
1 © 2020 IOP Publishing Ltd  Printed in the UK

1.  Introduction

Rolling bearings are indispensable components of most 
power transmission systems. However, owing to harsh 
operating conditions, rolling bearings are prone to faults, 

which often decrease the performance of a system and cause 
other components, or even the whole system, to fail [1–4]. 
Therefore, incipient bearing fault detection and diagnosis 
are crucial to prevent system failures and ensure safe opera-
tion of the system. Since vibration signals can directly rep-
resent the dynamic behavior of bearings and are sensitive 
to structural changes, vibration-based techniques are one of 
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the most effective and prevailing methods for bearing fault 
diagnosis [5–8].

However, fault signals are often submerged in strong noise 
when incipient faults occur in bearings. Accurate recovery of 
incipient bearing fault signal from a measured vibration signal 
corrupted by noise remains a challenge in fault diagnosis for 
rolling bearings. Many signal processing methods have been 
introduced to diagnose bearing faults, including empirical 
mode decomposition (EMD) [9–11], variational mode decom-
position (VMD) [12–14], spectral kurtosis (SK) [15, 16] and 
wavelet transform (WT) [17–19]. The EMD automatically 
decomposes a signal into intrinsic mode functions without 
presupposed basis function and reserves detail of the signal. 
The VMD turns signal decomposition into construct and solve 
a constrained variational problem and has robust performance 
against noise. The SK identifies the location of bearing fault 
signal in the frequency domain (center frequency and fre-
quency band) based on the sensitivity of kurtosis to transient 
signal. After the raw signal is processed by the band-pass filter 
of which the parameters are determined by SK, fault features 
are extracted by applying the Hilbert transform or fast Fourier 
transform (FFT) to the filtered signal. The aforementioned 
methods are band bandpass filters in essence, which reserve 
bearing fault signal in specific frequency band and remove 
noise out of the frequency band. However, the in-scale noise 
remains in the reconstructed signal.

Wavelet denoising methods utilize the differences between 
the distributions of noise and bearing fault signal in time–fre-
quency domain, and can reserve more signal of interest while 
reducing more noise. The WT maps signal to time–frequency 
space by computing inner products between signal and proto-
type wavelet basis. Bearing fault signal is represented by WT 
as a few large-amplitude wavelet coefficients, that is to say, 
sparse representations. Since noise is characterized by small-
amplitude coefficients distributed throughout the wavelet 
domain, bearing fault signal with large-amplitude wavelet 
coefficients can be identified by using threshold shrinkage 
[20] or sparse regularization [21]. Therefore, in some ways, 
the performance of wavelet denoising methods is determined 
by the sparsity of the wavelet coefficients and coefficient 
shrinkage algorithm. For sparsity, the wavelet basis should 
be appropriately chosen to match the signal of interest [22]. 
Spline wavelets played an indispensable role in the early for-
mation and development of the WT theory [23–25] and were 
also applied quite early for fault diagnosis [26]. Fractional 
spline wavelets are the generalized version of conventional 
spline wavelet with continuous order parameter, denoted by α 
[27–29]. Katunin [30] employed 2D fractional spline wavelets 
of which the parameters are set by using optimization algo-
rithm to detect and localize damage in composite plates. Yang 
[31] combined fractional spline wavelet transform (FrSWT) 
and principal component analysis for image fusion and 
enhanced the spatial details of multi-spectral images. Shen 
[32] applied FrSWT to decompose the measured fault signal 
of gear system and selected one level of detail coefficients 
to reconstruct the gear fault signal. As a result, the in-scale 
noise remained in the obtained signal. Fractional spline wave-
lets have a fractional approximation order and are promising 

for analysis of the signals from complex systems. Moreover, 
the FrSWT is a fully-discrete self-inverting transform that 
can be efficiently implemented by applying the radix-2 FFT. 
Therefore, the FrSWT is an effective tool that can be adopted 
to diagnose bearing faults.

The overlapping group shrinkage (OGS) algorithm 
addresses the problem of recovering signal x, from an obser-
vation y , represented by

y(i) = x(i) + w(i), i ∈ Z = {0, . . . , N − 1}� (1)

where w represents Gaussian white noise and x is a group-
sparse vector. The OGS assumes that large-amplitude 
values of x tend to form clusters (or groups) and are further 
overlapping groups. Due to the overlapping groups, OGS is 
shift-invariant and can prevent blocking artifacts [33]. Deng 
[34] proposed the adaptive OGS in which the regularization 
parameter is determined by the Bayesian framework to shrink 
the first-order difference of the heart sound signal. Zhao [35] 
adopted translation invariant wavelet transform and OGS 
to denoising electrocardiogram signal. Owing to the group-
sparse characteristics of bearing fault signals in wavelet 
domain, the OGS was successfully applied to bearing fault 
diagnosis [36]. The aforementioned literature utilized convex 
regularization in the OGS optimization. Although the convex 
regularization makes the optimization problem easily solved 
by the convex optimization theory, it tends to underestimate 
large-amplitude components of the solution [37]. Chen and 
Selesnick [38] adopted non-convex sparsity regularization to 
OGS algorithm which meanwhile keeps the total cost function 
strictly convex. Non-convex regularization can yield a sparser 
solution than convex regularization for a given residual energy. 
On the other hand, strict convexity of the total cost function 
ensures a unique minimizer, which can be obtained by robust 
convex optimization methods.

In this paper, a sparsity-assisted denoising method using 
FrSWT and OGS with non-convex regularization and convex 
optimization (OGSNCRCO) is proposed for bearing fault 
diagnosis. First, the FrSWT is adopted to represent vibra-
tion signals collected from working bearings in a sparse 
way. Then, the wavelet coefficients are shrunken using 
OGSNCRCO, which uses non-convex regularization while 
retains the convexity of the total cost function. Finally, 
bearing fault signals are reconstructed via the inverse 
FrSWT and diagnosis results are deduced from the infor-
mation of the reconstructed signals. Another contribution of 
this paper is the adaptive selection strategy of the regulariza-
tion parameter of OGSNCRCO in different decomposition 
levels of FrSWT.

The structure of the paper is organized as follows. The 
FrSWT theory is introduced and OGSNCRCO is described 
in section 2. Furthermore, we demonstrate the group-sparsity 
of periodic transient signal in the fractional spline wavelet 
domain and propose a fault diagnosis method for bearings 
using FrSWT and OGSNCRCO. Section 3 presents the anal-
ysis results of a simulated signal, and section 4 is devoted to 
the experimental analyses for bearing fault diagnosis using the 
proposed method. Finally, section  5 gives some concluding 
remarks.
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2.  Methodology

2.1.  FrSWT

2.1.1.  Fractional splines.  Unser and Blu [29] extended frac-
tional B-splines from Schoenberg’s spline family with integer 
order to all fractional degrees α > −1. Taking the (α+ 1)th 
fractional difference for the one-sided power function, the 
fractional causal B-splines can be defined as

βα
+(x) =

1
Γ(α+ 1)

∆α+1
+ xα+

=
1

Γ(α+ 1)

∞∑
k=0

(−1)k
Å
α+ 1

k

ã
(x − k)α+

� (2)
where k represents the integer greater than or equal to zero, 
and Γ(α+ 1) denotes Euler’s Gamma function expressed as

Γ(α+ 1) =
ˆ +∞

0
xαe−xdx� (3)

the one-sided power function is defined as

xα+ =

ß
xα, x � 0
0, otherwise� (4)

the fractional forward finite difference operator of order α is 
written as

∆α
+f (x) =

∞∑
k=0

(−1)k
Å
α
k

ã
f (x − k)� (5)

and the generalized fractional binomial coefficients are 
expressed as

Å
α
k

ã
=

Γ(α+ 1)
Γ(k + 1)Γ(α− k + 1)

.� (6)

Fractional B-splines of the order 0 � α � 6 with a step of 
0.1 are shown in figure 1. The fractional B-splines are obtained 
by interpolating the conventional polynomial B-splines at 
each integer (thicker lines). Similar to causal B-splines, anti-
causal B-splines of degree α is given by

βα
−(x) =

1
Γ(α+ 1)

∆α+1
− xα− = βα

+(−x)� (7)

where xα− = (−x)α+, and ∆α
−

 denotes the fractional backward 
finite difference operator, given by

∆α
−f (x) =

∞∑
k=0

(−1)k
Å
α
k

ã
f (x + k).� (8)

The centered fractional B-splines of degree α are defined as

βα
∗ = β

α−1
2

+ ∗ β
α−1

2
−� (9)

where * denotes convolution operator and βα
∗  can be calcu-

lated as

βα
∗ (x) =

1
Γ(α+ 1)

∆α
∗ |x|α∗ =

1
Γ(α+ 1)

∑
k=Z

(−1)k
∣∣∣∣
α+ 1

k

∣∣∣∣ |x − k|α∗

� (10)
where

|x|α∗ =




|x|α
−2 sin(πα/2) , α �= 2m (not even)
x2m log|x|
(−1)1+mπ

, α = 2m (even)
� (11)

∣∣∣∣
α
k

∣∣∣∣ =
Å

α
k + α/2

ã
� (12)

and ∆α
∗

Fourier←→
∣∣1 − e−jω

∣∣α denotes the symmetrized version of 
the fractional finite difference operator.

Figure 2 shows a plot of fractional B-splines of order 
α = 0.5 (β0.5

+  and β0.5
∗ ). It can be seen that the support of β0.5

+  
belongs to R+ and β0.5

∗  is symmetric. The Fourier transform 
of the causal and centered fractional splines can be calculated 
as follows:

β̂α
+(ω) =

Å
1 − e−jω

jω

ãα+1

� (13)

β̂α
∗ (ω) =

∣∣∣∣
sin(ω/2)

ω/2

∣∣∣∣
α+1

.� (14)

2.1.2.  Implement of FrSWT.  The lack of compact support is 
the only disadvantage of the fractional splines when used to 
construct the wavelet basis. Fortunately, fractional splines 
decay fast enough to have an effective bounded support. 
In fact, fractional splines satisfy all the requirements for 

Figure 1.  The fractional causal B-splines of order 0 � α � 6 with 
the step of 0.1. Figure 2.  Plot of β0.5

+ (x) and β0.5
∗ (x).
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constructing wavelet basis for α > −0.5, particularly, the 
two-scale relation

βα(x/2) =
∑
k∈Z

hα(k)βα(x − k)� (15)

where the refinement filters hα(k) can denote hα
+(k), hα

−(k) 
and hα

∗ (k), expressed as

hα+(k) =
1

2α

Å
α+ 1

k

ã
↔ ĥα+(ω) = 2

Å
1 + e−jω

2

ãα+1
� (16)

hα∗ (k) =
1

2α

∣∣∣∣
α+ 1

k

∣∣∣∣ ↔ ĥα∗ (ω) = 2
∣∣∣∣
1 + e−jω

2

∣∣∣∣
α+1

� (17)

and hα
−(k) = hα

+(−k), ĥα
−(ω) = ĥα

+(−ω).
By orthonormalizing the fractional splines via the general 

approach in [39], the orthogonal scaling function is expressed 
as

φ(x) =
∑
k∈Z

(aαϕ(k))
−1/2

βα(x − k)� (18)

where (aαϕ(k))
−1/2 is the inverse convolution square-root of 

the fractional spline auto-correlation sequence, aα
ϕ(k). a

α
ϕ(k) 

and its Fourier transform are given by

aαϕ(k) = 〈βα(x),βα(x − k)〉 = β2α+1
∗ (k)� (19)

Aα
ϕ(ω) =

∑
n∈Z

β2α+1
∗ (n)e−jωn.� (20)

The corresponding two-scale relation is

φ(x/2) =
∑
k∈Z

hα
⊥(k)φ(x − k).

�

(21)

Using Mallat’s pyramid algorithm, the low-pass and high-
pass filters can be written as

Figure 3.  The analysis and synthesis filter-bank for the implement of FrSWT. (hα
⊥(k), g

α
⊥(k), h̃

α
⊥(k) and g̃α

⊥(k) denote the high-pass and 
low-pass filter coefficients of analysis and synthesis filter banks, respectively. aj−1(k) is approximation coefficients in scale ( j − 1), ãj−1(k) 
is reconstructed approximation coefficients in scale ( j − 1), aj(k) is approximation coefficients in scale j and dj(k) is detail coefficients in 
scale j).

Figure 4.  (a) The orthogonal fractional causal spline wavelet of order 0 � α � 6 with the step of 0.2; (b) the wavelet function of order 
α = 2.5; (c) The scale function of order α = 2.5.
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Hα
⊥(ω) = ĥα(ω)

√
Aα
ϕ(ω)

Aα
ϕ(2ω)� (22)

and

Gα
⊥(ω) = e−jωHα

⊥(ω + π),� (23)
where ĥα(ω) can be expressed as ĥα

+(ω), ĥ
α
∗ (ω) and ĥα

−(ω).
Figure 3 shows a block diagram of the analysis and syn-

thesis filter banks for the implement of FrSWT. The FrSWT 
can be implemented by recursively applying the two-channel 
analysis filter bank on the low-pass channel output. The 
orthonormal fractional causal spline wavelets are plotted in 
figure 4. The shape of the wavelet is very similar to the impact 
signal induced by bearing fault, which is often modeled as 
a single-side impact signal. Frequency responses of the low-
pass and high-pass filters are displayed in figure 5 (α = 2.5). 
As α increases, the filters tend towards ideal low-pass and 
high-pass filters.

2.2.  OGSNCRCO

In sparse regularization, shrinkage (or thresholding) func-
tions are determined by solving the optimization problem, as 
follows:

x∗ = argmin
x

ß
F(x) =

1
2
‖y − x‖2

2 + λR(x)
™

� (24)

where x can either represent the wavelet coefficients of a 
signal or the signal itself, provided the sparsity is properly 

presented; the term 1
2 ‖y − x‖2

2 is to ensure the consistency of 
the solution x∗ to x; R(x) is the regularization (or penalty) 
term which guarantees the sparsity of the solution; λ > 0 is 
the regularization parameter that balances consistency and 
sparsity of the solution.

Most shrinkage functions can be regarded as solutions 
to the problem of equation  (24). In particular, the solu-
tion of the problem of equation (24) when R(x) = ‖x‖1 (L1 
norm), is known as the soft threshold function. In the OGS 
algorithm with convex regularization, R(x) is in the form of 

R(x) =
∑

i

î∑K−1
j=0 |x(i + j)|2

ó1/2
 ({i = 1, 2, . . .N} denotes 

the group index, and { j = 0, 2, . . .K − 1} denotes the 

coefficient index within the group i), which can capture the 
overlapping group sparsity of the data. However, the convex 
penalty tends to underestimate large-amplitude components 
of the sparse solution, which is usually related to signal of 
interest. The OGSNCRCO can prevent underestimation like 
convex penalties and simultaneously maintain the convexity 
of the total cost function.

2.2.1.  OGSNCRCO.  The cost function of the OGS algorithm 
with group size K takes the general form of (with convex or 
non-convex penalty):

F(x) =
1
2
‖y − x‖2

2 + λ
∑
i∈Z

φ(‖xi,K‖2; a)� (25)

where xi,K = [x(i), . . . , x(i + K − 1)] ∈ RK and ‖xi,K‖2 =  î∑K−1
j=0 x2

i+j

ó1/2
. To retain the convexity of the total cost 

function while using non-convex regularization, the sparsity 
promoting regularization function is assumed to satisfy the 
following properties:

	(1)	�φ(−x; a) = φ(x; a) (even symmetric).
	(2)	�φ(x; a) is a continuous function on R .
	(3)	�φ(x; a) is quadratic differentiable on R\{0} where 

R\{0} = {x ∈ R, x /∈ 0}.
	(4)	�φ′(x; a) > 0, ∀x > 0 (increasing on R+).
	(5)	�φ′(0+; a) = 1 (unit slope at 0).
	(6)	�φ′′(x; a) � 0, x > 0 (concave on R+).
	(7)	�φ′′(0+; a) � φ′′(x; a), ∀x > 0.
	(8)	�φ′′(0+; a) is finite.

The scalar parameter a > 0 controls the concavity of the 
function. The cost function, F (in equation (25)), is proven to 
be strictly convex if [37]

0 < a <
1
λK

.� (26)

Table 1 lists some common regularization functions that 
satisfy the above conditions, and the corresponding functions 
φ′(u)/u. The functions φ′(u)/u have very similar functional 
forms. As a → 0, other three penalty functions (φlog, φatan 
and φrat) tend to the absolute value function, φabs(x) = |x|. 
Figure  6 displays the four penalty functions when a = 0.2. 

Figure 5.  Frequency responses of the low-pass G0(ω) and high-pass filters H0(ω) for α = 2.5.
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For the same scalar parameter a, the arctangent penalty φatan 
exhibits the most ‘concavity’ among the four given penalty 
functions. In other words, φatan can induce the strongest spar-
sity and thus is used in this paper.

2.2.2.  Majorization-minimization method.  Owing to the strict 
convexity of the cost function, the majorization-minimization 
(MM) algorithm can be used to obtain the unique minimizer in 
OGSNCRCO. The MM method solves the complicated mini-
mization problem by replacing it with a sequence of simpler 
problems [40]. More specifically, consider the optimization 
problem in equation (25). Using the MM procedure, the prob-
lem can be described as an iteration of

x( p+1) = argmin
x

Q(x, x( p))
� (27)
where p  is the iteration index of the function, and 
Q : RN × RN → R  is the majorizer (upper bound) of F, 
which should satisfy

Q(x, v) � F(x), ∀x ∈ RN , ∀v ∈ RN\{0}� (28)

Q(v, v) = F(v), ∀v ∈ RN\{0}.� (29)

To solve equation (25), Q can be expressed as

Q(x, v) =
1
2
‖y − x‖2

2 +
λ

2

∑
i

r(i; v)x2(i) + C� (30)

where C is independent of x and r : Z× RK → R is defined 
as

r(i; v) =
K−1∑
j=0

φ′(‖vi−j,K‖2)

‖vi−j,K‖2
.� (31)

Using equation (30) in the MM iteration, equation (27) can be 
rewritten as

x( p+1)(i) =
y(i)

1 + λr(i; x( p))
, i ∈ ZN� (32)

where r is obtained from equation  (31). The OGSNCRCO 
algorithm is described in table  2. The convergence of 
OGSNCRCO is guaranteed by the MM principle.

2.3.  Proposed sparsity-assisted denoising scheme

Bearing fault signals are always modeled as 
pseudo-cyclostationary transient signals which exhibit typical 
group-sparsity [41, 42]. In this section, we propose a sparsity-
assisted denoising scheme to diagnose bearing faults based on 
FrSWT and OGSNCRCO.

2.3.1.  Group-sparsity of periodic transient signal in the frac-
tional spline wavelet domain.  For the OGSNCRCO algo-
rithm, sparse representation of the target signal has a significant 
impact on the denoising results. In this way, a representation 
that maximizes sparsity of the target signal is desirable. The 
WT is a well-known tool for sparse representation. Orthogo-
nal fractional spline wavelets are continuous versions of con-
ventional orthogonal B-spline wavelets (i.e. Battle–Lemarie 
wavelets). Continuous-order α can control the vanishing 
moment of fractional spline wavelets. Orthogonal fractional 
spline wavelets essentially behave like fractional differentia-
tors for non-integer α. To illustrate the sparse representations 
of bearing fault signal using FrSWT, consider the following 
simulated transient signal:

x(t) =
L−1∑
l=0

h(t − lT − T0)� (33)

h(t) =

®
Ae−2πζfnt sin(2πfn

√
1 − ζ2t), t � 0

0, t < 0� (34)

where amplitude A = 1, damping ratio ζ = 0.1, time center 
constant T0 = 0, natural frequency fn = 1000, transient 
number L = 21, and transient period T = 0.02s.

The waveform of the simulated signal with a sampling rate 
of 20 kHz and 8196 points is depicted in figure 7. Figure 8 
illustrates approximation coefficients and detail coefficients 
of the simulated bearing fault signal decomposed by FrSWT. 
The FrSWT parameters are set to a = 2.6 and J = 10. Note 
that detail coefficients present better sparsity than the original 

Table 1.  Sparsity-promoting penalty functions.

Penalty φ(u) φ′(u)/u

abs |u| 1
|u|

log 1
a log(1 + a |u|) 1

|u|(1+a|u|)
atan 2

a
√

3
(tan−1( 1+2a|u|√

3
)− π

6 )
1

|u|(1+a|u|+a2|u|2)
rat |u|

1+a|u|/2
1

|u|(1+a|u|)2

Figure 6.  Some sparsity promoting penalty functions satisfying the 
assumptions in section 2.2.1.

Table 2.  OGSNCRCO algorithm with penalty φ.

Input: y ∈ RN , λ > 0, K, φ, Nit.

  Initialize: x(0) = y
  S = {i ∈ ZN |y(i) �= 0}
  For p   =  1:Nit

    �a(i) =
[∑K−1

j=0

∣∣x( p−1)(i + j)
∣∣2]1/2, b(i) = φ′(a(i))

a(i) , 

r(i) =
∑K−1

j=0 b(i − j), x( p)(i) = y(i)
1+λr(i), i ∈ S .

  End for
Return x.
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signal in the time domain. The detail coefficients in scales 1, 
2, 7, 8 and 9 are small, and the energy of the signal is con-
centrated in scales 3–6. From this, it follows that the coef-
ficients of the simulated bearing fault signal in the fractional 
spline wavelet domain are sparse in both time and scale. 
Furthermore, note that the coefficients are not only sparse but 
also present grouping property in the time scale.

2.3.2.  Denoising algorithm based on FrSWT and OGSN-
CRCO.  Considering group sparsity of bearing fault signals 
in the fractional spline wavelet domain, the OGSNCRCO 
algorithm introduced in section 2.2 can be applied to shrink 
the wavelet coefficients of noisy signals collected from roll-
ing bearings. A flow chart of the proposed method for bearing 
fault diagnosis is described in figure 9. The procedure can be 
carried out using the following steps:

	(1)	�Measure vibration acceleration signal of working rolling 
bearing via a data acquisition system.

	(2)	�Decompose the measured signal using FrSWT to obtain 
detail coefficients and approximation coefficients.

	(3)	�Use OGSNCRCO to shrink the detail coefficients. The 
approximation coefficients are zeroed.

	(4)	�Reconstruct the signal from the shrunken detail coeffi-
cients and approximation coefficients by using the inverse 

FrSWT. Bearing fault features can be identified from the 
reconstructed signal.

According to figure  8, detail coefficients in different 
scales contain different quantities of bearing fault signal. 
Considering that the kurtosis is sensitive to bearing fault 
signal, the reciprocal of the kurtosis is used to weight the regu-
larization parameter in the OGSNCRCO. Thus, the regulari-
zation parameters in different scales are set to λs = C/Kurts, 
where constant C is related to signal-to-noise ratio (SNR) of 
the signal and Kurts is the kurtosis of the wavelet coefficients 
in scale s. When the detail coefficients contain more bearing 
fault signal, the kurtosis is larger, λs is smaller and more coef-
ficients are reserved.

3.  Simulation validation

We provide a simulation study to illustrate the validation of 
the proposed method for periodic transient signal extraction 
in this section. To further validate the advantage of the 
proposed method, the results are compared with the results 
of the L1-norm denoising method (FrSWT with L1-norm 
regularization).

A noisy simulated signal is considered as follows:

y(t) = x(t) + n(t) + c(t)� (35)

where x(t) is the bearing fault signal described in equations (33) 
and (34). n(t) is Gaussian white noise with a standard devia-
tion σ = 0.5. c(t) = A1 ∗ cos(2πf1t) simulates the harmonic 
component in bearing vibration signal where A1 = 0.5 and 
f1 = 4000 Hz. Figures 10(a)–(c) display its waveform in time 
domain, envelope spectrum and time–frequency distribution, 
respectively. The time–frequency distribution of the periodic 
transient signal without noise is presented in figure 10(d). It 
can be seen that the periodic transient signal is fully submerged 
in the noise. The SNR of the mixed signal is  −12.58 dB.  
Besides, the kurtosis of the signal is 2.90, close to the value of 
Gaussian white noise.

The proposed sparsity-assisted denoising method is 
adopted to analyze the simulated signal y(t) and extract the 
periodic transients from the noisy signal. The waveform, 
time–frequency distribution and envelope spectrum of the 
denoised signal are depicted in figures  11(a)–(c), respec-
tively. Successive periodic transients with period t ≈ 0.02 s 
are clearly observed in figures  11(a) and (c). Additionally, 
the envelope frequency of the transients f ≈ 50 Hz and its 
multiple frequencies are able to be found in figure 11(b). For 
comparison, the L1-norm denoising method is applied to pro-
cess the same simulated signal and the analysis results are dis-
played in figure 12. The signal denoised by L1-norm method 
still contains considerable noise and the periodic transients are 
difficult to identify in figure 12.

In summary, the proposed method preserves more features 
of periodic transients while the reconstructed signal of the 
L1-norm method is still contaminated by considerable noise. 

A
m

pl
itu

de

Time

Figure 7.  The waveform of the simulation bearing fault 
characteristic signal without noise.

d1d2... d3d4

Figure 8.  The sparse representations of the simulation signal in 
fractional spline wavelet domain.
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The envelope spectrum obtained by the proposed method 
clearly reveals the envelope frequency of the periodic tran-
sients with more harmonic frequencies, larger amplitudes, and 
fewer interference frequencies. Moreover, the time–frequency 
distribution of the denoised signal is more consistent with that 
of the original simulated signal displayed in figure 10(d). The 
L1-norm method reserves more noise and less bearing fault 
signal. Thus, the comparison demonstrates that the proposed 
method more effectively extracts the periodic transient signal 
than the L1-norm denoising method.

4.  Experimental case studies

In section  3, we validated the efficiency of the proposed 
method for extracting periodic transient signal. In this sec-
tion, we adopt the proposed method to analyze two vibration 
signals measured from a bearing with an implanted fault and 
a run-to-failure bearing to diagnose the bearing faults. To fur-
ther verify the superiority, the proposed method is compared 

with two methods namely the L1-norm denoising method and 
the SK method.

4.1.  Case study 1

4.1.1.  Data acquisition.  The bearing vibration signal is col-
lected from an engine rotor-bearing-casing fault simulator 
[43], as described in figure 13(a). The experimental system is 
composed of a rotor-bearing-casing system, a miniature accel-
erometer of type 4508 from Brüel & Kjær Sound & Vibra-
tion Measurement A/S, and a data acquisition module of type 
NI9234. Figure  13(b) presents the bearing with implanted 
outer race fault, which is installed at the end of the shaft. The 
vibration signal is acquired by an accelerometer installed on 
the top of the bearing block. Table 3 lists the parameters of the 
test bearing to be diagnosed. The data is sampled at 10 kHz, 
and the length of the signal to be analyzed is 32768 points. 
The bearing fault characteristic frequencies are described in 
table 4.

Figure 9.  Flow chart of the proposed method for bearing fault diagnosis.
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Figure 10.  (a) Waveform of the mixed-signal, (b) its envelope spectrum, (c) its time-frequency distribution and (d) time-frequency 
distribution of the signal without noise.

Figure 11.  (a) Waveform of the denoised signal via the proposed method, (b) its envelope spectrum and (c) its time-frequency distribution.
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4.1.2.  Results and analysis.  Figure 14 shows the time 
domain and Fourier spectrum of the collected bearing vibra-
tion signal. Periodic transients are not able to be observed in 
the time domain, and the periodic impulse feature generated 
by the fault is almost fully submerged in noise.

Figure 12.  (a) Waveform of the denoised signal via L1-norm denoising method, (b) its envelope spectrum and (c) its time-frequency 
distribution.

accelerometers

test bearing

shaft

(a) (b)

outer race fault 

Figure 13.  Case1: (a) the experiment rig and (b) the rolling bearing with an outer race fault.

Table 3.  Bearing parameters in case 1 and the shaft rotation frequency.

Parameter
Roller diameter 
(d /mm)

Pitch diameter 
(D/mm)

Roller number  
(N )

Contact angle  
(α/°)

Shaft rotation fre-
quency ( fr/Hz)

Value 9.6 36 7 0 34.25

Table 4.  Bearing fault characteristic frequencies in case 1.

Inner race fault Outer race fault Roller fault Cage fault

fi = 151.8 Hz fo = 87.9 Hz fb = 59.6 Hz fc = 12.6 Hz
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The vibration signal is then analyzed by the proposed 
method. The analysis results are displayed in figure  15. 
Successive periodic transients are able to be clearly observed 
in the time domain of the denoised signal. The zoomed-in 
figure  shows that period, to ≈ 0.0114 s, is consistent with 
the ball pass period of the outer race fault. Meanwhile, the 
outer race fault characteristic frequency ( fo = 87.9 Hz) and 
its multiple frequencies are found in the envelop spectrum, as 
shown in figure 15(c).

For comparison, the L1-norm method and SK method 
are used to process the original signal. The analysis results 
are described in figures  16 and 17, respectively. It is easy 
to observe that the proposed method reserves more periodic 

transients related to the outer race fault while reducing noise, 
in comparison to the other two methods. Moreover, fault 
features are more clearly revealed in the envelope spectrum 
obtained by the proposed method, including large amplitudes 
of the outer race fault characteristic frequency and its multiple 
frequencies.

4.2.  Case study 2

4.2.1.  Data acquisition.  The proposed method is studied by 
a run-to-failure bearing experiment for an aero engine appli-
cation context in this case. Figures 18(a) and (b) present the 
experimental test rig and its structural diagram. An electric 

Figure 14.  Case 1: (a) the time-domain waveform of the original signal and (b) its FFT spectrum.

Figure 15.  Denoised results via the proposed method in case 1: (a) the time-domain waveform, (b) its zoomed-in version and (c) its 
envelope spectrum.
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Figure 16.  Denoised results via the L1-norm denoising method in case 1: (a) the time-domain waveform, (b) its zoomed-in version and  
(c) its envelope spectrum.

Figure 17.  SK results in case 1: (a) the kurtogram, (b) the filtered signal via SK (c) its zoomed-in version and (d) its envelope spectrum.
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motor drives the test rig with a rotating speed of 6000 rpm. 
An angular contact ball bearing of type H7018C is mounted 
on the right of the shaft. A hydraulic loading system adds an 
axial load of 2 kN and a radial load of 11 kN to the test bear-
ing. An oil circulation system is used to adequately lubricate 
the test bearing. An accelerometer is installed in the vertical 
direction of the bearing housing due to space constraints. A 
data acquisition system collects vibration signal at 20 kHz 
sampling frequency. A spall with an area of 3 mm2 formed 
in the inner race after about 146 working hours (see fig-
ures 18(c) and (d)). Table 5 describes the parameters of the 
bearing of type H7018C used in the experiment. The bearing 
fault characteristic frequencies are listed in table 6.

4.2.2.  Results and analysis.  The time domain and Fourier 
spectrum of the bearing vibration signal with a length of 
32768 are described in figure 19. The proposed method is 
employed to analyze the bearing vibration signal. As pre-
sented in figure 20, the proposed method effectively extracts 
the periodic transient signal while eliminating noise. In the 
time interval marked by the red ellipse, transients with a 
period of ti ≈ 0.0007 s are observed, consistent with the 
inner race fault. Furthermore, since the fault occurs on the 
bearing inner race, periodic changes in the load result in a 
modulation of the transients, as presented in the magnified 
figure. The rotating frequency, inner race fault characteris-
tic frequency, and their multiple frequencies are dominant 
in the envelope spectrum, which further validates the effec-
tiveness of the proposed method. Sideband frequencies 
resulting from modulation of periodic changes in the load 
are also able to be found in the envelope spectrum.

Analysis results using the L1-norm method and SK 
method are shown in figures  21 and 22, respectively. 
Although the L1-norm denoising method and SK can reveal 

Figure 18.  Case2: (a) the experiment rig, (b) the structure diagram of the test rig, (c) the rolling bearing with inner race fault and (d) the 
area of the spall.

Table 5.  Bearing parameters in case 1 and the shaft rotation frequency.

Parameter
Roller diameter 
(d /mm)

Pitch diameter 
(D/mm)

Roller number  
(N )

Contact angle  
(α/°)

Shaft rotation fre-
quency ( fr/Hz)

Value 11 115 27 15 100

Table 6.  Bearing fault characteristic frequencies in case 1.

Inner race fault Outer race fault Roller fault Cage fault

fi = 1475Hz fo = 1225 Hz fb = 518 Hz fc = 45Hz
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the inner race fault, the proposed method shows much more 
clearly. From the denoised signals in the time domain, it 
can be observed that the proposed method preserves more 
transients related to the inner race fault. The modulation of 
the transients induced by the periodic changes of load is 
not observed in the SK-filtered signal. The envelope spectra 
also show that the signal energy aggregation in the rotating 
frequency and fault characteristic frequencies obtained 
by the proposed method is superior to those of L1-norm 
method and SK method.

5.  Conclusions

In this paper, a sparsity-assisted denoising method to diag-
nose bearing faults based on FrSWT and OGSNCRCO is pro-
posed. The FrSWT demonstrates robust performance in terms 
of sparse representation of bearing fault signals. Furthermore, 
the OGSNCRCO algorithm involves non-convex sparsity 
promoting regularization which meanwhile keeps the total 
cost function strictly convex. The proposed method can effi-
ciently recover group-sparsity components from the wavelet 

Figure 19.  Case2: (a) the time-domain waveform of the original signal in case 2, (b) its FFT spectrum.

Figure 20.  Denoised results via the proposed method in case 2: (a) the time-domain waveform, (b) its zoomed-in version and (c) its 
envelope spectrum.
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Figure 21.  Denoised results via the L1-norm denoising method in case 2: (a) the time-domain waveform, (b) its zoomed-in version and 
(c) its envelope spectrum.

Figure 22.  SK results in case 2: (a) the kurtogram, (b) the filtered signal via SK, (c) its zoomed-in version and (d) its envelope spectrum.
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coefficients of noisy signals in the fractional spline wavelet 
domain. In addition, the performance of the proposed method 
for extracting periodic transient signals has been demonstrated 
by simulation study and application analyses based on two 
practical applications of bearing fault diagnosis. For bearing 
fault diagnosis, the proposed sparsity-assisted denoising 
method outperforms the state-of-art methods, including 
the L1-norm denoising method and SK method. The future 
research will concern how to design dictionary using the frac-
tional spline wavelets and conduct sparse reconstructions for 
bearing fault signal.
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