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1.  Introduction

Machines usually bear variable loads and maintain an 
unsteady speed [1]. Therefore, vibrations of machines gener-
ally feature nonstationarity and nonlinearity. In this case, it 
is a challenging task to estimate an instantaneous frequency 
(IF) of a mechanical part in unsteady conditions [2]. Typically, 
the kinematics of a mechanical part presents itself as a ridge 
in a time frequency image (TFI) converted from a vibra-
tion signal from a machine. Here, a ridge refers to a curve 
formed by the most energy-intensive points in a TFI [3–5]. 
For this reason, reflecting a change of frequencies with time, 
a ridge can discover instantaneous properties of a mechanical 
part [1, 3–6]. Consequently, ridge extraction from a TFI of a 

signal can serve to recover an IF of a mechanical part [7–9]. 
Nonetheless, a complex signal from a machine in unsteady 
conditions usually contains a number of components, which 
theoretically correspond to the same number of ridges in a TFI 
of this signal. As a consequence, mutual interference between 
these ridges considerably increases difficulties in recovering 
an IF of a mechanical part from a signal [10].

In past decades, several algorithms for ridge extraction have 
been designed [3–5, 11–14]. As the simplest one among them, 
the modulus maximum method (MMM) directly detects the 
most energy-intensive point along frequencies of a TFI at each 
instant [11]. When applied to extract a targeted ridge from a 
multi-ridge TFI, the MMM may pick up points from a ridge 
different from the targeted ridge. Consequently, a targeted ridge 
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extracted by the MMM often lacks continuity. Accordingly, 
the MMM is not applicable to a complex signal containing 
many components [4]. For addressing this problem, the one-
step cost function (OSCF) was proposed [10, 15]. The OSCF 
limits researching regions of a targeted ridge within a range 
of constant bandwidth and centers a searching region of some 
point on the previous neighbor of this point on a targeted ridge. 
Accordingly, compared with the MMM, the OSCF considers 
both continuity and accuracy of a ridge. However, the OSCF 
seemingly lacks self-adaptation in determining searching 
regions of a targeted ridge due to invariance of researching 
bandwidth and dependence on inertia of locations of two con-
secutive points on the targeted ridge. As a result, a searching 
region of a point on a targeted ridge, provided by the OSCF, 
either may exclude the point from the searching region or 
may introduce excessive noise. Also, a dual path optimization 
method for ridge estimation, proposed in [2], seemingly suf-
fers from the same deficiency as the OSCF. Consequently, the 
OSCF still leaves some to be desired.

On many occasions, a vibration signal is preprocessed 
by time-frequency analysis (TFA) methods. Currently, TFA 
methods mainly include short-time Fourier transform (STFT), 
Wigner–Ville distribution, wavelet transform (WT), empirical 
mode decomposition and variational mode decomposition. 
These TFA methods all have own advantages and disadvan-
tages, and can find their appropriate use in different cases. 
As two popular methods, STFT and WT have been widely 
employed in vibration signal analysis. This paper uses STFT 
and WT to preprocess vibration signals. In doing so, a vibra-
tion signal can be transformed into a TFI by TFA methods. 
Because a real signal usually contains many components, 
a TFI transformed from the real signal consists of multiple 
ridges, each of which refers to kinematics of a mechanical 
part. Since a ridge locally represents the most energy-inten-
sive points in a TFI, there may be an energy gradient around 
the ridge in the TFI. As a result, dispersion of a ridge may 
appear. In doing so, a dispersive ridge can be outlined by its 
edges. In this manner, statistics of a ridge enclosed in its edges 
can be estimated by analyzing distribution of these edges. 
Along this path, projections of these statistics pave a possible 
way for determining areas covering the targeted ridge. As a 
consequence, this paper proposes an adaptive variable-band-
width cost function (AVBCF). Thus, the AVBCF searches 
a point in a variable-bandwidth region independent of the 
previous neighbor of this point on a targeted ridge. The pro-
cess of performing the AVBCF is stated as follows. Firstly, a 
vibration signal is mapped to a TFI using STFT. Secondly, a 
TFI zone, which contains some dispersive ridges and has a 
relatively high signal-to-noise ratio (SNR), is filtered into a 
binary image by the Canny detector. In this way, these disper-
sive ridges can be outlined by their edges in the binary image. 
Thirdly, the Grubbs test is applied to exclude outliers, which 
represent noise, from edges of each dispersive ridge. Fourthly, 
these dispersive ridges are proportionally superimposed on 
one of them for forming a synthetic dispersive ridge with 
clear and complete edges. Again, the Grubbs test is applied to 
exclude outliers from edges of the synthetic dispersive ridge. 
Next, a central line of the synthetic dispersive ridge and the 

confidence interval of the central line at 95% confidence level 
are projected to the targeted ridge according to kinematic rela-
tions between the targeted ridge and the synthetic dispersive 
ridge. In the following, the AVBCF is used for extracting the 
targeted ridge. Subsequently, the performance of the AVBCF 
is benchmarked against the OSCF numerically. Also, the 
performance of the AVBCF is compared with the OSCF and 
some widespread methods using a signal from a variable-
speed planetary gearbox. The results indicate that the AVBCF 
delivers a better performance over the others.

The remaining contents of this paper are structured as 
follows. Section  2 provides an introduction to the OSCF. 
Section 3 proposes the AVBCF. Section 4 evaluates the per-
formance of the AVBCF numerically and experimentally, and 
opens up a discussion. Section 5 concludes this paper.

2.  OSCF

The OSCF is reported as follows [10].

	(1)	�Convert a signal into a TFI using STFT; 
	(2)	�Define a local cost function CFk  at the kth instant as

CFk = |fk (i)− fk−1 (c)|2 − ek|TF (tk, fk (i))|2,
k = 2, 3, . . . , m

� (1)

where
   tk   The kth instant
   fk  � The frequency for the most energy-intensive point at tk
   TF (t, f ) � Energy representations of the analyzed signal at 

instant t and frequency f
   m   The number of instants in the TFI
   n  The number of frequencies in the TFI
   fk (c) � The frequency for the most energy-intensive point 

determined by minimizing CFk  at tk
   fk (i)  A potential candidate for fk (c), i = 1, 2, . . . n
   ek  The weighted factor

As seen in equation  (1), for making CFk  minimal, the 
former term should be as small as possible and the latter one 
as large as possible. Thus, the former term aims to maintain 
continuity of a ridge and the latter to identify an energy peak 
in a range of frequencies at tk . In this respect, the OSCF con-
siders both continuity and accuracy of a ridge when applied to 
ridge extraction.

For eliminating mutual interference between ridges, the 
OSCF limits searching regions of a targeted ridge within a 
range of constant bandwidth. The OSCF defines a local 
searching region FBk at tk  below:

FBk = [fk−1 (c)− fw, fk−1 (c) + fw] ,
k = 2, 3, . . . , m

� (2)

ek =


 fw
max
fk∈FBk

[TF (tk, fk)]




2

, k = 2, 3, . . . , m.� (3)

Here, fw is a half-width of FBk, remaining constant once set. 
As seen in equation (2), FBk is centered on fk−1 (c). To clarify 
this issue, figure 1 exemplifies how the OSCF determines a 
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searching region of a point on a targeted ridge using equa-
tion  (2). As described in figure 1, FBk can cover an energy 
peak at tk  if and only if fw > |fk (c)− fk−1 (c)|. However, 
exceeding largeness of fw possibly makes FBk cover a part 
of a different ridge. Accordingly, the OSCF seemingly leaves 
much to be desired in exactly determining searching regions 
of a targeted ridge.

3.  AVBCF

This paper proposes the AVBCF for overcoming the deficiency 
of the OSCF. The AVBCF defines a cost function CFk  as

CFk = |fk (i)− fk ( pmc)|2 − ek|TF (tk, fk (i))|2

k = 1, 2, . . . , m
� (4)

and does a local searching region FBk at tk  as

FBk =
[
fk ( pmc)− f k

w, fk ( pmc) + f k
w

]
k = 1, 2, . . . , m

� (5)

ek =


 f k

w

max
fk∈FBk

[TF (tk, fk)]




2

, k = 1, 2, . . . , m.� (6)

Here, fk ( pmc) denotes a value on the central line projected at 
tk  and f k

w indicates a half of the confidence interval projected 
at tk .

Afterwards, the AVBCF is applied to ridge extraction. 
Firstly, some dispersive ridges are outlined by their edges 
by the Canny detector [16, 17]. Then, these dispersive ridges 
serve to synthesize a dispersive ridge with clear and complete 
edges. Here, the Grubbs test is employed to exclude outliers 
from edges of raw dispersive ridges and of the synthetic one. 
Next, the central line of the synthetic dispersive ridge and 
the confidence interval of the central line are projected to the 
targeted ridge. Moreover, projections of the central line and 
of the confidence interval serve as a reference and searching 
regions of the targeted ridge, respectively. Also, introduction 
to the Grubbs test and to the confidence interval of a disper-
sive ridge is given in appendices A and B, respectively. The 
AVBCF is stated as follows.

Step 1: Generate a TFI using STFT.
Step 2: �Filter a TFI zone with a relatively high SNR into a 

binary image by the Canny detector and outline some 
dispersive ridges by their edges.

Step 3: �Use the Grubbs test to exclude outliers from edges of 
each dispersive ridge.

Step 4: �Proportionally superimpose these dispersive ridges on 
one of them for synthesizing a dispersive ridge with 
clear and complete edges.

Step 5: �Use the Grubbs test to exclude outliers from edges of 
the synthetic ridge.

Step 6: �Calculate the central line of the synthetic ridge, smooth 
the central line in a span of five points using a moving 
average filter and estimate the confidence interval of 
the central line at 95% confidence level.

Step 7: �Project the central line and the confidence interval 
thereof to a targeted ridge according to kinematic rela-
tions between the targeted ridge and the synthetic ridge.

Step 8: �Define projections of the central line and the confi-
dence interval as the reference and the search regions 
of the targeted ridge, respectively.

Step 9: �Extract the targeted ridge using the AVBCF.

In this place, it is very important for the Canny detector to 
appropriately set a double threshold [16, 17]. A too high threshold 
may lead to loss of important information, while a too low one may 
does inclusion of irrelevant information. Nevertheless, a double 
threshold applicable everywhere scarcely exists. Fortunately, 
[17] has designed an empirical scheme for determining a high 
threshold: firstly, an image is filtered by a Wiener filter; then, a 
global histogram of the filter responses is taken; next, the posi-
tion of the low percentile not more than 80% is recommended for 
determining the high threshold. In this paper, the high threshold 
is taken at the 70% percentile and a low threshold is empirically 
set as 0.4 time the high threshold. A more detailed introduction to 
the Canny detector is provided in [17].

Furthermore, some rules should be followed for choosing 
the TFI zone in Step 2. Firstly, the chosen TFI zone should 
contain at least two dispersive ridges for synthesis. Secondly, 
dispersive ridges in the chosen TFI zone should provide a 
marked contrast to backgrounds for convenience of edge 
detection. Thirdly, dispersive ridges in the chosen TFI zone 
can be clearly separated from each other for excluding outliers 
from each of these ridges.

4.  Performance verification of the AVBCF

4.1.  Numerical verification

In this subsection, a simulative signal modeling vibrations 
of a planetary gearbox was constructed for evaluating the 
feasibility of the AVBCF. Here, the simulative signal con-
tains three components, mixed with weak low-frequency and 
strong high-frequency noise. Additionally, there is a propor-
tional relation between IFs of these three components. The 

Figure 1.  A local searching region of a point on a targeted ridge 
in the OSCF.
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simulative signal x with a size of N = 2000 and a sampling 
frequency of fs = 20 Hz is expressed as follows:

x = x0 + noiseOne + noiseTwo� (7)

x0 = x1 + x2 + x3,

x1 =
[
1 + 1

3 cos
( 2πt

9

)]
cos

ñ
4πt + 6 sin

(
πt
10

)
+

cos
(
πt
6

)
ô

,

t = (0, 1, . . .N − 1) /fs,
x2 = 2 cos

[
2.3

(
4πt + 6 sin

(
πt
10

)
+ cos

(
πt
6

))]
,

t = (0, 1, · · ·N − 1) /fs,
x3 = 2.5 cos

[
3.9

(
4πt + 6 sin

(
πt
10

)
+ cos

(
πt
6

))]
,

t = (0, 1, . . .N − 1) /fs,
noiseOne = 0.1 · std (x0) · lowfrequencyNoise,
noiseTwo = 0.2 · std (x0) · highfrequencyNoise.

�

(8)

Here, the signs lowfrequencyNoise and highfrequencyNoise 
represent the low-frequency noise in a frequency range of  
0–3 Hz and the high-frequency noise in a frequency range 
of 3–10 Hz, respectively; the sign std (·) means to calculate 
the standard deviation. The simulative signal is depicted in 
figure 2.

The objective of the simulation is to recover the IF of the 
component x3 from the simulative signal. To begin with, 
figure  3 illustrates the use of WT in examining the simula-
tive signal. Here, the WT TFI was evaluated at 256 frequen-
cies and 2000 instants using a complex Morlet wavelet with a 
bandwidth parameter of 3 and a center frequency of 4. Next, 
the STFT was employed to analyze the simulative signal 
and the results are displayed in figure 4. Here, the STFT TFI 
was evaluated at 257 frequencies and 485 instants using a 
Hamming window of length 64, with an overlapping window 
of length 60. As displayed in figures 3 and 4, some dispersive 

ridges indeed emerge. Additionally, there exists a propor-
tional relation between frequencies relative to these dispersive 
ridges, which displays kinetics contained in the simulative 
signal. Afterwards, figures 5 and 6 display edges detected by 
the Canny detector from the WT TFI and from the STFT TFI, 
respectively. Consequently, a comparison between figures  5 
and 6 shows that the edges detected from the STFT TFI is 
clearer than those from the WT TFI. Since clear and complete, 
edges of the upper dispersive ridge in figure 6 can serve directly 
as searching regions of a targeted ridge. In the following, the 
targeted ridge was extracted using the AVBCF. Subsequently, 
figures 7(a) and (b) draws a comparison between the estimated 
IF using the AVBCF and the theoretical value and reports rela-
tive errors between them, respectively. Moreover, the OSCF 
was employed to recover the IF of the component x3 from 
the simulative signal. Here, a half-bandwidth fw of searching 
regions for the targeted ridge was assigned to 0.7 Hz in the 
OSCF. Figures 8(a) and (b) compares the estimated IF using 
the OSCF with the theoretical value and reports relative errors 

Figure 2.  A simulative signal modeling vibrations of a planetary 
gearbox.

Figure 3.  The WT TFI of the simulative signal.

Figure 4.  The STFT TFI of the simulative signal.

Figure 5.  Edges detected from the WT TFI of the simulative signal 
using the Canny detector, where some blurred areas are marked in 
red.

Figure 6.  Edges detected from the STFT TFI of the simulative 
signal using the Canny detector.

Meas. Sci. Technol. 31 (2020) 055402
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between them, respectively. As a consequence, a comparison 
between figures 7(b) and 8(b) indicates that the AVBCF out-
performs the OSCF in the simulation.

4.2.  Experimental verification

The Fourth International Conference on Condition Monitoring 
of Machinery in Non-stationary Operations (CMMNO2014) 
sponsored a contest for assessing the performance of 

monitoring and diagnostic algorithms in non-stationary 
operations [18–20]. The contest provided a vibration signal 
collected from a wind turbine planetary gearbox, whose 
kinematic sketch is presented in figure  9. The signal was 
recorded with IFM-Electronics VSE002 acquisition systems 
by an accelerometer fixed on the gearbox housing close to 
the epicyclic gear train, with a size of 2736 825 points and a 
sampling frequency of 5000 Hz. The signal provided in the 
contest is depicted in figure 10. During recording the signal, 
a speed of the input shaft fluctuates between 13 and 15 revo
lutions per minute (RPM). Evidently, a range of 13 RPM–  
15 RPM matches 0.22 Hz–0.25 Hz. Kinematic parameters and 
details of the planetary gearbox are provided in tables 1 and 
2, respectively. One objective of the contest is to recover the 
IF of the high speed shaft. To reach this objective, a ridge in a 
TFI of this gearbox vibration signal should be extracted.

To start with, WT was adopted to investigate the gearbox 
vibration signal and the results are displayed in figure  11. 
Here, the WT TFI was evaluated at 256 frequencies and 
2736 825 instants using a complex Morlet wavelet with a 

Figure 7.  (a) Comparisons between the estimated IF using the 
AVBCF and the theoretical value in the simulation, (b) relative 
errors between the estimated IF using the AVBCF and the 
theoretical value.

Figure 8.  (a) Comparisons between the estimated IF using the 
OSCF and the theoretical value in the simulation, (b) relative errors 
between the estimated IF using the OSCF and the theoretical value.

Figure 9.  A kinematic sketch of the planetary gearbox.

Figure 10.  A signal collected from the planetary gearbox, provided 
in CMMNO 2014.

Table 1.  Kinematic parameters of the planetary gearbox.

Gear labels Teeth

1 123
2 (3 planets) 50
3 21
4 93
5 22
6 120
7 29
8 63
9 23
10 10
11 13

Meas. Sci. Technol. 31 (2020) 055402
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bandwidth parameter of 3 and a center frequency of 3. In 
addition, the frequency resolution in the WT TFI cannot be 
set higher because of limitations of performances of the used 
computer, which remains identical in all the transformation. 
Afterwards, STFT was applied to explore the gearbox vibra-
tion signal and the results are displayed in figure 12(a). Here, 
the STFT TFI was evaluated at 19 201 frequencies and 5682 
instants using a Hamming window of length 9600, with an 
overlapping window of length 9120. Since much clearer than 
the WT TFI in figure 11, the STFT TFI in figure 12(a) was 
examined for edge detection. Afterwards, the ridge centered 
on 280 Hz in figure 12(b) was chosen as the targeted ridge. 
Two reasons for this choice are provided as follows. Firstly, 
the targeted ridge is completely contained in the 200–320 Hz 
image zone, which is less disturbed by noise and other ridges. 
Secondly, the targeted ridge is the only potential candidate for 
the second harmonic of the meshing frequency of interme-
diate gear pairs 4/5.

In the following, a reference and searching regions of the 
targeted ridge were estimated by exploiting kinematic rela-
tions between different parts of the planetary gearbox. As 
exhibited in figure  12(a), there is an approximately propor-
tional relation between these dispersive ridges, which exhibits 
local kinematics of the planetary gearbox. Moreover, with a 
relatively high SNR, the low-frequency image zone between 
17 Hz and 93 Hz in figure 13 was investigated for estimating 
the reference and the searching regions of the targeted ridge. 
In addition, a close-up of the low-frequency image zone 
shows that the frequency relative to the lower dispersive 
ridge is nearly the meshing frequency of planet gear pairs 
1/2. Also, as described in figure  13, the IFs for the middle 
dispersive ridge and for the upper dispersive ridge are almost 
two and three times that for the lower dispersive ridge, respec-
tively. Then, the low-frequency image zone was filtered by 

the Canny detector with two different thresholds 0.0063 and 
0.0156 and the results are shown in figure 14. As shown in 
figure  14, in which some contaminated areas are circled in 
red, profiles of the upper dispersive ridge are mostly main-
tained but locally contaminated, while those of the middle 
and the lower dispersive ridges are less contaminated but 
leave several gaps. Subsequently, the Grubbs test was adopted 
to purify the binary image zone: firstly, separate the binary 

Table 2.  Kinematic details of the planetary gearbox.

Kinematic elements        Order

Input shaft 1
Sun gear shaft 6.86
Intermediate shaft 28.99
Output shaft 119.95
Gear pairs ½ 123
Gear pairs 2/3 123
Gear pairs 4/5 637.71
Gear pairs 6/7 3478.44

Figure 11.  The WT TFI of the planetary gearbox signal.

Figure 12.  The STFT TFI of the planetary gearbox signal, (a) the 
whole image, (b) the 200–320 Hz zone.

Figure 13.  The STFT TFI zone chosen for edge detection, where 
artificial vertical dash lines in black assist in quantifying the 
relations between these three dispersive ridges.

Figure 14.  Edges detected from the image zone using the Canny 
detector, where some noisy areas are circled in red.

Meas. Sci. Technol. 31 (2020) 055402
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image zone in figure 14 into three non-overlapping regions, 
each of which contains only one dispersive ridge, as demon-
strated in figure  15; then, apply the Grubbs test to exclude 
outliers from each of these raw dispersive ridges. Figure 16 
exhibits the results purified by the Grubbs test. A comparison 
between figures 15 and 16 demonstrates that the outliers cir-
cled in red in figure 15 have been removed from figure 16. 

Afterwards, the upper and the middle dispersive ridges were 
superposed proportionally on the lower one for constructing 
a synthetic one with clear and complete edges, as displayed 
in figure  17. Again, the Grubbs test was employed to fur-
ther refine the synthetic dispersive ridge and the results are 
depicted in figure 18. A comparison between figures 17 and 18 

Figure 15.  Separated dispersive ridges in the image zone, where 
artificial horizontal dash lines in black assist in distinguishing 
between different dispersive ridges and some noisy areas are circled 
in red.

Figure 16.  The refined dispersive ridges by the Grubbs test.

Figure 17.  The synthetic dispersive ridge.

Figure 18.  The refined synthetic dispersive ridge by the Grubbs 
test.

Figure 19.  The central line of the synthetic dispersive ridge and the 
confidence interval of the central line at 95% confidence level.

Figure 20.  Projections of the central line and of the confidence 
interval at 95% confidence level to the targeted ridge, where the 
blue line stands for a reference of the targeted ridge and the black 
lines for boundaries of searching regions.

Figure 21.  Extraction of the targeted ridge using the AVBCF.

Figure 22.  Comparisons between the estimated rotation speed 
using the AVBCF and the measured value.

Meas. Sci. Technol. 31 (2020) 055402



C Dou and J Lin﻿

8

shows that some outliers in figure 17 have been removed from 
figure 18. Figure 19 describes the central line of the synthetic 
dispersive ridge and the confidence interval of the central line 
at 95% confidence level. Afterwards, the central line and the 
confidence interval were together projected to the targeted 
ridge in the ratio 10.3693 (kinematic relations between the 
second harmonic of the intermediate gear meshing frequency 
and the planet gear meshing frequency) according to table 2. 
The results projected are revealed in figure 20. As revealed in 
figure 20, the upper and lower boundaries of the confidence 
interval projected completely enclose the targeted ridge. 
Next, the AVBCF was exploited to extract the targeted ridge. 
Figure  21 manifests the extraction of the targeted ridge. In 
what follows, the rotation speed of the high speed shaft was 
deduced from the estimation of the targeted ridge according 
to the ratio 60 × 119.95/(637.71 × 2) = 5.6428. Figure  22 
draws a comparison between the estimated rotation speed 
using the AVBCF and the measured value. Figure 23 reveals 
relative errors between the estimated rotation speed using the 
AVBCF and the measured value. As indicated in figures 22 

and 23, there are very minor differences between the estimated 
rotation speed using the AVBCF and the measured value. Also, 
to benchmark the performance of the AVBCF, the OSCF was 
used for the extraction of the targeted ridge and the results are 
depicted in figure 24. Figure 25 makes a comparison between 
the estimated rotation speed using the OSCF and the meas-
ured value. Figure 26 demonstrates relative errors between the 
estimated rotation speed using the OSCF and the measured 
value. As shown in figures 25 and 26, the estimated rotation 
speed using the OSCF deviates severely from the measured 
value at some instants when the rotation speed varies consid-
erably. Thus, a comparison between figures 23 and 26 proves 
that the AVBCF delivers a better performance than the OSCF. 
Addtionally, there are very big differences between results 
provided by different contenders in CMMNO 2014 [19]. A 
comparison between figure 23 and the resutls provided in [19] 
points out that the AVBCF takes an advantage over those used 
in CMMNO 2014.

4.3.  Discussion

This paper makes two main contributions. Firstly, dispersion 
of a ridge on a TFI of a signal is made profitable. In doing 
so, statistics of a dispersive ridge are estimated by analyzing 
edges of the dispersive ridge in a binary image. Furthermore, 
these statistics can indirectly provide a reference and 
searching regions for the targeted ridge. Secondly, the AVBCF 
is devised for ridge extraction. In this context, the central line 
of a synthetic dispersive ridge is projected to the targeted 
ridge for providing a real-time reference for the targeted ridge. 
Also, the confidence interval of the central line is projected to 
the targeted ridge for providing adaptive variable-bandwidth 
searching regions for the targeted ridge. As a consequence, 
the AVBCF seemingly overcomes the question occurring in 
the OSCF.

Although delivering a good performance in this paper, the 
AVBCF for ridge extraction still leaves some to be desired. 
To begin with, the resolution of a TFI is the key to main-
taining the performance of the AVBCF. Higher resolution of 
a TFI will produce more accurate estimations of a targeted 
ridge. Accordingly, the AVBCF demonstrates a strong need 
for high resolution of a TFI. Secondly, an image zone with a 
relatively high SNR, providing a reference framework for a 
targeted ridge, is chosen manually. In the future, an intelligent 

Figure 23.  Relative errors between the estimated rotation speed 
using the AVBCF and the measured value.

Figure 24.  Extraction of the targeted ridge using the OSCF.

Figure 25.  Comparisons between the estimated rotation speed 
using the OSCF and the measured value.

Figure 26.  Relative errors between the estimated rotation speed 
using the OSCF and the measured value.
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procedure should be developed for realizing automation of 
this choice. Thirdly, the AVBCF is sensitive to accuracy of a 
speed ratio. Thus, a speed ratio between a targeted ridge and 
a synthetic dispersive ridge must be calculated carefully for 
assuring accuracy of projections. Furthermore, the time-effi-
ciency of the AVBCF is moderate and requires to be improved 
in the future.

5.  Conclusions

Aiming at the shortage occurring in the OSCF, this paper puts 
forward the AVBCF for ridge extraction. In the AVBCF, a 
searching region of a point on a targeted ridge is independent 
of the previous neighbor of this point and has time-varying 
bandwidth. Afterwards, the performance of the AVBCF 
was benchmarked against the OSCF and some widespread 
methods. The results indicate that the AVBCF performs better 
than the other methods in ridge extraction. Thus, this paper 
seemingly paves a different way for use in ridge extraction. In 
the future, the AVBCF may be a promising method for ridge 
extraction of complex multicomponent signals.

Acknowledgments

The authors would like to kindly thank CMMNO 2014 for 
providing planetary gearbox vibration data. The work was 
supported by Shandong Provincial Natural Science Foun-
dation (Project ZR2012EEL07) and Development Program 
of Science and Technology of Weifang City (Grant Nos. 
2014ZJ1051, 2015GX023).

Appendix A.  Canny edge detector

In an image, an edge is defined as a curve going along a path 
where image intensity changes sharply. Accordingly, an edge, 
which relates to a discontinuity of image intensity, indicates 
occurrences of important events or a change of natural properties 
[21]. Edge detection, used widely in image processing, machine 
vision and computer vision, aims to detect and describe discon-
tinuities of intensity in an image [22]. By edge detection, a com-
plex image can be outlined by edges. As a consequence, edge 
detection, which filters trivial information, can extract important 
structural features from an image. In this sense, edge detection is 
a powerful tool for simplifying analysis of an image.

Currently, many methods have been designed for edge 
detection, including the Sobel detector [23], the Prewitt 
detector [24], the Roberts detector [25], the Marr-Hildreth 
detector [26], the zero-cross detector [27] and the Canny 
detector [17]. Among these methods, the Canny detector is the 
most powerful [28]. A double threshold for detecting strong 
and weak edges is featured highly in the Canny detector. 
Additionally, the weak edges only connected to the strong 
edges will be preserved and the others abandoned [17]. Thus, 

the Canny detector is superior to the others in suppressing 
noise and preserving true weak edges [28].

The Canny detector is profiled in the following.

	(1)	� Smooth the image f (x, y) by a Gaussian filter for 
removing noise and unwanted details:

g (x, y) = G (x, y) ∗ f (x, y)� (A.1)

G (x, y) =
1

2πσ2 exp

Å
−x2 + y2

2σ

ã
.� (A.2)

		 Here, g (x, y) represents the smoothed image, G (x, y) sig-
nifies a two-dimension Gaussian filter and the parameter 
σ indicates the standard deviation of Gaussian. Also, the 
sign ‘∗’ stands for convolution.

	(2)	�Calculate magnitude and orientation of the intensity gra-
dients of the smoothed image g (x, y):

M (x, y) =
»

g2
x (x, y) + g2

y (x, y)� (A.3)

θ (x, y) = arctan [gy (x, y)/gx (x, y)]� (A.4)

gx (x, y) =
∂g (x, y)

∂x
, gy (x, y) =

∂g (x, y)
∂y

.� (A.5)

		 Here, M (x, y) and θ (x, y) mean the magnitude and the 
orientation of the intensity gradient, respectively.

	(3)	�Suppress non-maximum gradient magnitude in M (x, y) 
for thinning edges: if the current non-zero gradient value 
is larger than its two neighbors along the gradient direc-
tion θ (x, y), then the current value will remain unchanged. 
Otherwise, the current value is assigned to zero.

	(4)	�Filter the thinned edges by two different thresholds T1 
and T2 (T1 < T2) to acquire two different binary images 
I1 and I2.

	(5)	�Remove all the weak edges that are not referable to the 
strong ones in the image I2 from the image I1 and connect 
the remaining edge segments in the images I1 and I2 for 
constructing the desirable edges.

Appendix B.  Grubbs test

The Grubbs test, as a statistical test, serves to exclude outliers 
from a nearly normally distributed dataset [29]. For a dataset 
xi, i = 1, ..., N , define the Grubbs statistic as gi =

xi−x̄
σ , where 

x̄ and σ stand for the mean and the standard deviation of the 
dataset, respectively. After a significance level α is given, the 
Grubbs critical value g0 (N,α) is determined by solving the 
following probability equation:

P {gi � g0 (N,α)} = α.� (B.1)

Afterwards, the Grubbs criterion is implemented: if |xi − x̄| �  
σg0 (N,α), then exclude xi from the dataset.
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Appendix C.  Confidence interval of a dispersive 
ridge

Construction of the confidence interval of a dispersive ridge 
is reported as follows. A dispersive ridge is outlined by 
its edges in a binary image filtered by the Canny detector. 
Suppose that xj  stands for edges of a dispersive ridge at the 
j th instant and xk

j  for the kth element of xj , k = 1, 2, ..., n. 
Since the variance of xj  is unknown, the t-statistic should 
be adopted for estimating the confidence interval of 

the mean x̄j =
∑n

k=1 xk
j , that is, xj−x̄j

Sj/
√

n ∼ t (n − 1). Here, 

S2
j = 1

(n−1)
∑n

k=1

Ä
xk

j − x̄j

ä2
. Consequently, the confidence 

interval of the mean x̄j  at the confidence level (1 − α) is 

estimated as 
Ä

x̄j ± Sj√
n tα/2 (1 − n)

ä
. Typically, this paper 

sets α = 0.05.
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