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Abstract. The static microstructures of square-to-rectangular phase transformations
are modeled in the current paper. Governing equations are described by the static
Navier equations. The analysis of the simulation has been finished via Legendre
wavelets collocation method. Microstructure evolutions of both 2D and 1D shape
memory alloy (SMA) are capture well with a certain boundary condition and given
mechanical loadings.

1. Introduction
Shape memory alloys (SMA) are widely applied in industries due to its unique thermo-dynamical
properties [1-3]. One of the famous effects of SMA, which is called the shape memory effect, is that the
strain of SMA occurred in the martensite phase at low temperature will be recovered in the austenite phase
at high temperature. Another famous effect is about elasticity beyond common sense. It is called
pseudoelasticity that some phase transformations (austenite → martensite) happen under the external
mechanical loadings with a certain range of temperature, and the transformation, as well as strain it caused,
will be reversed without the loadings. These two effects are the major topic of the researcher’s work. Many
related studies are ultimately attributed to the researches of microstructure. The better understanding of
microstructure we got, the better application of SMAwe did.

One popular way to study microstructure is based on Landau free energy minimization [4-6], and such
researches are attributed to the numerical solution of partial differential equations. Legendre wavelets
method (LWM) is an emerging spectral method to solve such problems. LWM combines the advantage of
both spectral method and wavelet method, and it is good at stability, high precision as well as good
efficiency [7].

In the current paper, the static microstructure of SMA model is simulated via Legendre wavelets
method at a certain temperature. The analysis of phase combinations in these situations is presented as well.
The current paper is organized as follows. An introduction of Legendre wavelets is given in section.2. The
model of SMA is presented in section.3. Finally, the simulations and analysis are discussed in section.4 and
section.5. Concluding is given in section.6.

2. Amathematical model for SMA
Square-to-rectangular martensitic phase transformations are considered in the current paper, which can be
treated as a simplified 2D analog of the cubic-to-tetragonal or tetragonal-to-orthorhombic phase
transformations [8]. Considering the fundamental laws, energy balance and so on, the basic functions used
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in the current paper are illustrated by static Navier equations as follows[8]:
∂σ11
∂x

+ ∂σ21
∂y

+ fx = 0, (1.a)
∂σ12
∂x

+ ∂σ22
∂y

+ fy = 0, (1.b)
where σij is the stress tensor, and fi is the mechanical loading in xi direction.
The stress tensor can be given by the thermos-dynamical equilibrium conditions:

σij =
δΨ ∆θ,ε

δεij
, (2)

where εij is the Cauchy-Lagrangian strain tensor which is given as follows:

εij x,t =
∂ui(x,t)
∂xj

+
∂uj(x,t)
∂xi

2
, (3)

where ui is the displacement.
The free energy function Ψ ∆θ,ε can be obtained by the Landau theory:

Ψ ∆θ,ε = a1
2
e1
2 + a3

2
e3
2 + Fl + Fg, (4.a)

Fl =
a2
2
∆θe2

2 − a4
4
e2
4 + a6

6
e2
6, (4.b)

Fg =
kg
2

∂e2
∂x

2
+ ∂e2

∂y

2
, (4.c)

where e1 , e2 and e3 are the hydrostatic, deviatoric and shear strain respectively defined as
e1 =

εxx+εyy
2

,e2 =
εxx−εyy

2
,e3 =

εxy+εyx
2

.

3. Numerical algorithm via Legendre wavelets
The simulation of nonlinear wave propagation based on a coupled system of PDEs is not a trivial task to
solve the 2D situation. The choice of the algorithm will substantially affect the accuracy of the result. In the
current paper, the Legendre wavelets method (LWM) is employed to simulation this hard task.
The wavelet methods can reduce calculation cost-effectively. The Legendre wavelets method(LWM) is

originated from applying wavelets method to the mother function Legendre polynomials. The Legendre
wavelets family retains the following form[9]:

ψn1,m1,n2,m2 x,y = A ∙ Pm1 n1
' ∙ Pm2 n2

' , n1−1
2k1−1

≤ x ≤ n1
2k1−1

, n2−1
2k2−1

≤ y ≤ n2
2k2−1

0, otherwise
(5)

where ni
' = 2kix − 2ni + 1 mi = 0,1,…,M − 1, ni = 1,2,3,…,2k−1 , A = (m1 +

1
2
)(m2 +

1
2
)2

k1+k2
2 is the

coefficient for orthogonality. Pmi are Legendre polynomials with order mi on interval [-1,1].
Function f x,y defined on interval [0, 1]×[0, 1] can be expanded as Legendre wavelets as follows:

f x = n1 =1
∞

m1 =0
∞

n2 =0
∞�� m2 =0

∞ cn1,m1,n2,m2ψn1,m1,n2,m2(x)�� = CTΨ(x). (7.a)

here cn,m denoted the inner product of f x and ψn,m(x). If Eq.(5) is truncated, it can be rewritten as

f x = n1 =1
2k−1

n2 =1
2k−1

m1 =0
M−1�� m2 =0

M−1 cn1,m1,n2,m2ψn1,m1,n2,m2(x)�� = CTΨ(x), (7.b)

The vector C in Eq. (7) is called the spectral space coefficient, and C is the only data needed in the
following calculations.

3.1. Operational matrix of derivatives
In the present paper, due to the properties of Legendre polynomials, the calculation of derivatives in this
method can be obtained in the matrix form [10]:

dΨ(x,y)
dx

= DxΨ x,y , (8)

where Dx is a 2kM2k'M' × 2kM2k'M' derivative matrix defined as follows:
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Dx =
F 0
0 F ⋯ 0

0
⋮ ⋱ ⋮

0 0 ⋯ F

, (9)

where F is a M2k'M' × M2k'M’ matrix which is defined as follow:

Fr,s =
2k+1 (2r − 1)(2s − 1) , r = 2,…,M, S = 1,…,r − 1, and r + s odd,

0, otherwise.
(10)

dΨ(x,y)
dy = DyΨ x,y ,

Dy =
D 0
0 D ⋯ 0

0
⋮ ⋱ ⋮

0 0 ⋯ D

D =
FF 0
0 FF ⋯ 0

0
⋮ ⋱ ⋮

0 0 ⋯ FF
where D is a M' × M' matrix. FF is a M' × M’ matrix which is defined as follows:

FFr,s =
2k+1 (2r − 1)(2s − 1) , r = 2,…,M, S = 1,…,r − 1, and r + s odd,

0, otherwise.
The calculation of derivatives in the spectral space can be easily obtained by multiply spectral space
coefficient C and derivative matrix Dx and Dy.

3.2. Numerical algorithm
Above all, the governing system is described as follows:

∂σ11
∂x

+ ∂σ21
∂y

+ fx = 0, (11.a)
∂σ12
∂x

+ ∂σ22
∂y

+ fy = 0, (11.b)

σ11 =
2
2

a1e1 + a2Δθe2 − a4e2
3 + a6e2

5 − kg∇2e2 , (11.c)

σ12 = σ21 =
1
2
a3e3, (11.d)

σ22 =
2
2

a1e1 − a2Δθe2 + a4e2
3 − a6e2

5 + kg∇2e2 , (11.e)
The boundary condition can be described as :
ui = 0, ∂uj

∂xi
= 0 at the boundary area of xi direction.

Moving to the time discretization procedure, system(11) can be rewritten as follows:
LU+ N x,y,U = 0, (12)

where L is the matrix of the linear operator, N is the matrix of the nonlinear operator and U = [ux,uy]T.
This system is solved by using the θ weight formula as follows:

θLUn+1 + 1− θ LUn +N t,x,Un = 0, (13)
where n is the current time layer.
Considering the 1-D static situation, the Eq.(11) can be recast as :

a2∆θ
∂2u
∂x2

+ a4(
∂u
∂x
)2 ∂

2u
∂x2

+ a6(
∂u
∂x
)4 ∂

2u
∂x2

− kg
∂4u
∂x4

+ f = 0 , (14)
with the same boundary conditions:
u 0,t = 0, u L = 0,
uxx(0,t) = 0, uxx(L,t) = 0.

4. Numerical simulation
The numerical experiments data in the current paper were published in [11], which were gotten by
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Au23Cu30Zn47 materials:
a2 = 480g/(ms2cmK),a4 = 6 × 106g/(ms2cmK),
a6 = 4.5 × 108g/(ms2cmK),
θ0 = 208k,
ρ = 11.1g/cm3,cv = 29g/(ms2cmK).
All the simulations were taken in the Matlab2015a.

4.1. Dimensionless form of the governing equations
The dimensionless form applied in the current can be referred to as the strategy in Ref. [12]:

4.2. Simulation results of 1-D SMA
In this section, the simulation was performed by the situation with k = 5 and M = 6 in section 3. The
dimensionless form of the governing equations can be gotten from formula(14):

σx� =
∂4u�
∂x�4

− f,�

σ = k1�ε� + ε�3 + ε�5,
(15)

where k1� =0.192, f� = 0.4, ε� = ∂u�
∂x�
.

In this experiment, the temperature was set to 240K . Thus, the initial condition should begin from the
austenitic phase:

u0 x� = 0. (16)
Newton method was applied to complete this 1D simulation with the derivative matrix in section3.1.
Fig.1(left) shows the figure of displacement u� . Fig.1(right) shows the figure of strain ε� . Under this
mechanical loading, the simulation shows that the rod has finally finished the phase transformation into the
martensite phase. And the results are in line with expectations.

4.3. Simulation results of 2-D SMA
In this section, the simulation was performed in an SMA film. The time stepsize in this experiment
was set to ∆t� = 1 × 10−4. The initial value is given as a disordered martensite phase.
The mechanical loading which is time-varying is defined as

fx = 500, (17.a)
fy = 500, (17.b)

Under this mechanical loading, the SMA film should be switching between the martensite phase and the
austenite phase. In this section, we set the temperature at 210K . Both the mechanical and temperature
conditions make sure that only the martensite phase exists. And the free energy function here has two local
minima which correspond to two martensites. The simulation results are present in Fig.2. It is shown that
the initial disordered martensite phase is rearranged into the twins martensite phase ordered. Thus, the
phase combinations are caused by the applied mechanical loading. Stress-induced phase combinations are
captured well in this section.

5. Conclusion
In the current paper, an isothermal model has been proposed to simulate the static microstructure of SMA.
The Microstructure evolutions in both 1D and 2D systems have been simulated via Legendre wavelets
method successfully. The numerical algorithm for Legendre wavelets method to solve the partial
differential equation has been described in the current paper. The simulation ability of LWM is shown.
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Figure 1. The simulation results of the 1D static system.
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Figure 2. The simulation result of the 2D static system.


