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Abstract – We propose a maximally disassortative (MD) network model which realizes a maxi-
mally negative degree-degree correlation, and study its percolation transition to discuss the effect
of a strong degree-degree correlation on the percolation critical behaviors. Using the generating
function method for bipartite networks, we analytically derive the percolation threshold and the
order parameter critical exponent, β. For the MD scale-free networks, whose degree distribution is
P (k) ∼ k−γ , we show that the exponent, β, for the MD networks and corresponding uncorrelated
networks are the same for γ > 3 but are different for 2 < γ < 3. A strong degree-degree cor-
relation significantly affects the percolation critical behavior in heavy-tailed scale-free networks.
Our analytical results for the critical exponents are numerically confirmed by a finite-size scaling
argument.

Copyright c© EPLA, 2020

Introduction. – Numerous complex systems are ab-
stracted as networks consisting of simplified elements
(nodes) and their connections (edges), e.g., the Internet,
World Wide Web, and prey/predator relations in ecosys-
tems [1]. It is well known that most real-world networks
are scale-free, such that the degree distribution P (k) obeys
the power-law function: P (k) ∼ k−γ , where γ is called the
degree exponent. The robustness of networks to failures
and attacks has been frequently discussed by considering
the network percolation problem. Some studies concerning
percolation models on networks have shown that scale-free
networks are extremely robust to the random removal of
nodes and edges; however, they are fragile to the targeted
removal of the high-degree nodes [2].

Percolation on networks has been studied in order to
also understand the relation between the critical phe-
nomena and underlying network structures. In a semi-
nal work concerning the critical behavior of percolation
transitions on (degree-)uncorrelated scale-free networks,
Cohen et al. [3] analytically derived the relation between
the percolation critical exponents and degree exponent, γ.
Specifically, an unconventional universality class emerges
for 2 < γ < 4, and a mean-field class is observed for
γ ≥ 4. In addition, the fractal dimension of a percolating

(a)E-mail: shogo.mizutaka.sci@vc.ibaraki.ac.jp
(b)E-mail: takehisa.hasegawa.sci@vc.ibaraki.ac.jp

cluster in a critical state [4] and the upper critical di-
mension for uncorrelated scale-free networks [5] have been
established.

In real-world networks, a degree-degree correlation,
which is the correlation of the degrees of the nodes di-
rectly connected by an edge, would arise [6,7]. In a net-
work with a positive (negative) degree-degree correlation,
similar (dissimilar) degree nodes tend to connect to each
other. A degree-degree correlated structure can affect crit-
ical phenomena on a network. Goltsev et al. [8] treated
analytically percolation on degree-degree correlated net-
works using the eigenvectors and associated eigenvalues of
a branching matrix defined by the conditional probabil-
ity, P (k | k′), that a random neighbor of a degree-k′ node
has degree k. They showed the necessary and sufficient
conditions that the critical behavior of a percolation on a
degree-degree correlated network is the same as that on
uncorrelated networks with an identical degree distribu-
tion. When a network does not satisfy any of their condi-
tions, its critical behavior does not coincide with that of
the corresponding uncorrelated networks. Two strongly
correlated networks analyzed in [8] violate one of their
conditions, and so, exhibit an atypical universality class
depending on the details of the network structure. Fur-
ther studies are needed to attain a better understanding
of the critical behavior of correlated networks; however,
there is little research on the investigation of percolation
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transition on strongly correlated networks owing to the
lack of other solvable models.

In this study, we propose a solvable model in which
the networks realize a maximally negative degree-degree
correlation. Hereinafter, we call them maximally disas-
sortative (MD) networks. Applying the generating func-
tion method for bipartite networks to the percolation on
the MD networks, we analytically derive the percolation
threshold and the order parameter critical exponent, β, re-
lated to the relative size of the giant component. For the
MD scale-free networks with 2 < γ < 3, an unconventional
critical behavior is observed: the critical exponent, β, ac-
quires a value that is different from that of the uncorre-
lated networks. Contrastingly, the MD scale-free networks
with γ ≥ 3 belong to the same universality class as that
of the uncorrelated ones. A strong degree-degree corre-
lation significantly affects the critical behavior in heavy-
tailed scale-free networks. Our analytical estimations are
confirmed by a finite-size scaling analysis near the zero
percolation threshold [9].

Maximally disassortative network. – Let us con-
struct our MD networks as bipartite networks in which
each node belongs to either of the two groups, A or B,
and each edge connects a group A node and a group B
node (fig. 1). First, the number, NA, of nodes in group A
is given, and the number of stubs, i.e., degree of each node
in group A is assigned by a predetermined degree distribu-
tion, PA(k). In this study, we consider a power-law degree
distribution for group A, i.e.,

PA(k) ∼ k−γ , (1)

for large k. Next, to realize a maximally negative degree-
degree correlation, we designate a minimum degree, kmin,
of the network, prepare NB nodes in group B, and let all
the group B nodes have degree kmin. Thus, the degree
distribution, PB(k), for group B is

PB(k) = δk,kmin , (2)

where δ is the Kronecker delta. For a network to be bi-
partite, the total number of degrees in group A should
be equal to that in group B. Then, the number, NB,
of nodes in group B is determined from the relation,
NA

∑
k kPA(k) = NB

∑
k kPB(k), or equivalently,

zA
1 NA = zB

1 NB, (3)

where zA
1 =

∑
k kPA(k) (zB

1 = kmin) is the average degree
of group A (B). An edge is formed by randomly selecting
a stub from each of groups and joining them. This process
is repeated until no stub exists. Then, a network with the
degree distribution,

P (k) = rPA(k) + (1 − r)PB(k), (4)

is realized. Here, r = NA/(NA+NB). Because any node in
group A is connected to only the group B nodes having the

Fig. 1: Illustration of a bipartite network that realizes an MD
network. The degree of group A nodes (squares) is distributed,
whereas that of group B nodes (circles) is two.

minimum degree, kmin, the degree-degree correlation of
the entire network is totally negative, i.e., disassortative.
This type of network realizes an MD structure in that any
edge swapping increases the Spearman’s rank correlation
coefficient for the network [10]1.

Percolation on bipartite networks. – We briefly
recall the generating function method for percolation on
bipartite networks with arbitrary PA(k) and PB(k) [13]
prior to the analysis of the MD networks. We introduce
the generating functions for the degree distributions of
groups A and B, i.e.,

GA
0 (x) =

∑
k=0

PA(k)xk, (5)

GB
0 (x) =

∑
k=0

PB(k)xk. (6)

Similarly, the generating functions, GA
1 (x) and GB

1 (x), for
the so-called excess degree distributions of groups A and B
are given by

GA
1 (x) =

∑
k=0

kPA(k)
zA
1

xk−1, (7)

GB
1 (x) =

∑
k=0

kPB(k)
zB
1

xk−1, (8)

respectively.
Let us consider the site percolation process on a bipar-

tite network. Each node is occupied with probability p
and unoccupied with probability q = 1 − p. Let HA

1 (x)
[HB

1 (x)] be the generating function for the probability of
reaching a branch of a finite size by an edge outgoing from
a node in group B (A). Under the assumption that a given
network is locally tree-like, HA

1 (x) and HB
1 (x) satisfy the

following equations:

HA
1 (x) = q + pxGA

1 [HB
1 (x)], (9)

HB
1 (x) = q + pxGB

1 [HA
1 (x)]. (10)

1In [10], the degree correlation of a hierarchical scale-free network
called (u, v)-flower [11] was discussed. Spearman’s rank correlation
coefficient was utilized to evaluate the negative degree correlation
correctly because Pearson’s correlation coefficient does not work for
disassortative networks with the degree exponent γ < 4 [12].
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Substituting x = 1 for eqs. (8) and (9), we have

u = q + pGA
1 (v), (11)

v = q + pGB
1 (u), (12)

where u = HA
1 (1) and v = HB

1 (1) are the probabilities to
reach a finite branch by an edge outgoing from a group B
node and a group A node, respectively. In the percolating
phase, i.e., p > pc, u < 1 and v < 1.

To derive the percolation threshold for the bipartite net-
work, we introduce the generating function, Htot

0 (x), for
the probability of a node belonging to a cluster of a finite
size:

Htot
0 (x) = rHA

0 (x) + (1 − r)HB
0 (x), (13)

where HA
0 (x) [HB

0 (x)] is the generating function for the
probability of a node in group A (B) belonging to a cluster
of a finite size as

HA
0 (x) = q + pxGA

0 [HB
1 (x)], (14)

HB
0 (x) = q + pxGB

0 [HA
1 (x)]. (15)

Thus, the size of the giant component, S, is given by

S = 1 − Htot
0 (1)

= p(1 − rGA
0 (v) − (1 − r)GB

0 (u)), (16)

and the average size of the finite clusters, 〈s〉, is given
as 〈s〉 = dHtot

0 (x)/dx|x=1. In the non-percolating phase
(p < pc) where HA

1 (1) = HB
1 (1) = 1, this average cluster

size reduces to

〈s〉 = p + prGA′
0 (1)HB′

1 (1) + p(1 − r)GB′
0 (1)HA′

1 (1), (17)

where HA′
1 (1) and HB′

1 (1) are

HA′
1 (1) =

p + p2zA
2 /zA

1

1 − p2zA
2 zB

2 /(zA
1 zB

1 )
(18)

and

HB′
1 (1) =

p + p2zB
2 /zB

1

1 − p2zA
2 zB

2 /(zA
1 zB

1 )
, (19)

respectively. Here, zX
2 =

∑
k k(k − 1)PX(k). The percola-

tion threshold is given as the point at which 〈s〉 diverges.
Equations (17)–(19) lead to the result that 〈s〉 diverges at
p = pc given by

pc =

√
zA
1

zA
2

zB
1

zB
2

. (20)

The percolation threshold (20) corresponds to that for
bond percolation on bipartite networks, which has been
previously obtained by several approaches [13–16].

Criticality of percolation on MD network. – To
discuss the effect of the MD structures on critical behavior,
we concentrate on the MD networks having PA(k) ∼ k−γ

(k ≥ 2) and PB(k) = δk2. Applying eq. (20) to the MD
networks, we obtain the percolation threshold as

pc =

√
zA
1

zA
2

. (21)

Because eq. (8) reduces to GB
1 (x) = x in the present case,

we have

u = q + pGA
1 (q + pu)

= 1 − p +
p

zA
1

∑
k

kPA(k)(1 − p(1 − u))k−1, (22)

from eqs. (11) and (12). At p = pc+δ, where δ is a positive
infinitesimal value, u is slightly smaller than unity, i.e.,
u = 1 − ε. Here, ε is the order parameter and a positive
infinitesimal value. From eq. (22), we have

ε = pc + δ − (pc + δ)
zA
1

∑
k

kPA(k)(1 − pε)k−1, (23)

at p = pc + δ. The summation in eq. (23) determines the
critical behavior of the percolation on the MD networks.
For PA(k) ∼ k−γ with γ > 3 in which pc > 0, the summa-
tion in eq. (23) has an asymptotic form (see appendix),

∑
k

kPA(k)(1 − pε)k−1 ∼

zA
1 − zA

2 pε +
1
2
zA
3 (pε)2 + · · · + C(pε)γ−2, (24)

where the highest order of the analytic term is the largest
integer less than γ −2, zA

3 =
∑

k k(k −1)(k−2)PA(k) and
C is a constant. Substituting eq. (24) into eq. (23), we
obtain

2
pc

δ =
1
2

zA
2

zA
1

p3ε + · · · +
C

zA
1

pγ−1εγ−3. (25)

Because for 3 < γ < 4, the leading term of the right-hand
side in eq. (25) is Cpγ−1εγ−3/zA

1 , we approximate p by pc
and obtain

δ ∼ C

2zA
1

pγ
c εγ−3. (26)

Consequently, the order parameter, ε, is related to the
difference, δ = p − pc, as

ε ∼ (p − pc)
1

γ−3 , (27)

which implies that the critical exponent, β, related to
the relative size, S, of the giant component, S ∼ δβ , is
βMDN = 1/(γ − 3) for the MD networks. This value cor-
responds to βUCN for the uncorrelated scale-free networks
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Table 1: Critical exponent β and percolation threshold pc

of site percolation on the MD scale-free networks and uncor-
related scale-free networks having an identical degree distri-
bution. This table holds for the bond percolation (see the
Conclusion and discussion section). Here z1 =

∑
k P (k) and

z2 =
∑

k k(k − 1)P (k).

2 < γ < 3 3 < γ < 4 γ > 4 pc

βMDN
γ−1
3−γ

1
γ−3 1

√
zA
1 zB

1
zA
2 zB

2

βUCN
1

3−γ
1

γ−3 1 z1
z2

having the same degree exponent γ [3,8]. For γ > 4, we
easily find the mean-field result:

ε ∼ (p − pc), (28)

i.e., βMDN = βUCN = 1.
When 2 < γ < 3, the percolation threshold is pc = 0,

and the summation in eq. (23) becomes

∑
k

kPA(k)(1 − pε)k−1 ∼ zA
1 + C(pε)γ−2. (29)

Substituting eq. (29) and p = δ into eq. (23), we derive

1 − ε ∼ 1 − δ +
δ

zA
1

(zA
1 + C(δε)γ−2)

⇐⇒ ε ∼
(−C

zA
1

)
δ

γ−1
3−γ . (30)

Thus, for 2 < γ < 3, the order parameter and the size of
the giant component near pc = 0 behave as

ε ∼ pβMDN , (31)
S ∼ pβMDN+1, (32)

where βMDN = (γ − 1)/(3 − γ). For 2 < γ < 3, βMDN is
different from the critical exponent βUCN = 1/(3 − γ) for
the uncorrelated networks [3]. As summarized in table 1,
βMDN = βUCN for γ > 3, whereas βMDN �= βUCN for
2 < γ < 3. Thus, the MD structure affects the critical
behavior in heavy-tailed scale-free networks (2 < γ < 3).

Numerical check. – In this section, we confirm the
validity of our theoretical result for β as discussed in
the previous section. We can assume that for a network
with a finite percolation threshold, pc > 0, the relative
size, S(N, p), of the giant component near the percolation
threshold behaves as

S(N, p) = N−β/νN f(|p − pc|N1/νN ), (33)

where N is the system size, f(z) is a scaling function and
νN is a (volume-based) correlation critical exponent. In a

d-dimensional system, νN = νd where ν is the (length-
based) correlation critical exponent related to the correla-
tion length, ξ: ξ ∼ |p − pc|−ν . The N dependence of the
pseudo percolation threshold, pc(N), is given as

pc(N) − pc = aN−1/νN , (34)

where pc = pc(∞) and a is a constant [17]. Substituting
eq. (34) into eq. (33), we have the N dependence of S at
the pseudo percolation threshold as

S(N, pc(N)) = bN−β/νN , (35)

where b = f(a). When 2 < γ < 3 in which pc = 0 and
the giant component size behaves as eq. (32), we expect a
finite-size scaling of S as

S(N, p) = N−(β+1)/νN f(pN1/νN ) (36)

and

S(N, pc(N))/pc(N) = bN−β/νN , (37)

instead of eqs. (33) and (35) [9]. Fitting numerical data by
eq. (37) for 2 < γ < 3 (eq. (35) for γ > 3) with the help of
eq. (34), one finds the critical exponents, β and νN . Thus,
we numerically evaluate β for the MD networks with a
given value of γ to validate the relation, β = (γ − 1)/
(3 − γ) [β = 1/(γ − 3)], theoretically expected for the MD
networks with 2 < γ < 3 (3 < γ < 4).

The MD networks employed for our numerical confir-
mations are generated as follows. First, according to the
Dorogovtsev-Mendes-Samukhin (DMS) model [18], a de-
gree sequence obeying PA(k) ∼ k−γ with NA nodes and
zA
1 = 6 is generated2, which represents group A. Second,

NB = 3NA nodes with zB
1 = kmin = 2 are prepared as

group B. Finally, to construct a network, we repeatedly
choose a stub at random from each of the groups and join
the stubs until all stubs are used up. The entire network
has N = 4NA nodes and the average degree of z1 = 3. For
comparisons, uncorrelated networks with the same degree
distribution (4) are realized by randomizing the MD net-
works under preserving the degree of each node. The site
percolation process is performed numerous times on the
MD networks and uncorrelated ones. Using the Newman-
Ziff algorithm [19], we obtain the average size of the largest
component generated by the site percolation process on
the networks.

First, we examine the relative size, S, of the largest
component. Figure 2 shows SMDN (the solid line) for the
MD networks with degree exponent γ = 3.5 and SUCN
(the dashed line) for the corresponding uncorrelated net-
works. The percolation threshold, pc, for the MD net-
works is larger than that for the uncorrelated ones, as

2The degree exponent, γ, in the DMS model is given by γ =
3 + a/m, where a is the predetermined attractiveness of each node
and m is the number of stubs of each adding node. For the generated
networks in this study, we set a clique consisting of seven nodes as
the initial condition and m = 3.
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Fig. 2: Relative size, S, of the largest component as a function
of the occupation probability, p. The solid and dashed lines are
the results for the MD networks and uncorrelated networks,
respectively. We utilize the scale-free networks with γ = 3.5.
The system size is set as N = 1280000.

shown in table 1. Next, by numerically evaluating the
critical exponents, νN and β, for the uncorrelated scale-
free networks, we confirm the validity of the present scal-
ings (34) and (37). Figure 3(a) shows the N dependence
of the pseudo percolation threshold, pc(N), for the un-
correlated scale-free networks with γ = 2.5. The red
filled circles represent the simulation result. Here, the
pseudo percolation threshold, pc(N), for the uncorrelated
networks is estimated by substituting the numerically ob-
tained degree distributions for the Molly-Reed criterion,
pc(N) = z1/z2, where z2 =

∑
k k(k − 1)P (k) [19,20]. Ac-

cording to [3], we theoretically obtain νUCN
N as νUCN

N =
(γ − 1)/(3 − γ) when the maximum degree kmax behaves
as kmax ∼ N1/(γ−1) [21] (see the inset of fig. 3(a)).
The dashed line is drawn by using the theoretical value,
(νUCN

N )−1 = 1/3 for γ = 2.5. The red filled circles lie
on the dashed line, which means that eq. (34) for the un-
correlated networks is correct. Figure 3(b) shows the N
dependence of the largest component size over the pseudo
percolation threshold, S(N, pc(N))/pc(N). The red filled
circles representing the simulation results lie on the dashed
line drawn using eq. (37) with the theoretical values of
βUCN = 1/(3 − γ) = 2 and (νUCN

N )−1 = 1/3. Thus the
finite-size scalings for S, eqs. (34) and (37), succeed in
capturing the critical behavior of percolation on the un-
correlated networks, as was reported in [9].

Finally, we apply finite-size scaling analysis to the MD
networks. The black filled squares in fig. 3(a) represent the
simulation results for the MD scale-free networks with γ =
2.5. The slope of the black filled squares is estimated as
ν−1

N = 0.164 and is different from that for the uncorrelated
networks (the red filled circles), which indicates that the
percolation critical exponents of the MD networks differs
from those of the uncorrelated ones. Here, the solid line
is a guide to the eye with a slope of −0.164. Substituting

Fig. 3: (a) System size dependence of pc(N). The black filled
squares and red filled circles represent the simulation results
for the MD networks and uncorrelated networks, respectively.
The slopes, ν−1

N , of the solid and dashed lines are −0.164 and
−1/3, respectively. The system size dependence of the max-
imum degree, kmax, for the present networks is displayed in
the inset of (a). Each symbol is an average of over 100 re-
alizations. (b) System size dependence of S(N, pc(N))/pc(N)
at the pseudo percolation threshold, pc(N). The black filled
squares and red filled circles represent the simulation results
for the MD networks and uncorrelated networks, respectively.
The slopes, β/νN , of the solid and dashed lines are −0.51 and
−2/3, respectively. In (b), we generate 30 network realizations
and perform site percolation 30 times on each realization to
take the average of S(N, pc(N))/pc(N). Except for the inset
of (b), we utilize the scale-free networks with γ = 2.5, which
are generated by the algorithm explained in the main text. In
the inset of (b), the system size dependence of S(N, pc(N)) for
networks with γ = 3.5 is displayed in order to examine eq. (35).

β = (γ − 1)/(3 − γ) and ν−1
N = 0.164 for β/νN , we have

β/νN = 0.492 for γ = 2.5. In fig. 3(b), we depict a solid
line with the slope, β/νN = 0.492. The line is parallel to
the black filled squares (simulation results for γ = 2.5),
which supports the theoretical result for 2 < γ < 3. On
the one hand, in the inset of fig. 3(b), we examine eq. (35)
for γ = 3.5. Both slopes of plots for the MD networks and
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uncorrelated ones are parallel. This means that the MD
networks with γ = 3.5 and corresponding uncorrelated
networks have the same value of β. All results exhibit the
validity of our theoretical arguments.

Conclusion and discussion. – We have studied the
site percolation on a maximally disassortative (MD) net-
work, which has a maximally negative degree-degree cor-
relation and is realized as a bipartite network. Based on
the generating function method for bipartite networks, we
have clarified the percolation threshold and the order pa-
rameter critical exponent of the MD networks. We have
found that the critical behavior of site percolation on the
MD networks is different from that on uncorrelated net-
works when networks are heavy-tailed so that P (k) ∼ k−γ

with 2 < γ < 3. The MD networks with γ > 3 have the
same critical behavior as uncorrelated networks with the
identical degree distribution. These results have been nu-
merically confirmed by a finite-size scaling analysis.

We should mention how the bond percolation in which
each edge is retained with probability p and removed
otherwise behaves in our MD network because the site-
bond percolation universality in uncorrelated scale-free
networks breaks in terms of the scaling for the giant com-
ponent size, S, when the percolation threshold is zero [9].
Our calculation can be applied to the bond percolation
on the MD networks. For the bond percolation problem,
it is unchanged that HA

1 (x) and HB
1 (x) follow eqs. (9)

and (10), respectively, meaning that pc and β for bond
percolation take the same value shown in table 1 because
pc and β are determined by eqs. (9) and (10). Thus,
the site-bond percolation universality coincides in terms
of the order parameter, ε. On the one hand, the gener-
ating functions (14) and (15) are replaced by H

A(B)
0 (x) =

xG
A(B)
0 [HB(A)

1 (x)]. Expanding H
A(B)
0 (1) = G

A(B)
0 [u(v)],

we find S[= 1 − Htot
0 (1)] ∼ ε for the bond percolation

(whereas S ∼ pε for the site percolation). The bond perco-
lation on the MD networks shows S ∼ pβMDN for 2 < γ < 3
(pc = 0), which is different from the case of the site per-
colation (eq. (32)). Therefore, the site-bond percolation
universality breaks in terms of the singularity of S, as was
reported in [9]. It can be confirmed numerically by means
of the finite-size scaling argument for Monte Carlo data
(not shown).

In this work, we have focused on the MD networks
whose disassortativity is realized by setting PB(k) = δk2.
Here, let us consider the case that PB(k) has a large but
finite second moment to test the robustness of the result
for the MD networks with the degree exponent 2 < γ < 3
(the second moment of PA(k) diverges). Such a network is
disassortative in that the covariance of the degree-degree
joint probability is infinitely negative. In this situation,
eq. (12) is changed to v = 1 − p + p

∑
kPB(k)uk−1/zB

1 ∼
1 − zB

2 pε/zB
1 . A similar calculation for the summation in

eq. (23) yields the same exponent displayed in table 1.
The critical property is unchanged as long as PB(k) has
a finite second moment. A work concerning a biased

bond percolation [15] may be useful for considering the
case that the second moment of PB(k) diverges. In the
biased bond percolation of parameter α, each edge con-
necting a degree-k node and a degree-k′ node is retained
with a probability proportional to (kk′)−α [15,22]. The
biased bond percolation reduces to ordinary bond perco-
lation when α → 0. In [15], Hooyberghs et al. considered
the biased bond percolation on bipartite networks whose
both groups obey a power-law degree distribution, i.e.,
PA(B)(k) ∼ k−γA(B) (γA < γB) and showed that for α = 0
and a fixed value of γB > 3, the order parameter critical
exponent β takes the same value in table 1. In addition,
for the case of 2 < γA < γB < 3, they have found the crit-
ical behavior depending on two degree exponents. While
it may be hard to argue the degree correlation of networks
with 2 < γA < γB < 3, we expect that they are strongly
disassortative.

Finally, we have focused on networks having only a
nearest-neighbor degree correlation. Real-world networks,
however, have a long-range degree correlation, which can-
not be captured by any nearest-neighbor degree correla-
tion [10,23–26]. Little is known about what long-range
correlated structures induce in the percolation transition.
Some numerical studies [27–29] on correlated networks
with the tunable degree-degree correlation have suggested
that an unusual type of phase transition originates from
something beyond the nearest-neighbor degree correlation.
Further studies to understand how correlated structures
beyond the nearest-neighbor degree correlations affect the
critical phenomena of the networks should be conducted.
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Appendix. – We review a treatment of GA
1 (v) =∑

k kPAvk−1/zA
1 briefly. For simplicity, let us consider

PA(k) ∼ ck−γ with 2 < γ < 3. From the normalization
condition, GA

1 (v) = 1 for v = 1. However, its derivative,

GA′
1 (v) =

∑
k

ck(k − 1)k−γ

zA
1

vk−2, (A.1)

diverges in the limit v → 1. Because GA′
1 (v) converges for

0 ≤ v < 1, GA′
1 (v) has the asymptotic form

GA′
1 (v) ∼ c

zA
1

Γ(3 − γ)(1 − v)γ−3, (A.2)
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in v → 1−. Here we use a Tauberian theorem (see, e.g.,
chapt. XIII in [30]). From the integral of eq. (A.2),

GA
1 (1) − GA

1 (v) ∼ c

zA
1

Γ(3 − γ)
∫ 1

v

(1 − v′)γ−3dv′, (A.3)

we have

GA
1 (v) ∼ GA

1 (1) +
c

zA
1

Γ(2 − γ)(1 − v)γ−2, (A.4)

which is equivalent to eq. (29). In a similar way, we can
derive eq. (24).
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