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Abstract
The entropy of an ordinary (photon) laser and an atom laser (Bose condensate) is calculated. In
particular, the nonzero entropy of a single mode laser or maser operating near threshold is
obtained. This result is to be compared with incorrect arguments frequently made in the study of
the maser heat engine to the effect that at threshold maser radiation is characterized by an infinite
temperature and its entropy is zero. Similarly, the entropy of the ground state of a Bose–Einstein
condensate (a.k.a. the atom laser) is also calculated for the first time. This is to be compared with
the textbook wisdom which holds that: ‘The condensed particles ... are condensed in momentum
space, a set of stationary particles ... having zero energy and zero entropy.’ On the other hand,
the BEC total entropy is found to be equal to that of the excited state entropy. This is true
because the correlation entropy between the ground state and the excited states is equal and
opposite to the ground state entropy. Furthermore, we find that the entropy of the radiation
emitted by atoms falling into a black hole (BH) can be easily calculated by a laser type quantum
master equation. The entropy thus calculated has much in common with Bekenstein–Hawking
BH entropy.
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1. Introduction

Studying the entropy of thermal light led Planck to the
quantum of action and Einstein to the photon concept. Half a
century later the maser/laser appeared on the scene and it
was shown that the three level maser could be regarded as a
kind of quantum heat engine [1] yielding a quantum
equivalent to the Carnot cycle [2]. More recently it has been
recognized that quantum coherence in the lasing atoms
allows lasing without inversion [3–5]; and by extension that
we can extract work from a single heat bath (without vio-
lating the second law) via vanishing quantum coherence [6].
A clear analysis of the maser as a quantum heat engine has
been given [7]. As has an analysis of the Carnot bound on
masers without inversion [8] and laser cooling of solids
[9]; for a recent review of quantum thermodynamics
see [10].

The present work was initially stimulated by the studies of
Harris [11] on quantum heat engines and electromagnetically
induced transparency [12], in which he shows that:

ʻ[U]sing the second law, one may easily obtain
a result that using [the usual] Maxwell’s and
Schrödinger’s equations takes several pages of
calculations.’

In particular, he uses an entropy relation similar to that in [1]
for a maser/laser system driven by hot and cold radiation, as
in figure 1, given by1
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1 Equation (1) describes the entropy changes when a single hot (pump)
photon is absorbed and a maser and cold (entropy sink) photon are emitted.
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where n T,h h n T,c c[ ] are the frequency and temperature of the
hot [cold] monochromatic radiation resonant with the c a

c b[ ] transition, and dSmaser is the maser entropy change
associated with a change in the average photon number
of one.

The physics behind equation (1) is similar to the textbook
treatment of the classical Carnot heat engine (CHE) of
figure 1; in which the entropy change after a complete cycle
δSCHE as determined by drawing energy δQin from a high
temperature energy source and dumping energy δQout into a
low tempeature entropy sink is given by
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where δSengine is the entropy generated by engine inefficiency,
e.g. friction. By conservation of energy the work
d d d= -W Q Qin out and so we have the famous Carnot effi-
ciency
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Equation (1) is similar in spirit to equation (2) and as was
argued in [2], the change in entropy corresponding to a single
hot (energy source) photon absorbed and a maser photon
emitted together with a cold (entropy sink) photon is given by
equation (1). Now at threshold, the populations in ña∣ and ñb∣
are equal so the entropy change per photon of the maser
d n= S Tm m m is said [1, 2] to vanish since = ¥Tm . In such
a case equation (1) yields the Carnot quantum efficiency
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where we have used the fact that n n n= -  m h c. This
result is a good example in support of Harris’ point since the
derivation of equation (4) by conventional density matrix
techniques [13] takes a bit of algebra. Equation (1) ‘clearly’
applies below threshold when the emitted ‘laser’ light is
essentially thermal. But what if we are above threshold? One
often encounters statements such as: ‘because the maser
radiation is in a pure state, its entropy is zero.’ But the maser/
laser radiation is not in a pure state. And, as is shown in
section 2 and the appendix, the entropy of maser light is not
zero but is determined by the density matrix formulation of
the quantum theory of the laser [14] in which the photon and
atom laser statistics is calculated from the master equation
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where the gain and loss coefficients, G(n) and L, for the
photon and atom lasers are given in sections 2 and 3.

In section 2 we sketch the calculation of the laser/maser
entropy from the density matrix formulation of the quantum
theory of the optical maser [14] and compare it to the entropy
of high temperature single mode thermal light. Although the
laser/maser physics is semiequivalent, the numerical para-
meters and operating characteristics are not. This distinction
is to be kept in mind as we sort out the deep physics from
some conceptual inconsistencies contained in [1, 2].

In section 3, the entropy of the analogous ground state of
a Bose–Einstein [15] condensate, a.k.a.the atom laser is
presented. A summary and discussion is given in section 4.

Figure 1. (a) Classical Carnot heat engine (CHE) operates between high temperature energy source and low temperature energy sink. The
entropy change for a complete cycle is the sum of contributions from the hot energy source and the cold entropy sink together with the
entropy coming from the engine due to e.g.friction. (b) The laser driven by hot and cold thermal reservoirs is a quantum heat engine (QHE).
The entropy change for this QHE is the sum of single photon entropy changes due to the hot and cold light together with the contribution
associated with the entropy change due to a single photon added to the laser/maser.
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2. Laser entropy

In the quantum theory of the optical maser the gain coefficient
G(n) and the loss rate L of equation (5) are given by
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in terms of the laser parameter: α= linear gain, β=nonlinear
saturation coefficient, and the cavity loss rate γ=ν / Q is
governed by the cavity Q factor. As is shown in [14], the
steady state solution to (5) yields the n photon probability
distribution which can be written as
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hypergeometric function
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Just above threshold, e.g. α∼1.1γ, we may write ρnn in the
appealing form

r =
+

+
-A

n B
e , 8nn

n B
A

( )!
( )

which allows the photon distribution to be approximated by
the Gaussian
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Plugging ρnn given by equations (8) or (9) into the von
Neumann entropy equation
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we obtain the maser entropy
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We note that the entropy change implied by equation (11) due
to a change dnm in the average photon number is given by
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The preceding is to be compared with monochromatic
thermal light characterized by the density matrix
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where nt is the Planck function
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In this case, equations (10) and (13) yield the thermal black-
body entropy
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and the entropy change associated with dnt is given by
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Finally, we note that for a maser/laser well below threshold
G=α and S is given by equation (15) with =nm

a g - -1 1[( ) ] , and δSm takes the form
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3. Bose–Einstein condensation (BEC) (a.k.a. ‘Atom
Laser’) entropy

BEC has been dubbed the ‘atom laser’ [16] and it has been
shown that the density matrix treatment for the photons in a
laser cavity given by equation (5) also applies to the ground
state of the BEC. In this case the index n is replaced by n0
denoting the number of atoms in the lowest state having
energy ò0. Einstein taught us that for N atoms in a box the
average number in the condensate is = -n N T T1 c0

3[ ( ) ]
where Tc is the critical temperature2.

We are here interested in the probability of having n0 out
of N in the ground state of a parabolic trap for which

= -n N T T1 c0
3[ ( ) ]. This probability is given by the

diagonal elements of the ground state density matrix rn n,0 0

which obeys equation (5) with gain

k= -G n N n 180 0( ) ( ) ( )

describing the rate of addition of atoms (gain) to the ground state
due to the excited atoms ( ¹ k, 0k ) colliding with the walls
having temperature T and falling into the ground state at a rate κ.
Likewise atoms are removed (lost) from the ground state due to
interaction with the hot walls (temperature T) at a rate

k=L n N T T . 19c0
3( ) ( ) ( )

The master equation for rn n,0 0
obtained from equations(5), (18),

(19) has the steady state (r = 0n n,0 0
˙ ) solution given by [17]
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where = N T Tc
3( ) .

The BEC ground state entropy obtained by inserting (20)
into equation (10) can be plotted as a function of T/Tc; the
result is found to be in good agreement with the ground state
entropy obtained from exact numerical calculations for a
mesoscopic condensate of say 103 atoms.

Here we will simply note that for low-enough tempera-
tures the variance of the BEC atom distribution equation (20)
is governed to a reasonable approximation by N T TC

3( ) [17]

2 Einstein considered the case of a square well trap for which the T Tc
3( )

factor becomes T Tc
3 2( ) .
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and the BEC ground state entropy for a parabolic trap is found
to be3

p= +S k N T T
k

ln 2
2

. 21g CB
3 B( ) ( )

4. Laser entropy discussion

We now turn to a discussion and summary of our results.
1.Back to the quantum heat engine: As per section 3 the

change in entropy due to a single photon addition or sub-
traction is obtained from equations (12) and using the repla-
cement d d= = n n t 1˙ to obtain

d d= =S
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where n= n k Thigh B is the number of thermal photons in
the high temperature limit.

Hence, for a laser very near threshold with ~n 106 say,
then d ~ -S k10laser

6
B. If this is compared with the thermal

entropy change expression for high temperature k nB high, and
n= ~n k T 1high B for kBT and ÿν both around 1 eV, we see

that in this case δSlaser is negligible, and the Carnot efficiency
result of equation (4) is valid above threshold.

However, for a (microwave) maser with n ~ - 10 eV6

and ~k T 1 eVB , ~n 10high
6. So if ~n 10maser

6 then δSmaser

is comparable to the entropy change δSthermal. In such a case
δSmaser is not negligible. Equation (4) assumes δSmaser is small
to δSthermal but this will not generally be the case.

+ + S S S 0, 22h m c˙ ˙ ˙ ( )

which in view of equations(12) reads. Thus we are again led
to equation (4) even though we are now above threshold. But
for some problems such as the micromaser [18] nm is not a
large number. We leave this as an open problem to be treated
elsewhere.

2.The entropy is not given by a simple =S k WlnB type
expression given by equation (11) in the threshold region.
Well above threshold i.e.for (α−γ)/γ  0.1 the simple
form given this simple form is correct but not for
(α−γ)/γ∼10−3 as will be discussed elsewhere.

3.Laser Entropy and the laser linewidth: Indeed, the
source of the maser entropy is presaged by the insightful
statement of Morse [19] who says: ‘during a spontaneous
process Lthe entropy always increases.’ In fact it is precisely
the spontaneous (as opposed to stimulated) emission events
which are the source of the Schawlow–Townes optical maser
linewidth; and which are the source of the time dependence of
the laser radiation density matrix given by [17]

r r=h h
h

+ +
-t 0 e , 23n n n n

Dt
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where η measures the degree of off-diagonality as per
figure 2. Equation (23) implies the electric field
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where 0E is the electric field per photon and aºD n4 is the
laser phase diffusion coefficient [20]. The Fourier transform
of equation (24) is a Lorentzian centered at nl and with a full
width at half max given by

n
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D = =D
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2
2
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The physics behind the linewidth (25) is (partially) illu-
strated by writing the equations of motion for a maser below
threshold as

a g= + -n n n a1 , 26˙ ( ) ( )

a g= -E E b
1

2
, 26˙ ( ) ( )

where we here use the notation = á ñE E . Then, below
threshold, the steady state relation (26a) yields a g a- = n
and using this in (26b) yields a= -E n E2 ;˙ ( ) which implies
a phase diffusion coefficient a¢ =D n2 and a below
threshold linewidth

Figure 2. The density matrix equation of motion couples only elements of equal off diagonality η. For example in equation (5) for the photon
statistics h = 0.

3 Equation (21) applies when we are not too close to T=0. When we are at
T=0, r d= N n, 0 and therefore S(T=0) vanishes.
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Concluding this linewidth review we note that α is essentially
γ=ν/Q in steady-state; and we compare the proceeding
linewidth discussion with the ‘spontaneously generated’ laser
entropy flux below and above threshold in table 1. Another
way in which the laser linewidth and laser entropy are related
is discussed in the next paragraph.

4.Off-diagonality and more: several points should be
noted concerning the off-diagonal nature of the maser density
matrix and its entropy, a few of these are:

(i) As is seen from equation (11), the maser entropy well
above threshold takes the form of the famous
Boltzmann microcanonical entropy but is quite differ-
ent; for example, the entropy of a gas is extensive (i.e.
goes as the number of gas atoms) but the maser entropy
is not an extensive variable.

(ii) The factor of 2 in the linewidth encountered in going
from below to above threshold is a well known, if a bit
subtle, aspect of laser physics. On the other hand the
laser entropy flux, factor of 2 in passing through
threshold is due to the laser entropy going from nln
below threshold to nln above threshold.

(iii) The degree of off-diagonality η as it appears in
equation (23) can be large i.e.0�η�n where n can
be of order (or greater than) n . Hence such off-diagonal
character of the laser density matrix vanishes rapidly as
is shown by equation (23). The paper by Chen and Fan
[21] treats the off-diagonal term but uses a linear gain-
loss master equation.

5.On the entropy of the BEC ground state entropy: We
note that in the thermodynamic limit the entropy of a Bose
gas [22] has the dependence

»S k N
T

T
3.6 . 28

C
B

3⎛
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⎞
⎠⎟ ( )

For a macroscopic Bose gas of say 1023 atoms ~S Nlng

is negligible compared to S. But for a mesoscopic BEC of
103 atoms =N T T 1c

3( ) when @T T 0.1;c and in such a
case ~S k4 B and Sg∼kB are of the same order.

We emphasize that the present BEC entropy analysis is
approximate but as will be further discussed elsewhere, it
gives a good account of the ground state entropy. This is to be

compared with conventional wisdom which one often hears
saying that [19]:

As expected, the n0 particles constituting the
‘condensate’ do not contribute to the entropy
of the system, while the N−n0 particles that
constitute the normal part do contribute.

The ground state entropy of a mesoscopic BEC yields many
interesting questions. For example, the relation between the
correlation entropy and the ground state entropy is an open
question.

6.Summary: The quantum entropy of a laser below, at,
and above threshold is well described by the quantum theory
of the maser. The entropy flux of the maser is not ‘zero’ and
this can be important for a complete analysis of the Carnot
bound of maser operation. A similar analysis of the quantum
theory of the ‘atom laser’ yields a nonvanishing BEC ground
state entropy.

The present paper poses many open questions and several
have already been noted. A few others are:

(i) The threshold α=γ region is interesting and should be
further investigated.

(ii) It would be interesting to extend the laser entropy—
linewidth discussion to include the noise generated
correlated emission laser and lasing in the presence of
squeezed light.

(iii) The treatment of the full nonlinear master equation [17]
is challenging, and its application to the study of the
time evolution of laser entropy is a challenging
problem.

(iv) The ground state entropy is not simply the total entropy
minus the excited state entropy, as will be shown
elsewhere.

5. Entropy of radiation emitted by atoms falling into a
black hole (BH)

We consider [23] an atomic cloud consisting of two-level
atoms emitting acceleration radiation as it falls into a BH. We
find that the quantum master equation technique, as devel-
oped in the quantum theory of the laser, provides a useful tool
for the analysis of BH acceleration radiation and the asso-
ciated entropy. In particular, we derive the equation of motion
for the density matrix of the emitted radiation where the
density matrix is given by equation (30).

We find that once we have cast the acceleration radiation
problem in the language of quantum optics and cavity
quantum electrodynamics, the entropy follows directly. That
is, once we calculate ṙ for the field produced by accelerating
atoms, we can use the von Neumann entropy relation to write

r r= -S k Tr ln , 29p B˙ ( ˙ ) ( )

where Sp is the entropy of the emitted photons.
We obtain an evolution equation for the radiation fol-

lowing the approach used in the quantum theory of the laser

Table 1. The spontaneously generated entropy flux for hot thermal
light ( nk TB  ) having average photon number n= n k Th B with
the flux of a laser above threshold having average photon number nl
where κ is defined following equation (12). This is compared with
the laser linewidth below and above threshold which are well known
to differ by a historically bothersome factor of two, the origin of
which is clear in the maser entropy flux.

Below theshold Above threshold

Laser linewidth n Q

nh

n Q

n2 l

Entropy flux k
nh

k
n2 l
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[14]. As is further discussed in [23], the coarse-grained time
rate of change of the radiation field density matrix for a
particular field mode is found to be

r k
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r r

k
w

r r

=- + -
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x
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- -

+ +

R t
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where g is the atomfield coupling constant, x pn= r c2 g ,

x
x

=R
sinh

, 31
( )

( )

and ν is the photon frequency far from the BH. Using
equations (29) and (30), we find that the von Neumann
entropy generation rate is

å
p

n=
n

nS
k r

c
n

4
, 32p

gB˙ ¯̇ ( )

where rg is the Schwarzschild radius, and nn̄̇ is the flux of
photons with frequency ν propagating away from the BH.
This result is extended in [23] to obtain

=


S
k c

G
A

4
, 33p p

B
3

˙ ˙ ( )

here =A m M A2p p
˙ ( ˙ ) is the rate of change of the BH area

due to photon emission which we calculate using laser theory
techniques.

Thus we find that atoms falling into a BH emit accel-
eration radiation which looks much like (but is different from)
Hawking BH radiation. We find the entropy of the accelera-
tion radiation via a simple laser-like analysis, which we call
horizon brightened acceleration radiation entropy to distin-
guish it from the BH entropy of Bekenstein and Hawking
[24]. More on this problem is to be found in [23]. See also
[25]. This brief summary given here will hopefully alert the
laser physics communities to this interesting blackhole
connection.
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Appendix. Laser entropy details

From the quantum theory of the laser [5, 14] we have
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The α, β, γ laser parameters are defined in the text following
equation (6). In the usual laser limit of large α2/βγ we have
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which inserted into (A.1) yields equation (8).
To calculate the entropy we write the entropy

å r r= -S k ln ,
n

nn nnB

using equation (8) as
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Similarly, as will be discussed in detail elsewhere, the
BEC ground state density matrix can be written as

r =
-

-
-

N n
e , A.8n n

N n

,
0

0 0

0H H

( )!
( )

which leads to a ground state entropy

p= + =S k W
k

Wln
2

, 2 , A.9g g gB
B H ( )

where = N T Tc
3H ( ) . Equation (A.9) is correct over a wide

range of temperature, however equation (A.8) shows that
r d~n n N n, ,0 0 0

and the entropy vanishes at T=0. It should be
noted that the BEC ground state entropy (A.9) is not the total
entropy minus the excited state entropy as will be discussed at
length elsewhere.
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