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Abstract
We investigate the evolution of structure in the zirconium isotopes where one of the most
complex situations encountered in nuclear physics occurs. We demonstrate the role of two
concurrent types of quantum phase transitions, sharing a common critical point. The first type,
involves an abrupt crossing of coexisting normal and intruder configurations. The second type,
involves a gradual shape-phase transition within the intruder configuration, changing from weakly-
deformed to prolate-deformed and finally to gamma-unstable. Evidence for this scenario is
provided by a detailed comparison with experimental data, using a definite algebraic framework.

Keywords: quantum phase transitions in nuclei, nuclear shape-phase transitions, nuclear shape
coexistence, Zr isotopes, interacting boson model of nuclei
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1. Introduction

Nuclei in the Z≈40, A≈100 region have long been recog-
nized to exhibit an abrupt transition from spherical to deformed
ground states and the emergence of shape-coexisting states
[1–3]. From a shell-model perspective, the sudden onset of
deformation at neutron number 60, has been ascribed to a strong
isoscalar proton-neutron interaction between nucleons occupy-
ing the g1 9 2- g1 7 2 spin-orbit partners [2–5], producing a
crossing of normal and intruder configurations (the latter arising
from the promotion of two protons across the Z=40 sub-shell
gap). These dramatic structural changes have attracted con-
siderable theoretical and experimental interest. In the Zr chain,
they have been studied in a variety of theoretical approaches,
including mean-field based methods, both non-relativistic [6, 7]
and relativistic [8], large-scale shell model calculations [9, 10]
and the Monte-Carlo shell-model (MCSM) [11]. The Zr isotopes
have been recently the subject of several experimental investi-
gations [12–18], opening the door for understanding the prop-
erties of both yrast and non-yrast states.

Qualitative changes in the ground state properties of a
physical system, induced by a variation of parameters in the

quantum Hamiltonian, are called quantum phase transitions
(QPTs) [19, 20]. The latter have in recent years become of
great interest in a variety of fields [21]. In nuclei, examples of
QPTs are shape changes within a single configuration, as
observed in the neutron number 90 region for Nd–Sm–Gd
isotopes [22], and shape coexistence involving multiple
configurations, as observed in nuclei near shell closure, e.g.
the light Pb–Hg isotopes [5], with strong mixing between the
configurations.

In the present work, we show that these different types of
QPTs [23] play a role in the Zr chain, and that in parallel to an
abrupt swapping of configurations, each configuration maintains
its purity and its own gradual shape-evolution with nucleon
number. This situation, referred to as intertwined QPTs [24],
gives rise to an intricate interplay between shape-phase transi-
tions and shape coexistence in nuclei.

The notion of intertwined QPTs is illustrated schemati-
cally in figure 1, where a sudden crossing of two configura-
tions versus nucleon number is superimposed on progressive
shape-changes in each configuration. In what follows, we
provide evidence for such a scenario in the Zr isotopes by
means of a detailed comparison with experimental data,
analyzed in a physically transparent symmetry-based frame-
work, the interacting boson model (IBM) [25]. After a brief
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review in section 2 of the model and its extensions to
accommodate configuration mixing, we apply the formalism
to the Zr chain in section 3 and present both a quantum and a
classical analysis. In section 4 we discuss the evolution of
the quantum spectra with nucleon number, identifying the
underlying multiple QPTs. In section 5 we present the
corresponding evolution of order parameters and related
observables, including E2 transition rates, isotope shifts and
two-neutron separation energies. Concluding remarks are
collected in section 6.

2. QPTs in the IBM and its extensions

The IBM describes low lying quadrupole states in even–even
nuclei in terms of a system of monopole (s) and quadrupole
(d) bosons, representing valence nucleon pairs [25, 26]. For a
single shell-model configuration space, the total number of
bosons is conserved and is fixed by the microscopic inter-
pretation to be N=Nπ+Nν, where Nπ (Nν) is the number of
proton (neutron) particle or hole pairs counted from the
nearest closed shell. In its simplest version, the IBM has U(6)
as a spectrum generating algebra and exhibits three dynamical
symmetry (DS) limits with leading subalgebras: U(5), SU(3)
and SO(6), whose analytic solutions resemble known para-
digms of collective motion: spherical vibrator, axially-sym-
metric and γ-soft deformed rotors, respectively. A geometric
visualization of the IBM is obtained by an energy surface,

( ) ∣ ˆ ∣ ( )b g b g b g= á ñE N H N, , ; , ; , 1N

defined by the expectation value of the Hamiltonian in the
following coherent (intrinsic) state [27, 28],
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Here, (β, γ) are quadrupole shape parameters whose values,
(βeq, γeq), at the global minimum of ( )b gE ,N define the
equilibrium shape for a given Hamiltonian. For two body
interactions, the shape can be spherical (βeq=0) or deformed

(βeq>0) with γeq=0 (prolate), γeq=π/3 (oblate), or γ-
independent.

The DSs correspond to possible phases of the system.
QPTs can be studied in the IBM using an Hamiltonian ˆ ( )xH
which interpolates between the DS limits (phases) by varying
its control parameters ξ. The related energy surface EN(β, γ;
ξ) serves as the Landau potential, whose topology determines
the type of phase transition (Ehrenfest classification). The
order parameter is taken to be the expectation value of the d-
boson number operator, n̂d, in the ground state

ˆ
( )

b

b
á ñ

»
+

n

N 1
, 3d eq

2

eq
2

which in turn is related to the expectation value in
∣b g ñN, ;eq eq , hence to the equilibrium deformation, beq. The
dependence of beq on ξ, discloses the order of the transition.

QPTs involving a single configuration have been studied
extensively in the IBM framework [22, 28–30]. A typical
Hamiltonian frequently used in such studies, has the form
[31, 32],

ˆ ( ) ˆ ˆ · ˆ ( )k c k= + c c H n Q Q, , , 4d d d

where the quadrupole operator is given by
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m and standard notation of angular
momentum coupling is used. The associated Landau potential
reads
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where c̄ c= 2

7
and gG = cos 3 . The control parameters

(òd, κ, χ) in equation (4), interpolate between the U(5), SU(3)
and SO(6) DS limits, which are reached for (κ=0),
( )c= = - 0,d

7

2
and (òd=0, χ=0), respectively. The

U(5)-SU(3) transition is found to be first-order, the U(5)-SO(6)
transition is second order and the SU(3)-SO(6) transition is
a crossover.

An extension of the IBM to include intruder excitations
is based on associating the different shell-model spaces
of 0p-0h, 2p-2h, 4p-4h,K particle–hole excitations, with
the corresponding boson spaces comprising of N, N+2,
N+4,K bosons, which are subsequently mixed. The
resulting IBM with configuration mixing (IBM-CM) [33, 34]
has been used extensively for describing configuration-mixed
QPTs and coexistence phenomena in nuclei [33–44]. In this
case, the quantum Hamiltonian has a matrix form [39]

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ˆ ( )
ˆ ( ) ˆ ( )
ˆ ( ) ˆ ( )

( )x x w
x w

w x
=H

H W

W H
, , , 7A B

A A

B B

where the index A, B denote the two configurations. The
Hamiltonian ˆ ( )xHA A acts on the A (normal) configuration,

Figure 1. Schematic illustration of the scenario of intertwined
quantum phase transitions. The evolution with nucleon number of
energies (in arbitrary units) of the lowest 0+ states of two
configurations, A and B, discloses an abrupt crossing. This change in
configurations is accompanied by gradual changes of shapes
(denoted by circles of different size) within each configuration.
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corresponding to the valence space and ˆ ( )xHB B on the B
(intruder) configuration, corresponding to the core-excited
excitations. The ˆ ( )wW term mixes both spaces. When two
configurations coexist, the energy surface becomes a matrix

⎡
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( )b g
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whose entries are the matrix elements of the corresponding
terms in the Hamiltonian(7), between the intrinsic states(2)
of the two configurations, with appropriate boson numbers.
Diagonalization of this two-by-two matrix produces the so-
called eigen-potentials, E±(β, γ) [39, 45, 46].

As the control parameters (ξA, ξB, ω) in the Hamilto-
nian(7) are varied, the two coexisting configurations can
exchange roles, and their individual shapes can evolve.
Usually the latter quantum shape-phase transitions are
masked by the strong mixing between the two configurations.
In what follows, we show that the Zr isotopes are exceptional
in the sense that the crossing is abrupt, the separate config-
urations retain their purity before and after the crossing, and
the shape evolution of the intruder configuration can be cast
in terms of its own phase transition.

3. The IBM-CM in the Zr chain

To describe the 40Zr isotopes in the IBM-CM framework,
requires a choice of Hilbert space, Hamiltonian and transition
operators. Similar to a calculation done for the 42Mo isotopes
in [35], we consider 40

90Zr50 as a core and valence neutrons in
the 50–82 major shell. The normal A-configuration corre-
sponds to having no active protons above Z=40 sub-shell
gap, and the intruder B-configuration corresponds to two-
proton excitation from below to above this gap, creating 2p-
2h states. According to the usual boson-counting, the
corresponding bosonic configurations have proton bosons
Nπ=0 for the normal configuration and Nπ=2 for the
intruder configuration. Both configurations have neutron
bosons Nν=1, 2, K, 8 for neutron number 52–66, and
¯ =nN 7, 6 for 68–70, where the bar over the number indicates
that these are hole bosons. Altogether, the IBM-CM model
space, employed in the current study, consists of a
[N]⊕[N+2] boson space with total boson number N=1,
2, K, 8 for -92 106Zr and ¯ =N 7, 6 for 108,110Zr. These two
configurations are shown in figure 2, for 40

100Zr60.
We write the Hamiltonian not in the matrix form of

equation (7), but rather in the equivalent form
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̂, with P̂N , a projection operator onto the [N] boson space.

The Hamiltonian ˆ ( )
HA

N
represents the normal (N boson space)

configuration and ˆ ( )+
HB

N 2
represents the intruder configuration

(N+2 boson space). The explicit form of these Hamiltonians
is given by

ˆ ˆ ( ) ( )( ) ( )k c= H H a, , , 10A d
A A

ˆ ˆ ( ) ˆ · ˆ ( )( ) ( ) ( )k c k= + ¢ + DH H L L b, , . 10B d
B B B

p

They involve terms similar to those of the single-con-
figuration Hamiltonian of equation (4). ĤB of equation (10b),
contains an additional rotational term and Δp is an off-set
between the normal and intruder configurations, where the
index p denotes the fact that this is a proton excitation. The
mixing term in equation (9) has the form [25, 33, 34]

[( ) ( ) ] ( )† † ( ) †w= ´ + +W d d s H.c., 110 2^

where H.c. stands for Hermitian conjugate. The resulting
eigenstates ∣Y ñL; with angular momentum L, are linear
combinations of the wave functions, ΨA and ΨB, in the two
spaces [N] and [N+2],

∣ ∣ [ ] ∣ [ ] ( )Y ñ = Y ñ + Y + ñL a N L b N L; ; , ; 2 , , 12A B

with a2+b2=1. The above decomposition reflects the
normal-intruder mixing in the state considered.

Adapted to two configurations, the E2 operator reads
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2 2, and ˆcQ ,

defined in equation (5), is the same quadrupole operator
appearing in the Hamiltonian. In equation (13), e(A) and e(B)

are the boson effective charges for the configurations A and B,
respectively.

A geometric interpretation is obtained by means of the
matrix ( )b gE , , equation (8), with entries ( )b g =E ,A

∣ ˆ ∣b g b gá ñN H N, ; , ;A , ( ) ∣ ˆ ∣b g b g b g= á + + ñE N H N, , ; 2 , ; 2B B

and ( ) ∣ ˆ ∣b g b g b gW = á + ñN W N, , ; , ; 2 . These entries
involve the expectation values of the Hamiltonians ĤA (10a)
and ĤB (10b), in the intrinsic states(2), with N and N + 2
bosons respectively, and a non-diagonal matrix element of the
mixing term Ŵ (11), between them. The explicit expressions
are found to be
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where the surfaces on the right-hand-side of equations (14a)–
(14b) are obtained from equation (6).

4. Quantum and classical analyses

A first step in a quantum analysis involves a numerical
diagonalization of the IBM-CM Hamiltonian, and evaluating
matrix elements of the E2 operator(13) between its eigen-
states. The parameters of these operators are determined from
a combined fit to the data on spectra and E2 transitions. The
calculated observables are then compared with the measured
values.
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The adapted fitting procedure is similar to that used in
[35–42]. We allow a gradual change of the parameters
between adjacent isotopes, but take into account the proposed
shell-model interpretation for the structure evolution in this
region [2–4]. The Hamiltonian parameters used are displayed
in figure 3 and are consistent with those of previous calcu-
lations in this mass region [35–37]. Asymmetry about mid-
shell, at neutron number 66, was imposed on all parameters
(except χ), in accord with microscopic aspects of the IBM
[26]. Apart from some fluctuations due to the subshell closure
at neutron number 56 (the filling by the neutrons of the 2d5/2
orbital), the values of the parameters are a smooth function of
neutron number and, in some cases, a constant. A notable
exception is the sharp decrease by 1MeV of the energy off-
set parameter Δp beyond neutron number 56. Such a behavior
was observed for the Mo and Ge chains [35–37] and, as noted
in [35], it reflects the effects of the isoscalar residual inter-
action, Vpn, between protons and neutrons occupying the
partner orbitals 1g9/2 and 1g7/2, which is the established
mechanism for descending cross shell-gap excitations and
onset of deformation in this region [3, 4]. The trend in Δp

agrees with shell model estimates for the monopole correction
of Vpn [47]. The mixing parameter ω(11) is determined from
E2 transitions between configurations, and is kept constant
except for neutron numbers 52–54, where the normal con-
figuration space is small (N=1, 2). In general, the under-
lying physics in the current IBM study is similar to that of
[3, 4], which albeit use a different formal language, in which
the lowering in energy and developed collectivity of the
intruder configuration are governed by the relative magnitude

of Vpn (especially its monopole and quadrupole components)
and the energy gaps between spherical shell-model states near
shell and subshell closures. A more direct relation between
the two approaches necessitates a proton-neutron version of
the IBM. The boson effective charges in the E2 operator(13),
e(A)=0.9 and e(B)=2.24 (W.u.)1/2, are determined from

Figure 2. Schematic representation of the two coexisting shell-model configurations (A and B) for 40
100Zr60. The corresponding numbers of

proton bosons (Nπ) and neutron bosons ( nN ), relevant to the IBM-CM, are listed for each configuration.

Figure 3. Parameters of the IBM-CM Hamiltonians, equations (10a),
(10b), (11), are in MeV and the parameter χ of equation (5), is
dimensionless.
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the + +2 0 transitions within each configuration and χ is
the same parameter as in the Hamiltonian, shown in figure 3.
Fine-tuning the parameters for individual isotopes can
improve the fit, but the main conclusions of the analysis, to be
reported below, are not changed.

The calculations describe the experimental data in the
entire range -92 110Zr very well. Afull account is given in
[48]. Here we show only three examples, 98Zr, 100Zr and
102Zr, where afirst-order shape-phase transition takes place,
accompanied by a crossing of the normal and intruder con-
figurations. 98Zr, in figures 4(a) and (b), has a spherical [U(5)-
like] ground state configuration (A) and a weakly-deformed
[U(5)-perturbed] excited configuration (B). 100Zr is near the
critical point of both types of phase transitions, and yet our
description of energy levels and B(E2) values is excellent; see
figures 4(c) and (d). The ground state band, has now become
configuration(B), and appears to have features of the so-
called X(5) symmetry [49], while the spherical config-
uration(A) has now become the excited band +02 .

102Zr, in
figure 4(e) and (f), exhibits well developed deformed [SU(3)-
like] rotational bands assigned to configuration(B). States of
configuration(A) have shifted to higher energies.

The assignment of a given state to the normal A-config-
uration or to the intruder B-configuration, can be inferred
from the probabilities a2 or b2 of the decomposition,
equation (12). The closest DS to the state considered, is
determined by expanding its wave function in the U(5), SU(3)
and SO(6) bases. Figure 5 shows the percentage of the wave
function within the intruder configuration for the ground ( +01 )
and excited ( +02 ) states. The rapid change in structure of the
+01 state from the normal A-configuration in 98Zr to the
intruder B-configuration in 100Zr is clearly evident. The +02

state shows a similar behavior but with the roles of the two
configurations exchanged. In 102Zr both states belong to the
intruder B-configuration.

One of the main advantages of the algebraic method
employed, is that one can do both a quantum and a classical
analysis. In figure 6, we show the calculated lowest eigen-
potential E−(β, γ), which is the lowest eigenvalue of the two-
by-two matrix (8), with elements given in equation (14).
These classical potentials confirm the quantum results, as they
show a transition from spherical ( -92 98Zr), to a flat-bottomed
potential at 100Zr, to prolate axially-deformed ( -102 104Zr), and
finally to γ-unstable ( -106 110Zr).

Figure 4. Experimental [15, 17, 18, 50] (top row) and calculated (bottom row) energy levels in MeV and E2 rates in W.u. for 98Zr [panels (a)–
(b)], 100Zr [panels (c)–(d)] and 102Zr [panels (e)–(f)]. The levels ( + +0 , 21 3 ) in

98Zr and ( + +0 , 22 5 ) in
100Zr are dominated by the normal (A)

configuration. All other levels shown are dominated by the intruder (B) configuration. Assignments are based on the decomposition of
equation (12).

5

Phys. Scr. 95 (2020) 024001 N Gavrielov et al



5. Evolution of energy levels

An important clue for understanding the change in structure
of the Zr isotopes, is obtained by examining the evolution of
their spectra along the chain. In figure 7, we show a com-
parison between experimental and calculated levels, along
with assignments to configurations based on equation (12),
and to the closet DS for each level. One can see here a rather
complex structure. In the region between neutron number 50
and 56, there appear to be two configurations, one spherical
(seniority-like), (A), and one weakly deformed, (B), as evi-
denced by the ratio R4/2 in each configuration which is at
52–56, ( ) @R 1.6A

4 2 and ( ) @R 2.3B
4 2 . From neutron number 58,

there is a pronounced drop in energy for the states of con-
figuration(B), and at 60, the two configurations exchange
their roles. This is evident in figure 5 from the change in the
decomposition of the ground state +01 from configuration A
(a2=98.2%) in 98Zr, to configuration B (b2=87.2%) in
100Zr. The +02 state displays the opposite trend, changing from
configuration B in 98Zr (b2=98.2%) to configuration A
(a2=80.2%) in Zr100 . At this stage, the intruder config-
uration(B) appears to be at the critical point of a U(5)-SU(3)
QPT, as evidenced in figures 4(c) and (d), by the low value of
the excitation energy of the +03 state in 100Zr, which is the first
excited +0 state of the B-configuration (b2= 92.9%). The
spectrum of states in this configuration resembles that of the
X(5) critical-point symmetry [49]. The same situation is seen

in the 62Sm and 64Gd isotopes at neutron number 90 [25, 51].
In 102Zr, that state becomes the first excited +02 state and
serves as the band-head of a β-band. Interestingly, the change
in configurations appears sooner in the +21 level, which
changes to configurationB ( =b 97.1%2 ) already in 98Zr, as
pointed out in [17]. In general, beyond neutron number 60,
the intruder configuration(B) becomes progressively strongly
deformed, as evidenced by the small value of the excitation
energy of the state +21 , =+E 151.78 keV21

and by the ratio
( ) =R 3.15B
4 2 in 102Zr, and =+E 139.3 keV21

, ( ) =R 3.24B
4 2 in

104Zr. At still larger neutron number 66, the ground state band
becomes γ-unstable (or triaxial) as evidenced by the close
energy of the states +22 and +41 , =+E 607.0 keV22

,
=+E 476.5 keV41

, in 106Zr, and especially by the recent
results =+E 565 keV41

and =+E 485 keV22
in 110Zr [16], a

signature of the SO(6) symmetry. In this region, the ground
state configuration undergoes acrossover from SU(3)
to SO(6).

6. Evolution of order parameters and related
observables

The above spectral analysis suggests a remarkable interplay
of configurations-interchange and shape-evolution in the Zr
isotopes, manifesting simultaneously two types of QPTs. The
first type of QPT involves an abrupt crossing of the normal

Figure 5. Percentage of the wave functions within the intruder B-configuration [the b2 probability in equation (12)], for the ground ( +01 ) and
excited ( +02 ) states in

98Zr, 100Zr and 102Zr.

Figure 6. Contour plots in the (β, γ) plane of the lowest eigen-potential surface, E−(β, γ ), for the -92 110Zr isotopes, obtained from
diagonalizing the matrix(8) with entries given in equation (14).
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and intruder configurations. A second type of QPT involves a
gradual shape change of the intruder configuration which
undergoes a first-order U(5) to SU(3) transition and an SU(3)
to SO(6) crossover. In order to understand the nature of these
phase transitions, one needs to study the behavior of the order
parameters. In the present study, the latter involve the
expectation value of n̂d in the ground state wave function,
∣Y = ñ+L; 01 and in its ΨA and ΨB components(12), denoted
by ˆ ˆá ñ á ñ+n n,d d A01

, ˆá ñnd B, respectively. As can be inferred from
equation (3), ˆá ñnd A and ˆá ñnd B portray the shape-evolution in
configuration(A) and (B), respectively. ˆá ñ +nd 01

involves a sum
of these quantities weighted by the probabilities of the ΨA and
and ΨB components,

ˆ ˆ ˆ ( )á ñ = á ñ + á ñ+n a n b n , 15d d A d B0
2 2

1

hence contains information on the normal-intruder mixing
in ∣Y = ñ+L; 01 .

Figure 8(a) shows the evolution along the Zr chain of
these order parameters ( ˆ ˆá ñ á ñn n,d A d B in dotted and ˆá ñ +nd 01

in
solid lines), normalized by the respective boson numbers,

ˆá ñ =N NA , ˆá ñ = +N N 2B , ˆ ( )á ñ = + ++N a N b N 20
2 2

1
. Con-

figuration(A) is seen to be spherical for all neutron numbers
considered. In contrast, configuration(B) is weakly-deformed
for neutron number 52–58. One can see here clearly a jump
between neutron number 58 and 60 from configuration(A) to
configuration(B), indicating a first-order configuration-chan-
ging phase transition, a further increase at neutron numbers
60–64 indicating a U(5)-SU(3) shape-phase transition within
configuration (B), and, finally, there is a decrease at neutron
number 66, due in part to the crossover from SU(3) to SO(6)
and in part to the shift from boson particles to boson holes

after the middle of the major shell 50–82. ˆá ñ +nd 01
is close to

ˆá ñnd A for neutron number 52–58 and coincides with ˆá ñnd B at 60
and above, consistent with a high degree of purity with
respect to configuration-mixing.

The above conclusions are stressed by an analysis of
other observables, in particular, the B(E2) values. As shown
in figure 8(b), the calculated B(E2)ʼs agree with the empirical
values and follow the same trends as the respective order
parameters. The dotted lines denote calculated E2 transitions
between states within the same configuration. The calculated

+ +2 0A A transition rates coincide with the empirical
+ +2 01 1 rates for neutron number 52–56. The calculated
+ +2 0B B transition rates coincide with the empirical
+ +2 02 2 rates for neutron number 52–56, with the empirical
+ +2 01 2 rates at neutron number 58, and with the empirical
+ +2 01 1 rates at neutron number 60–64. The large jump in

( )+ +B E2; 2 01 1 between neutron number 58 and 60 reflects
the passing through a critical point, common to a QPT
involving a crossing of two configurations and a spherical to
deformed U(5)-SU(3) type of QPT within the B-configura-
tion. The further increase in ( )+ +B E2; 2 01 1 for neutron
numbers 60–64 is as expected for a U(5)-SU(3) QPT within
configuration (B) (see figure 2.20 in [25]) and, as in
figure 8(a), reflects an increase in the deformation in a
spherical to deformed shape-phase transition. The subsequent
decrease from the peak at neutron number 64 towards 70, is in
accord with an SU(3) to SO(6) crossover (see figure 2.22
in [25]).

In general, the results of the current phenomenological
study resemble those obtained in the microscopic approach of

Figure 7. Comparison between (a)experimental [16, 50] and (b)calculated energy levels + + + + + +0 , 2 , 4 , 0 , 2 , 41 1 1 2 2 2 . Empty (filled) symbols
indicate a state dominated by the normal A-configuration (intruder B-configuration), with assignments based on the decomposition of
equation (12). The shape of the symbol [◦ à, , ], indicates the closest DS [U(5), SU(3), SO(6)] relevant to the level considered. Note that
the calculated values start at neutron number 52, while the experimental values include the closed shell at 50.
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the MCSM [11] (which focuses on spectra and E2 rates),
however, there are some noticeable differences. Specifically,
the replacement γ-unstable  triaxial and the inclusion of
more than two configurations in the MCSM. The spherical
state in 100Zr is identified in the MCSM as +04 , in contrast to
+02 in the current calculation and the data. Both calculations
show a large jump in ( )+ +B E2; 2 01 1 , between 98Zr and
100Zr, typical of a first-order QPT. This is in contrast with
mean-field based calculations [6–8], which due to their
character smooth out the phase transitional behavior, and
show no such jump at the critical point of the QPT (see figure
2 of [18]). The observed peak in ( )+ +B E2; 2 01 1 for 104Zr,
is reproduced by the current calculation but not by
the MCSM.

Further evidence for the indicated structural changes
occurring in the Zr chain, can be obtained from an analysis
of the isotope shift ˆ ˆ ˆDá ñ = á ñ - á ñ++ + +r r rA A

2
0

2
0 ; 2

2
0 ;1 1 1

, where
ˆá ñ +r2

01
is the expectation value of r̂2 in the ground state +01 . In

the IBM-CM the latter is given by

ˆ [ ˆ ˆ ] ( )( ) ( )a há ñ = + + á ñ + á ñ+r r N n n , 16c v d
N

d
N2 2 2

where r2c is the square radius of the closed shell, Nv is half the
number of valence particles, and η is a coefficient that takes
into account the effect of deformation [25, 52, 53]. The
isotope shift depends on two parameters, α= 0.235,
η= 0.264 fm2, whose values are fixed by the procedure of
[52, 53]. ˆDá ñ +r2

01
should increase at the transition point and

decrease and, as seen in figure 9(a), it does so, although the
error bars are large and no data are available beyond neutron

number 60. (In the large N limit, this quantity, proportional to
the derivative of the order parameter ˆá ñ +nd 01

, diverges at the
critical point.)

Similarly, the two-neutron separation energies S n2 can be
written as [25],

˜ ˜ ( )= - -  - DS A BN S , 17n v n n2 2
def

where S n2
def is the contribution of the deformation, obtained by

the expectation value of the Hamiltonian in the ground
state +01 . The + sign applies to particles and the − sign to
holes, and Δn takes into account the neutron subshell closure
at 56, Δn=0 for 50–56 and Δn=2MeV for 58–70. The
value of Dn is taken from table XII of [56] and
˜ ˜= - =A B16.5, 0.758 MeV are determined by a fit to
binding energies of 92,94,96Zr. The calculated S2n, shown in
figure 9(b), displays a complex behavior. Between neutron
number 52 and 56 it is a straight line, as the ground state is
spherical (seniority-like) configuration(A). After 56, it first
goes down due to the subshell closure at56, then it flattens
as expected from a first-order QPT (see, for example the
same situation in the 62Sm isotopes [51]). After 62, it
goes down again due to the increasing of deformation and
finally it flattens as expected from a crossover from SU(3)
to SO(6).

7. Conclusions

We have presented here a quantum analysis of spectra and
other observables (including E2 rates, isotope shifts, separa-
tion energies) and a classical analysis of shapes, for the entire

Figure 9. Evolution of observables along the Zr chain. Symbols
(solid lines) denote experimental data (calculated results). (a)Isotope
shift, ˆDá ñ +r2

01
in fm2. Data taken from [54]. The horizontal dashed

line at 0.235 fm2 represents the smooth behavior in ˆDá ñ +r2
01

due to

the A1/3 increase of the nuclear radius. (b)Two-neutron separation
energies, S2n, in MeV. Data taken from AME2016 [55].

Figure 8. Evolution of order parameters and of observables along the
Zr chain. Symbols (solid lines) denote experimental data (calculated
results). (a)The order parameters are the calculated expectation
values of n̂d in the total ground state wave function ∣Y = ñ+L; 01 ,
equation (12) and in its (A) and (B) components (dotted lines),
normalized by the respective boson numbers. (b)B(E2) values in
Weisskopf units (W.u.). Data taken from [12–15, 17, 18, 50]. Dotted
lines denote calculated E2 transitions within a configuration.
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chain of 40Zr isotopes, from neutron number 52 to 70. The
calculations were performed within the IBM-CM, which
provides a simple tractable shell-model-inspired algebraic
framework, where global trends of structure and symmetries
can be clearly identified and diversity of observables calcu-
lated. The evolution of structure and QPT attributes, along the
Zr chain, are studied by varying the control parameters in the
IBM-CM Hamiltonian followed by a detailed comparison
with the available experimental data on yrast and non-yrast
states.

The results of the comprehensive analysis suggest a
complex phase structure in these isotopes, involving two
configurations. The normal A configuration remains spherical
in all isotopes considered. The intruder B-configuration
undergoes first a spherical to axially-deformed U(5)-SU(3)
QPT, with a critical-point near 100Zr, and then an axially-
deformed to γ-unstable SU(3)-SO(6) crossover. In parallel to
the gradual shape-evolution within configuration B, the two
configurations cross near neutron number 60, and the ground
state changes from configuration (A) to configuration (B).
Interestingly, the critical-point of the U(5)-SU(3) shape-
changing QPT coincides with the critical-point of the con-
figuration-changing QPT. The two configurations are weakly
mixed and retain their purity before and after the crossing.

Further details of our results, including the calculation of
spectra and transition rates in all the -92 110Zr isotopes and of
other quantities not reported here, will be given in a forth-
coming publication based on [48]. Our method of calculation
could also be applied to the 38Sr isotopes, which show similar
features [57]. The present work provides the first evidence for
multiple QPTs in nuclear physics and may stimulate research
for this type of phase transitions in other fields of physics.
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