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Abstract. Magnetic Resonance Coupling (MRC) wireless power transfer (WPT) is a
promising technique for portable devices and Internet of Things applications, which can
transfer power to energy-constrained terminals in mid-range with relatively high efficiency.
To enhance the transfer performance, by applying more coils in transceivers, multiple-
input single-output (MISO) MRC-WPT system has attracted much attention in recent
years. In this paper, a MISO MRC-WPT system with multiple transmitters (TXs) and a
single receiver (RX) is studied and its robust magnetic beamforming problem is
investigated. The optimal robust beamforming design of the currents of TXs is
investigated to maximize the power received by RX with the mutual inductance error
between TXs and RX, whereas the total power required is less than a certain value and
each TXs has a certain limited transmitting power. By using certain transformation
techniques, the optimization problem is converted into a relaxed semidefinite
programming (SDP) problem which can be solved efficiently. We further prove that the
solution of the relaxed SDP problem is always rank-one, which indicates that the
relaxation is tight, and the optimal solution for the problem was obtained. Numerical
results demonstrate that the proposed beamforming design can achieve up to 97% transfer
efficiency by reducing the measurement errors.

1. Introduction
Recently, Wireless power transfer (WPT) [1-2] has attracted widely attention because it make possible
a reliability, convenience and safety power supply method for the portable devices and Internet of
Things applications. For the technology of wireless power transfer, magnetic resonance coupling
(MRC) has been considered as a promising technique since it can provide longer transmission distance,
higher transmission efficiency and wide working frequency band [3-6].

In 2014, J. Jadidian and D. Katabi of the Massachusetts Institute of Technology proposed the
Magnetic multiple-input multiple-output (MIMO) theory [7], applying multiple power transmitters
(TXs) and one power receiver (RX) to improve the charging efficiency and charging flexibility. Base
on the MIMO structure, magnetic beamforming is anticipated to enhance the transfer performance of
WPT system. In [8], magnetic beamforming for a MISO-WPT system with multiple TXs and a single
RX is investigated, and the receiving efficiency is significantly improved by optimizing the TXs
currents. However, the beamforming design in [8] based on the perfect knowledge of the mutual
inductance between TXs and RX. In practical scenarios, perfect knowledge of the mutual information
between TXs and RX may not be available due to the influence of environment and positional
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deviation. Therefore, the robust beamforming design over the mutual inductance error for MRC-WPT
system needs to be investigated.

In this paper, we assume that the measured mutual inductance has a norm bounded error, then
consider an MRC-WPT system with one RX and multiple TXs whose source current (or
corresponding source voltage) can be adjusted so that the induced magnetic field can be optimally
superimposed at RX to achieve maximum power transfer. The robust beamforming is designed by
jointly optimizing the currents of all TXs to maximize the received power while under the limit of
total transmit power constraints and the power constraints of each transmitter circuit. According to
convex optimization theory, the proposed optimization problem is a non-convex quadratically
constrained quadratic programming (QCQP) [9]. By means of inequality method and S-procedure
method, the original optimization problem is transformed into a semi-positive definite programming
problem with rank 1. Then, by applying semidefinite relaxation (SDR), we show that the optimal
solution of the semidefinite programming (SDP) problem is always rank-one, which means that the
relaxation is tight, and the optimal solution of the original problem can be obtain.

2. MISO-WPT system model
The system model discussed in this paper is shown in Figure 1, A MISO MRC-WPT system with
multiple power transmitters (TXs) and one power receiver (RX) is considered. For each TXs and RX,
an air-core induction coils is applied. Specially, the transceiver circuit comprise a series RLC resonant

circuits and the coil is considered as the inductor. 0nL  , 0nC  , 1, ,n N  and 0rL  , 0rC 

denote the self-inductance and the capacitance in the resonant circuit of the n-th TX and the RX
respectively. The capacitances in each resonant circuit are set to make the all circuit resonant at the

resonance angular frequency 0 1 / LC   . Moreover, the n-th TX is connected to a stable power

source supplying sinusoidal voltage over time given by  , ,( ) Re j t
tx n tx nv t v e 

, where ,tx nv denoting
the complex voltage and 0  denoting the operating angular frequency. Thus, the steady-state

current flowing through the n-th TX is defined as  , ,( ) Re j t
tx n tx ni t i e 

, with the complex current
,tx ni . This current produces a time-varying magnetic flux in the transmitter’s electromagnetic coil,

which passes through the RX coil and induces time-varying currents in it. We denote
 ( ) Re j t

rx rxi t i e 
, with complex current rxi , as the steady state current at receiver.

Figure 1. MISO-WPT system model.

Define 0nM as the mutual inductance between the n-th TX coil and the RX coil, and nkM
( n k ) as the mutual inductance between the n-th TX coil and the k-th TX coil respectively. The
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mutual inductances is a positive or negative real number, which depend on the physical characteristics
of each pair of TX and RX coils such as their relative distance, orientations, etc.
The source resistance of the n-th TX is denoted by , 0tx nr  . Then the diagonal resistance matrix is

defined as  ,1 ,1 ,diag , , ,tx tx tx Nr r rR  . Similarly, the total resistance of RX is denoted by rxr , which is
given by , ,rx rx p rx lr r r  , where , 0rx pr  is the parasitic resistance and , 0rx lr  is the load resistance.
It should be noted that ,rx lr is a real value resistor and , ,rx l rx pr r .

Assume that there is a controller applied in the MRC-WPT system, thus the information of system
pre-measured parameters can be obtained. Define the complex TX current ,tx ni as the design variable,
by optimization, the controller can realize magnetic beamforming.

By applying Kirchhoff’s circuit law, the coupled current rxi of to the RX is given by

0 ,1

N
rx n tx nn

rx

ji M i
r



  . (1)

Define the vector of all TXs currents as ,1 ,[ , , ]Ttx tx Ni ii  , and the vector of mutual inductances
between the RX coil and TXs coils as 10 0[ , , ]TNM Mm  . From (1), the receiving power of RX can
be given by

2
2 ,

, 2

1 =
2 2

rx l H T
r rx rx l

rx

r
p i r

r


 i mm i . (2)

Similarly, by applying Kirchhoff’s circuit law to each TX, the source voltage of the n-th TX can be
expressed as

2 2 2
0 0 0

, , , ,
n k n

tx n tx n tx n nk tx kk n
rx rx

M M Mv r i j M i
r r
 




   
      
   

 . (3)

Based on (3), the total transmitted power of TXs can be expressed as

  2*

21

1 1Re
2 2

N H H T
t k kk

rx

p v i
r




 
   

 
 i Ri i mm i . (4)

3. Problem formulation
In this section, we design the MRC beamforming to maximize the power delivered to the RX load
over transmit currents vector i , subject to the following constraints: the total source power should
meet a maximum level 0  ,i.e., tp  and each TX n should meet the largest sustainable power
value np . This is to ensure the normal operation of the transmitter and avoid damage due to excessive
power. In practical application scenarios, the receiver load is expected to achieve the maximum energy
receiving efficiency under the limited power of the transmitter.

3.1. Norm-bounded model

Define  ,n i jQ as   , ,  
,   

0,   otherwise
tx n

n

r i j n
i j

 
 


Q , based on the discussion above, the problem P1 is

formulated as follows
2

,
2max   

2
rx l H T

rx

r
r


i

i mm i , (5)

21. .    
2

H H T

rx

s t
r
 

 
  

 
i Ri i mm i , (6)

1 , 1,2,...
2

H
n np n N i Q i . (7)
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For the optimization problem P1, perfect channel information is assumed. However, in the practical
scenario, the mutual inductances cannot be measured precisely, thus the measurement errors must be
considered in the magnetic beamforming design. Generally, there are two error models for mutual
inductance measurement, namely a norm boundary model and a probability model. The norm-bounded
error model generates a worst case of robust design, which can provide a performance boundary of the
system. In this paper, the actual mutual inductance between the TXs and RX coils are assumed to be
two parts: pre-measured mutual inductance and errors. By applying norm-bounded model to mutual
inductance measurement, the actual mutual inductance vector m can be expressed as

q  m m m , (8)

 m , (9)
where qm is the pre-measured mutual inductances vector between TXs and RX, m is the error
vector of the mutual inductances, and  is the radius of the uncertainty region.
To take the error vector of mutual inductance measurement into account, the optimization problem P1
based on worst-case criterion can be formulated as problem P2, which is given by

P2:   
2

,
2max        

2
Trx l H

q q
rx

r
r


   

i
i m m m m i , (10)

  
21s.t.       

2
TH H

q q
rxr
 

 
      

 
i Ri i m m m m i , (11)

1 ,     n=1,2,...,N
2

H
n nQ pi i , (12)

 m . (13)
According to the convex optimization theory, (P2) is in general a non-convex QCQP problem [9] due to
the objective function in (10). It is well known that the general nonconvex QCQP problem is NP-hard
and thus, intractable. However, as we will show in the following, due to the special structure of the
objective function and the constraints, problem P2 can be reformulated as a convex SDP problem and
solved optimally.

3.2. Reformulation and optimization
Before optimizing, the problem P2 is transformed into a more tractable form. For the objective

function of P2 in (10), we obtain

 T T T T T
q q q       m m i m i m i m i m i . (14)

Then applying the Cauchy-Schwarz inequality to the second term in the right-hand-side of (14), we
have

T T    m i m i i . (15)
Applying (15) to (14) and defining I as the identity matrix, we then have that

   
  

2 2 2 22

2 2 22

2

2 2 .

T T T T
q q q q

T T H T T
q q q q q

  

   

      

     

m m i m i i m i m i i i

m i m i i i i m m m i I i
(16)

For the constraint function of (11), it can be solved with the help of the S-procedure [9]. The S-
procedure can be presented as the following lemma.
Lemma1: Let   ， ， ， ， ，h H n n 1

1 1 1 2 1 2
C  c c CA A b b , and suppose there exists an x with

 1 1 12Re c 0H T  x Ax b x . Then, the following relationship:

 1 1 12Re c 0H T  x Ax b x , (17)
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 2 2 22Re c 0H T  x A x b x , (18)
holds if and only if there exists a 0  such that

1 1 2 2

1 1 2 2

0
c cT T

   
   

   

A b A b
b b

± (19)

Define Hermitian matrix HX ii . By expanding equation (11) and equation (13), we can obtain that

   2 2

22Re 0T T Trx rx
q q q

r rTr 
 



        

  

RX m Xm m X m m X m

m
. (20)

Applying Lemma 1, we then equivalently reformulate

  2
2 2

( , , ) 02
q

T T rx rx
q q q

r rTr


  


 

  
  
     
  

I X Xm
X

m X m Xm RX
± . (21)

In summary, problem P2 can be equivalently reformulated to problem P3-SDP as follow

 
2

,
2max      Tr

2
rx l

rx

r
r


X

MX , (22)

 s.t.       , , 0  X ± , (23)

 Tr 2 ,    1,2,...n np n N Q X , (24)
Rank( ) 1, 0X X± , (25)

where  2T T
q q q   M m m m i I .

By ignoring the rank-one constraint in (25), we obtain the SDR of problem P3−SDP, denoted by
(P3−SDR), which becomes a linear optimization problem that can be solved by existing convex
optimization tools. At this point, an important question is that whether the optimal solution of
(P3−SDR), denoted as *X , is rank-one. If the solution *X to (P3−SDR) satisfies R ank( ) 1X , *X is
also the optimal solution to (P3−SDP). In the following part, we will prove that the rank of the
solution of (P3−SDR) is exactly 1.
Theorem 1: The optimal solution *X for problem (P3−SDR) is rank-one.
Proof: Let  10, ,..., 0T

q N  A ρ± and 0S± be the dual variables corresponding to the
constraints given in (23), (24), and (25), respectively. Thus, the Lagrangian of (P3−SDR) is written as

           
2

,
2 1

, , ,  Tr Tr , , Tr 2 Tr
2

Nrx l
q q n n nn

rx

r
L p

r


  


      X A ρ S MX A X Q X SX . (26)

Moreover, let q q   Ω Im , the Karush−Kuhn−Tucker (KKT) conditions [9] of (P3−SDR) are given by

 
2

,* * * *
2 1

, , ,  0
2

Nrx l H
q q q q n nn

rx

r
L

r





      X X A ρ S M Ω A Ω Q S , (27)

* * 0S X . (28)
Next, by multiplying (27) by X* on both sides and substituting (28) into the obtained equation, we
have

 
2

, * *
2 1

0
2

Nrx l H
q q q n nn

rx

r
r





   MX Ω A Ω Q X . (29)

Then, we obtain

    *
1

rank rank 1NH
q q q n nn




  Ω A Ω Q X M (30)
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Since the matrix 0H
q q qΩ A Ω ± and nQ must have full rank. Hence,  1

NH
q q q n nn




Ω A Ω Q

has full rank. Together with (30), *R ank( ) 1X can be proved.

4. Numerical results
In this section, we consider the MRC-WPT system with N=5 TX coils and one RX coil, each of which
has 100 turns and a radius of 0.1 meter and cooper wire with radius of 0.1 millimeter was used. The
resistance of all TXs is set identically as 0.336Ω. For the RX, its parasitic resistance and load
resistance are , 0.336rx pr  Ω and , 50rx lr  Ω, respectively. The self and mutual inductances are given in
Table 1.

Table 1. Mutual/Self inductances ( μH ).

TX1 TX2 TX3 TX4 TX5
TX1 47700 2.2970 0.8074 2.2970 6.5741
TX2 2.2970 47700 2.2970 0.8074 6.5741
TX3 0.8074 2.2970 47700 2.2970 6.5741
TX4 2.2970 0.8074 2.2970 47700 6.5741
TX5 6.5741 6.5741 6.5741 6.5741 47700

The load power of RX versus different levels of uncertainty bounds is given in Figure 2. It can be
seen from the figure that the receiving power decreases gradually as the uncertainty bounds increases,
therefore, the uncertain boundary should not be too large to guarantee the load power.

Figure 2. RX load power versus error region.

Figure 3 and Figure 4 show the total source power efficiency and load power of RX under the
uncertainty bounds. It can be seen from Figure 3 that, the beamforming design can achieve 97%
efficiency when uncertainty region =0 , however, the efficiency decreases significantly with the
increase of  . The results show that the beamforming design can work well only when the
measurement error is small. Furthermore, as shown in Figure 3, when the total transmitted power
increase to a certain extent, the efficiency will decrease. The reason of this phenomenon is that when
the when the total transmits power increases, the maximum limit of each transmitter power becomes
the main constrains of the beamforming design. As shown in Figure 4, when the total TXs power is
small, the received power in RX increase with the increase of the total TXs power, this mean that the
maximum total TXs power is the main constrain of the beamforming design under this condition. Like
the results in Figure 3, when the total transmits power increases to a certain extent, the received power
tends to be flat, which means the maximum limit of each transmitter power becomes the main
constrains.
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Figure 3. Efficiency versus TX power.

Figure 4. RX load power versus TX power.

5. Conclusion
In this paper, we investigated the robust beamforming design for the MISO MCR-WPT system with
the mutual inductance error between TXs and RX. The problem of maximize the power received by
RX while limit the total power required and the transmitting power of each TXs is solved by means of
semidefinite relaxation and thus the optimal solution of the problem is obtained. Simulation results
show that the beamforming design can achieve up to 97% transfer efficiency and the measurement
error mutual inductances significantly reduce the beamforming performance. Therefore, in order to
guarantee the beamforming performance, mutual inductances estimation errors should be minimized
as possible.
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