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In this paper, we investigate the blood flow through a stenoised channel. In current study Cartesian
coordinates are contemplated for flow in the channel and in an axisymmetric tube with transfer of
heat having cosine shape stenosis. Blood is supposed as Eyring—Powell fluid which is independent of
time. Thermal conductivity is determined by temperature. After assimilating these deliberations,

dimensional equations are transformed into non-dimensional system of differential equations with the
use of similarity transformations and are then solved numerically. A parametric study is executed to
depict the impact of various parameters on the velocity and temperature fields of fluid. Heat transfer

coefficient and skin friction are also explained through graphs and discussed in tabular form for
distinct values of dimensionless parameters. The current investigation tells that velocity field
significantly increases by rising the value of M and . Temperature field 6 (1) increases for extended
value of 6, M, K, B, A and Pr. Nusselt number curve increases due to increase in Pr.

Keywords: Eyring—Powell fluid model, blood flow, heat transfer, numerical solution, stenosed

channel
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1. Introduction

Blood is an important fluid of our body, like other bio-fluids.
The study of blood flow in blood vessels such as arteries and
veins under the effect of stenosis has been a topic of long-
standing interest for researchers [1-5]. Today, we can see that
arteries are choked because of modern lifestyles, high blood
cholesterol, smoking and possibly a genetic problem. Blood
circulation executes different function types in a human body
such as oxygen transportation, transport of nutrients, ejection of
carbon dioxide and deportation of metabolic products. There are
three types of blood circulation namely micro-circulation, sys-
temic circulation and capillary circulation. Experientially, it has
been proven that blood is the suspension of red blood cells,
white blood cells, and platelets. Newtonian behavior of blood is
acceptable for high shear rate flow i.e. when blood flow through
larger area arteries and is non-Newtonian when the shear rate is
below i.e. flowing through smaller area arteries, veins and in the
downstream of the stenosis. It has been observed that blood
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shows momentous non-Newtonian properties in some diseased
conditions since it is observed through experiments that most of
the biological fluids express rheology of non-Newtonian aspects.
The most prestigious equations known as Navier—Stokes can not
explain the attributes of non-Newtonian fluid models. Therefore,
several intrinsic equations for non-Newtonian fluid models have
been carried out with the character of the density of the fluid.
Non-Newtonian fluids have a lot of applications in industry,
medical field and engineering sciences. In modeling of steel
substances, petroleum drilling, expulsion of polymers, and
demolishing of glasses, non-Newtonian fluids have emerging
applications. Some polymers are utilized in communication,
agriculture, medical appliances. Due to lot of applications in
industry and medicine, the investigation of non-Newtonian
fluids is a topic of great interest to modern researchers [6—14].
Erying and Powell [15] developed a fluid model having nature
of non-Newtonian fluid models. The Eyring—Powell fluid is very
complicated mathematical model but it fascinates the researchers
attention due to the its advantages over the power law model.
This fluid model contains many beneficial approaches in the
field of fluids. First of all it is originated from kinetic theory of

© 2019 IOP Publishing Ltd  Printed in the UK
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liquids and having no connection with empirical relation. Sec-
ondly it can be used for Newtonian behavior at low and high
values of shear rates [16]. By literature review [17-19] many
mathematicians paid attention towards the study of Eyring—
Powell fluid.

In current analysis, the blood is considered to be Eyring—
Powell fluid in the stenosis and the attained governing
equations are presented in the form of stream function as a
compatibility equation. The analysis of the existing literature
suggests that to the best of the author’s knowledge, no studies
have been reported regarding the Eyring—Powell model fluid
through stenoised artery.

2. Mathematical equations
The Eyring—Powell model fluid stress tensor which is
T=nuVv + 1 sinhfl(in) (1)
H 3 D >

where 7 indicates the cauchy stress tensor, v illustrates the
velocity, p indicates viscosity, and D shows the material

constant,
3
in — l(le) s ‘ in
D 6\D D

sinh~! (LV\/) ~
D

< 1. (2

3. Mathematical formulation

Assuming the flow of steady, homogenous and incompres-
sible Eyring—Powell fluid (assumed as blood) via two
dimensional stenoised channel of length %‘J The coordinates
are considered in such a manner that the arterial system lies in
the xy-plane such that x-axis concurs with the axis in the
direction of the flow and y-axis is taken normal to x-axis.

In schematic diagram of the problem, A is the maximum
height of the stenosis, /(x) is the space in the stenosed area
and 2hy is the breadth of the unimpeded channel.

Boundary of stenosed region is chosen as

hx) = ho — %(1 + Co (4“)), b

0 4 4
= hy Otherwise. 3)
3.1. Governing equations
The governing equations are [20]
vV =0, 4)
av -
p&L =7 4 pb, 5)
dr
pde—Y; =kV?T + ¢, 6)
p=T1VV, (7)

where p shows density of fluid, C, specific heat, k thermal
conductivity, b body force, V is the Laplacian and ¢ is the
dissipation function. For incompressible Eyring—Powell
model fluid the continuity equation becomes

Ou  Ov
= 4 = 8
Ox Oy ®)
The momentum equation becomes
Ju o) Lo, 2 Pu
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The obtained energy equation is
0 0 0? 0? Ou
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where C, represents the specific heat of fluid.
Under above conditions the boundary layer equations for
steady incompressible flow towards a stenoised region

become:
B ) Ao (o) ou)( 0
Ox Ay p Ox  3pBC3\ 0x )\ Oy )\ Ox0y
o )z 2 J(myon
pBC ) dy*  3ppC? dy?

(G

12)
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Figure 1. Schematic diagram of the problem.

1 dp
—-—— =0, (13)
p Oy
O _ k0T L(f)_) ou)
dy  pC, dy*  3pC,BC3*\0x ) \ 9y
2
v 1 Ou
+|=+ —1. (14)
[Cp pCpﬂC)(é‘y)

According to the configuration of the problem in figure 1 the
suitable boundary conditions are,

u=v=20, a—u:Oaty:h(x),
Oy

15)

3.2. Solution of the problem

The continuity equation is automatically satisfied by intro-
ducing the relation for u and v in the form of stream function
as:

a9

ox

— 3
For relations (16), equation (2) is satisfied automatically and
the equations (12) and (14) take the following form:

(16)

, V= —

Y W
dy Ox0Oy Ox Oy? 3pBC3 dy* Oxdy OxOy?
3 3 2.1 \2
o )22 [ow(ow
pBC ) dy3  3pBC3| dy3\ oxdy
o\ 0%
* 8_)12 ox20y |
(17)
_wor _ kot 4 (0 (20
dx dy  pC, dy*  3pC,BC3\ 0xdy ) \ dy*
2 \2
- (% - clﬁcJ(g_f) '
14 p P y (18)

The boundary conditions are reduced to:

1?:%, T'=Taty=f,

% ), =0, T=Taty=o0.
ox

Now to convert these equations in single variable, introducing
the stream function as follows:

v = Javxf(n),

where the similarity variable 7 is given by n = y\/g .

19)

(20)

Using relation (20), equation (17) finally, has the fol-
lowing form:

(1 + M)f/// _ %GMf/(f{fW + 4f//2) + 6f//f

— 7 =0. 21
Next, the dimensionless temperature 6 is introduced as:
T-T
0(n) = . 22
== (22)

By using equation (20) and similarity variable equation (18)
reduces to:

0" — %MKBHf/zf”z + (1 + M)AOF" + 6Pro'f =0, (23)

where
pro Gt g _pat 1 al?
k k uBC kp
3,2
G= fy—)éz (24)

The dimensionless boundary conditions are

FO) =0, f(b) = % Fib) = 0ar b =f\/§ .25

0(b) =1, 6(0) = 0. (26)

The interesting physical objects i.e. Nusselt number and Skin
friction of the flow field are also obtained.

4. Graphical results and discussion

Impact of physical parameters on velocity and temperature
fields is explained with the assistance of tables and graphs.
Figure 1 shows the schematics diagram of the problem.
Figure 2 tells the impact of A on temperature field. The
relationship between temperature and A is directly propor-
tional. Temperature profile increases for increasing value of
A. Figure 3 demonstrates the instance of B on temperature
profile. The temperature field shows increasing behavior due
to increase in the value of B. Figure 4 explores the behavior of
6 on temperature profile. The temperature field increases by
raising 6. Figure 5 draws the consequences of k on temper-
ature distribution. Figure 6 illuminates the behavior of M on



Phys. Scr. 95 (2020) 025206

A Hussain et al

— A =01 A=43 A=9.0 = A=135| [——35=01
1-
0.81
0.6
8(n) 8(n)
0.41
0.2
Pr=81.B=10,M=0.1, A=21Pr=8.1,B=10,
K=14,6=0.01 K=0.7,M=33
0 1 T 0+ T T 1
0 1 . 3 0 1 2 3
n n
Figure 2. Impact of A on temperature profile. Figure 4. Response of ¢ on temperature field.
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Figure 3. Consequences of B on temperature field.

temperature field. The temperature profile rises by changing
the values of M. Figure 7 describes the Pr behavior on
temperature profile. Temperature curve increases due to
increase in Pr. Figures 8-9 shows the impact 6 and M on
velocity profile, respectively. Velocity curves increases by
increasing the values of 6 and M. Figure 10 shows the var-
iations in heat transfer coefficient by increasing the Pr.
Figure 11 draws the consequences of skin friction. Table 1
describes the performance of different parameters on 670).

Figure 5. Impact of K on temperature field.

Values of 07(0) decreases due to enhances the values of Pr
and ¢. Table 2 investigates the results of Pr and 6 on heat
transfer coefficient. Values of coefficient shows growing
behavior owing to rise in parameter 6 and shows negative
variation by changing the value of Pr. Table 3 express the
behavior of 8 and ¢ on skin friction. It exhibits positive
response for skin friction coefficient when ¢ increases while
by accelerating the values of (3 the values of skin friction
coefficient manifests reducing reaction.
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Figure 6. Consequences of M on temperature distribution.
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Figure 7. Temperature distribution for values of Pr.

5. Concluding remarks

A problem of steady state incompressible boundary layer flow of
Eyring—Powell fluid in arterial stenosis has been investigated. By
using the useful similarity transformations we transformed the
PDE into ODE’s. Results of distinctive parameters of velocity
and temperature fields were obtained about the influence of
fluids flow. The desired phenomenon has been explained with
the assistance of graphs and tables. The main results are:

|——35=115 5=59 §=29 == 5§=0.1
0.5
0.4
0.31
f(n)
0.21
0.11
G=01,M=33
0' T T
0 1 2 3

n

Figure 8. Impact of 6 on f(n).

[ M =0.] =M =(.§ == M=24=—=M=10.5]
05

0.41

G=14,56=001

o

n

Figure 9. Effects of M on f(n).

(1) Temperature field 6(n) increases for extended value of
6, M, K, B, A and Pr.

(2) Velocity curve 8(n) increases for expanding values of ¢
and M.

(3) Nusselt number curve Nu profile-rates owing to
increment in the value of Pr.

(4) Temperature has been found to decrease due to
enlargement in M and 6.
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Figure 10. Nusselt number variations — ¢’ (0) for distinct values of Pr
and M.

Table 1. Values of 0’(0) at the wall for 6, M, K, B, A and Pr.

6 0.01 0.05 0.1 0.15
A

M

Pr 041023 045913 0.52130 0.58361
B

K

Pr 7.1 7.3 7.5 7.7

A

M

6 0.48247 0.70163 0.83965 0.85156
B

K

A 0.1 4.3 9.0 13.5

Pr

M

6 0.52744 059413 0.68333 0.78726
B

K

Table 2. Values of Nusselt number —6’(0) for M and Pr.

M Pr —0'(0)
0.1 7.1 —0.83498
0.12 —0.834 50
0.14 —0.834 03
0.1 —0.83498
7.15 —0.83820

72 —0.841 42

1.65

1.25}¢ .

0.14 0.16 0.18

8

01 012 02

Figure 11. Values of skin friction for M and 6.

Table 3. Values of skin friction coefficient for M and Pr.

s M %CfRe
0.1 03 038029
0.12 0.381 31
0.14 0.382 33
0.1 0.380 29
04 037813
0.5 037830
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