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1.  Introduction

Electrical resistance tomography (ERT) [1] is a kind of elec-
trical tomography (ET) technology that reconstructs the 
conductivity distribution of the sensing domain through the 
measured boundary voltage [2]. ERT is widely applied for 
multi-phase flow processes [3], biomedical monitoring [4], 
etc, because it can non-intrusively visualize the domain.

Reconstruction of ERT is a severely ill-posed nonlinear 
inverse problem. The reconstructed image of ERT usually 

suffers from distortion and low resolution. To improve image 
quality, algorithms such as the sensitivity coefficient back pro-
jection (SBP) method [5], Tikhonov algorithm [6], Newton–
Raphson algorithm [7], and iterative Landweber algorithm [8] 
have been proposed. These reconstruction algorithms greatly 
improve the image quality. However, blurred reconstructed 
images and the lack of detailed features remain key factors 
that restrict the application of ERT.

In recent years, deep learning has flourished in image 
processing. Because deep learning techniques are good at 
mapping complicated nonlinear functions, deep learning 
has recently been introduced into ET reconstruction. An 
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autoencoder neural network has been employed in electrical 
capacitance tomography (ECT) [9]. Convolutional neural net-
works (CNNs) have been used in electrical impedance tomog-
raphy (EIT) [10] and ERT [11]. Two deep learning image 
reconstruction algorithms have been used in electrical tomog-
raphy [12]. A new cost function for ECT has been proposed 
[13]. Improving the quality of image reconstruction by using 
deep learning techniques has become an important direction 
of ERT research. As a deep learning technique, conditional 
generative adversarial networks (CGANs) [14] can gen-
erate images based on provided information, which renders 
the image generation process controlled, and can effectively 
improve the detailed features of the generated image. Due to 
these characteristics, CGANs have attracted widespread atten-
tion in the field of image processing [15–17].

In this paper, we analyse the seriously ill-posed problem of 
ERT image reconstruction and propose a deep learning struc-
ture based on a CGAN to estimate high-quality reconstructed 
ERT images from severely distorted images. The generator 
and discriminator are important components in a CGAN, and 
the difficulty of discrimination increases with improvements 
in the generation ability. Therefore, in this paper, the loss of 
the discriminator is used as the basis for setting the training 
times of the discriminator. Furthermore, a data generation 
method is proposed to simulate various conductivity distribu-
tions. Experimental data from a practical ERT system are used 
to verify the practicability of the structure.

2.  ERT reconstruction based on a CGAN

2.1.  Principles of ERT reconstruction

A typical ERT system is shown in figure 1. A current is injected 
into a pair of adjacent electrodes, and the voltages between the 
remaining pairs of adjacent electrodes are measured. When 
the field conductivity is perturbed, the measured boundary 
voltage will change accordingly. ERT can reconstruct the field 
from the change in boundary voltage.

When the perturbation is small, based on the sensitivity 
coefficient principle, the conductivity distribution can be 
reconstructed by using the sensitivity matrix principle.

However, the reconstructed image will produce large errors 
when the perturbation is great. Therefore, in this paper, the 
reconstructed image is selected as the initial image, and a deep 
learning method is used to improve the accuracy of the recon-
structed image.

2.2.  CGAN structure for ERT image reconstruction

As shown in figure  2, the network structure consists of 
two modules: a preprocessing module and a deep learning 
module.

In the preprocessing module, the measured voltage is recon-
structed into the conductivity image by inversion algorithms. 

The conductivity image is employed as the input of the deep 
learning module.

The goal of the deep learning module is to map the ini-
tial image to the real image. x denotes the initial image, and 
y  denotes the condition, which is the real conductivity dis-
tribution image. G denotes the generator, and D denotes the 
discriminator. G generates the image G(x, z) according to the 
initial image x and the random noise z. The goal of G is to 
bring G(x, z) as close to y  as possible: G : {x, z} → y. Then, x 
is combined with G(x, z) and y  and input to the discriminator 
D for discrimination, respectively. D is trained to discriminate 
these two groups of combinations. If the input is a combina-
tion of x and G(x, z), then the output of D should be ‘Fake’. 
If the input is a combination of x and y , then the output of D 
should be ‘Real’. In the CGAN algorithm, ‘Fake’ and ‘Real’ 
are distinguished by the output value. Both G and D can be 
nonlinear mapping functions [14].

The training process of the deep learning module in 
this paper is shown in figure  3. G denotes a generator, and 
D denotes a discriminator. Cycle represents the number of 
training cycles for G and D, and K represents the maximum 
value of the training cycles. T_g and T_d represent the training 
times of G and D, respectively, in each cycle. M and N are the 
maximum values of T_g and T_d, respectively. LCGAN(D) is 
the loss of D during training, and µ is a threshold near 0.

First, G is trained M times. Then, if the training cycle is less 
than K, D is trained. To improve the training efficiency, D is 
trained a number of times that varies with the loss of D. In this 
paper, LCGAN(D) is used as the basis for setting the number of 
times that D is trained. If LCGAN(D) < µ, D is considered to 
be capable of distinguishing between two combinations. Then, 
training of D is stopped, and G is trained. To avoid training D 
in an infinite loop, we set the maximum number of times that 
D is trained (N) in each training cycle. If D cannot distinguish 
the two combinations after N training times in each cycle, then 
the training of D is stopped, and G is trained. If the training 
cycle reaches K, then the training of the CGAN is stopped.

During training, G will be trained K cycles, while D will be 
trained K  −  1 cycles. After training is completed, in the actual 
application, only G is reserved for image generation, and D is 
no longer used.

Figure 1.  The 16-electrode ERT model. (a) Uniform conductivity. 
(b) Perturbed conductivity.
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2.3.  Details of G and D

Because of excellent performance in image processing, 
the CNN is used as the generator in this paper, as shown in 
figure 4. The kernel of the convolutional layer is 3  ×  3. The 
size of the input image is 36  ×  36. LeakyReLU is chosen as 
the activation function in the front layers, and Tanh is chosen 
in the last layer.

The function of D is to distinguish between the combina-
tion of the initial image x and the real image y  and the combi-
nation of the initial image x and the generated image G(x, z).  
The structure of D is shown in figure  5, and CNN is also 
adopted. In this paper, D has two convolutional layers and 
three fully connected layers. The kernel of the convolutional 
layer is 5  ×  5. Sigmoid is chosen in the last layer to map the 
entire real interval to the (0, 1) interval. The output of training 
should be near 0 when the input is a combination of x and 
G(x, z), and the output should be near 1 when the input is a 
combination of x and y .

2.4.  Objective

The objective of this paper can be expressed as [14, 15]

G∗ = argmin
G

max
D

LCGAN(G, D) + λLL1(G)




LCGAN(G, D) = Ex,y [logD(x, y)]
+Ex,z [log(1 − D(x, G(x, z))]
LL1(G) = Ex,y,z [‖y − G(x, z)‖1] ,

� (1)

where λ is the weighting term to balance the losses. 
LCGAN(G, D) is the objective of the CGAN, where G tries 
to minimize this objective, and D tries to maximize it. For 

industrial monitoring, the trustworthiness of the gener-
ated image is very important. Therefore, the pixel-wise loss 
LL1(G) is adopted to bring the generated image closer to the 
real image. Since the output range of D is (0, 1), all items in 
the logarithm are positive.

Figure 2.  CGAN structure for ERT image reconstruction.

Figure 3.  Training process.
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In this paper, the training objectives G and D can be math-
ematically expressed as follows:

LCGAN(G) = min
G

[log(1 − D(x, G(x, z))) + log ‖y − G(x, z)‖1]

� (2)

LCGAN(D) = min
D

[− [logD(x, y) + log(1 − D(x, G(x, z))]] .
� (3)

3.  Experimental method

3.1.  Datasets

In the ERT image, the field space is divided into 1296 pixels, 
as shown in figure  6. The concerned domain of interest is 
within the circle.

Data sets are very important for deep learning, as the neural 
network will learn a distribution from them and generalize 
data sets. The more comprehensive the data simulation, the 

stronger the generalization performance of the model after 
training. In practical applications, a gas–liquid distribution 
is diverse. To simulate the diversity of the distribution, we 
randomize the gas distribution in this paper. The data genera-
tion process is shown in figure 7, and it is performed by using 
MATLAB.

Figure 4.  Generator of the CGAN.

Figure 5.  Discriminator of the CGAN.

Figure 6.  Mesh grid.
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Step 1: Single-bubble samples of distribution are randomly 
generated in the domain. A single-bubble sample is a sample 
with only one bubble in each distribution, and the conductivity 
σ = 0 in the bubble. The generation process of a single bubble 
image is shown in figure 8.

To simulate a single bubble with different shapes, sizes, 
and locations, discrete points are generated and surrounded, as 
shown in figure 8(a). The conductivity in the enclosed range 
is set to 0 to generate a single bubble, as shown in figure 8(b). 
The single bubble image is converted into a 36 * 36 pixel con-
ductivity distribution image, as shown in figure  8(c). Field 
radius is assumed to be 15, the distance between the bubble 
centre and the region centre obeys an even distribution over 
the interval [2, 10]. The number of discrete points to form a 
bubble obeys an even distribution over the interval [30, 60]. 
Considering the factor of image resolution, excessively large 
and small bubbles are abandoned, and only the suitable bub-
bles are adopted to combine into a complex gas distribution. 

The radius of single bubbles obeys a normal distribution over 
the interval [2, 10] with a mean of 3 and a variance of 1.

Step 2: W samples are randomly extracted from step 1 
for combination. In this paper, 21 000 complex distribution 
images are combined as the real image y . Their positions are 
determined by step 1. W is a number that obeys an even dis-
tribution over the internal [1, 9], to form a variety of complex 
distributions.

Step 3: A total of 21 000 sets of boundary voltage meas-
urements of the field are obtained by a positive problem 
algorithm.

Step 4: An inversion algorithm is used to reconstruct the 
conductivity distribution. The reconstructed image is used as 
the initial image x for deep learning. In this paper, we use 
the Landweber algorithm and Newton–Raphson algorithm as 
inversion algorithms, respectively.

The 21 000 corresponding combinations of the input image x 
and the real distribution image y  are divided into two groups: a 

Figure 7.  Data set for deep learning.

Figure 8.  Generation of single bubble. (a) Generation of discrete points. (b) Single bubble image. (c) 36 * 36 pixel image.
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training set group and a testing set group. Generally, the size of 
a testing set is 50% the size of the training set, i.e. the training 
set group has 14 000 sets, and the testing set group has 7000 sets.

The proposed structure shown in figure  2 is used for 
training. The initial images are considered as inputs, and the 
real images are applied as conditions. The training process in 
this paper is shown in figure 4, where m  =  30, k  =  12, n  =  100, 
and µ  =  10−3. The values of m, k, n, and µ are derived from 
experiments. The 14 000 sets of inputs are divided into 140 
batches in the training process. After training is completed, 
the training results are tested with the testing set, and no dupli-
cation exists between the testing set and the training set.

3.2.  Evaluation index

The relative image error (RIE) and image correlation coef-
ficient (ICC) are used to evaluate the reconstruction results. 
A smaller reconstruction error and greater reconstruction cor-
relation mean higher image quality [18].

RIE =
‖σ̂ − σ‖
‖σ‖

× 100%� (4)

ICC =

∑K
i=1 (σi − σ̄)(σ̂i − ¯̂σ)»∑K

i=1 (σi − σ̄)
2 ∑K

i=1 (σi − ¯̂σ)
2

,� (5)

where σ̂ is the calculated conductivity distribution, σ is the 
real conductivity distribution, and K = 1296 is the number of 
pixels in an image.

4.  Results and discussion

4.1.  Simulation results and analysis

4.1.1.  Simulation results.  The 7000 initial images in the test-
ing set are input into the generator, and the outputs that are 
generated are referred to as CGAN images. Seven groups of 
images are randomly selected from the training set for com-
parison, as shown in figures 9 and 10. After the initial image 
is compared with the real image, the absolute value and initial 
error images are obtained. Similarly, the CGAN error images 
are obtained. In figure 9, the initial images are reconstructed 
by using the Landweber algorithm. In figure 10, the initial 
images are reconstructed by using the Newton–Raphson 
algorithm.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Real

Images

Initial

Images

CGAN

Images

Initial 

Error

Images

CGAN 

Error

Images

Figure 9.  Comparison images of the testing set in which the initial images are reconstructed by using the Landweber algorithm.
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Real

Images

Initial

Images

CGAN

Images

Initial 

Error

Images

CGAN 

Error

Images

Figure 10.  Comparison images of the testing in which the initial images are reconstructed using the Newton–Raphson algorithm.

Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 Model 14 Model 15

Real

Images

Initial

Images

CGAN

Images

Initial 

Error

Images

CGAN 

Error

Images

Figure 11.  Comparison images of the 8–15 models in which the initial images are reconstructed using the Landweber algorithm.
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To evaluate the performance of the algorithm, models 
that different from the data generation methods are tested. 
Considering the Landweber algorithm as an example, models 
and reconstructed images are shown in figure 11.

4.1.2.  Discussion.  As shown in the figures 9 and 10, the initial 
images substantially differ from the real images. However, the 
CGAN images only slightly differ from the real images, and 
the errors of the images are substantially reduced. The images 
reveal that the CGAN algorithm improves the distortion prob-
lem in ERT reconstruction. The image reconstructed by the 
CGAN method performs better in terms of details.

Quantitative analysis of 1–7 models in the testing set is 
performed. According to (4) and (5) mentioned in section 3.2, 

RIE and ICC are used to evaluate the CGAN method, as shown 
in table 1. The algorithm proposed in this paper reduces the 
error of the image and improves the correlation for the initial 
image obtained by the two algorithms.

Quantitative analysis of the 7000 testing set is performed, 
as shown in table  2. The maximum, minimum and mean 
values of RIE and ICC are listed.

The reconstruction error and correlation analysis of 8–15 
models are shown in table 3. The test results prove that the 
proposed algorithm is effective.

Related parameters of the computer, which are used for 
training, are listed as follows: CPU: Intel® CoreTM i7-5500U, 
RAM: 8.00 GB, System type: 64-bit operating system. The 
computer times needed for the different steps of training 

Table 2.  RIE and ICC of the 7000 reconstructed images.

Landweber Newton–Raphson

Initial image CGAN image Initial image CGAN image

RIE_MAX 49.1666 16.6222 55.6213 17.3267
RIE_MIN 0.6609 0.0661 0.6247 0.0516
RIE_Mean 11.9795 2.8045 13.1915 2.9786
ICC_MAX 0.9888 0.9989 0.9895 0.9991
ICC_MIN 0.5032 0.8288 0.4259 0.8068
ICC_Mean 0.8649 0.9639 0.8529 0.9617

Table 3.  RIE and ICC of reconstructed image of 8–15 models.

RIE ICC

Initial image CGAN image Initial image CGAN image

Model 8 6.4264 1.2926 0.9127 0.9802
Model 9 10.9877 2.2292 0.8666 0.9677
Model 10 10.8760 2.6041 0.8674 0.9622
Model 11 10.7775 2.7634 0.8647 0.9596
Model 12 14.8236 3.8746 0.8287 0.9459
Model 13 17.9193 0.6567 0.7854 0.9904
Model 14 23.0505 4.7512 0.7462 0.9349
Model 15 17.5770 8.6907 0.7768 0.8710

Table 1.  RIE and ICC of reconstructed image of 1–7 models.

RIE ICC

Landweber Newton–Raphson Landweber Newton–Raphson

Initial image CGAN image Initial image CGAN image Initial image CGAN image Initial image
CGAN 
image

Model 1 23.6393 7.6426 28.6209 8.9137 0.7676 0.9098 0.7189 0.8964
Model 2 3.3100 0.4210 3.0196 0.6177 0.9511 0.9934 0.9560 0.9902
Model 3 16.9246 2.5774 18.0766 2.8743 0.8192 0.9672 0.8066 0.9633
Model 4 12.8364 1.6378 11.1735 1.6570 0.8704 0.9811 0.8855 0.9809
Model 5 9.0551 1.4098 9.1222 2.0330 0.8866 0.9805 0.8893 0.9715
Model 6 9.4575 1.5173 5.3700 1.5835 0.8989 0.9815 0.9399 0.9806
Model 7 16.2394 5.8578 15.6632 5.6722 0.8245 0.9261 0.8324 0.9287
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are shown in table 4. For D, the difference in training time 
is attributed to the fact that we introduce loss judgements in 
training.

The training times of D during each training cycle are shown 
in figure 12. In the first three training cycles, after two, three and 
eight training times, LCGAN(D) < 1.0 × 10−3; that is, y and 
G(x, z) were successfully distinguished. In the 4th to 8th training 
cycles, after 100 training steps, LCGAN(D) < 1.0 × 10−3 
was impossible to achieve; then, the current training cycle 
stopped. Subsequently, in the 9th to 11th training cycles, 
44, 27 and 21 training times were conducted to achieve 

LCGAN(D) < 1.0 × 10−3. A total of 602 training times were 
conducted in 11 training cycles. The training of introducing 
error judgement into D can effectively reduce the times of 
training.

4.2.  Experimental results and analysis

An experimental study was conducted to validate the proposed 
algorithm, as shown in figure 13. This study was developed 
by the University of Leeds. The configuration of the exper
imental system is listed below [19].

	 •	�Current simulation pattern: adjacent sensing strategy.
	 •	�Injected current: 15.10 Ma.
	 •	�Current frequency: 9600 Hz.
	 •	�Diameter of test field: 50 mm.
	 •	�ERT sensor: single-plane 16-electrode sensor.
	 •	�Continuous phase material: water.
	 •	�Discrete phase material: plexiglass.

The comparison images of the experimental set are shown 
in figure 14. The CGAN images and the distinction between 
two discrete phases are clearer. The CGAN method can be 
employed to reconstruct the sharp corners and edges of an 
image. The quantitative analysis is shown in table  5. The 
experiments show that the proposed structure can solve prac-
tical problems.

Figure 12.  Training times of D during each training cycle.

Figure 13.  Experimental setup of the ERT test system.

Meas. Sci. Technol. 31 (2020) 055401
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5.  Conclusion

In this paper, a CGAN structure is introduced to ERT recon-
struction. The error of the discriminator is used as the basis 
for setting the training times of the discriminator, and the L1 
norm is added to the loss function. In addition, a data gen-
eration method that can simulate gas–liquid distribution is 
proposed.

The simulation shows that images reconstructed by the 
algorithm mentioned in this paper perform better in terms 
of details, and the reconstructed images are more accurate. 
Experiments show that this method can solve practical prob-
lems. The sharp corners and edges of the reconstructed image 
are clear.

In the future, additional research should be conducted. The 
coverage of the dataset should be expanded to the real distri-
bution and its accuracy should be improved. In addition, the 
impact of different deep learning structures on reconstruction 
deserves further study.
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