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1.  Introduction

Liquid–gas interfaces are frequently encountered in daily life 
and in industrial applications, of which soap bubbles and soap 
films are common examples. Surface tension is the key param­
eter characterizing the physical properties of these interfaces. 
It is desirable to have a simple and accurate method for sur­
face tension measurement.

A variety of techniques have been used to measure sur­
face tension. These methods may be broadly divided into two 

categories: static methods and dynamic methods according to 
whether the interface is at a static or a dynamic force balance.

Wilhelmy plate, Du Noüy ring, capillary-rise, drop volume 
and pendant drop methods are widely used examples of static 
methods [1, 2]. With the advance of the imaging technique, 
it is possible to quantitatively determine the shape of liquid 
drops resting on a surface or hanging on a capillary tube, 
which is the basis of measuring the surface tension and the 
contact angle using the sessile [3] or pendant drop methods 
[2]. The pendant drop method, which has a long history [4–8], 
is more popular as the solid boundaries are typically further 
away from the drop and hence it is easier to determine the 
drop surface profile from the image. Axisymmetric drop shape 

Measurement Science and Technology

A laminar-jet-discharging method  
for measuring the interfacial tension  
of deformable surfaces

Dongmei Wan1,2 , Hengsheng Xiang1,2 and Haitao Xu1,3,4

1  Center for Combustion Energy, Tsinghua University, 100084 Beijing, People’s Republic of China
2  Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing,  
People’s Republic of China
3  School of Aerospace Engineering, Tsinghua University, 100084 Beijing, People’s Republic of China

E-mail: wdm16@mails.tsinghua.edu.cn (Dongmei Wan), xhs17@mails.tsinghua.edu.cn (Hengsheng 
Xiang) and hxu@tsinghua.edu.cn (Haitao Xu)

Received 9 August 2019, revised 21 November 2019
Accepted for publication 25 November 2019
Published 31 December 2019

Abstract
We propose a laminar-jet-discharging method to measure the interfacial tension of deformable 
surfaces such as soap bubbles. This method avoids the need to measure the small pressure 
difference inside and outside a soap bubble in a static state. By allowing the air in a soap 
bubble to discharge in a laminar flow state through a long tube, we show that the surface 
tension of the soap bubble is proportional to the rate of change of the fourth power of the 
bubble radius. Experimentally, we verify that this linear relationship is valid over a long 
period and thus can be measured with cameras at slow recording rates. Our method offers 
a straightforward and accurate way to measure the surface tension of soap bubbles using 
easy-to-obtain devices. In addition, we propose a new development of the pendant drop 
method based on the silhouette of the drop, which does not require any pressure transducer 
or computation of the second-order derivatives of the drop profile and hence is easier to 
implement and less sensitive to the accuracy of the drop profile determination. For pure 
liquids, results from the new pendant drop method compare well with standard values. This 
method is thus used to verify the laminar-jet-discharging measurements.

Keywords: surface tension, soap bubble, laminar pipe flow, bubble discharge,  
deformable surface

(Some figures may appear in colour only in the online journal)

D Wan et al

A laminar-jet-discharging method for measuring the interfacial tension of deformable surfaces

Printed in the UK

035302

MSTCEP

© 2019 IOP Publishing Ltd

31

Meas. Sci. Technol.

MST

10.1088/1361-6501/ab5b1e

Paper

3

Measurement Science and Technology

IOP

2020

1361-6501

4 Author to whom any correspondence should be addressed.

1361-6501/ 20 /035302+10$33.00

https://doi.org/10.1088/1361-6501/ab5b1eMeas. Sci. Technol. 31 (2020) 035302 (10pp)

https://orcid.org/0000-0001-5667-0415
https://orcid.org/0000-0002-2863-7658
mailto:wdm16@mails.tsinghua.edu.cn
mailto:xhs17@mails.tsinghua.edu.cn
mailto:hxu@tsinghua.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6501/ab5b1e&domain=pdf&date_stamp=2019-12-31
publisher-id
doi
https://doi.org/10.1088/1361-6501/ab5b1e


D Wan et al

2

analysis (ADSA) algorithm [9] is widely used in this method. 
It consists of two steps. The first step is to detect the shape 
profile of the pendant drop, which is assumed to be axisym­
metric. The second step is to solve the pressure balance equa­
tion with multivariable minimization algorithm under proper 
boundary conditions. Many methods have been proposed  
[10–12] to obtain the shape profile with high accuracy from 
digital images as the surface tension is very sensitive to the 
measurement error of the drop shape profile. Nevertheless, as 
the pressure balance equation involves the second order deriv­
ative of the drop shape, shape measurement error is a source 
of large uncertainty [13].

In all above methods, the interfaces are at equilibrium. There 
are, however, other examples in which the interfaces are in 
motion. For these systems, the dynamic methods can be used.

The maximum bubble pressure method is one such dynamic 
method that can be dated back to Schrödinger [15]. To under­
stand this method, we start with a spherical soap bubble at 
equilibrium. For such a bubble, which have two liquid–gas 
interfaces, the Young–Laplace equation becomes:

∆P =
4σ
R

,� (1)

in which ∆P is the pressure difference inside and outside the 
bubble and R is the radius of the bubble. In principle, equa­
tion (1) can be used directly to obtain the surface tension by 
measuring the pressure difference, either using a pressure 
transducer or a liquid column, and measuring the size of the 
bubble using a camera. Note that this is still a static method. 
In this method [14, 16–19], on the other hand, the pressure 
differences are very small for bubbles with reasonable sizes, 
hence it is not easy to reach high accuracy in pressure mea­
surements. In addition, as equation (1) indicates, the pressure 
difference decreases as bubble grows, which makes it difficult 
to generate a bubble and maintain it at desired size. In order 
to overcome the difficulties associated with the static method, 
it is proposed to measure only the maximum bubble pressure 
during the expansion of a bubble [16, 20]. As a gas is slowly 
injected through a small tube immersed in a liquid, a bubble 
will form and grow at the tip of the tube. The pressure inside 
and outside the bubble varies as the bubble grows. This pres­
sure difference reaches a maximum when the bubble is hemi­
spheric, at which its radius is the smallest and equals the inner 
radius of the tube. The surface tension can thus be obtained 
from equation (1) as the radius of the tube is known and the 
maximum pressure is measured. This method eliminates the 
need to measure the size of the bubble and the need to main­
tain the bubble at steady state. On the other hand, it needs to 
determine the maximum pressure of a time series and the gas 
injection process should be slow to avoid the transient effects.

In this paper, we propose a laminar jet-discharging method 
which obtains the surface tension by measuring the dynamic 
evolution of the radius of a soap bubble. We present the method 
below and compare its result with that from a new pendant 
drop method that gives an explicit measurement of surface 
tension, avoiding iteration and proper initialization as in more 
popular algorithms based on multivariable minimization. We 

tested our pendant drop method against ADSA and the results 
are in good agreement. We show that the jet-discharging 
method has good accuracy and is easy to use, without the need 
of expensive equipment.

2. The method

2.1.  Laminar-jet-discharging method

As we discussed above, previous methods to measure the sur­
face tension of soap bubbles rely on the static pressure bal­
ance given by the Young–Laplace equation (1). The difficulty 
associated with this approach lies on the fact that the pressure 
difference is inversely proportional to the size of the bubble, 
which results in very small pressure differences that are hard 
to measure and to control accurately for bubbles with reason­
able sizes.

Here we propose to utilize the Young–Laplace equation for 
a bubble that is discharging but the volume change is so slow 
that the bubble is in a quasi-static state. A simple mass balance 
of the bubble gives

dV
dt

=
d
dt

(
4π
3

R3
)

= 4πR2 dR
dt

= −Q,� (2)

where R is the radius of the bubble and Q is the volume dis­
charging rate of the bubble. In equation (2) we have assumed 
that the density of the air in the bubble is uniform and remains 
the same when it discharges from the bubble. This assumption 
will be justified later in the appendix.

Now the question is to maintain the volume discharging 
rate Q in a well-controlled manner. Our method is to let the 
bubble discharge through a long tube with a small diameter. 
For a tube that is long enough, the pressure difference across 
the tube, which is the same as the pressure difference inside 
and outside the soap bubble given by the Young–Laplace 
equation, drives a laminar flow in the tube. Again, if the size of 
the soap bubble varies slowly, the pressure difference changes 
slowly and the flow may be regarded as nearly steady. In that 
case, the volume flow rate through the tube is given by the 
well-known Hagen–Poiseuille solution:

Q = πr2
0U = πr2

0
r2

0

8µ
∆P
L

,� (3)

in which U  is the average air velocity in the tube, µ  is the 
dynamic viscosity of air, r0 and L are the inner radius and the 
length of the tube, respectively.

Combining equations  (1)–(3), we obtain an equation  for 
the evolution of the bubble radius

4πR2 dR
dt

= − πr4
0

2µL
σ

R
,� (4)

which gives the instantaneous surface tension of the bubble in 
terms of the rate of change of the bubble radius

σ = −8µLR3

r4
0

dR
dt

= −2µL
r4

0

dR4

dt
.� (5)
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If the surface tension remains constant during discharging, 
then this equation can be integrated to yield

R4
0 − R4(t) =

r4
0σ

2µL
t,� (6)

where R0  =  R(t  =  0) is the initial radius of the soap bubble. 
Equation (6) shows that for bubble with constant surface ten­
sion σ, R4(t) decreases linearly with time and the slope of the 
linear relationship is proportional to σ, which provides an easy 
way to measure the surface tension: with known tube radius 
r0, length L, gas viscosity µ , then measuring the bubble sizes 
at two different times R1 = R(t1) and R2 = R(t2) is enough to 
determine σ.

In the derivation above, we made several assumptions to 
simplify the derivation. In the appendix, we discuss in detail 
the conditions for these assumptions to be valid, and we show 
that for typical experiments with soap-bubbles, the examples 
shown in this work, all these assumptions indeed hold.

2.2.  A new algorithm for the pendant drop method

To verify the jet-discharging method proposed here, we also 
measured the surface tension from the pendant drop method, 
but with a slightly different implementation. As shown in 
figure  1, if we consider the force balance of the lower part 
of the drop that has a height of z1 above the bottom point, 
denoting the radius of the drop at height z as r(z), we have

F1 cos(θ1) = (P1 − Pa)πr2
1 + G� (7)

where F1 = σ · 2πr1 is the force along the interface on this 
part of the drop due to surface tension, Pa is the pressure of the 
atmosphere at the bottom point, P1 is the pressure at z  =  z1, and 
G = ∆ρg

∫ z1

0 πr2(z)dz is the gravitational force on the lower 
part with ∆ρ the density difference between the soap solu­
tion and air and g the gravitational acceleration. We choose 
the coordinate z pointing upward with origin on the bottom 
point of the drop. Note that the relation between P1 and Pa is 
not straightforward and is one of the uncertainties in previous 
pendant method. Here we note that the liquid pressure at any 
height is P(z) = (P0 −∆ρgz). Substitute P1 = P0 −∆ρgz1 
into equation (7), and note ∆P0 = P0 − Pa, we obtain

F1 cos(θ1) = (∆P0 −∆ρgz1)πr2
1 + G.� (8)

This equation was used directly by Danov et al to measure 
the surface tension of pendant drops [8], in which a pressure 
transducer was used to measure ∆P0, the pressure difference 
at z  =  0. The accuracy of the surface tension measurement 
thus depends on the accuracy of the pressure measurement, 
in addition to the accuracy of the drop profile measurement.

Here we propose a method that avoids the need to measure 
the pressure difference ∆P0. We note that if one divides equa­
tion (8) by πr2

1 and applies it at two different heights z1 and 
z2, then their difference does not depend on ∆P0. In that case 
we obtain,

σ =
1
2
∆ρg

×
z1 − z2 + r−2

2

∫ z2

0 r2dz − r−2
1

∫ z1

0 r2dz
[
r2

√
(r′z2

)2 + 1
]−1

−
[
r1

√
(r′z1

)2 + 1
]−1

� (9)

in which we have used cos(θ) = [1 + (r′z)
2]−1/2, with 

r′z = dr/dz, i.e. the slope of the profile of the drop. This equa­
tion can be used to determine the surface tension, and we note 
that the second derivative of r(z) does not appear in it, which 
means that there is no need to perform high-order numerical 
differentiation, an operation that usually magnifies measure­
ment error. It is worth mentioning that the analysis procedure 
proposed here can also be applied to the sessile drop method.

Next, we give a brief description of our experimental setup 
and the images of the bubble and the drop obtained from the 
experiments.

3.  Experimental setup

Figure 2(a) shows a sketch of our experimental system. The 
bubble was created at the end of a long stainless tube with 
length L and inner radius r0. We tested three kinds of tubes with 
different lengths and radii: L  =  204 mm and r0  =  0.765 mm, 
L  =  204 mm and r0  =  1.00 mm, and L  =  500 mm and 
r0  =  0.765 mm. Our tests showed that all tubes ensured 
Hagen–Poiseuille flow inside and the results obtained from the 
different tubes are all consistent, which confirmed our theor­
etical analysis shown in the appendix. We chose the tube with 
intermediate L/r0 ratio, i.e. the one with length L  =  204 mm 
and inner radius r0 = 0.765 ± 0.003 mm, to carry out all the 
experiments reported here. The inner radius of the tube was 
determined by taking an image of the tube exit under a micro­
scope. The inner edge of the tube was then detected using gra­
dient edge detection method (using the Canny algorithm). The 
inner radius is then determined from least-square fitting of 
those edge pixels to a circle. The uncertainty in tube radius is 
estimated from the pixel size of the digital image. This uncer­
tainly of 0.4% in r0 gives an uncertainly of 1.6% in the mea­
sured surface tension, as indicated by equation (6). The bubble 
was first inflated with air up to a size of R0 ≈ 15 mm using a 
syringe pump. After waiting a few seconds for the air trapped 
in the bubble to settle, the syringe pump was detached and the 
bubble started to discharge through the tube.

To avoid possible effects on surface tension due to the vari­
ation of environment temperature, the bubble was placed in 
a constant-temperature chamber consisting of two glass con­
tainer and a water jacket in between, as shown in figure 2(b). 
The water in the water jacket was continuously cooled by a 
cooling coil connected to a chiller. The water temperature was 
maintained constant by switching on/off an electric heater 
in the water jacket according to the water temperature. We 
conducted experiments for water temperature in the range of 
10 °C–50 °C. At each temperature setting, the temperature 
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variation of the air in the chamber was maintained within ±
0.1 °C.

The soap solution is a mixture of pure water, glycerol, and 
the ‘Dawn’ detergent. The mass ratio of glycerol in the mix­
ture was always at 10%, while the mass concentration of the 
detergent varied from cdawn = 2%–32%, which corresponds 
to mole concentrations of sodium dodecyl sulfate (SDS), the 
effective surfactant in the detergent, from cSDS = 20 mol m−3 
to 320 mol m−3. We note that this concentration range for SDS 
is usually referred to as the ‘saturation range’, i.e. the surface 
tension of the solution does not change with the SDS concen­
tration any more [21–23].

The deflating process of the soap bubble was illumi­
nated by backlighting with an LED white light source and 
was recorded by a digital camera as shown in figure 2. To 
achieve homogeneous illumination, a ground glass diffuser 
was placed between the LED light source and the bubble. As 
shown in figure 3, the images of the bubble thus appear darker 
than the background, which facilitates subsequent image pro­
cessing to measure the radii of the bubbles. The image was 
2560 × 1600 px with a spatial resolution of 33.3 µm px−1,  
and the camera frame rate was set to 10 frame s−1 at the 
beginning stage of the deflation and 20 frame s−1 in the later 
stage as the bubble size varies highly nonlinearly with time 
(because R4(t) is linear in time).

Figure 4 shows the experimental image of the pendant drop 
method. The drop is also darker than the background while the 
center of the drop is brighter as the drop works as a small lens 
and thus focuses light to its center. The pendant drop images 
were taken at 2560 × 1600 px with a spatial resolution of  
9.8 µm px−1. As the image is stationary, the camera frame 
rate is inessential and we used 24 frame s−1 for convenience. 
The surface tension were calculated by analyzing the shape of 
the drop edges on those images and using equation (9) given 
above.

To check the pendant drop method proposed here, we 
measured the surface tensions of water-air, ethanol-air and 

glycerol–air interfaces, all at 30°. In each case, ten drops 
were recorded and their images analyzed to give the sur­
face tension. The averaged values are shown in table  1, 
together with the reference values for the pure fluids [24, 25].  
As a further check of our pendant drop method, we used  
the commercial software DSA4 from Krüss GmbH to analyze 
the same pendant drop images using the ADSA algorithm. 
The results are also shown in table 1. The error bars shown  
are the maximum deviations from the average among the ten 
different measurements. Table  1 shows that for these pure 
fluids, the results of our pendant drop method are in good 
agreement with those from DSA4 and with the reference 
values.

4.  Experimental results and discussion

4.1.  Result from bubble-discharging measurement

For each image of the deflating bubble, similar to those shown 
in figure  3, we performed gradient edge detection method 
(using the Canny algorithm) to identify the edge pixels of the 
soap bubble. By fitting those edge pixels with a circle using 
least-square-fit, we obtained the radius of the bubble at that 

Figure 1.  (a) Sketch of the experimental setup, including the LED light source, the ground glass diffuser, the soap bubble, the constant-
temperature chamber, the digital camera, and the computer for image analysis. (b) The constant-temperature chamber consisted of two glass 
containers with a water jacket in between.

Figure 2.  The force balance of the lower part of the drop.
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time, as shown in figure  5. We then plotted the change of 
bubble radius with time in the form of R4

0 − R4(t) versus t as 
given by equation (6).

Figure 6(a) shows the data for bubbles with different deter­
gent concentrations cdawn = 2% and cdawn = 16%. In both 
cases, the experimental data lie on straight lines. Fitting the 
data with equation (6), and substituting in the known param­
eters r0, µ , and L, we obtained the surface tension of the air/
soap-water interface at the given temperature and detergent 
concentration. In figure 6(b), we show the instantaneous sur­
face tensions as calculated from equation (5) for the two cases, 
together with the constant surface tension that we measured 

Figure 3.  Experimental images of a deflating soap bubble at different time t of the discharging process. The concentration of the detergent 
in the soap solution is cdawn = 2% for (a) and cdawn = 10% for (b). The temperature of the air in the constant-temperature chamber is 
T  =  30 °C.

Figure 4.  (a) An experimental image of the pendant drop at 
cdawn = 2%. (b) An experimental image of the pendant drop at 
cdawn = 16%.

Table 1.  Measured interfacial tensions of pure liquids in air.

Interfaces
Ref. value 
(mN m−1)

DSA4 
(mN m−1)

Equation (9) 
(mN m−1)

Water-air 71.2 70.0 ± 2.9 69.9 ± 2.0
Ethanol-air 21.4 21.3 ± 0.7 21.1 ± 0.3
Glycerol-air 62.8 63.4 ± 1.0 63.9 ± 2.2

Figure 5.  Identification and fitting the edge of the bubble for 
cdawm = 16% at t  =  40 s. The green dots are the points on the edge 
of the bubble and the red circle is the fitting result.

Meas. Sci. Technol. 31 (2020) 035302
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from straight-line fitting using equation (6). The instantaneous 
dR4/dt was obtained by performing a convolution operation 
of the measured R4(t) data with a Gaussian derivative kernel, 
which combines smoothing and differentiation [26].

4.2.  Result from pendant drop measurement

For images of the pendant drops as shown in figure  4, we 
detected the edge of the drop and obtained the relation r(z) 
versus z at steps of ∆z = 1 px  =9.8 µm. As the drop size is 
typically a few millimeters, this resolution is very high, which 
allows us to compute the derivative r′(z) by finite differences. 
Figure  7(a) shows the curves r(z) for drops with detergent 
concentration cdawn = 2% and cdawn = 16%. To calculate the 
surface tension σ from equation (9), we choose z2 at a position 

close to the rod end and varied z1. The results corresponding 
to the two cases of figure  7(a) are presented in figure  7(b) 
with respect to the position z1. Equation (9) gives a constant 
value of σ, independent of the value of z2 − z1. The results in 
figure 7(b) indicate that for small values of z2 − z1, the dif­
ference is very small so that measurement errors have a large 
effect, while for large values of z2 − z1, which is achieved by 
having small z1 values, the end effect of the drop is significant 
because the derivative r′(z) changes rapidly for small z (note 
that r′(z) = ∞ at z  =  0) and hence it is difficult to measure 
accurately. However, for intermediate values of z2 − z1, the 
equation gives constant values independent of z2 − z1, which 
is the value we report here. For droplets the size of 2–3 mm, 
this range is approximately 0.5–1.5 mm, or roughly 1/3 of the 
drop size.

0 20 40 60 80 100
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0
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0.4

0.6

0.8

1
R

04 -R
4  (

m
4 )

10-7
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c
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m

N
/m

)

Figure 6.  (a) Change of bubble radius with time, shown as R4
0 − R4(t) versus t. The open circles (‘°’) and the pluses (‘+’) are for bubbles 

with detergent concentration cdawn = 2% and cdawn = 16%, respectively. The solid lines are the least-square-fit of the data. For the two 
cases shown here, the bubble radii changes from approximately from 15 mm to 1.5 mm. (b) Measured instantaneous surface tension versus t 
for the two cases, which is calculated by equation (5) using the local derivative of dR4/dt from the data shown in (a). The straight lines are 
the corresponding average values calculated using equation (6).
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Figure 7.  The green open circles (‘°’) symbols are the experimental data at cdawn = 2% and the blue plus (‘+’) symbols is at cdawn = 16%. 
(a) The change of drop radius r with height z and (b) the surface tension versus ∆z = z2 − z1 obtained by equation (9), where z2 is fixed on 
the large z. Only the range 1/3–2/3 of z will be used to take average to obtain the surface tension.
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4.3.  Discussion

In figure 8, we show the surface tension σ, measured from the 
laminar-jet-discharging method, the pendant drop method, and 
from the DSA4 software, over a wide range of the detergent 
concentration cdawn. As the figure shows, the results of new pen­
dant drop method are in good agreement with those of DSA4 
over the entire range of surfactant concentration investigated. 
While the new pendant drop method and the DSA4 software 
were used for soap solutions at any detergent concentration, the 
bubble jet method was only used at cdawn � 2%, because it is 
difficult to generate a stable bubble at low surfactant concentra­
tion. For very dilute surfactant concentration, cdawn � 0.01%,  
σ approaches a constant value of 70 ± 2 mN m−1, which is 
close to but slightly less than 72 mN m−1, the surface ten­
sion of pure water. When cdawn increases from 0.1% to 2%, 
σ decreases very rapidly and then reaches another approxi­
mately constant value. Lin et al [22] also reported this behav­
iour of surface tension for SDS solutions when measured 
using a Wilhelmy plate surface tension meter. This varia­
tion of surface tension with surfactant concentration might 
be related to the formation of precipitates in the solution as 
reported in the experimental by Kralchevsky et al [27]. For 
detergent concentration higher than 2%, the surface tension 
measured from the jet-discharging method is nearly a con­
stant at σ ≈ 24.5 mN m−1, which is also the constant value 
given by the pendant drop method. We also found that it does 
not change with temperature. The results are consistent with 
measurements reported in [28, 29], which measured the sur­
face tension by means of stalagmometric methodology and 
the pendant drop method, respectively. Our result is slightly 
lower than that found by Bianco et al [14] using the dynamic 

maximum pressure method and by Sane et al [30] who mea­
sured the surface tension of flowing soap films. The values of 
surface tensions reported there are approximately 30 mN m−1 
for SDS solutions in the saturated range. The surface tensions 
measured with the pendant drop method agree with the results 
from the jet-discharging method for higher concentration 
(cdawn � 10%, or cSDS � 100 mol m−3). For lower concentra­
tions, the results from the pendant drop method are slightly 
smaller than those from the jet-discharging method.

4.4.  Outlook

In previous examples, we demonstrated the laminar-jet-dis­
charging method with the case in which the surface tension 
of the bubble varies very little and can be treated as a con­
stant, which corresponds to the situation when the surfactant 
in the solution is saturated. For lower concentrations of the 
surfactant, the surface tension could change with time during 
the deflation of the bubble as the surfactant concentration 
on the interfaces could vary with the surface area change. 
Then the value of R4

0 − R4 would not vary linearly with time. 
Figure 9(a) is an example of the measurement for a detergent 
concentration of cdawn = 0.5%, which is clearly nonlinear. 
With the help of high-speed imaging, our method is able to 
resolve the change of bubble radius with time, which then 
gives the instantaneous surface tension from dR4/dt by equa­
tion  (5) using the smoothing and differentiation algorithm 
[26], provided the simplifications discussed in appendix are 
still justified. The change of surface tension with time corre­
sponding to the case in figure  9(a) is shown in figure  9(b). 
While the surfactant on the surface of the bubble is unsatur­
ated, the concentration of surfactant will increase with the 
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Figure 8.  Surface tension measured by pendant drop method (blue circles ‘•’) using equation (9) and jet-discharging method  
(red triangles ‘�’) using equation (6) and DSA4 software (green square ‘�’). The inset shows a magnification of the range of data over 
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deflating of the bubble, which leads to the decrease of the 
surface tension. This type of measurement could reveal how 
surface tension changes with the film thickness of the bubble 
and hence would provide insight to distinguish wether the sur­
factant concentration on the bubble surface is described by the 
Gibbs relation or the Marangoni relation [31], which has been 
under intense debate [14, 23, 32–35]. This is a direction in 
research that our method could help to explore.

5.  Conclusion

There have been experiments designed to measure surface ten­
sion by monitoring the pressure in the bubble when charging 
the bubble. Because the pressure is inversely proportional to 
bubble size, it is difficult to maintain a stable charging process 
for accurate measurement. Consequently, previous methods 
typically use only a single point at which the pressure reaches 
maximum [14, 17]. In this work, we proposed a method that 
utilizes a quasi-steady laminar discharging process that allows 
an analytical expression for the change of bubble size with 
time to be derived, which can be used to measure the sur­
face tension. For soap bubbles, we discussed the conditions 
required for the discharging process to be laminar and quasi-
steady and showed that it can be achieved with commonly 
available materials. This method can also be used to measure 
the interfacial tension of other deformable surfaces such as 
gas bubbles in liquids.

As an effort to validate the bubble-discharging method, 
we also measured the surface tension using the pendant drop 
method [2, 4–8, 13]. For this method, we introduced a new way 
of data processing that avoids calculating the second deriva­
tive of the drop profile and hence may produce results with 
higher accuracy. For detergent-water solutions with a range of 
detergent concentrations, the surface tensions measured with 
the pendant-drop method and the bubble-discharging method 

and DSA4, are in good agreement with each other, and are 
consistent with data reported in the literature.

A notable feature of the bubble-discharging method is 
its simplicity to use—it does not require expensive devices. 
In our experiment, we verified the linear dependence of the 
change of the fourth power of bubble radius, R4

0 − R4(t), with 
time. Therefore, there is no need to record the image at high 
frame rate. An ordinary CCD camera that can take pictures at 
10 frame s−1 would be sufficient. In fact, the measurement can 
be done even with a common cellphone held still, without the 
need of any pressure measuring devices.
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Appendix.  Justification of the assumptions

To obtain equation (6), we made a few assumptions to simplify 
the derivation. Here we check the validity of these assump­
tions in typical experiments.

Incompressible flow

Our first assumption is that the density of air is nearly constant, 
or incompressible, in the entire system. This is because that 
for soap bubbles with sizes that are easily detectable, the pres­
sure difference is much smaller than the pressure inside the 
bubble. For example, for a bubble with radius R  =  1 mm, the 
pressure difference is about ∆P = 4σ/R � 300 Pa because 
the surface tension of soap bubbles is always smaller than that 
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Figure 9.  (a) The change of R4
0 − R4(t) with time for a dilute soap solution with detergent concentration cdawn = 0.5%. In this case, the 

surfactant concentration is unsaturated and hence its surface concentration on the interface changes with the surface area, which results 
in a nonlinear dependence of R4

0 − R4(t) with time. (b) Measured instantaneous surface tension, which decreases with time because the 
surfactant concentration on the bubble surface increases with time as the bubble deflates.
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of pure water/air interface σw = 72 mN m−1. Therefore, for 
an experiment conducted at constant temperature, the air den­
sity variation is merely

∆ρ

ρ
=

∆P
P

� 0.3%.� (A.1)

Laminar flow

For the volume flow rate to be given by equation (3), the air 
flow in the tube should be laminar, which requires that the 
Reynolds number is below the critical Reynolds number

Re ≡ ρU2r0

µ
=

ρr3
0

4µ2

∆P
L

=
ρr3

0σ

µ2LR
� Recr,

�
(A.2)

where Recr is the critical Reynolds number below which the 
flow is laminar. For Hagen–Poiseuille flow, experimental evi­
dences show that Recr ≈ 2040 [36]. This requirement can be 
easily satisfied by choosing appropriate tube length L. For 
example, if we use a tube with radius r0  =  1 mm, then using 
a length L  =  200 mm gives Re � 1400 for ∆P ≈ 300 Pa, 
which corresponds to the pressure difference for a pure water 
bubble with radius R  =  1 mm, much larger than the pressure 
difference for soap bubbles with sizes used in actual experi­
ments. We thus conclude that this assumption of laminar flow 
in the tube is valid, as long as we do not use tubes that are 
too short.

Quasi-steady flow

When using equation (3) to calculate the volume flow rate of 
air, we also assumed that the flow is quasi-steady flow, i.e. the 
change of the flow with time is very slow. To quantify this, we 
examine the momentum equation of the flow in the tube. If 
we ignore the entrance effect, the flow in the tube is unidirec­
tional, i.e. everywhere the fluid velocity is parallel to the tube 
axis. In addition, because of the axisymmetry of the flow, the 
Navier–Stokes equation reduces to a simpler form

∂U
∂t

= −1
ρ

dP
dx

+
µ

ρr
∂

∂r

(
r
∂U
∂r

)
� (A.3)

where U(r, t) is the fluid velocity, which, in general, is a 
function of time t and the radial distance to the tube axis 
r, but does not depend on the streamwise location x. The 
pressure P, on the other hand, depends only on x and that 
pressure gradient drives the flow in the tube. If the flow is 
steady, e.g. a pipe flow driven by a constant pressure gra­
dient, ∂U/∂t = 0 and the pressure gradient, which is given 
by dP/dx = −∆P/L balance the viscous drag, which gives 
the Hagen–Poiseuille solution. However, during the dis­
charging process, because the radius of bubble is changing, 
the pressure difference, and hence the pressure gradient, 
is also changing with time. Therefore the flow velocity is 
varying. For the flow to be quasi-steady, the magnitude of 
the unstable term must be small compared to the pressure 
gradient. The former may be estimated as

∣∣∣∣
∂U
∂t

∣∣∣∣ ∼
∣∣∣∣
dU
dt

∣∣∣∣ =
r2

0

8µL

∣∣∣∣
∂∆P
∂t

∣∣∣∣

=
r2

0

8µL

∣∣∣∣
∂

∂t

(
4σ
R

)∣∣∣∣ =
σr2

0

2µLR2

∣∣∣∣
dR
dt

∣∣∣∣ .
�

(A.4)

Now, using equations (3) and (A.4), we obtain the requirement
∣∣∣∣
∂U
∂t

∣∣∣∣
/ ∣∣∣∣

1
ρ

dP
dx

∣∣∣∣ ∼
ρσr6

0

64µ2LR4 =
r3

0

64R3 Re � 1.� (A.5)

Comparing with equation  (A.2), we see that the second 
equality in equation  (A.5) shows that this requirement is 
equivalent to a constraint on the Reynolds number modified 
by the geometric factor r3

0/R3.

Uniform pressure in the bubble

There is one more implicit assumption in our derivation of the 
formula used to measure the surface tension, which is that we 
assumed that the air pressure in the bubble is uniform and the 
bubble remains spheric. If the bubble discharge is too fast, then 
the air flow inside the bubble might be significant that necessi­
tates a pressure difference in the bubble, which could invalidate 
equation  (1). The maximum pressure difference inside the 
bubble is to accelerate the air in the bubble to the discharge 
speed, which could be estimated by the Bernoulli equation as

δPb ∼ 1
2
ρU

2
=

1
2
ρ

(
r2

0∆P
8µL

)2

.� (A.6)

If this pressure difference is much smaller than the pressure 
difference due to the surface tension of the bubble, then our 
derivation is valid. That is to say, we require

δPb

∆P
∼ 1

32
ρr3

0∆P
4µ2L

r0

L
=

r0

32L
Re � 1.� (A.7)

Spherical bubbles

In our analysis, we also assumed that the bubble is spherical 
during the entire process. As pressure itself is uniform as we 
discussed above, the only other mechanism that could break 
the spherical symmetry is gravity. If the gravitational force 
acting on the bubble is much smaller than the surface tension 
force, then the gravity effect is negligible. For a soap bubble, 
this effect could be made quantitative by the Bond number

Bo ∼ ρgRh
σ

∼ ρgR2h
σR

∼ ρgV
σR

� (A.8)

in which g is the gravitational acceleration, h is the thickness 
of the bubble and V  is the volume of the soap-solution droplet 
before blowing the bubble. The critical Bond number may be 
estimated from the situation when gravitational force on the 
bottom half of the bubble exactly equals the surface tension 
force, i.e.

1
2
ρgV = 2σ2πR,� (A.9)
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which gives

Bocr ≡
ρgV
σR

= 8π.� (A.10)

In our experiments, V  is about 5 mm3. Therefore, Bo varies 
from approximately 0.1–1 for bubble radius decreasing from 
20 mm to 2 mm, which is much smaller than Bocr . Hence the 
gravitational force should not cause much deformation of the 
bubble. It is also verified from our measurement—the bubble 
images are almost perfectly circular.
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