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Abstract. We analyse large deviations of the dynamical activity in one-
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of trajectories. We find several distinct regimes, as a function of the activity
and the system size: we present approximate analytical calculations that
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repulsive. For low activity, there is a near-equilibrium regime described by
macroscopic fluctuation theory, characterised by long-ranged attractive forces.
There is also a far-from-equilibrium regime in which one of the interparticle
gaps becomes macroscopic and the interactions depend strongly on the size
of this gap. We discuss the extent to which transition path sampling of these
ensembles is improved by adding suitable control forces.
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1. Introduction

Large deviations of time-averaged quantities are becoming increasingly useful for under-
standing dynamical fluctuations in physical systems [1-13]. For example, consider an
ergodic system in which time-averaged quantities converge almost surely to ensemble-
averaged values. Given some large time scale, the probability of a significant deviation
between the time-average and the ensemble average is small but finite—these rare
events are described by large-deviation theory [14, 15]. Despite their scarcity, analysis
of these events has led to new insight into the behaviour of physical systems, and their
dominant fluctuation mechanisms [9-11, 16-18].

Early studies of these events focused on the entropy production in non-equilibrium
systems, which is intrinsically linked to fluctuation theorems [1, 2, 19, 20]. Another
direction has been the analysis of time-averaged currents, aiming towards a general
theory of transport in non-equilibrium systems [3, 5, 21, 22]. Yet another line of enquiry
has focused on glassy systems [8, 9, 23, 24], which have long-lived metastable states
that hinder equilibration.

In studies of large deviations, there are numerous examples of dynamical phase trans-
itions [8-10, 13, 17, 23-29]. In simple terms, these occur when deviations from ergodic
behaviour occur by mechanisms that differ qualitatively from the typical behaviour of
the model. For example, the rare events may involve spontaneous symmetry breaking,
as in [10, 13, 29]. In other cases, one encounters the phenomenology of first-order phase
transitions, including phase coexistence [8, 23].

Here we focus on a simple Brownian hard particle model (BHPM), which has rich
fluctuation behaviour, including dynamical phase transitions [30, 31]. It consists of
many hard particles diffusing in one dimension, and therefore has some similarities
with the simple symmetric exclusion process (SSEP), generalised to continuous space.
Dynamical phase transitions in the SSEP have been analysed in detail [5, 13, 29, 32, 33].
In particular, its behaviour on very large (hydrodynamic) length scales is described by
macroscopic fluctuation theory (MFT) [21]. The general applicability of this theory
means that its predictions apply also in the BHPM [30, 31]. A key prediction is that
for large deviations with low values of the dynamical activity, the system becomes mac-
roscopically inhomogeneous, which was identified in [30] as a form of phase separation.

This article extends previous work [30, 31] on the BHPM in two main direc-
tions. First, we analyse the macroscopically inhomogeneous regime, both numerically
and analytically. We generalise existing MFT predictions [17, 25] to the BHPM and
we show quantitative agreement with numerical results. This theory is accurate for
fluctuations that involve smooth large-scale modulations of the density. We also anal-
yse fluctuations that are too large to be captured by MFT, where one observes the
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formation of an extensive region without any particles at all: a macroscopic gap. Based
on previous results for kinetically constrained spin models [34-36], we propose a simple
interfacial model that captures qualitative features of this regime.

The second direction of this work is to show how the addition of control forces
[37, 38] to the equations of motion of the system can be used to improve numerical
convergence. It is known [38, 39] that for any given biased ensemble there is an optimal
set of control forces for which numerical sampling of the rare events becomes trivial.
While these optimal forces cannot usually be computed in complex physical systems, it
is expected that adding non-optimal control forces can also improve the convergence of
numerical calculations, via a form of importance sampling [36, 40-42]. We use theor-
etical arguments to derive approximations to the optimal control force, in two regimes
that we have identified. We show that these control forces do indeed improve numerical
performance, and this improvement is increasingly strong when we consider large sys-
tems. (This is because our approximations to the optimal control forces are increasingly
accurate for large systems.)

The form of this paper is as follows. Section 2 introduces the models that we con-
sider, and some of the quantities that we will measure. Section 3 collects properties of
biased ensembles of trajectories. Section 4 gives an overview of the main theoretical
results, before sections 5 and 6 describe the detailed calculations for the two macro-
scopically inhomogeneous regimes that we identify. We summarise our conclusions in
section 7.

2. Models

Consider N hard particles moving in one dimension with periodic boundaries. Each par-
ticle has size [y and the position of particle i at time tis z,(f). We write X = (21, x9,...,2n)
for a configuration of the system and x for a trajectory of the the system, over a time
interval [0, tohs]. The particle motion is stochastic and obeys detailed balance with
respect to an equilibrium distribution

1

P(X) = — expl—BU(X)] )

where 3 is the inverse temperature, Z is a normalisation constant, and U is a pairwise
additive potential energy U =1 3", 2 V(@ —x;). As in [30, 31], we consider two vari-
ants of the system, which have very similar behaviour.

2.1. Monte Carlo dynamics

The MC variant of the model is a discrete-time Markov process. On each step, a par-
ticle (say i) is chosen at random and we propose to move it to a new position z; + Az
where Az is uniformly distributed in [—M, M]. Here, M is a parameter of the model.
We use Glauber dynamics so the move is accepted with probability

1
1+ exp(BAU) 2)

Pacec =
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where AU is the difference in energy between the current configuration and the pro-
posed configuration. If the move is rejected then the configuration remains the same.
After each attempted move, the time is incremented by §t = M?/(12N Dy) where Dy
is the single-particle diffusion constant, which is also a parameter of the model. This
ensures that in the dilute limit, particles diffuse independently between collisions, with
diffusion constant D). We use Glauber dynamics because this facilitates later analysis,
when we add control forces to the system, see section 3.3.
This variant of the model considers hard particles, so the interaction potential is

o(z) = {O’ T>1l 3)

0o, x <l

Suppose that the jth particle is selected to be moved in a given MC step, and suppose
that the neighbouring particles have indices p,q. The probability that the proposed
move does not result in two particles overlapping is
1 . .
= min(M, [y — ) + min(M, |z, — ]} @
The superscript M indicates that this quantity depends on the MC step size, it is a label
(and not any kind of exponent).

2.2. Langevin dynamics

All numerical results in this work use MC dynamics. However, it is convenient for
theoretical analysis to consider a Langevin equation

iy = —BDyV;U + \/2Dgn; )

where 7; is a standard Brownian noise. In this case the pair potential should be
differentiable: we assume a regularised version of (3) such that v(z) = oo for |2f < k.
Also there is some [; such that v(z) = 0 for |z| > Iy + 11, with v(z) a continuous function
for Iy < x < 1y, diverging as x — ly. This choice ensures that the separation between any
pair of particles is always larger than .

The similarity between the MC and Langevin models can be justified in the follow-
ing way. In the Langevin model, take {; = lop + M where M is the step size in the MC
model. The two models behave equivalently in the limit M — 0: this can be verified by
constructing the Fokker—Planckequation for the Langevin model and the corresponding
master equation for the MC model, then taking the relevant limits. See [43].

2.3. Rescaled representation

Since we consider hard particles in d = 1, the ordering of particles in the system is pre-
served?. One may always map such a model to a system of point particles that move
in a spatial domain of size

L.=L— Nl . (6)

4 The particles exclude a volume ly which we assume throughout is larger than the MC step M.
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We insist that the particle positions are ordered with x; < x5 < ... (modulo periodic
boundaries) in which case the position of the jth point particle is ; = z; — jly. For
the MC variant of the model, the equilibrium distribution (1) reduces to an ideal-gas
distribution for the positions Z. In some cases, this means that the rescaled system is
simpler to analyse. However, we emphasise that the rescaled system and the original
system contain exactly the same information.

In this rescaled representation, it is easy to see that varying / in the original model
simply shifts particles’ positions by constants that are independent of time. It follows
that many properties of the system (including trajectories of individual particles) are
independent of .

2.4. Dynamical activity

In the following, we focus on ensembles of trajectories that are biased to low (or high)
values of time-averaged measurements of dynamical activity. The definition of activ-
ity used in this work differs from [30, 31]—the choice used here does not change the
qualitative behaviour but it makes it easier to analyse, both numerically and computa-
tionally. Large deviations for a different kind of dynamical activity have recently been
analysed in a similar model [44].

The activity measures motion on a characteristic length scale a. We introduce a
dimensionless parameter

Na
b, =
I ()

which is the ratio between a and the average interparticle gap. For a trajectory x, we
define

N tobs
K= / (1) dt ®)

where r{ is the acceptance probability for an MC move of size a, as defined in (4).
We allow the parameter a that appears in the definition of K to be different from the
parameter M that determines the size of MC moves, although our numerical results
take a = M. Note also that while K is defined in terms of the MC acceptance rate, it
can be evaluated directly from particle trajectories, using (8). Thus, K is a well-defined
quantity in the Langevin variant of the model, as well as in the MC variant. Also, the
value of K only depends on gaps between adjacent particles and is therefore the same
in the rescaled representation, or the original representation.

It is useful to define an intensive (and dimensionless) version of K by dividing by
the number of particles and by s

Kx]

k[x] = Nt 9)

In large systems, the gaps between adjacent particles are exponentially distributed
with mean L,/N. Hence the mean of r{ is the probability that a randomly chosen gap
(y) is larger than the proposed step (2):
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<ﬁn=47v@/WWﬂm€WMQMz 10)

(Here and throughout, (-)o indicates an average in the equilibrium state of the system.)
The integral gives ®;1(1 — e~®<), so one has (for large systems, N — c0)
1 _
(klx])o = g-(1—e™™). (11)
At low concentrations (small ®,), particles diffuse almost independently and the activ-
ity k£ is equal to unity. For high concentrations the mean activity (per particle) is
reduced; it approaches zero as &, — oo (in which case particles do not move at all).

3. Biased ensembles of trajectories

This work focusses on the distribution of the intensive activity k[x| as t,,s — 00. In a
system with N particles, large deviation theory for this time-averaged quantity means
that its probability density scales as

p(k|t0bs7 N) ~ e_tobs](k) (12)

where [is the rate function. This is a large deviation principle, which holds for ¢,,s — oo
at fixed N.

Evaluation of I(k) gives the probability of rare events where the time-averaged
activity takes a non-typical value. This section outlines several results from large devia-
tion theory as it applies to ensembles of trajectories [5, 6, 39, 45], including connections
to optimal-control theory [38, 46], and its application for numerical sampling [40, 47].
Readers familiar with this material may prefer to skip directly to the summary of main
results in section 4.

3.1. Biased ensembles

We define biased ensembles of trajectories according to standard methods [5, 6, 45], by
modifying the probabilities of trajectories of the system. We use dFy[x] to indicate the
(infinitesimal) probability that the system follows trajectory x. The meaning of this
notation is that the expectation value of some observable O can be expressed as

@MI/OBN%M 13)

where the integral runs over all possible trajectories, weighted by their probabilities.
Now consider an ensemble in which the probability of trajectory x is biased according
to its activity:

e—sK[x}

dP,[x] =

dPo[x], (14)

S

https://doi.org/10.1088/1742-5468 /ab4801 7


https://doi.org/10.1088/1742-5468/ab4801

Large deviations and optimal control forces for hard particles in one dimension

with Z, = (e7*K) for normalisation. By analogy with (13), averages in the biased
ensemble are given by

(0), = / Olx] dP,[x] | 15)

Since K is extensive in time, it is useful to invoke an analogy between these biased
ensembles and canonical ensembles in statistical mechanics, see [15, 48] for a discus-
sion. This motivates us to define the dynamical free energy,

P(s) = lim

tobs—>00

log ek, (16)

obs

The average of the intensive activity in the biased ensemble is denoted by
k(s) = (k[x])s. (17)

(There should be no confusion between the mean activity k(s) and the activity of
an individual trajectory k[x].) The average is over trajectories of fixed length t,,s so
k(s) depends implicitly on t.s, as well as the parameters of the model. Note also that
limy , oo k(s) = —¢'(s)/N, where the prime indicates a derivative. One reason that
these biased ensembles are useful is that for large ¢, typical trajectories taken from
(14) are representative of the rare events associated with (12), evaluated at k = k(s)
[6, 23, 45, 48].

In analogy with thermodynamics, this first derivative of the free energy corresponds
to the average value of an order parameter. The free energy is related to the rate func-
tion I by Legendre transform I(k) = sup[—sk — ¢(s)]. If results for k(s) and (s) are
available from numerical data then the rate function may be estimated parametrically
as

I(k(s)) = —sk(s) —(s) - (18)

3.2. Dependence of averages on time

From the definition of the biased ensemble in (14), it follows that this ensemble has
transient regimes when the time ¢ is close to t =0 or t = t,,s. These transients can be
characterised theoretically following [23, 39, 45]. To this end, consider a general observ-
able quantity Z that can be measured at some single time ¢ (for example, Z might be
the distance between two particles). The probability density for this quantity when
evaluated at time ¢ = ¢,y 1S

Piena(2) = (0]z = Z(tans)]) - (19)

The probability density for Z can also be averaged along the whole trajectory, which
gives

1

Ps,ave<z) = t ;

/0 8l — 20, dt (20)

This is the probability that Z has value z, if we measure at a time ¢ chosen uniformly
at random from [0, ¢.ps). These distributions depend implicitly on t.ps; their limits are
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well-defined as t,,s — 0o. The two distributions P ave, Psend are different in general;
in particular, they have different limits as t,,s — 00 because P;¢nq(2) characterises the
transient regime while P;,.(z) characterises typical times, away from the transient
regimes.

3.3. Conditioning of Doob, guiding forces, and optimal control theory

It has been shown in recent years [39, 45] that properties of biased ensembles of the
form (14) can be reproduced by considering the typical (unbiased) dynamics of an ‘aux-
iliary process’ that has been modified to include additional ‘control forces’. For the
Langevin process (5), the auxiliary process is

&y = —DoVi(BU + Vopy) + v/ 2Don; 2D

where V¢ is an optimal control potential whose determination is discussed below.

In the following, we make extensive use of (non-optimal) control forces, to improve
convergence of our numerical algorithms, following [36, 40, 41, 47]. We now present the
associated theory. Some details of derivations are given in appendix A.

The object of primary interest in this study is the biased probability distribution P;
of (14). It is convenient to define a new biased distribution that is very close to Py, but
differs in the transient regimes close to t =0 and t = t.,s. Let V' be a control potential,
similar to Vope in (21), but not necessarily optimal. Then define

AP < oxp (5 [VOX0) = VX ()] ) aP2be) e

The constant of proportionality in this equation is fixed by normalisation, we do not
write it explicitly in order to have a compact notation. Since they differ only in tran-
sient regime, the distributions P, and ]55}/ are equivalent for long trajectories, in the
sense that they yield the same results for k(s) and #(s). Marginal distributions P,y are
also identical for P, and PSV (as tops — 00), but P.g is different in general®.

The equivalence of P, and f’sv means that we are free to choose V' in such a way
that P) is easy to analyse, either numerically or theoretically. To this end, let PV [x]
be the probability of trajectory x under the Langevin dynamics (21), with V. replaced
by V. Then, we show in appendix A that ]58‘/ can be interpreted as a biased ensemble
for this controlled process, that is

APV [x] o exp (A [x] — sK[x]) dPV[x], (23)
with

1 tobs
AV = 1) /0 ViV - Do(ViV + 28V,U) — 2DgV2V dt . 24)

5 One way to characterise the optimal controlled model is that it leads to Pae = Pena [40], so there is no transient
regime in that case.
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Similar results have been derived in [36, 38, 40, 41, 49]. Note that (23) applies for the
Langevin model (5), the analogous result for MC dynamics is given in appendix A.

Comparing (23) with (14), one sees that dP, has been replaced by dPV, which indi-
cates that the model has been modified by including the control potential V in the
equation of motion. Also the exponential biasing factor in (14) has been modified to
include the action A®™. In numerical work, these modifications are simple to imple-
ment, so algorithms for analysing P, can also be used to analyse Psv . This holds for any
V' which allows an enormous flexibility [36, 40, 41]. In particular, the optimal control
(V = Vipt) is the potential V' for which the factor A¥™[x] — sK[x]in (23) evaluates to
a constant value ¥(s)tons, independent of x. This allows V,,; to be obtained by solv-
ing an eigenvalue problem, see appendix A. If this optimal control potential is known
then sampling from PSV is trivial [47, 50]. More commonly, the optimal potential is
not available, but even non-optimal controls can greatly improve the performance of
numerical schemes [36, 40, 41]. The nature of optimal control forces in some physical
model systems is discussed in [46].

3.4. Sampling of biased path ensembles

We use transition path sampling (TPS) [51] to generate representative trajectories
from P, and 135‘/ . Our TPS methodology is the same as [9, 31]. To summarise, TPS is
an MC method for sampling trajectories of a fixed length t,.. In each step, one starts
with a trajectory and proposes to change it in some way. This is called a TPS move.
The proposal is generated by direct simulation of the model of interest (see below). The
proposed trajectory is accepted or rejected according to a Metropolis criterion based on
the relevant weighting factor (for example, e~ in the case of (14)). This MC method
is designed to obey detailed balance, which ensures that it samples (14) or (23), as
required. This is a key strength of the method; another advantage is that standard MC
tests for numerical convergence can be applied, see for example section 5.3.

There is some flexibility as to the specific choice of TPS moves. In this work, we
use shifting moves [9, 31, 51] and the size of each shift is chosen uniformly from the
range 7 + 0.57p, except where stated otherwise. As usual in TPS, proposing larger
shifts is desirable for rapid exploration of trajectory space, but tends to lead to more
TPS moves being rejected. The best choice of shift size is a compromise between these
two effects.

We note that population dynamics (cloning) methods [52—-54] have also been widely
used for numerical studies of large deviations, and guiding (control) forces have also
been used in that case [36, 40, 41]. We comment on the strengths and weaknesses of
the two approaches at the end of this work, in section 7.

4. Overview of main results

We consider fluctuations of the dynamical activity K in the BHPM, as defined in sec-
tion 2.4. All numerical results are obtained using the MC variant of the model. The
behaviour of the mean activity is illustrated in figure 1. We represent the data in two

https://doi.org/10.1088/1742-5468 /ab4801 10
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Figure 1. Average dynamical activity (per unit time), evaluated at equilibrium for
a = 0.1}. (a) Mean activity per unit length (¢k) as a function of volume fraction ¢
for a system of size L = 40y, compared with the theoretical prediction of (11). (b)
Corresponding activity, per particle.

different ways. Figure 1(a) shows (K/(Lteys))o = (k¢)o, which is the average activity
per unit length, as a function of the volume fraction ¢ = Nly/L. Figure 1(b) shows the
activity per particle (k), and its dependence on ¢. Note that the activity of a typical
particle (k) decreases with volume fraction, but the activity per unit length is non-
monotonic. (At small volume fractions, the activity is proportional to the number of
particles and hence to ¢; on the other hand, it decreases for large volume fractions,
because particles start to obstruct each other.)

We now consider large deviations of K. Figure 2 shows the behaviour of k(s) and
the corresponding estimate of the rate function (obtained by (18)), for a representa-
tive state point ¢ = 0.7 in systems of N =28 and N = 42 particles. These results were
obtained by TPS, we note that they depend on the trajectory length t.,s which is
quoted in units of the Brownian time,

s = 12/(2Dy) . 35

This is a natural unit of time in the model, and is comparable to the time required for
a particle to diffuse its own size, .

As noted in section 3, k(s) is analogous to an order parameter in thermodynam-
ics. This quantity decreases sharply for positive s. As explained in [30, 31], this is a
signature of a dynamical phase transition in the BHPM, which occurs in the limit
N, tops — 00. Before embarking on a detailed analysis, we give a brief summary of the
associated phenomena. The qualitative behaviour of k(s) in a system with finite N is
shown in figure 3, which also shows typical trajectories of the system, as one passes
through the phase transition. At the phase transition, the system becomes inhomoge-
neous [30, 31]. In this work, we emphasise that (for this model) there are two distinct
classes of inhomogeneous state. There are states where the density is modulated in
space, but particle spacings remain of order unity as N — co. However, for larger s
(smaller k[x]), there are states where a significant fraction of the available space in
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Figure 2. (a) Average activity (k[x])s in the biased ensemble, obtained by TPS in
a system with N = (28,42) and tons = (1078, 15.675). (b) Corresponding estimate
of the rate function, using (18). These results are analysed in more detail below,
including a discussion of numerical uncertainties (error bars), see for example
figure 4.

system is taken up by a single interparticle gap. The two classes of inhomogeneous
state are discussed in sections 5 and 6.

In section 5 we review and extend some previous work [17, 25, 30, 32, 55, 56],
which shows that inhomogeneous states with spacings of order unity appear on tak-
ing N — oo with s = O(N~?). This is the regime described by macroscopic fluctuation
theory (which can also describe the behaviour for small negative values of the bias). In
this regime, the optimal control forces are long-ranged; they are attractive for s > 0 and
repulsive for s < 0. It is the attractive forces that drive the phase separation transition.
We show that using control forces in numerical sampling significantly improves their
efficiency. For s < 0 the system always remains homogeneous; as explained in [30] it is
hyperuniform when s is negative and of order unity, see also section 5.2.3.

In section 6, we discuss the behaviour on taking N — oo with s= O(N!). We
explain that this is the regime in which we expect a macroscopic gap to take up a
finite fraction of the system. By applying such control forces in numerics, we show that
computational efficiency is significantly improved. In fact, this improvement is much
larger than for the MFT regime. We discuss how parameters of the control force can
be optimised for efficient sampling.

We note that all these results apply in limits where s — 0 as N — oco. The tracta-
bility of these limits arises because the biases that are applied to these ensembles of
trajectories are weak. For example, a central assumption of MFT [21] is that the sys-
tem is in ‘local equilibrium’, which means that any finite region of the system can be
characterised through its local density and current, and that the bias has a negligible
effect on the short-ranged correlations between microscopic particles. In the regime
with a macroscopic gap, there are deviations from local equilibrium but our central
assumption is that these are localised near the interfaces, at the edges of the gap.
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Figure 3. (a) Sketch of the activity k(s) as a function of the bias. We concentrate
in this work on three physical regimes: (i) homogeneous; (ii) macroscopically
inhomogeneous; and (iii) a system with a single macroscopic gap. See the text for
a discussion. (b)—(d) Representative trajectories of the system at s =0,0.18,0.36
respectively. These trajectories illustrate the characteristics of the three regimes.
We take N =160 and t.,; = 10073, we show the behaviour for 0 < ¢ < 107z which
is representative of the whole trajectory in these cases.

5. Diffusion governed (MFT) regime

This section discusses the regime where MFT applies [21]. We work in the rescaled
representation of section 2.3. MFT is valid on large (hydrodynamic) length and time
scales, which are related by a diffusive scaling. That is, we introduce the (average)
density p and define

2

Lr - N/ﬁ, tobs = Wobs_r

5Dy (26)

The hydrodynamic limit is N — oo at fixed P, 7obs. One then takes a second limit,
Yobs — 00, in order to access the relevant large deviations. To arrive at a consistent
theory, we also rescale the biasing parameter [32] as

A= sL;/Dy 27)

which is held constant as N — oc.
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5.1. Theoretical analysis of density fluctuations and optimal control potential, using MFT

We consider the statistics of the local density and current, which are the relevant
hydrodynamic fields within MFT [21]. We analyse large deviations of the activity using
a physical argument based on fluctuating hydrodynamics—the same conclusions can
also be reached other methods [32], the specific case of the BHPM is discussed in [30].
The statistics of the density and current may be characterised by writing Langevin
equations:

p=—divy
j=-D(p)Vp++/20(p)n

where D(p) and o(p) are a diffusivity and a mobility, and 7 is a space-time white noise
with mean zero and (n(x,t)n(z’,t')) = §(x — 2')d(t — t'). The specific forms of D and o
for the BHPM are discussed below. We use Ito calculus.

The usual approach in MFT is to rescale the spatial domain [0, L,] into the unit
interval [0, 1] and also to rescale time. That is, define dimensionless coordinates on the
hydrodynamic scale as & = x/L, and t = t/L?, the corresponding current is j = jL,
(there is no rescaling of the density). Then (28) becomes

(0/00)p =% -]
J=—=D(p)Vp++/20(p)/ L+

where V is a gradient with respect to Z, and 7 is a noise with zero mean and
(n(z, Hn(’, 1)) = 6(& — 2)6(t — '). (Hence one sees that 7 = L¥?n) 1t is apparent from
(29) that MFT is a weak-noise theory that is valid on large length scales. For later com-
parison with numerics, it is convenient to quote all results in the original co-ordinates
(without hats), but we emphasise that they are valid only on the hydrodynamic scale
(which in this case will mean s = O(N~?), as usual in diffusive systems [32]).

Within MFT it is consistent (by the local equilibrium assumption [21]) to approxi-
mate the activity K from (8) as

K[x] = /0 o /0 " elole, 1)) dadt (30)

where k(p) is the average activity (per unit volume) of an equilibrium system with den-

(28)

(29)

sity p. That is, k(p) = ﬁ<K>0,p5 for the BHPM then (11) and p = N/L, imply that
1 —a
k(p) = 5(1 —e ). (31)

For activity fluctuations in the SSEP, one takes instead x = 2p(1 — p) in which case
the following theoretical analysis is similar to [25, 32]. For the purposes of this discus-
sion, the important feature is that x”(p) < 0. For positive s, this means that the sys-
tem undergoes a continuous phase transition accompanied by spontaneous symmetry
breaking [17, 30, 32], see also [13, 57, 58]. For s = 0 the system is homogeneous but for
positive s, it becomes inhomogeneous, see figure 3. We now adapt previous MFT results
to this setting before comparing with numerical results in section 5.2.
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5.1.1. Homogeneous phase. As in [17, 30, 32, 59], we analyse the homogeneous phase
by writing p(z,t) = p+ dp(x,t), and assuming that dp is small. From (28) we have
(0/0t)dp = —div j with (at leading order in ép):

j=—=D(p)V(ép)++/20(p)n . (32)
From (30) then
K[x] = Lytone( / ” / p)dp(x, ) dadt . (33)

Fourier transforming as

Lr
pa(t) = L1V? /0 pla,t) exp (—igr) dz (34)
one has (for ¢ > 0)

(0/0t)pg = —D(p)q* by + a\/20(p)iiq (35)

where 17, is a complex-valued Brownian noise. (There is one noise for each positive wave-
vector, each noise is independent of all the others, and (7, (¢)7;(t)) = o(t —t').) Also,

K[x] = Litonski(p) + Y /0 " K" (P)pq(t)p—q(t) dt . (36)

q>0

In (35) and (36), the different wavevectors are completely decoupled from each other.
Biased ensembles for these OU processes can be analysed exactly by standard methods,
see appendix B for details. Using (B.6) with o = £”(p) and w = D(p)q? and v = o(p)q?,
the result can be expressed as

0(s) = 552 = 5= (VDGPT T B G - Dipe? - ™) D

t
obs >0

which is equivalent to the results obtained in [30, 32]. The sum on the right hand
side runs over ¢ = 2nw/L, with 0 <n < oo, and converges to a finite value. Taylor-
expanding over s, the first term appears at O(s?). The term involving (K ), includes
all contributions at O(s): it is written in this form to ensure that ¢/'(0) = —(K)o/tops,
consistent with (16). We note that evaluating (K)( in a finite system requires a high-¢
cutoff in the Fourier representation of p, as usual in systems defined by stochastic par-
tial differential equations like (28). Nevertheless, (37) is a universal prediction within
MEFT (independent of cutoff), consistent with [32].

From (37), the activity is

K(s) = k(0) = N7/ (0) — /()]
K" (p) [ qo(p) - o (p)
N 7>0 [D(p)%2q2 + 2sk"(p)o(p)]'/2  D(p) (38)

which will be compared in section 5.2 with numerical data.
Note however that (37) is valid only if the argument of the square root is positive
which requires 2sk” (p)a(p)q* > —(Dg?)?; otherwise the OU process predicts a divergence
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in the density fluctuations which signals a breakdown of the quadratic expansion in
dp. Recalling that x” < 0, this criterion is most stringent for the smallest wavevector
q = q1 = 2w/ L, so one sees that the range of validity is s < s. with

272D (p)?
K"(p)o(p)
as in [30, 32]. For s < s, the sum in (38) converges to a finite value so k(s) — x(p)/p
as N — oo, while the sum gives a finite-size correction that has a universal form within

MFT [32]. In this regime, the optimal-control potential required to generate typical
trajectories of the biased ensemble is obtained from equation (B.8) as

sel?=— (39)

Vel =Y tuiipg (40)
qg>0
with
1
= 55, (VP@PE + 25570 7) — Dip)a) (A1)

This corresponds to a pairwise-additive interaction whose pair potential v(z) is given
by the inverse Fourier transform of v,. If s # 0 then v, diverges as ¢ — 0 indicating that
this interaction is long-ranged. As discussed in [60, 61], the pair potential decays as
v(x) ~ 1/(log ) for separations z that are large compared to the particle spacing (but
small compared to L,). The potential is attractive if sk” < 0 and repulsive if sk” > 0.
We again emphasise that this analysis requires a weak bias s < s..

5.1.2. Inhomogeneous phase. For s> s, a slightly different approach is required,
which is related to the Landau-like theory of [13, 62] as well as earlier work [17, 25].
For simplicity, we assume in this calculation that D= D, is a constant (independent
of p): this situation holds for both the BHPM and the SSEP. The generalisation to
density-dependent D is straightforward.

We write the probability distribution (14) for the biased ensemble as

dP[x] ox exp(—S[x]) (42)
where the action S can be obtained from (28) or directly from MFT [21] as
obs Lr
+D V
/ / [ J 0 p) + sk(p)| dedt (43)

where the integrand depends on (x, t) through p = p(x,t). We consider the system close
to the transition and we derive a result analogous to Sec 3.2 of [25]. Our method is
slightly different from that work; note also that [25] considers specifically the case of
the SSEP, where k = 0 is a quadratic function of p. The following calculation can be
interpreted as the derivation of a Landau theory for a suitable order parameter: similar
calculations for systems with open boundaries are considered in [13, 62, 63].

We find the path that minimises the action S. The minimum has 7 = 0 and the asso-
ciated density p is independent of time, as one might expect since the biased ensemble
is time-reversal symmetric. Hence

L 2 2
Yobs ' DOL |VP|
S = / {— + Mi(p)| da 44
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where now p = p(z) and we used (26). This action functional can be minimised numer-
ically over the profile p, in this work we make an expansion [17, 25] that is valid close
to the critical point and allows an analytic treatment. In this regime one can capture
the behaviour of the inhomogeneous phase by considering a density profile

p(x) =p+ Acosqx + Bcos2qix (45)

where A, B are variational parameters. As noted above, the instability of the system
originates in the smallest wavevector ¢; but it is necessary [25] to consider also the
second-smallest wavector 2¢; to obtain accurate results for the inhomogeneous phase,
even at leading order. We take A > 0 without loss of generality; the system has trans-
lational symmetry so one may equivalently replace x — x + ¢ to obtain an equivalent
profile, shifted in space.

Close to the transition, we anticipate that A is small, and B = O(4?) is even smaller
[25]. Inserting (45) in (44) we expand up to terms of order A* A%2B, B%2. We introduce
the short-hand oy = o(p) and similarly for derivatives such as o, = ¢'(p), and also for
k. The result is

"

L
o 720bs )\/@0+%(A—AC)A2+%BQ+M3AQB+%A4 (46)

with ), = 200D oongistent with (39) and (27) [recall " < 0 and ¢, L = 2] and

—2K( 00

pa = —#ig(4Ae — A)/2Do(1 L)* /(200)
113 = 3kl ol /(800) + Ak(Y /8

fa = —Akf[2(0/00)* — (04 /00)]/16 + Awi? /32 (47)

where /i[()n) is the nth derivative of x(p), evaluated at p = p. The action is straightfor-

wardly minimised over B, followed by minimisation over A. We assume (as usual) that
kg < 0 and that (A — \.) < A is small so that py > 0; we also require that py > pu3/ s,
which is true for the BHPM (see below). Then for A < A\, the action is minimised at
A = B=0 and the system is homogeneous; while for A > A\, the minimum occurs for

—kg(A — Ae)
Apa — p3/p2)

This predicts the degree of inhomogeneity for A > A.. One sees that A = O(A — \.)/? as
one should expect, since A is the order parameter for a ¢*-like theory and we are mak-
ing a mean-field analysis of the critical point, similar to [13, 62, 63]. Recall, we assumed
in this derivation that D is a constant, independent of p°.

These results closely resemble those of [13, 29, 62, 63] which apply in systems with
open boundaries (not periodic). Those works concentrated on transitions where a 7
particle-hole symmetry is spontaneously broken. Here we do not assume particle-hole
symmetry, instead the (periodic) system spontaneously breaks translational symmetry,
which corresponds to a U(1) symmetry (see below).

A = (48)

6 To make contact with the analogous calculation for the SSEP in [25, section 3.2] we take
k=2p(1—p), 0 =p(l—p), D=1, noting that the definition of ¢ in that work differs from ours by a fac-
tor of 2. Hence A, = 7%/[2p(1 — p)]. After some algebra one finds py — (43/p2) = Ae/[8p*(1 — p)?] and hence
A% =8p% (1 — p)2 (A — Ao)/Ac + O(X — A.)% consistent with that work.
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The average activity may then be estimated from (30) by plugging in the most likely
density profile, which yields (for A > A.):

1
(K)y & Lytops | Ko + ngfﬁ +ON=X)*+O(L™H]. (49)

The two corrections appear because the computation of A, B is only valid when A\ — A\,
is small, and the restriction to the most likely profile neglects fluctuations which enter
as corrections at O(1/L).

5.2. Application to the BHPM

5.2.1. Connection to MFT. 'The results of section 5.1 are general within MFT, in the
sense that we did not specify the functional dependence of o,k on p (we did assume
k" < 0 but the case k” > 0 is a simple generalisation). We now consider the specific case
of the BHPM, in the rescaled representation of section 2.3. For the Langevin variant
of the model in the limit of a hard-core potential, this means that the statistics of the
density field are identical to an ideal gas. (Particles are indistinguishable so collisions
between hard particles are equivalent to events where the particles pass through each
other.) In this case

D(p) = Do,  a(p) = pDy. (50)

As discussed in section 2, the MC variant of the model is equivalent to the Langevin
one in the limit of small steps M — 0. Since M is non-zero for our numerical work, we
expect corrections to (50), but we neglect these in the following. (We expect them to
affect the quantitative predictions of the theory, but they are unimportant at the level
of accuracy that we consider.) The expression for & is given in (31) which is indepen-
dent of M; this yields " (p) = —ae™""

An interesting feature of the BHPM is that while the functions D and o have ideal-
gas behaviour, the nonlinear behaviour of x is still sufficient to drive the transition to
an inhomogeneous state. However, we emphasise that none of our theoretical analysis
relies on the fact that o is linear. (Recall from above that the finite step size M in our
numerical work should result in corrections to o, but this is not expected to affect the
qualitative behaviour.)

The MFT analysis requires that A is held constant as L, — oco. Noting from (7) that
pa = @, and using (39) one sees that the homogeneous state is stable if
2% 5

T, e . (51)

A< A =

Hence, the calculation of section 5.1.1 is valid in the range 0 < A < A, for which the
control potential is attractive (so density fluctuations are enhanced). It is also valid
for negative A, where the control potential is repulsive and density fluctuations are
suppressed.

For the inhomogeneous phase 0 < (A — \.) < L? the results of section 5.1.2 are rel-
evant. A suitable (complex-valued) order parameter for the phase transition is

M = p L7V (52)
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Recalling (34) and (45), we identify | M|? with (42/4) in section 5.1.2. The normalisation
of (34) means that typical values of p, are O(1) in the homogeneous phase, so M — 0 as
L, — oo. For the inhomogeneous phase then M is of order unity—it is a complex num-
ber and its phase indicates the location of high and low-density regions in the system.
The system is invariant under translation so there is a U(1) symmetry for the phase of
M, which is spontaneously broken when the system becomes inhomogeneous.

5.2.2. Numerical results. To characterise the dependence of the mean activity on the
bias A we define

K(X) = k(ADy/L?) , (53)

where the function k(s) was introduced in (17). We use TPS calculations to sample
ensembles P, and P) as defined in section 3.3. These computations are performed at
fixed (finite) values of N, t,,s. Numerical errors are discussed in section 5.3, below. The
methodology provides accurate results for the given values of IV, t.,s; we compare these
with the predictions of MF'T that are valid in the hydrodynamic limit /V, yops — 00.

Numerical results for the BHPM are shown in figure 4. In this case, results for
A < 250 were obtained using TPS without any control forces, effects of control forces in
this regime are discussed in section 5.3. For A > 250 we used the control force defined
in (80) below, see section 6 for a discussion.

The results of figure 4 are consistent with the asymptotic predictions of MFT. The
state point is ¢, = 0.233 so equation (51) predicts A\, ~ 107, consistent with the data.
On general grounds one would expect A. to be of order unity; its large numerical value
in this case arises partly from the factor of 272 in (51) and partly from the fact that
K"(p) in (31) is numerically small, for these parameters.

Considering the results in more detail, figure 4(a) shows that for fixed 7os, the func-
tion () shows a scaling collapse as N is varied, consistent with the expected diffusive
scaling. (This scaling was less clear in [31]. We suspect that this difference arises
because the values of ., used in [31] were not scaled with system size.)

Figure 4(b) shows data for a single system size, and increasing t,,s. Taking t,,s — 00
at fixed N, one expects convergence of K to a limiting function: that is I(\) — Ky 0 (1)),
where the subscripts indicate that N is finite but f,,s — co. The system is finite so
l@N,oo()\) is smooth (analytic) [45]. The data in figure 4(b) are consistent with this
theoretical prediction, as t.,s — 0o. In principle, convergence of this limit is expected
for vops > 1; in practice, it is notable that convergence appears to be already achieved
for vobs = 0.7. We expect that this small numerical value occurs for similar reasons to
the large numerical value of )., particularly the fact that the largest diffusional time
scale is 7, = 1/(Dyq?) = L? /(472 Dy) so that Doty /L? = 1/(47?) is numerically small.

MFT makes predictions about the behaviour of K at large N. In particular, taking
N — oo leads to I€N,oo<)\) — ]aoo,oo()\); where the function I@oo,oo(A) is predicted to be
singular at A\ = A.. For A < A, equation (38) predicts that ICOO,OO is independent of A;
the same equation also predicts the first correction to the large- N limit, as in [32]. For
A > )., a simple MFT prediction for K can be read from (49), see also [25]. The valid-
ity of this result is restricted to small (A — \.), because of the simple ansatz (45). When
comparing with numerics, we obtain a similar prediction by substituting (45) into (30)
and using (48) to fix A. The integral in (30) is performed numerically and yields a
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Figure 4. (a) Scaling plot of activity C(\) showing data collapse when plotted as a
function of the rescaled bias A. The dimensionless (rescaled) density is ¢, ~ 0.233
and Yops =~ 0.070 (which corresponds to t.,s = 1078 for N =28). The scaling
function IC(\) depends weakly on A for A < 200, after which it decreases steeply
(see discussion in the main text). (b) Dependence of the activity on #,,, for N = 28.
As this parameter increases, the decrease in IC(\) occurs at an increasingly small
value of A, which saturates (for large t,1,s) at A &= A = 90. For ¢, = 100 (in units of
Tg), the data are consistent with convergence to a limiting form; this corresponds
t0 Yobs = 0.7. (¢) Comparison between the numerical results for the activity and the
predictions of MFT. The prediction (38) applies for A < A.; it includes a finite-size
correction term that diverges at .. For A > A\, we show a prediction based on (48),
see the main text for a discussion.

prediction for 1600700. This is the prediction based on (48) that is shown in figure 4(c); it
matches (49) when (A — \.) is small.

Figure 4(c) compares a numerical estimate of Ky o (\) with these MFT predic-
tions. The finite-size correction term in (38) is negative and diverges at \., where the
homogeneous theory is breaking down. One sees that (38) gives the correct qualita-
tive behaviour for small A, but a quantitative agreement with numerical data would
require consideration of higher-order corrections, see also [58]. The theory behind (48)
is valid as N — oo and does not include any finite-size corrections; it captures the steep
decrease in IC(A) but is not quantitative. Following [13, 62, 63], one expects a critical
region (A — \.) = O(N~2/3) where neither of (38) and (48) is applicable; this is consis-
tent with the data but a more detailed finite-size scaling analysis would be required to
confirm it.

Figure 5(a) shows the behaviour of the order parameter (|M|?),, which increases
sharply at the transition, and takes a value of order unity in the inhomogeneous phase,
consistent with the theory. Figure 5(b) shows a smoothed representation of the density
for the trajectory in figure 3(c), defined as

psmooth(l‘) = Z_l Z /(: exXp (—[l’ - ‘%J(t)]Q/Q) dt (54)

where the normalisation constant z is chosen such that f Psmooth (€)dx = 1. This shows
that the density is macroscopically inhomogeneous, but we emphasise that the density
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Figure 5. (a) The modulus of the complex order parameter |M|?, which is related
to the first Fourier component of the density. This increases from zero as the system
becomes macroscopically inhomogeneous. We take &, = 0.233 and vops = 0.070 as
in figure 4. (b) Smoothed density associated with the representative trajectory
from figure 3(c), which has N =160 and s= 0.18. The system is macroscopically
inhomogeneous but one interparticle gap does not yet dominate it.

is positive everywhere, which means that there is no macroscopic gap (see section 6).
We note that this system is quite far from the critical point, so the analysis of sec-
tion 5.1.2 is not sufficient to predict the density profile, consistent with the fact that
it does not show a sinusoidal dependence on z. Instead, the behaviour (in this rescaled
representation) is that the density shows a rather narrow peak. This might be analysed
by minimisation of the action in (44) but we postpone such a calculation to future work.

Appendix D shows similar results to those presented here, using the definition of
the dynamical activity that was used in [30, 31]. The qualitative behaviour is the same.

5.2.8. Negative s and hyperuniformity. Within MFT, biasing this system towards
higher activity leads to hyperuniformity, as discussed in [30]. This means that density
fluctuations on large length scales are strongly suppressed [64]. To measure this, define
the structure factor

S(a) = {Papq) - (55)

Consider the limit L — oo so that ¢ can take arbitrarily small values, and write
Seo(q) = limy o S(g). A hyperuniform state is one where lim, ,5 Sw(¢) = 0 [64]. Such
states are not expected in finite-temperature equilibrium systems with short-ranged
interactions (they require that the system should have a vanishing compressibility),
but there are many interesting examples that occur in systems away from equilibrium
[65—69]. Within the MFT analysis of section 5.1.1, hyperuniformity arises because the
optimal control potential for A < 0 includes long-ranged repulsive forces, as may be
deduced from (41). Hyperuniformity is a well-known property of systems with such
long-ranged forces [70, 71], where it is sometimes referred to as super-homogeneity [68].
Within the framework of section 5.1.1 and using (B.9), one sees that
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o(p)g
= VDR + 250 ()K" (D)

see also [30, 59]. This indicates that the system is hyperuniform for s < 0. Figure 6(a)
compares this prediction with the results from simulations, the suppression of S(q)
at small ¢ is clearly apparent. The agreement is good—we attribute the differences
between theory and simulation to the fact that MFT requires NV, Y,bs — 00 but these
quantities are both finite in the numerical results. Figure 6(b) shows the pair correla-
tion function

(56)
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which is proportional to the probability that two particles have separation z (in the res-
caled representation of section 2.3). For the unbiased case (s = 0) then g(x) = 1 for all z.
On biasing to high activity s > 0 one sees a reduction in g(z) for small z, since particles
feel an effective repulsion, which enhances the activity via (8). Similarly, for a bias to
low activity then g(z)is enhanced for small z, consistent with an effective attraction.

5.3. Improved TPS by adding control forces

5.8.1. Convergence of TPS and error analysis. As discussed in section 3.3, we expect
the addition of control forces to improve the efficiency of TPS sampling. Since TPS is
an MC method (which in mathematics would be called a Markov chain Monte Carlo
(MCMC) method), analysis of convergence and numerical errors is straightforward [72].
To characterise the efficiency of the method, it is useful to compute how many TPS
moves are required for trajectories to decorrelate from each other. Let K, be the value
of the activity for the nth trajectory generated by TPS. We define a block-averaged
activity

Kym=—> K. (58)
As m — oo, this block average converges to (K[x])s. Its variance behaves as
2
Var (K n) = 725 4 O(1/m)’ (59)

where g3pg is the asymptotic variance [72]. Smaller values of o4pg correspond to more
efficient TPS sampling: in particular 02pg/Var(K) can be used as a rough estimate of
the number of TPS moves required to generate an independent sample.
For small m ther} all trajectories in the block are similar and one expects Var (an)
to be close to Var(K), independent of m. In our numerical analysis, we often plot
TPS

X = mVar (Enm) (60)
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Figure 6. (a) The structure factor for negative s, compared with the theoretical
prediction (56). We take Yobs = 0.070 and &, = 0.233 as in figure 4(a), and s = —7.2
(measured in units where 75 = 1). This S(q) is suppressed at low ¢, consistent
with hyperuniformity.(b) The corresponding pair correlation functions for the case
N =28 and different values of s, as indicated. For positive s the particles tend to
cluster and g(x) is enhanced at contact; for negative s the particles feel effective
repulsion and ¢(x) is suppressed.

as a function of m, for which the expected behaviour is of the qualitative form

XTPS ~ mVar(K)J%PS _
" mVar(K) + 02pg

(61)
This quantity approaches c4pg as m — 00, as it should.

A suitable error bar for a numerical estimate of K is then AK = orpg /N%{DQS where
Nrps is the total number of TPS moves over which the data is averaged. This error
estimate accounts for the correlations between TPS moves. All error bars for TPS mea-
surements in this work are computed in this way, estimating orpg by (59).

5.8.2. Numerical results for accelerated convergence. As explained above, the results
for A < 250 in figure 4 were obtained using TPS without any control forces. We now
show how the control forces that can be derived from MFT can lead to a more efficient
estimate of the same result, in the homogeneous regime A < A\.. We have computed the
asymptotic variance for the BHPM in the regime where the system is homogeneous. As
a simple control potential we take the first term in (40), so the control potential only
depends on the first Fourier component of the density:

V' = 04, Py P (62)

where ¢; = 27/ L, is the smallest allowed wavevector. This choice for the control poten-
tial has no free parameters. For these homogeneous states, it successfully captures the
essential physical effect of the long-ranged control potential.

We emphasise once again that the TPS method is valid as a method for sampling
from Py, independent of whether control forces are used [9, 24]. The question that we
address here is the rate of convergence, as characterised by the asymptotic variance.
Figure 7 shows the improvement in TPS sampling obtained using the control poten-
tial (62), which is significant for positive A. All these results are in the homogeneous
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Figure 7. Improvement in TPS asymptotic variance by using guiding forces, in the
MEFT regime. We take N = 28, &, = 0.23, and t.,; = 10073 (see also figure 4(b)). In
this figure, the mean shift size used in the TPS was At = 575: in this parameter
regime, this leads to near-optimal performance for TPS, both with and without
guiding forces. (For other parameter regimes, smaller shifts are necessary. Hence
our use of smaller shifts in other figures.) For these parameters, the system becomes
inhomogeneous for A 2 A. &~ 90—these data are all within the homogeneous regime
and the guiding force relies on this.

regime A\ < )., where the simple control potential (62) is applicable. They provide clear
evidence of a significant speedup, and demonstrate proof-of-principle for the method.
However, the small values of s in this regime means that this is a regime where numer-
ical sampling is relatively easy, and the speedup by the control forces is relatively mod-
est. Alternative methods for analysing convergence of TPS are discussed in appendix C.

We note again that the results of figure 7 are restricted to A < A.. For the inho-
mogeneous regime (A > ).) the next section considers control forces that apply for
s = O(1/N), which corresponds to A = O(NN). We have not attempted to derive control
forces for A = O(1) > A., this would be an interesting question within MFT.

6. The regime with a single macroscopic gap

The results of section 5 are based on MFT which is valid for N — oo at fixed A, as dis-
cussed above. We note that minimisation of the MFT action S in (44) always predicts
that the density p is finite everywhere, which means in turn that the gaps between
particles almost surely have sizes of order unity in units of !, as L, — oc.

In contrast to this, figure 3(c) shows a trajectory in which a single gap takes up a
finite fraction of the system. This section focusses on that regime. As before, we work
in the rescaled representation of section 2.3. At time ¢, suppose that the largest gap in
the system has size Y(t). We define Y (t) = Y(t)/ L., which is the fraction of the system
occupied by this gap. If Y(¢) is order unity then the gap is macroscopic, in the sense
that Y(t) = O(L,).
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To investigate this regime, define a new rescaled biasing parameter

sL,
h = Dy (63)

This rescaled bias h is analogous to A of section 5. We consider the behaviour on taking
L, — oo at fixed h = O(1).

6.1. Numerical results

Figure 8(a) shows that for small h, the gap size Y remains close to zero (in particular,
for small fixed h, the average (Y'), decreases with L,). However, for larger h(2 2) there
is a sharp increase in (Y),, which we interpret as opening of a single macroscopic gap.
(Recall again figure 3(c).)

To understand the behaviour for small s, we use extreme value theory to estimate
the expected size of the largest gap. The distribution of interparticle gaps is exponential
with mean L,/N = p~!. Hence for large N the largest gap Y has a Gumbel distribution
with mean (log N 4+ vg)/p where vg ~ 0.577 is the Euler—-Mascheroni constant [73].
Hence (Y)o = (log N 4+ ~g)/N which for N =90 is ~ 0.06, consistent with figure 8.

Figure 8(b) shows the behaviour of the activity. As h increases from zero, there is
an initial sharp decrease in activity which corresponds to the MFT transition to an
inhomogeneous state. As L, — oo, this transition would move towards h = 0, because
the critical point A = A. discussed in section 5 corresponds to h = O(1/L,). However,
the systems considered here are only moderately large, and the numerical value of A. is
also quite large—the result is that the MFT transition happens at h =~ 1 for the system
sizes considered here. In contrast, the largest gap opens at h = 2.5, where an additional
feature in k(s) is also observed (in the larger systems). We now present a theoretical
analysis of this regime, and with compares the resulting theory with these numerical
results.

6.2. Theory—interfacial model

We define a simple model that captures the qualitative behaviour of the system in the
regime with a single large gap, building on recent work on kinetically constrained mod-
els [34-36]. We separate the system into a dense region and a large gap, and we focus
on the behaviour at the edge of the gap, which is the interface between the two regions.
Hence we refer to this as an interfacial model.

6.2.1. Derivation of interfacial model. To motivate the model, assume that
configurations containing a large gap have all the particles are distributed in some
(dense) region of size L,[1 — Y (t)], and that they are distributed at random throughout
this region. The mean distance between particles within the dense region is
/ 1-Y 6
Y — ———
7 (64)
with p = N/L, as above. We model the dynamics of Y by a Langevin equation where
both the bias and the diffusion constant depend on Y:

https://doi.org/10.1088/1742-5468 /ab4801 25


https://doi.org/10.1088/1742-5468/ab4801

Large deviations and optimal control forces for hard particles in one dimension

(a) (b)
0.7 0.751 % "ok, N =54
¥ ¢ N=T2
% 0.70 ¢ I N=w
'H' E ¥ N=108

R g

01 b i x:éé 0.40 I I T
o boN =108 f 1
035
"o 05 10 15 20 25 30 35 40 0 1 2 3 1
h h

Figure 8. (a) Largest gap size (Y)s in biased ensembles. The reduced packing
fraction is ®, = 0.6. (b) The activity per particle in the biased ensemble for the
same systems. Around h = 2.5 there is a change in the size of the largest gap and
the derivative of k(s).

_uy), [20,00)
L, L?

(65)

Here 7 is a standard Brownian noise. To fix the functions b and D, we use the MC vari-
ant of the BHPM to estimate the first and second moments of the change in the gap
size Y, in a single MC move.

The gap size changes only when one of the particles on the edge of the gap has an
accepted move. Proposed MC moves that reduce Y involve particles moving into the
largest gap: these are accepted with probability (1/2), by (2). Proposed MC moves that
increase Y involve particles moving towards the dense region of the system: some of
these moves will be rejected due to collisions between particles. Since we assumed that
particles are distributed at random in the dense region, the distance between neigh-
bouring particles in this region is exponentially distributed with mean ¢y. Hence, for
MC moves that act to increase Y, the fraction that is accepted is

1 / " oo/t g — Y (1 —e M) (66)
24 J, 2M

where the factor of 2 again comes from (2). Hence, for MC moves in which the proposed
particle is on the edge of the macroscopic gap, the mean change in the gap size is

M
Ar = 4M/ xdx+— i e dy (67)

where we consider separately the situations where the gap size decreases (first term)
or increases (second term). The integrals can be computed exactly but we focus on the
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limit where M /¢y is small (small MC moves). This limit is sufficient to explain the main
features of the model. It yields

— M? 3
Ax = — O(M?) .
T = g +O0MY) (@9
Similarly the mean square displacement is
M?
(Ax)? = < O(M?) . (69)

The relevant MC moves happen with rate w, = 2/7 where the factor of 2 arises
because particles on either side of the macroscopic gap can both affect its size, and
10 = M?/(12Dy) is the time increment associated with one attempted MC move per
particle (see also section 2.1).

Using that the macroscopic gap is of size Y = Y L, and taking L, — oo one arrives at
the Langevin equation (65) with b(Y) = Azw, and D(Y) = (Ax)?w,/2. Hence (assum-
ing as above that M/ly < 1):

2pD,

1-Y’
Since we assume that the particles are distributed at random in the dense region, the
activity of a trajectory is (by analogy with (30))

b(Y) = Dy(Y') = 2Dy . (70)

Kix =L, [ v () (71)

with ky(Y) = (1 =Y)k(p/(1 =Y)). (To derive this, recall that x(p) is the activity per
unit length for a system with density p. Here, the dense region of the system has size
L,(1 —Y) and density p/(1 —Y).) Hence from (31)

1-Y

oy (V) = (1= e7®/t=) (72)
a
The Fokker—Planckequation corresponding to (65) is
oP 1 0 1 0?
rTi _EG_Y(MD) + EW(D@/P) (73)

where P = P(Y) is the probability density for Y.

In kinetically constrained models [34-36], a similar interfacial model was derived,
which gives semi-quantitative predictions for the system behaviour if b and D, are
taken as constants. The system considered here is different in that b(Y') has a diverging
negative value as Y — 1—this reflects the fact that as the largest gap approaches the
size of the system, all the particles end up confined in a very small region.

6.2.2. Biased ensembles for the interfacial problem. We now analyse the effects of
biasing to low dynamical activity in the interfacial model. The dynamical free energy
¥(s) of the interfacial model is obtained by finding the largest ¢ that solves the follow-
ing eigenproblem
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1 0 2Dy O*P

Q/J,P = ———<b73) -+ FW — SLr/iy,P . (74)

L, oY
The diffusive term is suppressed by a factor of 1/L, so we identify this as a small-
noise problem that may be solved by saddle point methods. It is convenient to trans-
form to a self-adjoint (Hermitian) form by U(Y) = f;; b(Y')L,./(2Dy)dY’ and defining
Q(Y) = P(Y)e ™). (The reference point Y, can be chosen arbitrarily, so U is fixed
only up to an additive constant.) The eigenproblem (74) becomes

2Dy 2Q 1 b

=" =_ 5D -
(C[% Iz 9y? 0VQ — 5 I 8YQ (75)
with a dimensionless potential
h 1 9
V(YY) = gﬁy(y) + mb(y) : (76)

The final step of the derivation used (63).

For large L., this eigenproblem can be solved by saddle-point methods. The last
term in (75) is negligible when L, is large. Also, the dominant eigenfunction Q is
sharply-peaked at the minimum of V, which we denote by

Y* = argmin V(Y) . (77)
Also ¥ = —V(Y*)p*D,. Using (70) and (72) we obtain
L 1-Y L 6./(1-Y) 1
VY)=~h . (1—e )+—2(1—Y)2' (78)

Minimising this potential we find that Y* =0 for small A, but there is a threshold h,
above which Y* becomes non-zero. At the threshold, Y* increases continuously which
means that V'(0) = 0 for h = h.. The existence of a threshold is consistent with figure 8,
the accuracy of the detailed predictions will be discussed below. Before that, we derive
the effective potential that describes the state with Y* > 0.

6.2.3. Optimal control potential. We present two possible methods for estimating the
optimal control potential introduced in section 3.3. The first is based on a physical
argument: observe that the dense region of the system contains particles that are dis-
tributed as an ideal gas, so their pressure is

_r
-V @)

P, mech —

Maintaining a gap of size Y* requires a control force that balances the pressure. Since
the eigenvector Q is sharply-peaked at Y*, the fluctuations of Y are small in the biased
ensemble, so the behaviour is relatively insensitive to the form of the control poten-
tial, as long as it produces the correct force in the typical states (which have Y= Y¥).
Hence, a control potential that reproduces the correct statistics for Y is

V(Y)=—-LYc (80)
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where ¢ > 0 is a constant with units of inverse length—its interpretation is that there
is a constant force ¢/ that acts to increase the gap size. To determine ¢ we equate the
force to the pressure required to stabilise a gap of size Y*:
P
1Y
In order to use (80) with (21), the potential V' must be expressed as a function of the
particle positions: this is straightforward because Y is the size of the largest interpar-
ticle gap, which is a simple function of the the particle positions.

The second method for deriving a suitable control potential is the standard math-
ematical approach: consider the adjoint (Hermitian conjugate) of the eigenproblem (74)
which is

c (81)

b OF D,0*F

STy T ove

— sLiky F. (82)
Since the noise is weak, the expected solution is of the form F(Y) = e L9() and
the optimal control potential may be identified from (A.4) as V(YY) = 2L.g(Y).
Inserting the expected form for F, retaining terms at leading order in L, and using
Y = =V(Y*)p*’D, from above, one recovers V. (Y*) = —pL,/(1 —Y*). This is consis-

opt

tent with (80) and (81) which together imply Vot (Y) = —pL,Y/(1 —Y™*) for Y = Y~

6.2.4. Comparison with numerical results. For the parameters shown in figure 8, equa-
tion (78) predicts h. = ®,/(1 — e % — d,e7%2) ~ 4.9. This overestimates the value of
the bias at which a macroscopic gap appears. The reason is clear if one considers the
behaviour close to the threshold. In the interfacial model, the state with Y* =0 has
the particles distributed homogeneously but the MFT analysis of section 5 has already
established that the system is not homogeneous for these values of the bias.

If the state with Y* =0 is already inhomogeneous, one sees that the probability of
opening up a macroscopic gap will be enhanced, because the gap will likely appear at a
location where the density is already low. Our conclusion is that the interfacial model
predicts the existence of a threshold h. at which a macroscopic gap appears, which is
consistent with the numerical data. However, the assumption within the model that
the dense region of the system is homogeneous is not accurate enough for the model
to deliver quantitative predictions. In the following subsection, we show that despite
these shortcomings, the optimal control potential predicted by the interfacial model
is sufficiently accurate to significantly improve numerical sampling. In this sense, the
interfacial model does capture the essential physical features of the regime with a mac-
roscopic gap.

6.3. Improvement in sampling by control forces

We have performed TPS sampling using the control potential (80). The relation (81)
is confirmed by our numerical results, in that a control potential with this value of
c leads to a typical largest gap of size Y*. Figure 9 shows the improvement in TPS
sampling that is obtained with this control potential, which is more than an order of
magnitude, even for small systems. The parameter c in (80) is varied, in order to obtain
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Figure 9. (a) Asymptotic variance of the TPS method, as a function of the
parameter ¢ used in the definition of the control force. We take t,,, = 1073 and
tobs = .67 for N =28 and N = 21 respectively and in both &, = 0.233, same as in
figure 4. The control forces lead to a clear reduction in the variance, across a range
of ¢. We show results for two system sizes, at representative values of h (always
within the macroscopic-gap regime). (b) For N =21 we show the scaled variance

XIPS as a function of the block size m. The behaviour is consistent with (61).

the maximal speedup. For larger systems, the improvement increases rapidly—we are
not able to quantify the speedup because (for example) the results shown in figure 8
would require a prohibitively large computational effort, if control forces were not used.
The reason is that the macroscopic gaps that appear in those systems are extremely
rare under the natural dynamics, so that TPS moves tend to be rejected if one uses a
system without a control potential. We also note from figure 9 that significant speedup
is possible for control forces that are not optimal, as emphasised in [40].

This improvement that is available from control forces also enables us to investi-
gate what value of ¢ is most effective for improved sampling. As noted in section 3.3,
if one uses the optimal guiding force, the distributions P, and P.,q of (19) and (20)
coincide with each other, for all observable quantities. Recall that P, is independent
of the guiding force but F,,q is evaluated in a system with control forces, which does
depend on the choice of these forces. It was suggested in [36, 40] that a suitable method
for choosing approximate (non-optimal) control forces is to adjust their parameters to
make the distributions P,. and Pe,q as similar as possible.

This hypothesis is tested in figure 10. We first consider the distribution of Y, the
largest interparticle gap. In this case one sees that the control force that gives the best
overlap of P, and P.,q is ¢ =5, which is larger than the force which gives the most
efficient sampling (this is ¢ = 3, from figure 9). We also consider the distribution of Y5,
which is the second largest interparticle gap, measured relative to the system size L,.
For this quantity, the distributions overlap best at ¢ = 3, where the sampling is most
efficient. The conclusion of this analysis is that maximising the overlap of P and Peng
for any single observable does not guarantee that the distributions for other observ-
ables should overlap. This cautions against placing too much faith in the overlap of any
single distribution, as an indicator of where sampling is most efficient.

As an alternative method for estimating which control force is optimal, one may

consider the statistics of the action, as suggested in [10]. Let (B)sv = [ B [x]dPY [x] be
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Figure 10. Distributions P, and Pend for two observable quantities. Parameters
are the same as figure 9(b). (a) Distributions of the size Y of the largest interparticle
gap, for different strengths c of the control force in (80). Vertical arrows indicate
the means of the various distributions. (b) Corresponding distributions for the size

of the second-largest interparticle gap, Y5.

the average of the observable B with respect to the distribution ]58‘/ of (22). If V' is the

optimal control then

1
: . sym —_
e A =900 )
The suggestion of [10] is that optimising V' to achieve equality in (83) can be used to
obtain good sampling. Note that there are many control forces that can achieve equal-
ity in (83). This situation is to be contrasted with the general inequality [38, 42]

P(s) = lim L (—sK + Ay, (84)

tobs =00 lghg
where the average is with respect to the controlled dynamics, without any biasing:
(B)y = [ B[x]dPV[x]. In (84), equality can only be achieved if V' is the optimal control
potential, this can be checked by noting that 1(s) = lim;, o t; log(e*5KT4%™), and
using Jensen’s inequality. On this basis one might expect that maximising the right
hand side of (84) would give the best sampling.

Results for the averages in (83) and (84) are shown in figure 11. Contrary to the
situation in [10], there is no value of ¢ for which equality is achieved in (83). However,
we note that the most efficient sampling takes place for ¢ = 3, which is the value where
the average on the right hand side of (83) is closest to v(s), consistent with the proposal
[10] that equality in (83) is a desirable feature. One also sees that the right hand side
of (84) is decreasing in ¥ for all ¢ > 1. Thus, ¢ =1 gives the best bound on ¥ but it
does not achieve the best sampling, contrary to the intuitive expectation stated above.

Based on figures 9-11, our conclusion in this section is that no single prescription
seems satisfactory for determining the best choice of control force V' in practical situa-
tions such as this one, and some trial-and-error is still necessary in this process.
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Figure 11. (a) The average of the action i(—s[( + A%™) v that appears in (83),
for different biasing forces. All parameters are the same as in figure 9, for which
we estimate (s = 1.9) & —32. (b) The (unbiased) average of the action in the
controlled system that appears in (84).

7. Conclusions

We have given a detailed analysis of the behaviour that was summarised in figure 3,
including discussion of hyperuniform states that appear when states are biased to high
activity, and inhomogeneous states with low activity. We have discussed the existence
of two inhomogeneous regimes, with s = O(N~2) (MFT regime) and s = O(N~!) (macro-
scopic interparticle gap).

We have shown that control forces can be used to improve numerical sampling of
these ensembles [36, 40, 41, 44]. In the MF'T regime where the system is homogeneous,
these optimal control forces are long-ranged. On biasing to low activity, these forces are
attractive and drive the formation of inhomogeneous states. Using these guiding forces
(in the homogeneous state) leads to an improvement in sampling efficiency. However,
for these small values of s, the effect of the bias is weak, so sampling is already possible
without these forces.

In the regime with a macroscopic interparticle gap, we have argued that a form of
interfacial model can capture some features of the system, similar to [36]. Using this
model to infer a suitable control force leads to an improvement in sampling efficiency that
is more than a factor of 10 in small systems. For large systems, the computations that we
present would be prohibitively expensive without these control forces. We have discussed
how the parameters of the control force might be optimised. In particular, we find that
the simple criterion of [36, 40], to match the distributions P,y and Pe,q is not optimal for
the cases considered here: since the control force is very simple we have instead optim-
ised its free parameter by hand. Further work would be valuable, to understand how to
infer control forces that improve sampling efficiency. Some generic aspects of optimally-
controlled models are discussed in [46], where they are referred to as auxiliary models.

Comparing the TPS method with cloning methods [36, 40, 41, 52-54], we note
that while TPS gives results for finite t,s, cloning provides direct access to the limit
tons — 00, which is the limit where large-deviation theory applies. On the other hand,
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the detailed-balance property of TPS [51] means that it samples directly from Py or
]58‘/ as defined in (14) and (22). By contrast, cloning methods do not sample directly
from a target distribution; they do allow estimation of averages with respect to these
distributions but the associated statistical estimators have systematic errors (bias)
which only disappear as the population size tends to infinity [33, 74]. Estimation of
statistical uncertainties is also simpler for TPS, see section 5.3. There are also other
methods for sampling large deviations, some of which require accurate representations
of an optimally-controlled dynamics in order to achieve accurate results [42, 47, 75],
see also [44]. Such methods are attractively simple, but accurate representations of
optimally-controlled dynamics may be challenging in complex systems. We emphasise
once more that the role of control forces in TPS and cloning is to improve convergence,
but accurate results are still available without obtaining the optimal control force.

On physical grounds, it is notable that the rich physics of inhomogeneous and
hyperuniform states in the BHPM occurs for very small values of the bias parameter
s, which are at either O(N"2) or O(N!). The strong response of the system to these
biasing fields has its origin in hydrodynamic modes. Many theories of biased ensembles
assume the existence of a gap in the spectrum of the generator of the relevant sto-
chastic process. Here the gap size is vanishing as N — o0, because of slow (diffusive)
hydrodynamic modes. The MFT approach is to rescale (speed up) time so that one is
restricted to hydrodynamic time scales, but the gap for the generator is restored.

The fact that the behaviour originates on the hydrodynamic scale also explains why
MFT predictions are universal, in that they depend on diffusive scalings but not on micro-
scopic details of the model. The predictions for the behaviour for s = O(N 1) are not uni-
versal in the same sense, but the simplicity of the interfacial model indicates that they may
arise generically in systems with sharp interfaces between coexisting phases (see also [36])".

Acknowledgments

We thank Takahiro Nemoto and Vivien Lecomte for discussions about the use of control
forces to aid numerical sampling. The figures in this article were made using Matplotlib
[76]. JD was supported by a studentship from the EPSRC, reference EP/N509620/1.

Appendix A. Biased path ensembles

This appendix includes a derivation of (23) and its analogue for MC dynamics.

A.1l. Langevin dynamics

As in the main text, let dPV [x] be the probability for trajectory x under the controlled
process (21), but with V, replaced by some general (possibly non-optimal) potential
V. Then standard path-integral arguments (see eg [40]) show that

dPV[x] o exp (—A[x]) dPy[x], (A1)
where the normalisation constant has been omitted for ease of writing and

" The data underlying this publication will be available shortly after publication at https://doi.org/10.17863/
CAM.44433.
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1 tobs
apd =1y /0 2i - ViV + ViV - Dy(ViV + 28ViU)dt (A.2)

Combining (14) with (A.1) yields
dPy[x] o< exp (Alx] — sK[x]) dPV[x], (A.3)

which means that the ensemble (14) which was obtained from Py by biasing K can also
be obtained (exactly) by a suitable biasing of P. Recalling that the product of 4 and
VV in (A.2) is to be interpreted in the Ito sense and using Ito’s formula for dV/d¢, we
obtain A[x] = 3[V (tons) — V/(0)] + AY™[x] where A™™ is given by (24). Using this with
(A.3) and (22) vields (23).

Finally, using (24) with the observation that A%™[x] — sK[x]is constant and equal
t0 Y(8)tons for V = Vgpt, one sees that

V(X) = —2logu(X) (A.4)
where u is the solution with largest eigenvalue ¢ of the eigenproblem

Z [DoViu— (BDoViU) - Viu — sriu] = du .

(A.5)

This is a tilted Fokker—Planckequation in its adjoint form, see for example [45].

A.2. MC dynamics

Analogous formulae hold for the (discrete-time) MC variant of the model. Let
p(Xk|Xk_1,7x) be the probability that the system is in state X}, at step k, given that it
was in state X 1 at step £k — 1, and that the particle proposed to be moved on step &
was i. Note that this p is a normalised probability for Xj and p(X|Xy,ix) is generi-
cally finite. Also let p¥ (X3 X;_1, i) be the analogous quantity for the controlled model.
Then the analogue of A™™ is

A V(X | X i) 1
y log — —|V(X —V(X)|.
E Xk+1|kazk) 5[V (Xk) = V(X)) (A.6)

For the logarithm to be finite, it is important that p(Xjy.1|Xk,ix) should not be zero
(except if p¥(Xypy1|Xk,ir) = 0 also). This is the reason to use the Glauber criterion
in (2) instead of the Metropolis condition (because using Metropolis may result in
p(X1]X,i) = 0 for some choices of X,i but p¥(X|X,i) # 0).

Note also that A} depends on Wthh moves were proposed, as well as the actual
sequence of states in the trajectory. If the control force V has a very simple form then
it is possible to write an equation similar to (A.6), in which the action depends only on
the actual sequence of states. This gives some improvement in numerical sampling but
is restricted to simple cases, for example where V' is a linear potential.

For the numerical results for the MC variant of the BHPM, we use control forces
that are introduced by replacing SAU in (2) by SAU + AV where AV is the change in
the control potential, for the proposed move. We note that the optimal auxiliary model
for such a system would require that we take instead
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_exp[—dt — s(r?(ty) +r(t-))6t/2 — AVyp /2]
Pace = I+ o (3AD) . (A7)

where r%(ty) are the values of r* just before and after the proposed move. For small
AV and small 6t, this is equivalent to replacing U — (U 4+ V) in (2) and it is also
equivalent to the Langevin case [43].

We emphasise that for any V', the TPS method targets the distribution }3;/ and
provides accurate results (as long as sufficiently many TPS moves are performed).
However, it is possible that we might have observed faster convergence if we had
used (A.7) instead of simply including the control potential in (2). To check this, we
tested an algorithm based on (A.7) for several representative cases; the differences in
performance were within the statistical uncertainty of our estimates of the asymptotic

variance.

Appendix B. Complex Ornstein—Uhlenbeck processes

We collect some results for biased ensembles constructed from Ornstein—Uhlenbeck
(OU) processes, see for example [45, section 6.2]. Suppose that z is a complex number
which evolves by the complex OU process

Z=—wz+n\/2y (B.1)

where w, v are real positive constants and 7 is a complex-valued white noise. That is,
1 = n, + in; withreal-valued noises ,, n; thatsatisfy (n, (t)n, (') = 36(t —t') = (mi(t)mn:(t'))
and (n;(t")n,(t)) = 0. Then also (n(t)n*(t')) = 6(t —t'). Writing z = x + iy one has inde-
pendent equations of motion for z and y. The corresponding Fokker—Planckequation for
the probability density P = P(x,y) is

P = 0,(waP) + 0, (wyP) + 2 (02 + 02) P B.2)

whose stationary distribution is Py oc exp(—w(z? + 3?)/7). Alternatively one may
use the calculus of complex variables and consider a probability density defined as
Q = Q(z,2") which obeys

Q = 0. (w2Q) + 0.- (wz* Q) + 270.0.-Q. (B.3)

The stationary solution is Qo o exp(—wz*z/7v) which is (of course) equivalent to P; as
given above. The following results can be derived by considering separately the real and
imaginary parts of z but we use the complex variable representation, which simplifies
the analysis.

For biased ensembles of the form (14) with K = « fot‘)bs 2*(t)z(t)dt, the dynamical
free energy can be obtained by solving the eigenproblem

VQ = 0,(w2Q) + 0.+ (w2 Q) + 270,0.-Q — saz"2Q). (B.4)

It is easily verified that the eigenfunction with maximal eigenvalue is
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*

Q) < exp {— 2; ( w? 4+ 2say + w)} (B.5)

which is valid for 2say > —w? (otherwise the eigenvalues are not bounded above and
the dynamical free energy does not exist). The corresponding eigenvalue is

Y(s) = w — Vw? + 2as7. (B.6)

To obtain the optimal control force one should solve the adjoint eigenproblem

UF = —wz0.F — wa 0. F + %azaz*f — saz*zF (B.7)

whose solution is F o exp [—% (x/uﬂ + 2sary — w)] Note that F o @Q/Qo which fol-

lows because the underlying equation is reversible (obeys detailed balance). The optimal
control potential is Vo = —2log F (up to an arbitrary additive constant) which yields

*

Vopt = ZVZ (\/w2 + 2sary — w) ) (B.8)

Away from transient regions, the distribution of z in the biased ensemble is
Pie(z,2%) o FQ so

*

2z
> Vw? + 25047) . (B.9)

For the discussion here, the case of primary interest is when sa < 0, in which case the
control potential Vs has negative curvature and guides the system towards increas-
ingly large values of z. As sa tends to —w?/(27) one sees that the variance of Py
diverges. If the original equation (B.1) was derived by linearisation at small z, then
this divergence indicates the breakdown of the linear approximation, within the biased
ensemble. This is the situation discussed in section 5.1.

Pove(z,2%) o< exp (—

Appendix C. Convergence of TPS

In order to measure the improvement in sampling that is achieved by guiding (con-
trol) forces, we discuss in the main text the asymptotic variance o2pg, see (59). This
quantity requires a large amount of TPS data to evaluate it, but does give a reliable
estimate of the effort required to obtain an independent sampling from a biased trajec-
tory ensemble. As an alternative, we also consider the autocorrelation function. In the
notation of (58) let
C(m) = (KiKitm) — (Ki) (Kitm) (C.1
where the average is over many realisations of the TPS algorithm. One sees that
TPS — Z:’;:l(f(zf(]) — (K;)(K;) is related to a sum of C(n) over the lag time n.
Figure C1 shows results for this correlation function. As in figure 9, one concludes
that the sampling is most effective for ¢ = 3, since the correlations decay most quickly
when the control force has this strength. Compared with the asymptotic variance opg,
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Figure C1. Autocorrelation C(mrypg) of the TPS sampling method for different
biasing forces. The state points are those of figure 9, for N = 21. The autocorrelation
function decays faster for ¢ = 3,5, indicating that sampling is more effective when
these control forces are included, consistent with figure 9.

results for the autocorrelation function are somewhat easier to obtain in practice. The
difficulty is that oipq =>""_ _ C(m) has contributions from weak correlations at
large m: accurate estimation of these (weak) correlations requires very long TPS runs.

Another approach is to consider what fraction of TPS moves are accepted, and how
this is affected by the guiding forces. In general, TPS acceptance rates are not reliable
as indicators of convergence. For example short shifting moves lead to slow decorrela-
tion of the trajectories, while longer trajectories may decorrelate the trajectory more
quickly, even if the acceptance probability is somewhat lower. Hence, if a control force
leads to acceptance of longer shifting moves then this can still improve sampling, even
at the cost of a lower overall acceptance rate.

Despite these limitations, there is useful information available by monitoring TPS
acceptance rates. For TPS with control forces in place, it follows from (23) that a pro-
posed trajectory is accepted with probability

min (1, AT —SAK> (C.2)

where AK is the change in activity between the original and proposed trajectory, and
similarly AA®™ is the change in A®™™. For TPS with the optimal control potential then

sym

e — SAK = 1)(s) for every trajectory so the acceptance probability is unity. That is
AAY™ — sAK =0. (C.3)

Joint probability density functions for accepted values of AAYY and sAK are
shown in figure C2. The relationship (C.3) is indicated. There are two effects at play
here. For control forces that are close to optimal, the distribution concentrates close to
(C.3). On the other hand, larger control forces tend to suppress the total acceptance,
because the forces are not optimal. The most efficient sampling occurs in an intermedi-
ate regime. In this case, we find that the the optimal regime is when the typical values
of SAK and AA™™ are of similar sizes.
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Figure C2. The probability density of —sAK and AAJY for accepted TPS moves,
with the control force (80) in place. (a) ¢ =1; (b) ¢= 3, which leads to the most
efficient sampling; (c) ¢ = 5. Other parameters are ®, = 0.233, N = 21, t,,s = 5.673,
and h =11 as in figure 9(b).
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Figure D1. (a) Activity per particle per unit time kg for diffusively rescaled
systems. (b) Modulus of the complex order parameter which is related to the first
Fourier component of density. Both figures come from systems with ~y,ns ~ 0.0128
and ¢, = 0.233.

Appendix D. An alternative measure of dynamical activity

Previous work has considered large deviations of the dynamical activity in this system
[30, 31], but using a different measure of activity, which is defined in terms of squared
particle displacements. One separates the time interval [0, t,ps] into S segments, each of
length At = tops/S. Then define

S N
1 _
Krnsd[x] — 2_D0 Z Z |.T2(t]) — xi(tj—l) — ij|27 (Dl)
j=1 i=1
where t; = jAt and Az; is the displacement of the centre of mass of all particles,
between times ¢;,_; and t;. The activity K of (11) depends on the characteristic length a,

while K sq depends on the parameter At. To obtain a corresponding length one may
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define an,sq = V2DoAt where Dy is the single-particle diffusion constant. For a direct
comparison between K and K4 it is natural to take a,s = a since this means that
both activity measures are sensitive to motion on the same length scales.

Analogous to (14) we define a biased ensemble with a bias parameter so, as

e*SQKmsd [x]
Z(s2)

Also define \y = s9L%/ Dy, analogous to (27), and kuysq = Kmsa/(Ntons). With these
definitions, figure D1 shows that the ensemble of (D.2) has the same qualitative fea-
tures as biasing by K. Specifically, figure D1(a) is analogous to figures 4(a) and D1(b)
is analogous to figure 5(a). The data collapses when plotting these results as a function
of Ay, consistent with the MF'T predictions.

dP,,[x] = dPy[x] . (D.2)
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