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Noncommutative dynamical variables in magnetohydrodynamics
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Abstract – Magnetohydrodynamics (MHD) describes the behavior of a charged fluid in a strong
magnetic field. One way to analyze noncommutativity in MHD is by considering the result of
an eternal magnetic field on noncommutative (NC) photon dynamics. In this paper we have
introduced a new MHD Lagrangian and we have obtained the Navier-Stokes MHD equation. We
have constructed a NC algebra for the dynamical MHD variables and analyzed the mechanical
energy variation rate together with the coupling between the vortex and magnetic field. We have
calculated the rate of variation of circulation and analyzed each term. We have seen that these
terms are connected to noncommutativity which can act as a source of vorticity.
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Introduction. – Magnetohydrodynamics (MHD) is
the dynamics of an electrically conducting fluid, fully or
partially ionized gas or liquid metal, in low-frequency in-
teraction between electrically conducting fluids and elec-
tromagnetic fields. The applications of MHD cover a very
wide range of physical objects, from liquid metals to cos-
mic plasmas. In the field of space plasma [1–3], MHD
waves play a very important role. For a long time MHD
was the most used theory in the description of the dy-
namics of variation of astrophysical plasma systems such
as the formation of the solar corona [4–6]. We have many
examples about the application of MHD theory, such as
the study of the linear properties of the fast magnetosonic
wave propagating in inhomogeneous plasma [7–9], heating
and acceleration of the winds from rotating stars due to
the damped fast MHD waves for locally strong magnetic
fields in stellar atmospheres [10].

A standard path of analysis of MHD is the idea of an
action principle for the theory which can lead us to very
interesting results. In [11], Newcomb proposed for the
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first time the action principle for an ideal MHD, in Euler
and Lagrange variables, and then he was followed by other
authors [12–18]. The Lagrangian structure depends on the
choice of basic fields in each case.

In the last few years, an alternative manner to describe
fluid dynamics, which is still an open theoretical prob-
lem has been proposed. Some of us have investigated re-
cently this issue, already analyzed in the literature [19,20].
The idea is based on the proposal of a reformulation
of the equations of motion. The result was a set of
Maxwell-type equations to describe the fluid. Starting
from this new Maxwell-type structure for the equations
of motion [21–24], some of us have shown that a new
Lagrangian formulation for a compressible charged fluid
embedded in an electromagnetic field can be obtained and
the result is a Maxwell-type action for the fluid, where the
basic fields are the velocity, vorticity and the total energy.

This new structure for the equations of motion of a fluid
represents a new path in the analysis of the system dynam-
ics for compressible and incompressible fluids, as well as
for a charged fluid embedded into an electromagnetic field,
with important applications in plasma physics [20].

The concept of a NC space time is not new either, and
it was first discussed in a published paper by Snyder in
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1947 [25]. His work was motivated by the need to overcome
the divergences found in quantum field theory such as
quantum electrodynamics, to mention one example. The
noncommuting spatial coordinates [25] have well-known
consequences in physics. Namely, the quantized move-
ment of particles embedded in a strong magnetic field,
so that the projection on the lowest Landau level can be
explained, is depicted by noncommuting coordinates on
the plane perpendicular to the field [26]. A few years
back, this NC phenomenon has been used in several quan-
tum mechanical investigations, involving both theoreti-
cal models [27] and phenomenological applications [28].
Simultaneously, we can consider that generalizations to
quantum field theory have also been constructed, originat-
ing various NC field theories, for example, NC quantum
electrodynamics [29].

Since the construction of a NC space-time had its inspi-
ration in quantum phase space, in few words we can say
that the coordinate operators x̂i satisfy a kind of uncer-
tainty relation [x̂i, x̂j ] = iθij . The objective was to use
a space time coordinate system with a NC structure in
small scales and to introduce a cutoff in the ultraviolet
regime. However, shortly after Snyder’s paper, Yang [30]
demonstrated that, although using this NC algebra, the
QFT divergences are still there, causing work on noncom-
mutativity to be abandoned for some time. Then, 50 years
later, Seiberg and Witten [31] demonstrated that the al-
gebra resulting from a string model embedded into a mag-
netic field is a NC algebra.

The idea of introducing noncommutativity in MHD is
not new. In [32], the authors used the Moyal product
to analyze noncommutativity in electrodynamics to con-
struct the theory that describes a charged fluid in a strong
magnetic field. This result leads the fluid particles into
their lowest Landau level. The noncommutativity appears
in the charged fluid density, which does not commute with
itself. However, in this paper we extended this new struc-
ture to MHD, where we have a low-frequency interaction
between electrically conducting fluid, the electromagnetic
field and infinite conductivity. In this paper we have pro-
posed a MHD Lagrangian and we developed a noncommu-
tative (NC) generalization of the theory. The NC variables
were introduced in the theory from the canonical Poisson
brackets. We will see that the NC algebra will be accom-
plished in the velocities phase space. The motivation for
introducing a velocities NC algebra in fluid dynamics is
to obtain its effects in the same way they were obtained
in classical mechanics. In classical mechanics a symplectic
structure is assumed for the phase space. It is consistent
with the commutative algebra of NC quantum mechanics.
Hence, after Jackiw et al. [33] introduced NC fluid dy-
namics and its effects as an extension of MHD relevant to
quark gluon plasma, we asked about the consequences of
introducing NC fluid velocities. This paper is motivated
by this question.

We have followed here an organization of the subjects
such that, in the next section, we have provided the reader

with a very brief review of MHD. In the third section,
we proposed a new MHD Lagrangian and its NC version.
The circulation analysis is given in the fourth section. The
conclusions were described in the last section.

Basic review of MHD. – MHD is concerned with the
low-frequency interactions between electrically conducting
fluids and electromagnetic fields. At low frequencies, the
Maxwell displacement current is usually neglected. The
non relativistic mechanical motion is described in terms
of a single conducting fluid with the usual hydrodynamics
variables of density, velocity and pressure with electromag-
netic forces. This combined system of equations describes
the MHD formalism [1,2].

Let us consider the idealization of an incompressible,
“perfectly conducting” fluid in the absence of gravity, but
in an external magnetic field. By “perfectly conduct-
ing” we mean that the fluid has an infinite conductivity,
σ̄ → ∞. So, the basic equations of MHD with the dissi-
pative processes are

∂ �B

∂t
= ∇ × (�v × �B), (1)

and

∂�v

∂t
+�v · ∇�v = −1

ρ
∇

(
p +

B2

8π

)
+

1
4πρ

( �B · ∇) �B + ν∇2�v,

(2)
or

∂�v

∂t
+�l = −∇

(
1
ρ
p +

1
2
v2 +

B2

8πρ

)
+

1
4πρ

( �B ·∇) �B + ν∇2�v,

(3)
where �l = �ω × �v is the Lamb vector, p is the pressure and
ν = η/ρ is the kinematic viscosity. Equation (2) shows
that the magnetic force is equivalent to a “magnetic hy-
drostatic pressure” B2/8π, which is called the “magnetic
pressure.”

The infinite conductivity implies that

�E + �v × �B = 0, (4)

which can be used to eliminate �E in Faraday’s equations

∂ �B

∂t
= −∇ × �E (5)

yielding eq. (1). This nonlinear coupling between fluid
velocity and magnetic field leads to very interesting dy-
namic effects, in addition to the purely hydrodynamic non-
linearity �v · ∇�v.

The action principle for MHD. – Recently [21–24],
some of us have shown that a Lagrangian formulation for
a compressible charged fluid embedded in an electromag-
netic field can be obtained and the result is a Maxwell-type
action for the fluid, given by

L =
1
2

(
−∂�v

∂t
− ∇Ω + �k +

e

m
�E

)2

− 1
2

(
∇ × �v +

e

m
�B
)2

,

(6)
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where e is the charge and m is the mass of the charge,
Ω = h+ 1

2v2 is the total energy, h is the enthalpy per mass
unit. The vector �k = T∇S + 1

ρ∇σ means the contribution
due to both viscosity and statistical features; here T is the
temperature, S is the entropy per unit mass, and

σij = ηεij + ξijD, (7)

where D = ∂ivi, is the viscosity stress, η and ξ are the
well-known coefficients of viscosity [34].

In the MHD approximation, considering the incom-
pressible fluid, we can rewrite the Lagrangian in eq. (6),
using the condition in eq. (4), as

LMHD =
1
2

[
−∂�v

∂t
− ∇

(
1
ρ
p +

1
2
v2

)
+ ν∇2�v − e

m
�v × �B

]2

− 1
2

(
∇ × �v +

e

m
�B
)2

, (8)

in the incompressible fluid ∇σ = ν∇2�v. From the La-
grangian in eq. (6) we can write the equations of motion
for the electromagnetic fields, so we have that

∇ · �E +
e

m
∇ ·�l = 0 =⇒ ∇ · �̃E = 0,

∇ × �B − ∂ �E

∂t
=

m

e
�Jl, (9)

where �̃E = �E + m
e
�l and �Jl = ∂�l

∂t − ∇ × �ω. Equations (9)
are the MHD equations, namely, they are the MHD mod-
ified Maxwell equations. The other two are the remaining
Maxwell equations that were not affected by the MHD
terms.

Moreover, for the low frequency, where the displacement
current is neglected, the Ampère law is

�j = ρε�v =
1
4π

∇ × �B, (10)

where ρε is the charge density. So, we have from eq. (8)
that

LMHD =
1
2

(
−∂�v

∂t
− ∇φ + ν∇2�v +

1
4πρ

�B · ∇ �B

)2

− 1
2

(
∇ × �v +

e

m
�B
)2

, (11)

where

φ =
1
ρ
p +

1
2
v2 +

B2

8πρ
(12)

and using the identity

�B × ∇ × �B =
1
2
∇( �B · �B) − �B · ∇ �B.

An interesting consequence of the formalism, eq. (11),
concerning MHD, is given by the conjugated momenta as-
sociated with the velocity

�π =
δLMHD

δ�̇v
= −∂�v

∂t
− ∇φ + ν∇2�v +

1
4πρ

�B · ∇ �B = −�l

(13)

when it is compared with eq. (3). Thus, we have obtained
the Navier-Stokes equation (2) for the MHD.

Now, from the Legendre transformation H = �π · �̇v − L
and eq. (13), we obtain the Hamiltonian density

H =
1
2
π2 − �π · ∇φ + ν �π · ∇2�v +

1
4πρ

�π · ( �B · ∇) �B

+
1
2

(
∇ × �v +

e

m
�B
)2

. (14)

In this Hamiltonian formulation, the canonical Poisson
Bracket structure is given by

{vi(�x), vj(�y)} = 0 and {vi(�x), πj(�y)} = δijδ
3(�x − �y).

(15)
From the Hamiltonian density and the Poisson bracket
structure we obtain that

�̇v(�x) =
∫

d3�y{�v(�x), H(�y)}

= �π − ∇φ − ν∇2�v +
1

4πρ
( �B · ∇) �B (16)

or

�π =
∂�v

∂t
+ ∇φ − ν∇2�v − 1

4πρ
( �B · ∇) �B = −�l, (17)

which is the Navier-Stokes equation written in eq. (2).
And the dynamical equation for �π is given by

�̇π(�x) =
∫

d3�y{�π(�x), H(�y)}

= −ν∇2�π + ∇ × �ω +
e

m
∇ × �B (18)

which shows the dependence on both the magnetic field
and the vorticity.

From eq. (2), a useful equation related to the conserva-
tion of kinetic energy can be obtained. Taking the scalar
product of �v with the Navier-Stokes equation in eq. (2)

�v · ∂�v

∂t
+ �v ·

[
(�v · ∇)�v

]
+

1
ρ
�v · ∇P − ν�v · ∇2�v

− 1
4πρ

�v · [(∇ × �B) × �B] = 0; (19)

using that ∇ · �v = 0, the incompressible fluid condition,
we have that

1
2

∂v2

∂t
+

1
2
(�v · ∇)v2 +

1
ρ
∇ · (P�v) − η∇ · [�v · (∇�v)]

+ η(∇�v)2 − 1
4πρ

�v · [(∇ × �B) × �B] = 0 (20)

or

∂

∂t

(
1
2
ρv2

)
+ ∇ ·

(
ρ�v

v2

2
+ P�v − ν�v · (∇�v)

)
+ ν(∇�v)2

− 1
4πρ

�v · [(∇ × �B) × �B] = 0. (21)
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The last term can be rewritten as

1
4πρ

�v ·
[
(∇ × �B) × �B

]
=

1
4πρ

(∇ × �B) · (�v × �B)

=
1

4πρ
(∇ × �B) · �E

=
1
4π

�B · (∇ × �B) − 1
4π

∇ · ( �E × �B). (22)

But, from eq. (1), we have that

�B · ∂ �B

∂t
=

1
2

∂B2

∂t
= − �B · (∇ × �E)

or

�B · (∇ × �E) =
1
2

∂

∂t

(
1
2
B2

)
. (23)

So, substituting eq. (23) into eq. (22) we have from eq. (21)
that

∂

∂t

(
1
2
ρv2 +

1
8π

B2
)

+ ∇ ·
[
�v

(
1
2
ρv2 + P

)
+

�E × �B

4π
− η�v ·

(
∇�v

)]
= −η(∇�v)2. (24)

Note that �E × �B/4π is the Poynting vector, namely the
electromagnetic energy flux density. The total energy
is therefore not conserved because of the right term in
eq. (24) which can be interpreted as an energy lost due to
viscous dissipation. Note that in contrast to the energy
loss due to the term η�v · (∇�v) in eq. (24), the energy loss
due to −η(∇�v)2 does not go into a neighboring fluid el-
ement, because this term has always the same sign. We
will now extend all this structure presented in MHD by
introducing the NC algebra.

Noncommutative dynamical variables in the
MHD algebra. – We have generalized the canonical for-
mulation of the MHD in the last section. Now let us ex-
tend the Poisson brackets for the velocity field such that

{vi(�x), vj(�y)} = θijδ
3(�x − �y), (25)

where θij is an anti-symmetric and constant parameter
tensor, which transforms the velocity algebra into a NC
one. So, by keeping the form of the Hamiltonian in eq. (14)
unaltered, we obtain the NC generalized Navier-Stokes
equation,

v̇i(�x) =
∫

d3�y {vi(�x), H(�y)}

= πi − ∂iφ + ν∂2vi +
1

4πρ
(Bj∂j)Bi

+ νθij∂
2πj − θikεjnkεjlm∂n∂lvm

− e

m
θikεjnk∂nBj+θikvk∂jpj , (26)

which can be rewritten as
∂vi

∂t
+ ∂iφ − ν∂2vi − 1

4πρ
(Bj∂j)Bi = −li − νθij∂

2li

−θikεjnkεjlm∂n∂lvm − e

m
θikεjnk∂nBj − θikvk∂j lj (27)

or

∂�v

∂t
+ (�v · ∇)�v = −1

ρ
∇

(
p +

B2

8π

)
+ ν∇2�v

+
1

4πρ
( �B · ∇) �B + ν�θ × ∇2�l

+ �θ ×
[
∇ ×

(
�ω +

e

m
�B
)]

+ (�θ × �v)∇ ·�l, (28)

and we can see that when θij = 0 we recover the canonical
equation for MHD in eq. (4). Let us analyze the contribu-
tion to both the mechanical energy and the conservation
of circulation in the NC space. In the same way we did
to obtain eq. (24), taking the scalar product of �v with
eq. (28), we have that

vi
∂vi

∂t
+ vi(vj∂j)vi = −1

ρ
vi∂ip + νvi∂

2vi

+
1

4πρ
vi[εinmεmjkBn(∂jBk)] + νθijvi∇2lj

− θikviεjnk∂n

(
ωj +

e

m
Bj

)
+ θikvivk∂j lj . (29)

Notice that the last term in eq. (29) θikvivk∂j lj = �θ · (�v ×
�v)∇ · �l = 0. So, after a few simple calculations and using
eqs. (22) and (23), we have that

∂

∂t

(
1
2
ρv2 +

1
8π

B2
)

+ ∂k

[
vk

(
1
2
ρv2 + P

)
+

1
4π

εijkEiBj

−ηvj∂jvk + ηθijvi∂klj + ρθimεjkmvi

(
ωj +

e

m
Bj

)]
=

− η(∂kvi)2 + ηθij(∂kvi)(∂klj) + ρθk(∂kvj)
(

ωj +
e

m
Bj

)
.

(30)

We can also see that in this case not only the dissipation
contributes to the non-conservation of the mechanical en-
ergy, we have one term due exclusively to noncommuta-
tivity. Making η → 0 we obtain that

∂E
∂t

+ ∂k

[
vk

(
1
2
ρv2 + p

)
+

1
4π

εijkEiBj

+ ρθimεjkmvi

(
ωj +

e

m
Bj

)]
=

+ ρθk(∂kvj)
(
ωj +

e

m
Bj

)
, (31)

where the energy is

E =
1
2
ρv2 +

1
8π

B2. (32)

It is interesting to note that the NC term responsible for
the non-conservation of energy in this limit has a typical
minimum coupling between both the vortex and magnetic
field, as already observed in [22].
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The circulation. The scalar functional of considerable
importance in the description of vortex flows is the cir-
culation C around a simple curve γ, defined as the line
integral around a closed curve of the velocity field

C =
∮

γ

�v · d�x, (33)

where �v is the fluid velocity of a small element of a defined
curve and d�x is the differential length of the mentioned
small element. The circulation, associated with a physical
quantity, calculated along the loop, may be zero or finite
depending on whether this physical quantity is an exact
differential or not. For example, if this physical quantity
is TdS (T = temperature; S = entropy), the circulation
is generally finite and measures the heat gained in a qua-
sistatic thermodynamic cycle. The vorticity is the circula-
tion per unit area calculated around an infinitesimal loop.
On the other hand, we can say that the flux of vorticity is
the circulation. The circulation around a closed contour
is equal to the total vorticity enclosed within it. We now
calculate the rate of change of this circulation as the curve
moves with the fluid [35]

dC
dt

=
d
dt

∮
γ

�v · d�x =
∮

γ

[
∂�v

∂t
+ (∇ × �v) × �v

]
· d�x. (34)

Substituting eq. (28) into eq. (34) we have that the rate
of variation of the circulation C is
dC
dt

= −
∮

γ

∂iEdxi + ν

∮
γ

∂2vidxi +
1

2πρ

∮
γ

( �B · ∇)Bidxi

− νθij

∮
γ

∂2ljdxi − θikεjnk

∮
γ

∂n

(
ωj +

e

m
Bj

)
dxi

− θik

∮
γ

vk∂j ljdxi, (35)

where
E =

1
ρ
P +

1
2
ρv2 +

1
8π

B2. (36)

In vectorial form, we can write eq. (35) as

dC
dt

= −
∮

γ

∇E · d�x + ν

∮
γ

∇2�v · d�x

+
1

2πρ

∮
γ

( �B · ∇) �B · d�x − ν

∮
γ

∇2(�l × �θ) · d�x

−
∮

γ

(∇ ·�l)(�v×�θ)·d�x −
∮

γ

(d�x · ∇)
[
�θ ·

(
�ω +

e

m
�B
)]

+
∮

γ

(�θ · ∇)
[(

�ω +
e

m
�B
)

· d�x
]
, (37)

where we have used that θij = εijkθk.
We can observe from eq. (37) that the first term of the

right-hand side contributes to the rate of change of the
circulation if ∮

γ

∇E · d�x =
∫

∂γ

dE �= 0,

namely, if the fluid-dynamic force derived from the energy
density E is not an exact differential.

Besides, we have six other contributions concerning the
rate of variation of circulation. The second term on
the right-hand side of eq. (37) is also a source term for
the contribution due to the viscosity of the fluid, and rep-
resents a flow through the surface ∂γ. The third term on
the right-hand side of eq. (37), which is a contribution due
to the magnetic field, also acts as a source term for the
vorticity.

The last four terms of eq. (37) represent the NC con-
tributions for the rate of variation of circulation. Three
of them are functions of the Lamb vector, which acts
as a vortex force. Considering the second NC term in
eq. (37), the one with the divergence of �l if we consider
a Navier-Stokes flow, the Lamb vector divergence is the
source term in a Poisson equation for the Bernoulli func-
tion, i.e., noncommutativity introduces a turbulent charge
density n(�x, t)(∇ · �l = −∇2Φ = n(�x, t)), if we consider a
high Reynolds number flow. Hence, the Lamb vector di-
vergence term in eq. (37) puts the Bernoulli function into
the rate of variation of circulation.

For irrotational flows, where �ω = �l = 0, only the NC
terms having �B survive. Namely, noncommutativity in-
troduces no turbulent charge density. Having said that,
the terms that are related to NC variables, act like sources
that could, in principle, generate vorticity. However, the
third NC term, that is negative definite, acts to reduce the
rate.

Conclusions. – We can say that there exist two ways
of introducing noncommutativity into a theory. One way
is to use directly the Moyal product in order to obtain the
NC extension of the original theory. In the other way, it
is more appropriate to apply it inside the fluid formalism,
which means to begin with the Lagrangian fluid model, to
introduce the NC space coordinates and, after that, to use
the map that acts like a bridge between the Lagrangian
framework and an Euler Hamiltonian structure to yield
the NC effects into the fluid field theory.

In this paper we have followed the second approach, but
instead of NC space coordinates, we described a NC phase
space with NC dynamical variables. Namely, we con-
structed a NC algebra between the velocity and its conju-
gated momentum and, with this new NC algebra, we have
constructed the NC version of the MHD equation. We cal-
culated the NC extension of the rate of mechanical energy
where the NC term, that breaks the energy conservation,
has a typical minimum coupling between both the vortex
and magnetic field. This result motivated us to calculate
the rate of variation of the circulation, which describes
the vortex flow. The terms due to the noncommutativ-
ity have the Lamb vector inside and so, act as a kind of
source that could generate vorticity although one has neg-
ative sign and reduce the rate of variation of circulation.

On the other hand, in eq. (28), the NC version of the
MHD Navier-Stokes equation, i.e., the equation for the
acceleration of the flow, we can see clearly that the NC
terms accelerate the flow. We can conjecture if these terms
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act as a vortex force. We can see clearly that when θ = 0,
we recover the Navier-Stokes MHD equation.
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