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1.  Introduction

One of the main tasks of a National Metrology Institute (NMI) 
is to provide calibration services for other laboratories and 
industries. Many of these services represent a metrological 
challenge that entails the development of new measurement 
methods. Mexico’s NMI (CENAM) received one of these 
challenges related to the dimensional calibration of ball bars 

with a length of 3  m and 5  m owned by Volkswagen, see 
figure 1. However, CENAM did not have the equipment with 
enough range and accuracy to measure such ball bars. These 
long bars are being used for the performance evaluation of 
large coordinate measuring machines (CMMs). Transporting 
the bars represents a cost for the company and its manipula-
tion represents risks for the user. The challenge of calibrating 
these bars as well as the reason for which they are intended 
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Abstract
This article describes a method called ‘overlap’ to perform two main tasks. The first is the 
performance evaluation of a coordinate measurement system (CMS) with a measuring range 
larger than the length of artifacts. The second is the calibration of one-dimensional artifacts 
using a CMS with a measuring range smaller than the length of the artifacts. Examples of 
one-dimensional artifacts are ball bars, step gauges, or scale bars with lines or circle marks. 
For the first task, the method uses the translation between errors in a line inside the volume 
of the CMS. For the second task, it uses the rotation and translation between 3D coordinates 
of elements belonging to the artifact. Validation of the method for the first task is done by 
evaluating the performance of a coordinate measuring machine (CMM) in parallel lines to two 
of its axes. For this, we use a step gauge and a ball bar covering the range of the CMM’s lines 
under evaluation not using overlap. Later, we evaluate the same lines using a segment of the 
same step gauge and ball bar but this time using overlap. For the second task, the validation is 
similar; we use a ball bar whose length falls inside the measurement range of a high-accuracy 
CMM, then the ball bar can be measured in its entire length with the CMM not using overlap 
and later in segments using overlap.
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allowed us to develop a method called ‘overlap’. The overlap 
method solves two problems: the first and most novel was 
the performance evaluation of large coordinate measuring 
systems (CMSs) using small size artifacts, see figure  1(a); 
the second was the dimensional calibration of large artifacts 
having a small CMS, see figure 1(b).

Due to technical reasons, documentary standards for the 
performance evaluation of CMSs typically require calibrated 
lengths to be similar in length to the range of the CMS under 
test. Because of this, we have large one-dimensional arti-
facts like step gauges, ball bars, or scale bars with lines or 
circle marks. These documentary standards also require that 
the length of the artifacts must be known with an expanded 
(k = 2) uncertainty that is at least four times smaller than the 
manufacturer’s maximum permissible error (MPE) specifica-
tion of the instrument under test [1]. Examples of documen-
tary standards for the performance evaluation of CMS are ISO 
10360-2:2009 [2] and ASME B89.4.10360.2-2008 [3]. These 
require that the minimum size of the artifacts to evaluate a 
coordinate measuring machine (CMM) must be at least 66% 
of the largest axis of the CMM. Other standards such as ASME 
B89.4.19-2006 [1] and ISO 10360-10:2016 [4], require that 
the artifact for the performance evaluation of a laser tracker 
(LT) must be greater or equal to 2.1 m, etc.

The calibration of large artifacts is complicated, as there 
are typically few high accuracy CMS with the appropriate 
measurement ranges to calibrate them directly. In addition to 
the overlapping method reported here, methods such as mul-
tilateration can be used with LT to calibrate large artifacts, 
Sandwith et  al [5]. Also, large CMM with a line inside its 
volume geometrically compensated by an interferometer, a 
calibrated standard or any other technique, ISO 15530:3:2011 
[6], Trapet et al [7] or Schwenke et al [8] can be used. In their 
approach the repeatability of the CMM is the greatest influ-
ence on the uncertainty of measurement. The overlap method 
will allow the calibration of these large artifacts and the per-
formance evaluation of CMS using artifacts whose length 
does not cover the measurement range of the CMS.

The performance evaluation of CMS applying the overlap 
method uses the translation between errors in a line inside the 
volume of the CMS. The linear movement of the position of 
the artifact allow us to cover the full range of the CMS and 
perform its evaluation. The overlap method assumes that the 

user is able to move the artifact used as a reference on a line 
inside a volume where CMS’s errors do not change dramati-
cally. To validate the performance evaluation using the overlap 
method, we will measure this line again using a ball bar that 
covers the entire line of the CMM.

For the calibration of a one-dimensional artifact, the 
overlap method uses a CMM and the rotation and translation 
between the 3D coordinate of common points within adjacent 
segments of the same artifact. The movement of the artifact 
within a line of the CMM to cover its entire length produces 
the roto-translation. The geometric errors in the line where the 
artifact is placed affect not only the roto-translation measure-
ment performed in the overlapping method but also affect the 
measurement without overlapping of any piece in that line. It 
is recommended that the CMM be compensated for its geom-
etry errors before overlapping. Future work can look for the 
consequences of significant geometry errors in the measure-
ment line. To validate the calibration with the overlap method, 
we will measure a small ball bar that fits within the measure-
ment volume of a CMM using and not using overlap.

In the rest of the article, we describe our approach to 
performing the overlap method in a CMM. In section 2, we 
review the scientific literature related to our problem. Then, in 
sections 3 and 5, we describe the method we employ to do the 
overlap. In section 4 we show how to evaluate the uncertainty. 
We present our results in section 6 and discussion in section 7. 
Finally, we conclude by summarizing our findings and delin-
eating future directions of inquiry.

2.  Prior work

Methods such as multilateration using an LT, Takatsuji et al  
[9, 10], could be used to calibrate large one-dimensional 
artifacts instead of the method proposed here. The bundled 
adjustment method allows the use of LT to calibrate ball 
bars of considerable length with small enough uncertainty, 
Sandwith et al [5]. The problem with these methods is that the 
errors of an LT increases when using the encoders to measure 
the geometrical elements of one-dimensional artifacts. Also, 
it is not possible to measure step gauges or scales bars with 
line or circle marks with small enough uncertainty using an 
LT. For step gauges, LTs can incorporate a probe tip as in a 
CMM, however, the orientation of the probe with respect to 

Figure 1.  (a) Performance evaluation of a large CMM with a small ball bar. (b) Setup for 5 m ball bar measurement using a moving 
table CMM. The CMM has a measurement range of 1100 mm only.
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the LT introduce more errors in LT’s measurement. In the case 
of lines or circle marks, an LT cannot see the marks with a 
scanner or with its SMR probe, therefore it is not possible to 
measure the marks.

Another method to calibrate large one-dimensional artifacts 
could be to use photogrammetric-based techniques. Luhmann 
[11], Gale et al [12], and Cuypers et al [13] present examples 
of systems based on such technology. If we want to measure 
ball bars with this technique, we should paste several markers 
over the surface of the spheres. However, the accuracy in the 
measurement of the ball bar using this technique is not suffi-
cient to evaluate a CMM. For the case of steps gauges or scale 
bars, photogrammetric-based methods are not appropriate.

An articulated arm coordinate measuring machine 
(AACMM) may also be used to calibrate such large artifacts 
using the best fit between common points. The essence of the 
overlap method presented here is a particular best fit between 
shared 3D coordinates points measured in different coordinate 
systems. Like the other methods we mentioned, the problem 
with AACMM is the accuracy, Romdhani et al [14]. So the 
uncertainty to calibrate such large artifacts is not enough for 
the performance evaluation of a CMM, for example.

Cox et al [15] is the only author that we found to have used 
the overlap method using a CMM. Cox named the method 
‘repositioning’ and uses tapped bores that must be part of the 
workpiece to attach at least three reference spheres, to perform 
the repositioning. The spheres are used as registration points 
to pass from one reference coordinate system to another; 
he mentioned that this registration points should not be col-
linear. Butler et  al [16] implement the repositioning using 
FORTRAN software. Nevertheless, the software is too com-
plicated for practical everyday usage with proprietary CMM 
software and requires strong mathematical and programming 
skills from end-users. The work proposed by Cox and Buttler 
is a more general method for repositioning a workpiece. It is 
a best-fit method to measure large workpieces from different 
coordinate systems linked with geometrical elements.

The advantages of our overlap method over Cox and 
Butler’s method are that we do not modify the measurement 
work piece by placing reference spheres, instead, we use the 
elements belonging to the work piece. The manual movement 
of the work piece under measurement and the imperfections 
of the geometric element’s position avoid the collinearity of 
the registration points.The mathematical model using trigono-
metric ratios (TR) to perform overlap, shown in section 5.1, 
is a novel method compared with Cox’s method or singular 
value decomposition (SVD) method also described in sec-
tion 5.2. The last two methods are commonly used for regis-
tration and can be implemented with any computer software. 
Finally, and as the most relevant point, we present a novel 
method for the performance evaluation of large volume CMS 
and its uncertainty evaluation.

As mentioned, there are several one-dimensional artifacts 
of large dimensions. For the remainder of this paper, we will 
concentrate only on just one type of these artifacts, the large-
sized ball bar. However, the overlap method applies to other 
one-dimensional artifacts that allow the measurements of its 
elements in 3D coordinates, such as gauges with line or circle 
marks using optical CMMs. Also, within the available CMS, 
the CMM is the equipment so far with greater accuracy, there-
fore, we carried out all the experiments using this machine 
instead of an LT or an AACMM.

3.  Performance evaluation of CMS with the overlap 
method

The overlap method was first used for the calibration of ele-
ments whose dimensions can ot be covered by a CMS of a 
particular size. How ever, this method also allows us to do the 
opposite. That is, to evaluate the performance of CMS whose 
linear dimensions are not covered by at least 66% as indi-
cated by the ISO 10360-2 standard [2] for the case of CMM. 
Figure 2 shows one ball bar overlapped with itself to extend 
the covered range in a line inside the volume of a CMS.

Figure 2.  Degrees of freedom caused by overlap during the calibration of large ball bars or during the performance evaluation of large 
volume CMS.
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The method is used to convert a measurement gauge of 
a certain length into one of greater extent, by overlapping 
geometric elements with itself. The length extension of the 
artifact requires at least two common elements in the overlap 
interval. However, the more features in the overlap interval 
will ensure a better connection because there is an average of 
the deviations in such a range. Figure 3 is a simple representa-
tion of the overlap. However, we know that such an overlap 
can be difficult to perform, such as, on a diagonal line inside 
CMM’s volume. One way to solve this problem is to use a 
jig, supported with tripods, as large as 66% of the diagonal 
of the CMM and with the reference gauge placed on this jig. 
Another way would be to use tripods that support the refer-
ence gauge and guide the measurement of the gauge using a 
previous written program in the CMM. The program would 
allow us to place the tripod that supports the gauge so that we 
can guide it to perform the overlap.

Figure 3 shows how to overlap using a ball bar and the ter-
minology used by the equations developed for the overlap of 
one-dimensional elements. Let k be the position of the gauge 
inside the measuring volume of the machine and Ck  −  1 to 
Dk  −  1 with Ak to Bk the interval of overlap for each of the 
k positions of the measurement line that we wish to extend. 
(k = 2, 3, ..., n).

Equations (1)–(4) shows the evaluation error in k  =  3 posi-
tions of a ball bar, where M is the measured value of the gauge 
reported by the CMS and N is the calibrated value:

E0
ijk = Mijk − Nj� (1)

Eij1 = Mij1 − Nj = E0
ij1� (2)

Eij2 = Mij2 − Nj +
1
I

D1∑
j=C1

I∑
i=1

Eij1 −
1
I

B2∑
j=A2

I∑
i=1

E0
ij2� (3)

Eij3 = Mij3 − Nj +
1
I

D2∑
j=C2

I∑
i=1

Eij2 −
1
I

B3∑
j=A3

I∑
i=1

E0
ij3� (4)

Eijk = Mijk − Nj +
1
I

Dk−1∑
j=Ck−1

I∑
i=1

Eijk−1 −
1
I

Bk∑
j=Ak

I∑
i=1

E0
ijk� (5)

where Ak is the first element measured in position k (reference 
element of this position). Bk is the last element that is part of 

the overlap in position k. Ck is the first element with which the 
overlap begins in position k. Dk is the last element measured 
in position k. I is the total number of measurements by posi-
tion. k is the number of positions. i is the current number of 
repetitions. j  is the current number of elements in a position. 
Mijk is the length measured in position k, measuring element j  
in repetition i, covering the first element in this position. Nj  is 
the calibrated length ad distance from element j  to element 1.  

E0
ijk  is the length deviation measured in position k, measuring 

element j  in repetition i, covering the first element in this 
position. Eijk is the deviation of length measured in position 
k, measuring element j  in repetition i, without covering the 
position of the first element.

In figure 3, L0
jk is the nominal distance between an element 

j  in position k, and the first element in the same position, Ljk is 
the nominal distance that exists from an element j  in position 
k to the first element of the first position.

Equation (5) expresses the general model for performance 
evaluation of CMS using overlap. Equation (5) only consider 
the errors coming from the CMS and uses the errors in the 
interval area to perform the overlap.

Another way for the performance evaluation of CMS using 
overlap consists of using equations  (19)–(24) (TR method) 
or equations (25)–(30) (SVD method). For this, it is recom-
mended to use nominal coordinates for the positions of the 
balls of the bar in the segments one, two, three, etc, and add 
to these positions, the errors founded during the performance 
evaluation of the CMS. Once we add the errors to nominal 
coordinates, equations from the TR method or SVD method 
can be applied directly.

For example, if the distance between balls of the bar 
is approximately 100 mm, then the nominal coordinates of 
the bar would be 0, 0, 0 ; 100, 0, 0; etc in X, Y, Z coordinates, 
respectively. To these values add the measured errors, that 
is, the calibrated minus the measured distance. An error of 
0.010 mm for the ball in position 100 would represent a 
position in X, Y, Z coordinates of 100.01, 0, 0 in that posi-
tion. Note how the values of Y, Z are always zero since 
we are evaluating a CMS and these coordinates are not of 
interest, that is, rotational errors are not considered. In the 
case of performance evaluation of CMS, the measurand of 
interest is the error estimated with the length measured by 
the CMS under evaluation minus the calibrated value of 
that length.

Figure 3.  Model that exemplifies the overlap of ball bars with k  =  4 for performance evaluation of a CMS.
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4.  Uncertainty for the performance evaluation  
of CMS and calibration of large ball bars

The uncertainty for the performance evaluation of CMS is 
evaluated, taking into account the following factors according 
to GUM [19]: the gauge uncertainty, the repeatability in the 
overlap area, as well as the gauge’s temperature. These are 
also the main factors used in the standard ISO/TS 23165:2006 
[20], the only difference is the repeatability in the overlap area 
that increases the uncertainty from where the overlap was 
applied.

The gauge uncertainty and the repeatability in the overlap 
area are described by the following equations:

U0(L) = c + a · L� (6)

U0
jk = U0(Lj1) = c + a · Lj1� (7)

Uj2 = 2 ·

√[
1
2

Umax
1 +

1
2

U0(L0
j2)

]2

+
σ2

1 + σ2
2

nA2B2 · I
� (8)

Uj3 = 2 ·

√[
1
2

Umax
2 +

1
2

U0(L0
j3)

]2

+
σ2

2 + σ2
3

nA3B3 · I
� (9)

Ujk = 2 ·

√[
1
2

Umax
k−1 +

1
2

U0(L0
jk)

]2

+
σ2

3 + σ2
k

nA4B4 · I
� (10)

σk =

√
1

ΣK
k=1Jk

ΣK
k=1Σ

Jk
j=1σ

2
jk� (11)

σjk =

√
1

I − 1
ΣI

i=1[Mijk − Mjk]2� (12)

Mjk =
1
I
ΣI

i=1[Mijk].� (13)

U0(L) is the gauge uncertainty coming from the calibration 
certificate of the gauge. Ujk is the contribution to the uncer-

tainty coming from Eijk. U0
jk is the contribution to the uncer-

tainty coming from E0
ijk . a is a factor depending on the length. 

c is a constant. Jk is the number of elements in position k. σk 
is the standard deviation of all elements in position k. σjk is 
the standard deviation of element j  in position k. nAkBk is the 

number of elements in the overlap area between position k 
and k  −  1. Umax

k  is the maximum uncertainty after an overlap, 
which is taken into account for the next uncertainty evalua-
tion. The nomenclature of equations (6) to (13) is based on 
figure 3.

To calculate the influence of temperature, we have three 
terms, which we must add quadratically so that they are con-
sidered as variances and therefore as the best estimate of the 
variation of the mean:

Uα

2
· (T − 20) · Lj.� (14)

Uα is the uncertainty coming from the thermal expansion coef-
ficient of the material, T is the average temperature during the 
measurement of the bar in position k, T = (Tstart − Tend)/2, Lj  
is the length of any element j :

α · Lj ·
Uct

2
.� (15)

α is the thermal expansion coefficient, Uct is the uncertainty 
of the temperature sensor found in the calibration certificate:

α · Lj ·
VTobj√

12
.� (16)

VTobj is the significant temperature variation of the bar during 
all the measurements in all the positions.

Finally, the uncertainty evaluation for temperature is

U(temp) = 2 ·

√[
Uα

2
· (T − 20) · Lj

]2

+

[
α · Lj ·

Uct

2

]2

+

[
α · Lj ·

VTobj√
12

]2

.

� (17)
The final uncertainty of the test for the performance evalu-

ation of a CMS is

U(test) =
√

U2
jk + U(temp)2.� (18)

The uncertainty for the calibration of large one-dimen-
sional artifacts take into account exactly the same factors as 
the performance evaluation of CMS. But, in the calibration 
case, the gauge uncertainty comes from the gauge used to get 
the scale factor correction of the line where the artifact under 
calibration is set in the CMM. It means that if an interfero-
metric laser is used for scale compensation then the uncer-
tainty from the laser is the gauge uncertainty. Another gauge 
for scale factor could be a step gauge or gauge block cali-
brated with low uncertainty in a reference laboratory.

5.  Calibration of large one-dimensional artifacts 
using the overlap method

To calibrate large one-dimensional artifcats (ball bars) in 
a particular CMS like a CMM, we proceed as follows. We 
divide the one-dimensional artifcats (ball bars) into two or 
more segments (segment 1, segment 2, segment 3, ..., segment 
n) in such a way that we measure each segment in the interval 
of the CMM, see figure 4. To join the results of the measure-
ment of the segments, it is necessary that a certain number of 
geometric elements (at least two and preferably four, see fig-
ures 6(d)–(f)) are common in both segments. These elements 

Figure 4.  Overlap method applied to large ball bar calibration.
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will be part of the overlap interval. Cox et al [15] mentioned 
three methods to reposition ball bars. The first is the rotation 
about a vertical axis using a rotary table, where the ball bar is 
fixed directly onto the rotary table. The second is the transla-
tion along a horizontal axis using a jig. We must mount the 
piece under measurement on a jig that can be fixed to the 
CMM table in various positions overhanging at either end of 
the CMM table. We must manipulate the artifact on the jig 
from one position to another. This method was the approach 
adopted in this work to calibrate large ball bars, see figure 1. 
The last method is the rotation about a horizontal axis, used 
when cylindrical-type artifacts must be measured.

5.1.  A mathematical model for overlap using trigonometric 
ratios

The trigonometric ratios (TR) method is the simplest and novel 
way to perform overlap. It uses the X, Y and Z coordinates of 
the elements involved in the overlap area to evaluate rotation 
and translation between segments. In the TR method, we estab-
lish the coordinate system of the object in the first segment, and 
the geometric features that are part of it are measured. Then, 
the artifact is moved in the direction of the same axis, leaving 
some features in the overlap interval (at least two). Then, we 
establish a new coordinate system of the object, and the geo-
metric elements of segment two are measured. The measure-
ments from part two to part one are connected once the results 
from part two are corrected (it means putting everything in the 
coordinate system of part one). The correction comes from six 
possible errors in the overlap area: three translations and three 
rotations. The translation errors are corrected, averaging the 
results obtained from segment two to one, employing

Gk,c =

∑n
i=1 Ci

n
� (19)

corrTc = G1,c − G2,c� (20)

where Gk,c is the center of gravity X, Y , Z  of each segment 
evaluated with the balls in the overlap interval. C is the X, Y , Z  
coordinate of each ball in the overlap interval. k is the number 
of segments. n is the number of balls or geometrical ele-
ments in the overlap interval. corrTc is the translation correc-
tion X, Y , Z  value to be applied to balls outside the overlap 
interval of the next segment, in this case, segment two. The 
positions of the balls in segment one remain uncorrected, but 
we must correct the balls of the next segment that are outside 
the overlap area with equation (20).

To correct the rotational errors, we firstly determine 
the angles α, and β shown in figure  2 using the following 
equations:

α =

∑n
i=1(Z2,1 − Z1,i)(X2,i − G2,x)∑n

i=1(X2,i − G2,X)2� (21)

β =

∑n
i=1(Y2,1 − Y1,i)(X2,i − G2,x)∑n

i=1(X2,i − G2,X)2� (22)

where α and β are the rotational angles around Y2 and Z2 axis 
respectively. Z2,i and Y2,i are Z and Y coordinates of segment 
two for each of the elements in the overlap interval. Z1,i and 
Y1,i are Z and Y coordinates of segment one for each of the 
elements in the overlap interval. X2,i is the X coordinate of 
segment two for each of the elements in the overlap interval.

Then, to correct Z and Y coordinates of all the geometric 
elements outside the interval area of segment two, the fol-
lowing expressions are applied:

CorrZα = α(X2,i − G2,X)� (23)

CorrYβ = −β(X2,i − G2,X).� (24)

The rotation errors are typically small because we use a jig 
to move the ball bar in a line within the CMM.

The results of all the geometric elements, from segment 
two to segment one, are connected with the corrections found 
by expressions (20), (23) and (24). We add these corrections 
to the coordinates of elements outside the overlap interval of 
the segment two measurements. Then, we use coordinates of 
segment one with the corrected coordinates of segment two 
(elements outside the overlap interval), and as a result, we 
obtain a final measurement of the large artifact. If we divide 
the artifact into more than two segments, now the combination 
of segment one with the corrected segment two takes the place 
of a new segment one. Segment three takes the place of seg-
ment two and we proceed to carry out the measurements and 
calculations again.

The TR method does not correct the rotational angle around 
the axis of translation of the ball bar (rotation around X). The 
next subsection evaluates all the three translations and rota-
tions to perform the overlap method. Cox et al [15] explains 
that registration points (overlap balls) must not be collinear, 
however, using the equations (19)–(24), the registration points 
must be as collinear as possible to reduce overlap error. With 
the collinearity, the rotational errors from equations (21) and 
(22) are negligible, so only the translation of the piece is taken 
into account. Collinearity does not occur due to imperfections 
in the ball’s positions and the manual movement of the bar 
over the jig. The jig is used to support the bar always at the 
same points to avoid deformations of the bar. We must attach 
the jig in some way to the CMM table, and the material should 
be as rigid as possible.

5.2.  A mathematical model for overlap using SVD

The overlap method using singular value decomposition 
(SVD) is based on the least-squares fitting implemented by 
Arun et  al [17] and Icasio et  al [18]. Recall that segment 
one has the coordinate system, X1, Y1, Z1, and segment two 
the coordinate system, X2, Y2 and Z2. The objective of the 
overlap method is to find the rotation and translation between 
both coordinate systems as shown in figure 2. Once the roto-
translation is calculated, the X1, Y1, Z1 coordinates of segment 
one remain the same, and to these coordinates, we add the 
X2, Y2, Z2 coordinates corrected by rotation and translation 
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of segment two. With this, we managed to calibrate the large 
bar. If due to the size of the bar we divide the artifact into 
more than two segments, now the combination of segment 
one with the corrected segment two takes the place of a new 
segment one. Segment three takes the place of segment two 
and we proceed to carry out the measurements and calcul
ations again.

The algorithm to solve the roto-translation consists of the 
following steps:

Step 1: evaluate the centroids of each segment, taking into 
account only the balls in the overlap area:

centroid =

n∑
i=1

(Xi, Yi, Zi)

n
.

�

(25)

Step 2: calculate the 3X3 matrix:

Q =







X1 Y1 Z1
...

...
...

Xi Yi Zi




1

− centroid1




T

·







X1 Y1 Z1
...

...
...

Xi Yi Zi




2

− centroid2


 .

�
(26)

Q is the rank 3 matrix, centroid1 and centroid2 are the cen-
troids of balls in segments one and two respectively and i is 
the number of balls in the overlap area.

Step 3: find the SVD of Q:

[U, S, V] = SVD(Q).� (27)

Step 4: calculate

X = V · UT .� (28)

V  is the right singular values of matrix Q and UT is the trans-
pose of the left singular values of matrix Q.

Step 5: calculate, det(X), the determinant of X:

if det(X) = +1, then R(2−1)  =  X

if det(X) = −1, then we have co-planar or collinear 
registration points, so in this case the third column of 
V  must be multiplied by  −1 and then R(2−1) = V · UT

Step 6: evaluate translation (T(2−1)) between segment two and 
one:

T(2−1) = centroid1 − (R(2−1) · centroid2).� (29)

Step 7: finally, apply rotation and translation to the balls 
outside the overlap area from the next segment, in this case, 
segment two:

CorrRotTras = R(2−1)(Xi, Yi, Zi)2 + T(2−1).� (30)

6.  Experimental results

6.1.  Experimental setup

In our experiments, we employed a CMM Mitutoyo model BJ 
1015. It has a measurement range of 1500 mm, 1000 mm, and 
800 mm in orthogonal axes. Its spatial resolution along any 
one of the axes is 0.0005 mm, with a positioning accuracy of 
0.001 mm. The other employed CMM is a Mitutoyo Legex, 
model 9106. It has a measurement range of 1010 mm, 910 mm 
and 610 mm in the orthogonal axes. Its spatial resolution 
along any one of the axes is 0.000 01 mm, with a positioning 
accuracy of 0.0001 mm.

Two ball bars were employed; one was 1500 mm long and 
the other was 700 mm. Both were made of carbon fiber. The 
1500 mm long bar has spheres every 100 mm and the 700 mm 
long bar has spheres every 50 mm. The step gauge used for 
performance evaluation with the overlap method is a Koba 
step gauge 1020 mm long with steps every 20 mm, made of 
steel.

In these experiments, we do not use a jig to hold the ball 
bar because we use a segment of the same ball bar or step 
gauge to perform the overlap. In a normal measurement using 
overlap, we use a rectangular aluminum profile that is approx-
imately 5100 mm long, 100 mm wide, and 120 mm high, see 
figure 1. Besides, we use a carbon fiber profile with a length of 
3200 mm, a width of 80 mm and a height of 10 mm.

6.2.  Results for the performance evaluation of CMS  
with the overlap method

Figure 5 show the results for the performance evaluation 
along the axes of a CMM. A step gauge was used to evaluate 
Y-axis error of a CMM and a ball bar was used to evaluate X-
axis error of the same CMM. We evaluate Y-axis and X-axis 
errors without the overlap method and the errors when using 
the overlap method. The step gauge has gauge blocks every 
20 mm. To avoid the influences of the probe tip diameter error, 
we assume that step gauge has gauge blocks every 40 mm so 
only unidirectional gauge blocks were measured. The step 
gauge was 1020 mm long and the ball bar was 1500 mm long. 
The ball bar has solid ceramic spheres every 100 mm.

For the step gauge case, the overlap method was realized 
using 600 mm long segment of the 1020 mm gauge. In this 
case, we overlapped the last six gauge blocks of step gauge 
segment from 400 mm to 600 mm, with the first six gauge 
blocks of the step gauge segment from 0 mm to 200 mm. 
For the ball bar case the overlap method was realized using 
900 mm long segment of the 1500 mm gauge. In this case, 
we overlapped the last five balls of the ball bar segment from 
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500 mm to 900 mm, with the first five balls of the ball bar seg-
ment from 0 mm to 400 mm.

Figure 5 shows that overlap starts at 600 mm for the step 
gauge case and at 900 mm for the ball bar case, from where 
there are differences on the order of CMM repeatability 
between the errors using a segmented overlap and the errors 
with the step gauge and ball bar measured without using 
overlap. Figure  5 (top) also shows uncertainty vertical bars 
for the performance of one CMM axis. After 600 mm uncer-
tainty increases not because of linear dependency in the step 
but because of overlap zone, see figure 8. The magnitude of 
the deviations for the Y-axis and X-axis from CMM is good 
enough considering the repeatability of the machine is smaller 
than 0.001 mm.

Figures 6(a)–(c) shows the error when we studied overlap 
measuring a ‘large bar’ as a function of the angular orientation 
of the ball bar during overlap. We move the bar by some angle 
in the second position relative to the first position. Both the 
SVD and TR methods show no dependency in error according 
to the ball bar angular position. However, figures  6(a)–(c) 

shows that an angle of 0 degrees is better for TR and SVD 
methods in X, Y and Z coordinates.

Figures 6(d)–(f) shows the error measuring a ‘large bar’ as 
a function of the number of balls during overlap. In each case, 
we considered a different quantity of balls in the overlap zone. 
Figures 6(d)–(f) shows that four balls are sufficient to overlap 
with the SVD or TR method. TR method works with only two 
balls, but the SVD method needs at least three balls. In all the 
cases, the principal coordinate is X, and for this coordinate, 
the SVD method has less error than the TR method.

6.3.  Results for the calibration of large one-dimensional  
artifacts using the overlap method

Figure 7 shows the difference in distance between spheres of 
a 700 mm ball bar measured without using overlap (the bar fit 
the measuring range of a high accuracy CMM), and the dis-
tance between spheres of the same 700 mm ball bar but now 
with two methods for overlap. The bar has balls at approxi-
mately 50 mm intervals.

Figure 5.  Deviations of two CMM’s axis using a step gauge (top) and a ball bar (bottom) without overlap and with overlap.
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Figure 6.  Overlap error during large ball bar calibration. (a)–(c) Overlap error as function of angle orientation of the ball bar. (c)–(e) 
Overlap error as a function of the number of balls used for the overlap.
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The overlap method is realised on the CMM using seg-
ments that are 400 mm long. To cover the range of the ball bar, 
we must overlap the last three balls of the bar from 300 mm to 
400 mm, with the first three balls from the rest of the bar from 
450 mm to 550 mm.

Figure 7 shows that overlap starts at 400 mm, from where 
there are differences in the distance against the bar measured 
without using overlap. Besides, we can see that the SVD 
method has less error than the trigonometric ratios method. 
The magnitude of the errors using both ways is good enough 
for calibration of ball bars used to evaluate large CMM. But, 
for the performance evaluation of high accuracy CMM, only 
the SVD method is appropriate, taking into account an incre-
ment of 0.0001 mm for the uncertainty of ball bar calibration 
coming from the overlap.

7.  Discussion

If the right conditions for the CMM and the environment are 
available, then the overlap method is efficient to calibrate 
large ball bars and evaluate large CMMs.

The temperature is a factor that influences the errors in the 
performance evaluation of CMS, as well as in the calibration 
of large dimensional artifacts. Documentary standards such as 

ISO/TS 23165:2006 [20] mention that performance evalua-
tion should be done in the actual conditions of CMM, that is, if 
the CMM’s software has the option for temperature correction 
at 20 °C then these corrections may or may not be activated. 
In the case of overlap, it is recommended to activate these 
compensations and bring all measurements to 20 °C using 
the CMS measurement software. If they are not activated, the 
uncertainty reported in equation (17) should be equal to zero 
since no temperature compensation is performed. The above 
has the consequence that the error evaluated during the perfor-
mance evaluation may be larger. In the case of the calibration 
of large one-dimensional artifacts, temperature compensation 
at 20 °C must be done with the CMS measurement software or 
offline with the equation for temperature correction showed in 
ISO/TS 23165:2006 [20].

We must consider how to make the overlap as accurate as 
possible inside the line contained in the measurement volume 
of the CMS. In lines parallel to the CMS’s axes, which is what 
we show in the results, there is no difficulty. However, in lines 
located inside the volume, there could be more uncertainty due 
to the connection between elements to carry out the overlap.

For the calibration of large ball bars, the overlap method 
assumes that the line of the CMS does not have significant 
geometry errors that could affect the roto-translation of ele-
ments. Figure 3 shows that spheres from 3, 4, 5 and 6 from 
the left are the elements used for overlap (white spheres for 
the first segment position, and gray spheres in the second 
position). Note that we measure white and gray spheres in 
different places inside the range of the CMS. Then, the geo-
metrical errors in this line of the CMS will affect the calibra-
tion of the ball bar using overlap. If we have a high accuracy 
CMS, then its geometric errors are negligible in the volume 
where the bar moves manually. The movements will not affect 
the calibration because sphere positions 3, 4, 5 and 6 of the bar 
remain the same if environmental conditions are good enough.

For the performance evaluation of CMS, the overlap 
method assumes that the errors in a line inside the volume 
of overlap do not affect the translation of elements. Figure 2 
shows clearly that the manual movement of the bar will not 

Figure 8.  Measurement uncertainty coming from the overlap of 
geometric elements.

Figure 7.  Deviations of a ball bar distance calibration without overlap and with overlap.
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result in a perfect evaluation line. If we consider that the errors 
of CMS do not change significantly within a specific volume 
of the CMS, then the performance evaluation is done correctly 
only with translation of errors. Even though it is not the same 
measuring line, the errors of the CMS do not change abruptly 
inside the small volume generated by the manual movements 
of the bar.

How precisely the overlap between elements (movement 
of the bar) has to be performed depends on how accurate the 
CMS is for the calibration case. For the case of performance 
evaluation, this depend on the mapping errors of the CMS. 
From experience, we can say that the manual bar reposi-
tioning when calibrating or evaluating can be a maximum of 
10 mm in the translation of the axes and a maximum of five 
degrees in the rotation of any of the axes. However, overlap 
precision will depend on the CMS for which the calibration 
or evaluation is carried out. For example, it may depend on 
the step defined in the error compensation map of the CMS. 
However, having a coordinate system, the manual reposi-
tioning of the bar can be achieved in no more than 10 mm 
and no more than five degrees. Figures  6(a)–(c) show the 
influence of a wrong bar orientation along the line where we 
are doing the calibration.

Concerning the fixturing of ball bars of large dimensions, it 
is essential that we support the bar on the same points during 
all overlaps (preferably Bessel or Airy locations). Otherwise, 
there will be errors from the elastic deformation of the meas-
urand. For CMM with a movable table or supported by pneu-
matic suspension, it will be necessary to support the device 
in a beam or jig sufficiently rigid to avoid oscillations in the 
critical overlaps to maintain the same support.

Increasing the number of geometric elements in the overlap 
interval will ensure a better overlap, but also the evaluation 
or calibration time will grow considerably. Figures 6(c)–(e) 
shows that the error in the calibration of a ball bar decreases 
as the number of geometrical elements in the overlap area 
increases. Four features are generally good enough to do the 
overlap with the SVD or TR method. But, in case there is no 
space or time, only two elements could be enough, but in this 
case, TR is the best method.

Figure 8 is a schematic showing the idea of increase in 
measurement uncertainty for the evaluation of CMS and the 
calibration of artifacts. For example, each time we have an 
overlap, there will be a contribution to the uncertainty from 
the translation connection (vertical increase) and rotation 
connection (slope increase). If we use more elements in the 
overlap interval, the contributions to the uncertainty due to the 
connection decreases and the vertical jump and slope incre-
ment will be smaller in each overlap.

8.  Conclusions

The results obtained show that we can use the overlap method 
for the performance evaluation of any CMS and the calibration 
of large ball bars using a CMM. Another essential factor is that 

even when the number of overlaps has no limits, the test uncer-
tainty increases with each of these. Therefore, it will be neces-
sary to reach a consensus between the number of overlaps to be 
made and the measurement uncertainty required for the test. As 
future work, we will evaluate how the overlap method works 
with artifacts that do not have balls inline (non-one-dimensional 
artifacts). We have already found that the TR method does not 
work with non-one-dimensional artifacts, but we believe that 
the SVD method should work with these artifacts.
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