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1.  Introduction

Rolling bearings are the most common mechanical comp­
onents and play an extremely important role in almost all 
rotating machinery. Due to their relatively low price and easy 
operation, they are widely used in industry. The maneuvering 
of the rotating machine is completely dependent on the health 
of the rolling bearing, which accounts for approximately 45%–
55% of these mechanical equipment failures. The causes of 
bearing failure, such as wear, pitting, dust, lubricant contami­
nation, temperature change and excessive load, can lead to the 
catastrophic collapse of the entire system and decrease the 
reliability and availability of equipment. Since the vibration 
signal is directly related to the rolling bearing structure, some 
methods based on signal processing have unique advantages 

in this respect. The vibration signal generated by the bearing 
fault is a kind of non-stationary signal containing various 
interference noise. How to extract the feature information of 
the bearing fault from the non-stationary signal is key to iden­
tifying the bearing fault. Accurate diagnosis and identification 
of rolling bearing faults can guarantee the normal operation of 
mechanical equipment.

The bearing vibration signal processing method is usu­
ally divided into two steps: extracting features from the 
signal and making decisions on those features. The vibration 
response of a defective bearing consists of a series of pulses 
which are generated when the rolling element runs through 
the bearing defect surface. The frequency generated by the 
pulse is called the bearing characteristic frequency, which 
depends on the shaft speed, bearing geometry and defect 
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position [1–3]. Generally speaking, there are four fault fre­
quencies for ball bearings: ball pass frequency on outer race, 
ball pass frequency on inner race, ball spin frequency and 
fundamental train frequency, which correspond to the defects 
of the outer ring, the inner ring, the rolling elements and the 
cage, respectively. Nowadays, fault diagnosis of rolling bear­
ings plays a very important role in the field of mechanical 
research [4]. Samanta and Nataraj [5] studied the application 
of particle swarm optimization (PSO) computational intel­
ligence technology in machine bearing fault detection, and 
then used a PSO algorithm to optimize the input parameters in  
artificial neural network (ANN) and support vector machine 
(SVM) classifiers, respectively. The vibration signals of 
normal and fault conditions were mainly subjected to feature 
extraction and classification tests. Lin and Wang [6] proposed 
a novel method for fault diagnosis of rolling bearings—the 
wavelet neural network optimized by simulated annealing 
particle swarm optimization was used to identify the faults 
of rolling bearings. Song et al [7] proposed a new method for 
fault diagnosis of roller bearings based on the fusion of hier­
archical entropy and PSO-SVM. This method can effectively 
and accurately identify the fault class and fault severity of the 
roller bearing. Rajeswari et al [8] proposed a novel multi-class 
SVM classification method based on the vibration signal for 
rolling bearing state prediction. The proposed method pro­
moted the classification accuracy of SVM. Chen et al [9] pro­
posed an intelligent diagnosis model for rolling bearing faults 
based on a multi-core SVM and chaotic particle swarm optim­
ization, which improved the diagnosis accuracy of bearing 
faults. Zhao et  al [10] proposed a method of bearing fault 
diagnosis based on an improved frog leaping algorithm com­
bined with the back-propagation (BP) neural network. The 
model established by this method had better generalization 
ability and robustness. Liang et al [11] proposed the ensemble 
local characteristic-scale decomposition (ELCD) and extreme 
learning machine (ELM) method for rolling bearing fault 
diagnosis, where ELCD was used to decompose the vibration 
signal, the sensitivity characteristics were obtained, and finally 
it was verified that ELCD-ELM could effectively identify 
bearing faults. Fu et al [12] proposed a hybrid optimization 
algorithm combining mutation operator, grey wolf optimizer 
(GWO), and sine cosine algorithm (SCA), termed mutation 
hybrid GWO-SCA (MHGWOSCA)-optimized SVM model, 
which was used to classify different fault samples and showed 
good accuracy and stability in all classification indicators. 
Wei et al [13] proposed a method-optimal variational mode 
decomposition (VMD), and the envelope entropy was used 
as a fitness function of whale optimization algorithm (WOA), 
meanwhile, which was applied to optimizing VMD and 
searching optimal parameters. Finally, envelope demodula­
tion analysis was applied to process intrinsic mode function 
(IMF) components, and it was proved that this method had 
obvious advantages in extracting fault features of the rolling 
bearing. Ma et al [14] proposed a transfer learning convolu­
tional neural network based on AlexNet, which converted the 
traditional 1D vibration signal feature extraction issue to a 
2D time-frequency image processing problem, and realized 
a better bearing classification effect; however, the training 

process was time-consuming, which also provided a research 
basis for future deep learning technology application.

The ability of shallow learning methods, such as BP and 
SVM, is mainly determined by the extracted feature quality. 
Some features that are liable to be identified are manually 
selected, which depends largely on researchers’ experience. 
Furthermore, the same features may not necessarily be suitable 
for new problems [15]. According to several studies, the deep 
learning architecture has better representation ability than the 
shallow learning model. Therefore, it is extremely significant 
that a deep learning model will be established for automatic 
learning and diagnosis of features [16]. Hinton proposed a new 
deep network model—the deep belief network (DBN)—which 
can make the entire neural network generate training data 
with maximum probability by training the weights between 
hidden layers. The DBN can identify features, and classify 
and generate data [17, 18]. Huang et al proposed a novel DBN 
model and then applied it to the field of unsupervised feature 
learning, image processing and fault diagnosis, which finally 
verified its learning performance [19]. To solve the problem 
of the diversity and complexity of the actual vibration signal 
of the rolling bearing, Shao et al [20] proposed a PSO-DBN 
method for bearing fault diagnosis; however, the extraction and 
classification of time-frequency domain features were not con­
sidered in this work. Shao et al [21, 22] proposed an adaptive 
DBN method based on double tree complex wavelet packet 
transform and a modified convolution DBN model based on 
compressed sensing to improve the fault diagnosis effect of the 
rolling bearing, but there were no explanations and demonstra­
tions for the confirmation of structural parameters of neural 
networks in the above two studies.

According to the abovementioned research results, the 
majority of improved DBN methods proposed by scholars 
only focused on the calculation of learning rate and extracted 
features, and there are few studies on the neural network struc­
ture and momentum which have a great effect on DBN perfor­
mance. The major contributions in this paper are as follows.

	(1)	�In order to quickly achieve higher classification accuracy 
results, salp swarm algorithm (SSA) optimization is used 
to optimize the network structure of the DBN, and the 
construction experience of the deep learning neural net­
work will be summarized.

	(2)	�By constructing a self-adaptive restricted Boltzmann 
machine (SARBM), the convergence effect and classifi­
cation accuracy of the DBN itself are further improved.

2.  DBN theory and SSA

2.1.  DBN

Deep learning has become one of the most popular research 
hotspots in the field of machine learning. As a new method 
in the field of machine learning, deep learning has shown its 
strong nonlinear fitting ability in image, text and voice signals. 
An important point of deep learning is that it can automati­
cally extract features. It can be divided into two categories: 
unsupervised learning and supervised learning. Different 
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learning methods can construct different machine learning 
models, such as k-nearest neighbor (KNN), decision tree and 
convolutional neural network (CNN), which are deep super­
vised learning models. The DBN used in this paper is an 
unsupervised learning model.

The DBN is a probability generation model. The param­
eters between layers are updated by training to improve the 
accuracy of neural network output. The DBN can also be seen 
as a deep BP neural network, which is a deep neural network 
architecture stacked by a multi-layer restricted Boltzmann 
machine (RBM). In this paper, DBN uses the unsupervised 
feature learning method to learn the effective characteristics 
of vibration signals. This method has been verified in the field 
of image and voice signals [23].

Generally speaking, the training process of DBN is divided 
into two steps: pre-training and fine-tuning. In the pre-training 
phase, an unsupervised greedy layer-by-layer learning algo­
rithm is adopted as follows.

Initialize the network parameters and input the extracted 
samples into the visual layer of the RBM. The output value of 
the hidden layer is treated as training data and input to the next 
RBM. Repeat the above process multiple times, finally output 
the optimal value, and achieve the purpose of deep mining the 
essential features of the data. The fine-tuning phase uses the 
BP neural network algorithm to perform supervised reverse 
adjustment of the entire DBN weight parameter. Figure  1 
shows the overall structure of the DBN.

2.2.  RBM

The RBM is the basic structure of the DBN, which has a two-
layer network structure. One layer is the visible layer, which is 
usually called the input layer, and the other layer is the hidden 

layer, which is also called the feature extraction layer. The 
connection between the visible layer and the neurons of the 
hidden layer is a bidirectional full connection. The RBM net­
work structure is shown in figure 2.

In the RBM, the weight w between any two neurons 
denotes the connection strength, c denotes the visible-layer 
bias coefficient, and b denotes the hidden-layer bias coeffi­
cient. v = (v1, v2 · · · , vn) represents the state of neurons in 
the visible layer, and h = (h1, h2 · · · hm) represents the state 
of hidden-layer neurons. Actually, the abovementioned h and 
v represent the weights of neurons in the hidden and visible 
layers, respectively, where v is the input vector and h is the 
output vector. Since RBM is essentially a probabilistic model 
based on energy, the energy function E of the visible unit and 
the hidden unit can be defined as follows:

E(v, h|θ) = −
n∑

i=1

civi −
m∑

j=1

bjhj −
n∑

i=1

m∑
j=1

viwijhj� (1)

where wij is the weight of visible-layer neurons i connected 
with hidden-layer neurons j , and n and m are the number of 
visible-layer neurons and hidden-layer neurons, respectively. 
θ = (wij, ci, bj) is the set of multiple model parameters.

The energy function of the RBM’s joint probability distri­
bution is as follows:

P(v, h|θ) = 1
L(θ)

e−E(v,h|θ)� (2)

where L(θ) is a normalized factor, also known as the parti­
tion function. The conditional probabilities of the visible 
and hidden layers are obtained by equations  (3) and (4), 
respectively:

P(h|v; θ) =
∏

j

P(hj|v; θ)� (3)

Figure 1.  Overall structure of the DBN with three RBMs.

Figure 2.  RBM network structure.
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P(v|h; θ) =
∏

i

P(vi|h; θ).� (4)

In this paper, the standard binary RBM is replaced by 
Gaussian GRBM. The hidden-layer neurons in GRBM obey 
Gaussian distribution, while the visible-layer neurons, similar 
to the standard RBM, still follow Bernoulli distribution.

The energy function Eg of the Gauss–Bernoulli RBM 
(GBRBM) distribution is as follows:

Eg(v, h; θ) =
n∑

i=1

(vi − bi)
2

2δ2
i

−
n∑

i=1

m∑
j=1

wij
vi

δi
hj −

m∑
j=1

cjhj

� (5)
where δi is the standard deviation of the training samples, the 
activation function of the hidden layer neurons is still sigmoid, 
and the activation function of the layered neurons becomes a 
Gaussian function. The conditional probability distribution is 
defined by equation (6):

Pg(vi|hj) = N(vi|µi, δ2
i ) =

1
δi
√

2π
exp[− 1

2δ2
i
(vi − bi − δi

∑
j

wijhj)
2].

� (6)
The mean µi of the Gaussian distribution is as follows:

µi = ci + δ2
i

∑
j

wijhj.� (7)

In general, standard deviation δi  =  1. For GRBM visible-
layer neurons, the learning rate is one to two orders of magni­
tude smaller than the binary value.

The abovementioned parameter θ can be obtained by 
maximizing the logarithmic likelihood function in the RBM 
training set. If the number of training samples is T, the max­
imum likelihood function F is as follows:

θ∗ = argmaxF(θ) =
1
T

argmax
T∑

t=1

logP(vt|θ).� (8)

The maximum gradient of F(θ) and the optimal parameter 
value are obtained by stochastic gradient descent (SGD). 
Each RBM needs to be repeated several times. However, 
these parameters have a different update orientation after each 
iteration, which may cause early convergence or instability of 
the algorithm. Therefore, it is necessary to add a momentum 
factor to solve this problem when the parameter is updated. 
The update rule is as follows:

∆w(k)
ij = ε

∂F(θ)

∂w(k)
ij

+ η∆w(k−1)
ij� (9)

∆c(k)
i = ε

∂F(θ)

∂c(k)
i

+ η∆c(k−1)
i� (10)

∆b(k)
j = ε

∂F(θ)

∂b(k)
j

+ η∆b(k−1)
j� (11)

where η is the learning rate, k is the number of iterations, and 
ε is the momentum factor. The introduction of the momentum 
factor has better anti-oscillation ability for the parameters 
in the process of the training RBM model. In this paper, the 
structure of the DBN consists of three RBMs: the first one is 
GRBM, which mainly converts the input samples into binary 
values, the second and third are GBRBMs [24], then further 
dealing with the input data.

2.3.  SSA

Mirjalili et al created the mathematical model of the salp chain 
for solving single-objective and multi-objective optimization 
problems [25]. The idea was to divide the population into 
two groups: leaders and followers. In other words, a parent 
led a group of offspring, and the descendant population fol­
lows each other. Researchers demonstrated that this structure 
can help the sea squirt to quickly coordinate movement and 
foraging.

The total population size of the SSA is N. The individual 
location is defined in the D-dimensional search space, which 
is the number of variables of the objective function. The upper 
and lower bounds of each variable ub = [ub1, ub2, · · · , ubD] 
and lb = [lb1, lb2, · · · , lbD], respectively. All individual loca­
tion sets are stored in matrix X. The position of the food source 
is set to f , which will be used as a search target for the entire 
group of salps. The leader then searches for neighboring loca­
tions of the food source. The location update rules are defined 
by equations (12) and (13):

X1
j = fj − c1(ubj − lbj) · c2 + lbj, c3 < 0� (12)

X1
j = fj + c1(ubj − lbj) · c2 + lbj, c3 � 0� (13)

where X1
j  is the first salp (leader) of the j th dimension, f j  is 

the food source location of the j th dimension, ubj  is the upper 
bound of the j th dimension, ubj  is the lower bound of the j th 
dimension, and c1, c2 and c3 are random numbers. c1 has a 
great influence on the effect of the SSA, and enhances each 

Table 1.  Procedure of the optimization method (SSA).

Step Concrete contents

Step1 Import the training sample set into the DBN.
Step2 Initialize a series of DBN parameters (population total, learning rate, etc).
Step3 Initialize each salp position within the given range, the initial speed v0  =  0.
Step4 The cumulative reconstruction error (fitness value) between the training sample and the misclassified sample model output 

is used as a comparison condition. After several iterations, the optimal individual position (food source position) is selected.
Step5 The salp position is updated by equations (12), (13) and (15).
Step6 The fitness value of the final output should be less than a certain threshold (experience value), and then output the result, 

otherwise it is executed until the number of iterations reaches the set value.

Meas. Sci. Technol. 31 (2020) 055009



S Gao et al

5

individual’s ability to explore the whole space in the early and 
late stage of the search. c1 can be defined by equation (14):

c1 = 2e−( 4g
G )2

� (14)

where g is the current number of iterations, and G is the max­
imum number of iterations. Both c2 and c3 obey Gaussian dis­
tribution, and both are random numbers in the range [0,1].

The location update rule for the remaining individuals in 
SSA (Newton’s law of motion) is as follows:

Xi
j =

1
2

ast2
s + v0t� (15)

where i �2, ts is the magnitude of time, v0 is the initial velocity, 

as is the acceleration, and as =
vfinal−v0

t , vfinal =
(Xi−1

j −Xi
j)

t , t is 

the number of iterations, t  =  1, v0  =  0.
Therefore, the equation (15) can be expressed as

Xi
j =

1
2
(Xi

j + Xi−1
j ).� (16)

The main idea of the SSA is as follows: firstly, the indi­
vidual position of the population is initialized, and then the cal­
culated optimal fitness value is used to determine the optimal 
individual. Secondly, the obtained optimal individual is taken 

Figure 3.  Flow chart of SSA-DBN.
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as the leader, and its individual position is taken as the food 
source position. It is equivalent to recording the best position 
for each food source during the iteration, which means that the 
followers do not easily fall into the local optimum and thus 
improves the convergence of this algorithm.

3. The proposed method (SSA-DBN)

The performance of DBN performance mainly depends on the 
construction of the RBM, the structure of the DBN itself and 
the selection of various parameter factors, which affect the 
convergence and classification effect of DBN.

3.1.  Optimization design of DBN

The structural characteristics of the neural network are the 
number of hidden layers and the number of cells per layer. 
These characteristic parameters have a great influence on the 
performance of the neural network. That is to say, in order to 
obtain suitable attributes of data classification or prediction, 
it is necessary to find an optimal feature parameter. However, 
in theory, there is no advanced technology to determine the 

structure of each hidden layer, so choosing the number of 
optimal hidden-layer neurons is the main problem now. In this 
paper, three RBMs are selected as the basic constituent ele­
ments of the DBN. SSA is an intelligent optimization algo­
rithm proposed in the past two years. Although it has few 
application fields at this stage, the algorithm has great advan­
tages in high-dimensional problems.

In this paper, the optimal DBN structure is designed by 
using the number of neurons in each hidden layer which are 
used as optimization design variables. The determination 
of the number of hidden-layer nodes is an important part of 
the network design, because the number of nodes is directly 
related to the requirements of solving the problem and the 
number of input and output units. Moreover, if the number 
of hidden-layer nodes is too small, the number of connection 
weight combinations generated is not sufficient to satisfy the 
learning of several samples. However, the excessive number 
of hidden-layer nodes may result in poor generalization of 
neural networks. The number of neurons in the three RBMs 
is set to z1, z2, z3, respectively. The learning rate η ∈ (0, 1), 
and the momentum ε ∈ [0, 1). Each individual Yi(z1, z2, z3) in 
SSA is set to a three-dimensional vector. The total number 
of particles is N. The structural parameters of the DBN are 
improved by the SSA and applied to the experimental research 
in this paper.

According to the literature [26], the range of the upper 
and lower bounds of the initial individuals z1, z2, z3 in the 
SSA is (0,500). However, in the process of studying the 
structure of neural networks, we found that there is a numer­
ical progressive relationship from the number of neurons in 
the first hidden layer to the number of neurons in the last 
hidden layer, which affects the classification performance 
of the DBN to a large extent. In the fourth chapter of the 
experimental study, the accuracy of the relationship will be 
confirmed.

This relationship can be defined by equations (17) and (18):

z2 = z1 ×
1
2
± rand × (1, 20), (200 � z1 � 400)� (17)

z3 = z1 ×
1
3
± rand × (1, 20), (200 � z1 � 400).� (18)

Table 2.  Extracted time domain feature parameters.

Time domain feature  
parameters Description

1. Variance Ft1 =
∑T

s=1(xs − x)2T−1

2. Standard deviation
Ft2 =

√∑T
s=1(xs − x)2T−1

3. Mean square root
Ft3 =

√∑T
s=1 x2

s T−1

4. Skewness Ft4 =
∑T

s=1(xs − x)3(T − 1)−1Ψ3

5. Kurtosis Ft5 =
∑T

s=1(xs − x)4(N − 1)−1Ψ2

6. Crest indicator Ft6 = max|xs|((
∑T

s=1 x2
s )T

−1)−
1
2

7. Clearance indicator Ft7 = max|xs|((
∑T

s=1

√
|xs|)T−1)−2

8. Impulse indicator Ft8 = max|xs|((
∑T

s=1 |xs|)T−1)−1

9. Peak indicator
Ft9 =

√
T
∑T

s=1(xs)2(
∑T

s=1 |xs|)−1

xs is the bearing vibration signal sequence, x is the signal mean, and T is the 
total number of data samples.

Table 3.  Extracted frequency domain feature parameters.

Frequency domain  
feature parameters Description

1. Mean frequency F1f =
1
M

∑M
m=1 µ(m)

2. Center frequency F2f =
∑M

m=1( fmµ(m))(
∑M

m=1 µ(m))−1

3. �Root mean square  
frequency

F3f =
√∑M

m=1( f 2
mµ(m))

∑M
m=1 µ(m)

4. �Standard deviation  
frequency

F4f =
√
( fm − F2)2µ(m)M−1

5. Kurtosis frequency F5f = (( fm − F2)
4µ(m)M−1)F4

4

µ(m) is the spectrum, M is the number of spectral lines, and f m is the 
frequency of the mth line.

Table 4.  Extracted time-frequency domain feature parameters.

Time-frequency  
domain feature  
parameters Description

1. �EMD energy 
spectrum

F1tf = −
∑K

k=1 pk log10 pk

2. �LMD energy 
spectrum

F2tf = Ej =
∫ +∞
−∞ |PFj(t)|2dt

3. �Wavelet packet 
energy entropy

F3tf = −
∑T

s=1 ζI,n(s), (n = 0, 1, · · · 2I − 1)

p k is the ratio of the kth IMF component to the total energy, and K is 
the number of IMF components. j = 1, 2, · · · J , there are a total of J PF 
components, and Ei is the total energy of the ith PF component. The signal 
energy distribution of the sequence of decomposition coefficients of the nth 
node of the I layer.
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The number of neurons in each hidden layer is determined 
by the above relationship in turn. The best structure of the 
DBN will be found quickly by this method.

The SSA determines the optimal structure and parameters 
of the DBN. Table 1 shows the concrete steps of the optim­
ization method.

3.2.  Structure of SADBN

The learning rate η and the momentum factor ε in the RBM are 
extremely important parameters that affect the convergence 
speed and classification performance of the DBN. At this 
stage, researchers have made a number of improvements to 
the learning rate, but there are very few studies on momentum. 

Figure 4.  Flow chart of bearing fault diagnosis.
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In the standard DBN training process, the ε is given a deter­
mined empirical value, which will reduce the adaptability and 
convergence of the entire neural network parameters.

Therefore, this paper proposes an adaptive strategy to 
improve the momentum factor. Similar to the standard RBM, 
at each iteration, the cumulative reconstruction error before 
and after the iteration is used as the evaluation criterion—the 
standard cumulative reconstruction error (loss function). It is 
defined by equation (19):

e(i) =
1
2

Q∑
q=1

epoch∑
j=1

(Vdata
i,j − V rec

i,j )� (19)

where q is the current number of iterations of the RBM, Q 
is the maximum number of iterations of the RBM, epoch is 
the total number of batches of input data, Vdata

i,j  is the original 
input data of the j th batch of the ith generation, and V rec

i,j  is the 
reconstructed state of the input data of the j th batch of the ith 
generation.

The adaptive momentum strategy is described as follows:
The initial momentum factor ε  =  0.5, and the threshold 

factor ρ   =  0.01. When the cumulative reconstruction error 
decreases with the number of iterations, the momentum factor 
will increase to some extent. When the cumulative reconstruc­
tion error increases gradually, the momentum factor will grad­
ually decrease. The pseudo code for this adaptive strategy is 
as follows:

∆eq = e(q)− e(q − 1), (q � 2)
If ∆eq > ρ, then εq = pdε

q−1

If 0 < ∆eq � ρ, then εq = puε
q−1

If ∆eq � 0, then εq = ε = 0.5
where eq is the cumulative reconstruction error of the qth gen­
eration, p d is the attenuation factor, which belongs to (0.2,0.5), 
and p u is the increasing factor, which belongs to (0.5,0.9). 
This strategy is applied to the RBM to form a self-adaptive 
DBN (SADBN). The flow chart of the proposed method 
(SSA-DBN) is as shown in figure 3.

3.3.  Feature extraction

In this paper, the features extracted from the input data include 
three kinds of features: time domain, frequency domain and 
time-frequency domain. SADBN has a better ability to learn 

some of these sensitive features and ultimately achieve higher 
classification accuracy. The extracted time domain features 
include variance, standard deviation, mean square root, skew­
ness, kurtosis, crest indicator, clearance indicator, impulse 
indicator and shape indicator. The frequency domain features 
include mean frequency, center frequency, root mean square 
frequency, standard deviation frequency and kurtosis fre­
quency. The time-frequency domain features include empir­
ical mode decomposition (EMD) energy spectrum, local mean 
decomposition (LMD) energy spectrum and wavelet packet 
energy entropy. The formulas of all feature parameters in this 
paper are listed in tables 2–4, respectively.

3.4.  Bearing fault diagnosis steps

This paper presents the SSA-DBN method for fault diagnosis 
of rolling bearings. Figure 4 shows a flow chart of the fault 
diagnosis of the bearing.

The specific steps of the rolling bearing fault diagnosis 
method proposed in this paper are shown in table 5.

4.  Experiment verification

4.1.  Experimental data description

Experiments are carried out to verify the effectiveness of 
the proposed method. Bearing vibration data obtained from 
the Bearing Experimental Center of Case Western Reserve 
University in the United States are used for analysis and 

Table 5.  Procedure of the proposed method for bearing fault diagnosis.

Step Description

Step1 Input the bearing data and understand each class of bearing condition.
Step2 Extract the time domain, frequency domain and time-frequency domain features of all data samples.
Step3 Initialize the parameters of SADBN, input the extracted features into the deep network.
Step4 Optimize the structure parameters of SADBN using SSA.
Step5 Train the first layer of improved RBM in the deep network model, and apply the minimum batch 

stochastic gradient descent to the maximum likelihood function for gradient descent in the RBM. 
The output value is entered into the next RBM until iterating to the last RBM.

Step6 The conjugate gradient descent and BP neural network are used to supervise and fine-tune the entire 
DBN model, so that the model convergence effect will be better.

Step7 Then, input the test data into the SSA-DBN model to diagnose classification of test data.
Step8 Classification accuracy of various bearing conditions is obtained, and the final results are counted.

Figure 5.  Rolling bearing vibration test bench.
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verification. Figure 5 shows the vibration experiment device, 
which includes a 1.49 kW (2 hp) motor, a torque sensor and 
coupling, a dynamometer and an electronic controller (not 
shown in the figure). The bearing to be tested supports the 
rotating shaft of the motor, and the bearing of the driving end 
is SKF 6205. In this paper, the signal measured by the bearing 
driving end sensor is mainly used. This experiment uses an 
electro-discharge machining method for rolling bearing. 
The types of faults include roller failure, inner race failure 
and outer race failure. Its fault diameters are 0.007, 0.014 
and 0.021 in (1 in  =  25.4 mm), and the damage point of the 
bearing outer ring will be set at 3, 6 and 12 o’clock orienta­
tion. An acceleration sensor is placed above the bearing seat 
of the motor drive end to collect the vibration acceleration 
signal of the faulty bearing. The vibration signal is acquired 
by a 16-channel data logger with a sampling rate of 12 000 Hz.  
The operating power and bearing speed are measured by a 
torque sensor.

The experimental data set in this paper selects a total of 
12 failure conditions during bearing operation, and 120 sam­
ples are taken for each failure condition. When classifying 
eight bearing conditions, 180 samples are taken under each 
working condition. The sample length of both signals is 2048 
data points. The experimental data in this paper are described 
in detail in tables 6 and 7.

4.2.  Rolling bearing intelligent fault diagnosis

The structure of the DBN is generally set to five or six layers, 
which is the best standard [27]. As the number of neurons in 
the hidden layer increases, the overall computational com­
plexity also increases. Therefore, the number of neurons in 
each layer is defined by an intelligent optimization algorithm, 
which can be quickly found and promotes classification 
effectiveness.

The features of each of the following experiments are 
obtained by using a deep learning method, and each experi­
ment is repeated approximately 25 times independently.

In order to verify the feature extraction ability of the 
SSA-DBN proposed in this paper, the research of layer-by-
layer feature learning processes of the DBN in each experi­
ment will be simulated with 2D and 3D principle component 
analysis (PCA) visualization techniques. It is liable to visually 
observe the classification effect of SSA-DBN, which further 
validates the powerful ability of SSA-DBN to automatically 
mine the data parameters from the original set of features.

4.3.  Rolling bearing experiment 1

Twelve bearing conditions are selected from experiment 1 as 
training/testing samples, and the data selected in this experi­
ment are from Dataset2. These 12 conditions are all single-
point failures of the bearing.

Table 6.  Experimental conditions and data description.

Data categories Bearing dataset Load (/hp) Motor speed (/rpm) Sample size

First group (Dataset1) Trainings 0 1797 1080
Testings 1 1772 360

Second group (Dataset2) Trainings 0 1797 1080
Testings 2 1750 360

Table 7.  Bearing experimental data demonstration.

Bearing condition Fault size (inches) Fault direction Training(s):Testing(s) Label

Inner race 0.007 / 3:1 1
Inner race 0.014 / 3:1 2
Inner race 0.021 / 3:1 3
Roller 0.007 / 3:1 4
Roller 0.014 / 3:1 5
Roller 0.021 / 3:1 6
Outer race 0.007 Center@6:00 3:1 7
Outer race 0.007 Opposite@12:00 3:1 8
Outer race 0.007 Vertical@3:00 3:1 9
Outer race 0.014 Center@6:00 3:1 10
Outer race 0.014 Opposite@12:00 3:1 11
Outer race 0.021 Center@6:00 3:1 12

Figure 6.  Test curve of SARBM and standard RBM.
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Figure 6 shows the convergence of the SARBM adap­
tive strategy designed in this paper, which clearly dem­
onstrates that as the number of iterations increases, the 
overall convergence of SARBM is better than that of 
standard RBM.

The specific parameters of the experiment are as follows.
The extracted feature parameters are set to 20, which 

includes nine time domain parameters and 11 time-frequency 
domain feature parameters.

	(1)	�Wavelet packet transform (WPT): The wavelet basis 
function is Meyer, and the number of decomposition 
layers is 3.

	(2)	�EMD: EMD energy features of the first five IMF comp­
onents.

	(3)	�LMD: LMD energy spectrum features of the first five 
product function (PF) components.

	(4)	�SADBN: The initial network structure is 20-350-260-
150-12, the learning rate is 0.1, the momentum factor is 

Figure 7.  Comparison of the three methods in experiment 1.

Figure 8.  Classification accuracy of 12 bearing working conditions in experiment 1.
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0.5, and the threshold is 0.01. The number of iterations of 
the first two RBMs is 300, and the number of iterations of 
the last RBM is 200.

The main purpose of experiment 1 is to classify multiple 
single-class faults of bearings by the proposed method and 
test their classification performance. The classification acc­
uracy results for the 12 types of bearing conditions described 
in section 4.1 are shown in figures 7 and 8.

It can be seen from the above that the overall classification 
accuracy of SSA-DBN is 94.44%(340/360), the classification 
accuracy of the SADBN is 90.3%(325/360), and the classifi­
cation accuracy of the DBN is 84%(303/360). The optimized 
SSA-DBN is better than the other two methods. Its optimal 
classification structure is 20-284-150-47-12. Figures  9–12 
show the visual feature maps of experiment 1. PC1, PC2 
and PC3 are the principal components of PCA, and each of 

Figure 9.  2D-PCA and 3D-PCA projection of the original features in experiment 1.

Figure 10.  2D-PCA and 3D-PCA projection of the first hidden-layer feature in experiment 1.

Figure 11.  2D-PCA and 3D-PCA projection of the second hidden-layer feature in experiment 1.
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them represents some information contained in the extraction 
feature.

The objective of experiment 1 is to classify 12-class 
bearing fault conditions. It can be seen from figures 9(a) and 
(b) that the extraction effect of DBN on the original features 
is relatively good. The advantage of the deep learning neural 
network is mainly reflected in the process of extracting raw 
features from vibration signals. Then, the layer-by-layer fea­
ture learning and classification of the DBN are performed. 
Figures 10(a) and (b) and 11(a) and (b) show that the 12-class 
samples are gradually separated on the basis of figure  9; 
however, there are still a few misclassifications in figures 10 
and 11, which means that the classification is not effective. 
Figures 12(a) and (b) show a few misclassifications and over­
laps, which means that the high-level features identify the 

real operating conditions of the bearing more easily than the 
original-level features.

4.4.  Rolling bearing experiment 2

In experiment 2, eight kinds of bearing fault states are 
extracted: six single-point faults and two composite faults. 
The specific content is as follows: (1) Roller fault (0.007 
in), (2) Roller fault (0.014 in), (3) Inner race fault (0.007 in), 
(4) Inner race fault (0.014 in), (5) Outer race fault (0.007 in, 
Center@6:00), (6) Outer race fault (0.014 in, Center@6:00), 
(7) Inner race (0.007 in)  +  Roller (0.007 in) composite failure, 
(8) Outer race (0.007 in, Center@6:00)  +  Roller (0.007 in) 
composite failure. The data used in this experiment are from 
Dataset2, and simulation signals for the time domain and 

Figure 12.  2D-PCA and 3D-PCA projection of the third hidden-layer feature in experiment 1.

Figure 13.  Time domain and corresponding frequency domain signal simulation of the eight kinds of bearing conditions.
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Figure 14.  Comparative classification results of deep learning and shallow learning.

Figure 15.  2D-PCA and 3D-PCA projection of the original features in experiment 2.

Figure 16.  2D-PCA and 3D-PCA projection of the first hidden-layer feature in experiment 2.
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Figure 17.  2D-PCA and 3D-PCA projection of the second hidden-layer feature in experiment 2.

Figure 18.  2D-PCA and 3D-PCA projection of the third hidden-layer feature in experiment 2.

Figure 19.  Fault classification results of experiment 3.
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frequency domain corresponding to the eight bearing condi­
tions are shown in figure 13. The experimental conditions for 
extracting data in this experiment are consistent with experi­
ment 1. The main purpose of experiment 2 is to compare the 
superiority of the classification performance between the deep 
learning and the shallow learning cases.

Then, 25 feature parameters are extracted from the original 
feature set: nine time domain features, five frequency domain 

features, and 11 time-frequency domain features. The specific 
parameters of experiment 2 are as follows:

	(1)	�WPT: The wavelet basis function is Meyer, and the 
number of decomposition layers is 3.

	(2)	�EMD: EMD energy features of the first five IMF comp­
onents.

	(3)	�LMD: LMD energy spectrum features of the first five PF 
components.

Figure 20.  2D-PCA and 3D-PCA projection of original features in experiment 3.

Figure 21.  2D-PCA and 3D-PCA projection of the first hidden-layer feature in experiment 3.

Figure 22.  2D-PCA and 3D-PCA projection of the second hidden-layer feature in experiment 3.
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	(4)	�SADBN: The initial parameters of SADBN are the same 
as those of experiment 1.

	(5)	�CNN: It consists of the Input layer, Convolution layer 
1, Pooling layer 1, Convolution layer 2, Pooling layer 2 
and Output layer [28]. The size of the input feature map 
is 24*24, C1 layer contains six kernels, and C2 contains 
three kernels. The learning rate is 0.3, the step size is 2, 
and the number of iterations is 120.

	(6)	�BP: The network structure is 25-45-8, the learning rate is 
0.1, and the number of iterations is 500.

	(7)	�SVM: The multi-layer perceptron kernel function is 
selected as a kernel function. The penalty factor is set to 
25. The radius of the kernel function is 0.15.

Figure 14 shows the classification accuracy of the six single-
point faults and the two composite faults of the bearing, and 
also demonstrates that the classification accuracy of BP and 
SVM is 63.61% and 82.53%, respectively. The classifica­
tion accuracy of DBN, SADBN and CNN is 84%, 88.75% 
and 88.75%, respectively. The classification accuracy of 
SSA-DBN is 96.88%. Compared with other methods, the 
classification effectiveness of SSA-DBN is better, and the 
optimal structure is 25-140-70-36-8.

Experiment 2 presents the classification effect of eight 
bearing conditions. Figures 15(a) and (b) show the classifica­
tion of the original features. Figures 16(a) and (b), and 17(a) 
and (b) show that as the number of hidden layers increases, 

Figure 23.  2D-PCA and 3D-PCA projection of the third hidden-layer feature in experiment 3.

Figure 24.  Multi-class hybrid matrix description.
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the misclassification gradually disappears. Figure 18(a) shows 
that there are still a few overlaps in the high-level hidden 
layer; however, figure 18(b) shows that the eight-class bearing 
conditions have been clearly classified, which means better 
classification. This overlap phenomenon demonstrates that the 
extracted feature information (principal component) is similar 
in some calculations.

4.5.  Rolling bearing experiment 3

In experiment 3, 12 kinds of bearing fault states are extracted, 
and in addition the bearing state category is consistent with 
experiment 1. The selected bearing experimental data are from 
Dataset1 in table  6. Therefore, the main purpose of experi­
ment 3 is to verify the effectiveness of this method-improved 
DBN (SSA-DBN) for the classification of bearing fault diag­
nosis under different load conditions. Moreover, the extracted 
feature parameters of this experiment are identical to those in 
experiment 1.

The fault classification results of experiment 3 are shown 
in figure 19. Therefore, the classification accuracy of the DBN 
is 86.8% (48/360), that of the SADBN is 91.1% (33/360), and 
that of the SSA-DBN is 96.2% (16/360).

Because the DBN itself has strong representation ability 
[29], PCA visualization technology is used to verify the 
classification of the SSA-DBN under different load condi­
tions. Figures 20(a) and (b) show the 2D and 3D PCA visu­
alization effects of the original characteristic parameters of 
the experimental data. Figures  21–23 show the output clas­
sification results of the first, second and third hidden layers 
of the SSA-DBN, respectively. As the number of hidden 
layers increases, the conditions of misclassification gradu­
ally decrease; nevertheless, a small number of misclassified 
parts mean that the classification effect is bad. As a whole, the 
overall classification effect is still rather good. In this experi­
ment, the optimal network structure and Dataset1 are used to 
extract useful fault feature information, and the optimal struc­
ture of the SSA-DBN is 20-297-130-57-12. Figure 24 shows 
a probability matrix model for multiple categories of experi­
ment 3. The abscissa is the predicted label and the ordinate is 
the actual label.

4.6.  Experimental results and analysis

According to the above three experimental results, the fol­
lowing can be observed. 

Experiment 1 first verifies the convergence problem of 
the SARBM proposed in this paper, and then applies the 
constructed SARBM to the DBN. It mainly verifies that the 
adaptive strategy proposed in this paper is superior to the 
performance of the standard RBM, and that the optimized 
SADBN has higher classification accuracy when dealing with 
multiple classes of single-fault problems.

Experiment 2 demonstrates that shallow learning methods 
(BP, SVM) mainly rely on artificial selection technology to com­
plete the feature extraction, which greatly decreases the fault 
diagnosis effect. The method proposed in this paper not only 

solves the problem of artificially extracting features in shallow 
learning, but also improves the classification effectiveness in 
dealing with multiple classes of single and composite faults.

Experiment 3 mainly verifies the effectiveness of the 
SSA-DBN under different load conditions, and has a contrast 
with the results in Experiment 1.

5.  Conclusion

Aiming at overcoming the difficulty of extracting useful infor­
mation of characteristic parameters and the complexity of the 
rolling bearing structure and its running environment, a novel 
optimized SADBN (SSA-DBN) is proposed in this paper. This 
method pre-trains each SARBM by using the minimum batch 
SGD, and the BP neural network is used to inversely adjust 
its connection weight and bias. The SSA is used to optimize 
the network structure of the DBN. Meanwhile, the relation­
ship between the number of neurons in each hidden layer 
summarized by many experiments can be used to determine 
the optimal structure of the neural network more quickly. The 
method proposed in this paper is applied to the three experi­
ments, and the results show that its diagnostic effect is superior 
to that of other methods.
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