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1.  Introduction

Many modern day applications require accurate time synchro-
nization between devices not connected by physical means. 
Examples include distributed measurement systems, naviga-
tion systems, communication systems, and many others. The 
synchronization is generally achieved by measuring the arrival 
time of a wireless signal, transmitted from some reference sta-
tion, at the different devices, and then using the deviation from 
the expected value to adjust the individual clocks.

A commonly used reference is the Global Positioning 
System (GPS) and other global navigation satellite systems. 
For GPS the arrival time estimation is achieved by having each 
satellite emit a navigation message that is modulated using a 
1023-bit Gold code and then having the receivers perform a 
cross correlation between the received signal and a local copy 
of the encoding [1]. This results in a rough estimate of the 
time delay caused by the distance between the satellites and 
the receiver, which can then be used to estimate the time offset 

from the GPS clock if combined with time delay measure-
ments from multiple other satellites [2].

While the code-based method is reliable, it is often not very 
accurate and needs to be supported by other means such as 
measuring the phase of the carrier wave of the wireless signal 
if high accuracy is needed [3, 4]. Phase measurements have one 
significant disadvantage in that they are associated with ambigu-
ities that need to be resolved before the delay can be accurately 
determined. Methods for this exist, but they are often compli-
cated and computationally expensive meaning that severe limits 
are placed upon the hardware performing the calculations [5].

This work presents a technique that allows for precise 
arrival time estimation of GPS and other Gold code modu-
lated signals without using carrier phase information and with 
a low computational overhead. The technique uses sampling 
frequencies very close to the bit-rate of the reference signal 
and thus well below the Nyquist rate, which means that it can 
be implemented using simpler hardware than would otherwise 
be required. Because of this, the method potentially allows 
for simple and low cost hardware being able to achieve per-
formance levels that are normally reserved for prohibitively 
expensive equipment.
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Section 2 presents the details of the method and describes 
the underlying theory. In section 3 an implementation of the 
method in actual hardware is presented and its performance is 
described in section 4. Finally, section 5 provides a discussion 
on the effectiveness and viability of the method itself as well 
as the developed hardware solution.

2.  Method

2.1.  Gold code timing estimation

Gold codes are special pseudo-random binary sequences that 
have a number of properties that make them interesting for 
communication purposes [6]. These include the following:

	 •	�Being easy to generate in hardware using shift-registers.
	 •	�Having well defined single peak auto-correlation func-

tions.
	 •	�Individual codes from a single set are approximately 

orthogonal to each other leading to low levels of cross-
correlation.

The codes are constructed by combining the output of 
two maximum length sequence linear feedback shift register 
(LFSR) configurations. An example would be the sequences 
described by the following two characteristic polynomials [7]:

P1(x) = 1 + x8 + x15� (1)

P2(x) = 1 + x9 + x11 + x12 + x13 + x14 + x15.
�

(2)

Combining the output of these results in a 32767-bit Gold 
code. By changing the initial values of the LFSRs, different 
codes can be produced using the same hardware with the dif-
ferent codes all being part of the same set. If multiple sig-
nals, each modulated using its own Gold code, are present in 
a given recording it is possible to extract information from 
each of them individually because of the approximate orthog-
onality. The arrival time of each signal can also be estimated 
by performing a cross-correlation between the received signal 
and the Gold code used for modulation, with the time of 
maximum correlation corresponding to the arrival time. The 
accuracy achievable in this way is proportional to the sam-
pling rate, which is commonly set to frequencies significantly 
higher than the code bit rate [1]. By utilizing upsampling 
better accuracy can be achieved, but it requires significantly 
more computations as well as sampling frequencies above the 
Nyquist rate [8].

2.2.  Fractional sampling

Figure 1(a) shows an ideal square wave function representing 
a binary signal. This can be considered to be the result of 
a convolution between a series of delta functions (figure 
1(b)) and a single square wave pulse-form as represented in 
figure 1(c), i.e.

s(t) = c(t) ∗ p(t)� (3)

with s(t) being the binary signal, c(t) being the modulation 
delta functions and p(t) being the pulse-form. Any delay ∆t  
of the binary signal can be described by a corresponding time 
shift of the pulse-form.

Suppose the 10-bit-long signal of figure 1(a) is transmitted 
at a bit-rate of fb = 1/τb, where τb is the length of each bit 
of the modulation code, and is digitized with a sampling fre-
quency of fs = fb. Because the signal can be considered as the 
sum of 10 individually shifted copies of the pulse-form, each 
sample contains information about 10 different time posi-
tions of the pulse-form. Furthermore, because the sampling 
frequency is the same as the bit rate, each subsequent sample 
contains information about the same 10 positions because the 
time difference between each sample is equal to time shift 
between each bit of the signal. This is illustrated in figure 2(a) 
where the brightness of the arrows correspond to when the 
sample was taken, with brighter tones corresponding to earlier 
samples, similar to figure 1(b). Because of this sparse sam-
pling of the pulse-form the arrival time of the signal cannot be 
determined better than to within ±τb. Increasing the sampling 
rate to integer multiples of f b will improve the accuracy by an 

(a)

(b)

(c)

(d)

Figure 1.  A square signal, s(t). (a) can be considered as the 
convolution of a digital code represented by delta functions, c(t), 
(b) and a square pulse-form, p(t), (c). The arrows in (d) correspond 
to the sampling points when performing fractional sampling and, as 
can be seen, bit 5 is skipped by the sampling process.
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equal factor, but the pulse-form information contained in each 
sample will still overlap as before.

Now, if the signal is sampled at a fractioned rate of e.g. 
fs = 0.9fb instead, something interesting occurs: as illustrated 
in figure 1(d), bits 5 and 10 of the signal are skipped by the 
sampling process while all other bits are sampled in different 
locations from each other. Similar to before each sample corre-
sponds to 10 equally spaced time locations of the pulse-form, 
however, because of the fractional sampling frequency there 
is no overlap of information between the different samples. 
This is illustrated in figure 2(b). Because of the tighter spacing 
of the pulse-form samples, the arrival time of the signal can 
now be determined with an accuracy of ±τb/9. In general, 
if the code has a length of N bits, by choosing the sampling 
frequency as

fs = fb
N − 1

N
� (4)

a potential temporal accuracy of τb/(N − 1) can be attained. 
Applying this method to GPS (f b  =  1.023  MHz, N  =  1023) 
leads to a time resolution of ≈1 ns resulting a distance resolu-
tion of ≈ 30 cm. This is a significant improvement over most 
code-based GPS receivers [1] and it is achieved using a sub-
Nyquist rate of sampling.

However, before the arrival time can be estimated it is nec-
essary to first perform a reconstruction of the pulse-form.

2.3.  Arrival time estimation

One way to recover the pulse-form is to perform a deconvolu-
tion. However, even if this is done in the spectral domain it is 
a processing intensive procedure [9]. Another possible option 
is to mix the recorded signal with two versions of the modula-
tion code: one on time, and one delayed by one sample. Using 
the previous example, the modulation code c and recorded 
signal r are respectively equal to

c = [+1,−1,+1,−1,+1,−1,+1,−1,+1,−1]

r = [−1,+1,−1,+1,−1,−1,+1,−1,+1]

using a non-return-to-zero representation. Figure 1(d) shows 
the sampling points that have been used to construct the 
recorded signal. Element-wise multiplication of the signal 
with the shifted code copies (ignoring the final sample of the 
code) results in

m0 = [−1,−1,−1,−1,−1,+1,+1,+1,+1]

m1 = [+1,+1,+1,+1,+1,−1,−1,−1,−1]

respectively for the on-time and the delayed codes. The mixing 
with the on time code extracts the information of the first τb 
interval of the pulse-form, while the mixing with the delayed 
copy extracts the information of the next τb interval and so on. 
Concatenating m0 and m1 then results in a representation of 
the first 2τb seconds of the pulse-form sampled at τb/9 second 
intervals. This is illustrated in figure 3.

From this it can be seen that the example code arrived at 
a time between 5/10τb = 0.5τb and 6/10τb = 0.6τb, which is 
the expected result. In general, defining the first sample index 
of the mix that is equal to  +1 as Kf , the delay will lay in the 
range of

Kf − 1
N

τb � ∆t �
Kf

N
τb.� (5)

The example uses a very simple code of alternating ones and 
zeroes, which does not represent a realistic situation utilizing 
pseudo-random number (PRN) codes for the modulation. 
Figure  4(a) shows the pulse-form reconstruction resulting 
from using a 32767-bit PRN Gold code generated using P1(x) 
and P2(x) as the generating LFSRs.

As can be seen, the pseudo-random nature of the code 
means that the reconstruction is less clean and alternates 
between ±1 where the initial example consisted of solely  −1. 
However, since the deviations from the ideal are pseudo-ran-
domly distributed the result can be improved by performing 
a simple smoothing of the data. This is shown in figure 4(b) 
where the data has been processed using a moving average 
filter with a span of 100 samples. This clearly improves the 
shape considerably. With the pulse-form reconstructed, the 
delay can be determined by noting when the value of the 
reconstruction crosses a certain threshold. That is, detecting 
the rising edge. Accuracy can be improved by noting the 
falling edge as well.

It should be noted that the proposed method is only able to 
determine fractional arrival times, i.e. times ∆t � τb after the 
start of recording. If the signal is further delayed it is necessary 
to first determine the integer arrival time, i.e. how many full 
bits the signal is delayed, before performing the reconstruction 

Figure 2.  (a) shows the pulse-form information contained in each 
sample when sampling at a rate of f b. (b) shows similar information 
when using a sample rate of 0.9f b.

Figure 3.  Envelope of the reconstructed pulse-form.
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and then offsetting the data accordingly. This then leads to the 
following formulation of the arrival time estimate

∆t ≈ τb

[
Ki +

Kf

N

]
� (6)

where Ki is the integer arrival time and Kf  is the fractional 
arrival time, both in the unit of samples. The integer part can 
be determined using conventional methods for signal delay 
estimation such as performing a cross-correlation between the 
received signal and the modulation code. However, it should 
be noted that when fractional sampling is performed the sin-
gular peak that is normally present in the cross-correlation 
function will be split up over two adjacent samples. This can 
be intuitively understood by looking at the code-data prod-
ucts m0 and m1: the cumulative sums of these essentially each 
represent one sample of the cross-correlation, and since both 
contain part of the signal, the correlation peak will be dis-
tributed over the two samples. Determining which of the two 
peaks represents the actual integer delay can be achieved by, 
for example, testing both possibilities individually. Another 
approach is to mix the recording with additionally delayed 
code copies to extend the time period covered by the pulse 
reconstruction method.

3.  Implementation

To test the time synchronization method, a custom 2.4 GHz 
radio transceiver board has been designed and constructed 
from easily accessible low-cost parts. The main components 
are as follows:

	 •	�Maxim integrated MAX2830 analog front-end.
	 •	�Maxim integrated MAX5851 digital-to-analog converter 

(DAC).

	 •	�Maxim Integrated MAX1195 analog-to-digital converter 
(ADC).

	 •	�Silicon labs Si5351C clock generator.
	 •	�TXC Corporation 25  MHz temperature compensated 

crystal oscillator (TCXO).

The output of the analog front-end is connected to a standard 
quarter wave dipole antenna designed for WiFi applications. 
The antenna gain is 2 dBi and the front-end chip has a noise 
figure of 4 dB and a transmit power of up to 17.1 dBm [10].

Figure 5 shows an overview of the hardware design 
whereas figure  6 presents an image of the actual hardware. 
The combined cost of each transceiver prototype, excluding 
the processing unit, is less than AC40.

The transceiver board is connected to a Xilinx Spartan-6 
FPGA that generates the digital baseband signals needed for 
transmission and works as a data bridge sending the baseband 
signals to a PC over USB 2.0 when receiving. The FPGA also 
takes care of the digital configuration of the different trans-
ceiver components. The signal processing could in principle 
also be implemented directly in the FPGA, however, to reduce 
development time the processing has been implemented in 
software running on a host PC.

When transmitting, the system uses the LFSRs described 
by equations  (1) and (2) to generate a 32767-bit Gold code 
which is transmitted at a 3.2767 MHz bit rate using binary 
phase-shift keying (BPSK) modulation. When receiving, the 
incoming signal is sampled at a rate of 3.2766  MHz (see 

(a)

(b)

Figure 4.  Pulse-form reconstructions using a 32767-bit Gold 
code. (a) is the raw mix of the recording and the local code copies 
whereas (b) is the same mix after it has been smoothed using a 
running average filter 100 samples wide.

Figure 5.  Overview of the transceiver hardware.

Figure 6.  Image of the transceiver hardware. The scale is in units of 
centimeters.
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equation (4)) and subsequently mixed with a copy of the Gold 
code.

When performing tests two transceivers are used, one for 
transmission and one for reception, each connected to their 
own FPGA. The transceivers each have an on-board clock 
source accurate to within 280 ppb [11] in the form of the 
TCXO which drives both chirp and sample rates as well as 
the 2.4 GHz modulation/demodulation. However, to allow 
for a larger variety of setups, the transceivers also allow for 
bypassing the on-board clock in order to drive the frequency 
synthesis from an external source.

4.  Results

In figure 7 the recovered pulse-form is shown for a test where 
the emitting and receiving transceivers were separated by 
a distance of 1 meter. No carrier tracking is performed in 
order to test the robustness of the method and the pulse-form 
is therefore generated by individually mixing the I and Q 

channels with the Gold code, smoothing, and then adding the 
results in quadrature.

From the I and Q channels it is clear that there is a slight 
mismatch in carrier frequency between the emitter and the 
receiver as is to be expected. Since each complete transmis-
sion of the Gold code takes 10 ms, the offset is approximately 
50 Hz based on the I and Q periodicity.

It is clear that the recovered pulse-form is somewhat dis-
torted compared to the theoretical result of figure  4(b). A 
significant cause of this is system noise, but an additional con-
tributing factor is the fact that the ADC has been configured to 
operate in a 1-bit mode. This was selected as it greatly simpli-
fies the hardware design and, in addition, represents a worst-
case scenario for the pulse-form recovery and therefore tests 
the robustness of the fractional sampling method. Regardless, 
the pulse-form is well defined enough that the rising and 
falling edges can easily be identified.

Recovering the delay for several code cycles in the same 
setup results in figure 8. The offset between the transmitter and 
receiver clock frequencies causes the estimated signal arrival 

Figure 7.  An example of a recovered pulse-form. Receiver and transmitter were separated by 100 cm and each had their own clock source.

0 500 1000 1500 2000 2500 3000
Time [ms]

-70

-60

-50

-40

-30

-20

-10

0

C
or

re
ct

ed
 T

im
e 

D
el

ay
 [n

s]

Figure 8.  The recovered time delay between a transmitter and a receiver separated by 100 cm, each with their own clock source. Note 
that the initial delay value has been subtracted from the data to have the graph start at zero delay. The slope of the graph corresponds to an 
oscillator offset of 21.7 ppb, or 52.1 Hz.
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time to change with each transmission as the two clocks drift 
farther and farther apart in time. This is evident in the data as 
a linearly varying time delay.

The graph has a slope of −0.0217 ns ms−1 equal to a 
frequency deviation of 21.7 ppb. For a carrier frequency of  
2.4 GHz this corresponds to 52.1 Hz, which matches what was 
indicated from the raw I and Q channels.

The slope of the plot makes it possible to synchronize 
clock frequencies across the two transceivers to a high degree 
of accuracy as even this 21.7 ppb offset shows up as a very 
clear tendency in the data. However, based on this data alone it 
is difficult to conclude much regarding the potential accuracy 
of the fractional sampling method: even if a linear function 
is fitted to and subsequently subtracted from the data there is 
still significant variations in the estimated delays caused by 
short-term oscillator drift.

A second test was therefore made where both transceivers 
were connected to the same clock source. To maximize clock 
signal integrity the inter-transceiver distance was reduced 

to 10 cm so signal lines could be kept as short as possible. 
The recovered time offset is displayed in figure 9. Note that 
because of delays and biases in the hardware, the results of 
this test are not indicative of the absolute time synchronization 
performance of the system. However, the results can still be 
used to evaluate noise characteristics of the sampling method 
and hence the potentially attainable precision given perfectly 
calibrated hardware.

An almost constant time delay is observed with what 
appears as randomly distributed noise. A histogram of the 
variation is presented in figure 10. Clearly, the variations are 
not Gaussian, but the normal distribution serves as a decent 
first approximation.

The delay exhibits a standard deviation of 37.7 ps and a 
maximum deviation of 136.7 ps from the mean. By equa-
tion  (5) the minimum theoretically measurable time step 
is 9.3 ps, so the standard and maximum deviation approxi-
mately represents offsets of 4 and 15 samples from the ideal, 
respectively.
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Figure 9.  The recovered time delay between a transmitter and a receiver separated by 10 cm using a common clock source. Note that the 
mean has been subtracted from the data to center it around zero delay. The standard deviation is equal to 37.7 ps with a maximum deviation 
of 136.7 ps.

Figure 10.  Histogram of the delay data shown in figure 9 together with the best fitting normal distribution.
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5.  Discussion

The experiments performed with the developed test platform 
confirm that the fractional sampling method works and that 
performance similar to the theoretical accuracy is achiev-
able even on simple hardware. One contributing factor to the 
observed accuracy being less than the theoretical value is the 
fact that the pulse-form recovery relies on the modulation code 
having an approximately equal amount of ones and zeroes: 
information can only be extracted when there is a change of 
bit value in the code. This means that if the signal delay cor-
responds to a section  of the PRN code that consists of, for 
example, 10 logical ones in a row, it is not possible to deter-
mine exactly which one of the 10 samples that represents the 
actual delay. As such, there is an inherent decrease in the acc
uracy of the method which depends on the local shape of the 
modulation code. Even with this reduced accuracy, achieving 
a time resolution similar to that of the single-oscillator test 
using a simple cross-correlation technique would require a 
sampling frequency of 26.5 GHz [1]. However, the frequency 
could be reduced by employing methods such as upconversion 
at the expense of requiring more processing power [8]. Still, 
the fractional sampling method represents a significant reduc-
tion in the required sampling frequency relative to even just 
the Nyquist rate.

The fact that the data was only digitized to a 1-bit accuracy 
results in an reduction of the signal-to-noise ratio of about  
2 dB [12]. However, in the performed tests the receiving and 
transmitting receivers were placed so close together that the 
only other significant causes of signal degradation would be 
system noise and potentially multipath effects. As such, the pre-
sented data is only representative of high signal-to-noise situa-
tions and it therefore cannot be guaranteed that the method will 
perform as well in all scenarios. Future work therefore entails 
classification of the system at different noise and signal levels as 
well as further investigation of the fractional sampling method 
itself using different hardware with other design parameters. 
Even given these considerations the hardware performance is 
still admirable considering that none of the used components 
were designed for time critical operations, but rather for use in 
general communications systems.

6.  Conclusion

In this article a fractional sampling method has been described 
that enables highly accurate estimates of the arrival times of 
PRN code modulated wireless signals without using the phase 
of the carrier wave. This has been validated by the construc-
tion of a low-cost radio transceiver and subsequent hardware 

testing of the delay estimation method, which has shown to 
produce results similar to the theoretical performance.

Because the approach is built on sampling rates that are 
similar to the bit rate of the modulation code it is possible to 
implement it on simple hardware. This enables the develop-
ment of simple, low-cost time synchronization systems that can 
be utilized for a multitude of different purposes ranging from 
temporal sensor alignment to time of flight-based navigation.
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