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PACS 64.75.Gh – Phase separation and segregation in model systems (hard spheres,
Lennard-Jones, etc.)

PACS 77.80.Dj – Domain structure; hysteresis
PACS 68.35.Rh – Phase transitions and critical phenomena

Abstract – We focus on understanding the influence of the two-component coupling in fer-
ronematics, a colloidal suspension of magnetic nanoparticles in nematic liquid crystals. Using
coarse-grained Landau-de Gennes free energies, we study the ordering dynamics of this complex
fluid in d = 2 and present a range of analytical and numerical results. Our main observations are:
i) slaved coarsening for quench temperatures T intermediate to the critical temperatures of the
uncoupled components, ii) slower growth similar to the Lifshitz-Slyozov law (L ∼ t1/3) for sym-
metric magneto-nematic coupling, iii) sub-domain morphologies dominated by interfacial defects
for asymmetric coupling strengths. These novel results will serve to guide future experiments on
this technologically important system.
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Liquid crystals (LCs) are a state of matter that is inter-
mediate between conventional solids and liquids with a
unique combination of order and fluidity [1–4]. Nematic
liquid crystals (NLCs) are the simplest type, and have a
natural tendency to align parallel to one another. This
preferred direction introduces a strong anisotropy and is
described by the nematic director n. The NLCs exhibit
unique dielectric and diamagnetic properties which are im-
portant in versatile applications. The possibility of con-
trolling their optical response by fast reorientation of n
in a few milliseconds on the application of small electric
fields (1–2 mV) is the basis of their utility in modern LC
displays and optical imaging [5]. However, due to low
values of magnetic susceptibility ∼10−6 (SI units), large
magnetic fields ∼300 mT are required to actuate them [6].
As a result, most LC devices are mainly driven by electric
fields, limiting their applicability in magnetic devices.

The natural question next is whether the introduction
of a small quantity of magnetic material can enhance their
sensitivity, thereby introducing the possibility of magneto-
optic response in addition to the conventional electro-
optic response. This idea was first introduced in 1970
by Brochard and de Gennes in their pioneering work [7],
which suggested that the nematic molecules could im-
pose ferromagnetic order in the functionalized magnetic
nanoparticles (MNPs) due to surface anchoring even in the
absence of an external magnetic field! Although intense

experimental efforts were made to create stable ferromag-
netic suspensions, it was only in 2013 that Mertelj et al.
obtained the first such suspension of barium hexaferrite
magnetic nanoplatelets in pentylcyano-biphenyl LCs with
homeotropic anchoring [8]. The stability of the suspension
is a consequence of the fine balance between repulsion of
defects created by the director field around the MNPs, and
the attractive dipole-dipole interaction between their mag-
netic moments [8–10]. Ever since, this fascinating class of
materials called ferronematics (FNs) is enjoying increas-
ing interest from academia and industry as well [9,11–20].
There have been proposals to utilize the magneto-
mechanical and magneto-optic effects for applications in
photonics [18], optical switches [12], complex fluids [13,14],
and even particle physics and cosmology [16].

The primary quest after the creation of stable FNs has
been to understand the consequences of coupling between
the nematic and magnetic components on their equilib-
rium and non-equilibrium properties. There have been
some intriguing experimental observations in this direc-
tion. For instance, Shuai et al. could use the magneto-
nematic coupling to spontaneously create flux closure
loops which were sensitive to even the Earth’s magnetic
field [9]. In another contribution, Mertelj and Lisjak cooled
a ferronematic drop from an isotropic phase to the nematic
phase and observed domain growth in the presence of a
field applied along n [10]. Using magneto-optic techniques,
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they detected several bubbles or small domain morpholo-
gies with magnetization parallel or anti-parallel to the
field which coarsened with time. The domain growth was
always accompanied by the flow of the suspension and
motion of the defect lines. Mertelj and Lisjak thus demon-
strated that the mechanism of domain growth was medi-
ated via a magneto-nematic interaction [14].

The problem of coarsening (or domain growth) after
a quench from a disordered phase (T > Tc) to an or-
dered phase (T < Tc) holds a special appeal in non-
equilibrium physics [21,22]. If the morphology of the
coarsening domains is unchanged in time, the system ex-
hibits dynamical scaling and is characterized by a unique
divergent length scale L(t). The growth law reveals im-
portant details of the free-energy landscape and the relax-
ation (response) time-scales in the system. In pure and
isotropic systems, L(t) ∼ t1/z , where the growth exponent
1/z depends on various factors such as conservation laws,
defects and flow fields. For example, systems with non-
conserved kinetics obey the Lifshitz-Allen-Cahn (LAC)
law: L(t) ∼ t1/2 which is characteristic of systems with
no energy barriers to coarsening [23]. Systems with disor-
der and competing interactions have a complicated free-
energy landscape and a plethora of relaxation time-scales.
Domain growth in these systems exhibits a logarithmic
behavior in the asymptotic limit [24,25]. What insights
can a coarsening experiment provide for FNs, which are
described by two coupled order parameters? What is the
influence of coupling strengths on growth laws? What
happens if only one of the two components is in an or-
dered phase? Motivated by these questions, we develop
a time-dependent Ginzburg-Landau (TDGL) formulation
for the coupled system to study non-equilibrium properties
of FNs rendered unstable after a thermal quench [21,22].
In this letter, we focus on understanding the influence of
the magneto-nematic coupling in two-dimensional (d = 2)
FNs. Such geometries have been realised experimentally
in the context of pure NLCs in shallow wells by ensuring
that the top and bottom surfaces enforce planar bound-
ary conditions. Consequently, the nematic molecules are
primarily confined in a plane and the variations along the
height of the sample are negligible. We present a range
of analytical and numerical results in our benchmarking
study on d = 2 FNs, which will serve to guide future exper-
iments on this technologically important system. It will
also provide a basis to understand the more complicated
defect structures in d = 3 FNs and their role in domain
growth.

We report three novel results which are as follows: i) for
shallow quenches (TNc < T < TMc , where N and M
refer to nematic and magnetic), the ordering magnetic
component enslaves the nematic component to coarsen.
Their domains are co-aligned. Similar statements hold
for quenches such that TMc < T < TNc . ii) Depending
on the nature of coupling, domain growth can obey the
Lifshitz-Allen-Cahn law L(t) ∼ t1/2, or a slower L(t) ∼
t1/3 growth usually referred to as the Lifshitz-Slyozov

law. The latter is surprising as it usually characterizes
conserved kinetics [21,22], whereas both order parame-
ters here are non-conserved. iii) The structure factor
S(k) for the domain morphologies exhibits Porod decay,
S(k) ∼ k−(d+1), which is characteristic of scattering from
sharp interfaces. This contradicts our naive expectation
of the generalized Porod tail S(k) ∼ k−(d+2) for scattering
from vortex defects in continuous-spin models [26].

We use the Landau-de Gennes (LdG) free energy de-
scription for the FN [27]. The Landau theory offers a
useful phenomenological route to obtain free energy func-
tionals based on the symmetries of the order parameter de-
scribing the system. It relies on the fact that, near a phase
transition, the free energy of a system can be modeled by
the first few terms of a Taylor expansion in the order pa-
rameter [28,29]. In the case of FNs, the LdG free energy
is a functional of two order parameters: i) the Q-tensor,
which contains information about the orientational order
of the LC; and ii) the magnetization vector M, which is
the magnetic moment of the suspended nanoparticles. We
allow M to have a variable magnitude, including M = 0
to capture segregation effects. In d = 2, the Q-tensor
is a 2 × 2 matrix with elements Qij = S(n̂in̂j − δij/2).
The scalar order parameter S measures the fluctuations
about the leading eigenvector n [30]. Further, TrQ = 0,
TrQ2 = 2(Q2

11 + Q2
12) = S2/2 and TrQ3 = 0. The

free energy for the ferronematic system has been modeled
as [1,31]

G([Q,M]) =
∫

dr
[
A
2

Tr(Q2) +
B
4

Tr(Q4) +
L
2

|∇Q|2

+
α

2
|M |2 +

β

4
|M |4 +

κ

2
|∇M |2

− γμ0

2

2∑
i,j=1

QijMiMj

]
. (1)

The first three terms represent the LdG free energy for
the nematic component, the next three correspond to the
Ginzburg-Landau free energy for the magnetic component
and the last term represents the magneto-nematic cou-
pling. To leading order, the coupling term is taken to be
the dyadic product of the Q-tensor and M to respect the
rotational invariance of the free energy. The Landau coef-
ficients A = A0(T − TNc ) and α = α0(T − TMc ), where A0
and α0 are positive constants. The parameters B and β
are temperature-independent positive material-dependent
constants, L and κ are the elastic constants, and γ and μ0
are the coupling strength and the magnetic permeability
respectively. These phenomenological parameters, as will
be discussed later, can be estimated from experimentally
measured quantities.

Two methods are usually employed to obtain stable
FNs [7,8,10]. In the first method, the MNP-NLC mix-
ture is quenched from the (disordered) isotropic phase to
the (ordered) nematic phase in the presence of an exter-
nal magnetic field. This protocol results in a ferronematic
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domain with aligned magnetic moments [8]. Naturally,
such a suspension exhibits maximal magnetization and has
been referred to as a ferromagnetic nematic liquid crystal
by Mertelj et al. In the second method, the MNP-NLC
suspension is quenched in the absence of an external mag-
netic field due to which the magnetic moments are paral-
lel to n. They are equally likely to point along n or −n
directions, leading to vanishing macroscopic magnetiza-
tion [7,32,33]. For FNs obtained via the first protocol, the
free energy has an additional term to represent the cou-
pling between the applied field and the order parameter
M . Our primary interest is to understand the effects of
the magneto-nematic coupling. Therefore, we have not in-
cluded such a term in eq. (1) to prevent a directional bias
in the non-equilibrium studies undertaken. Our study is
relevant to FNs obtained via the second method.

The dissipative dynamics of the ferronematic is stud-
ied using the coupled time-dependent Ginzburg-Landau
(TDGL) equations: ∂ψ/∂t = −ΓψδG[Q,M]/δψ, where ψ
denotes Q or M. The terms on the right are the func-
tional derivatives of the free energy functional G[Q,M] =∫

dr g(Q,M) [22]. A dimensionless form of the TDGL
equations can be obtained by introducing rescaled vari-
ables Q = cNQ′, M = cMM′, r = crr′, t = ctt

′. Dropping
the primes yields the following equations:

1
Γ
∂Q11

∂t
= ±Q11 − (Q2

11 +Q2
12)Q11

+ l∇2Q11 + c1[M2
1 −M2

2 ], (2)
1
Γ
∂Q12

∂t
= ±Q12 − (Q2

11 +Q2
12)Q12

+ l∇2Q12 + 2c1[M1M2], (3)
∂M1

∂t
= ±M1 − |M|2M1 + ∇2M1

+ c2[Q11M1 +Q12M2], (4)
∂M2

∂t
= ±M2 − |M|2M2 + ∇2M2

+ c2[Q12M1 −Q11M2]. (5)

The dimensionless parameters in eqs. (2)–(5) are

c1 =
γμ0|α|
4|A|β

√
2B
|A| , c2 =

γμ0

|α|

√
|A|
2B

,

l =
|α|L
2|A|κ, Γ =

2|A|ΓQ
|α|ΓM .

(6)

The ± sign with the first terms on the right depends on
whether the corresponding component is above (−) or be-
low (+) its critical temperature. The parameters c1 and c2
are rescaled coupling constants, l sets the scale for relative
diffusion of the nematic and magnetic components, and Γ
is the relative damping coefficient. For simplicity, we set
l = 1 and Γ = 1. Therefore, the only parameters in our
model are c1 and c2. We emphasize that these originate
from the same coupling term in eq. (1). However, in our
dimensionless rescaling, they are combined with factors

Table 1: Coarsening studies which we have undertaken.

Quench temperature Coupling limits

1) TNc < T < TMc i) c1 �= 0, c2 = 0
2) TMc < T < TNc ii) c1 = 0, c2 �= 0
3) T < min{TNc , TMc } iii) c1 = c2 = c

which determine the dimensional scales of the order pa-
rameters Q and M (see eq. (6)).

There are three interesting cases in this problem:
1) TMc > T > TNc , 2) TNc > T > TMc , and 3) T <
min{TNc , TMc }. We study these for the following sub-
cases below: (i) c1 �= 0, c2 = 0, (ii) c1 = 0, c2 �= 0,
and (iii) c1 = c2 = c, as specified in table 1. A few re-
marks about the limiting cases are in order. Asymmetric
coupling is not unusual, as the order parameters can have
vastly different magnitudes in experiment, e.g., large mag-
netic particle in a bath of small LC molecules. We do not
expect to precisely realize c1 or c2 = 0, or c1 = c2 = c
in experiments. But due to their tractability, the limit-
ing cases (i)–(iii) provide useful guidelines for experimen-
tal studies. We have numerically solved eqs. (2)–(5) by
implementing an isotropic Euler discretization on an N2

lattice (N = 1024) with periodic boundary conditions in
both directions [34]. The latter are routinely used in sim-
ulations to remove edge effects and mimic bulk systems.
In any case, all our simulations are in the regime where
the length scale of the emergent pattern is much smaller
than the simulation box. The discretization mesh sizes
were Δt = 0.01 and Δx = 1.0. The statistical results do
not depend on the time step and mesh size chosen as long
as the stability condition is met.

The initial configurations of the nematic and magnetic
order parameters were chosen to have small random mag-
nitudes and random orientations. All statistical data were
averaged over 100 initial conditions. For N = 1024, we
do not observe any finite-size effects in our data up to
four decades. This was confirmed by carrying out a few
test runs with N = 2048; the corresponding results did
not show any corrections to the N = 1024 data. In all
figures, the error bars in the data are smaller than the
symbol sizes used to depict them. We present here results
for some prototypical cases of table 1, and will provide a
detailed analysis for all the cases in a longer paper.

Although our primary interest is in coarsening, we first
determine the stationary solutions (Q∗,M∗) by setting the
time and space derivatives to zero in eqs. (2)–(5). We then
perform a linear stability analysis by studying the growth
of initially small fluctuations Q∗(r, 0) = Q∗ + δQ∗(r, 0);
M∗(r, 0) = M∗ + δM∗(r, 0). In table 2, we present
the stable solutions for case 1 in table 1 for all the
sub-cases (i)–(iii). They provide a framework to inter-
pret the non-equilibrium evolution of the FN after a tem-
perature quench. Figure 1 shows the morphologies of
the nematic (left) and magnetic (right) components for
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Table 2: Coupling limits and stable stationary solutions for
case 1 of table 1, corresponding to a quench such that T N

c <
T < T M

c .

Coupling limits Stable stationary solutions:
(M∗

1 ,M
∗
2 , Q

∗
11, Q

∗
12)

(i) c1 �= 0, c2 = 0 (1, 0, rQ, 0)
rQ = c1(1 + Ŝ)−1

Ŝ = S2/4 = 3−1(−2 + a1 + a1
−1)

a1 = 21/3(a2 + c1(54 + 27a2)1/2)−1/3

a2 = 2 + c21

(ii) c1 = 0, c2 �= 0 (1, 0, 0, 0)

(iii) c1 = c2 = c (rM , 0, rQ, 0)
rm =

[
(1 + Ŝ)(1 + c2 + Ŝ)−1]1/2

rQ = c(1 + Ŝ + c2)−1

Ŝ = S2/4 = (1 + c2)(a1 − 2/3) + a1
−1

3a1 = 21/3(33c2 + a2 + a3
1/2)−1/3

a3 = 1053c4 + 54c2a2
a2 = 2c2 + 6c4 + 2c6

case 1(i) of table 1. The snapshots are shown at t = 103

with c1 = 4. In the nematic picture, blue (black) corre-
sponds to n in the first (or third) quadrant, while green
(light gray) corresponds to n in the second (or fourth)
quadrant. In the magnetisation picture, the colours blue
(black), red (dark gray), green (light gray) and yellow
(white) denote M lying in the first, second, third and
fourth quadrant respectively. We stress that M is always
parallel to n. The magnetic domains coarsen as expected,
but what is unusual is the slaved coarsening of the ne-
matic phase, and its co-alignment with M. We also find
that the magnitudes of Q and M are in accordance with
the analytical values for the corresponding stable station-
ary solution.

To quantify the morphologies and domain growth, we
define the characteristic length scale L(t) as the dis-
tance over which the correlation function decays to (say)
0.2 times its maximum value. If the ordering system
is isotropic and characterized by a single length scale,
then the correlation function obeys dynamical scaling:
C(r, t) = f(r/L), where f(x) is a scaling function. An
equivalent probe is the structure factor S(k, t), which is
the Fourier transform of C(r, t), and is usually obtained
in small-angle scattering experiments. The corresponding
dynamical-scaling form is S(k, t) = Ldf̃(kL), where f̃(p)
is the Fourier transform of f(x) [22]. Our two-component
system has two length scales LQ and LM , characterizing
the domain growth of the nematic and magnetic com-
ponents, respectively. For pure nematic and magnetic
systems (c1 = c2 = 0), it is well established that the
components obey the LAC law: L(t) ∼ t1/2 in d > 2
and L(t) ∼ [t/ ln t]1/2 in d = 2.

In fig. 2, we show the growth laws for case 1(i) with
c1 = 3, 4, 5 and c2 = 0 (left frame); and case 1(iii) with

Fig. 1: Morphology snapshots corresponding to case 1(i) of
table 1 for the nematic (left) and magnetic (right) components
at time t = 103 with coupling constants c1 = 4, c2 = 0. The
colour code shown in the insets is detailed in the text.

Fig. 2: Growth laws on a log-log scale for case 1(i) (left) and
case 1(iii) (right) of table 1. The solid (open) symbols denote
the nematic (magnetic) component. The insets show the effec-
tive growth exponent z̄ = [d(ln L)/d(ln t)]−1 vs. t. The dashed
lines corresponds to z̄ = 2 (left) and z̄ = 3 (right).

c1 = c2 = c for c = 3, 4, 5 (right frame). The solid symbols
denote LQ(t) vs. t while the open symbols denote LM (t)
vs. t. The linear variation on the log-log scale suggests
power laws: L(t) ∼ t1/z . For an accurate determination
of the slopes, we evaluated the effective growth exponent
z̄ = ∂ ln t/∂ lnL(t). The insets in figs. 2(a), (b) show z̄
vs. t on a semi-log scale. The dashed lines indicate the
exponent values z = 2 and 3. The data for case 1(iii) is
consistent with the LAC law for both components. Thus
the slaved nematic order parameter, which is naturally
isotropic, is driven to ordering by the magnetisation field.
Both these fields show the same growth law. We empha-
sise that the exponent z � 2 because of the logarithmic
correction arising in the growth law for d = 2.

The data for case 1(iii) in fig. 2(b) is the second un-
expected outcome of our study. Both the systems in-
deed coarsen together, but now the growth law is much
closer to L(t) ∼ t1/3. The latter, usually referred to as
the Lifshitz-Slyozov (LS) law, is characteristic of systems
with conserved dynamics though both order parameters
are non-conserved in the present case! Our study indi-
cates that the LS-like law is observed in all three cases
of table 1 for a symmetric coupling c1 = c2 = c between
components.
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Fig. 3: (a) Nematic and (b) magnetic morphologies for the
case 3(ii) of table 1 with c1 = 0, c2 = 4. Growth laws L(t)
vs. t for specified values of c2 are shown in (c). The scaled
structure factor data, L−2S(k, t) vs. kL, at the specified times
t is shown in (d). The solid (open) symbols in (c) and (d)
denote the nematic (magnetic) component.

The nature of the defects can be interpreted from
the tail of the structure factor [26]. For the cases 1(i)
and 1(iii), we find that the nematic and magnetic com-
ponents exhibit the generalized Porod decay S(k, t) ∼
k−(d+n) = k−4 for d = 2, n = 2. This is characteristic
of scattering from vortex defects in XY -type spin mod-
els [26]. As a matter of fact, we observe the k−4 decay for
all the cases in table 1 when (i) c1 �= 0, c2 = 0, and (iii)
c1 = c2 = c.

Finally, we present some results for the situation when
the nematic field evolves freely but the magnetisation field
is driven by the nematic field, i.e., c1 = 0, c2 �= 0. We fo-
cus on case 3(ii) of table 1 with T < min{TNc , TMc } so that
both the components are in the ordered phase. The corre-
sponding results are provided in fig. 3. In (a) and (b) we
show the nematic and magnetic morphologies for c2 = 4
and t = 103. We see that the components are aligned,
i.e., n ‖ M. However, the magnetic component exhibits a
small sub-domain morphology (SDM) due to the two pos-
sible alignments, n ‖ M and n ‖ −M, with the same en-
ergy. The sub-domain gradients in M have a cost in terms
of the surface tension, but this is estimated to be negligible
compared to the entropic gain due to the formation of the
SDM. The magnitudes of Q and M agree with the cor-
responding stable stationary solutions that we have eval-
uated for case 3(ii) (not presented here). In fig. 3(c), we
depict the growth laws for c2 = 3, 4, 5. While LQ(t) ∼ t1/2

as expected, LM (t) saturates to LSM due to the formation
of the SDM. The size of the sub-domains or the satura-
tion length scale is set by c2, and decreases with increasing

magneto-nematic coupling. In the uncoupled limit c2 → 0,
we expect LSM → ∞. More insights on the SDM are pro-
vided by the scaled structure factor, L−2S(k, t) vs. kL,
plotted in fig. 3(d) for c2 = 4. As expected, SQ(k, t) ex-
hibits a generalized Porod tail SQ ∼ k−4, due to scattering
off vortex-like defects in fig. 3(a). However, SM (k, t) shows
the usual Porod tail SM ∼ k−3! This is a result of scatter-
ing from the sharp “interfaces” between the sub-domains
with magnetization M and −M. Though M is a con-
tinuous order parameter, the nematic coupling enforces a
discrete up-down symmetry for M in the SDM. We find
that the SDM and the k−3 law exhibited by the magnetic
component is generic to c1 = 0, c2 �= 0, see table 1.

So what are the novel insights from this first coars-
ening study of a ferronematic? Our TDGL formulation
for the FN has allowed us to understand the effects of
magneto-nematic coupling on morphologies and growth
laws. Rather than the nature of the quench, e.g., shal-
low (say TNc < T < TMc ) or deep (T < min{TNc , TMc }), it
is the relative coupling strengths of c1 and c2 which dictate
the systemic behavior. There are three new observations
from our study: i) slaved coarsening for quench tempera-
tures T between the critical temperatures of the uncoupled
components, ii) slower growth similar to Lifshitz-Slyozov
(L(t) ∼ t1/3) law for symmetric magneto-nematic coupling
(c1 = c2 = c), iii) sub-domain morphologies dominated
by interfacial defects for asymmetric coupling strengths
(c1 = 0, c2 �= 0).

Finally, what is the experimental relevance of this sim-
plistic model? The Landau coefficients A, B and L are
related to experimentally measured quantities like the crit-
ical temperature, the latent heat of transition and the or-
der parameter [2]. Similarly, coefficients α, β and κ can
be evaluated from the measurements of magnetization and
susceptibility [35]. The coupling constant γ has been es-
timated from the reversal fields of hysteresis loops [8]. In
principle therefore, it is possible to determine our dimen-
sional scales and the dimensionless coupling constants c1
and c2. However, the existing experimental data on FNs
are in the presence of external magnetic fields, which bi-
ases the response functions. So it is not possible to obtain
estimates of our scaled parameters at this juncture. In
the stable FNs created so far, TNc < TMc . Thus, of the
three cases we have studied (see table 1), the most rele-
vant are 1 and 3. In this emergent research area of FNs,
combined experimental and theoretical efforts are needed
to understand the fundamentally rich and technologically
important properties. We hope our theoretical results will
propose and guide coarsening experiments in FNs. Our
work is a step in this direction.
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Soft Matter, 10 (2014) 9065.
[12] Liu Q., Ackerman P. J., Lubensky T. C. and

Smalyukh I. I., Proc. Natl. Acad. Sci., 113 (2016) 10479.
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