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Abstract. Today, online social networks play an important role in the information spreading.
Based on the social influence effect, posts can be spread across the network by repost
mechanism. This paper addresses the problem of using independent cascade model for repost
dynamics prediction in online social networks. A spreading post probability between two
connected users is presented as function of preassigned features and coefficients fitted by the
EM algorithm. This approach combines ideas of previously proposed methods. The list of
considered features is composed and it includes users, their relationships and posts features.
The iteratively solved by the Newton’s method system of equation is derived for independent
cascade model to obtain coefficients of a probability function. The experiments with the Sina
Weibo dataset show that the EM algorithm more accurately estimates unknown coefficients of
probability function that the logistic regression method. Since actual values of diffusion
probabilities are unknown for a real network, a problem of their estimation is considered as a
binary classification problem to determine accuracy of various methods. The independent
cascade model tuned by proposed method of diffusion probability estimation was verified. The
experimental results show than the model can commendably predict the reposting dynamics for
a given post.

1. Introduction
An online social network (OSN) is a web-service that allows its users to create a personal account,
explicitly connect to other users thus creating social relationships, and publish messages, called posts,
to share various kinds of information, such as review of any product or service, political views, ideas,
opinions, etc [1].

Based on the social influence effect, posts can be spread across the network through the principle
of informational cascade [1] by repost mechanism. If a large amount of users has adopted a post, i.e.
have made a repost of this post, it is considered viral. Modeling the post propagation process is useful
for estimation whether the post will become viral. Also, it allows defining a group of users who will be
interested in one or another content. In addition, users in OSN form communities [2] and such
modeling can be helpful to detect information transmission paths from one community to another.
Finally, information diffusion models are used to tackle the influence maximization problem, which
asks to find a set of the most influential users in the network [3]. This analysis of OSN can be carried
out for marketing, advertising and business purposes [4] or in the case of destructive information
diffusion (promotion of radical ideas, suicidal content, drug distribution, incitement to ethnic and
religious hatred, etc.) when a government needs to assess the situation [5,6].

2. Background and related work
An OSN can be formally represented by a directed graph �th� �� , where a set of nodes h t
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���� �� ��� are users and a set of edges � are relationships. If ��� �� � � , the user �� is called the
follower of user �� and the user �� is called the friend of user ��.

There are explanatory and predictive information diffusion models. Predictive models can be graph
and non-graph based and proposed to predict spreading process in OSN by learning from past
diffusion traces. The spreading process is characterized by two aspects: its structure, i.e. the spreading
cascade that transcribes who reposted whom, and its temporal dynamics, i.e. the evolution of the
diffusion rate which is defined as the amount of users that adopts the post over time [1].

This paper deals with the graph based Independent Cascade (IC) model [7]. In the IC model nodes
can have two states: active (it means that the node has already adopted the post), and inactive (the
node is unaware of the post or it is aware, but it did not adopt it). The process runs in discrete steps
and starts from a set of initially activated nodes. In each step, an active node tries to influence each of
its inactive followers. Regardless of its success, the same node will never get another chance to
activate the same inactive follower. The success of node � in activating the node � depends on the
propagation probability associated to the edge � t t�� �� . The process terminates when no further
node gets activated.

There is the asynchronous extension of IC model named AsIC [8]. The difference between AsIC
and IC models is that the first one unfolds a diffusion process along continuous time axis, and the
second one is discrete. The AsIC model also requires a time-delay parameter on each edge of the
graph.

Estimation of information diffusion probabilities for a real OSN is quite a challenge. In addition,
verification of such methods also causes difficulties, since actual values of probabilities are unknown.

Saito et al. [7] proposed a discrete diffusion probability function, the values of which were learned
by the Expectation Maximization (EM) algorithm. This method requires only a several past spreading
cascades and does not need to calculate any node, edge or post features. It does not scale for large
graphs since each edge must be present in training sample for accurate results. Therefore, this method
can’t be used in practice since real online social networks contain millions of users and billions of
connections.

In the paper “Learning diffusion probability based on node attributes in social networks” [9], Saito
et al. addressed the problem of learning parameters for AsIC model. A diffusion probability and a
time-delay are considered as continuous functions of the J-dimensional vector of node attributes. This
approach allows training the model in one small subgraph �� � � and then predicting the spreading of
new cascades in any other subgraph. According to the research of Saito et al. [7], objective function is
introduced and maximized by the EM algorithm. However, authors only experimented with synthetic
data and didn’t provide a practical solution.

Guille et al. [10] also dealt with AsIC model. They solved the problem of estimating a diffusion
probability as a classification problem for which the input data were semantic, social, and temporal
features. That is, the diffusion probability is defined as the probability that the edge � t t��F� belongs
to the “successful activation” class. To solve the classification problem, the logistic regression method
is used. The advantages of Guille’s approach include the simplicity and the high model training speed,
since there is no need to consider all attempts of successful and unsuccessful activations in training
cascades, as well as high prediction accuracy, confirmed by practical experiments. However, learning
by logistic regression method contravenes the IC model assumption that any of the active friends
could have influence on the newly activated node.

3. Notations
Let � t th� �� be a directed graph without self-links, where h and � t � h � h� stand for the sets of
all the nodes and edges, respectively. For each node � � h, let �t�� be the set of all the nodes that
have edges from �, i.e., �t�� t �� � h㌳t���� � ��, and let �t�� be the set of all the nodes that have
edges to �, i.e., �t�� t �� � h㌳t���� � ��.

Now let’s look at the diffusion process of some post. Let �th� be a set of nodes newly made active
at time-step h , where �th� is a set of initially activated nodes. The diffusion episode is denoted by
� t �th� � �t�� � �� �th�.
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Let �th� be a set of nodes made active by time-step t, i.e. �th� t �th�t��� .
Next, let there be a training sample of � independent diffusion episodes. Then ��th� equals �th�

and ��th� equals �th� for an episode with number � t �� ���� �.
Let � be a set of all posts in OSN. A set of all posts written by user � is denoted by �� . A set of

posts written by user � and contained the mentions of other users is denoted by Ɗ� � ��. Then, let Ϻ�
be a set of users who are mentioned in the posts of a user � and let hϺ� be a set of all the posts which
have mentioned a user �. Each post� is associated with the set of keywords ��.

4. Proposed method
According to Guille’s method [10], a diffusion probability of post � from newly activated node � to
its still inactive follower F is denoted as a simple and smooth function of the feature vector and the
coefficient vector as in equation (1). However, unlike Guille’s method [10], the coefficient vector is
learned by EM algorithm, according to Saito [7,9], not by logistic regression method. In addition, the
list of features is changed relative to Guille’s method [10].

���F� � t � ���F��� � t �
�texp tᗝ�h���F���

(1)

where ���F�� is the (J+1)-dimensional vector, first element of which is set to 1, i.e. ���F���h t � , and
others elements are composed of the J normalized features of user �, user F, relationship � t t��F� �
� and post�; �h t t�h� �� ��� is transposed coefficient vector, where �h t .��h݋�

4.1. Features
So it is proposed to consider the features of users (nodes), relationships (edges) and posts. The list of
features described below was obtained by the following way. All features from Guille’s method [10]
were taken without changes, each of boolean type features was replaced on similar a real type one and
several features were added by the authors. Then the best features were selected by the recursive
feature elimination algorithm.

For user, five features are captured.
 User’s activity as in equation (2). This feature characterizes user’s ability to post and is

computed as the average amount of posts, including reposts, emitted per hour.

� � t
��
�h
� if �� � �

h� Otherwise
(2)

where �h is the difference between the earliest and latest posts’ times measured in hours.
 The ratio of posts with mentions as in equation (3). This feature is taken without changes from

the paper “A predictive model for the temporal dynamics of information diffusion in online
social networks” [10] and provides an idea about the ability of a given user to distribute a
content to other users.

�h� � t
Ɗ�
��

� if �� � h

h� Otherwise
(3)

Last three user features characterize his/her popularity and socialization. They are determined by
the capacities of appropriate sets.

 Number of user’s followers.
 Number of user’s friends.
 Number of posts which have mentioned a user.
For a relationship, i.e. for a pair of connected users, six features are considered:
 Social homogeneity by mentions as in equation (4). This feature is also taken without changes

from the paper “A predictive model for the temporal dynamics of information diffusion in
online social networks” [10] and for users �� and �� it reflects the similarity of the sets of
users they talk to. It is computed with the Jaccard’s coefficient.
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�� ����� t
�Ϻ�� � Ϻ���
�Ϻ�� � Ϻ���

(4)

 Homogeneity by posts. This feature reflects the similarity of users’ interests. It is computed
with the Jaccard’s coefficient. There are three cases when post �� and post �� are equals: (i)
�� is repost of �� , (ii) �� is repost of �� , (iii) �� and �� both are reposts of another post
��.

 Social homogeneity by followers. This index describes homogeneity of users’ social circles. It
is computed with the Jaccard’s coefficient.

 Social homogeneity by friends. This index is similar to the previous one, but it describes
another aspect of users’ social circles homogeneity.

 The mentioning rate of the second user by the first one as in equation (5). This feature is
introduced instead of the similar boolean type one in “A predictive model for the temporal
dynamics of information diffusion in online social networks” [10] and it reflects a measure of
social relation between users.

�� ����� t
�Ϻ�� � hϺ

���
�Ϻ���

� �៩ Ϻ�� � h

h� Otherwise

(5)

 Correlation of temporal activity vectors as in equation (6). According to Guille’s method [10]
a day is considered as a partition of 6 blocks of 4 hours. So the fraction of tweets the user
emitted during each block is computed and a 6-dimensional vector noted h is filling: �th

5 h�� .
For two users coefficient of such vectors correlation shows whether users are online at the
same time.

� t
�th

5

h��
�� � h��

� (6)

Finally, one post feature is presented:
 User’s interest in the topic of post as in equation (7). It is computed as the ratio of the number

of user posts with at least one keyword of given post to the total number of user posts. This
feature replaces the similar boolean type one described by Guille in “A predictive model for
the temporal dynamics of information diffusion in online social networks” [10].

�� ��� t
���� �� � �� � ���

����
� if �� � h

h� Otherwise
(7)

where �� t �������

Before fitting coefficients, the all feature values are normalized by maximum value in the training
dataset. Normalization coefficients will be saved to divide on them subsequently computed when
modeling features values.

4.2. Coefficient fitting method
According to Saito [7,9], the system of equation (8) can be derived for IC model. The method of
learning coefficients is described below. Firstly, initial approximation of vector � is chosen. Then the
next two steps repeat until convergence:

1. The values of probabilities ����F��� for each of posts �� is computed by formula (1) for current
approximation of vector � t ��

2. Computed values ����F���are substituted into equation (8) and the system equation (8) is solved
by Newton’s method for obtaining the next approximation of vector � as a result.
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�t�

�

hth

h� ᗝ�

�� �� h F�� � � �� ht�

t
����F���

��F
� ᗝ� ���F�������F��� ᗝ

F�� � ��� ht�

���F������F������� t h (8)

where ���F��� t � ���F���� � and ��F
� is calculated by the formula (9).

��F
� t � ᗝ

���tF�� ��th�

t� ᗝ ����F����� (9)

5. Experimental Evaluation

5.1. Dataset
For the experimental evaluation, the Weibo-Net-Tweet dataset gathered by Jing Zhang et al. [11] was
used. The 65 diffusion episodes with sizes ranging from 50 to 600 reposts were selected from the total
dataset. For each selected episode the spreading cascade was restored relies on the assumption that a
user is influenced by a last friend who reposted the post before him. Then, the obtained cascades were
split into training and testing ones in proportion 75:25, respectively.

The examples of unsuccessful activation attempts are also needed to train and test the model,
therefore, for each spreadable post, author’s followers who did not adopt this post were randomly
selected. Their number was equal to the number of post adopters to equalize probabilities of making
type I and type II errors (the ratio of successful and unsuccessful attempts was obtained
experimentally). It is considered that a type I error ("false positive" finding) was made on time step h,
if the probability computed by the formula (10) is more than 0.5, and the user F did not make a repost.
Reciprocally, a type II error ("false negative" finding) is to see the probability less than 0.5 when the
repost is made by the user F. The condition of equality of "false positive" and "false negative" finding
probabilities must be observed to avoid underestimating or overestimating a diffusion episode size
when modeling.

�F t � ᗝ
���tF���th�

t� ᗝ � ���F��� � �� (10)

5.2. Accuracy estimate
Since actual values of diffusion probabilities in real social networks are unknown, to assess accuracy
of various methods of learning coefficient vector � in equation (1), we will assume that a probability is
determined correctly if neither a type I error nor a type II error was made. The results of testing the
EM algorithm and the logistic regression method are illustrated in Table 1.

Table 1. Learning method accuracy with the training: testing ratio 75:25.

Learning method Accuracy
EM-algorithm 0.75

Logistic regression 0.71

So model trained by the EM algorithm provides better accuracy than model trained by the logistic
regression method. The accuracy of the logistic regression method is lower than obtained in “A
predictive model for the temporal dynamics of information diffusion in online social networks” [10]
which can be explained by incompleteness of the dataset used to compute the features.

5.3. Modeling diffusion process
For each of the 15 test posts, a spreading cascade was obtained by IC model. Results for two various
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posts are shown on figure 1. In the case of first post, the number of reposts maximally increases in step
2 that means author’s followers are mainly adopters. In the case of second post, only a minor
proportion of adopters are influenced by author, but in the step 2 there are one or more influential
users who made their followers adopt the post. In both cases predicted number of reposts is close to
real one in each model time steps.

Figure 1. The number of reposts as a function of time step for two test posts.

6. Conclusion and future work
This paper addresses the problem of setting up and using IC model for obtaining a spreading cascade
[1] of post in OSN. A method of learning diffusion probability is proposed. It combines the ideas of
Guille [10] and Saito [9] methods. A diffusion probability is considered as a function of known
features and unknown coefficients. The list of features of users, their relationships and post was
composed. According to Saito [7,9], unknown coefficients are estimated with the EM algorithm. The
experimental results validate the ability of IC model tuned by proposed method to correctly predict the
reposting dynamics for a given post.

In future we plan to analyze post text [12] to increase an accuracy of estimation diffusion
probabilities. In addition, we plan to develop a method of time-delay diffusion estimation and research
the AsIC model. Finally, we need to compare an accuracy of the EM algorithm and the gradient
boosting algorithm.
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