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Abstract. Faulty processing node analysis, in particular, self-diagnostic paradigm, is an
important topic in the area of interconnection network studies. Several diagnostic models have
been introduced, with the PMC and MM* models being two of the most popular ones.
Researchers have also proposed various extensions and enhancements of fault-tolerance
models to better capture the distribution, and identification, of faulty nodes in realistic
scenarios. One of them is the g-extra fault-tolerance model, where each cluster in a network
with faulty nodes contains at least g+1 fault-free nodes. This paper, following an analytical and
constructive approach based on applied graph theory, suggests a general process to identify the
maximum number of faulty nodes in a network in terms of the g-extra fault-tolerance model,
and as a demonstrative example, provides a specific result for the (n, k)-star graphs.

1. Introduction
Nowadays, thanks to the rapid progress in computer engineering technology, multi-processor systems
have become a common reality in both our work and lives, where an interconnection network plays a
crucial role. It is unavoidable that some of the processing nodes in such a network will become faulty,
sometimes disabling the normal function of the computer system. Thus, there is often a need to
identify, and then correct/replace, these faulty nodes in such a system to restore its connectivity, and
the normal operation of the computer system. For obvious reasons, one would want to have a self-
diagnosable system where the computing nodes are able to detect faulty ones themselves. It turns out
that we could simulate such a diagnostic task of an engineering nature via a mathematical process,
with three components: the associated topology of such a system, the intended fault-tolerance model,
and the diagnostic model.

The topology of a network system is usually modeled with a connected graph G(V, E), where V
represents a collection of processing nodes, and E the connections in between pairs of nodes. Many
network topologies have been suggested and studied in the literature, including the hypercube [7], the
star graph [1], and the (n, k)-star graph [5], denoted by Sn, k in the rest of this paper.

Let G(V, E) represent an interconnection network, we use a faulty set to identify a collection of
faulty processing nodes, which is just a collection of vertices F ⊆ V, effectively removed from G.
Since such an unrestrictive fault-tolerance model could imply the highly unlikely situation that all the
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neighbors of a vertex would be faulty, several more sophisticated fault-tolerance models have been
suggested in the literature. With the conditional faulty set model [8], every vertex, faulty or not, has at
least one fault-free neighbor in the survival graph G-F. With a g-good neighbor faulty set [12] every
fault-free vertex has at least g fault-free neighbors in the survival graph; and, with a g-extra faulty set
[18], every component in the survival graph contains at least g+1 vertices. In this paper, we will focus
on this latter fault-tolerance model associated with a g-extra faulty set.

By a neighbor of a vertex, v, in G, we mean a vertex u such that (u, v) is an edge in G. The MM*
model [14], which extends the comparison diagnostic model, i.e., the MM model [10,11] is a rather
popular diagnostic model, where each processing node, called a testing node, sends a test message to
each and every pair of its distinct neighbors, called a tested node, and then compares their responses.
Based on all such comparison results, the fault status of the system, as well as the faulty nodes, can be
determined. With another diagnostic model, the PMC model [13], a node sends a test message to each
of its neighbors and judges its fault status based on the received responses. Various efficient
algorithms to identify such faulty sets have been proposed in, e.g. [6,14]. We notice that, with both the
MM* and PMC models, when a testing node is faulty, responses from those tested nodes will be
unreliable.

A collection of all the aforementioned test results obtained with a diagnostic model is called a
syndrome of the diagnosis. A subset F (⊆ V) is compatible with a syndrome [8] if the latter can be
generated when all the vertices in F are faulty and all those in V ∖ F, i.e., the difference between V and
F, are fault-free. Since faulty testing nodes lead to unreliable results, as observed in [10, 11], two
faulty sets may be compatible with the same syndrome, thus making such a faulty set unidentifiable.
This observation leads to the notion of a graph being t-diagnosable [14] when up to t faulty vertices in
G can be identified. And the diagnosability of a graph G, denoted by t(G), is defined to be the
maximum number of faulty vertices that G can guarantee to identify.

Many diagnosability results have appeared in literature, including [8,9,12,15,18], where we notice
that much of the derivation details as reported in those papers devoted to different structures are
essentially shared among themselves, and even with those used to derive results on the g-good-
neighbor diagnosability. We strongly believe this practice is unnecessary. In this paper, we will
continue our work in [4], and outline a general process to derive diagnosability results under various
fault-tolerance, and diagnostic, models.

The rest of this paper proceeds as follows: We will start with some basic definitions regarding the
self-diagnostic paradigm at a system level in the following section, and describe a general process of
seeking both upper bounds, and lower bounds, of general diagnosability results in Section 3, and
demonstrate the value of such a general process in Section 4. We conclude this paper with some final
remarks in Section 5.

2. Basic notions of general diagnosability
Let G(V, E) represent an interconnection network, and let M stand for a certain fault-tolerance model.
An M-faulty set is a faulty set, F ⊆ V, consistent withM. For example, F (⊆ V) is a g-extra faulty set if
every component in G-F contains at least g+1 vertices. G is said to be M t-diagnosable in terms of a
diagnostic model D, if G is diagnosable for any M-faulty set of size at most t in D, where D refers to
either the PMC model or the MM* model in the rest of this paper.

Let F1 and F2 be two distinct M-faulty sets, F1 ⊆ V, F2 ⊆ V, (F1, F2) is distinguishable in G if and
only if they do not lead to the same syndrome. They are indistinguishable otherwise. Then, tM(G, D),
the M-diagnosability of G, in terms of a diagnostic model D, equals the maximum number t such that
G is M t-diagnosable, i.e., for all distinct M-faulty set pairs (F1, F2), such that F1 ⊆ V, F2 ⊆ V, and |F1|
≤ t, |F2| ≤ t, (F1, F2) is distinguishable in terms of D.

Thus, the diagnosability problem really comes down to a decision problem of whether two faulty
sets are distinguishable within a diagnostic model. In this regard, the following result specifies a
necessary and sufficient condition of two faulty sets being distinguishable in the MM* model, where
F1Δ F2 stands for (F1 ∖ F2)∪ (F2 ∖ F1), i.e., the symmetric difference of F1 and F2.
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Theorem 2.1. (following as [14]) Let G(V, E) be a connected graph. For any two sets F1, F2 such that
F1 ⊆ V, F2 ⊆ V and F1 ≠ F2 , F1 and F2 are distinguishable under the MM* model if and only if at least
one of the following three conditions holds: 1) there are two distinct vertices v and w, {v, w} ⊆V ∖
(F1∪F2) and there is a vertex x, x∈F1Δ F2 such that (v, w, x) is a path in G; 2) there are two distinct
vertices v and x, {v, x} ⊆ F1 ∖F2 and there is a vertex w, w∈V ∖ (F1∪F2) such that (v, w, x) is a path
in G; and 3) there are two distinct vertices v and x, {v, x} ⊆ F2 ∖ F1 and there is a vertex w, w∈ V ∖
(F1∪F2) such that (v, w, x) is a path in G.

The conditions associated with the PMC model are somewhat simpler, as expected, since the PMC
model is a special case of the MM* model when the two vertices being tested are the same.

Theorem 2.2. (following as [6]) Let G(V, E) be a graph. For any two sets F1, F2 such that F1 ⊆ V, F2 ⊆
V and F1 ≠ F2 , F1 and F2 are distinguishable under the PMC model if and only if there exist a vertex u,
u∈ V ∖ (F1∪F2), and another vertex v in F1Δ F2, such that (u, v) is an edge of G.

3. A general process of deriving diagnosability results
Recall that an M-faulty set is just a faulty vertex set F in a graph G(V, E), related to a certain fault-
tolerance model M. It is also an M-cut if G-F is disconnected. Although an M-faulty set does not need
to be an M-faulty cut, the construction of such an M-faulty cut in G turns out to be a crucial step to
derive the upper bound of theM t-diagnosability of G.

The size of a minimum M-faulty cut of a graph G is referred to as its M-connectivity, denoted by
κM(G). The derivation of the M-connectivity of a graph depends on its topology, and is often tedious
and challenging. On the other hand, this quantity plays a critical role in deriving the lower bound of
the related M t-diagnosability of a graph. Many results to this regard have appeared in literature.
Readers are referred to [4] for the connection between the g-good neighbor connectivity of the
arrangement graph and its g-good-neighbor diagnosability, g∈ [1, 2]. The 2-extra connectivity of the
bubble-sort graph is derived in [16], where its connection to its g-extra diagnosability is also given.
The g-good-neighbor connectivity, g ∈ [0, n-k], of the (n, k)-star graph is given in [17], and its
connection to its g-good-neighbor diagnosability is explored in [4]. Recently, the g-extra connectivity
of the (n, k)-star graph, and its connection to its g-extra diagnosability, are discussed in [9]. The major
contribution of this paper is to provide an alternative and largely structure independent, approach to
deriving a diagnosability result for a graph, once its related connectivity result is available.

Given a graph G(V, E), we use N(v) to denote the neighbors of v in V, i.e., NG(v) = {w: (v, w)∈ E}.
Let S ⊆ V, we use NG(S) to denote all the neighbors of vertices in S, excluding those in S; and use
NcG(S) to denote NG(S) ∪S. Notice that NG(S) and NcG(S) are also referred to as open and closed
neighborhood of S, respectively, in literature. We will drop the subscript G when the context is clear.

To derive an upper bound of tM(G, D), we carefully choose a set Y(⊊ V) such that V ≠ Nc(Y) and
both N(Y) and Nc(Y) areM-faulty sets.

The following result follows from Theorems 2.1 and 2.2. (Due to page restrictions, we have to omit
technical proofs of all the results as contained in this paper, which will be included in its full version.)

Proposition 3.1. Let G(V, E) be a connected graph,M stand for a certain fault-tolerance model, and let
Y ⊊ V. If both N(Y) and Nc(Y) areM-faulty sets, and V ∖ Nc(Y) ≠ ∅, then tM(G, D) ≤ |Nc(Y)|-1.

It turns out that we can derive the following result for two specific fault-tolerance models.

Corollary 3.1. Let G(V, E) be a connected graph, and let Y be a subset of V. If N(Y) is an M-faulty set,
where M stands for either the g-good-neighbor or the g-extra fault-tolerance model, and V ∖ Nc(Y) ≠ ∅.
Then tM(G, D) ≤ | Nc(Y)|-1.

Recall that Sn, k stands for the (n, k)-star graph, the theorem below gives one specific result,
obtained via such a construction, where we use tg(G, D) to denote the g-good-neighbor diagnosability
of G in terms of a diagnostic model D.

Theorem 3.1. (following as [4]) For n ≥ 4, k∈ [2, n), g∈[0, n-k], tg(Sn, k, D) ≤ n+g(k-1)-1.
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To show that t is a lower bound of tM(G, D), i.e., tM(G, D) ≥ t, we need to show that, for any two
distinct M-faulty sets, F1, F2, such that |F1| ≤ t, |F2| ≤ t, and V ∖ (F1 ∪F2) ≠ ∅, (F1, F2) is
distinguishable in G in terms of the diagnostic model D. We start with a useful, and indeed a critical,
result.

Proposition 3.2. Let G(V, E) be a connected graph, M stand for a fault-tolerance model, and let F1, F2
⊊ V. If both F1 and F2 areM-faulty sets in G, so is F1 ∩ F2.

The structure independent part of the general process of deriving a lower bound of M-
diagnosability of a graph G in terms of the PMC model can then be summarized as follows.

Proposition 3.3. Let G(V, E) be a connected graph, κM(G) be the M-connectivity of G, and F1 and F2
be a pair of distinct M-faulty sets, such that | F1| ≤ t, |F2| ≤ t, and V ∖ (F1∪F2) ≠ ∅. Assuming that F1 ∖
F2 ≠ ∅ (Since F1 ≠ F2, either F1 ∖ F2 ≠ ∅ or F2 ∖ F1 ≠ ∅). If t ≥ |F1 ∖ F2|+κM(G) leads to a contradiction
with the PMC model assumption, then tM(G, PMC) ≥ t.

In particular, let τg(G, D) stand for the g-extra diagnosability of G in terms of D, we have the
following result.

Corollary 3.2. Let G(V, E) be a connected graph, and let κg(G) be its g-extra connectivity, g ≥1. If
|V| > 2 (κg(G) +g), then τg(G, PMC) ≥ κg(G) +g.

We give a sketch of a proof of the above result as follows: Let (F1, F2) be a pair of distinct g-extra
faulty sets in G such that |F1| ≤ t=κg(G) +g and |F2| ≤ t=κg(G) +g. We want to show that such a pair is
always distinguishable in terms of the PMC model, thus G is t-diagnosable. Just assume such a pair
(F1, F2) is indistinguishable in terms of the PMC model.

Assume F1 ∖ F2 ≠ ∅, and let C be a component that shares vertices with F1 ∖ F2. Since, (F1, F2) is
assumed indistinguishable in terms of the PMC model, by Theorem 2.2, no vertex outside F1∪F2 is
adjacent to any vertex in F1 ∖ F2. Hence, C ⊆ F1 ∖ F2, and, as a result, | F1 ∖ F2 | ≥ |C| ≥ g+1. Since G
is connected, we would have to conclude that any vertex u of V ∖ (F1∪F2) has to go through a vertex
in F1 ∩ F2 to be connected to another vertex in F1 ∖ F2. Thus, F1 ∩ F2 is a cut. By Proposition 3.2,
since both F1 and F2 are g-extra faulty sets, F1 ∩ F2 is also a g-extra faulty set, thus a g-extra cut. In
other words, | F1 ∩ F2| ≥ κg(G). Finally, the assumption κg(G) +g=t ≥ |F1 ∖ F2|+ κg(G) ≥ (g+1)+ κg(G)
leads to a contradiction, hence (F1, F2) has to be distinguishable in terms of the PMC model, and the
result follows.

The process of deriving a lower bound result of the M-diagnosability in terms of the MM*
diagnostic model is essentially the same as that for the PMC model, except that we also need to show
that no isolated vertex exists in V ∖ (F1∪F2), where (F1, F2) is the pair of indistinguishable M-faulty
sets that we would use to construct the desired contradiction. The reason for this additional
requirement is that, for this MM* case, if a vertex u is isolated in V ∖ (F1∪F2), it can be adjacent to
some vertex in F1 Δ F2. Then, F1 ∩ F2 would not be a cut, and we could not use the argument that we
just used in proving Corollary 3.2 to reach the desired conclusion. We instead have the following
parallel result.

Proposition 3.4. Let G(V, E) be a connected graph, κM(G) be the M-connectivity of G, and let F1, F2
be two M-faulty sets in terms of the MM* diagnostic model, such that |F1| ≤ t, |F2| ≤ t, and the non-
empty set of V ∖ (F1∪F2) contains no isolated vertex. Assume that F1 ∖ F2 ≠ ∅ , if t ≥ | F1 ∖ F2 |+
κM(G) leads to a contradiction, then tM(G, MM*) ≥ t.

It turns out that no vertex in V ∖ (F1∪F2) could be isolated when g ≥ 2 for both the g-good-
neighbor and the g-extra fault-tolerance models, as the following result shows.

Corollary 3.3. Let G(V, E) be a connected graph, and let κg(G) be the g-extra connectivity of G, g ≥ 2.
If |V| > 2(κg(G)+g), then τg(G, MM*) ≥ κg(G) +g.

4. The g-extra diagnosability of the (n, k)-star graph
The star graph, denoted by Sn, was proposed in [1] as an attractive alternative to the well-known
hypercube structure when used as an interconnection network. However, the requirement that the
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number of vertices in the star graph be n! results in a large size gap between Sn and Sn+1.To address
this scalability issue, the (n, k)-star graph was suggested in [5], which brings in a flexibility in
choosing its size, while preserving many attractive properties of the star graph, including vertex
symmetry. This class of graphs has been well studied in the literature, together with its fault-tolerance
properties, e.g., [3,4,9,17].

Vertices of Sn, k, n ≥ 3, k∈ [2, n), is simply the collection of all the k-permutations taken out of {1,
2, …, n}. Thus, Sn, k contains n!/( n-k)! vertices. Let u = [p1, …, pk], v = [q1, …,, qk], (p, q) is an edge
of Sn, k either, for some i∈ [2, k], v can be obtained from u by swapping p1 and pi (called an i-edge});
or, for some symbol e∈{1, 2, …, n} ∖ {p1, …, pk}, v can be obtained from u by replacing p1 with e
(called a1-edge). Thus, a vertex is incident to k-1 i-edges, i ∈ [2, k]; and n-k 1 edges, a total of n-1
edges. As a result, Sn, k contains a total of ((n-1)n!/[2(n-k)!] edges.

As shown in Figure 1, S4, 2 contains 4!/2! ( = 12) vertices, and 18 edges. For example, [1, 2] (=12)
is a vertex in S4, 2, and ([1, 2], [2, 1]), ([1, 2], [3, 2]), and ([1, 2], [4, 2]) are all edges of this graph. In
particular, [1, 2] is incident to three edges, including two 1-edges: ([1, 2],[3, 2]) and ([1, 2], [4, 2]) ,
and [1, 2] is also incident to exactly one 2-edge ([1, 2], [2, 1]).

Figure 1. S4, 2
Issues related to the g-good-neighbor diagnosability of the (n, k)-star graphs have been addressed in

[4,15]. Its g-extra diagnosability has also been derived recently in [9] by following a structure
dependent approach. It turns out that these results can all be derived following the general approach
that we have described in the previous section.

Recall that tg(G, D) stands for the g-good-neighbor diagnosability of a graph G in terms of a
diagnostic model D, and τg(G, D) its g-extra diagnosability. We start with the following result, since a
vertex u has at least one neighbor if and only if the component containing u has at least two vertices.

Lemma 4.1. (following as [16]) Let G(V, E) be a connected graph, then τ1(G, D) =t1(G, D).
Since it has already been proved that t1(Sn, k, D) = n+k-2 (Theorem 5.3 in [4] for the PMC case and

[15] for the MM* case), by Lemma 4.1, we immediately have the following result.

Corollary 4.1. Let n ≥ 4, k∈ [2, n), τ1(Sn, k, D) = n+k-2.
For the cases of g ≥ 2, the following result provides an upper bound of τg(Sn, k, D) since if a fault-

free node has at least g neighbors, thus the component contains at least g+1 vertices.

Lemma 4.2. (following as [16]) Let G be a connected graph, let g ≥ 0, then τg(G, D) ≤ tg(G, D).
We then obtain an upper bound result for the g-extra diagnosability of the (n, k)-star graph, by

Theorem 3.1 as follows.

Lemma 4.3. For n ≥ 4, k∈ [2, n), g∈ [0, n-k], τg(Sn, k, D) ≤ n+g(k-1)-1.
As pointed out, to obtain a hopefully tight lower bound of τg(G, D), we need a result of its M-

connectivity, which could be derived by making use of its super-connectedness property. More
specifically, a graph is super m-vertex connected of order q if, with at most m vertices being deleted,
the survival graph is either connected or it consists of a large component and the small components
containing at most q vertices altogether [2,17].
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For a detailed discussion about this inspiring and important structural property of a graph, and its
close relationship to various fault-tolerance properties, including g-good-neighbor connectivity, g-
extra connectivity, component connectivity, cyclic connectivity, as well as the Menger connectedness,
readers are referred to [2]. To address our current issue, we make the following observation.

Theorem 4.1. (following as Theorem 8 of [17]) Let n, k, and r be positive integers such that k∈ [2, n)
and r ∈ [1, n-k+1]. If F is a set of vertices of Sn, k such that |F | ≤ n+(r-1)k-2r, then Sn, k - F is either
connected or has a large component and small components with at most r-1 vertices in total.

Taking g = r-1, if we want to have a component, besides the larger component, in a survival graph
Sn, k - F, which contains at least g+1 (=r) vertices, g ∈ [0, n-k], we have to take at least n+g(k-2)-1
vertices. As a result, any g-extra cut must contain at least n+g(k-2)-1 vertices. In particular, κg(Sn, k) ≥
n+g(k-2)-1.

It is easy to show that |V(Sn, k)| > 2(κg(Sn, k)+g) = 2(n+g(k-1)-1). Thus, by Corollaries 3.2, 3.3, 4.1,
and Lemma 4.3, we have the following result.

Theorem 4.2. Let n ≥ 4, k∈ [3, n), g∈ [0, n-k], τg(Sn, k, D) = n+g(k-1)-1.
Incidentally, since Sn, n-1 is isomorphic to the star graph (Lemma 4 in [5]), and Sn, n-2 is isomorphic

to the alternating group network [3], denoted by ANn, the g-extra diagnosability results of these latter
two graphs immediately follow.

Corollary 4.1. Let n ≥ 4, τg(Sn,D) = τg(Sn, n-1, D) = 2n-3.

Corollary 4.2. Let n ≥ 4, g∈ [1, 2], τg(ANn,D) = τg(Sn, n-2, D) = n+g(n-2)-1.

5. Concluding remarks
In this paper, we summarized and unified a process that we can effectively apply to derive
diagnosability results for multiple fault-tolerance models in terms of such mainstream diagnostic
models as the PMC and the MM* models. Simply put, to derive such a diagnosability result for a
graph G in terms of a fault-tolerance model M, and a diagnostic model D, we need to obtain κM(G), the
M-connectivity of G, and the details of the rest of the process in terms of model D are mostly structure
independent, thus can be spared.

We also demonstrated the value of such a general process by obtaining the g-extra diagnosability of
the (n, k)-star graphs. Although this result has already been reported in the literature, this alternative
derivation is straightforward, and even mechanical, thus has its clear advantage.

As future research topics, besides attempting to achieve the diagnosability results of other
interconnection structures under the existing fault-tolerance models in light of this general process, we
will also look into other appropriate fault-tolerance models, and the feasibility of applying this general
process to derive various fault-tolerance property under such alternative models.

References
[1] Akers S B, Krishnamurthy B 1989 A group theoretic model for symmetric interconnection

networks IEEE Trans. Comput. 38 (4): 555-566
[2] Cheng E, Hao R X, Qiu K and Shen Z 2019 Structural properties and fault resilency of

interconnection networks, in: Adamatzky A, Selim A and Sirakoulis G ed. From Parallel To
Emergent Computing CRC Press p 77-101

[3] Cheng E, Qiu K and Shen Z 2012 A note on the alternating group network J Supercomput. 59 (1):
246-248

[4] Cheng E, Qiu K and Shen Z 2019 A general approach to deriving the g-good-neighbor conditional
diagnosability of interconnection networks Theor. Comput. Sci. 757 (24): 56-67

[5] Chiang W K, Chen R J 1995 The (n, k)-star graph: a generalized star graph Inf. Process. Lett. 56 p
259-264

[6] Dahbura A T, Masson G M 1984 An n2.5 faulty identification algorithm for diagnosable systems
IEEE Trans. Comput. 33 (6): 486-492



ICMSOA2019

Journal of Physics: Conference Series 1419 (2019) 012024

IOP Publishing

doi:10.1088/1742-6596/1419/1/012024

7

[7] Harary F, Hayes J P and Wu H J 1988 A survey of the theory of hypercube graphs Comput. Math.
Appl. 15 (4): 277-289

[8] Lai P L, Tan J J M, Chang C P and Hsu L H 2005 Conditional diagnosability measures for large
multiprocessor systems IEEE Trans. Comput. 54 p 165-175

[9] Lv M J, Zhou S M, Sun X L, Lian G G and Liu J F 2019 Reliability of (n, k)-star network based on
g -extra conditional fault Theor. Comput. Sci. 757 p 44-55

[10] Maeng J, Malek M 1981 A comparison connection assignment for self-diagnosis of
multiprocessor systems Proc. 11th Int. Symp. Fault-tolerance Comput. p 173-175

[11] Malek M 1980 A comparison connection assignment for diagnosis of multiprocessor systems
Proc. 7th Int. Symp. Comput. Archit. p 31-35

[12] Peng S L, Lin C K, Tan J J M and Hsu L H 2012 The g-good-neighbor conditional diagnosability
of hypercube under the PMC model Appl. Math. Comput. 218 (21): 10406-10412

[13] Preparata F P, Metze G and Chien R T 1967 On the Connection assignment problem of
diagnosable systems IEEE Trans. Electron. Comput. EC-16 (6): 848-854

[14] Sengupta A, Dahbura A T 1992 On self-diagnosable multiprocessor systems: diagnosis by the
comparison approach IEEE Trans. Comput. 41 p 1386-1396

[15] Xu X, Li W W, Zhou S M, Hao R-X and Gu M M 2017 The g-good-neighbor diagnosability of (n,
k)-star graph Theor. Comput. Sci. 659 p 53-63

[16] Wang S, Wang Z and Wang M 2016 The 2-extra connectivity and 2-extra diagnosability of
bubble-sort star graph networks The Compt. Journal 59 (12): 1839-1856

[17] Yuan A, Cheng E and Liptak L 2011 Linearly many faults in (n, k)-star graphs Int. J. of Found.
Comput. Sci. 22 (7): 1729-1745

[18] Zhang S, Yang W 2016 The g-extra conditional diagnosability and sequential t/k-diagnosability
of hypercubes Int. J. Comput. Math. 93 p 482-497


