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Abstract.  We analyse large deviations of the dynamical activity in one-
dimensional systems of diusing hard particles. Using an optimal-control 
representation of the large-deviation problem, we analyse eective interaction 
forces which can be added to the system, to aid sampling of biased ensembles 
of trajectories. We find several distinct regimes, as a function of the activity 
and the system size: we present approximate analytical calculations that 
characterise the eective interactions in several of these regimes. For high 
activity the system is hyperuniform and the interactions are long-ranged and 
repulsive. For low activity, there is a near-equilibrium regime described by 
macroscopic fluctuation theory, characterised by long-ranged attractive forces. 
There is also a far-from-equilibrium regime in which one of the interparticle 
gaps becomes macroscopic and the interactions depend strongly on the size 
of this gap. We discuss the extent to which transition path sampling of these 
ensembles is improved by adding suitable control forces.
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1.  Introduction

Large deviations of time-averaged quantities are becoming increasingly useful for under-
standing dynamical fluctuations in physical systems [1–13]. For example, consider an 
ergodic system in which time-averaged quantities converge almost surely to ensemble-
averaged values. Given some large time scale, the probability of a significant deviation 
between the time-average and the ensemble average is small but finite—these rare 
events are described by large-deviation theory [14, 15]. Despite their scarcity, analysis 
of these events has led to new insight into the behaviour of physical systems, and their 
dominant fluctuation mechanisms [9–11, 16–18].

Early studies of these events focused on the entropy production in non-equilibrium 
systems, which is intrinsically linked to fluctuation theorems [1, 2, 19, 20]. Another 
direction has been the analysis of time-averaged currents, aiming towards a general 
theory of transport in non-equilibrium systems [3, 5, 21, 22]. Yet another line of enquiry 
has focused on glassy systems [8, 9, 23, 24], which have long-lived metastable states 
that hinder equilibration.

In studies of large deviations, there are numerous examples of dynamical phase trans
itions [8–10, 13, 17, 23–29]. In simple terms, these occur when deviations from ergodic 
behaviour occur by mechanisms that dier qualitatively from the typical behaviour of 
the model. For example, the rare events may involve spontaneous symmetry breaking, 
as in [10, 13, 29]. In other cases, one encounters the phenomenology of first-order phase 
transitions, including phase coexistence [8, 23].

Here we focus on a simple Brownian hard particle model (BHPM), which has rich 
fluctuation behaviour, including dynamical phase transitions [30, 31]. It consists of 
many hard particles diusing in one dimension, and therefore has some similarities 
with the simple symmetric exclusion process (SSEP), generalised to continuous space. 
Dynamical phase transitions in the SSEP have been analysed in detail [5, 13, 29, 32, 33].  
In particular, its behaviour on very large (hydrodynamic) length scales is described by 
macroscopic fluctuation theory (MFT) [21]. The general applicability of this theory 
means that its predictions apply also in the BHPM [30, 31]. A key prediction is that 
for large deviations with low values of the dynamical activity, the system becomes mac-
roscopically inhomogeneous, which was identified in [30] as a form of phase separation.

This article extends previous work [30, 31] on the BHPM in two main direc-
tions. First, we analyse the macroscopically inhomogeneous regime, both numerically 
and analytically. We generalise existing MFT predictions [17, 25] to the BHPM and 
we show quantitative agreement with numerical results. This theory is accurate for 
fluctuations that involve smooth large-scale modulations of the density. We also anal-
yse fluctuations that are too large to be captured by MFT, where one observes the 
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formation of an extensive region without any particles at all: a macroscopic gap. Based 
on previous results for kinetically constrained spin models [34–36], we propose a simple 
interfacial model that captures qualitative features of this regime.

The second direction of this work is to show how the addition of control forces  
[37, 38] to the equations of motion of the system can be used to improve numerical 
convergence. It is known [38, 39] that for any given biased ensemble there is an optimal 
set of control forces for which numerical sampling of the rare events becomes trivial. 
While these optimal forces cannot usually be computed in complex physical systems, it 
is expected that adding non-optimal control forces can also improve the convergence of 
numerical calculations, via a form of importance sampling [36, 40–42]. We use theor
etical arguments to derive approximations to the optimal control force, in two regimes 
that we have identified. We show that these control forces do indeed improve numerical 
performance, and this improvement is increasingly strong when we consider large sys-
tems. (This is because our approximations to the optimal control forces are increasingly 
accurate for large systems.)

The form of this paper is as follows. Section 2 introduces the models that we con-
sider, and some of the quantities that we will measure. Section 3 collects properties of 
biased ensembles of trajectories. Section 4 gives an overview of the main theoretical 
results, before sections 5 and 6 describe the detailed calculations for the two macro-
scopically inhomogeneous regimes that we identify. We summarise our conclusions in 
section 7.

2. Models

Consider N hard particles moving in one dimension with periodic boundaries. Each par-
ticle has size l0 and the position of particle i at time t is xi(t). We write X = (x1, x2, . . . , xN) 
for a configuration of the system and x for a trajectory of the the system, over a time 
interval [0, tobs]. The particle motion is stochastic and obeys detailed balance with 
respect to an equilibrium distribution

p(X) =
1

Z
exp[−βU(X)]� (1)

where β is the inverse temperature, Z is a normalisation constant, and U is a pairwise 

additive potential energy U = 1
2

∑
i �=j v(xi − xj). As in [30, 31], we consider two vari-

ants of the system, which have very similar behaviour.

2.1. Monte Carlo dynamics

The MC variant of the model is a discrete-time Markov process. On each step, a par-
ticle (say i) is chosen at random and we propose to move it to a new position xi +∆x 
where ∆x is uniformly distributed in [−M ,M ]. Here, M is a parameter of the model. 
We use Glauber dynamics so the move is accepted with probability

pacc =
1

1 + exp(β∆U)� (2)

https://doi.org/10.1088/1742-5468/ab4801
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where ∆U is the dierence in energy between the current configuration and the pro-
posed configuration. If the move is rejected then the configuration remains the same. 
After each attempted move, the time is incremented by δt = M2/(12ND0) where D0 
is the single-particle diusion constant, which is also a parameter of the model. This 
ensures that in the dilute limit, particles diuse independently between collisions, with 
diusion constant D0. We use Glauber dynamics because this facilitates later analysis, 
when we add control forces to the system, see section 3.3.

This variant of the model considers hard particles, so the interaction potential is

v(x) =

{
0, x > l0
∞, x < l0

.

�

(3)

Suppose that the j th particle is selected to be moved in a given MC step, and suppose 
that the neighbouring particles have indices p, q. The probability that the proposed 
move does not result in two particles overlapping is

rMj =
1

2M
[min(M , |xj − xp|) + min(M , |xj − xq|)] .� (4)

The superscript M indicates that this quantity depends on the MC step size, it is a label 
(and not any kind of exponent).

2.2. Langevin dynamics

All numerical results in this work use MC dynamics. However, it is convenient for 
theoretical analysis to consider a Langevin equation

ẋi = −βD0∇iU +
√
2D0ηi� (5)

where ηi is a standard Brownian noise. In this case the pair potential should be 
dierentiable: we assume a regularised version of (3) such that v(x) = ∞ for |x|  <  l0. 
Also there is some l1 such that v(x) = 0 for |x| > l0 + l1, with v(x) a continuous function 
for l0 < x � l1, diverging as x → l0. This choice ensures that the separation between any 
pair of particles is always larger than l0.

The similarity between the MC and Langevin models can be justified in the follow-
ing way. In the Langevin model, take l1 = l0 +M  where M is the step size in the MC 
model. The two models behave equivalently in the limit M → 0: this can be verified by 
constructing the Fokker–Planckequation for the Langevin model and the corresponding 
master equation for the MC model, then taking the relevant limits. See [43].

2.3. Rescaled representation

Since we consider hard particles in d  =  1, the ordering of particles in the system is pre-
served4. One may always map such a model to a system of point particles that move 
in a spatial domain of size

Lr = L−Nl0 .� (6)

4 The particles exclude a volume l0 which we assume throughout is larger than the MC step M.

https://doi.org/10.1088/1742-5468/ab4801
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We insist that the particle positions are ordered with x1 < x2 < . . . (modulo periodic 
boundaries) in which case the position of the j th point particle is x̃j = xj − jl0. For 
the MC variant of the model, the equilibrium distribution (1) reduces to an ideal-gas 
distribution for the positions x̃. In some cases, this means that the rescaled system is 
simpler to analyse. However, we emphasise that the rescaled system and the original 
system contain exactly the same information.

In this rescaled representation, it is easy to see that varying l0 in the original model 
simply shifts particles’ positions by constants that are independent of time. It follows 
that many properties of the system (including trajectories of individual particles) are 
independent of l0.

2.4. Dynamical activity

In the following, we focus on ensembles of trajectories that are biased to low (or high) 
values of time-averaged measurements of dynamical activity. The definition of activ-
ity used in this work diers from [30, 31]—the choice used here does not change the 
qualitative behaviour but it makes it easier to analyse, both numerically and computa-
tionally. Large deviations for a dierent kind of dynamical activity have recently been 
analysed in a similar model [44].

The activity measures motion on a characteristic length scale a. We introduce a 
dimensionless parameter

Φa =
Na

Lr
� (7)

which is the ratio between a and the average interparticle gap. For a trajectory x, we 
define

K[x] =
N∑
i=0

∫ tobs

0

rai (t) dt� (8)

where rai  is the acceptance probability for an MC move of size a, as defined in (4). 
We allow the parameter a that appears in the definition of K to be dierent from the 
parameter M that determines the size of MC moves, although our numerical results 
take a  =  M. Note also that while K is defined in terms of the MC acceptance rate, it 
can be evaluated directly from particle trajectories, using (8). Thus, K is a well-defined 
quantity in the Langevin variant of the model, as well as in the MC variant. Also, the 
value of K only depends on gaps between adjacent particles and is therefore the same 
in the rescaled representation, or the original representation.

It is useful to define an intensive (and dimensionless) version of K by dividing by 
the number of particles and by tobs:

k[x] =
K[x]

Ntobs
.� (9)

In large systems, the gaps between adjacent particles are exponentially distributed 
with mean Lr/N . Hence the mean of rai  is the probability that a randomly chosen gap 
(y ) is larger than the proposed step (z):

https://doi.org/10.1088/1742-5468/ab4801


Large deviations and optimal control forces for hard particles in one dimension

7https://doi.org/10.1088/1742-5468/ab4801

J. S
tat. M

ech. (2019) 123208

〈rai 〉0 =
∫ a

0

(1/a)

∫ ∞

z

(N/Lr)e
−yN/Lr dy dz.� (10)

(Here and throughout, 〈·〉0 indicates an average in the equilibrium state of the system.) 
The integral gives Φ−1

a (1− e−Φa), so one has (for large systems, N → ∞)

〈k[x]〉0 =
1

Φa

(1− e−Φa).� (11)

At low concentrations (small Φa), particles diuse almost independently and the activ-
ity k is equal to unity. For high concentrations the mean activity (per particle) is 
reduced; it approaches zero as Φa → ∞ (in which case particles do not move at all).

3. Biased ensembles of trajectories

This work focusses on the distribution of the intensive activity k[x] as tobs → ∞. In a 
system with N particles, large deviation theory for this time-averaged quantity means 
that its probability density scales as

p(k|tobs,N) ∼ e−tobsI(k)� (12)

where I is the rate function. This is a large deviation principle, which holds for tobs → ∞ 
at fixed N.

Evaluation of I(k) gives the probability of rare events where the time-averaged 
activity takes a non-typical value. This section outlines several results from large devia-
tion theory as it applies to ensembles of trajectories [5, 6, 39, 45], including connections 
to optimal-control theory [38, 46], and its application for numerical sampling [40, 47]. 
Readers familiar with this material may prefer to skip directly to the summary of main 
results in section 4.

3.1. Biased ensembles

We define biased ensembles of trajectories according to standard methods [5, 6, 45], by 
modifying the probabilities of trajectories of the system. We use dP0[x] to indicate the 
(infinitesimal) probability that the system follows trajectory x. The meaning of this 
notation is that the expectation value of some observable O can be expressed as

〈O〉0 =
∫

O[x] dP0[x]� (13)

where the integral runs over all possible trajectories, weighted by their probabilities. 
Now consider an ensemble in which the probability of trajectory x is biased according 
to its activity:

dPs[x] =
e−sK[x]

Zs

dP0[x],� (14)

https://doi.org/10.1088/1742-5468/ab4801
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with Zs = 〈e−sK[x]〉0 for normalisation. By analogy with (13), averages in the biased 
ensemble are given by

〈O〉s =
∫

O[x] dPs[x] .� (15)

Since K is extensive in time, it is useful to invoke an analogy between these biased 
ensembles and canonical ensembles in statistical mechanics, see [15, 48] for a discus-
sion. This motivates us to define the dynamical free energy,

ψ(s) = lim
tobs→∞

1

tobs
log〈e−sK[x]〉0 .� (16)

The average of the intensive activity in the biased ensemble is denoted by

k(s) = 〈k[x]〉s.� (17)
(There should be no confusion between the mean activity k(s) and the activity of 
an individual trajectory k[x].) The average is over trajectories of fixed length tobs so 
k(s) depends implicitly on tobs, as well as the parameters of the model. Note also that 
limtobs→∞ k(s) = −ψ′(s)/N , where the prime indicates a derivative. One reason that 
these biased ensembles are useful is that for large tobs, typical trajectories taken from 
(14) are representative of the rare events associated with (12), evaluated at k = k(s)  
[6, 23, 45, 48].

In analogy with thermodynamics, this first derivative of the free energy corresponds 
to the average value of an order parameter. The free energy is related to the rate func-
tion I by Legendre transform I(k) = sup[−sk − ψ(s)]. If results for k(s) and ψ(s) are 
available from numerical data then the rate function may be estimated parametrically 
as

I(k(s)) = −sk(s)− ψ(s) .� (18)

3.2. Dependence of averages on time

From the definition of the biased ensemble in (14), it follows that this ensemble has 
transient regimes when the time t is close to t  =  0 or t = tobs. These transients can be 
characterised theoretically following [23, 39, 45]. To this end, consider a general observ-
able quantity ẑ that can be measured at some single time t (for example, ẑ might be 
the distance between two particles). The probability density for this quantity when 
evaluated at time t = tobs is

Ps,end(z) = 〈δ[z − ẑ(tobs)]〉s .� (19)
The probability density for ẑ can also be averaged along the whole trajectory, which 
gives

Ps,ave(z) =
1

tobs

∫ tobs

0

〈δ[z − ẑ(t)]〉s dt .� (20)

This is the probability that ẑ has value z, if we measure at a time t chosen uniformly 
at random from [0, tobs]. These distributions depend implicitly on tobs; their limits are 

https://doi.org/10.1088/1742-5468/ab4801
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well-defined as tobs → ∞. The two distributions Ps,ave, Ps,end are dierent in general; 
in particular, they have dierent limits as tobs → ∞ because Ps,end(z) characterises the 
transient regime while Ps,ave(z) characterises typical times, away from the transient 
regimes.

3.3. Conditioning of Doob, guiding forces, and optimal control theory

It has been shown in recent years [39, 45] that properties of biased ensembles of the 
form (14) can be reproduced by considering the typical (unbiased) dynamics of an ‘aux-
iliary process’ that has been modified to include additional ‘control forces’. For the 
Langevin process (5), the auxiliary process is

ẋi = −D0∇i(βU + Vopt) +
√
2D0ηi� (21)

where Vopt is an optimal control potential whose determination is discussed below.
In the following, we make extensive use of (non-optimal) control forces, to improve 

convergence of our numerical algorithms, following [36, 40, 41, 47]. We now present the 
associated theory. Some details of derivations are given in appendix A.

The object of primary interest in this study is the biased probability distribution Ps 
of (14). It is convenient to define a new biased distribution that is very close to Ps, but 
diers in the transient regimes close to t  =  0 and t = tobs. Let V  be a control potential, 
similar to Vopt in (21), but not necessarily optimal. Then define

dP̃ V
s [x] ∝ exp

(
1

2

[
V (X(0))− V (X(tobs))

])
dPs[x].� (22)

The constant of proportionality in this equation is fixed by normalisation, we do not 
write it explicitly in order to have a compact notation. Since they dier only in tran-

sient regime, the distributions Ps and P̃ V
s  are equivalent for long trajectories, in the 

sense that they yield the same results for k(s) and ψ(s). Marginal distributions Pave are 

also identical for Ps and P̃ V
s  (as tobs → ∞), but Pend is dierent in general5.

The equivalence of Ps and P̃ V
s  means that we are free to choose V  in such a way 

that P̃ V
s  is easy to analyse, either numerically or theoretically. To this end, let P̃ V [x] 

be the probability of trajectory x under the Langevin dynamics (21), with Vopt replaced 

by V . Then, we show in appendix A that P̃ V
s  can be interpreted as a biased ensemble 

for this controlled process, that is

dP̃ V
s [x] ∝ exp (Asym[x]− sK[x]) dP̃ V [x],� (23)

with

Asym[x] =
1

4

∑
i

∫ tobs

0

∇iV ·D0(∇iV + 2β∇iU)− 2D0∇2
iV dt .� (24)

5 One way to characterise the optimal controlled model is that it leads to Pave = Pend [40], so there is no transient 
regime in that case.

https://doi.org/10.1088/1742-5468/ab4801
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Similar results have been derived in [36, 38, 40, 41, 49]. Note that (23) applies for the 
Langevin model (5), the analogous result for MC dynamics is given in appendix A.

Comparing (23) with (14), one sees that dP0 has been replaced by dP̃ V , which indi-
cates that the model has been modified by including the control potential V  in the 
equation of motion. Also the exponential biasing factor in (14) has been modified to 
include the action Asym. In numerical work, these modifications are simple to imple-

ment, so algorithms for analysing Ps can also be used to analyse P̃ V
s . This holds for any 

V  which allows an enormous flexibility [36, 40, 41]. In particular, the optimal control 
(V = Vopt) is the potential V  for which the factor Asym[x]− sK[x] in (23) evaluates to 
a constant value ψ(s)tobs, independent of x. This allows Vopt to be obtained by solv-
ing an eigenvalue problem, see appendix A. If this optimal control potential is known 

then sampling from P̃ V
s  is trivial [47, 50]. More commonly, the optimal potential is 

not available, but even non-optimal controls can greatly improve the performance of 
numerical schemes [36, 40, 41]. The nature of optimal control forces in some physical 
model systems is discussed in [46].

3.4. Sampling of biased path ensembles

We use transition path sampling (TPS) [51] to generate representative trajectories 

from Ps and P̃ V
s . Our TPS methodology is the same as [9, 31]. To summarise, TPS is 

an MC method for sampling trajectories of a fixed length tobs. In each step, one starts 
with a trajectory and proposes to change it in some way. This is called a TPS move. 
The proposal is generated by direct simulation of the model of interest (see below). The 
proposed trajectory is accepted or rejected according to a Metropolis criterion based on 
the relevant weighting factor (for example, e−sK in the case of (14)). This MC method 
is designed to obey detailed balance, which ensures that it samples (14) or (23), as 
required. This is a key strength of the method; another advantage is that standard MC 
tests for numerical convergence can be applied, see for example section 5.3.

There is some flexibility as to the specific choice of TPS moves. In this work, we 
use shifting moves [9, 31, 51] and the size of each shift is chosen uniformly from the 
range τB ± 0.5τB, except where stated otherwise. As usual in TPS, proposing larger 
shifts is desirable for rapid exploration of trajectory space, but tends to lead to more 
TPS moves being rejected. The best choice of shift size is a compromise between these 
two eects.

We note that population dynamics (cloning) methods [52–54] have also been widely 
used for numerical studies of large deviations, and guiding (control) forces have also 
been used in that case [36, 40, 41]. We comment on the strengths and weaknesses of 
the two approaches at the end of this work, in section 7.

4. Overview of main results

We consider fluctuations of the dynamical activity K in the BHPM, as defined in sec-
tion 2.4. All numerical results are obtained using the MC variant of the model. The 
behaviour of the mean activity is illustrated in figure 1. We represent the data in two 

https://doi.org/10.1088/1742-5468/ab4801


Large deviations and optimal control forces for hard particles in one dimension

11https://doi.org/10.1088/1742-5468/ab4801

J. S
tat. M

ech. (2019) 123208

dierent ways. Figure 1(a) shows 〈K/(Ltobs)〉0 = 〈kφ〉0, which is the average activity 
per unit length, as a function of the volume fraction φ = Nl0/L. Figure 1(b) shows the 
activity per particle 〈k〉, and its dependence on φ. Note that the activity of a typical 
particle 〈k〉 decreases with volume fraction, but the activity per unit length is non-
monotonic. (At small volume fractions, the activity is proportional to the number of 
particles and hence to φ; on the other hand, it decreases for large volume fractions, 
because particles start to obstruct each other.)

We now consider large deviations of K. Figure 2 shows the behaviour of k(s) and 
the corresponding estimate of the rate function (obtained by (18)), for a representa-
tive state point φ = 0.7 in systems of N  =  28 and N  =  42 particles. These results were 
obtained by TPS, we note that they depend on the trajectory length tobs which is 
quoted in units of the Brownian time,

τB = l20/(2D0) .
� (25)

This is a natural unit of time in the model, and is comparable to the time required for 
a particle to diuse its own size, l0.

As noted in section 3, k(s) is analogous to an order parameter in thermodynam-
ics. This quantity decreases sharply for positive s. As explained in [30, 31], this is a 
signature of a dynamical phase transition in the BHPM, which occurs in the limit 
N , tobs → ∞. Before embarking on a detailed analysis, we give a brief summary of the 
associated phenomena. The qualitative behaviour of k(s) in a system with finite N is 
shown in figure 3, which also shows typical trajectories of the system, as one passes 
through the phase transition. At the phase transition, the system becomes inhomoge-
neous [30, 31]. In this work, we emphasise that (for this model) there are two distinct 
classes of inhomogeneous state. There are states where the density is modulated in 
space, but particle spacings remain of order unity as N → ∞. However, for larger s 
(smaller k[x]), there are states where a significant fraction of the available space in 
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Figure 1.  Average dynamical activity (per unit time), evaluated at equilibrium for 
a  =  0.1l0. (a) Mean activity per unit length 〈φk〉0 as a function of volume fraction φ 
for a system of size L  =  40l0, compared with the theoretical prediction of (11). (b) 
Corresponding activity, per particle.
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system is taken up by a single interparticle gap. The two classes of inhomogeneous 
state are discussed in sections 5 and 6.

In section  5 we review and extend some previous work [17, 25, 30, 32, 55, 56], 
which shows that inhomogeneous states with spacings of order unity appear on tak-
ing N → ∞ with s  =  O(N−2). This is the regime described by macroscopic fluctuation 
theory (which can also describe the behaviour for small negative values of the bias). In 
this regime, the optimal control forces are long-ranged; they are attractive for s  >  0 and 
repulsive for s  <  0. It is the attractive forces that drive the phase separation transition. 
We show that using control forces in numerical sampling significantly improves their 
eciency. For s  <  0 the system always remains homogeneous; as explained in [30] it is 
hyperuniform when s is negative and of order unity, see also section 5.2.3.

In section  6, we discuss the behaviour on taking N → ∞ with s  =  O(N−1). We 
explain that this is the regime in which we expect a macroscopic gap to take up a 
finite fraction of the system. By applying such control forces in numerics, we show that 
computational eciency is significantly improved. In fact, this improvement is much 
larger than for the MFT regime. We discuss how parameters of the control force can 
be optimised for ecient sampling.

We note that all these results apply in limits where s → 0 as N → ∞. The tracta-
bility of these limits arises because the biases that are applied to these ensembles of 
trajectories are weak. For example, a central assumption of MFT [21] is that the sys-
tem is in ‘local equilibrium’, which means that any finite region of the system can be 
characterised through its local density and current, and that the bias has a negligible 
eect on the short-ranged correlations between microscopic particles. In the regime 
with a macroscopic gap, there are deviations from local equilibrium but our central 
assumption is that these are localised near the interfaces, at the edges of the gap.
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Figure 2.  (a) Average activity 〈k[x]〉s in the biased ensemble, obtained by TPS in 
a system with N = (28, 42) and tobs = (10τB, 15.6τB). (b) Corresponding estimate 
of the rate function, using (18). These results are analysed in more detail below, 
including a discussion of numerical uncertainties (error bars), see for example 
figure 4.

https://doi.org/10.1088/1742-5468/ab4801


Large deviations and optimal control forces for hard particles in one dimension

13https://doi.org/10.1088/1742-5468/ab4801

J. S
tat. M

ech. (2019) 123208

5. Diusion governed (MFT) regime

This section discusses the regime where MFT applies [21]. We work in the rescaled 
representation of section 2.3. MFT is valid on large (hydrodynamic) length and time 
scales, which are related by a diusive scaling. That is, we introduce the (average) 
density ρ and define

Lr = N/ρ, tobs = γobs
L2
r

2D0

.� (26)

The hydrodynamic limit is N → ∞ at fixed ρ, γobs. One then takes a second limit, 
γobs → ∞, in order to access the relevant large deviations. To arrive at a consistent 
theory, we also rescale the biasing parameter [32] as

λ = sL2
r/D0� (27)

which is held constant as N → ∞.

Figure 3.  (a) Sketch of the activity k(s) as a function of the bias. We concentrate 
in this work on three physical regimes: (i) homogeneous; (ii) macroscopically 
inhomogeneous; and (iii) a system with a single macroscopic gap. See the text for 
a discussion. (b)–(d) Representative trajectories of the system at s = 0, 0.18, 0.36 
respectively. These trajectories illustrate the characteristics of the three regimes. 
We take N  =  160 and tobs = 100τB, we show the behaviour for 0 < t < 10τB which 
is representative of the whole trajectory in these cases.

https://doi.org/10.1088/1742-5468/ab4801


Large deviations and optimal control forces for hard particles in one dimension

14https://doi.org/10.1088/1742-5468/ab4801

J. S
tat. M

ech. (2019) 123208

5.1. Theoretical analysis of density fluctuations and optimal control potential, using MFT

We consider the statistics of the local density and current, which are the relevant 
hydrodynamic fields within MFT [21]. We analyse large deviations of the activity using 
a physical argument based on fluctuating hydrodynamics—the same conclusions can 
also be reached other methods [32], the specific case of the BHPM is discussed in [30]. 
The statistics of the density and current may be characterised by writing Langevin 
equations:

ρ̇ = −div j

j = −D(ρ)∇ρ+
√

2σ(ρ)η
� (28)

where D(ρ) and σ(ρ) are a diusivity and a mobility, and η is a space-time white noise 
with mean zero and 〈η(x, t)η(x′, t′)〉 = δ(x− x′)δ(t− t′). The specific forms of D and σ 
for the BHPM are discussed below. We use Ito calculus.

The usual approach in MFT is to rescale the spatial domain [0,Lr] into the unit 
interval [0, 1] and also to rescale time. That is, define dimensionless coordinates on the 
hydrodynamic scale as x̂ = x/Lr and t̂ = t/L2

r , the corresponding current is ̂ = jLr 
(there is no rescaling of the density). Then (28) becomes

(∂/∂t̂)ρ = −∇̂ · ̂
̂ = −D(ρ)∇̂ρ+

√
2σ(ρ)/Lr η̂

� (29)

where ∇̂ is a gradient with respect to x̂, and η̂ is a noise with zero mean and 

〈η̂(x̂, t̂)η̂(x̂′, t̂′)〉 = δ(x̂− x̂′)δ(t̂− t̂′). (Hence one sees that η̂ = L
3/2
r η.) It is apparent from 

(29) that MFT is a weak-noise theory that is valid on large length scales. For later com-
parison with numerics, it is convenient to quote all results in the original co-ordinates 
(without hats), but we emphasise that they are valid only on the hydrodynamic scale 
(which in this case will mean s  =  O(N−2), as usual in diusive systems [32]).

Within MFT it is consistent (by the local equilibrium assumption [21]) to approxi-
mate the activity K from (8) as

K[x] =

∫ tobs

0

∫ Lr

0

κ(ρ(x, t)) dxdt� (30)

where κ(ρ) is the average activity (per unit volume) of an equilibrium system with den-

sity ρ. That is, κ(ρ) = 1
Lrtobs

〈K〉0,ρ; for the BHPM then (11) and ρ = N/Lr imply that

κ(ρ) =
1

a
(1− e−aρ) .� (31)

For activity fluctuations in the SSEP, one takes instead κ = 2ρ(1− ρ) in which case 
the following theoretical analysis is similar to [25, 32]. For the purposes of this discus-
sion, the important feature is that κ′′(ρ) < 0. For positive s, this means that the sys-
tem undergoes a continuous phase transition accompanied by spontaneous symmetry 
breaking [17, 30, 32], see also [13, 57, 58]. For s  =  0 the system is homogeneous but for 
positive s, it becomes inhomogeneous, see figure 3. We now adapt previous MFT results 
to this setting before comparing with numerical results in section 5.2.
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5.1.1. Homogeneous phase.  As in [17, 30, 32, 59], we analyse the homogeneous phase 
by writing ρ(x, t) = ρ+ δρ(x, t), and assuming that δρ is small. From (28) we have 
(∂/∂t)δρ = −div j with (at leading order in δρ):

j = −D(ρ)∇(δρ) +
√

2σ(ρ)η .� (32)

From (30) then

K[x] = Lrtobsκ(ρ) +
1

2

∫ tobs

0

∫ Lr

0

κ′′(ρ)δρ(x, t)2 dxdt .� (33)

Fourier transforming as

ρ̃q(t) = L−1/2
r

∫ Lr

0

ρ(x, t) exp (−iqx) dx� (34)

one has (for q  >  0)

(∂/∂t)ρ̃q = −D(ρ)q2ρ̃q + q
√

2σ(ρ)η̃q� (35)

where η̃q is a complex-valued Brownian noise. (There is one noise for each positive wave-

vector, each noise is independent of all the others, and 〈η̃q(t)η̃∗q (t)〉 = δ(t− t′).) Also,

K[x] = Lrtobsκ(ρ) +
∑
q>0

∫ tobs

0

κ′′(ρ)ρ̃q(t)ρ̃−q(t) dt .� (36)

In (35) and (36), the dierent wavevectors are completely decoupled from each other. 
Biased ensembles for these OU processes can be analysed exactly by standard methods, 
see appendix B for details. Using (B.6) with α = κ′′(ρ) and ω = D(ρ)q2 and γ = σ(ρ)q2, 
the result can be expressed as

ψ(s) = −s
〈K〉0
tobs

−
∑
q>0

(√
D(ρ)2q4 + 2sκ′′(ρ)σ(ρ)q2 −D(ρ)q2 − sκ′′(ρ)σ(ρ)

D(ρ)

)
�

(37)

which is equivalent to the results obtained in [30, 32]. The sum on the right hand 
side runs over q = 2nπ/Lr with 0 < n < ∞, and converges to a finite value. Taylor-
expanding over s, the first term appears at O(s2). The term involving 〈K〉0 includes 
all contributions at O(s): it is written in this form to ensure that ψ′(0) = −〈K〉0/tobs, 
consistent with (16). We note that evaluating 〈K〉0 in a finite system requires a high-q 
cutoff in the Fourier representation of ρ, as usual in systems defined by stochastic par-
tial differential equations like (28). Nevertheless, (37) is a universal prediction within 
MFT (independent of cutoff), consistent with [32].
From (37), the activity is

k(s)− k(0) = N−1[ψ′(0)− ψ′(s)]

=
κ′′(ρ)

N

∑
q>0

[
qσ(ρ)

[D(ρ)2q2 + 2sκ′′(ρ)σ(ρ)]1/2
− σ(ρ)

D(ρ)

]
� (38)

which will be compared in section 5.2 with numerical data.
Note however that (37) is valid only if the argument of the square root is positive 

which requires 2sκ′′(ρ)σ(ρ)q2 > −(Dq2)2; otherwise the OU process predicts a divergence 
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in the density fluctuations which signals a breakdown of the quadratic expansion in 
δρ. Recalling that κ′′ < 0, this criterion is most stringent for the smallest wavevector 
q = q1 = 2π/Lr so one sees that the range of validity is s  <  sc with

scL
2
r = − 2π2D(ρ)2

κ′′(ρ)σ(ρ)
� (39)

as in [30, 32]. For s  <  sc, the sum in (38) converges to a finite value so k(s) → κ(ρ)/ρ 
as N → ∞, while the sum gives a finite-size correction that has a universal form within 
MFT [32]. In this regime, the optimal-control potential required to generate typical 
trajectories of the biased ensemble is obtained from equation (B.8) as

V [ρ] =
∑
q>0

ṽqρ̃
∗
q ρ̃q� (40)

with

ṽq =
1

D(ρ)q

(√
D(ρ)2q2 + 2sκ′′(ρ)σ(ρ)−D(ρ)q

)
.� (41)

This corresponds to a pairwise-additive interaction whose pair potential v(x) is given 
by the inverse Fourier transform of vq. If s �= 0 then vq diverges as q → 0 indicating that 
this interaction is long-ranged. As discussed in [60, 61], the pair potential decays as 
v(x) ∼ 1/(log x) for separations x that are large compared to the particle spacing (but 
small compared to Lr). The potential is attractive if sκ′′ < 0 and repulsive if sκ′′ > 0. 
We again emphasise that this analysis requires a weak bias s  <  sc.

5.1.2.  Inhomogeneous phase.  For s  >  sc, a slightly dierent approach is required, 
which is related to the Landau-like theory of [13, 62] as well as earlier work [17, 25]. 
For simplicity, we assume in this calculation that D  =  D0 is a constant (independent 
of ρ): this situation holds for both the BHPM and the SSEP. The generalisation to 
density-dependent D is straightforward.

We write the probability distribution (14) for the biased ensemble as

dPs[x] ∝ exp(−S[x])� (42)
where the action S can be obtained from (28) or directly from MFT [21] as

S =

∫ tobs

0

∫ Lr

0

[
( j +D0∇ρ)2

4σ(ρ)
+ sκ(ρ)

]
dx dt� (43)

where the integrand depends on (x, t) through ρ = ρ(x, t). We consider the system close 
to the transition and we derive a result analogous to Sec 3.2 of [25]. Our method is 
slightly dierent from that work; note also that [25] considers specifically the case of 
the SSEP, where κ = σ is a quadratic function of ρ. The following calculation can be 
interpreted as the derivation of a Landau theory for a suitable order parameter: similar 
calculations for systems with open boundaries are considered in [13, 62, 63].

We find the path that minimises the action S. The minimum has j   =  0 and the asso-
ciated density ρ is independent of time, as one might expect since the biased ensemble 
is time-reversal symmetric. Hence

S =
γobs
2

∫ Lr

0

[
D0L

2
r |∇ρ|2

4σ(ρ)
+ λκ(ρ)

]
dx� (44)
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where now ρ = ρ(x) and we used (26). This action functional can be minimised numer
ically over the profile ρ, in this work we make an expansion [17, 25] that is valid close 
to the critical point and allows an analytic treatment. In this regime one can capture 
the behaviour of the inhomogeneous phase by considering a density profile

ρ(x) = ρ+ A cos q1x+ B cos 2q1x� (45)
where A,B are variational parameters. As noted above, the instability of the system 
originates in the smallest wavevector q1 but it is necessary [25] to consider also the 
second-smallest wavector 2q1 to obtain accurate results for the inhomogeneous phase, 
even at leading order. We take A  >  0 without loss of generality; the system has trans-
lational symmetry so one may equivalently replace x → x+ δ to obtain an equivalent 
profile, shifted in space.

Close to the transition, we anticipate that A is small, and B  =  O(A2) is even smaller 
[25]. Inserting (45) in (44) we expand up to terms of order A4,A2B,B2. We introduce 
the short-hand σ0 = σ(ρ) and similarly for derivatives such as σ′

0 = σ′(ρ), and also for 
κ. The result is

S =
Lγobs
2

[
λκ0 +

κ′′
0

4
(λ− λc)A

2 +
µ2

2
B2 + µ3A

2B +
µ4

2
A4

]
� (46)

with λc =
D0(q1L)2

−2κ′′
0σ0

, consistent with (39) and (27) [recall κ′′ < 0 and q1L = 2π] and

µ2 = −κ′′
0(4λc − λ)/2D0(q1L)

2/(2σ0)

µ3 = 3λcκ
′′
0σ

′
0/(8σ0) + λκ

(3)
0 /8

µ4 = −λcκ
′′
0[2(σ

′
0/σ0)

2 − (σ′′
0/σ0)]/16 + λκ

(4)
0 /32

�

(47)

where κ
(n)
0  is the nth derivative of κ(ρ), evaluated at ρ = ρ. The action is straightfor-

wardly minimised over B, followed by minimisation over A. We assume (as usual) that 
κ′′
0 < 0 and that (λ− λc) � λc is small so that µ2 > 0; we also require that µ4 > µ2

3/µ2, 
which is true for the BHPM (see below). Then for λ < λc the action is minimised at 
A  =  B  =  0 and the system is homogeneous; while for λ > λc the minimum occurs for

A2 =
−κ′′

0(λ− λc)

4(µ4 − µ2
3/µ2)

.� (48)

This predicts the degree of inhomogeneity for λ > λc. One sees that A = O(λ− λc)
1/2 as 

one should expect, since A is the order parameter for a φ4-like theory and we are mak-
ing a mean-field analysis of the critical point, similar to [13, 62, 63]. Recall, we assumed 
in this derivation that D is a constant, independent of ρ6.

These results closely resemble those of [13, 29, 62, 63] which apply in systems with 
open boundaries (not periodic). Those works concentrated on transitions where a Z2 
particle-hole symmetry is spontaneously broken. Here we do not assume particle-hole 
symmetry, instead the (periodic) system spontaneously breaks translational symmetry, 
which corresponds to a U(1) symmetry (see below).
6 To make contact with the analogous calculation for the SSEP in [25, section 3.2] we take 
κ = 2ρ(1− ρ), σ = ρ(1− ρ), D  =  1, noting that the definition of σ in that work diers from ours by a fac-
tor of 2. Hence λc = π2/[2ρ(1− ρ)]. After some algebra one finds µ4 − (µ2

3/µ2) = λc/[8ρ
2(1− ρ)2] and hence 

A2 = 8ρ2(1− ρ)2(λ− λc)/λc +O(λ− λc)
2, consistent with that work.

https://doi.org/10.1088/1742-5468/ab4801


Large deviations and optimal control forces for hard particles in one dimension

18https://doi.org/10.1088/1742-5468/ab4801

J. S
tat. M

ech. (2019) 123208

The average activity may then be estimated from (30) by plugging in the most likely 
density profile, which yields (for λ > λc):

〈K〉s ≈ Lrtobs

[
κ0 +

1

4
κ′′
0A

2 +O(λ− λc)
2 +O(L−1)

]
.� (49)

The two corrections appear because the computation of A,B is only valid when λ− λc 
is small, and the restriction to the most likely profile neglects fluctuations which enter 
as corrections at O(1/L).

5.2. Application to the BHPM

5.2.1. Connection to MFT.  The results of section 5.1 are general within MFT, in the 
sense that we did not specify the functional dependence of σ,κ on ρ (we did assume 
κ′′ < 0 but the case κ′′ > 0 is a simple generalisation). We now consider the specific case 
of the BHPM, in the rescaled representation of section 2.3. For the Langevin variant 
of the model in the limit of a hard-core potential, this means that the statistics of the 
density field are identical to an ideal gas. (Particles are indistinguishable so collisions 
between hard particles are equivalent to events where the particles pass through each 
other.) In this case

D(ρ) = D0, σ(ρ) = ρD0.� (50)
As discussed in section 2, the MC variant of the model is equivalent to the Langevin 
one in the limit of small steps M → 0. Since M is non-zero for our numerical work, we 
expect corrections to (50), but we neglect these in the following. (We expect them to 
aect the quantitative predictions of the theory, but they are unimportant at the level 
of accuracy that we consider.) The expression for κ is given in (31) which is indepen-
dent of M; this yields κ′′(ρ) = −ae−ρa.

An interesting feature of the BHPM is that while the functions D and σ have ideal-
gas behaviour, the nonlinear behaviour of κ is still sucient to drive the transition to 
an inhomogeneous state. However, we emphasise that none of our theoretical analysis 
relies on the fact that σ is linear. (Recall from above that the finite step size M in our 
numerical work should result in corrections to σ, but this is not expected to aect the 
qualitative behaviour.)

The MFT analysis requires that λ is held constant as Lr → ∞. Noting from (7) that 
ρa = Φa and using (39) one sees that the homogeneous state is stable if

λ < λc =
2π2

Φa

eΦa .� (51)

Hence, the calculation of section 5.1.1 is valid in the range 0 < λ < λc, for which the 
control potential is attractive (so density fluctuations are enhanced). It is also valid 
for negative λ, where the control potential is repulsive and density fluctuations are 
suppressed.

For the inhomogeneous phase 0 < (λ− λc) � L2
r the results of section 5.1.2 are rel-

evant. A suitable (complex-valued) order parameter for the phase transition is

M = ρ̃q1L
−1/2
r .� (52)
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Recalling (34) and (45), we identify |M|2 with (A2/4) in section 5.1.2. The normalisation 
of (34) means that typical values of ρ̃q are O(1) in the homogeneous phase, so M → 0 as 
Lr → ∞. For the inhomogeneous phase then M is of order unity—it is a complex num-
ber and its phase indicates the location of high and low-density regions in the system. 
The system is invariant under translation so there is a U(1) symmetry for the phase of 
M, which is spontaneously broken when the system becomes inhomogeneous.

5.2.2. Numerical results.  To characterise the dependence of the mean activity on the 
bias λ we define

K(λ) = k(λD0/L
2
r ) ,� (53)

where the function k(s) was introduced in (17). We use TPS calculations to sample 
ensembles Ps and P V

s  as defined in section 3.3. These computations are performed at 
fixed (finite) values of N , tobs. Numerical errors are discussed in section 5.3, below. The 
methodology provides accurate results for the given values of N , tobs; we compare these 
with the predictions of MFT that are valid in the hydrodynamic limit N , γobs → ∞.

Numerical results for the BHPM are shown in figure  4. In this case, results for 
λ < 250 were obtained using TPS without any control forces, eects of control forces in 
this regime are discussed in section 5.3. For λ > 250 we used the control force defined 
in (80) below, see section 6 for a discussion.

The results of figure 4 are consistent with the asymptotic predictions of MFT. The 
state point is Φa = 0.233 so equation (51) predicts λc ≈ 107, consistent with the data. 
On general grounds one would expect λc to be of order unity; its large numerical value 
in this case arises partly from the factor of 2π2 in (51) and partly from the fact that 
κ′′(ρ) in (31) is numerically small, for these parameters.

Considering the results in more detail, figure 4(a) shows that for fixed γobs, the func-
tion K(λ) shows a scaling collapse as N is varied, consistent with the expected diusive 
scaling. (This scaling was less clear in [31]. We suspect that this dierence arises 
because the values of tobs used in [31] were not scaled with system size.)

Figure 4(b) shows data for a single system size, and increasing tobs. Taking tobs → ∞ 

at fixed N, one expects convergence of K to a limiting function: that is K(λ) → K̃N ,∞(λ), 
where the subscripts indicate that N is finite but tobs → ∞. The system is finite so 

K̃N ,∞(λ) is smooth (analytic) [45]. The data in figure  4(b) are consistent with this 

theoretical prediction, as tobs → ∞. In principle, convergence of this limit is expected 
for γobs � 1; in practice, it is notable that convergence appears to be already achieved 
for γobs ≈ 0.7. We expect that this small numerical value occurs for similar reasons to 
the large numerical value of λc, particularly the fact that the largest diusional time 
scale is τL = 1/(D0q

2
1) = L2

r/(4π
2D0) so that D0τL/L

2
r = 1/(4π2) is numerically small.

MFT makes predictions about the behaviour of K at large N. In particular, taking 

N → ∞ leads to K̃N ,∞(λ) → K̃∞,∞(λ), where the function K̃∞,∞(λ) is predicted to be 
singular at λ = λc. For λ < λc, equation (38) predicts that K̃∞,∞ is independent of λ; 

the same equation also predicts the first correction to the large-N limit, as in [32]. For 
λ > λc, a simple MFT prediction for K̃ can be read from (49), see also [25]. The valid-
ity of this result is restricted to small (λ− λc), because of the simple ansatz (45). When 
comparing with numerics, we obtain a similar prediction by substituting (45) into (30) 
and using (48) to fix A. The integral in (30) is performed numerically and yields a 
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prediction for K̃∞,∞. This is the prediction based on (48) that is shown in figure 4(c); it 
matches (49) when (λ− λc) is small.

Figure 4(c) compares a numerical estimate of K̃N ,∞(λ) with these MFT predic-
tions. The finite-size correction term in (38) is negative and diverges at λc, where the 
homogeneous theory is breaking down. One sees that (38) gives the correct qualita-
tive behaviour for small λ, but a quantitative agreement with numerical data would 
require consideration of higher-order corrections, see also [58]. The theory behind (48) 
is valid as N → ∞ and does not include any finite-size corrections; it captures the steep 
decrease in K(λ) but is not quantitative. Following [13, 62, 63], one expects a critical 
region (λ− λc) = O(N−2/3) where neither of (38) and (48) is applicable; this is consis-
tent with the data but a more detailed finite-size scaling analysis would be required to 
confirm it.

Figure 5(a) shows the behaviour of the order parameter 〈|M|2〉s, which increases 
sharply at the transition, and takes a value of order unity in the inhomogeneous phase, 
consistent with the theory. Figure 5(b) shows a smoothed representation of the density 
for the trajectory in figure 3(c), defined as

ρsmooth(x) = z−1
∑
j

∫ τ

0

exp
(
−[x− x̂j(t)]

2/2
)
dt� (54)

where the normalisation constant z is chosen such that 
∫
ρsmooth(x)dx = 1. This shows 

that the density is macroscopically inhomogeneous, but we emphasise that the density 

Figure 4.  (a) Scaling plot of activity K(λ) showing data collapse when plotted as a 
function of the rescaled bias λ. The dimensionless (rescaled) density is Φa ≈ 0.233 
and γobs ≈ 0.070 (which corresponds to tobs = 10τB for N  =  28). The scaling 
function K(λ) depends weakly on λ for λ � 200, after which it decreases steeply 
(see discussion in the main text). (b) Dependence of the activity on tobs for N  =  28. 
As this parameter increases, the decrease in K(λ) occurs at an increasingly small 
value of λ, which saturates (for large tobs) at λ ≈ λc ≈ 90. For tobs � 100 (in units of 
τB), the data are consistent with convergence to a limiting form; this corresponds 
to γobs � 0.7. (c) Comparison between the numerical results for the activity and the 
predictions of MFT. The prediction (38) applies for λ < λc; it includes a finite-size 
correction term that diverges at λc. For λ > λc we show a prediction based on (48), 
see the main text for a discussion.
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is positive everywhere, which means that there is no macroscopic gap (see section 6). 
We note that this system is quite far from the critical point, so the analysis of sec-
tion 5.1.2 is not sucient to predict the density profile, consistent with the fact that 
it does not show a sinusoidal dependence on x. Instead, the behaviour (in this rescaled 
representation) is that the density shows a rather narrow peak. This might be analysed 
by minimisation of the action in (44) but we postpone such a calculation to future work.

Appendix D shows similar results to those presented here, using the definition of 
the dynamical activity that was used in [30, 31]. The qualitative behaviour is the same.

5.2.3. Negative s and hyperuniformity.  Within MFT, biasing this system towards 
higher activity leads to hyperuniformity, as discussed in [30]. This means that density 
fluctuations on large length scales are strongly suppressed [64]. To measure this, define 
the structure factor

S(q) =
〈
ρ̃qρ̃−q

〉
s
.� (55)

Consider the limit L → ∞ so that q can take arbitrarily small values, and write 
S∞(q) = limL→∞ S(q). A hyperuniform state is one where limq→0 S∞(q) = 0 [64]. Such 
states are not expected in finite-temperature equilibrium systems with short-ranged 
interactions (they require that the system should have a vanishing compressibility), 
but there are many interesting examples that occur in systems away from equilibrium 
[65–69]. Within the MFT analysis of section 5.1.1, hyperuniformity arises because the 
optimal control potential for λ < 0 includes long-ranged repulsive forces, as may be 
deduced from (41). Hyperuniformity is a well-known property of systems with such 
long-ranged forces [70, 71], where it is sometimes referred to as super-homogeneity [68]. 
Within the framework of section 5.1.1 and using (B.9), one sees that
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Figure 5.  (a) The modulus of the complex order parameter |M|2, which is related 
to the first Fourier component of the density. This increases from zero as the system 
becomes macroscopically inhomogeneous. We take Φa = 0.233 and γobs = 0.070 as 
in figure  4. (b) Smoothed density associated with the representative trajectory 
from figure 3(c), which has N  =  160 and s  =  0.18. The system is macroscopically 
inhomogeneous but one interparticle gap does not yet dominate it.
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S(q) =
σ(ρ)q√

D2
0q

2 + 2sσ(ρ)κ′′(ρ)
� (56)

see also [30, 59]. This indicates that the system is hyperuniform for s  <  0. Figure 6(a) 
compares this prediction with the results from simulations, the suppression of S(q) 
at small q is clearly apparent. The agreement is good—we attribute the dierences 
between theory and simulation to the fact that MFT requires N , γobs → ∞ but these 
quantities are both finite in the numerical results. Figure 6(b) shows the pair correla-
tion function

g(x) =

〈
ρ(x′)ρ(x′ + x)

〉
s

ρ2
� (57)

which is proportional to the probability that two particles have separation x (in the res-
caled representation of section 2.3). For the unbiased case (s  =  0) then g(x) = 1 for all x. 
On biasing to high activity s  >  0 one sees a reduction in g(x) for small x, since particles 
feel an eective repulsion, which enhances the activity via (8). Similarly, for a bias to 
low activity then g(x) is enhanced for small x, consistent with an eective attraction.

5.3.  Improved TPS by adding control forces

5.3.1. Convergence of TPS and error analysis.  As discussed in section 3.3, we expect 
the addition of control forces to improve the eciency of TPS sampling. Since TPS is 
an MC method (which in mathematics would be called a Markov chain Monte Carlo 
(MCMC) method), analysis of convergence and numerical errors is straightforward [72]. 
To characterise the eciency of the method, it is useful to compute how many TPS 
moves are required for trajectories to decorrelate from each other. Let K̂n be the value 
of the activity for the nth trajectory generated by TPS. We define a block-averaged 
activity

Kn,m =
1

m

n+m∑
i=n

K̂i.� (58)

As m → ∞, this block average converges to 〈K[x]〉s. Its variance behaves as

Var
(
Kn,m

)
=

σ2
TPS

m
+O(1/m)2� (59)

where σ2
TPS is the asymptotic variance [72]. Smaller values of σ2

TPS correspond to more 

ecient TPS sampling: in particular σ2
TPS/Var(K̂) can be used as a rough estimate of 

the number of TPS moves required to generate an independent sample.

For small m then all trajectories in the block are similar and one expects Var
(
Kn,m

)
 

to be close to Var(K̂), independent of m. In our numerical analysis, we often plot

χTPS
m = mVar

(
Kn,m

)
� (60)
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as a function of m, for which the expected behaviour is of the qualitative form

χTPS
m ≈ mVar(K̂)σ2

TPS

mVar(K̂) + σ2
TPS

.

� (61)
This quantity approaches σ2

TPS as m → ∞, as it should.

A suitable error bar for a numerical estimate of K is then ∆K = σTPS/N
1/2
TPS where 

NTPS is the total number of TPS moves over which the data is averaged. This error 
estimate accounts for the correlations between TPS moves. All error bars for TPS mea-
surements in this work are computed in this way, estimating σTPS by (59).

5.3.2. Numerical results for accelerated convergence.  As explained above, the results 
for λ < 250 in figure 4 were obtained using TPS without any control forces. We now 
show how the control forces that can be derived from MFT can lead to a more ecient 
estimate of the same result, in the homogeneous regime λ < λc. We have computed the 
asymptotic variance for the BHPM in the regime where the system is homogeneous. As 
a simple control potential we take the first term in (40), so the control potential only 
depends on the first Fourier component of the density:

V = ṽq1ρ
∗
q1
ρq1� (62)

where q1 = 2π/Lr is the smallest allowed wavevector. This choice for the control poten-
tial has no free parameters. For these homogeneous states, it successfully captures the 
essential physical eect of the long-ranged control potential.

We emphasise once again that the TPS method is valid as a method for sampling 
from Ps, independent of whether control forces are used [9, 24]. The question that we 
address here is the rate of convergence, as characterised by the asymptotic variance. 
Figure 7 shows the improvement in TPS sampling obtained using the control poten-
tial (62), which is significant for positive λ. All these results are in the homogeneous 
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Figure 6.  (a) The structure factor for negative s, compared with the theoretical 
prediction (56). We take γobs = 0.070 and Φa = 0.233 as in figure 4(a), and s  =  −7.2 
(measured in units where τB = 1). This S(q) is suppressed at low q, consistent 
with hyperuniformity.(b) The corresponding pair correlation functions for the case 
N  =  28 and dierent values of s, as indicated. For positive s the particles tend to 
cluster and g(x) is enhanced at contact; for negative s the particles feel eective 
repulsion and g(x) is suppressed.
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regime λ < λc, where the simple control potential (62) is applicable. They provide clear 
evidence of a significant speedup, and demonstrate proof-of-principle for the method. 
However, the small values of s in this regime means that this is a regime where numer
ical sampling is relatively easy, and the speedup by the control forces is relatively mod-
est. Alternative methods for analysing convergence of TPS are discussed in appendix C.

We note again that the results of figure 7 are restricted to λ < λc. For the inho-
mogeneous regime (λ > λc) the next section  considers control forces that apply for 
s = O(1/N), which corresponds to λ = O(N). We have not attempted to derive control 
forces for λ = O(1) > λc, this would be an interesting question within MFT.

6. The regime with a single macroscopic gap

The results of section 5 are based on MFT which is valid for N → ∞ at fixed λ, as dis-
cussed above. We note that minimisation of the MFT action S in (44) always predicts 
that the density ρ is finite everywhere, which means in turn that the gaps between 
particles almost surely have sizes of order unity in units of ρ−1, as Lr → ∞.

In contrast to this, figure 3(c) shows a trajectory in which a single gap takes up a 
finite fraction of the system. This section focusses on that regime. As before, we work 
in the rescaled representation of section 2.3. At time t, suppose that the largest gap in 
the system has size Y(t). We define Y (t) = Y(t)/Lr, which is the fraction of the system 
occupied by this gap. If Y (t) is order unity then the gap is macroscopic, in the sense 
that Y(t) = O(Lr).
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Figure 7.  Improvement in TPS asymptotic variance by using guiding forces, in the 
MFT regime. We take N  =  28, Φa = 0.23, and tobs = 100τB (see also figure 4(b)). In 
this figure, the mean shift size used in the TPS was ∆t = 5τB: in this parameter 
regime, this leads to near-optimal performance for TPS, both with and without 
guiding forces. (For other parameter regimes, smaller shifts are necessary. Hence 
our use of smaller shifts in other figures.) For these parameters, the system becomes 
inhomogeneous for λ � λc ≈ 90—these data are all within the homogeneous regime 
and the guiding force relies on this.
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To investigate this regime, define a new rescaled biasing parameter

h =
sLr

ρ̄D0

.� (63)

This rescaled bias h is analogous to λ of section 5. We consider the behaviour on taking 
Lr → ∞ at fixed h = O(1).

6.1. Numerical results

Figure 8(a) shows that for small h, the gap size Y remains close to zero (in particular, 
for small fixed h, the average 〈Y 〉s decreases with Lr). However, for larger h(� 2) there 
is a sharp increase in 〈Y 〉s, which we interpret as opening of a single macroscopic gap. 
(Recall again figure 3(c).)

To understand the behaviour for small h, we use extreme value theory to estimate 
the expected size of the largest gap. The distribution of interparticle gaps is exponential 
with mean Lr/N = ρ−1. Hence for large N the largest gap Y has a Gumbel distribution 
with mean (logN + γE)/ρ where γE ≈ 0.577 is the Euler–Mascheroni constant [73]. 
Hence 〈Y 〉0 = (logN + γE)/N  which for N  =  90 is ≈ 0.06, consistent with figure 8.

Figure 8(b) shows the behaviour of the activity. As h increases from zero, there is 
an initial sharp decrease in activity which corresponds to the MFT transition to an 
inhomogeneous state. As Lr → ∞, this transition would move towards h  =  0, because 
the critical point λ = λc discussed in section 5 corresponds to h = O(1/Lr). However, 
the systems considered here are only moderately large, and the numerical value of λc is 
also quite large—the result is that the MFT transition happens at h ≈ 1 for the system 
sizes considered here. In contrast, the largest gap opens at h ≈ 2.5, where an additional 
feature in k(s) is also observed (in the larger systems). We now present a theoretical 
analysis of this regime, and with compares the resulting theory with these numerical 
results.

6.2. Theory—interfacial model

We define a simple model that captures the qualitative behaviour of the system in the 
regime with a single large gap, building on recent work on kinetically constrained mod-
els [34–36]. We separate the system into a dense region and a large gap, and we focus 
on the behaviour at the edge of the gap, which is the interface between the two regions. 
Hence we refer to this as an interfacial model.

6.2.1. Derivation of interfacial model.  To motivate the model, assume that 
configurations containing a large gap have all the particles are distributed in some 
(dense) region of size Lr[1− Y (t)], and that they are distributed at random throughout 
this region. The mean distance between particles within the dense region is

�Y =
1− Y

ρ� (64)

with ρ = N/Lr as above. We model the dynamics of Y by a Langevin equation where 
both the bias and the diusion constant depend on Y:
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Ẏ =
b(Y )

Lr

+

√
2Dy(Y )

L2
r

η.� (65)

Here η is a standard Brownian noise. To fix the functions b and Dy  we use the MC vari-
ant of the BHPM to estimate the first and second moments of the change in the gap 
size Y, in a single MC move.

The gap size changes only when one of the particles on the edge of the gap has an 
accepted move. Proposed MC moves that reduce Y involve particles moving into the 
largest gap: these are accepted with probability (1/2), by (2). Proposed MC moves that 
increase Y involve particles moving towards the dense region of the system: some of 
these moves will be rejected due to collisions between particles. Since we assumed that 
particles are distributed at random in the dense region, the distance between neigh-
bouring particles in this region is exponentially distributed with mean �Y . Hence, for 
MC moves that act to increase Y, the fraction that is accepted is

1

2A

∫ M

0

e−x/�Y dx =
�Y
2M

(
1− e−M/�Y

)
� (66)

where the factor of 2 again comes from (2). Hence, for MC moves in which the proposed 
particle is on the edge of the macroscopic gap, the mean change in the gap size is

∆x =
1

4M

∫ 0

−M

xdx+
1

4M

∫ M

0

xe−x/�Y dx� (67)

where we consider separately the situations where the gap size decreases (first term) 
or increases (second term). The integrals can be computed exactly but we focus on the 
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Figure 8.  (a) Largest gap size 〈Y 〉s in biased ensembles. The reduced packing 
fraction is Φa = 0.6. (b) The activity per particle in the biased ensemble for the 
same systems. Around h  =  2.5 there is a change in the size of the largest gap and 
the derivative of k(s).
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limit where M/�Y  is small (small MC moves). This limit is sucient to explain the main 
features of the model. It yields

∆x = − M2

12�Y
+O(M3) .� (68)

Similarly the mean square displacement is

(∆x)2 =
M2

6
+O(M3) .� (69)

The relevant MC moves happen with rate wy = 2/τ0 where the factor of 2 arises 
because particles on either side of the macroscopic gap can both aect its size, and 
τ0 = M2/(12D0) is the time increment associated with one attempted MC move per 
particle (see also section 2.1).

Using that the macroscopic gap is of size Y = Y Lr and taking Lr → ∞ one arrives at 

the Langevin equation (65) with b(Y ) = ∆xwy and D(Y ) = (∆x)2wy/2. Hence (assum-
ing as above that M/�Y � 1):

b(Y ) = − 2ρD0

1− Y
, Dy(Y ) = 2D0 .� (70)

Since we assume that the particles are distributed at random in the dense region, the 
activity of a trajectory is (by analogy with (30))

K[x] = Lr

∫ tobs

0

κy(Y (t))dt� (71)

with κy(Y ) = (1− Y )κ(ρ/(1− Y )). (To derive this, recall that κ(ρ) is the activity per 
unit length for a system with density ρ. Here, the dense region of the system has size 
Lr(1− Y ) and density ρ/(1− Y ).) Hence from (31)

κy(Y ) =
1− Y

a

(
1− e−Φa/(1−Y )

)
.� (72)

The Fokker–Planckequation corresponding to (65) is

∂P
∂t

= − 1

Lr

∂

∂Y
(bP) +

1

L2
r

∂2

∂Y 2
(DyP)� (73)

where P = P(Y ) is the probability density for Y.
In kinetically constrained models [34–36], a similar interfacial model was derived, 

which gives semi-quantitative predictions for the system behaviour if b and Dy  are 
taken as constants. The system considered here is dierent in that b(Y ) has a diverging 
negative value as Y → 1—this reflects the fact that as the largest gap approaches the 
size of the system, all the particles end up confined in a very small region.

6.2.2. Biased ensembles for the interfacial problem.  We now analyse the eects of 
biasing to low dynamical activity in the interfacial model. The dynamical free energy 
ψ(s) of the interfacial model is obtained by finding the largest ψ that solves the follow-
ing eigenproblem
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ψP = − 1

Lr

∂

∂Y
(bP) +

2D0

L2
r

∂2P
∂Y 2

− sLrκyP .� (74)

The diusive term is suppressed by a factor of 1/Lr so we identify this as a small-
noise problem that may be solved by saddle point methods. It is convenient to trans-

form to a self-adjoint (Hermitian) form by U(Y ) =
∫ Y

Y0
b(Y ′)Lr/(2D0)dY

′ and defining 

Q(Y ) = P(Y )e−U(Y ). (The reference point Y0 can be chosen arbitrarily, so U  is fixed 
only up to an additive constant.) The eigenproblem (74) becomes

ψQ =
2D0

L2
r

∂2Q
∂Y 2

− ρ2D0VQ − 1

2Lr

∂b

∂Y
Q� (75)

with a dimensionless potential

V(Y ) =
h

ρ
κy(Y ) +

1

8ρ2D2
0

b(Y )2 .� (76)

The final step of the derivation used (63).
For large Lr, this eigenproblem can be solved by saddle-point methods. The last 

term in (75) is negligible when Lr is large. Also, the dominant eigenfunction Q is 
sharply-peaked at the minimum of V , which we denote by

Y ∗ = argmin V(Y ) .� (77)
Also ψ = −V(Y ∗)ρ2D0. Using (70) and (72) we obtain

V(Y ) = h
1− Y

Φa

(
1− e−Φa/(1−Y )

)
+

1

2(1− Y )2
.� (78)

Minimising this potential we find that Y*  =  0 for small h, but there is a threshold hc 
above which Y* becomes non-zero. At the threshold, Y* increases continuously which 
means that V ′(0) = 0 for h = hc. The existence of a threshold is consistent with figure 8, 
the accuracy of the detailed predictions will be discussed below. Before that, we derive 
the eective potential that describes the state with Y*  >  0.

6.2.3. Optimal control potential.  We present two possible methods for estimating the 
optimal control potential introduced in section 3.3. The first is based on a physical 
argument: observe that the dense region of the system contains particles that are dis-
tributed as an ideal gas, so their pressure is

Pmech =
ρ

β(1− Y )
.� (79)

Maintaining a gap of size Y* requires a control force that balances the pressure. Since 
the eigenvector Q is sharply-peaked at Y*, the fluctuations of Y are small in the biased 
ensemble, so the behaviour is relatively insensitive to the form of the control poten-
tial, as long as it produces the correct force in the typical states (which have Y  =  Y*). 
Hence, a control potential that reproduces the correct statistics for Y is

V (Y ) = −LrY c� (80)
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where c  >  0 is a constant with units of inverse length—its interpretation is that there 
is a constant force c/β that acts to increase the gap size. To determine c we equate the 
force to the pressure required to stabilise a gap of size Y*:

c =
ρ

1− Y ∗ .� (81)

In order to use (80) with (21), the potential V  must be expressed as a function of the 
particle positions: this is straightforward because Y is the size of the largest interpar-
ticle gap, which is a simple function of the the particle positions.

The second method for deriving a suitable control potential is the standard math-
ematical approach: consider the adjoint (Hermitian conjugate) of the eigenproblem (74) 
which is

ψF =
b

Lr

∂F
∂Y

+
Dy

L2
r

∂2F
∂Y 2

− sLrκyF .� (82)

Since the noise is weak, the expected solution is of the form F(Y ) = e−Lrg(Y ) and 
the optimal control potential may be identified from (A.4) as Vopt(Y ) = 2Lrg(Y ). 
Inserting the expected form for F , retaining terms at leading order in L−1

r , and using 

ψ = −V(Y ∗)ρ2D0 from above, one recovers V ′
opt(Y

∗) = −ρLr/(1− Y ∗). This is consis-
tent with (80) and (81) which together imply Vopt(Y ) = −ρLrY/(1− Y ∗) for Y ≈ Y ∗.

6.2.4. Comparison with numerical results.  For the parameters shown in figure 8, equa-
tion (78) predicts hc = Φa/(1− e−Φa − Φae

−Φa) ≈ 4.9. This overestimates the value of 
the bias at which a macroscopic gap appears. The reason is clear if one considers the 
behaviour close to the threshold. In the interfacial model, the state with Y*  =  0 has 
the particles distributed homogeneously but the MFT analysis of section 5 has already 
established that the system is not homogeneous for these values of the bias.

If the state with Y*  =  0 is already inhomogeneous, one sees that the probability of 
opening up a macroscopic gap will be enhanced, because the gap will likely appear at a 
location where the density is already low. Our conclusion is that the interfacial model 
predicts the existence of a threshold hc at which a macroscopic gap appears, which is 
consistent with the numerical data. However, the assumption within the model that 
the dense region of the system is homogeneous is not accurate enough for the model 
to deliver quantitative predictions. In the following subsection, we show that despite 
these shortcomings, the optimal control potential predicted by the interfacial model 
is suciently accurate to significantly improve numerical sampling. In this sense, the 
interfacial model does capture the essential physical features of the regime with a mac-
roscopic gap.

6.3.  Improvement in sampling by control forces

We have performed TPS sampling using the control potential (80). The relation (81) 
is confirmed by our numerical results, in that a control potential with this value of 
c leads to a typical largest gap of size Y*. Figure 9 shows the improvement in TPS 
sampling that is obtained with this control potential, which is more than an order of 
magnitude, even for small systems. The parameter c in (80) is varied, in order to obtain 
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the maximal speedup. For larger systems, the improvement increases rapidly—we are 
not able to quantify the speedup because (for example) the results shown in figure 8 
would require a prohibitively large computational eort, if control forces were not used. 
The reason is that the macroscopic gaps that appear in those systems are extremely 
rare under the natural dynamics, so that TPS moves tend to be rejected if one uses a 
system without a control potential. We also note from figure 9 that significant speedup 
is possible for control forces that are not optimal, as emphasised in [40].

This improvement that is available from control forces also enables us to investi-
gate what value of c is most eective for improved sampling. As noted in section 3.3, 
if one uses the optimal guiding force, the distributions Pave and P̃end of (19) and (20) 
coincide with each other, for all observable quantities. Recall that Pave is independent 
of the guiding force but P̃end is evaluated in a system with control forces, which does 
depend on the choice of these forces. It was suggested in [36, 40] that a suitable method 
for choosing approximate (non-optimal) control forces is to adjust their parameters to 
make the distributions Pave and P̃end as similar as possible.

This hypothesis is tested in figure 10. We first consider the distribution of Y, the 
largest interparticle gap. In this case one sees that the control force that gives the best 
overlap of Pave and P̃end is c  =  5, which is larger than the force which gives the most 
ecient sampling (this is c  =  3, from figure 9). We also consider the distribution of Y2, 
which is the second largest interparticle gap, measured relative to the system size Lr. 
For this quantity, the distributions overlap best at c  =  3, where the sampling is most 
ecient. The conclusion of this analysis is that maximising the overlap of Pave and P̃end 
for any single observable does not guarantee that the distributions for other observ-
ables should overlap. This cautions against placing too much faith in the overlap of any 
single distribution, as an indicator of where sampling is most ecient.

As an alternative method for estimating which control force is optimal, one may 

consider the statistics of the action, as suggested in [10]. Let 〈B〉s,V =
∫
B[x]dP̃ V

s [x] be 
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Figure 9.  (a) Asymptotic variance of the TPS method, as a function of the 
parameter c used in the definition of the control force. We take tobs = 10τB and 
tobs = 5.6τB for N  =  28 and N  =  21 respectively and in both Φa = 0.233, same as in 
figure 4. The control forces lead to a clear reduction in the variance, across a range 
of c. We show results for two system sizes, at representative values of h (always 
within the macroscopic-gap regime). (b) For N  =  21 we show the scaled variance 
χTPS
m  as a function of the block size m. The behaviour is consistent with (61).
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the average of the observable B with respect to the distribution P̃ V
s  of (22). If V  is the 

optimal control then

lim
tobs→∞

1

tobs
〈−sK +Asym〉s,V = ψ(s).� (83)

The suggestion of [10] is that optimising V  to achieve equality in (83) can be used to 
obtain good sampling. Note that there are many control forces that can achieve equal-
ity in (83). This situation is to be contrasted with the general inequality [38, 42]

ψ(s) � lim
tobs→∞

1

tobs
〈−sK +Asym〉V ,� (84)

where the average is with respect to the controlled dynamics, without any biasing: 

〈B〉V =
∫
B[x]dP̃ V [x]. In (84), equality can only be achieved if V  is the optimal control 

potential, this can be checked by noting that ψ(s) = limtobs→∞ t−1
obs log〈e−sK+Asym〉V  and 

using Jensen’s inequality. On this basis one might expect that maximising the right 
hand side of (84) would give the best sampling.

Results for the averages in (83) and (84) are shown in figure 11. Contrary to the 
situation in [10], there is no value of c for which equality is achieved in (83). However, 
we note that the most ecient sampling takes place for c  =  3, which is the value where 
the average on the right hand side of (83) is closest to ψ(s), consistent with the proposal 
[10] that equality in (83) is a desirable feature. One also sees that the right hand side 
of (84) is decreasing in ψ for all c  >  1. Thus, c  =  1 gives the best bound on ψ but it 
does not achieve the best sampling, contrary to the intuitive expectation stated above.

Based on figures 9–11, our conclusion in this section is that no single prescription 
seems satisfactory for determining the best choice of control force V  in practical situa-
tions such as this one, and some trial-and-error is still necessary in this process.
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Figure 10.  Distributions Pave and P̃end for two observable quantities. Parameters 
are the same as figure 9(b). (a) Distributions of the size Y of the largest interparticle 
gap, for dierent strengths c of the control force in (80). Vertical arrows indicate 
the means of the various distributions. (b) Corresponding distributions for the size 
of the second-largest interparticle gap, Y2.
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7. Conclusions

We have given a detailed analysis of the behaviour that was summarised in figure 3, 
including discussion of hyperuniform states that appear when states are biased to high 
activity, and inhomogeneous states with low activity. We have discussed the existence 
of two inhomogeneous regimes, with s  =  O(N−2) (MFT regime) and s  =  O(N−1) (macro-
scopic interparticle gap).

We have shown that control forces can be used to improve numerical sampling of 
these ensembles [36, 40, 41, 44]. In the MFT regime where the system is homogeneous, 
these optimal control forces are long-ranged. On biasing to low activity, these forces are 
attractive and drive the formation of inhomogeneous states. Using these guiding forces 
(in the homogeneous state) leads to an improvement in sampling eciency. However, 
for these small values of s, the eect of the bias is weak, so sampling is already possible 
without these forces.

In the regime with a macroscopic interparticle gap, we have argued that a form of 
interfacial model can capture some features of the system, similar to [36]. Using this 
model to infer a suitable control force leads to an improvement in sampling eciency that 
is more than a factor of 10 in small systems. For large systems, the computations that we 
present would be prohibitively expensive without these control forces. We have discussed 
how the parameters of the control force might be optimised. In particular, we find that 
the simple criterion of [36, 40], to match the distributions Pave and Pend is not optimal for 
the cases considered here: since the control force is very simple we have instead optim
ised its free parameter by hand. Further work would be valuable, to understand how to 
infer control forces that improve sampling eciency. Some generic aspects of optimally-
controlled models are discussed in [46], where they are referred to as auxiliary models.

Comparing the TPS method with cloning methods [36, 40, 41, 52–54], we note 
that while TPS gives results for finite tobs, cloning provides direct access to the limit 
tobs → ∞, which is the limit where large-deviation theory applies. On the other hand, 
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Figure 11.  (a) The average of the action 1
tobs

〈−sK + Asym〉s,V  that appears in (83), 
for dierent biasing forces. All parameters are the same as in figure 9, for which 

we estimate ψ(s = 1.9) ≈ −32. (b) The (unbiased) average of the action in the 
controlled system that appears in (84).
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the detailed-balance property of TPS [51] means that it samples directly from Ps or 

P̃ V
s  as defined in (14) and (22). By contrast, cloning methods do not sample directly 

from a target distribution; they do allow estimation of averages with respect to these 
distributions but the associated statistical estimators have systematic errors (bias) 
which only disappear as the population size tends to infinity [33, 74]. Estimation of 
statistical uncertainties is also simpler for TPS, see section 5.3. There are also other 
methods for sampling large deviations, some of which require accurate representations 
of an optimally-controlled dynamics in order to achieve accurate results [42, 47, 75], 
see also [44]. Such methods are attractively simple, but accurate representations of 
optimally-controlled dynamics may be challenging in complex systems. We emphasise 
once more that the role of control forces in TPS and cloning is to improve convergence, 
but accurate results are still available without obtaining the optimal control force.

On physical grounds, it is notable that the rich physics of inhomogeneous and 
hyperuniform states in the BHPM occurs for very small values of the bias parameter 
s, which are at either O(N−2) or O(N−1). The strong response of the system to these 
biasing fields has its origin in hydrodynamic modes. Many theories of biased ensembles 
assume the existence of a gap in the spectrum of the generator of the relevant sto-
chastic process. Here the gap size is vanishing as N → ∞, because of slow (diusive) 
hydrodynamic modes. The MFT approach is to rescale (speed up) time so that one is 
restricted to hydrodynamic time scales, but the gap for the generator is restored.

The fact that the behaviour originates on the hydrodynamic scale also explains why 
MFT predictions are universal, in that they depend on diusive scalings but not on micro-
scopic details of the model. The predictions for the behaviour for s = O(N−1) are not uni-
versal in the same sense, but the simplicity of the interfacial model indicates that they may 
arise generically in systems with sharp interfaces between coexisting phases (see also [36])7.
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Appendix A. Biased path ensembles

This appendix includes a derivation of (23) and its analogue for MC dynamics.

A.1. Langevin dynamics

As in the main text, let dP̃ V [x] be the probability for trajectory x under the controlled 
process (21), but with Vopt replaced by some general (possibly non-optimal) potential 
V . Then standard path-integral arguments (see eg [40]) show that

dP̃ V [x] ∝ exp (−A[x]) dP0[x],� (A.1)

where the normalisation constant has been omitted for ease of writing and

7 The data underlying this publication will be available shortly after publication at https://doi.org/10.17863/
CAM.44433.
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A[x] =
1

4

∑
i

∫ tobs

0

2ẋi · ∇iV +∇iV ·D0(∇iV + 2β∇iU)dt .� (A.2)

Combining (14) with (A.1) yields

dPs[x] ∝ exp (A[x]− sK[x]) dP̃ V [x],� (A.3)

which means that the ensemble (14) which was obtained from P0 by biasing K can also 
be obtained (exactly) by a suitable biasing of P̃ V . Recalling that the product of ẋ and 
∇V  in (A.2) is to be interpreted in the Ito sense and using Ito’s formula for dV/dt, we 

obtain A[x] = 1
2
[V (tobs)− V (0)] +Asym[x] where Asym is given by (24). Using this with 

(A.3) and (22) yields (23).
Finally, using (24) with the observation that Asym[x]− sK[x] is constant and equal 

to ψ(s)tobs for V = Vopt, one sees that

V (X) = −2 log u(X)� (A.4)
where u is the solution with largest eigenvalue ψ of the eigenproblem∑

i

[
D0∇2

iu− (βD0∇iU) · ∇iu− srai u
]
= ψu .

� (A.5)

This is a tilted Fokker–Planckequation in its adjoint form, see for example [45].

A.2. MC dynamics

Analogous formulae hold for the (discrete-time) MC variant of the model. Let 
p(Xk|Xk−1, ik) be the probability that the system is in state Xk at step k, given that it 
was in state Xk−1 at step k  −  1, and that the particle proposed to be moved on step k 
was ik. Note that this p  is a normalised probability for Xk and p(Xk|Xk, ik) is generi-
cally finite. Also let pV (Xk|Xk−1, ik) be the analogous quantity for the controlled model. 
Then the analogue of Asym is

Asym
MC [x] = −

∑
k

log
pV (Xk+1|Xk, ik)

p(Xk+1|Xk, ik)
− 1

2
[V (Xk+1)− V (Xk)].� (A.6)

For the logarithm to be finite, it is important that p(Xk+1|Xk, ik) should not be zero 
(except if pV (Xk+1|Xk, ik) = 0 also). This is the reason to use the Glauber criterion 
in (2) instead of the Metropolis condition (because using Metropolis may result in 
p(X|X, i) = 0 for some choices of X, i but pV (X|X, i) �= 0).

Note also that Asym
MC  depends on which moves were proposed, as well as the actual 

sequence of states in the trajectory. If the control force V  has a very simple form then 
it is possible to write an equation similar to (A.6), in which the action depends only on 
the actual sequence of states. This gives some improvement in numerical sampling but 
is restricted to simple cases, for example where V  is a linear potential.

For the numerical results for the MC variant of the BHPM, we use control forces 
that are introduced by replacing β∆U  in (2) by β∆U +∆V  where ∆V  is the change in 
the control potential, for the proposed move. We note that the optimal auxiliary model 
for such a system would require that we take instead
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pacc =
exp[−ψδt− s(ra(t+) + ra(t−))δt/2−∆Vopt/2]

1 + exp(β∆U)� (A.7)

where ra(t±) are the values of ra just before and after the proposed move. For small 
∆V  and small δt, this is equivalent to replacing βU → (βU + V ) in (2) and it is also 
equivalent to the Langevin case [43].

We emphasise that for any V , the TPS method targets the distribution P̃ V
s  and 

provides accurate results (as long as suciently many TPS moves are performed). 
However, it is possible that we might have observed faster convergence if we had 
used (A.7) instead of simply including the control potential in (2). To check this, we 
tested an algorithm based on (A.7) for several representative cases; the dierences in 
performance were within the statistical uncertainty of our estimates of the asymptotic 
variance.

Appendix B. Complex Ornstein–Uhlenbeck processes

We collect some results for biased ensembles constructed from Ornstein–Uhlenbeck 
(OU) processes, see for example [45, section 6.2]. Suppose that z is a complex number 
which evolves by the complex OU process

ż = −ωz + η
√

2γ� (B.1)

where ω, γ are real positive constants and η is a complex-valued white noise. That is, 

η = ηr + iηi with real-valued noises ηr, ηi that satisfy 〈ηr(t)ηr(t′)〉 = 1
2
δ(t− t′) = 〈ηi(t)ηi(t′)〉 

and 〈ηi(t′)ηr(t)〉 = 0. Then also 〈η(t)η∗(t′)〉 = δ(t− t′). Writing z = x+ iy one has inde-
pendent equations of motion for x and y . The corresponding Fokker–Planckequation for 
the probability density P = P (x, y) is

Ṗ = ∂x(ωxP ) + ∂y(ωyP ) +
γ

2
(∂2

x + ∂2
y)P� (B.2)

whose stationary distribution is P0 ∝ exp(−ω(x2 + y2)/γ). Alternatively one may 
use the calculus of complex variables and consider a probability density defined as 
Q  =  Q(z,z*) which obeys

Q̇ = ∂z(ωzQ) + ∂z∗(ωz
∗Q) + 2γ∂z∂z∗Q.� (B.3)

The stationary solution is Q0 ∝ exp(−ωz∗z/γ) which is (of course) equivalent to P0 as 
given above. The following results can be derived by considering separately the real and 
imaginary parts of z but we use the complex variable representation, which simplifies 
the analysis.

For biased ensembles of the form (14) with K = α
∫ tobs
0

z∗(t)z(t)dt, the dynamical 

free energy can be obtained by solving the eigenproblem

ψQ = ∂z(ωzQ) + ∂z∗(ωz
∗Q) + 2γ∂z∂z∗Q− sαz∗zQ.� (B.4)

It is easily verified that the eigenfunction with maximal eigenvalue is
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Q ∝ exp

[
−z∗z

2γ

(√
ω2 + 2sαγ + ω

)]
� (B.5)

which is valid for 2sαγ > −ω2 (otherwise the eigenvalues are not bounded above and 
the dynamical free energy does not exist). The corresponding eigenvalue is

ψ(s) = ω −
√
ω2 + 2αsγ.� (B.6)

To obtain the optimal control force one should solve the adjoint eigenproblem

ψF = −ωz∂zF − ωz∗∂z∗F +
γ

2
∂z∂z∗F − sαz∗zF� (B.7)

whose solution is F ∝ exp
[
− z∗z

2γ

(√
ω2 + 2sαγ − ω

)]
. Note that F ∝ Q/Q0 which fol-

lows because the underlying equation is reversible (obeys detailed balance). The optimal 
control potential is Vopt = −2 logF  (up to an arbitrary additive constant) which yields

Vopt =
z∗z

γ

(√
ω2 + 2sαγ − ω

)
.� (B.8)

Away from transient regions, the distribution of z in the biased ensemble is 
Pave(z, z

∗) ∝ FQ so

Pave(z, z
∗) ∝ exp

(
−z∗z

2γ

√
ω2 + 2sαγ

)
.� (B.9)

For the discussion here, the case of primary interest is when sα < 0, in which case the 
control potential Vopt has negative curvature and guides the system towards increas-
ingly large values of z. As sα tends to −ω2/(2γ) one sees that the variance of Pave 
diverges. If the original equation  (B.1) was derived by linearisation at small z, then 
this divergence indicates the breakdown of the linear approximation, within the biased 
ensemble. This is the situation discussed in section 5.1.

Appendix C. Convergence of TPS

In order to measure the improvement in sampling that is achieved by guiding (con-
trol) forces, we discuss in the main text the asymptotic variance σ2

TPS, see (59). This 
quantity requires a large amount of TPS data to evaluate it, but does give a reliable 
estimate of the eort required to obtain an independent sampling from a biased trajec-
tory ensemble. As an alternative, we also consider the autocorrelation function. In the 
notation of (58) let

C(m) = 〈K̂iK̂i+m〉 − 〈K̂i〉〈K̂i+m〉� (C.1)

where the average is over many realisations of the TPS algorithm. One sees that 

χTPS
m =

∑m
i,j=1〈K̂iK̂j〉 − 〈K̂i〉〈K̂j〉 is related to a sum of C(n) over the lag time n. 

Figure C1 shows results for this correlation function. As in figure  9, one concludes 
that the sampling is most eective for c  =  3, since the correlations decay most quickly 
when the control force has this strength. Compared with the asymptotic variance σ2

TPS, 
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results for the autocorrelation function are somewhat easier to obtain in practice. The 
diculty is that σ2

TPS =
∑∞

m=−∞ C(m) has contributions from weak correlations at 
large m: accurate estimation of these (weak) correlations requires very long TPS runs.

Another approach is to consider what fraction of TPS moves are accepted, and how 
this is aected by the guiding forces. In general, TPS acceptance rates are not reliable 
as indicators of convergence. For example short shifting moves lead to slow decorrela-
tion of the trajectories, while longer trajectories may decorrelate the trajectory more 
quickly, even if the acceptance probability is somewhat lower. Hence, if a control force 
leads to acceptance of longer shifting moves then this can still improve sampling, even 
at the cost of a lower overall acceptance rate.

Despite these limitations, there is useful information available by monitoring TPS 
acceptance rates. For TPS with control forces in place, it follows from (23) that a pro-
posed trajectory is accepted with probability

min
(
1, e∆Asym

MC−s∆K
)

� (C.2)

where ∆K is the change in activity between the original and proposed trajectory, and 
similarly ∆Asym is the change in Asym. For TPS with the optimal control potential then 
Asym

MC − s∆K = ψ(s) for every trajectory so the acceptance probability is unity. That is

∆Asym − s∆K = 0 .� (C.3)
Joint probability density functions for accepted values of ∆Asym

MC  and s∆K  are 
shown in figure C2. The relationship (C.3) is indicated. There are two eects at play 
here. For control forces that are close to optimal, the distribution concentrates close to 
(C.3). On the other hand, larger control forces tend to suppress the total acceptance, 
because the forces are not optimal. The most ecient sampling occurs in an intermedi-
ate regime. In this case, we find that the the optimal regime is when the typical values 
of s∆K  and ∆Asym are of similar sizes.
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Figure C1.  Autocorrelation C(mTPS) of the TPS sampling method for dierent 
biasing forces. The state points are those of figure 9, for N  =  21. The autocorrelation 
function decays faster for c = 3, 5, indicating that sampling is more eective when 
these control forces are included, consistent with figure 9.
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Previous work has considered large deviations of the dynamical activity in this system 
[30, 31], but using a dierent measure of activity, which is defined in terms of squared 
particle displacements. One separates the time interval [0, tobs] into S segments, each of 
length ∆t = tobs/S. Then define

Kmsd[x] =
1

2D0

S∑
j=1

N∑
i=1

|xi(tj)− xi(tj−1)−∆x̄j|2,� (D.1)

where tj = j∆t and ∆x̄j is the displacement of the centre of mass of all particles, 
between times tj −1 and tj . The activity K of (11) depends on the characteristic length a, 
while Kmsd depends on the parameter ∆t. To obtain a corresponding length one may 
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Figure C2.  The probability density of −s∆K and ∆Asym
MC  for accepted TPS moves, 

with the control force (80) in place. (a) c  =  1; (b) c  =  3, which leads to the most 
ecient sampling; (c) c  =  5. Other parameters are Φa = 0.233, N  =  21, tobs = 5.6τB, 
and h  =  11 as in figure 9(b).
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Figure D1.  (a) Activity per particle per unit time kmsd for diusively rescaled 
systems. (b) Modulus of the complex order parameter which is related to the first 
Fourier component of density. Both figures come from systems with γobs ≈ 0.0128 
and Φa = 0.233.
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define amsd =
√
2D0∆t where D0 is the single-particle diusion constant. For a direct 

comparison between K and Kmsd it is natural to take amsd ≈ a since this means that 
both activity measures are sensitive to motion on the same length scales.

Analogous to (14) we define a biased ensemble with a bias parameter s2, as

dPs2 [x] =
e−s2Kmsd[x]

Z(s2)
dP0[x] .� (D.2)

Also define λ2 = s2L
2
r/D0, analogous to (27), and kmsd = Kmsd/(Ntobs). With these 

definitions, figure D1 shows that the ensemble of (D.2) has the same qualitative fea-
tures as biasing by K. Specifically, figure D1(a) is analogous to figures 4(a) and D1(b) 
is analogous to figure 5(a). The data collapses when plotting these results as a function 
of λ2, consistent with the MFT predictions.
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