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1.  Introduction

The aero-engine hydraulic pipeline system is known as the 
‘cardiovascular system’, which is one of the most important 
parts of an aircraft engine accessory device [1]. Most of the 
pipelines are connected to each other through a clamp, while 
the clamp is an important component to enhance the pipe-
line stiffness and fix the pipeline position. For a long time, 
failure of the aero-engine outer clamp-pipe system caused 

by vibration has been one of the most important problems 
affecting the reliability of the engine [2, 4]. Therefore, it is of 
great significance to study the vibration failure mechanism of 
aeronautical hydraulic pipeline clamp and find out the early 
failure of the clamp accurately.

In recent years, in order to avoid the vibration failure of 
the clamp-pipe system, some research has been done on the 
mechanical parameters and the clamp-pipe system model of 
aero-engines. For example, Ulanov and Bezborodov [5, 7] 
used the hysteresis curve obtained by the test to obtain the 
clamp support stiffness and the damping energy dissipation 
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coefficient under a static load. Gao et al [8, 10] obtained the 
aircraft pipe clamp stiffness based on the test and simplified 
it into a spring support. The modal test agrees well with the 
simulation results. Tan et al [11] proposed a method for iden-
tifying and locating the loosening of hydraulic clamps based 
on strain mode, in view of the fact that due to the influence of 
environmental factors such as internal system vibration on the 
hydraulic pipeline, it is easy to cause the loosening of clamps, 
thus resulting in serious failures such as pipeline wear and 
fatigue fracture.

Because the aeronautical hydraulic clamp-pipe system has 
high complexity, high noise and a large number of interference 
characteristics, leading to clamp has the characteristics of non-
linear and non-stationary vibration signal. Especially for early 
failure, its characteristic signal is weak and can be submerged 
in a lot of noise, therefore it is difficult to extract the effective 
fault information, and should be carried out at the same time 
in time domain and frequency domain analysis and processing 
[12]. At present, the adaptive time-frequency analysis methods 
mainly include empirical mode decomposition [13] and local 
mean decomposition [14], which have been widely used in 
the field of fault diagnosis. However, they have problems such 
as endpoint effect, mode aliasing and decomposition stopping 
criteria [15]. Variational mode decomposition (VMD) [16] is 
a new method of time-frequency decomposition, which can 
effectively overcome the above problems. It uses the concept 
of non-recursive framework, has the advantages of strong 
decomposition and fast computation and has been widely used 
in the field of fault diagnosis [17, 18]. However, this method 
has a serious disadvantage [19]. The number of modal decom-
position k and penalty factor α in its parameters must be pre-
set by experience, which will lead to over-decomposition or 
under-decomposition of the decomposition results if set incor-
rectly. Therefore, it is necessary to optimize the selection of 
k and α parameters in the VMD algorithm, for example [20], 
Shan et al proposed a combined method based on an improved 
variational mode decomposition (IVMD) and a hybrid arti-
ficial sheep algorithm (HASA) for rotating machinery fault 
diagnosis [21]. Fu et al proposed a novel measuring model for 
the vibrational trend of an HPG based on optimal variational 
mode decomposition (OVMD) and a least squares support 
vector machine (LSSVM) improved with chaotic sine cosine 
algorithm optimization (CSCA).

Considering the characteristics of complexity and the intel-
ligence of the aero-engine hydraulic pipeline, as well as its 
‘big data’ feature, it is difficult for the traditional data method 
to meet the requirements of actual diagnosis [22]. Therefore, 
this paper proposes an improved genetic algorithm based on 
optimization of variational mode decomposition combined 
with convolution neural network intelligent fault diagnosis 
methods. First of all, for the band low signal-to-noise ratio and 
the vibration signal of the characteristics of strong stability, 
to optimize the VMD as the vibration signal preprocessor, 
giving full play to the advantages of good noise robustness. 
Secondly, selecting the fault feature information according 
to the correlation coefficient criterion, obviously the IMF 
component, through CNN adaptive fusion of IMF component 

information, intelligent classification and identification of 
clamp faults are completed. Finally, this method is compared 
and analyzed with other fault diagnosis methods through test 
data. The results show that the performance of the fault diag-
nosis method proposed in this paper is obviously superior to 
the traditional intelligent identification method of back prop-
agation neural network (BPNN). Moreover, the accuracy is 
higher than that of the current CNN diagnosis method.

2.  Fundamental theory

2.1.  Variational mode decomposition

Variational mode decomposition achieves effective signal 
decomposition by iteratively searching for the optimal solu-
tion of the variational model [23]. The process of constructing 
and solving the constrained variational model to complete 
signal decomposition involves the Wiener filter, Hilbert trans-
formation and frequency mixing, etc, and the variational con-
straint problem is expressed as

min
{µk},{ωk}
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In the above equation, δ (t) is the Dirichlet function, k is 
the number of components, uk   =  {u1, · · ·, uk} modal comp
onents of VMD decomposition, ωk  =  {ω1, · · ·,ωk} represents 
the combination of the central frequencies of the K modal 
components and f  represents the input signal. By introducing 
the quadratic penalty factor α and Lagrange multiplication 
operator λ (t), equation (2) is transformed into the frequency 
domain to be solved by using Parseval/Plancherel Fourier iso-
metric transformation, finally, the updated expression of the 
kth mode is shown below:
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� (2)
For a composite signal, the VMD divides the frequency band 
according to the frequency characteristics of the signal, and 
the mode and the corresponding center frequency are con-
stantly updated in the frequency domain, finally realizing the 
adaptive decomposition of the signal.

2.2.  Genetic algorithm improvement

The genetic algorithm [24] is a global optimal probabilistic 
search intelligent algorithm based on natural selection and evo
lution mechanism. It is widely used in combinatorial optim
ization, machine learning, and other fields. Nevertheless, the 
high computation complexity in solving nonlinear [25, 26], 
for this defect genetic algorithm, this paper on the crossover 
and mutation operators of the genetic algorithm to improve the 
genetic algorithm, according to the rules of neighbor selection 
of N/2 high fitness individuals, using the improved genetic 
algorithm to optimize variational modal decomposition of 
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modal number k value and penalty factor α values. Its specific 
implementation flow chart is shown in the figure 1.

2.3.  VMD parameter optimization

According to the variational modal decomposition theory, the 
number of modal components k and penalty factor α should 
be set in advance when the VMD method decomposes signals. 
The k value determines the number of modes and center fre-
quency, and α value is an important parameter to ensure the 
accuracy of VMD signal reconstruction [27, 28]. Before VMD 
decomposition, therefore, this article is based on the improved 
genetic algorithm, the use of marginal spectrum function as the 
criterion of the objective function in the global scope of par-
allel search solution space. In order to accurately obtain VMD 
[k, α] combination optimal parameters, so as to realize the 
adaptive weight number k and α value optimization algorithm, 
effectively avoiding caused by improper parameter combina-
tion set decomposition or weak fault features were drowned 
by the noise. Its specific flow chart is shown in figure 2.

2.4.  Convolutional neural network

A convolutional neural network (CNN) is the true multi-layer 
structure learning algorithm in deep learning [29, 30], which 
is composed of the input layer, convolutional layer, pooling 
layer (also known as the sampling layer), fully connected 
layer and output layer. In recent years, CNN has become a 
leader in the field of deep learning with its extraordinary fea-
ture learning and pattern recognition ability, and has achieved 
a series of breakthroughs in the field of fault diagnosis [31, 
34].

2.4.1.  Convolutional neural network (CNN).  The convolu-
tional layer (C layer) mainly performs feature extraction 
through feature maps of convolution check. In the process of 

Figure 1.  VMD parameter optimization based on the improved genetic algorithm.

Figure 2.  VMD decomposition flow chart based on modified 
genetic algorithm optimization.
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convolution, this method has two characteristics: local percep-
tive convolution and weight sharing, which can greatly reduce 
the training parameters of the network [35]. The mathematical 
expression for the convolution process is as follows:

Xl
j = f

Ñ
∑
i∈Mj

Xl−1
i · ωl

ij + bl
j

é
.� (3)

In the above equation, Xl
j   is the j th element in the l layer. 

Mj is the j th convolution region of l  −  1 layer feature graph. 
Xl−1

i  is one of the elements. ωl
ij  is the weight matrix corre

sponding to the convolution kernel. bl
j is the bias term. f (·) 

is the activation function, for which ReLU function is com-
monly used [36] and the mathematical expression is

f ( x ) = max (0, lg (1 + ex)) .� (4)

2.4.2.  Pooling layer.  The pooling layer (S layer) reduces the 
dimension of the feature graph, which guarantees the scale of 
the feature to some extent, and makes it have the invariance of 
scaling. The maximum pooling method has the best effect and 
is widely used. Its operation is shown in equation (5):

P1(i,j) = max( j−1)w<t<jw

¶
a1(i,t)

©
j = 1, 2, · · · , q.

� (5)
In the above equation, a1(i,t) represents the tth neuron in 

the feature map of layer 1. w is the width of the convolution 
kernel, and j  is the j th pool kernel.

2.4.3.  Fully connected layer.  The fully connected layer net-
work classifies the extracted features. On the full connection 
layer, the input is obtained by weighted summation of all 1D 
feature vectors expanded by the feature graph and by activat-
ing the function

yk = f
(
wkxk−1 + bk) .� (6)

In the above equation, k is the serial number of the network 
layer. yk is the output of the full connection layer. xk−1 is a 1D 

eigenvector expanded. wk is the weight coefficient. bk  is the 
bias term. Softmax is often used as the activation function f (∙), 
which is an activation function for categorizing tasks. Finally, 
the output layer classifies and identifies the output features of 
the full connection layer [37].

2.5.  Structure design of the convolutional neural network 

Since the clamp vibration signal of aeronautical hydraulic pipe-
line is a 1D time series, this paper optimizes the typical convo-
lutional neural network model to the 1D convolutional neural 
network model shown in figure 3. The optimized model con-
sists of the input layer, CNN layer group, fully connected layer 
and output layer. The input is a 1D vibration signal. Since the 
learning ability of the convolutional neural network is positively 
correlated with the number of layers, the deeper the network 
structure, the stronger the feature learning and classification 
effect [38]. Besides, in order to effectively extract the informa-
tion contained in the early fault signal of the clamp, a hidden 
layer is designed, which is composed of four layers of convo-
lutional layers and four layers of sampling layers. To increase 
the nonlinear characteristics of the model [39], the most widely 
used ReLU (max (0, x)) function is adopted as the activation 
function. The maximum pooling method (max pooling) with 
the optimal pooling effect is selected for the pooling layer [40], 
that is, the maximum value in the p   ×  p  region is obtained for 
the feature map, on the condition that the region size is 1  ×  2 
and the regions do not overlap. The extracted characteristics 
are output by the Softmax classifier. Finally, according to the 
output result, the BP algorithm is used to update the weight and 
offset. According to the above basic principle of setting hyper 
parameters, a large amount of debugging is performed by using 
appropriate amount of sample data, and the appropriate param-
eters are finally obtained as shown in table 1.

In the above table, CW represents the convolution kernel 
width. CH represents the convolution kernel height. CC repre-
sents the current layer input feature map depth. CN represents 
the convolution kernel depth. S refers to the pooling band 

Figure 3.  Structure design of the convolutional neural network.
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width. Strides represent the moving step of the convolution 
kernel. Feature integration is carried out on the designed CNN 
by four feature extraction units and two fully connected layers, 
and classification diagnosis is conducted through the Softmax 
layer. The convolution kernel size in each convolutional layer 
is 3  ×  1, which realizes the deep structure of the network and 
improves the expressiveness of the network.

3.  Fault diagnosis model of aeronautical hydraulic 
pipe clamps

The fault characteristic frequency of the aeronautical 
hydraulic pipeline clamp is affected by the complex structure, 
fluid-structure coupling vibration characteristics, strong noise 
interference and other factors, which results in the failure 
mechanism of the clamp being relatively complex and the 
early failure characterization is not obvious. At the same time, 
in order to facilitate the CNN model to study the character-
istic of the signal, improve signal-to-noise ratio of the fault 
signal of the clamp, improve diagnosis accuracy, and satisfy 
the condition of small sample training. This paper presents 
a method combining variational modal decomposition and 
convolutional neural network based on the improved genetic 
algorithm to optimize VMD parameters, which is used to 
diagnose and identify the health state and different fault states 
of hydraulic pipeline clamps. The specific flow chart of fault 
diagnosis of the pipeline clamp is shown in figure 4. The spe-
cific steps are as follows.

	(1)	�Signal acquisition and division: the clamped vibration 
signal is obtained by the acceleration sensor, and the 
sample signal is divided by windows of equal length. 
When the window moving step length is less than the 
signal length of a single sample, there will be overlaps 

between samples, and more samples can be extracted 
from signals of a fixed length, which is referred to as 
overlapped slices.

	(2)	�Sample signal VMD decomposition: the sample signal 
obtained from vibration signal overlapping slices is VMD 
decomposition, and the original non-stationary signal x(t) 
is decomposed into a series of stationary signals c(1), c(2), 
⋯, c(n).

	(3)	�Data set creation: stack the two IMF components with 
obvious fault characteristics into a multi-channel sample 
in a certain order, and increase the dimension of sample 
data by one dimension. The above operations are carried 
out for all sample signals to create the data set and divide 
the data set into a training set and test set.

	(4)	�CNN design and training: CNN model was designed 
according to the design principles described in section 2.5,  
and the training set was used for training. CNN with good 
performance was obtained through a large number of 
tests and the debugging of various parameters.

	(5)	�Qualitative diagnosis of the hydraulic pipe clamp fault: 
the effectiveness of the early fault diagnosis model based 
on optimized VMD and CNN was verified through the 
test set, and the training results of the model were com-
pared with those of CNN and BPNN.

Using a new modern time-frequency analysis method, the 
vibration signal of complex clamps is pre-processed, which 
provides a good foundation for the learning of CNN model. 
Then, CNN is used to carry out adaptive fusion of each 
modal component, and the weight of each component fusion 
is obtained through training. Among them, parameters of the 
same input and output feature graph are shared, and neurons 
in the output feature graph are jointly determined by elements 
in the same position of each component.

4. The example analysis

4.1. Test instructions

The fault placement test is carried out for the hydraulic pipe 
clamp of the aero-engine. The data is collected and processed 
to verify the fault diagnosis method proposed in this paper. 
Figure 5 shows the hydraulic pipeline test device of the aero-
engine, which is composed of an electric motor, plunger pump, 
frequency converter, throttle valve, oil tank, pipeline system and 
control system. The clamp used in the test is 304 stainless steel 
with a rubber strip, and the rubber material is FS6161 fluorosili-
cone gum rubber [41]. Artificial simulation tests on the clamp, 
a slightly loose, broken clamp pad, slight crack band root and 
other three kinds of typical early fault are used as embedded 
parts. Two acceleration sensors were used to collect the vibra-
tion data of the clamp synchronously in the straight pipe system 
and the bend pipe system, respectively. The test figures of the 
vibration test are shown in figures 6 and 7. The measurement 
positions were arranged as point 1 and point 2 from left to right, 
and the test parameter settings are shown in table 2.

Table 1.  Main parameters of the CNN model.

Structure Parameters

Convolutional layer CW  =  21; CH  =  1; CC  =  8; CN  =  16; 
Strides:1

Pooling layer S  =  2
Convolutional layer CW  =  23; CH  =  1; CC  =  16; CN  =  32; 

Strides:1
Pooling layer S  =  2
Convolutional layer CW  =  25; CH  =  1; CC  =  32; CN  =  64; 

Strides:1
Pooling layer S  =  2
Convolutional layer CW  =  27; CH  =  1; CC  =  64; CN  =  64; 

Strides:1
Pooling layer S  =  2
Fully connected layer Number of nodes: 120, activation  

function: ReLU
Fully connected layer Number of nodes: 84, activation  

function: ReLU
Dropout Ratio: 0.15
Softmax Output node: 10, activation function: 

Softmax

Meas. Sci. Technol. 31 (2020) 055007
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Figure 4.  Specific flow chart of clamp fault diagnosis.

Figure 5.  Hydraulic power system test equipment.

Figure 6.  Straight pipe clamp vibration test drawing.

Figure 7.  Bending clamp vibration test drawing.

Table 2.  Test parameter setting table.

Parameter Value of 1 Value of 2

Maximum pressure of hy-
draulic system

20 Mpa

Hydraulic system test 
pressure

10 Mpa

Maximum flow 39.2 l min−1

Motor speed 1500 r min−1 1800 r min−1

Sampling frequency 6400 Hz

Meas. Sci. Technol. 31 (2020) 055007
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4.2.  Data description

In order to verify the effectiveness of the method in the 
environment of a large amount of noise, Gaussian white noise 
of 20 dB and 50 dB was added into the test signal and constant 
frequency interference signal of 500 Hz was set to simulate 
the working state of the clamp in the actual project. After the 
noise is dyed, the clamped vibration signal collected from the 
measuring point 1 is used for this study. The time-domain 
waveform is shown in figure 8.

As can be seen from figure 8, by comparing the health state 
of the clamp and the time domain waveform of the three faults, 
it is found that the vibration amplitude of the early failure, 
such as slight looseness of the clamp, pad wear and a slight 
crack of the root, is increased relative to that of the health 

state of the clamp, and the increase in amplitude is relatively 
significant. Besides, when the fault occurs, the amplitude of 
the bend pipe clamp fault is higher than that of the straight 
pipe clamp fault. Since the amplitude of slight looseness of 
the clamp is substantially the same as that of the wear of the 
clamp gasket, it is difficult to determine the fault type explic-
itly based only on the amplitude of the clamp fault.

4.3.  Data processing

The vibration signal of the clamp health state and each fault 
state is processed according to the method described in  
section 3, and the optimal decomposition layer k of the varia-
tional mode decomposition is 4 and the penalty factor α is 
1800. The original signal of the clamp is decomposed into 
four modal components, and different IMF components con-
tain different time scales, so that the characteristics of the 
clamp signal can be displayed at different resolutions. In this 
paper, the vibration signal of the clamp health state and each 
fault including the slight looseness of the clamp, the wear 
of the gasket and the slight crack of the root are selected in 
the stainless steel hydraulic bend pipe structure, as shown in 
figure 9 after the improved VMD decomposition.

It can be seen from figure  9 that the adaptive decompo-
sition of each modal function in the clamp vibration signal 
of the aeronautical hydraulic pipeline is realized by using 
the improved VMD method, and each component shows the 
modal characteristics of a certain scale range. The problems 
of end effect, modal aliasing and decomposition stop criterion 
are effectively avoided. Moreover, the improved VMD shows 
good noise robustness, and can effectively separate the added 
500 Hz fixed-frequency interference signals. For example, the 
IMF2 component also verifies the feasibility of VMD decom-
position layer number and penalty factor optimization selec-
tion based on the improved genetic algorithm, which reduces 
subjective errors of human factors and avoids excessive and 
insufficient signal decomposition. The frequency domain dia-
gram of the clamp health state vibration signal is obtained by 
Fourier transform as shown in figure 10.

It can be seen from figure 10 that in both hydraulic straight 
pipe and bend pipe structure, the clamp vibration signal has a 
large amplitude at 355.3 Hz, which is more than 1400 g, and 
the amplitude is higher than that of other harmonic frequen-
cies of the hydraulic system. According to the aero-engine 
hydraulic pipeline test system, the fundamental frequency of 
the hydraulic system is 178.2 Hz, and the frequency 355.3 Hz 
is twice the frequency of the hydraulic system. So 355.3 Hz is 
determined to be the characteristic frequency of the clamp. At 
the same time, the frequency domain diagram of the fault sig-
nals such as slight loosening of clamps, wear of gaskets and 
slight cracks at the root of the hydraulic bend pipe structure is 
as shown in figures 11–13.

As can be seen from figures  11–13, figure  (a) is the fre-
quency domain diagram of the original vibration signal of the 
clamp fault. Because the amplitude of the early fault signal 
will be very weak and seriously disturbed by noise, the charac-
teristic frequency of the fault signal like clamp loosening will 

Figure 8.  Time-domain of the clamp original vibration signal. 
(a) Clamp health condition. (b) Mild looseness of the clamp. (c) Pad 
wear of the clamp. (d) Slight crack of the clamp.
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be submerged in the harmonics of the system. Hence, it is dif-
ficult to find the fault characteristic law through the amplitude 
change. Therefore, this paper first carries on the VMD decom-
position to the clamp fault vibration signal, and then according 
to the correlation coefficient principle, selects the comp
onent with larger coefficient value for reconstructing, so as to 

improve the signal-to-noise ratio of the fault signal. Finally, by 
comparing the processed fault signal with the health signal, the 
typical fault characteristic frequency and the amplitude of the 
clamp are obtained, as shown in figure (b) and table 3.

From figure  (b) in figures 11–13, it can be seen that the 
fundamental frequency of the hydraulic system is 178.2 Hz. 

Figure 9.  Time-domain of optimization VMD decomposition results. (a) Clamp health condition. (b) Mild looseness of the clamp. (c) Pad 
wear of the clamp. (d) Slight crack of the clamp.

Meas. Sci. Technol. 31 (2020) 055007
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For clamp loosening, liner wear and root crack failure, the 
amplitude is reduced to 369 g, 1050 g and 396 g respectively 
after data processing. Besides, the amplitude noise reduction 
effect of other harmonic frequencies of the system is also 
significant, while the information of effective components is 
retained. From table  3, it can be seen that in the hydraulic 
bend pipe and straight pipe structure, through the compara-
tive analysis of the amplitude of the clamp fault frequency 
collected by measuring point 1 and measuring point 2, it is 

found that the fault frequency of slight loosening of the clamp 
is 355.3 Hz. And a large amplitude appears at the 1243 Hz, 
which is 3.5 times the natural frequency of the clamp. The 
fault frequency of clamp liner wear is 533 Hz, and there is also 
a large amplitude at 1243 Hz, which is 3.5 times of the natural 
frequency of clamp. The fault frequency of the slight crack at 
the root of the clamp is also 355.3 Hz, and a large amplitude 
appears at 888.8 Hz, which is 2.5 times the natural frequency 
of the clamp.

 

Figure 10.  Amplitude spectrum of clamp health status. (a) Hydraulic elbow pipe. (b) Hydraulic straight pipe.

Table 3.  Characteristic frequency of typical clamp faults.

Clamp state
Measure 
point

Fault 
frequency 
(Hz)

Amplitude 
(g)

3.5 times 
fault  
frequency 
(Hz)

Amplitude 
(g) Clamp state

Fault  
frequency 
(Hz)

Amplitude 
(g)

3.5 times 
fault  
frequency 
(Hz)

Amplitude 
(g)

The elbow 
clamp 
Is mildly 
loose

1 355.3 3848 1243 908 Mild loose of 
straight 
Pipe clamp

355.3 1894 1243 390

2 355.3 3624 1243 718 355.3 1697 1243 386

The elbow 
clamp 
Is pad wear

1 533 3771 1243 535 Pad wear of 
straight 
Pipe clamp

533 1071 1243 618

2 533 3555 1243 572 533 1015 1243 753

Clamp state
Measure 
point

Fault 
frequency 
(Hz)

Amplitude 
(g)

2.5 times 
fault  
frequency 
(Hz)

Amplitude 
(g) Clamp state

Fault 
frequency 
(Hz)

Amplitude 
(g)

2.5 times 
fault  
frequency 
(Hz)

Amplitude 
(g)

The elbow 
clamp 
Is slightly 
cracked

1 355.3 2796 888.8 500 Slight crack 
of straight
Pipe clamp

355.3 2688 888.8 400

2 355.3 2734 888.8 518 355.3 2675 888.8 396

 

Figure 11.  Amplitude spectrum of clamp mild loosening. (a) Original signal. (b) After processing.
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4.4.  Data set creation

Aviation band line fault feature information of the complex 
structure and fluid-structure coupling vibration character-
istic factors leading to early failure characterization is not 
obvious. In order to avoid the failure information omission, 
this article will clamp fault features obvious to the IMF comp
onent in frequency since the childhood of the order stacked 
into multichannel samples. As shown in figure 3, each sample 
signal contains 3200 data points, and the data dimension of 
the sample is increased by one dimension. The data dimen-
sion of the sample changes from 1  ×  3200 to 1  ×  3200  ×  2 

to create a data set, and the data set is divided into a training 
set and test set, the number of training samples in each state 
is 2000, and the number of predicted samples is 400. The 
proportion of the number of training samples to the number 
of forecast samples was 8:2. In order to verify the stability of 
the CNN model designed in this paper, the data set is trained 
by random sampling.

Based on the same data set, three methods, i.e. the improved 
VMD and CNN, CNN and BPNN, are used to diagnose the 
early fault of clamps. The relationship between the accuracy 
and loss rate of the data set and the number of iterations is 
shown in figures 14 and 15. Figure 14 shows that in the first 

Figure 12.  Amplitude spectrum of clamp pad wearing. (a) Original signal. (b) After processing.

Figure 13.  Amplitude spectrum of clamp slight cracking. (a) Original signal. (b) After processing.

Figure 14.  The iteration number and accuracy curve of clamp training.
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1500 iterations, with the increase of the number of iterations, 
the accuracy of training using the improved VMD and CNN 
model is improved steadily. After 1500 iterations, the upward 
trend of accuracy slows down. It is basically stable, after 2000 
iterations, and the prediction sample has a high accuracy, 
which can reach about 99%. The results show that the training 
model established in this paper has a strong ability to suppress 
over fitting, good stability and a good generalization ability 
for complex signal classification and diagnosis. On the other 

hand, the accuracy of the CNN and BPNN diagnostic model 
training maintained an upward trend, but the training curve 
fluctuated greatly, and the accuracy of the clamp fault was 
about 90%.

As can be seen from figure 15, the loss value of training sam-
ples based on the optimized VMD-CNN model decreases and 
gradually approaches to zero with the increase of the number of 
iterations. After 2000 iterations, the loss of training samples is 
lower than that of CNN and BPNN, and the VMD-CNN model 

 

Figure 15.  Iteration number and loss rate curve of hoop training.

Table 4.  Description of a data set for hydraulic piping clamps.

Clamp state
Category  
labels

Number of 
measuring  
point

Measuring 
point  
location

Clamp  
state

Category 
labels

Number of 
measuring 
point

Measuring 
point  
location

The elbow clamp in normal 
condition

G1W 1 Clamp on the 
outer wall

Straight pipe 
clamp in nor-
mal condition

L1W 1 Clamp on 
the outer 
wall

The elbow clamp in normal 
condition

G1W-2 2 Line in the 
middle

Straight pipe 
clamp in nor-
mal condition

L1W-2 2 Line in the 
middle

The elbow clamp is mildly 
loose

G2S 1 Clamp on the 
outer wall

Mild loosening 
of the straight 
pipe clamp

L2S 1 Clamp on 
the outer 
wall

The elbow clamp is mildly 
loose

G2S-2 2 Line in the 
middle

Mild loosening 
of the straight 
pipe clamp

L2S-2 2 Line in the 
middle

The elbow clamp gasket 
broken

G4P 1 Clamp on the 
outer wall

Damaged  
ferrule lining 
of the straight 
pipe

L4P 1 Clamp on 
the outer 
wall

The elbow clamp gasket 
broken

G4P-2 2 Line in the 
middle

Damaged  
ferrule lining 
of the straight 
pipe

L4P-2 2 Line in the 
middle

The elbow clamp is slightly 
cracked

G3L 1 Clamp on the 
outer wall

Slight cracking 
of the straight 
pipe clamp

L3L 1 Clamp on 
the outer 
wall

The elbow clamp is slightly 
cracked

G3L-2 2 Line in the 
middle

Slight cracking 
of the straight 
pipe clamp

L3L-2 2 Line in the 
middle
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tends to be stable. The results show that the training effect is 
ideal, and the actual output can approach the theoretical output 
well, which is suitable for the pattern recognition of early fault 
diagnosis of clamps. Due to the strong noise interference and the 
fluctuation of the loss value in the early training period of the 
BPNN network model, the CNN model can converge quickly 
after 2000 iterations, and the loss value approaches to zero 
slowly except in some nodes. However, the training convergence 
of the BPNN network model is poor and the stability is not high.

4.5.  Results and analysis

4.5.1.  Evaluating index.  In order to measure the classification 
performance of the improved VMD and CNN models, four 
indexes including accuracy, precision, recall and F1-sore were 
calculated in this paper as evaluation indexes of classification 
performance.

4.5.2.  Experimental result.  A confusion matrix is a com-
mon visual tool in supervised learning, which can reflect the 
identification of each fault state more comprehensively. In 
this paper, each row in the matrix represents the prediction 
category of the data sample, and each column represents the 
actual category of the sample. The classification accuracy of 
each category can be clearly shown. The description of the 
hydraulic pipe clamp data set is shown in table 4.

As can be seen from figure  16, the accuracy of training 
results of the VMD-CNN diagnosis method by optimizing the 
data set composed of the clamp health state and three fault 

states listed in the figure  is over 99.3%. The accuracy, pre-
cision and recall of the slight loosening fault and the slight 
crack fault of the clamp can reach more than 100%. In the 
straight pipe system, only for the single fault such as the slight 

Figure 16.  Based on MGA-VMD-CNN model with 16 kinds of aviation clamp.

Figure 17.  Based on CNN model with 16 kinds of aviation clamp.

Meas. Sci. Technol. 31 (2020) 055007



Y Tongguang et al

13

cracking of the clamp and the wear of the gasket, the recog-
nition rate is 85.7% and 94.1%, respectively. As a result, a 
0.7% error rate is found in the comprehensive accuracy rate. 
At the same time, it also shows that the method proposed in 
this paper can accurately distinguish the early faults such as 
clamp loosening, cracking and so on. As can be seen from fig-
ures 17 and 18, the training based on the same data set through 
CNN and BPNN diagnosis methods shows the result that the 
average recognition rate for single faults such as the clamp 
slight cracking and clamp liner wear is about 50%. Among 
them, the recognition rate of the CNN network model for the 
clamp slight cracking fault at measuring point 1 in the straight 
pipe structure is only 42.9%, and the recognition rate of the 
BP network model for the clamp liner wear fault at measuring 
point 2 in the straight pipe structure is only 29.6%. As a result, 
the comprehensive accuracy was 91% and 86%, respectively.

Table 5 summarizes the comparison of training results of 
clamp fault data by using the method proposed in this paper, 
the CNN method and BPNN method based on the same data 
set. In order to avoid accidental error, 10 tests were carried 

out for each method, and the average value of all kinds of 
evaluation indexes was used as the evaluation index of clas-
sified diagnosis performance of this method. It can be seen 
that the diagnosis accuracy of the diagnosis method based 
on optimized VMD and CNN is obviously better than the 
traditional diagnosis method of the typical shallow model 
BPNN. Compared with the deep convolution neural network 
used in recent years, all performance indexes of the method 
proposed in this paper can reach more than 98.7%, which is 
better than CNN, and it can also stably identify a variety of 
different health states of clamps. Compared with the CNN 
training model, the comprehensive accuracy is improved by 
8.3%, while compared with the BPNN training model, the 
comprehensive accuracy is improved by 13%. The reason is 
that after optimizing VMD processing, the signal-to-noise 
ratio of the signal is improved and the over-fitting phenom
enon is avoided. Moreover, the IMF feature components of 
all clamps are constructed as the multi-channel input of CNN, 
and the weight of each IMF feature component to the output is 
obtained adaptively by CNN information fusion.

5.  Conclusion

	(1)	�Aiming at the weak fault characteristics of the hydraulic 
pipeline clamp in an aero-engine, the strong nonlinear 
and unstable signals and the serious noise interference, in 
this paper, a fault diagnosis method based on optimized 
variational mode decomposition combined with a deep 
convolutional neural network is proposed to realize the 
adaptive diagnosis of clamp data.

	(2)	�In order to solve the problem of a limited sample of clamp 
fault data acquired in engineering practice and preventing 
the CNN network model over fitting, in this paper, com-
bining the advantages of VMD in signal processing and 
CNN’s ability of independent learning data features and 
recognition, the intelligent early fault diagnosis of aero-
nautical hydraulic pipeline clamp is realized. Through 
the test, it is verified that the accuracy of the optimized 
VMD-CNN method can reach 99.3%, which is obviously 
better than the traditional BPNN diagnostic method, and 
higher than the CNN diagnostic method used in recent 
years. At the same time, VMD parameter factors are 
optimized based on the improved genetic algorithm to 
obtain the best combination of [k, α], which is verified 
in the clamp vibration signal.

	(3)	�The vibration signals of clamp health state and typical 
faults are collected, compared and analyzed by the test 
method, and the characteristic frequencies of typical 
faults such as the slight loosening of clamps, wear of the 
clamp liner and slight cracks in the root of clamps can 
be found. It can provide a basis for early fault intelligent 
diagnosis of aeronautical hydraulic pipeline clamps.

Figure 18.  Based on BPNN model of aviation clamps.

Table 5.  The proposed method is compared with CNN and BPNN 
(%).

Evaluation index VMD+CNN CNN BPNN

Accuracy 99.30 91.00 86.00
Precision 98.74 90.31 91.35
Recall 99.46 83.56 90.26
F1-sore 99.09 90.13 90.23
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