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Abstract
The electronic, magnetic and optical properties of alkaline earth oxides XO (X=Ca, Sr, Ba)
doped with 5d transition metal rhenium (Re) were investigated by applying first-principles
calculations within the treatment of density functional theory based on a full potential linearised
augmented plane wave method. 5d transition metal atom Re was doped to replace Ca/Sr/Ba
atoms with 12.5% concentration to form the supercells. Density of states and band structures
predict half-metallic characteristics of the supercells X0.875ORe0.125 (X=Ca, Sr, Ba). Half-
metallic band gaps were observed clearly in the spin up majority channel around the Fermi level
(EF). Dopant 5d transition metal atom Re creates a spin magnetic moment (μB) in the supercells
X0.875ORe0.125 (X=Ca, Sr, Ba). Optical parameters (dielectric function ε(ω), absorption
coefficient and reflectivity) were discussed. Materials exhibiting properties like absorption,
reflectivity and half-metallic can be applicable for optoelectronics and spintronics devices.

Keywords: Alkaline earth oxides, electronic, magnetic, optical properties, Generalized gradient
approximations (GGA) method

(Some figures may appear in colour only in the online journal)

1. Introduction

For two decades, the field of spintronics has held great pro-
mise and looks to exert a significant influence on future
technology. Studying electron spin and the magnetic moment
associated with it represents a specialized field. Devices use
less energy in changing the spin as compared to generating a
current for maintaining charge. In such spintronics devices,
the information is transmitted through the electron’s spin,
offering a gateway for a new generation of spin-based devi-
ces. Giant magneto resistors and magnetic tunnel junctions
are examples of spin-based devices. These spin-based devices
can be used as storage devices like hard disks, magnetic field
sensors, etc [1]. Half-metallic ferromagnetic materials are
good candidates for spintronics applications, as was first
reported by De Groot et al 1983 [2]. Half-metallicity was
reported in other Heusler compounds by Kervan et al [3]. In
such half-metallic materials, one of the spins (up or down) is
conducting but other has a insulating/semiconducting

character, exhibiting 100% spin polarization about the Fermi
level.

The main goal of the present article is to study the
electronic, magnetic, half-metallic and optical properties of
alkaline earth oxides XO (X=Ca, Sr, Ba) doped with 5d
transition metal rhenium (Re). Energy band gaps and the
lattice constants of alkaline earth oxides were found by
McLeod et al in 2010 [4] and compared with other theoretical
and experimental works. These alkaline earth oxides are ionic
crystal insulators with a wide band gap and have a significant
role in industrial applications range from catalysis to micro-
electronics [4–7]. The half-metallic property has been repor-
ted in such oxides (CaO, MgO, SrO and BaO) doped with
non-magnetic impurities [8–12] and also with magnetic
impurities (transition metals) [13, 17]. Doping of nitrogen
induces magnetism in the oxides [18–20]. Transition metal
atoms consolidated into wide band gap oxides can enor-
mously change their absorption properties [21, 22]. By den-
sity functional theory (DFT) calculations the structural,
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electronic, optical, mechanical and thermodynamic properties
of alkaline earth oxides were reported [23–29]. The optical
properties (reflectivity and absorption) and band structure
results of alkaline earth oxides XO (X=Ca, Sr, Ba) were
explained by exciton reflection spectra [30]. Reflectivity and
imaginary parts for alkaline earth oxides have been calculated
within the optical frequency range [31]. It was reported in
works done by Zhou et al and Teli et al that doping of 5d
transition metals in some oxides causes changes in their
electronic, magnetic and optical properties [32, 33]. This is
not only limited to oxides but affects other materials such as
monolayer graphene and h-BN, as found by Muhammad et al
[34, 35].

In this present work 5d transition metal atoms were
doped in XO (X=Ca, Sr, Ba) oxides with a concentration of
12.5%. The compounds were found to be half-metallic in
nature. The electronic structure, magnetic and optical prop-
erties were investigated in alkaline earth oxides doped with 5d
transition metal Re, which may be suitable for optoelectronics
and spintronics applications.

2. Computational method

A theoretical computational approach has been implemented
for investigating the electronic structure, magnetic and optical
properties. A full potential linearized augmented plane wave
method and WIEN2k code were applied within the frame-
work of DFT [36–39]. Based on the generalized gradient
approximations (GGA) method the exchange-correlation
energy of electrons was used [40]. The separation energy was
chosen to be −6.0 Ry between the core states. Execution of
Brillouin zone integration was introduced using a Monkhorst-
Pack scheme [41, 42]. To construct the supercells a model
2×2×2 k-point mesh or grid was used. The host oxides
CaO, SrO, and BaO belong to a Fm3m space group with
NaCl structures. These host oxides were doped with 5d
transition metal atom Re with a doping concentration of
12.5% to create the supercells. A supercell consists of 16
atoms (8 atoms of Ca/Sr/Ba and 8 atoms of oxygen) in
which one atom of Ca/Sr/Ba is replaced with a 12.5% of
concentration. A self-consistent field (SCF) was run to
converge the energy. This iteration process stops after the
energy drops lower than 10–4 Ry and the chosen k-points are
63 k-points in the whole irreducible Brillouin zone.

3. Results and discussion

3.1. Electronic properties

In this work the lattice constants used for obtaining the
electronic, magnetic and optical properties of the alkaline
earth oxides XO (X=Ca, Sr, Ba) doped with 5d metal atoms
are 4.8 Å, 5.16 Å, and 5.53 Å respectively. The total density
of states of the host oxides showing band gaps in both the
spins (up and down) are shown in figure 1. The band gaps of
host oxides CaO, SrO and BaO were measured at their highest

and lowest symmetric points and are given in table 2. As per
these band gaps at Fermi level, such oxides are known to be
as semiconductors or insulators depending upon the width of
the band gap.

3.1.1. CaO, SrO, and BaO doped with rhenium (Re). The
alkaline earth oxides were doped with Re 5d transition metal
atoms to change the properties of the host material. The host
oxides (CaO, SrO, and BaO) Ca/Sr/Ba were substituted by
the transition metal atom Re with a concentration of 12.5% to
form the supercells. Each supercell contains 16 atoms (8
atoms of Ca/Sr/Ba and 8 atoms of O) in which the first atom
of Ca/Sr/Ba was replaced by Re. The crystal structures and
atomic positions of the supercells are shown in figure 2 and
table 1. The doping of Re in CaO, SrO and BaO change the
characteristic of being a semiconductor/insulator into half-
metallic. A half-metallic nature can be defined as when one
spin for the valence band is partially filled and the other is
empty (a gap). The half-metallic characteristic is confirmed
from TDOS and band structures of the resulting compounds
X0.875ORe0.125 (X=Ca, Sr, Ba). Figures 3(a), 4(a) and 5(a)
show the total DOS of supercells where it is seen clearly that
band gaps lie in the spin up majority channel, but in the spin
down minority channels the energy bands were observed to
cross the Fermi level. Therefore, it is evidenced by the density
of states that the compounds display a half-metallic character.
The compounds are found to exhibit semiconducting behavior
in the spin up majority channel and conducting (metallic)
character in the spin down minority channel. These
compounds exhibit 100% spin polarization around the
Fermi level (EF).

The contribution of Re-5d, O-2p, Ca-3s, Sr-4s, and Ba-5s
orbitals in the compounds X0.875ORe0.125 (X=Ca, Sr, Ba)
has been observed in the respective partial DOS of each
compound and were shown in figures 3(b), 4(b) and 5(b). In
the (spin up) majority channel of super cell Ca0.875ORe0.125,
5d band peaks are seen in between the band energies 1.17 eV
and 2 eV in the right side of Fermi level and −1.68 eV and
−0.31 eV in the left side of Fermi level. These 5d bands of Re
pushes each other and leaving a band gap in majority spin at
the Fermi level. But, in spin down minority channel, the 5d
bands of Re cross the Fermi level due to hybridization of the
5d orbitals of Re. The same trend is seen in other compounds
(supercells) like Sr0.875ORe0.125 and Ba0.875ORe0.125 but the
difference was observed in the Re-orbitals at different
energies. The 5d bands of Sr0.875ORe0.125 supercell are
located at −0.38 eV and 0.69 eV and 5d –bands of
Ba0.875ORe0.125 are positioned at −0.45 eV and 0.42 eV from
either side of the Fermi level. These 5d- bands of compounds
X0.875ORe0.125 (X=Ca, Sr, Ba) push each other leaving the
band gaps in spin up majority channel whereas the 5d–Re
bands of each compound cross the Fermi level because of
hybridization between the 5d- orbitals. The whole contrib-
ution in forming the band gaps in (spin up) majority channel
of compounds X0.875ORe0.125 (X=Ca, Sr, Ba) is due to 5d
Re bands and same 5d Re bands were seen crossing the Fermi
level in spin down minority channel. Further, as seen from the

2

Phys. Scr. 95 (2020) 025801 N A Teli and M Mohamed Sheik Sirajuddeen



Figure 1. TDOS of XO (X=Ca, Sr, Ba).

Figure 2. Crystal structures of uper cells X0.875ORe0.125 (X=Ca, Sr, Ba).

Table 1. Positions of atoms in super cells X0.875ORe0.125 (X=Ca, Sr, Ba).

Positions Atoms Positions
Atoms X Y Z X Y Z

Re1 0 0 0 O1 1/4 1/4 1/4
Ca1/Sr1/Ba1 1/2 0 0 O2 3/4 1/4 1/4
Ca2/Sr2/Ba2 1/4 1/4 0 O3 0 0 1/4
Ca3/Sr3/Ba3 3/4 1/4 0 O4 1/2 0 1/4
Ca4/Sr4/Ba4 1/4 0 1/4 O5 0 1/4 0
Ca5/Sr5/Ba5 3/4 0 1/4 O6 1/2 1/4 0
Ca6/Sr6/Ba6 0 1/4 1/4 O7 1/4 0 0
Ca7/Sr7/Ba7 1/2 1/4 1/4 O8 3/4 0 0

Figure 3. (a) TDOS and (b) PDOS of Ca0.875ORe0.125, spin (up-↑, down-↓).
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partial DOS of each supercell, the O-2p, Ca-3s, Sr-4s, and Ba-
5s orbitals do not contribute directly towards the creation of
the band gap in one of the spins. Therefore, half-metallicity in
the compounds originates only from 5d Re orbitals.

Both spins of the electronic band structure (spin up and
spin down) of the compounds X0.875ORe0.125 (X=Ca, Sr,
Ba) are plotted and shown in figure 6. Band gaps have been
found to occur in the spin up majority channel only, whereas
the energy bands cross the Fermi level in the spin down
minority channel predicting half-metallicity of the compounds
X0.875ORe0.125 (X=Ca, Sr, Ba). The energy band gaps were
determined between the highest symmetric valence bands at
X and lowest symmetric conduction bands at Γ. All the three
compounds (super cells) X0.875ORe0.125 (X=Ca, Sr, Ba)
show indirect energy band gaps in (spin up) majority channel.
These indirect band gaps were calculated and are given in
table 2.

3.2. Magnetic properties

5d transition metal atoms (Re) substituted in alkaline earth
oxides creates a magnetic moment in the supercells
X0.875ORe0.125 (X=Ca, Sr, Ba). The total spin-magnetic

moment of the supercells including the contribution of each
atom in creation of magnetic moment in the compounds
(super cells) is given in table 3. The spin-magnetic moment of
the host (un-doped) compounds (CaO, SrO, and BaO) is
nearly about zero but the spin magnetic moment increases by
doping of 5d transition metal atom Re in the supercells. The
spin magnetic moment in compounds is due to spinning of
electrons. The valence electronic configuration of the atoms is
Ca-{Ar} 4s2, Sr-{Kr} 5s2, Ba-{Xe} 6s2, O-{He} 2s2, 2p4 and
Re-{Xe} 4f14 5d5 6s2. In super cells, the creation of magnetic
moment is due to valence electrons. So from electronic con-
figuration, it was observed that Re has more valence electrons
as compared to other atoms which specify its effect would be
more. The magnetic moment value is greater for Re atom in
the super cell as compared to other atoms. So, it means that
the transition metal atoms play an important role in producing
magnetism in the alkaline earth oxides. 5d transition atom Re
and oxygen have positive values while as alkaline earth atoms
(Ca, Sr and Ba) tend to create negative magnetic moment
values. Therefore, the transition metal atoms Re and oxygen
(O) have a positive effect while the alkaline earth atoms
append negative effect.

Figure 4. (a) TDOS and (b) PDOS of Sr0.875ORe0.125, spin (up-↑, down-↓).

Figure 5. (a) TDOS and (b) PDOS of Ba0.875ORe0.125, spin (up-↑, down-↓).
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3.3. Optical properties of doped compounds

Optical properties of the materials are generally determined
from the complex dielectric function

e w e w e w= + . 11 2( ) ( ) ( ) ( )

Wherein ε1 (ω) is the real part of the dielectric function and ε2
(ω) is the imaginary part of the dielectric function.

Dielectric function ε (ω) offers two transitions, an intra-
band and an interband. However, in this study there is no
addition of intraband transition contribution and only the
interband contribution is prepended. Based on the DFT cal-
culations, the imaginary part ε2 (ω) can be determined by

Figure 6. Band structures of Ca0.875ORe0.125 (a) ↑ (b) ↓, Sr0.875ORe0.125 (c) ↑ (d)↓and Ba0.875ORe0.125 (e) ↑ (f) ↓.

Table 2. Band gaps of the undoped and doped compounds.

Compounds Band gap-(eV)
Band gap-(eV) (Pre-

vious work)

CaO 3.85 3.66a, 2.91b, 15.5c

SrO 3.53 3.33a, 3.44b, 12.8c

BaO 2.14 2.12a, 2.44b

Ca0.875ORe0.125 1.5 —

Sr0.875ORe0.125 0.93 —

Ba0.875ORe0.125 1.1 —

a

[43]
b

[44]
c

[45]
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Table 3. Spin magnetic moment (μB) of supercells X0.875ORe0.125 (X=Ca, Sr, Ba).

Atoms in compounds Ca0.875ORe0.125 (μB) Sr0.875ORe0.125 (μB) Ba0.875ORe0.125 (μB)

Interstitial 0.16761 0.19183 0.14848
1 Re 0.73260 0.75303 0.84923
2 Ca/Sr/Ba −0.00794 −0.00578 −0.00777
3 Ca/Sr/Ba −0.00345 −0.00224 −0.00255
4 Ca/Sr/Ba −0.00329 −0.00216 −0.00248
5 Ca/Sr/Ba −0.00345 −0.00224 −0.00255
6 Ca/Sr/Ba −0.00329 −0.00216 −0.00247
7 Ca/Sr/Ba −0.00345 −0.00224 −0.00253
8 Ca/Sr/Ba −0.00330 −0.00216 −0.00244
9 O 0.00102 −0.00034 0.00555
10 O 0.00102 −0.00034 0.00555
11 O 0.02094 0.01286 0.00089
12 O 0.02094 0.01286 0.00089
13 O 0.02094 0.01286 0.00093
14 O 0.02094 0.01286 0.00093
15 O 0.02095 0.01287 0.00092
16 O 0.02095 0.01287 0.00092

Total 0.99973 1.00237 0.99150

Figure 7. (a) Real part ε1(ω) of the dielectric function. (b) Imaginary part ε2(ω) of the dielectric function. (c) Reflectivity and (d) absorption
coefficient of X0.875ORe0.125 (X=Ca, Sr, Ba) compounds.

6

Phys. Scr. 95 (2020) 025801 N A Teli and M Mohamed Sheik Sirajuddeen



using below relation (2) and from which real part ε1 (ω) of the
dielectric constant could be calculated by applying Kramers–
Kronig relation [46–48]:
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Having a good description of ε2(ω) (imaginary) part with
energies, the ε1(ω) (real) part of the dielectric function can be
calculated. In this work imaginary part as well as ε1(ω) (real)
part of the dielectric function were determined within energy
range 0–14 eV. Figures 7(a) and (b) show the ε1 (ω) (real) and
ε2(ω) (imaginary) parts of dielectric relation ε(ω) for the
compounds X0.875ORe0.125 (X=Ca, Sr, Ba). The peaks are
seen in between the energy range 0–5 eV for real part ε1(ω) of
dielectric function ε(ω). The highest peak values of ε1(ω) for
compounds (Ba0.875ORe0.125, Ca0.875ORe0.125 Sr0.875ORe0.125
) are 10.8, 8.8 and 8.6. It has been observed from the graph of
the real part ε1(ω) versus energy that ε1(ω) values decrease
towards negative values which indicates that the electro-
magnetic wave (incident light) is entirely reflected within this
region. The ε2(ω) (imaginary) part of the ε(ω) (dielectric
function) is an essential part which helps to measure the
absorptive character, interband transitions and also defines the
direct relationship with the band structure.

Reflectivity versus energy curves of the compounds
(Ba0.875ORe0.125, Ca0.875ORe0.125, and Sr0.875ORe0.125) are
shown in figure 7(c). It has been observed from the curves
that the reflectivity values increases as the energy gets
increased. From reflectivity curves the peak values are seen
in between the energy range (12–14 eV) which means at
higher energy, higher are the reflectivity values (peaks).
Therefore, by increasing the energy from 0 to 14 eV the
reflectivity would be more. As per the reflectivity curves, the
peak values of the compounds are located at 13.6 eV and in
this energy range 12–14 eV the absorption is less and
compounds show the interband transition of the photons in
this region.

Optical absorption has a direct relationship with the ε2(ω)
(imaginary) part of the ε(ω) (dielectric function). Figure 7(d)
shows the plotted curves of absorption coefficient versus
energy. High peak values of absorption coefficients for com-
pounds Ba0.875ORe0.125, Ca0.875ORe0.125, and Sr0.875ORe0.125
are found to lie between energy ranges 9–11 eV. The absorp-
tion coefficient values increase to peak values as the energy
increases to a high value. Then absorption coefficient values
decreases after reaching peak value which suggests that optical
absorption decreases and the reflectivity increases. Therefore,
the doped compounds are predicted to exhibit both properties
like absorption and reflectivity and such compounds can be
used in optoelectronic devices.

4. Conclusion

A FPLAPW method has been used to examine the electronic
structure, magnetic and optical properties of the alkaline earth
oxides XO (X=Ca, Sr, Ba) doped with 5d transition metal
atom Re within the treatment of density functional theory. It
has been found that doped compounds exhibit half-metalli-
city. The half-metallic property is clearly seen in the DOS
and band structures of doped compounds X0.875ORe0.125
(X=Ca, Sr, Ba). From partial DOS of the doped compounds
the contribution of 5d orbitals is observed which gives for-
mation of band gaps in the spin up majority channel around
the Fermi level. Total spin magnetic moment of the supercells
Ca0.875ORe0.125, Sr0.875ORe0.125 and Ba0.875ORe0.125 is given
as 0.99973μB,1.00237μB and 0.99150μB respectively. The
optical parameters dielectric constants (real and imaginary),
reflectivity and absorption of the compounds have been cal-
culated and shown. Compounds exhibiting electronic,
magnetic and optical properties can be used in spintronics and
optoelectronic applications.
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