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Abstract
The motion of a thin suspended film of an incompressible fluid under the effect of an external
electric field is studied. The effects of the interfacial Maxwell stress, surface tension and
intermolecular forces are studied, in which the forces are included in the Navier–Stokes
equations. The perturbation technique is used to solve the given model. The obtained results
show that, the fluid moves in a rotating pattern and the fluid particles move along the streamlines
with different velocities. The free boundaries show good agreement with experimental data. In
addition, the stability criteria are examined in the present model.

Keywords: electrohydrodynamics (EHD), thin films, mathematical modeling, perturbation
techniques, orr-sommerfeld equation
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1. Introduction

Many scientific and industrial problems involve the flow of
thin liquid films (see, for instance [1–8]). Thin film technol-
ogy is used extensively in many applications including
microelectronics, optics, magnetism, hard and corrosion
resistant coatings, biotechnology, micro-mechanics, lasers,
and medicine. Additionally, a new mathematical formulation
of the electrohydrodynamics (EHD) of flows in a thin sus-
pended liquid film was introduced in [9]. At larger scales the
ascent of buoyant molten rocks (magma) below solid rocks
and the spreading of lava on volcanoes are further problems
of geological research [10–12]. Rotating thin films is crucial
for mass transfer and heat, separation or mixing operations in
diverse miniaturized technologies such as power generators in
microfuel cells, sensors, lab-on-a-chip devices and drug
delivery modules as introduced in [7].

Shirsavar et al [13] conducted an experiment on an electric
current passing through a suspended film between two plates

and created an electric generator in the liquid film. They named
this experiment ‘liquid film motor’ which was presented in
[13–15]. Recently, a theory for the rotation of suspended liquid
film between two plates which rotates under the effect of an
external electric field was introduced in [16]. Many works which
include the motion form and the no slip boundary conditions are
interpreted by this theory, such as [9, 14, 15].

In [9], the authors calculated an averaged rotating flow in a
thin film by the edge effects in which the surface tension and the
deviations of the free surfaces of a film from the planes were not
considered. Additionally, their work showed that the jump of an
electric field across a water dielectric interface can produce (due
to electrokinetic effects) the tangential velocity of a fluid that, in
turn, can maintain a steady rotating flow in the film. The effects
of electric field generated stress (Maxwell stress), the free sur-
face potential, surface tension, and the intermolecular van der
Waals force have been studied in many works [17–20].

The aim of this paper is to study the EHD of a thin
suspended liquid film where the flows are driven by a con-
stant external electric field applied at the edges of the film in
free surface flow. In the present model, the surface tension
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and the deviations of the three dimensional free surfaces of a
film from the planes are included which are not considered in
recent works such as [7, 9].

This paper is divided into five sections as follows: In the
first section, the characteristics of the physical system are
presented. In the second section, the theoretical formulation
of rotating flows in a square film is studied based on their
velocity fields. In the third section, a dimensionless version of
the given equations is obtained. The formulation of the pre-
sent model and the results are given in the fourth and fifth
sections.

2. Theoretical formulation

The rotating electrohydrodynamic flows in a suspended liquid
film subject to an applied electric field at the edges of the film
can be determined using the Navier–Stokes conservation of
mass and momentum equations. The physical system under
study consists of a rectangular thin liquid film with a free
surface. The equation for the nonlinear evolution of the
deforming surface is derived by considering both the hydro-
dynamic stresses and the Maxwell’s stresses with appropriate
boundary conditions.

The location of the free surface is represented by

( ) ( )=z h x y t, , . 2.1

The external electric field leads to a Maxwell stress σM in
the model. The total stress, sT is the combination of the
Maxwell’s stresses and the hydrodynamic stresses

( )s s s= + . 2.2T M H

In the absence of magnetic field, sM can be written as

( ( ) ) ( )s e= -EE E E I0.5 . . 2.3M
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where, ε, p, δij, and I are the fluid permittivity, pressure,
Kronecker delta and unit matrix, respectively [21].

The total stress, sT can therefore be expressed as
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The corresponding electric field can be calculated as

( )f= -E , 2.5

where f is the electric potential. The first part in (2.4) is the
viscid hydrodynamic contribution, and the second and third
parts arise from interfacial electric field stresses given by the
Maxwell stress tensor.

Along the shear line (z=0), no-slip and no-penetration
boundary conditions ( )=v 0 are assumed. At the liquid free
surface, z=h(x, y, t), the normal and tangential stress bal-
ances are enforced and can be written as, respectively,

( )s gk=n n. . . 2.6T
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where gk is the capillary force with γ is the surface tension
and k = nDiv is the local interfacial curvature of the film
interface.

The location of the liquid-air free surface, z=h(x, y, t) is
defined by the following condition
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where, ( ) ( )= -F x y z t z h x y t, , , , , is a single-valued
function of x and y that vanishes on the surface and vis the
fluid velocity in Cartesian coordinates

( ) ( ) ( ) ( )= = º =v v x v xt u v w x x y z, , , , , , , . 2.11i

The dimensional equations governing the EHD of the
incompressible flow of a Newtonian fluid are the mass and
momentum conservation equations with the Maxwell and
hydrodynamic stress contributions
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The continuity equation is

( )=vDiv 0, 2.13

and the velocities satisfy the no-slip and no-penetration
boundary condition

=v 0.

The charge density is determined by summing the con-
centration distributions ck

( )år = Fa e c . 2.14e
k

k k

Here, Fa denotes Faraday’s constant, and ek is the
valence number of the kth species. This charge distribution
along with the external applied electric potentials generate an
electric field within the liquid that can be determined from the
Poisson–Boltzmann relation

( ) ( )e =EDiv q. 2.15
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Here, v is the flow velocity (m s−1), p is the pressure
(Nm−2), ρ is the liquid density (kg m−3), q is the charge
density (Cm−3), f is the electric potential ( ) EV , is the
electric field strength (Vm−1), ck is the molar concentration
for the kth component of a mixture ( )- imol m , k

3 is the den-
sity fluxes of the concentrations ( ) n- -molm s ,2 1 is the
kinematic viscosity ( )m s e, k

2 are the electric charges of
the components (in the units of the electron charge), εis the
permittivity of the liquid ε=εrε0, where εr is the relative
permittivity and ε0 is the absolute permittivity, C V−1 m−1,
and Fa is the Faraday constant (Cmol−1). In addition, we
define Dk and γk as the molecular diffusivity (m2 s−1) and
electric mobilities (m2 V−1 s−1) for the components of a
mixture, respectively. Using differential geometry, the surface
curvature can be written as

( ) ( )
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+ + + -

+ +

h h h h h h h h h

h h

2

1
.

xx yy xx y yy x x y xy
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The second boundary condition at the free surface (called
‘kinematic’) is formulated by considering that a fluid particle
on the free surface remains on the surface. Therefore,
executing the dot product v n. , the condition (2.10) can be
rewritten as

( ) ( )= + + =w h uh vh z h x y ton , , . 2.16t x y

The normal and tangential components of the viscous
stress vector at the interface, in which ni, and

( )ti
k are the

i–direction components of unit vectors, are the outward
component normal to the free surface and the two tangential
components to the free surface in the (x, z) and (y, z) planes,
respectively,
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Equation (2.16) represents a nonlinear boundary condi-
tion; the free surface h is an unknown function of time and
space and must be determined as part of the solution. Using
the relations (2.1)–(2.9), the dynamic boundary conditions
(2.6) and (2.7) are written as
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for the normal direction.
For small slopes, the tangent and normal vectors and the

curvature can be written in the following form
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so that the balance of the normal component and the two
tangential stress components at the free interface z=h(x, y, t)
may be described conveniently by
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3. Dimensionless equations

For the dimensionless variables, we utilize the following
transformations to render the problem dimensionless

[ ] [ ] [ ] ( )= = = x y a z h h t, , , , and . 3.1* * *

The velocities, on the other hand, scale as
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where, a* is the characteristic length in the plane of the film,

h* is the dimensional half thicknesses of the film and * is the
characteristic time.

The molar concentration, electric field, electric potential,
charge density and pressure are dimensionalized as, respec-
tively,
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Here, * is the molar concentration, F* * is the char-
acteristic charge density,  a* * is the characteristic difference
in the electric potentials in the x direction, R* is the universal

gas constant, and T* is the absolute temperature of a solution.
The dimensional values of the kinematic viscosity n*,

diffusion coefficients Dk*, and dielectric permittivity e* are
linked to their dimensionless counterparts by

( )n
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e
e

= = =
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a
D

D

a a F
, , and . 3.5k

k
2 2
* *

*

* *

*
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* * *

The governing equations describing the EHD flows of a
multicomponent fluid are converted into the following
dimensionless forms by choosing the references scales listed
above
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The nondimensional form of the conservation equations
of a mixture is
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The material derivative, the gradient and the horizontal
Laplacian operator in the xy plane can be expressed as,
respectively,
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Here, ( )=v u w, is the velocity field and ( )=u u v, are
their x and y projections,ik andIk are the planar and trans-
versal density fluxes of the concentrations, and the parameter
ϒ characterizes the ratio of the transport of concentrations by
an electric field and by diffusion.

The corresponding dimensionless version of the bound-
ary conditions is:

On the film boundaries:

( )= = =u v w 0. 3.14

The no-leak conditions for concentrations are:

∣ ∣ ( )= ==- =+I I0, 0. 3.15k z k z h1

The vanishing normal electric current is:
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The kinematic condition (2.16) at the free surface z=h
(x, y, t) is the following:

( )= ¶ + ¶ + ¶w h u h v h. 3.17t x y

Using the condition (3.16), the continuity of the shear
and normal stresses (2.24)–(2.26) at the free surface z=h(x,
y, t) can be written as, respectively,

( ) ( ) ( )d n d f f d f f+ + - =u w h 0, 3.18z x x z y x y
2 2 2

( ) ( ) ( )d n d f f d f f+ + - =v w h 0, 3.19z y y z x x y
2 2 2

( ) ( )
( )

d d n f f f f gd- + - + = +p w h h h h2 2 .

3.20

z y z y x z x yy xx
2 2 3

The dimensionless form of the Navier–Stokes
equation (2.12) with the Maxwell and hydrodynamic stress
contributions can be written as
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4. Formulation of the model

4.1. The total electric potential and velocity

The electric potential field in the system is developed as a
superposition of three potential fields. The first field is due
to the formation of the internal potential and is represented
by the potential f1(z). The second and the third fields are
due to the external electric field E0, which are represented as a
gradient of the potential f2(x), f3(y). Then the total electric
potential can be written as

( ) ( ) ( ) ( ) ( )f f f f= + +x y z z x y, , . 4.11 2 3

Upon using the classical Poisson–Boltzmann relation, the
potential distribution is obtained as

( )f
d

r= - =
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q
q

, , 4.2zz

2

where, ρ is the charge density and ò is the dielectric permittivity,
such that the charge density follows the Boltzmann distribution.
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Thus, the total electric potential can be obtained as
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where the Debye number is written as an equation of the Debye
length and the film thickness as
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The Debye length depends on the ionic concentration as
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C
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,d

k

where Ck is the ionic concentration, and e1 and e2 are the external
electric fields in the x direction and y direction, respectively.

Now, we can define the zeta potential ratio, ZP, one of the
most important functions of our study:

h
h

=Z ,P
interface

film

where ηinterface is the potential of the interface and ηfilm is the
potential of the film. ZP at the free surface is a function of a
variety of parameters involving the fluid and interface properties
as introduced in [21]. The solution of the model equation at the
boundaries can be obtained by using the uniform property of the
thin film thickness. Therefore, the basic equations can be for-
mulated for the initial velocity U(z) as follows
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with boundary condition
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Figure 1 shows that the initial velocity exhibits the same
behaviour under the surface for different values of the surface
zeta potential, ZP and then changes on the surface. This beha-
viour produced what is called interfacial stress. During the study
of the system stability, the interfacial stress was detected by the
interfacial polarity. Furthermore, the system is stable at the
positive values ZP=0.5 and ZP=1, as shown in figure 1
(curves 1 and 2). However, the negative values ZP=−0.5 and
ZP=−1 make the system unstable, as shown in figure 1 (curves
1 and 2). The interfacial polarity with respect to the zeta potential
controls the system stability, as it reduces the interfacial stress.

4.2. Normal mode analysis

The perturbation of the variables is as follows:

( ) ( ) ¯ ( )= +u x y z U z u x z y, , , , ,

( ) ¯ ( )=v x y z v x z y, , , , ,

( ) ¯ ( )=w x y z w x z y, , , , ,

( ) ¯ ( )= +h x y t h h x y, , , ,

where the bare variables correspond to the perturbation. Using
normal mode analysis with the perturbation parameters, the
stream function is given as

˜ ( ) ( ) ( )y y= + -x y z t z, , , e ,k x y cti

¯ ( ) ( )= + -h x y H, e ,k x y ct
0

i

where k is the wave-number and c is the wave velocity.

4.3. Derivation of the model

The model equation is obtained by using a derivation of the
Navier–Stokes equations; then, the final equation becomes
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Eliminating the pressure from the Navier–Stokes equations,
we obtain
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4.4. The Orr-Sommerfeld equations

The Orr-Sommerfeld equations are obtained by using the
perturbation technique as shown in [18], and then the model
equation describing the thin film moving with the initial

Figure 1. The initial velocity is plotted as a function of the wave-
number for different values of the surface zeta potential ratio, ZP
at Dn=0.1.
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velocity under the effect of an electric field is given by
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After substitution with ū and w̄, we obtain the mathematical
model, which is given by
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the boundary conditions for the normal direction
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where D is the derivative of ψ(z).

The solution of the eigenvalue problem is obtained by
considering an expansion of the eigenvalue and the eigen-
function around their solutions for

= +c c kci0 1

y y y= + ki .0 1

The solution of the Orr-Sommerfeld equation is obtained
using the perturbation expansion method.

The set of equations with zero order are given by

( ) ( )n y f f= -D q q 4.12z x x z
4

with the boundary conditions

( ) ( )n y f=D h q , 4.13x
3

( ) ( )nd y f f= -D h , 4.14x z
2 2

( ) ( )n y =D 0 0, 4.15

( ) ( )ny =0 0. 4.16

By solving the above set of equations, we obtain
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The set of equations with first order is given by
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Then, we obtain ν ψ1 as an expansion such that
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Figure 2. The stream function is plotted as a function of the wave-
number, k and the surface tension, γ.
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We can obtain c1 from the kinematic boundary condition as

y
=c

H
,1

1

0

Therefore, c1 can be expanded as follows

( )= + + + +c B B D B D B D B D . 4.20n n n n1 0 1 2
2

3
3

4
4

The solutions of c1 and ψ1 are calculated in appendix A.

5. Results and discussion

5.1. The stream function

After the solution of the zero- and first-order Orr-Sommerfeld
equations, the stream function becomes

˜ ( ) ( ) ( )( )y y y= + + - +x y z t k, , , i e . 5.1k x y c t k c t
0 1

i 0
2

1

Figure 2 shows the three dimensional behaviour of the
stream function with the surface tension and the wave-number.

Figure 3. The left graph correspond to the rotation of the thin film in a laboratory experiment (liquid film motor) [13]. The right
graph describes the rotation of the thin film in our model.

Figure 4. The stream lines of the rotating film at t=5 s (the left graph) and at t=10 s (the right graph), Dn=0.5, Zp=1, e1=100 and
e2=100.
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This behaviour can be observed through the effect of the local
curvature. Thus, the external electric field appears, according to
which the thin suspended film rotates.

Good reviews related to fully formed rotation in thin
liquid film [13]. The rotating film can be seen in figure 3 (the
left graph). In this fluid regime, the rotation of suspended
liquid film between two plates which rotates under the effect
of an external electric field, all patterns which are also
observed in the proposed model as in figures 3 (the right
graph). This gives good agreement between the experiment
and the rotation of the thin suspended film in our model.

Figure 4 shows the rotation of the thin film during the
first interval [5, 10]. The rotation of the thin film appears in
the figure is depended on the angular velocity at different
moments of time.

Figure 5 shows the rotation of the thin film during the
second interval [15, 20]. The figures of the stream function
show the rotating of the thin suspended film as the stream
function equation describes the movement of the thin film by
containing the wave-number and the wave velocity. The thin
suspended film rotates when the external electric field urges free
charge on the surface of the thin film that pushes the current
stimulates on the free surface charge generating the thin film
motion as introduced in [15]. When the external electric field is
connected at the edges of the thin film, the waves of the thin
film acquire variable angular velocity. At the begging of the
motion, the angular velocity of the fluid will be maximum at the
edges. At the first interval, the angular velocity of the fluid
moves up to reach the maximum at the centre. When the
angular velocity reaches the maximum at the centre, it moves
again in the direction of the edges until the maximum speed
returns again to the edges as described in figure 4. In the second
interval, the thin suspended film has completed an interval and
the fluid in a state of stability and is identical to what happens in
the laboratory experiment as introduced in [13] (see figure 5). In
[9, 16], authors are demonstrated the electrohydrodynamic of a

thin suspended liquid film where the flows are given by con-
stant electric field at the edges of the film using averaging
method. Comparing the results of our model and the results in
[9, 16], a great match in the graphics and their physical inter-
pretation is in favour of the proposed model as shown in
figure 3. The proposed model is superior in terms of studying
the thin film motion in three dimension at free surface flow. In
addition, it outperforms the previous models in terms of the
impact of many variables on the system stability.

5.2. The real part of the growth rate function

The real part of the growth rate function is obtained from the
solution of the Orr-Sommerfeld equations

( ) ( ) ( )n d g= +G k g Z D e e f k, , , , , , , 5.2P n
2

1 2
4

where

( )g
n

d g= -f h
2

3
,3 3

Figure 5. The stream lines of the rotating film at t=15 s (the left graph) and at t=20 s (the right graph), = = =D Z e0.5, 1, 100n p 1 and
e2=100.

Figure 6. The growth rate function is plotted as a function of the
wave-number for different values of ZP and γ=10.
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where k c2
1 is equivalent to the real part of the growth func-

tion. The growth rate function has many variables through
which the effect of a external electric field can be studied and
a natural interpretation can be achieved. The stability can be
studied for different values of the wave-number. Mayur et al
[18] used Orr-Sommerfeld equation as a method of solution in
two dimension. In the present model we have generalized the
problem to three dimension, which led to a growth function
that is rich in variables.

= + + + +G F F D F D F D F D .n n n n0 1 2
2

3
3

4
4

The solution of G is calculated in appendix B.

5.3. The growth rate function for different values of the interface
zeta potential ratio

Figure 6 shows that the growth rate function exhibits the same
behaviour under the surface for different values of ZP and
then changes on the surface. This behaviour produced what is
called interfacial stress. The interfacial polarity reveals the
interfacial stress in the system stability in the equation of the
real part of the growth rate. In addition, the interfacial polarity
with respect to the interface zeta potential controls the system
stability, as it reduces the interfacial stress when ZP is nega-
tive (with the opposite polarity to the surface) and makes the

system unstable. However, at positive ZP (with the same
polarity as the surface) makes the system more stable. This
gives good agreement with the figure of the initial velocity
with ZP as shown in figure 1. Figure 7 shows that the growth
rate function becomes unstable at large values of the surface
tension regardless of the values of ZP.

5.4. The growth rate function for different values of the Debye
number

Figure 8 shows the effect of the Debye number, Dn on the
stability of the system, which can be explained by the thin
film thickness and the Debye length, λd. The fluid is more
stable by increasing the value of Dn which is achieved by
decreasing the thin film thickness and increasing λd. Not-
withstanding, increasing the ionic concentration due to the
external electric field makes the system unstable. The value of
Dn can be considered as an indirect variable to study the effect
of the external electric field. It should be noted that both the
thin film thickness and Debye length have no effect when the
film thickness is in the same range of λd. We have exploited
the model introduced in [18] to treat the general case at the
boundary conditions with Maxwell and hydrodynamic stres-
ses: local curvature and surface tension. Based on the detailed
analysis and simulations tests, we found that the behaviour of
the thin film becomes more stable.

5.5. The growth rate function for different values of the surface
tension

Figures 9 and 10 show the effect of the surface tension on the
stability of the system. The surface tension has a significant
effect at large values; however there is no noticeable at small
values as shown in figure 9. The large values of surface
tension increases the interfacial stability at small values of the
wave-number. When the wave-number takes values from 0 to
0.4, the thin film is stable and there is no significant effect of
the surface tension. However, for the values from 0.4 to 1 of
the wave-number and small values of the surface tension, the
motion of the thin film tends to stability. The final case, when
the wave-number takes values from 0.4 to 1 and the surface

Figure 7. The growth rate function is plotted as a function of the
wave-number for different values of ZP and γ=30.

Figure 8. The growth rate function is plotted as a function of the
wave-number for different values of Dn.

Figure 9. The growth rate function is plotted as a function of the
wave-number for different values of the surface tension.
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tension at large values, the surface tension makes the system
unstable. This gives a good agreement with the results
obtained in [22, 23]. By using the values of the variables in
the mathematical model that is introduced in [18], we found
that the growth function follows the same behaviour in the
absence of surface tension in their model. Therefore, there is
no significant effect on the behaviour of the growth function
with surface tension at the case in [18]. Summarizing, the
effect of the surface tension at large values makes the thin
film unstable as shown in figure 10.

6. Conclusion

This paper has been presented the motion of a thin suspended
film of an incompressible fluid under the effect of an electric
field. Based on depth-averaged and multi-scale asymptotic
expansion methods the Orr-Sommerfeld model for this elec-
trohydrodynamic system has been deduced. The perturbation
technique is used to solve the present model, in which the
model is generalized to 3D space. In addition, we have
investigated periodic solutions of the obtained model in dif-
ferent cases of instability to characterize the behaviour of the
thin suspended film. Many variables affect the stability of the
system, including the Debye number, Dn, the zeta potential,
ZP and the surface tension, S. The stability of the fluid can be
increased by increasing the value of Dn that is achieved by
decreasing the thin film thickness and increasing the Debye
length, λd. The interfacial polarity with respect to the zeta
potential controls the system stability, as it reduces the
interfacial stress when ZP is negative (with the opposite
polarity as the surface), making the system more unstable. At
positive case of ZP (with the same polarity as the surface), the
system is more stable, as observed in [24, 25]. The surface
tension has significant effect only at large values. The results
indicate that the system reveals unstable behaviour char-
acterized by the perturbations in the linear region, as observed
in [26–28]. Good agreement between the theory in the

presence of free boundaries is found with the experiments in
[9, 16]. Additionally, we confirmed our study by list of gra-
phical models that illustrate the stability of the thin film
system.

Appendix A

Coefficients of the terms in the expansion of (ν ψ1) are
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Figure 10. The growth rate function is plotted as a function of the
wave-number and surface tension.
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and coefficients of the terms in the expansion of c1 are
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Appendix B

The solution of the growth rate function gives the following
coefficients in the expansion of G
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