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Abstract
The overdamped linear oscillator with periodic external force driven by the fractional oscillator
(FO) noise is considered and investigated. The correlation function of the FO noise presents
power-law-like function, exponential-like function and oscillatory decays similar to those of the
harmonic noise. The amplitude of the stationary state of the first moment is obtained and
analyzed in relation to the parameters of the system; it presents non-monotonic behaviors which
are related to the resonance phenomenon.
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1. Introduction

Oscillatory behavior can be found in many systems in nature and
it plays a crucial role in many phenomena [1, 2]. In particular, the
linear oscillator with periodic external force driven by a noise has
also been considered in many works due to its wide application
in diverse systems, for instance the RL circuit; for the multi-
plicative noise, the system may present resonance stochastic
phenomenon [3–5]. Besides, the fractional calculus is a ubiqui-
tous tool due to the fact that it has been applied to a wide range of
systems, such as physical, chemical and biological systems. For
instance, it can describe anomalous diffusion processes [6–8],
tissue viscoelasticity [9, 10], electronic circuits [11, 12], biolo-
gical systems [13–20] and complex phenomena [21, 22].

The aim of this work is to investigate the overdamped linear
oscillator with periodic external force driven by a multiplicative
colored noise characterized by the fractional oscillator (FO) noise
which has been named as the fractional Ornstein–Uhlenbeck
noise in [23]. In this approach the procedure to deal with a
colored noise is to extend the space of variables so that the noise
itself becomes a variable driven by the white noise. The use of
the FO noise for investigating the overdamped linear oscillator is
due to the fact that it can describe various types of the correlation
function; it can describe power-law-like function, exponential-
like function and oscillatory decays similar to those of the har-
monic noise. The proximity of these functions to the ordinary

power-law and exponential functions makes the FO noise inter-
esting to be investigated. It may be employed to improve the
descriptions of systems which use the ordinary power-law and
exponential functions and oscillatory decay described by the
harmonic noise [24]. The amplitude of the stationary state of the
first moment is obtained analytically and numerically analyzed in
relation to the parameters of the system. The amplitude may
show non-monotonic behavior which characterizes the resonance
effect. In the next section the FO noise is introduced and its
correlation function for the stationary state is shown numerically.
In section 3 the overdamped linear oscillator with periodic
external force driven by the FO noise is investigated. The
amplitude of the stationary state of the first moment is numeri-
cally analyzed in relation to the parameters of the system. Con-
clusion is provided in section 4.

2. FO noise

The FO noise is a generalization of the ordinary Ornstein–
Uhlenbeck noise in which the ordinary derivative is replaced
by a fractional derivative (see also [25–29]), and it is
described by the following Langevin equation:
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where Ωα and βα are real positive numbers, and dαy/dtα is
the Caputo fractional derivative defined by
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where n is a positive integer number, Γ[z] is the gamma function
and L(t) is the Gaussian white noise with the averages given by
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The generalization of the Ornstein–Uhlenbeck process described
by equation (1) should be distinguished by another generalization
in which the ordinary Ornstein–Uhlenbeck process is driven by a
fractional Brownian motion (see for instance [30–33] for
description and application).

The value of α is restricted to the interval 0<α<2.
Note that the FO process described by equation (1) has been
applied to financial time series [26, 27] and it may be asso-
ciated with the output signal of a supercapacitor [11].

The solution of equation (1) is obtained by using the
Laplace transform and it is given by
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y0=y(t=0), v0=dy(t=0)/dt and ( )a bE z, is the general-
ized Mittag-Leffler function defined by
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The mean value of a noise is usually taken as zero ( )á ñ =y t 0
which implies that á ñ = á ñ =y v 00 0 .

The correlation function can be calculated from (5) and it
yields
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The stationary state of the correlation function is obtained
from the limit  ¥t . Figure 1 shows the stationary state of
the correlation function. For a< 0 1 it decays mono-
tonically, whereas for a< <1 2 it shows oscillatory beha-
vior. The correlation function diverges at τ=0 for

a< 0 1 2, thus it is highly correlated for small time-lag τ;
in that case the second moment ( )á ñy t2 diverges at the lower
limit of the integral, i.e. ( ) ( )òá ñ ~  ¥a


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for a< 0 1 2. All correlations decay as the time-lag τ

increases. The oscillatory decay of the correlation function for
a< <1 2 behaves like an underdamped process; in that case

the particle may assume higher velocity in the statistical sense.
The negative value of the correlation function means that if the
particle is at a position in the positive x at this instant, it is more
likely to occupy at a position in the negative x in the next instant.

For a< 0 1 2 the correlation function presents a power-law-
like function and for 1/2<α�1 it presents an exponential-like
function. For 1<α<2 the correlation function shows oscilla-
tory decays similar to those of the harmonic noise.

3. Overdamped linear oscillator driven by the
multiplicative FO noise

The overdamped linear oscillator with periodic external force
driven by a multiplicative colored noise has been considered in
many works due to its wide application in diverse systems,
including the RL circuit. In this work, the system is driven by the
FO noise and its first moment is investigated. The system is
described by
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In particular, for r0=R/L, r1=R1/L and A0=V0/L, where R
is the resistance, L is the inductance and V0 is the voltage, the
system (10) describes the RL circuit with the presence of a
periodic force and noise.

Integrating equations (1) and (10) yields
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where ȳ0 is given by equations (6) and (7).
Taking the average of equation (11) one obtains the

following expression for the first moment:

( )

( )

( )

( )

( ) ( )ò

ò

òt wt

á ñ=

+

t t

t t t

- -

- - -
t 13

x t x

A

e e

d sin e e .

r t r y

t
r t r y

0
d

0
0

d

t

t

0 1
0

0 1 1 1

Figure 1. Plots of the correlation function (9) for the FO noise in the
stationary regime with βα=0.5 and Ωα=0.5, in arbitrary units.
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The steady state of the first moment is obtained from the
limit  ¥t .

The average ( )ò t t-
te r yd
t

1 1 1 can be calculated by using

the higher correlation functions for L(t) given by [34]
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. Expanding the exponential function in Taylor

series and using the higher moments for L(t) yields
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The multiple integral in equation (16) can be rewritten as follows:
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Note that the orders of the multiple integrals in equation (18)
have been changed. In equation (16) the variables u1 and u2 are
firstly integrated, while in equation (18) the variables τ1 and τ2
are firstly integrated. The integrals in equation (18) are easier to
be performed than those in equation (16). The result of
equation (18) after substituting it into equation (16) is given by
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It should be noted that despite the divergence of the correlation
function (9) for 0<α�1/2 at τ=0 the above calculation
does not pose any definition problem due to the fact that it does
not involve the second moment ( )á ñy t2 of the noise directly;
it does not present any definition problem for the system

analyzed in [23] too. Substituting equation (19) into (13) yields
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The first term of the right-hand side of equation (20) gives the
condition for the convergence of the first moment in the steady
state. Using the asymptotic expansion of the generalized Mittag-
Leffler function [35]
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One can see that the condition (22) does not depend on the
parameter α explicitly.

In order to analyze the first moment equation (20)
(without the first term) is rewritten as follows:
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Figure 2. Plots of the phase tgf (27) versus time t for r0=1.25,
r1=0.5, βα=0.5, ω=0.5 and Ωα=0.5, in arbitrary units.
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From equation (23) one can analyze the amplitude of the
response of the periodic external force with respect to
the parameters of the system. Equations (24) and (27) show
that the amplitude A(t) and the phase f(t) depend on time,
however they converge to the stationary state values in
the long-time limit (  ¥t ) which can be shown
numerically.

Figure 2 shows the phase tgf(t) versus time for different
values of α. It shows that the phase converges to a fixed value
in the long-time limit. The result for α=1 has also been

Figure 3. Plots of the amplitude A (24) in the stationary state versus the parameter of the FO noise Ωα for A0=1, r0=0.5, r1=1.8,
βα=0.5 and ω=0.5, in arbitrary units.

Figure 4. Plots of the amplitude A (24) in the stationary state versus
the parameter of the FO noise Ωα=ω for A0=1, r0=0.5,
r1=1.8 and βα=0.5, in arbitrary units.
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compared with that one given in [4, 5] and it is in excellent
agreement.

Figure 3 shows the stationary state of the amplitude A(t)
versus the parameter Ωα for different values of α. The result for
α=1 has also been compared with that one given in [4, 5] and
it is in excellent agreement. The curves show non-monotonic
decays for 0<α�1 which are related to resonance effect
and monotonic decay for 1<α<2. It means that the effect of
the resonance appears for 0<α�1 which is related to the
monotonic behavior of the correlation function of the noise.

Figure 4 shows the stationary state of the amplitude A(t)
versus the parameter Ωα for different values of α. Moreover,
the parameter ω has the same variation of the parameter Ωα.
The result for α=1 has also been compared with that one
given in [4, 5] and it is in excellent agreement. The behaviors
described in figure 4 are different from those given in figure 3;
for 0<α�1 the amplitude decays monotonically, whereas
for 1<α<2 it shows non-monotonic decay.

4. Conclusion

In this work the overdamped linear oscillator with periodic
external force driven by the FO noise (1) has been analyzed.
Analytical result for the first moment has been obtained
in terms of the response of the periodic external force,
equation (23). Equations (24) and (27) show that the amplitude
A(t) and the phase f(t) depend on time, however they converge
to the stationary state values in the long-time limit (  ¥t )
which have been shown numerically (figures 2–4). Figures 3
and 4 show different behaviors for different values of α and
they can describe non-monotonic decays. Figure 3 shows a
usual plot of the amplitude in terms of a parameter of the
system, whereas in figure 4 the amplitude is plotted in terms of
the same variations of two parameters of the system. In a wider
sense, it is hoped that the FO noise may be useful to describe
systems which demand colored noises and it may also be
employed to improve the descriptions of the systems which use
the exponential and power-law correlation functions and har-
monic noise such as nonlinear stochastic systems [36].
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