
November 2019

EPL, 128 (2019) 40007 www.epljournal.org

doi: 10.1209/0295-5075/128/40007

Solving Sudoku game using a hybrid classical-quantum algorithm

Ankur Pal
1
, Sanghita Chandra

1
, Vardaan Mongia

2
, Bikash K. Behera

1 and Prasanta K. Panigrahi
1

1 Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata
Mohanpur 741246, West Bengal, India
2 Department of Physics, Panjab University - Chandigarh 160014, Punjab, India

received 21 February 2019; accepted in final form 1 December 2019
published online 31 January 2020

PACS 03.67.-a – Quantum information
PACS 03.67.Ac – Quantum algorithms, protocols, and simulations

Abstract – Sudoku is a fun combinatorial game, based on the Latin square, which has wide
applications as being an efficient design in controlling multiple sources of variable nuisance simul-
taneously. Quantum Sudoku solver uses basics of quantum mechanics such as superposition and
entanglement. Using the concept of duality quantum computing, we propose an algorithm which
solves a 4 × 4 Sudoku puzzle with a space complexity [O(N2(4 + log(N))] (where N = 4). Our
proposed algorithm has a primary aim to provide a theoretical framework for an application of
duality quantum computing.

Copyright c© EPLA, 2020

Introduction. – Sudoku is a logic-based, combina-
torial number placement puzzle, known to cause brain
stimulation and relaxation [1]. The history of Sudoku
most likely stems from the mathematical concept of
Latin squares [2]. In the 1780s, a Swiss mathematician,
Leonhard Euler, put forward the idea of arranging a given
set of numbers in a grid such that any given number (or
symbol) occurs just once in each row and column. To-
day, Latin squares are extensively used in statistical anal-
ysis [3]. Howard Garns, an Indianapolis architect, by
adding another following constraint to the aforementioned,
derived Sudoku from Latin squares. The constraint is
“Every main 3 × 3 block must have every given number
occurring just once”. By “main”, it refers to 9 mutu-
ally exclusive grids such that no two grids contain a single
common cell [4]. For over 25 years, according to Dell mag-
azines, the puzzle was known under the name of “Number
Place”.

Sudoku is a member of an important class of constraint
satisfaction problems (CSP) [5]. The Sudoku puzzle on
N2 × N2 grid of N × N blocks is an NP-complete prob-
lem [6,7]. Algorithms such as backtracking, SAT-based
solver (using enumeration of solutions [8]), quantum an-
nealing [9,10] can solve most of the 9×9 puzzles. However,
for a large value of N , a combinatorial explosion occurs ar-
resting the number of the Sudoku that can be constructed
and solved. In this paper, our focus is to solve a proper
4 × 4 Sudoku (unique solution Sudoku with square main
blocks) which can be generalized to higher-order proper

Sudoku. Sudoku is closely associated with permutation
groups in group theory [11,12]. Over time, many variants
of Sudoku have been introduced [13]. Research works are
also carried out in developing quantum games using quan-
tum strategies [14]. Efforts have also been made to incor-
porate Sudoku in quantum cryptography for generation of
quantum key distribution using a Sudoku variant of the
BB84 protocol [15]. Although Sudoku solvers using clas-
sical algorithms existed for finite small grid Sudoku’s, the
first “commercial” quantum chip for solving finite Sudoku
was proposed by D-Wave [16], where they used quantum
annealing to solve it.

There are two main challenges to this problem. One is
the logical complexity of individual steps involved in solv-
ing the problem and the second is the structural depen-
dence amongst individual steps, i.e., whether independent
(applied in parallel) or dependent (applied sequentially)
steps [17]. One is yet to come up with a quantum algo-
rithm which can deterministically achieve this feat for any
N × N Sudoku.

Quantum computing. – Quantum computing, in
contrast to classical computing, uses qubits |0〉 and |1〉,
which display properties like superposition and entangle-
ment. They provide quantum parallelism to speed up the
processing speed. In quantum computing, this comes at
the cost of design complexity of the circuit. In our al-
gorithm, we show that by using a quantum computer,
we may be able to solve some particular set of problems

40007-p1

Ankur Pal et al.

compromising exponential growth in the problem state
space at the expense of exponential growth in computa-
tional time. In our algorithm, we have used duality mode
on quantum computer to simulate duality quantum com-
puting along with a Python program to efficiently solve
the Sudoku game.

Duality computing and duality mode. – A duality
computer is a moving quantum computer passing through
d-slits, i.e., it takes the qubit to a superposition state,
which is retrieved at each slit with a certain weightage.
The duality computer endows us to perform summation
of unitary operations apart from known unitary opera-
tions in a quantum computer. Duality computing has
improved Shor’s algorithm to prime factorize large num-
bers [18]. Further, the fixed-point quantum search pro-
posed by Mizel [19] can effectively be implemented in a
duality quantum computer [20]. Duality quantum com-
puting has also been applied to simulate a generalized
anti-PT-symmetric two-level system [21]. In our algo-
rithm, once we know that a particular larger superposi-
tion has to be reduced to a smaller superposition, deleting
a marked state (a state from a superposition) from an
arbitrary set of basis can be done by simulating a dual-
ity computer [22] on a quantum computer. This can be
made by simulating it on a quantum computer via duality
mode and recycling quantum computing. Unitary oper-
ations can then be performed on each of these obtained
superposition states. We use a (n + 1)-qubit quantum
computer to simulate a n-qubit duality computer via du-
ality mode. Using the principle of relativity, instead of
a moving quantum computer through stationary slits, we
pass the stationary quantum computer through moving
slits. This helps in simulating duality mode on a quantum
computer. The n qubits make the stationary quantum
computer and the auxiliary qubit is used to make slits
(2 in our case). Depending upon the type of problem un-
der consideration, one can use more slits. One just needs
to use more auxiliary qubits to simulate more slits. Two
additional gates other than the already known quantum
gates, quantum wave divider (QWD) and quantum wave
combiner (QWC), are used in our algorithm to simulate
an n-qubit 2-slit duality mode (fig. 1). We make the fol-
lowing correspondence between the duality computer and
the duality mode simulated on a quantum computer:

|φ〉|ku〉 ↔ |φ〉|0〉, |φ〉|kd〉 ↔ |φ〉|1〉, (1)

where |ku〉 (|kd〉) is the center of mass for the trans-
lational motion of upper (lower) subwave function [23].
When the auxiliary qubit is in the |0〉 (|1〉) state, it resem-
bles a duality computer subwave from the upper (lower)
slit. Initial and final wave functions of the duality com-
puter are ascribed to the auxiliary qubit being in the |0〉
state. Thus, the initial state of the duality computer is
|φ〉|0〉. We perform the QWD [24], by using a Hadamard
gate, to switch on the duality mode, and the state becomes
|φ〉 |0〉+|1〉√

2
, namely, the QWD operation is equivalent to a

Fig. 1: Representation of a 2-slit duality mode on a quantum
computer. Duality mode is simulated using the product space
of element state |φ〉 and auxiliary qubit |0〉.

Walsh-Hadamard operation on the auxiliary qubit. After
conditional gate operations on different slits, the state
takes the following form:

U0|φ〉|0〉 + U1|φ〉|1〉√
2

. (2)

The QWC [25] operation can be simulated by a Walsh-
Hadamard operation on auxiliary qubit to switch off the
duality mode. After QWC, the wave function becomes

U0 + U1

2
|φ〉|0〉 +

U0 − U1

2
|φ〉|1〉.

Measurement is performed on the n qubits on the con-
dition that the auxiliary qubit is in |0〉 state. Then the
wave function is collapsed and (U0 + U1)|φ〉 result is
read out. The probability of obtaining a result is P0 =
〈φ|(U0+U1)

†(U0+U1)|φ〉
4 .

The probability of not obtaining a result is 1−P0 and if
this occurs, the state in |1〉 collapses, and the wave func-
tion becomes

|φ′〉 = N ′U0 − U1

2
|φ〉|1〉,

where N ′ is the renormalization factor.
Then a unitary recovering operation V is performed on

the n qubits to restore the initial input state. It then flips
the auxiliary qubit state |1〉 to |0〉. The (n + 1) qubits are
recovered to the initial states of the quantum circuit. This
calculating process recycles in loop until the conditional
measurement is performed to obtain a result. This process
is known as the recycling quantum computing mode.

Sudoku: rules and outline of the algorithm. –
Sudoku is played under the rule that every given number
from the set of four states (for 4×4 Sudoku) must appear:

– exactly once in every row;

– exactly once in every column;

– exactly once in the main 2 × 2 block;

where the earlier definition of “main” stands true. We
develop a solution using the given constraints (initially
filled cells) in an otherwise empty Sudoku. First, we put
every empty cell in a superposition of all the four states
(using 2 qubits). Next, we reduce the superposition of

40007-p2

Solving Sudoku game

Fig. 2: Representation of a 4×4 Sudoku board. Each cell must
have log2 4 qubits to represent the 4 states in binary (table 1)
and 4 additional qubits: 1 to mark the clues and 3 as auxiliary
qubits, respectively. Each cell requires (2 + 4) qubits. For a
4 × 4 Sudoku having 16 cells, a total of 96 qubits (16 ∗ 6) are
used. Each uniquely coloured square represents a 2 × 2 block
and within it, 4 qubits represent one cell.

4 states to 3, 2 or 1 with the help of constraints given.
For reducing the superposition, we incorporate “deleting a
marked state algorithm” using duality mode on a quantum
computer. To mark the cells that have been solved, we use
a classical Python program.

Detailed algorithm with quantum circuit. – We
take 96 qubits to represent our Sudoku board. Six qubits
are assigned to every cell, amongst which the first two
qubits associated with a cell represent the possible ele-
ments of the cell (see fig. 2). For Sudoku, we need super-
position of four elements that can be prepared by using
two qubits. Each element is assigned to the corresponding
quantum state as shown in table 1.

In fig. 2, we give the representation of qubits for a 4× 4
Sudoku board. Different 2 × 2 blocks are illustrated in
different colours and each cell is indexed as (X,Y), where
X = {A,B,C,D} and Y = {1, 2, 3, 4}.

The third qubit of every cell represents whether the cell
has a clue (constraint) or not. Here we assume the state
|1〉 as a clue. The fourth, fifth and sixth qubits are used
as auxiliary qubits for deletion of a marked state from
a superposition of possible states. The first six qubits
represent the first cell in the first 2 × 2 main block, the
next six represent the second cell in the same 2 × 2 main
block, and so on as given in fig. 2. To begin solving our
Sudoku, we must first input the clues in their proper places
according to our index and put the third qubit of that cell

Table 1: Quantum states and corresponding elements.

State Element

|00〉 1

|01〉 2

|10〉 3

|11〉 4

Fig. 3: An unsolved Sudoku (left) and marking (by ∗) of cells
containing clues (right).

in the |1〉 state. One such unsolved Sudoku is shown in
fig. 3. All the cells with no initial constraints (clues) must
have the first two qubits in |+〉 states and the third qubit
in |0〉 state. The three auxiliary qubits (fourth, fifth and
sixth qubits) of all cells are initially assigned to the |0〉
state.

In accordance with our algorithm, the circuit checks cell
by cell whether it is a given constraint. The cells are
“marked” by the Python code, thereafter which turns out
to be a clue in the next step, as shown in fig. 3. We check
for the third qubit of every cell to be in the |1〉 state, and
if so, our circuit triggers the deletion process depending
on the state of the first two qubits of that cell. We use
controls and anti-controls to trigger deletion of different
states in 2 × 2 main blocks [13] according to the clue as
shown in fig. 4.

For the deletion process, we use the above-mentioned
duality mode. The quantum circuit used for deletion is
given in fig. 5.

The auxiliary qubits are put in |+〉 state by using a
Hadamard gate, which is analogous to a quantum wave
being split into two subwaves (the Hadamard gate acts as
the QWD here). The |0〉 state represents one subwave and
|1〉 state represents the other. The next step is to mark the
state to be deleted by adding π phase to it in one of the
subwaves (in our case the |0〉 state subwave). The states
are marked in correspondence with the clue (table 1). We
then apply another Hadamard gate to simulate the com-
bination of two subwaves (QWC), thereby, entangling the
marked state with the |1〉 state of the auxiliary qubit and
hence obtaining the rest of the states entangled with |0〉,
consequently deleting the marked state. If a deletion is
performed twice, we get back the original state. Therefore

40007-p3

Ankur Pal et al.

|α1〉

|α2〉

|α3〉

|P 〉

|Q〉

|R〉

|ψB〉 A1 B1 C1 D1

Fig. 4: Quantum circuit illustrating the deletion of states.
Here, |α1〉 and |α2〉 represent the corresponding quantum states
of a cell (see table 1), and |α3〉 represents whether the cell has a
clue or not and it only triggers deletion process if |α3〉 has been
marked as a clue. From the state |ψB〉 (the current superposed
state of the cell), the operations A1, B1, C1, and D1 are used
to delete the states |00〉, |01〉, |10〉, and |11〉, respectively, from
|ψB〉 (see fig. 5). |P 〉, |Q〉 and |R〉 are auxiliary qubits.

3 auxiliary qubits are required for each cell: one each for
2×2 block, row, and column of the board. Since there can-
not be more than one clue in the same row, column or the
2× 2 block, deletion only takes place once. If all the mea-
surement results are |0〉, then we move forward with our
algorithm, and if at least one of them is |1〉, then we know
that it is not a desired result, so we discard the result and
repeat the process. After the completion of this process,
we get some new clues due to deletion of three of the four
entangled states. The cell index of these new clues can
be anticipated using classical means, without knowing the
clue itself. We only need to know the cell index of these
new clues in order to prepare the third qubit of that cell in
the |1〉 state. Based on the cell index, the clue in the cell
can be found by simply measuring the two qubits pertain-
ing to the cell that contains new clues. These new clues
can be fed to the classical part to anticipate the appear-
ance of newer clues in the next iteration. Then, further
deletions occur, resulting in new clues. After this iterative
process the 4 × 4 Sudoku is solved.

Circuit for a main 2 × 2 block. – In fig. 6, we pro-
vide the quantum circuit for the 2 × 2 block. Noticeably,
this circuit has a symmetry to it as can be expected from

|ψA〉 A2 A2 B2 C2 D2

|β1〉 Z Z Z

|β2〉 Z

|P 〉 H H

|Q〉

|R〉

|ψA〉 A2 A2 B2 C2 D2

|β1〉 Z Z Z

|β2〉 Z

|P 〉

|Q〉 H H

|R〉

|ψA〉 A2 A2 B2 C2 D2

|β1〉 Z Z Z

|β2〉 Z

|P 〉

|Q〉

|R〉 H H

Fig. 5: Quantum circuit depicting deletion algorithm. Here
A2, B2, C2 and D2 are the combination of controls and anti-
controls in fig. 4 corresponding to A1, B1, C1, and D1, respec-
tively. A2, B2, C2, or D2 is on when |ψA〉 is in the |001〉
(anti-control, anti-control, and control), |011〉 (anti-control,
control, and control), |101〉 (control, anti-control, and con-
trol), or |111〉 (control, control, and control) state, respectively.
Gates are shown operating on each of the entangled auxiliary
qubits, |P 〉, |Q〉 and |R〉, when deletion is triggered from the
2×2 block, the same row and the same column, respectively. It
is to be noted that, |ψA〉 here is a three-qubit state and hence
A2, B2, C2, and D2 are three-qubit operations.

40007-p4

Solving Sudoku game

|α1〉 Z Z Z Z Z Z Z Z Z

|α2〉 Z Z Z

|α3〉

|P1〉 H H

|Q1〉

|R1〉

|β1〉 Z Z Z Z Z Z Z Z Z

|β2〉 Z Z Z

|β3〉

|P2〉 H H

|Q2〉

|R2〉

|γ1〉 Z Z Z Z Z Z Z Z Z

|γ2〉 Z Z Z

|γ3〉

|P3〉 H H

|Q3〉

|R3〉

|θ1〉 Z Z Z Z Z Z Z Z Z

|θ2〉 Z Z Z

|θ3〉

|P4〉 H H

|Q4〉

|R4〉

Fig. 6: Quantum circuit for 2 × 2 block. The four cells in the 2 × 2 block are represented by |αi〉, |βi〉, |γi〉, |θi〉, where 0 ≤ i ≤
3 qubits represent different cells in a 2 × 2 block. We input according to table 1 and the third qubit (|α3〉, |β3〉, |γ3〉, and |θ3〉)
remains in state |1〉 if the corresponding cell is a clue. If the third qubit is a clue, it triggers deletion of the clue from other
qubits according to the constraint, although for our circuit, deletions in only the 2 × 2 block are applicable. If three deletions
occur in a particular block, it serves as a clue in the next iteration thereby solving the entire Sudoku in further steps. Since all
the deletion are performed in 2× 2 blocks, only |P 〉 auxiliary qubits are used. The clues in the remaining cells of the same row
or column trigger deletion using |Q〉 and |R〉 auxiliary qubits.

40007-p5

Ankur Pal et al.

a generalized circuit built for solving any 4 × 4 Sudoku.
Here, |α1〉 and |α2〉, |β1〉 and |β2〉, |γ1〉 and |γ2〉, and |θ1〉
and |θ2〉 represent the possible elements in 4 blocks, re-
spectively. For the first iteration, we need to feed input to
the circuit (fig. 6). If one of the cells in the 2 × 2 block is
a clue, we input qubits corresponding to that cell accord-
ingly (table 1). Also, the third qubit of every cell, namely,
|α3〉, |β3〉, |γ3〉, and |θ3〉, is in state |1〉 if the correspond-
ing cell is a clue. However, for empty cells, two qubits
representing the state of elements remain in the |+〉 state,
and the third qubit stays in the |0〉 state. For demonstra-
tion, let us take an example where the first cell occupies
a state representing 1 and the third cell representing 4.
We input |α1〉 as |0〉, |α2〉 as |0〉, |γ1〉, |γ2〉 as |1〉; and
|β1〉, |β2〉, |θ1〉, and |θ2〉 as |+〉. Then we input |α3〉 and
|β3〉 as |1〉, and |γ3〉 and |θ3〉 as |0〉. It can be observed
that the states of |α1〉, |α2〉, and |α3〉 trigger the deletion
of 2 (|00〉) from the second, third, and fourth cell given
that the fourth qubit remains as |0〉 state. The states of
|γ1〉, |γ2〉, and |γ3〉 trigger deletion of 4 (|11〉) from the
first, second and fourth cell given that the twelfth qubit
remains as |0〉. In the case of the whole quantum circuit,
deletions from cells in band and stack (collection of 3 main
blocks along a row and column, respectively) of the clue’s
cell take place. This results in the deletion of three clues
in some of the cells, making it a new clue. The indices of
these new clues could be found out classically (using the
Python code). By measuring the qubits at these indices,
we can find out the new clues, which can be fed back to
the classical program to find out the indices of the next set
of clues. For the second, and further iterations the input
can be made accordingly.

Python program to find further clues. – So far, we
have incorporated classical and quantum computing con-
jointly in our algorithm. And our quantum circuit isolates
the elements, which violates given constraints. However,
we are not able to gather any information about the cells
containing the collapsed state without measuring them.
We cannot measure them because we need the superpo-
sition of states to proceed to the next step. To achieve
this, we use a Python program which marks the cells, by
looking out for the third qubit for every cell (4n + 3 qubit
where n is an integer from 1 to 16), which would collapse
to a specific number (new clue) in the next step of solving
the Sudoku.

Discussion. – We have exploited superposition and
combined it with duality mode in quantum computing to
achieve a speed up in solving our Sudoku. The deletion
process, however, is probabilistic much like the Grover’s
algorithm [26]. Our algorithm does give the desired out-
put deterministically. For each deletion, there is (k−1)/k
chance, credits to recycling duality mode, of getting the
desired superposition state as output; where k represents
the number of superposed states in the input state |ψ〉.
The proposed algorithm works with 64 qubits (16×4). We
have reduced time complexity but at the cost of increasing

our space complexity. These are two primary drawbacks
which can be improved using better algorithms. It must
be emphasized that the space complexity arises because of
circuit design of Sudoku rather than due to duality mode
computing.

In comparison to the method used by D-Wave, we have
tried to give order of complexity. They have used quan-
tum annealing while we use duality quantum computing
in solving the Sudoku puzzle. Our central idea of using
duality quantum computing to solve Sudoku can be ex-
tended to a larger Sudoku. Furthermore, this protocol
can be applied to other CSP problems such as timetabling,
scheduling, etc. [27]. Various sections of our algorithm use
identification, targeting, marking and elimination which
can have varied applications independently. The space
complexity of our algorithm is n2(log2 n + 4). Each cell
must have log2 n qubits to represent n states in binary and
4 additional qubits: 1 to mark the clues and 3 as auxiliary
qubits, respectively. However, it should be noted that this
cannot be applied to all n × n Sudoku as the rules of the
game itself change.

Here in the present work, we have solved a 4 × 4 Su-
doku. Generalizing to 9 × 9 and higher-order Sudoku’s
requires an additional simple modification. For a 4 × 4
Sudoku, one can always find a new constraint after one
iteration otherwise uniqueness of the solution fails. This
may not hold for higher-order Sudoku’s. However, in 9×9
or higher Sudoku’s, there may come a stage after some it-
erations where a smaller cyclic entanglement might occur
and the quantum circuit cannot reduce further superpo-
sition by itself. In such cases, the following modification
aids in reducing smaller entanglements to find the next
clue. Once we reach a state when the Sudoku cannot be
solved further, we ask our program to collapse the cyclic
entanglement to a particular state, which may not give the
right answer. But since we know which cells have under-
gone smaller cyclic entanglement, we can put the system
back in superposition after its 1st collapse (which did not
result in a solution).

To put back the state in the same superposition, we need
the full spectrum of eigenvalues it was in before cyclic en-
tangled states collapsed. This data can be collected from
all the different cell states which have recently collapsed.
It may appear that this might increase the number of su-
perposed states but our circuit does not allow that. After
every collapse, one needs to check whether the Sudoku
has been solved to which row and column checks from
N-Queens Solver problem [28] can be applied for every
number. The above method applied iteratively gives a so-
lution for higher-order Sudoku’s. To conclude, we have
used duality quantum computing and classical computing
to solve a Sudoku problem that involved marking of states
and deletion of states. We have proposed new quantum
circuits for the same. Our proposed algorithm provides
an exponential speedup with a logarithmic complexity
[O(log(k)] [23].

40007-p6

Solving Sudoku game

∗ ∗ ∗

AP, SC and VM acknowledge the hospitality provided
by IISER Kolkata during the completion of the project
work. BKB acknowledges the financial support provided
by IISER-K Institute fellowship.

REFERENCES

[1] Delahaye J.-P., Sci. Am., 294 (2006) 80.
[2] Hedayat A. and Seiden E., Ann. Math. Stat., 41 (1970)

2035.
[3] The Pennsylvania State University, URL: https://

onlinecourses.science.psu.edu/stat503/node/21/.
[4] Brouwer A. E., Nieuw Arch. Wiskd. 5/7 (2006)

258.
[5] Eiben A., Raue P.-E. and Ruttkay Z., GA-Easy and

GA-Hard Constraint Satisfaction Problems, in Proceed-
ings of the ECAI-94 Workshop on Constraint Processing,
edited by Meyer M., Lecture Notes in Computer Science,
Vol. 923 (Springer-Verlag) 1995, pp. 267–284.

[6] Kendall G., Parkes A. and Spoerer K., ICGA J., 31
(2008) 13.

[7] Aaronson S., ACM SIGACT News, 36 (2005) 30.
[8] Felgenhauer B. and Jarvis F., Enumerating Possible

Sudoku Grids (2005).
[9] Davis T., The Mathematics of Sudoku (2010).

[10] Chi E. C. and Lange K., arXiv:1203.2295 (2012).

[11] Felgenhauer B. and Jarvis F., Mathematics of Su-
doku I (2006).

[12] Russell E. and Jarvis F., Mathematics of Sudoku II
(2006).

[13] Glossary of Sudoku (Wikipedia).
[14] Khan F. S., Solmeyer N., Balu R. and Humble T.,

Quantum Inf. Process., 17 (2018) 309.
[15] Jones S. K., Recreat. Math. Mag., 3 (2016) 87.
[16] Minkel J. R., Sci. Am. (13 February 2007).
[17] Pelanek R., Human Problem Solving: Sudoku Case

Study, Technical Report FIMURS-2011-01 (Masaryk Uni-
versity Brno) 2011.

[18] Wan-Ying W., Bin S., Chuan W. and Gui-Lu L., Com-
mun. Theor. Phys., 47 (2007) 471.

[19] Mizel A., Phys. Rev. Lett., 102 (2009) 150501.
[20] Ding L. and Zhou T., EPL, 126 (2019) 20004.
[21] Zheng C., EPL, 126 (2019) 30005.
[22] Long G. L. and Liu Y., Front. Comput. Sci. China, 2

(2008) 167.
[23] Yang L., Chin. Sci. Bull., 58 (2013) 24.
[24] Long G. L., Commun. Theor. Phys., 45 (2006) 825.
[25] Long G.-L., Liu Y. and Wang C., Commun. Theor.

Phys., 51 (2009) 65.
[26] Grover L. K. in Proceedings of the 28th Annual ACM

Symposium on Theory of Computing (ACM, New York)
1996, pp. 212–219.

[27] Constraint Satisfaction Problem (Wikipedia).
[28] Jha R., Das D., Dash A., Jayaraman S., Behera

B. K. and Panigrahi P. K., arXiv:1806.10221 (2018).

40007-p7

https://onlinecourses.science.psu.edu/stat503/node/21/
https://onlinecourses.science.psu.edu/stat503/node/21/

