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Abstract. This paper describes artificial neural network approaches to convert the
conventionally expensive process of electronic modelling into an automated model generation
process. Artificial neural networks are trained using machine learning algorithm to learn the
electronic behaviour, and the trained neural network becomes a model to help predict the
electronic device behaviour. The automated model generation algorithm performs adaptive
data sampling to determine the amount and the distribution of training data needed to train
neural networks. The algorithm also determines the number of hidden neurons needed to
achieve a compact and accurate model. Also incorporated into the automated model generation
method is an efficient interpolation approach to make the process much faster. The objective of
the described method is to generate a compact neural-network based model with better
accuracy and in less time than conventional approach. Examples of automated modeling of
radio-frequency and microwave filters used in wireless electronic systems are described
showing the advantage of this technique.

1. Introduction

Artificial neural networks are important vehicles in data processing and machine learning. In addition
to popular applications such as image processing, speech recognition and control, artificial neural
networks have also found interesting applications in engineering fields such as electronic modeling
and design. Artificial neural networks are trained to learn the behavior of high-frequency electronic
devices through machine learning algorithms. The trained neural networks can then represent the
model of electronic devices [1,2]. Because neural networks can extract underline relationships from
electronics data, the neural network is a much more efficient way to evaluate electronic design
solutions than direct look-up table approach using measurement data. Various approaches to apply
neural networks to electronic modeling and data processing have been presented in the past, such as
radio-frequency and microwave modeling and design [1,2], high-power high-frequency transistor
modeling [3], electromagnetic modeling/optimization [4,5] and waveguide filter inverse modeling [6].
The combination of electronic knowledge and neural networks led to knowledge-based neural
networks for electronic modeling [7] and space mapping concepts [8] has been applied to map
empirical models to accurate device behavior through neural networks. Another important direction is
automation of neural network model development which was introduced to integrate all subtasks like
data generation, neural-network selection, training and test into one unified framework [9]. In addition
to making neural network training more efficient, the automated model generation also addresses two
critical problems of neural network training, i.e., determining the suitable amount of training data and
the suitable number of hidden neurons. The neural network training is performed stage by stage, where
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in each stage the amount of training data or the neural network size is adjusted, and neural network is
re-trained. In this way, the suitable amount of training data and the suitable number of hidden neurons
are automatically determined as part of the training process. However, process in [9] involves
repetitive training of neural networks while detecting if the training data is sufficient in different
regions of the nonlinear electronic parameter space. This reduces the model development efficiency.

This paper describes an advance on automated model generation [10]. We develop systematic
algorithm to incorporate data sampling, data generation, neural network training and testing in a more
efficient manner. We also incorporate interpolation techniques to avoid training the intermediate
neural networks during the automated model generation process. Training is performed only after data
sampling process has finished, making the automated modeling generation process faster than the
previously published approaches. In addition, we add a procedure to reduce the number of hidden
neurons so that the guess of initial neural-network structure can be more flexible and the final size of
the neural-network model is more compact. Demonstration of automated model generation for a radio-
frequency and microwave filters are also described.

2. Methodology

2.1. Training data and data generation for high-frequency electronics modeling

Let x represent a n-vector containing physical/geometrical parameters of an electronic device, e.g.,
gate length and gate width of a high-frequency transistor, or width and spacing of a transmission line.
Let y represent a m-vector containing the responses of the device/circuit under consideration, e.g.,
drain current of a transistor, or scattering parameters of a transmission line. Let the physics/
electromagnetics relationship between x and y be represented as y= y(x) . This relation can be highly

nonlinear and multi-dimensional. The theoretical model for this relationship may not be available (e.g.,
a new semiconductor device), or theory may be too complicated to implement, or the theoretical
model may be computationally too intensive for online microwave design and repetitive optimization
(e.g., 3D full-wave electromagnetic analysis inside a Monte Carlo statistical design loop).

To overcome these problems, we aim to develop a fast and accurate artificial neural network model
for the relation f by teaching/training the artificial neural network to learn the electronic behaviour
from a set of data. Let the training data be denoted as input-output sample pairs, {(x, d9), i=1,2, ...,
Na}, where d represents the data for output y when the inputs are x1, and Ny represents the number of
training data. The measured/simulated data of the outputs and the inputs are related by,

dV = fx) (1)

The data generation can be done either by measurement of the device, or by simulation using
electromagnetic simulators. Typically, data for nonlinear active devices such as Gallium Nitride
transistors are obtained by measurement. The scheme to gather measurement data is that we first apply
different voltages to the transistor gate and drain, and then measure the drain current to obtain current
voltage data. Secondly we generate small-signal data by measuring the scattering parameter data
(called the S-parameter data) over a frequency range, and re-perform such measurement again and
again for different operating bias voltages. Thirdly, we perform large-signal measurement by exciting
the device with large signal at the gate, and measure the distorted large-signal at the drain. In this way,
we obtain the measurement data in the form of harmonic data including signal at fundamental
frequency, second-harmonic frequency, and all the high-order harmonic frequencies. This harmonic
data measurement is repeated for different operating bias points, different values of fundamental
frequencies and different levels of input signal power. Consequently, a large amount of data is
collected, which contain valuable information of the device internal dynamic relationships, for which
no explicit formula is available.

Data generation for passive electronic components are typically achieved through simulation. This
data can be supplemented by measurement data. The reason is that the typical design variables for
passive components are geometrical variables such as height of an iris window in a waveguide
resonant cavity, or length and width of a microstrip in a filter. It is expensive to manufacture a large



ICMSOA2019 IOP Publishing
Journal of Physics: Conference Series 1419 (2019) 012014  doi:10.1088/1742-6596/1419/1/012014

number of passive components corresponding to different geometries just for purpose of data
collection. Therefore, electromagnetic simulation become typical choice for collecting data for passive
high-frequency electronic components. The amount of data becomes large if more geometrical
variables (e.g., length 1, length 2, ..., width 1, width 2, ... for multiple coupled microstrip lines) are
needed. In this case, we need to obtain data for various combinations of values from many geometrical
parameters.

2.2. Training of neural networks with automated model generation algorithm

To efficiently use data to train the neural networks, our automated model generation process includes
initial data generation, neural network training, neural network size adjustment, additional data
generation, and neural network testing. Incremental data generation is performed whenever and
wherever data are needed as decided by the model generation algorithm during neural network training
process.

The overall automated model generation process proceeds in stage-wise process [10]. Each stage
includes data generation, neural-network structure adaptation, training and test. Different stages may
have different data and different neural-network size. Our process uses three sets of data, namely
training, interpolation and test data. Training data are used to adjust neural-network weights during
training. Interpolation data are used to create local models in subregions of the model input space R°to
assess the adequacy of training data during training process. Additional training data are added upon
detecting data inadequacy by the interpolation criteria. Test data are used to check the quality of the
final neural model.

Let (x, y®) represent the ith data. Let LX, /X, and 7* denote training, interpolation and test data
respectively in the kth stage. Let H* denote the number of hidden neurons of neural network S in the
kth stage. The algorithm regards the original input space R° as one region at first. If the test error in the
region is large, the region would be divided subregions and new data are generated. In each stage, the
algorithm compares the test error in each subregion. The subregion with the maximum test error is
chosen as the worst region R*. Then R* would be further divided into 2" new subregions in the next
stage. In order to avoid training intermediate neural networks in each stage, we evaluate the test error
of various subregions using interpolation approaches during each stage of the automated model
generation process. Different subregions have different interpolations. When calculating the
interpolation in one region, the region is called the interpolation region. Even-though the electronic
behavior over the entire region of design space is complex and nonlinear therefore requiring a neural
networks to learn, the interpolation space is usually in a small local subregion. Therefore, a simpler
interpolation function g(x) is sufficient for interpolation space. In this way we speedup the overall
model generation process. In our work, we use polynomial interpolation. Let g(x) be the polynomial
interpolation function with N terms. Suppose p is a vector of coefficients in the interpolation function,
and h(x) is a vector of polynomial terms in the multi-dimensional space of x. For example, for a
second order polynomial in two variables, n =2, N=6, p=[ p1, p2, , ps] and h =[1, x1, x2, x1x2, X1, X2].

In general for neural networks with multiple outputs, say m outputs, p would be an N x m matrix.
To compute the test error for an interpolation region, we select M training data in and around the
interpolation region to form matrices A and B, such that

Ap=B. 2)

where A has N columns and M rows, and B has m columns and M rows, where N, M and m are the
number of elements in A, the number of training data selected, and the number of model outputs,
respectively. The elements in B are output values y from M training data. To determine A, the
locations of these M training points x) are related to x*, which is at the center of the worst region R”.
x is obtained as

x0=x"+ Q[ (xmax — Xmin )/Zr (3)

where 7 is the number of times the original region was divided to reach the present worst subregion R,
Xmin and Xmax are minimum and maximum values of the variables in the original x space, x" is the test
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point in R, and Q; is a n - n diagonal matrix with the values 0, +1, or -1 on its diagonal. Different
combinations of 0, +1, and -1 in the diagonal of Q; allow us to obtain different training points. After
normalizing the x and y values, the A matrix can be derived as a constant matrix, containing 0, +1, and
-1. Additional scaling factors can be applied to particular rows in 4 in order to emphasis the
importance of fitting particular data points. The least squares solution of normalized version of (2) is

p=(ATA)'ATB 4)

Subsequently the interpolation function is obtained for the subregion R*. Then, the test error Ej, of
the interpolation regions is calculated by comparing the g(x) and test data. The subregion with the
largest test error will be designated as the new worst region R*. Automated model generation process
will then enter the next stage where the new worst region is further divided, forming a new set of
subregions, and the process described in (2)-(4) is repeated. In this way, we take advantage of
availability of training data to produce localized interpolation function, avoiding the training of neural
network during intermediate stages of automated model generation process, and speeding up model
development. Neural network training is performed only during the last few stages of automated
model generation process. The final model is a neural network valid in the entire region. We also add a
procedure reducing the number of hidden neurons after good-learning is detected, as shown in figure 1.
In the figure, E¢ represents user-defined error threshold for training the model. S* denotes the neural
network in the kth stage of automated model generation process, and H* represents the number of
hidden neurons of S*. Symbols En and E; denote interpolation error w.r.t. test data, and training error
w.r.t. training data, respectively.

The algorithm will recursively reduce the number of neurons until the error of the reduced neural
network starts to increase. This procedure will allow the guess of the initial number of hidden neurons
to be more flexible, and make the final neural model more compact. The overall algorithm can start
from an initial set of data and initial neural network, and ultimately find the most compact neural
network to learn the given electronic problem using data collected at the most critical regions of the
input parameter space.

3. Experimental / Theoretical Results and Discussions
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Figure 1. Flow chart of the proposed automated model generation algorithm, including data
generation, neural network training, neural network size adjustment and neural network testing.
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In this section, we describe results of applying the automated model generation method to an
example of neural network modeling of a bandpass filter in wireless communication systems [10].
More specifically, the application of the method is demonstrated by the development of a parametric
model of a High-Temperature Superconductor (HTS) quarter-wave parallel coupled-line microstrip
filter [10,11] used in radio-frequency and microwave wireless electronic systems [8]. The HTS filter
structure is illustrated in figure 2. In order to generate training data for neural networks to learn, the
filter geometrical formulation is setup in a 3-dimension electromagnetic simulator. The
electromagnetic simulator is executed upon demand to generate training data at the worst sub-regions
of the modeling space in each stage as determined by the automated model generation algorithm.

Figure 2. The structure of the HTS coupled line microstrip bandpass filter example.

The response behavior of the radio-frequency/microwave filter is best represented by the transfer
function and the return loss of the filter. Since this filter operates in 4 GHz frequency range,
conventional resistor/capacitor/inductor representation is not applicable. Electromagnetic oriented
models are required to capture the subtle relationship between geometrical parameters and the filter
responses. However, standard electromagnetic simulation is time-consuming costing the designer’s
expensive online design time. We use neural networks to learn from electromagnetic data of the filter.
Using the automated model generation process, neural network models can be developed offline,
including automated data generation offline and automated neural network training offline. The
trained neural network is a fast and accurate model for designer’s online use, providing fast estimation
of electromagnetic behavior of the filter during filter design. In this way, filter design can be
substantially faster.

The input parameters for the neural network model are x = [L1, Lo, L3, S1, S, S3]', where L1, L and
L; are the lengths of the parallel coupled-line sections and S1 , S> and S3 are the gaps between the
sections. The outputs for the neural network are y=[Si1, S21]" where Si; represent the return loss of the
filter, and Sz:1 represent the transfer function of the filter in terms of the input-output wave signals.

Training data generation is done by an electromagnetic simulator, called CST Microwave Studio. In
this example, there are six geometrical variables, i.e., n = 6. Matrix A has 70 columns meaning that the
interpolation function has 70 coefficients or 70 polynomial terms (i.e., N=70). The number of rows of
matrix A is 729, meaning that the number of training samples around the neighborhood of an
interpolation space is 729 (i.e., M=729). Matrix B has 2 column and 729 rows. The worst region R" is
divided into 64 subregions, so there are 64 A matrices used during interpolation process. The
automated modeling methods used 1394 electromagnetic training geometries. After 6 stages of the
process in Figure 1, the final neural network training is finished. The test error of the final neural
network is 1.59% representing a good accuracy for engineering use. Figure 3 shows the neural
network response compared with original electromagnetic response, confirming that the neural
network has good accuracy for predicting the electromagnetic behavior of the filter. Notice that the
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neural network responses in figure 3 are calculated with two sets of testing geometry which are never
used in training.

1.2 - T 1.2
— Electromagnetic data
oo Neural network

1 = 5 1

0.8 0.8
— Geometry #1 — Geometry #2
506 w06

0.4 0.4

0.2} 0.2

. \ . y

3.8 3.9 4.0 4.1 4.2 3.8 39 4.0 4.1 4.2
Frequency (GHz) Frequency (GHz)

1.2 - h 1.2 ‘ =

1 1

0.8 0.8 b
— Geometry #1 - Geometry #2 }
g £ 0.6

0.4 0.4Ff

0.2 0.2

0, ; ; 0 ; k. ;

38 3.9 4.0 41 4.2 38 3.9 4.0 4.1 4.2
Frequency (GHz) Frequency (GHz)

Figure 3. The comparison of neural network result versus original electromagnetic test data of the
HTS bandpass filter at two different sets of geometrical values. For geometry #1, x=[4.45, 4.81, 4.60,
0.52,2.32,2.0]" (mm). For geometry #2, x=[4.58, 4.96, 4.46, 0.58, 2.10, 2.11]" (mm).

For comparison purpose, we also attempted conventional manual data generation and training of
neural networks. To achieve similar test accuracy (1.59%), we endup with much more training data
(4096 electromagnetic training geometries), and more training time (85 hours including data
generation and neural network training). Using the automated model generation algorithm, the training
data is judicially selected such that highly nonlinear sub-regions of the modeling space have more
training samples, and smooth subregions have less training samples. In this way, only 1394
electromagnetic training geometries are sufficient to achieve same accuracy as manual training with
4096 training geometries. Subsequently the automated model generation process is much faster than
manual data generation and training.

Further comparison is performed by comparing the method in this paper with the automated training
algorithm of [9]. The method described in this paper achieved same accuracy of trained neural
network as that of [9]. However, the model trained by the method in this paper used less stages (6
stages by the method in this paper versus 9 stages by the existing automated model generation of [9]).
The total amount of time for developing the model including electromagnetic data generation and
neural network training by the method in this paper is less than the existing automated model
generation of [9] (22 hours by automated algorithm in this paper versus 26 hours by previous
automated algorithm), and produced a more compact neural network. Other aspects for the comparison
are equal between the automated model generation algorithm of this paper and the automated model
generation algorithm of [9], including same optimization method for training, same electromagnetic
simulator, the same geometrical configurations for the bandpass filters. In training the neural networks,
the quasi-Newton algorithm, which is a second-order gradient based optimization algorithm, was used
for training. The models trained by the method in this paper and that in [9] are both validated by
comparing with original electromagnetic data simulated at 10001 frequency points across the entire
frequency range of interests. The reason for a net speedup of model development by the method
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described in this paper is due to the use of interpolation techniques in two stages of the automated
model generation, bypassing intermediate training of neural networks and thus shortening the overall
model development time. In this way, the model generation method described in this paper is faster
than the previously published automation methods [9].

4. Conclusion

An artificial neural network approach has been described to learn and predict the electromagnetic
behaviour of electronic components. The neural network training has been described through an
automated model generation process which includes data sampling to determine the amount and the
distribution of training data needed to train the neural network, and to determine the number of hidden
neurons to obtain a compact and accurate model. We have also described an interpolation approach to
improve the speed of the model development process. An example has been described for neural
network modeling of radio-frequency and microwave filters to illustrate that the training can be carried
out efficiently and the trained neural network model achieves good accuracy in predicting the
electromagnetic behaviour of the filter. The potential impact of this work is to employ artificial neural
networks to allow accurate electronic models to be developed in shorter time and by automation,
subsequently speeding up the design cycle of electronic circuits. This work is useful for electronic
designers in their electronic data processing, fast behaviour modelling and design of electronic
components and systems.
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