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1.  Introduction

Along with digitalization, the virtualization of industrial pro-
cesses on different scales and levels has an increasing signifi-
cance. This also applies to the field of Geometrical Product 
Specification (GPS). For the description of measuring devices, 
mathematical models that represent the complex physical 
relationships in a simplified manner are progressively being 
used [2]. This description does include the virtual measuring 

instrument, the virtual sample and the interaction between 
these two components, and can be applied to predict measure-
ment results [2].

The prediction of measurement results can, for example, 
be used to analyze and optimize instrument setups and thus 
to increase the understanding of the underlying process, or 
even provide insights for the development of novel measuring 
systems [3, 4]. Furthermore, measurement data can be simu-
lated by ‘virtual measuring’ and subsequently the measure-
ment uncertainty can be established by a comparison with 
real measurement data [5]. Additionally, systematic errors 
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determined by virtual measurements can be corrected in the 
actual setup [2].

In literature, a multitude of approaches for the modeling 
of different virtual measuring devices are described. These 
include models for the description of stylus instruments [3], 
white light interferometers [6–8], scattering light sensors 
[8–11], atomic force microscopes [12] or x-ray computer 
tomographs [4, 13]. Knowing the underlying physical rela-
tionships, mathematical models can be used to simulate the 
transfer properties of different measuring devices and princi-
ples. In contrast to physical modeling, the practical machine-
related characterization of measuring devices is based on 
material measures that can also be applied for uncertainty 
estimation [14]. Considering the determination of the transfer 
characteristics, examinations based on rectangular gratings 
[15], pseudo-random gratings [16], material measures that are 
designed in the frequency domain [17], spheres [18] or the 
super-fine roughness standards [19] have been carried out in 
order to provide test frequencies for the determination of the 
instrument behavior. However, typically the chirped standard 
[20–22] or the star-shaped groove material measure (Siemens 
Star) [14, 23, 24] are applied to determine the small scale 
fidelity limit or the lateral period limit respectively. Leach et al 
summarized different samples to perform according calibra-
tion procedures [25]. A detailed comparison of the Siemens 
star and the chirped standard was recently carried out [26].

A rather theoretical approach for the prediction of transfer 
behavior is the instrument transfer function (ITF) as described 
by de Groot et al [27]. Further theoretical considerations have 
been summarized by Foreman et al [28].

In previous work [1], the authors presented a method to 
determine the transfer properties of topography measuring 
devices on the basis of a model that combines findings from 
the measurement of a realistic engineering surface with a 
mathematical model (auto-regressive-moving-average or 
ARMA model). This combination enables a practical descrip-
tion of the transfer properties by an analytical model, which 
can be used to generate virtual measurement data. Within this 
paper, the applications of the ARMA-model are extended to 
other measuring principles and optimized with regard to their 
practical ability. In doing so, the application of the approach 
for virtual measuring with several measuring principles is 
described in depth.

2. The auto-regressive-moving-average model

We propose the application of the auto-regressive-moving-
average model (ARMA model) for the determination of the 
transfer behavior of surface topography measuring devices. 
This method is used in several fields of application. In sto-
chastic time series analysis, the ARMA model is commonly 
applied to predict the further course of a time series [29, 30]. 
In signal processing, digital ARMA filters, which are better 
known as infinite impulse response filters or IIR filters, are 
widely used [31, 32]. A further field of application of the 
ARMA model is the description of rough surfaces. Seewig pro-
posed the utilization of this model for the frequency-dependent 

description of rough surfaces [33] and Eifler et al used the so-
called ARMAsel approach [34–36] for the artificial generation 
of realistic technical surfaces [37]. In [1], the ARMA model 
was used to model the transfer characteristics of topography 
measuring devices. The transfer characteristics of topography 
measuring devices were modeled as a linear ARMA filter with 
the aid of real engineering surfaces, which were modeled as 
time series. The mathematical description of the according 
model is summarized in the following.

For a discrete time series u [h] with h = 1, 2, ..., N  the 
ARMA model, with the coefficients AR[k] and MA[l], and the 
degrees of freedom p, q + 1 can be written as [29]

z[n] = −
p∑

k=1

AR[k] · z[n − k]+
q∑

l=0

MA[l] · u[n − l] with

n =

ß
p + 1, . . . , N if p � q
q + 1, . . . , N else .

� (1)
This general approach for time series modeling is adapted to 
discretized surface profiles in a way that the actual surface pro-
file (known as virtual data of the simulated manufacturing of 
a profile material measure) corresponds to u and the measured 
or respectively transferred dataset of a surface topography 
measuring instrument (measurement data) corresponds to 
z. The mathematical term 

∑ p
k=1 AR[k] · z[n − k] describes the 

auto-regressive part of the model while 
∑q

l=0 MA[l] · u [n − l] 
represents the moving-average part. Equation  (1) can be 
transformed into the (spatial) frequency-domain by the dis-
crete Fourier transform leading to the frequency-dependent 
description of the transfer from the actual surface to the mea-
sured surface:

Z (Ω) = −Z (Ω) ·
p∑

k=1

AR [k] · e−i·Ω·k + U (Ω) ·
q∑

l=0

MA [l] · e−i·Ω·l.

� (2)
Based on this consideration, the frequency-dependent transfer 
function υ (Ω), with Ω = 2π · m

N  and m = 0, 1, ..., N − 1, can 
be determined as [17]

υ (Ω) =
Z (Ω)

U (Ω)
=

∑q
l=0 MA [l] · e−i·Ω·l

1 +
∑ p

k=1 AR [k] · e−i·Ω·k .� (3)

The AR [k] and MA [l] coefficients can be determined by an 
optimization approach. In [1], a least-squares optimization 
approach is suggested and derived in detail. Another commonly 
applied approach utilizes the Yule–Walker equations [30].

In previous investigations examined by the authors, it has 
been proven that the transfer behavior of topography meas-
uring devices can be fully characterized by the AR [k] and 
MA [l] coefficients [1, 26]. However, as the proposed ARMA 
model is a linear model, it is to be expected that some non-
linear effects that influence the measured surface topography 
may not be fully representable by the model. Examples for 
such effects include the morphological filter effect of the 
stylus tip in tactile sampling [38] or effects based on dif-
fraction when optical measuring instruments are considered 
[39]. Despite the precondition of linearity, it could be shown 
that the approach sufficiently delivers accurate results that 
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describe the (linear) transfer behavior of investigated meas-
uring devices (stylus instrument and confocal microscope) 
very well under certain conditions [1].

Figure 1 shows the filter properties of an ARMA filter 
modeled in [26] using the frequency response (amplitude and 
phase response) and the impulse response. The instrument 
modeled here is a confocal microscope with 20×  magnifica-
tion (NA  =  0.45).

The frequency response in figure  1(a) corresponds to 
that of a low-pass filter with a cut-off frequency (spatial fre-
quency at which the amplitude transmission equals 50%) of 
f = 110 mm−1. The phase angle ϕ for low spatial frequen-
cies ( f < 160 mm−1) is ϕ ≈ ± 0 rad. Only at higher spatial 
frequencies (partly only spatial frequencies in the range of 
measuring noise) larger deviations from ϕ = 0 rad can be 
observed. The modeled ARMA filter therefore describes an 
(almost) phase-true low-pass behavior (black solid line). The 
red dashed curve exceeding frequencies of f = 320 mm−1 is 
the result of the frequency response representation on a pure 
basis of the determined AR and MA coefficients. Due to the 
digital resolution of the confocal microscope used, the fre-
quency response is modified at frequencies f � 320 mm−1 as 
due to the sampling theorem no amplitude transmission can 
be expected. The red dashed curve therefore indicates unphys-
ical behavior of the frequency response of spatial frequencies 
f � 320 mm−1 (Nyquist frequency) that are suppressed, 
leading to the black solid curve and an updated formulation 
of (3):

υ (Ω) = σ (ΩNyquist − Ω) ·
∑q

l=0 MA [l] · e−i·Ω·l

1 +
∑ p

k=1 AR [k] · e−i·Ω·k with σ (t) =
ß

1 t > 0
0 else .

� (4)

This procedure has been described in a previous publication 
[1] where the general feasibility of the approach was dem-
onstrated. The approach will be adapted and enhanced in 
this paper. The impulse response of the ARMA filter under 

consideration (figure 1(b)) was generated using the modified 
transfer function (black solid line of figure  1(a)). The filter 
behavior modeled here was observed in similar ways when 
modeling other measuring instruments (optical and tactile) 
using the presented ARMA model. Further, the practical 
applicability of the ARMA model for the description of the 
transfer characteristics of topography measuring devices 
have been proven by comparing the fitted results with mea-
sured transfer characteristics [26]. The measured results were 
acquired with the Siemens star and the chirped standard [26], 
both material measures that are typically applied for this task 
(see section 1). The objective of the present publication is to 
make the approach applicable for virtual measurements and 
to evaluate the practical abilities of the ARMA model for this 
task. Thus, the approach is optimized with respect to the input 
and modeling parameters and applied to several other mea-
suring principles.

3.  Used measuring devices, measuring object  
and signal pre-processing

For the implementation of equation (1), measurement data as 
well as reference data of the measured surface topography are 
required. In other words, the actual topography, which serves 
as the input of the measuring device (reference data), must 
be known. Measuring objects that meet this requirement are 
material measures that are utilized to characterize the mea-
surement uncertainty and to ensure the traceability route [14]. 
Within this paper, a material measure that was designed to 
calibrate the Rk-parameters as defined in ISO 13565-2 [40] 
is used [41]. The ARMA modeling approach for character-
izing the transfer behavior requires a special pre-processing 
of the measurement data and the reference data [1]. An optim
ized data pre-processing is subsequently derived. Further, the 
influence of different modeling parameters on the results is 

Figure 1.  Filter properties of an ARMA-modeled filter represented by its (a) frequency response and (b) impulse response. The measuring 
device under consideration is a confocal microscope with a 20×  lens (numerical aperture of NA  =  0.45). The red dashed curve in (a) 
corresponds to the pure AR and MA coefficient-based frequency response, the black solid curve in (a) corresponds to the modified 
frequency response. The impulse response in (b) is generated on the basis of the modified frequency response.
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investigated in order to enhance the abilities of the approach 
for virtual measurements.

3.1.  Measuring devices

For a comprehensive description of the suitability of the pro-
posed ARMA model for the determination of the transfer 
behavior, four different instruments/principles were used. 
Table  1 gives an overview regarding the utilized measuring 
principles and configurations.

3.2.  Measuring object: Rk-calibrated rough surface

The Rk material measure developed at the Institute of 
Measurement and Sensor-Technology at the Technische 
Universität Kaiserslautern represents a stratified surface, 
which was designed on the basis of a cylinder running sur-
face from industrial practice [41, 42]. The profile is shown 
in figure 2 and was designed with a model-based approach 
that considers influences from manufacturing and mea-
suring. The processes are modeled for the design process 
and include virtual manufacturing and measuring based on 
morphological filtering that introduce a bandwidth limita-
tion to the sample [41]. Just as many other profile material 
measures, the sample was manufactured with an ultra-preci-
sion turning process [17].

The Rk-calibrated sample contains 3.2 periodic continua-
tions of the 4.0 mm profile as shown in figure 2, resulting in a 
total length of 12.8 mm. In [1] it was shown that this material 

measure in particular is well-suited for the modeling of the 
transfer behavior of topography-measuring instruments due 
to its surface structure, although it was not designed for this 
purpose. This is due to the significant provision of both low 
and high spatial frequencies. Thus, the pre-processing of the 
modeling approach will be further optimized based on the 
chosen sample.

3.3.  Signal pre-processing

In order to apply the fit of the ARMA model, a pre-processing 
of the measurement (input) and reference (output) data is 
required. Both profile and areal measurement data are obtained 
from the devices described in section 3.1. From the areal data, 
profiles are extracted and undergo the same pre-processing 
as the profile measurement data. The pre-processing of the 
measurement and reference data is divided into several steps, 
which are described below and visualized in figure 3.

3.3.1.  Interpolation to equal spacing.  In general, the raw 
measurement and reference data differ in sampling distance. 
To use the proposed ARMA model, measurement and refer-
ence profiles are linearly interpolated under consideration of 
the sampling theorem. The influence of the spacing size ∆x 
(interpolated resolution) on the modeling result is part of the 
subsequent investigation.

3.3.2.  Filtering.  The filtering of the profile measurement 
data is performed considering the recommendations in ISO 
25178-3 [43] and ISO 3274 respectively [44]. This specifies 
guide values for the nesting index λs for the filtering of tactile 

Table 1.  An overview of the utilized measuring principles for the 
described study.

No. Measuring principle
Resulting 
topography

1 Stylus instrument (SI) Profile
rtip = 5 µm

2 Chromatic confocal sensor (CCS) Profile
NA  =  0.7

3 Confocal microscope (CM) Areal
(a) 20×  /NA  =  0.45, (b) 50×  /
NA  =  0.5, (c) 100×  /NA  =  0.95

4 White light interferometer (WLI) Areal
(a) 20×  /NA  =  0.4, (b) 50×  /
NA  =  0.55, (c) 100×  /NA  =  0.85

Figure 2.  Characteristic profile of the Rk-calibrated rough surface.

Figure 3.  Signal pre-processing flowchart.
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or optically measured (areal) profiles in order to remove mea-
surement noise from the signal. In addition to the filtering 
of the measured signal, the spatial frequencies that cannot 
be theoretically resolved by the individual measuring device 
are filtered out of the reference signal prior to modeling. This 
is done by setting the Fourier coefficients for frequencies 
f � fmax to zero (step-like transition function), where fmax is 
the largest frequency that can be sampled (Nyquist frequency) 
in the measured data set.

3.3.3.  Alignment of the profiles.  In order to process measure-
ment and reference data in equation  (1), their alignment to 
each other must be reasonable. Amongst others, due to linear-
ity deviations of the device, the profiles (raw measurement 
data and reference data) do not match very well after mea-
surement, even after the removal of height and inclination 
offsets. To optimize the alignment, the influences of linear-
ity deviations of the instrument and other sources of error are 
minimized before ARMA modeling is conducted. The sophis-
ticated alignment of the profiles to each other is divided into 
two steps: coarse and fine adjustment.

3.3.3.1.Coarse adjustment.  In order to minimize the devia-
tions in the superposition of the two datasets in the lateral and 
vertical direction, the measured profile is first divided into 
several segments. Within each of these segments, the correla-
tion between measured and reference data is optimized. This 
is done by maximizing the cross-correlation through lateral 
displacement as well as maximizing the correlation coeffi-
cient by tilting, and the vertical displacement of the measured 

data segment to the same mean height as the corresponding 
reference data segment. An exemplary result of the first pre-
processing procedure step is illustrated in figure 4.

The segmentation intervals must be chosen based on the 
deviations between the two data sets and the structure of the 
profile. Since the Rk-profile shows isolated deep grooves, 
which are not always imaged at full depth, especially with 
optical measurements, it is reasonable to detect them and to 
align them to the reference data set, decoupled from the rest of 
the surface. This is the first optimization step in pre-processing 
compared to [1]. A simplified form of the crossing-the-line 
segmentation algorithm of [45] is used for the detection of 
the grooves.

Despite the best possible alignment by coarse adjustment, 
locally limited mismatches remain (see figure  5). Areas in 
which the coarse adjustment delivers good results smoothly 
merge into areas of less good matchings. These local mis-
matches are corrected by the fine adjustment.

3.3.3.2.Fine adjustment.  To further improve the matching 
of measurement and reference data, an approach for syn-
chronizing similar curves locally is applied [46]. Pre-defined 
functionals are applied to the curves, providing a number of 
landmarks for each curve. These landmarks can, for example, 
be located at highly pronounced peaks or valleys. Based on 
these landmarks, a piecewise cubic matching function for 
the measurement data curve is determined, mapping asso-
ciated landmarks to the reference location. To prevent the 
formation of discontinuities and keep curve characteristics, 
the used mapping function is required to be continuous and 

Figure 4.  The first step of data pre-processing—coarse adjustment. (a) Offset-free measurement data versus reference data, (b) coarse 
adjusted measurement data versus reference data.

Figure 5.  Example of a local mismatch.
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monotonically increasing. This holds for the implemented 
monotone piecewise cubic interpolation as described by [47].

To avoid disturbances during landmark detection (pro-
nounced peaks and/or valleys) by high frequencies or the 
average slope of the curve, a linear Gaussian low pass filter 
(nesting index λs) according to [48] and a double Gaussian 
filter (nesting index λc) according to ISO 13565-1 [49] are 
applied to the measurement and reference data before con-
structing the matching function to achieve a bandwidth limi-
tation to the wavelengths that represent the roughness. The 
filtered measurement and reference data sets, as well as 
detected landmarks and the matched data set (matching func-
tion is applied to filtered measurement data) are exemplary 
illustrated in figure  6(a). Here, pronounced valleys serve as 
landmarks. Finally, the resulting matching function is applied 
to the unfiltered pre-adjusted measurement data to obtain the 
matched result. The final matching result can be found in 
figure 6(b).

The pre-processing described above is necessary for the 
success of ARMA modeling [1], which is examined below 
with respect to the modeling parameters and input profile 
length.

4.  ARMA modeling—the influence of modeling 
parameters and input profile length

4.1. The influence of modeling parameters—degree  
of freedom and interpolated resolution

In order to optimize the ARMA model with regard to appli-
cations in virtual measuring, this section  examines the 
extent to which the various modeling parameters affect 
the result quality. Assuming an optimized alignment of the 
measurement and reference data sets using the two-step 
matching algorithm presented in section 3.3, the influences 

of the following modeling parameters are examined: the 
number of AR and MA coefficients p and q + 1, interpo-
lated resolution ∆x. These investigations are shown using 
stylus device measurements as an example, but the knowl-
edge applies analogously to all measuring devices listed in 
table 1. The stylus measurement is chosen as a benchmark 
for the modeling results, since the transfer behavior of this 
principle, which corresponds to that of a low-pass filter, 
is described in detail in the literature, e.g. in [3, 38, 50], 
and is therefore well-known. Due to the finite radius of the 
probe tip, so-called morphological filtering occurs when 
scanning high spatial frequency structures, which is respon-
sible for its low-pass characteristics. The cut-off frequency 
flimit (spatial frequency at which 50% of the input ampl
itude is transferred) of the used stylus instrument is approx-
imately flimit = 200 mm−1 when measuring the structural 
amplitudes contained in the Rk-profile with a stylus tip 
radius of rtip = 5 µm  [1, 26]. A cut-off frequency close to 
flimit = 200 mm−1 should therefore also be resulting using 
the ARMA model when the transfer behavior is adequately 
described by the model.

After pre-processing the measurement and reference data, 
ARMA modeling is performed by applying equation (1) in com-
bination with the least-squares optimization method [1]. The 
result provides the AR coefficients AR[k] with k = 1, 2, . . . , p 
and MA coefficients MA[l] with l = 0, 1, . . . , q , which repre-
sent the transfer behavior of the device used, when inserted 
in equation  (4), taking into account the interpolated resolu-
tion. The number of AR and MA coefficients (p and q + 1) 
define the degrees of freedom of the ARMA fit. The question, 
whether an underestimation or overestimation of the degrees 
of freedom affects the modeling result, immediately arises. 
The same applies to the interpolated resolution ∆x. The 
lower resolution limit is specified by the sampling theorem, 
so no information contained in the raw measurement data is 

Figure 6.  (a) Comparison of reference data, coarse adjusted measurement data and fine adjusted measurement data (all λs and λc filtered) 
with detected landmarks on measured and reference data (thick points). (b) Correction of local mismatch by fine adjustment.
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artificially rejected or falsified by undersampling. Figure  7 
shows the result of transfer behavior modeling of the stylus 
device with respect to different degrees of freedom p and 
q + 1, and different interpolated resolution values ∆x.

The modeling result shown in figure 7 shows an increasing 
convergence from left to right and from top to bottom. When 
using a number of degrees of freedom that is too small, p or 
q + 1 in (a), (b), (d) and (g), either a convergence behavior 
cannot be clearly observed and/or the determined spatial 
cut-off frequency flimit,ARMA deviates significantly from 
the expected value of 200 mm−1. In (e), (f), (h), and most 
clearly in (i), a spatial cut-off frequency of approximately 
flimit,ARMA = 200 mm−1 is visible at all resolutions ∆x, which 

corresponds to the expected transfer behavior. When choosing 
p and q, be sure to choose enough coefficients. Concerning 
the resolution ∆x, the recommendation is to oversample the 
signal by interpolation to equal spacing with twice to five 
times the Nyquist frequency. It should be considered that 
linear interpolation of a signal does not change its physical 
Nyquist frequency.

ARMA modeling of the other investigated measuring 
devices shows the same behavior. The modeled transfer func-
tions of CM 20×  (20×  represent the lens magnification), 
WLI 20×  and CCS with p = q = 30 and different resolu-
tions (taking into account the sampling theorem) are shown 
in figure 8.

Figure 7.  Transfer function estimation of a stylus device with a fitted ARMA model. Influence of degrees of freedom p and q + 1, and 
resolution ∆x on the resulting transfer function of the investigated device. (a) p   =  3, q  =  3, (b) p   =  3, q  =  15, (c) p   =  3, q  =  30, (d) 
p   =  15, q  =  3, (e) p   =  15, q  =  15, (f) p   =  15, q  =  30, (g) p   =  30, q  =  3, (h) p   =  30, q  =  15, (i) p   =  30, q  =  30.

Figure 8.  ARMA-modeled transfer function of (a) CCS, (b) CM 20×  and (c) WLI 20×  by using modeling parameters p = 30, q = 30 and 
different interpolated resolution ∆x.

Meas. Sci. Technol. 31 (2020) 055008
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4.2.  Influence of the profile length

In the previous section, the total length of the manufactured 
Rk-profile was considered in the modeling. While a profile 
measurement of approximately 12.8 mm is easy to sample with 
stylus devices or optical point sensors, the areal acquisition is 
challenging. Using the confocal microscope with a 20×  lens, 
for example, the field of view is equal to 800  ×  800 µm². For 
the measurement of the total length of the Rk profile, at least 18 
measurements are required, including one additional image at 
the beginning and at the end of the manufactured profile. When 
using a 50×  lens (field of view size of 320  ×  320 µm²)  >  42,  
and when using a 100×  lens (field of view size of 160  ×   
160 µm²)  >  82 measurements are required. The measurement 
of such a large number of images is very time-consuming and 
at the same time causes uncertainties and artefacts due to the 
necessary stitching of the individual images, which should be 
avoided for practical purposes. How many images lead to a 
stable performance of ARMA modeling using the Rk-profile 
is investigated. In the ideal case, stable modeling is possible 
on the basis of the measured data of a single image.

First, the confocal microscope with a 20×  lens is used 
to investigate whether a single image provides reasonable 
modeling results. For this purpose, the Rk-profile is divided 
into 16 segments, each corresponding to the field of view 
length of 0.8 mm (see figure  9(a)). On the basis of each of 

these segments, ARMA modeling is performed. For the align-
ment procedure, each of these segments is further subdivided 
into eight intervals. Based on these subdivided segments, the 
measurement profiles are aligned with the reference profiles.

Since the database for modeling on the basis of a single 
image is significantly smaller than when using the full pro-
file length, the requirements on the local quality of the meas-
urement, the quality of the profile alignment and the proper 
choice of the measuring location are considerably higher. 

Figure 9.  Results of CM 20×  ARMA modeling by using a single image. (a) Rk-profile divided into 16 segments with a length of the field 
of view (800 µm). Single image-based modeling transfer functions based on profile segments, which fulfill different quality criteria—
correlation coefficient (b) rmeas,ref > 0.5, (c) rmeas,ref > 0.7 and (d) rmeas,ref > 0.9 for every subdivided interval.

Figure 10.  Results of WLI 20×  ARMA modeling by using single 
images (quality criterion rmeas,ref > 0.9 fulfilled by ten different 
profile segments).
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While inaccuracies in alignment or short measurement lengths 
that are not representative for the transfer behavior can be 
compensated by using longer profiles, this is only possible to 
a limited extent when modeling is performed on the basis of 
very short profile segments.

For an estimation of the matching quality, the empirical 
correlation coefficient rmeas,ref  of aligned measurement and 
reference profiles is calculated for each of the eight intervals 
within the investigated profile segment (length 800 µm, cor-
responds to the length of the field of view) after performing 
the two-step matching procedure. While larger deviations of 
the reference and measurement profile are still accepted as 
‘sufficiently good’ (rmeas,ref > 0.5, fulfilled by 14 profile seg-
ments) in figure 9(b), larger deviations are no longer accepted 
(rmeas,ref > 0.7, fulfilled by 12 profile segments) in figure 9(c), 
and only ‘very good’ matching results (rmeas,ref > 0.9, ful-
filled by six profile segments) are accepted in figure  9(d). 
Accordingly, the transfer functions of (b)–(d) do not differ, 
but less well matching profiles that do not pass the quality test 
are not considered for ARMA modeling.

While in figure  9(b) the modeling results of the transfer 
function are still widely scattered, the transfer functions in 
figure  9(d) follow a very narrow corridor. The exception is 
the transfer function, which is based on the first segment. The 
profile matching provides very good results but this segment 
contains a relatively wide and deep groove, the measurement 
of which is not representative. The best matching results are 
provided by the segments on the ‘dome’ of the Rk-profile 
(segments 2, 3, 8, 12, 13). Modeling of transfer behavior on 
the basis of these segments corresponds to the behavior from 
figure 8(b) considering the total length of the Rk-profile. In 
the case of the confocal microscope in combination with a 
20×  lens it is therefore possible to model representative 
transfer behavior on the basis of a single image. For this pur-
pose, however, it must be ensured that a suitable and repre-
sentative measurement location has been chosen and that the 
quality of the measurement and matching is sufficiently good.

This is also valid for the measurement with a white light 
interferometer using a 20×  Mirau lens (figure 10). Here, the 
field of view extends over 580  ×  580 µm².

This quality pre-testing procedure is also applied to meas-
urements with lenses of higher magnification (50×  and 
100×), so only profile matches with rmeas,ref > 0.9 serve as 
a basis for ARMA modeling. By further reducing the length 
of the input profile, the available information for ARMA 
modeling decreases. Since the spatial frequency spectrum 
measurable by the measuring device used may no longer be 
fully represented in the measured field, it can be assumed that 
the modeled transfer behavior based on the measurement of 
a single image varies greatly at different measurement loca-
tions. For this reason, when 50×  and 100×  lenses are used, 
it is evaluated how the results differ when modeling is per-
formed on the basis of (a) one, (b) two, (c) three and (d) four 
connected images. The results for the CM and WLI with a 
50×  lens (field of view 320  ×  320 µm² and 232  ×  232 µm²) 
are shown in figure 11 and the results using a 100×  lens (field 
of view 160  ×  160 µm² and 116  ×  116 µm²) are shown in 
figure 12.

For all measuring device/lens combinations used here, it is 
determined that the different transfer functions modeled are 
characterized by a higher degree of congruency to each other 
with increasing input profile length. Furthermore, the mode-
ling results represent plausible transfer characteristics in com-
parison with measurements performed by the authors [26]. 
For robust and reproducible modeling results, the 50×  and 
100×  devices examined here require input profile lengths of 
at least two (WLI 50×), three (CM 100×) or four (CM 50×, 
WLI 100×) images with limited field of view respectively. 
When modeling on the basis of a single image, the results 
highly depend on local influencing factors. A good averaging 
of the transfer behavior cannot be guaranteed on the basis of 
such short input profiles. The extent to which the modeling 
results achieved here reflect realistic conditions is investigated 
in the next section using virtual measurements.

Figure 11.  Results of CM 50×  and WLI 50×  ARMA modeling by using (a) a single, (b) two, (c) three and (d) four connected images.
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5.  Virtual measurements

It was shown that the transfer characteristics of profile and 
areal topography measuring devices can be reproducibly 
determined with the aid of the ARMA model by measuring a 
few (connected) or even one image. The extent to which the 
achieved transfer functions represent reality is investigated in 
this section. For this purpose, representative transfer functions 
are determined for each of the examined measuring devices 
and virtual measuring is performed. By comparing the virtual 
and real measurement data, statements about the plausibility 
of the determined transfer behavior can be made. Figure 13 
shows examples of reproducibly determined transfer func-
tions. For the profile measurements (SI and CCS), an input 
profile length of 4 mm was used for ARMA modeling. For 
areal measurements (CM and WLI), the input profile length 
corresponds to the length of four connected images. In the 
previous section it was shown that this input profile length is 
sufficient even at high magnifications.

The evaluation of the similarity of virtual and real measure-
ment is based on a defined quality criterion and on the visual 
comparison of both profiles. The quality criterion L1, gradient  is 
defined as

L1, gradient =

∑n−1
i=1

∣∣∣∆zvirtual[i]
∆x − ∆zmeasurement[i]

∆x

∣∣∣
n

with ∆z[i] = z[i + 1]− z[i].

� (5)
The quality criterion L1, gradient  corresponds to the average 
absolute difference of the profile gradients of both profiles 
and provides a quantitative measure to compare the quality of 

Figure 12.  Results of CM 100×  and WLI 100×  ARMA modeling by using (a) a single, (b) two, (c) three and (d) four connected images.

Figure 13.  Reproducibly determined transfer functions of (a) stylus instrument SI and chromatic confocal sensor CCS, (b) confocal 
microscope CM and (c) white light interferometer WLI.

Figure 14.  Comparison of real and virtual measurements based on 
quality criteria LNorm (L1,gradient normalized by LSI, 1,gradient) for the 
different measuring devices examined.
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the results for different measuring devices, see figure 14. The 
imaged quality criterion LNorm is normalized by LSI, 1,gradient as 
the stylus instrument provides the highest level of agreement 
between the virtual and actual measurement. Since the tactile 
stylus method is well-known and well-controlled, it serves as 
a benchmark for the other models.

According to figure  14, the model for CM 20× 
(LCM20×, Norm ≈ 1) fits the reality best and the model for 
CCS fits it least well (LCCS, Norm ≈ 3). The other investigated 
devices are located in the intermediate range with quality 
values of 1.4 < L Norm < 2.4. To confirm the significance of 
LNorm, exemplified sections of real and virtual measurements 
of the Rk material measure are directly compared in figure 15.

Figure 15(c) confirms the realistic results for CM 20×. 
The gradients of virtual and real measurement show a high 

level of congruence with each other and so the structures 
of the reference profile are transferred in a similar way. 
The models of WLI 20×, WLI 50×  and CM 100×  (figures 
15(e)–(g)) show realistic transfer behaviors as well. Merely 
the models of CCS, CM 50×  and WLI 100×  (figures 15(b), 
(d) and (h)) show significant deviations from reality due to 
several local defects (WLI 100×, CM 50×) or overshoots 
(CCS). The causes for the observed pronounced overshoots 
in confocal microscopy were described based on the local 
surface curvature by Mauch et al [51]. In the model of the 
CCS (figure 13(a)), the overestimation of amplitude trans-
mission was generally detected, but the overestimation of 
the profile amplitude in the real measurement is locally 
much more pronounced than in the virtual measurement. 
When comparing virtual and real measurements of WLI 

Figure 15.  Direct comparison of reference, real measurement and virtual measurement based on derived transfer functions (figure 13) for 
examined measuring devices (table 1). (a) SI, (b) CCS, (c) CM 20×, (d) CM 50×, (e) CM 100×, (f) WLI 20×, (g) WLI 50×, (h) WLI 
100×.

Figure 16.  Comparison of real and virtual measurements of (a) CM 20×  and (b) CCS.
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100×  (figure 15(h)), a reasonable transfer function is deter-
mined on the one hand, which is plausible with regard to 
the characteristic transfer functions of the WLI 20×  and 
WLI 50×  (figure 13(c)) but, on the other hand, the direct 
comparison suggests deviations between real and virtual 
measurement. This presumed contradiction is due to the fact 
that the measurement of the WLI 100×  shows local defects 
that distort the characteristic value LWLI 100×, Norm  strongly, 
but can be well compensated by ARMA modeling. At other 
locations, where the local measurement quality is high, the 
gradients of real and virtual measurement are similar, which 
confirms the general plausibility of the determined transfer 
behavior. The same applies to a limited extend for the CM 
50×  model.

Nevertheless, all models of the investigated measuring 
devices derived by the ARMA model, from the best (CM 20×) 
to the model with the largest deviations (CCS), show a high 
agreement with the real measurements. This can be observed 
in figure 15 and in more detail in figure 16 by comparing the 
results of CM 20×  and CCS.

Furthermore, in order to provide another integral measure 
for the quality of the virtual measurements, the functional 
parameters represented by the Rk values according to [40] that 
are calibrated with the utilized material measure are deter-
mined and compared for the real and virtual measurements 
in table 2.

In this comparison, it can be observed that the resulting 
roughness parameters are in good agreement. The differences 
are in the nanometer-range and feature values between 4 and 
24 nm. To further classify the quality of these results, they 
are compared with a set of measurements from a compar-
ison with the Rk-calibrated surface (see [17]): when the same 
sample was measured with nine different stylus instruments, 
standard deviations of 3–11 nm for Rk, 2–7 nm for Rpk and 
12–125 nm for Rvk were measured just as well as a system-
atic scattering of the mean values between 0.357–0.395 µm 
for Rk, 0.152–0.170 µm for Rpk and 1.133–1.264 µm for Rvk. 
The magnitudes of both the systematic and the stochastic 
measurement uncertainty illustrate the quality of the virtual 
measurement: the deviations between the virtual measure-
ments and real measurements are in the scale of a typical 
stochastic measurement uncertainty of a stylus measuring 
device. The systematic deviations between different devices 
that use the same measuring principle are significantly larger 
even compared to the virtual measurements of the device 
with the largest deviations.

6.  Conclusion

For the transfer function determination in surface topography 
measurement, numerous approaches have been researched. In 
previous examinations, the authors have suggested the utiliza-
tion of time series models (ARMA-model) [1]. In the present 
work, the approach was enhanced for additional measuring 
principles and optimized with regard to is practical applica-
bility for virtual measuring. First, the measuring devices/prin-
ciples to be modeled and the Rk-calibrated profile that served 
as a sample were presented. The pre-processing procedure of 
the measurement data was optimized by integrating a struc-
tural analysis of the measured profile into the algorithm to 
enhance the alignment of the model input data.

Based on the optimized pre-processing algorithm, it was 
examined which criteria the modeling parameters have to 
meet in order to achieve meaningful transfer functions. The 
modeling parameters were identified as number of AR and 
MA coefficients and the interpolated resolution of the input 
data. It turned out that both the number of degrees of freedom 
(number of AR and MA coefficients) and the interpolated res-
olution has a lower threshold value that should be exceeded.

In the next step, the ARMA modeling procedure was 
examined for virtual measuring. Since the measurement of 
large profiles with optical areal surface topography meas-
uring devices is challenging, the minimum length of the input 
profile was determined so that the modeling of the transfer 
behavior is reproducible and stable. It was shown that stable 
modeling based on a single image (field length between 580 
and 800 µm) is possible with objectives of small magnifica-
tions (20×). For higher magnifications (50×, 100×), approxi-
mately four individual images with lengths of the field of view 
between 116 and 320 µm are required for performing repro-
ducible modeling.

Based on these results, representative transfer functions 
of the examined measuring instruments were determined and 
used for virtual measurements. When comparing virtual and 
real measurement data, the determined transfer behavior of 
the individual measuring devices generally reflects reality 
well and single outliers or defects in the measurement data 
can be compensated. The deviations between virtual and real 
measurements are within the range of a typical stochastic 
measuring uncertainty.

The ARMA model, which combines the advantages of 
real measurements and theoretical modeling, has proven to 
be a useful addition to the existing purely experimental or 

Table 2.  Comparison of Rk values of real and virtual measurements of CM 20×  and CCS. The nominal values of the material measure are 
Rk  =  0.4 µm, Rpk  =  0.15 µm and Rvk  =  1.2 µm.

CM 20×   CCS

Measurement
Virtual 
measurement Difference (%) Measurement

Virtual 
measurement Difference (%)

Rk (µm) 0.385 0.381 0.99 0.424 0.402 5.21

Rpk (µm) 0.144 0.134 6.74 0.164 0.140 14.50

Rvk (µm) 1.234 1.223 0.86 1.184 1.205 1.82
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theoretical methods for determining the transfer characteris-
tics of topography measuring devices. In future examinations, 
the presented virtual measuring approach will be extended by 
the indication of an uncertainty range based on the physical 
modeling of measuring processes.
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