
https://doi.org/10.1109/TIM.2015.2418684
https://doi.org/10.1109/TIM.2015.2418684
https://doi.org/10.1109/TIM.2015.2418684
https://doi.org/10.1016/j.phpro.2014.08.100
https://doi.org/10.1016/j.phpro.2014.08.100
https://doi.org/10.1016/j.phpro.2014.08.100
https://doi.org/10.1016/j.addma.2017.08.003
https://doi.org/10.1016/j.addma.2017.08.003
https://doi.org/10.1016/j.addma.2017.08.003
https://doi.org/10.1088/0957-0233/27/7/072001
https://doi.org/10.1088/0957-0233/27/7/072001
https://doi.org/10.1088/0957-0233/27/3/035401
https://doi.org/10.1088/0957-0233/27/3/035401
https://doi.org/10.1016/j.addma.2016.08.001
https://doi.org/10.1016/j.addma.2016.08.001
https://doi.org/10.1016/j.addma.2016.08.001
https://doi.org/10.1088/1361-6501/aa5c4f
https://doi.org/10.1088/1361-6501/aa5c4f
https://doi.org/10.1109/ROBOT.2009.5152473
https://doi.org/10.1109/ROBOT.2009.5152473
https://doi.org/10.1007/s00170-015-6893-9
https://doi.org/10.1007/s00170-015-6893-9
https://doi.org/10.1007/s00170-015-6893-9
https://doi.org/10.1243/09544054JEM572
https://doi.org/10.1243/09544054JEM572
https://doi.org/10.1243/09544054JEM572
https://doi.org/10.1007/978-3-662-07443-5_3
https://doi.org/10.1007/978-3-662-07443-5_3
https://doi.org/10.1109/CVPR.2013.264
https://doi.org/10.1109/CVPR.2013.264
https://doi.org/10.1007/978-3-540-24671-8_9
https://doi.org/10.1007/978-3-540-24671-8_9

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Region-based online flaw detection of 3D printing via fringe projection﻿﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Online printing detection system
	﻿﻿3. ﻿﻿﻿Preprocessing
	﻿﻿3.1. ﻿﻿﻿Outliers removal
	﻿﻿3.2. ﻿﻿﻿Top layer segmentation
	﻿﻿3.3. ﻿﻿﻿Surface smoothing based on moving least square (MLS)

	﻿﻿4. ﻿﻿﻿Defect detection process
	﻿﻿4.1. ﻿﻿﻿VCCS-based potential defect-region division
	﻿﻿4.2. ﻿﻿﻿FPFH-based defect extraction

	﻿﻿5. ﻿﻿﻿Experiments
	﻿﻿5.1. ﻿﻿﻿Evaluation of the FPFH estimation based on MLS
	﻿﻿5.2. ﻿﻿﻿Evaluation of the potential defect area segmentation
	﻿﻿5.3. ﻿﻿﻿3D surface topography monitoring of the printing part

	﻿﻿6. ﻿﻿﻿Conclusion
	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Acknowledgments
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿﻿﻿﻿﻿References


