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We investigate the generation of quantum correlations between mechanical modes and optical modes in an optome-
chanical system, using the rotating wave approximation. The system is composed of two Fabry–Pérot cavities separated in
space; each of the two cavities has a movable end-mirror. Our aim is the evaluation of entanglement between mechanical
modes and optical modes, generated by correlations transfer from the squeezed light to the system, using Gaussian intrinsic
entanglement as a witness of entanglement in continuous variables Gaussian states, and the quantification of the degree of
mixedness of the Gaussian states using the purity. Then, we quantify nonclassical correlations between mechanical modes
and optical modes even beyond entanglement by considering Gaussian geometric discord via the Hellinger distance. In-
deed, entanglement, mixdness, and quantum discord are analyzed as a function of the parameters characterizing the system
(thermal bath temperature, squeezing parameter, and optomechanical cooperativity). We find that, under thermal effect,
when entanglement vanishes, purity and quantum discord remain nonzero. Remarkably, the Gaussian Hellinger discord is
more robust than entanglement. The effects of the other parameters are discussed in detail.
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1. Introduction
Entanglement[1–3] is a fundamental feature of quantum

mechanics, which plays a crucial role in different appli-
cations of quantum information processing, such as quan-
tum teleportation,[4] superdense coding,[5] telecloning,[6] and
quantum cryptography.[7] In optomechanical systems, entan-
glement is due to the interaction between the movable mir-
ror and the radiation field via the radiation pressure.[8–10]

Recently, several studies have been conducted to investigate
entanglement and quantum correlations in optomechanical
systems.[11–17] But the entanglement is very fragile under the
thermal effect when the quantum system interacts with its en-
vironment; it is a decoherence phenomenon.[18] Moreover, in
optomechanical systems, it has been found that the entangle-
ment disappears rapidly under the effect of certain parameters;
it is the entanglement sudden death (ESD) phenomenon.[19]

This phenomenon occurs when the entangled multipartite
quantum system is placed in Markovian environments.[20–24]

In this paper, we use a system consisting of two spatially
separated Fabry–Pérot cavities, each cavity having a movable
end-mirror (as shown in Fig. 1). Our objective is to study
the quantum correlations between mirror 1–mirror 2 and op-
tical 1–optical 2 modes in this system, by making use of the

rotating wave approximation. Thus, after derivations of the
steady state of the mechanical and optical modes of two-mode
continuous variables Gaussian states, we will analyze Gaus-
sian intrinsic entanglement and Gaussian geometric discord in
terms of Hellinger distance to quantify quantum correlations,
while as the purity to quantify the mixedness between mechan-
ical and optical modes.

The rest of the present article is organized as follows. In
Section 2, we describe the model and the system under in-
vestigations, we also give the expression of the Hamiltonian
and the quantum nonlinear Langevin equations (QLEs) for the
mechanical and optical modes. In Section 3, we linearize the
QLEs and derive the quantum equations that govern the dy-
namics of the system. In Section 4, in Gaussian state of con-
tinuous variables we calculate the covariance matrix of the
system in the steady state. Then, we study the Gaussian in-
trinsic entanglement[25] to measure the quantum correlations
between mechanical and optical modes, and the purity to mea-
sure the mixedness[25,26] (Section 5). Finally, we use also the
Gaussian geometric discord in terms of the Hellinger distance
to characterize the quantum correlations beyond the entangle-
ment between mechanical and optical modes[28] (Section 6).
Conclusions close the paper.
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2. Model

We consider two Fabry–Pérot cavities composed of a

fixed mirror (spatially transmitting) and a movable mirror Mp

(p = 1,2) (perfectly reflecting). The mass and the frequency

of the pth movable mirror are respectively mp and ωMp . As

illustrated in Fig. 1, the cavities are coupled to a common two-
mode squeezed light from the output of the parametric down
conversion, and are pumped by coherent laser field which is
coupled to the movable mirror M1 (M2) via radiation pressure
with the coupling rate gp = (ωap/Lp)

√
h̄/mpωM p,[10] where

Lp is the pth cavity length.

two{mode squeezed
light source

laser coherent
sources

movable mirror 1 movable mirror 2

L1 L2

M
1

M
2

Fig. 1. The schematic diagram of two identical Fabry–Pérot cavities coupled to a two-mode squeezed light from spontaneous parametric down-conversion
and driven by coherent laser sources with amplitude εp and the squeezed vacuum.

The system Hamiltonian in frame rotating with ωL p is given by[12]

ℋ=
2

∑
p=1

[
h̄ωMpd†

pdp + h̄(ωap −ωLp)a
†
pap + h̄gpa†

pap(d†
p +dp)+ h̄(a†

pεp e iφp +apεp e−iφp)
]
, (1)

where ωap is the pth cavity frequency, φp and εp =√
2κp𝒫p/h̄ωL p (p = 1,2) are respectively the phase and the

input coherent field. κp is the cavity damping rate, 𝒫p is
the driving pump power, ωL p is the frequency of the pth in-
put field. The mechanical modes are considered as quantum
harmonic oscillators, with annihilation and creation operators
dp and d†

p satisfying the commutation relations [dp,d†
p] = 1

(p = 1,2). ap and a†
p are the annihilation and creation opera-

tors of the pth cavity mode, with [ap,a†
p] = 1 (p = 1,2).

Considering the Hamiltonian Eq. (1), the nonlinear quan-
tum Langevin equations, describing the dynamics of the mov-
able mirrors and optical modes are written by[29–31]

ḋp =−
(

iωMp +
γp

2

)
dp − igpa†

pap +
√

γpdin
p , (2)

ȧp =−
(

κp

2
− i∆p

)
ap − igpap(d†

p +dp)

− iεp e iφp +
√

κpain
p (3)

with γp and ∆p = ωLp −ωap are respectively the mechanical
damping rate and laser detuning (p = 1,2), din

p is the pth noise
operator describing the coupling between mechanical mode
and its own environment and ain

p is the squeezed vacuum oper-
ator.

For a large value of the mechanical quality factor, it can be
assumed that the mechanical baths are Markovian. The non-
zero correlation function[32,33] is given by

⟨din
p (t)d

in†
p (t ′)⟩= (nthp +1)δ (t − t ′), (4)

⟨din†
p (t)din

p (t
′)⟩= nthpδ (t − t ′), (5)

where the thermal baths photons numbers in the pth cavity is

nthp =

[
exp
(

h̄ωMp

kBTp

)
−1
]−1

with kB being the Boltzmann constant.
The squeezed vacuum operators ain

p and ain†
p have nonzero

correlation properties[34]

⟨ain
p (t)a

in†
p (t ′)⟩= (𝒩 +1)δ (t − t ′), (6)

⟨ain†
p (t)ain

p (t
′)⟩=𝒩δ (t − t ′), (7)

⟨ain
q (t)a

in
p (t

′)⟩=ℳe−iωM(t+t ′)
δ (t − t ′), q ̸= p, (8)

⟨ain†
q (t)ain†

p (t ′)⟩=ℳe iωM(t+t ′)
δ (t − t ′), q ̸= p, (9)

where 𝒩 = sinh2 r and ℳ =
√

𝒩 (𝒩 +1) with r being the
squeezing parameter characterizing the squeezed light (we
consider ωM = ωM1 = ωM2 ).

3. Linearization of quantum Langevin equa-
tions
The nonlinear quantum Langevin equations are in general

non-solvable analytically. In this way, we use the scheme of
linearization given in Ref. [35]

dp = d̄p +δdp, ap = āp +δap, (10)

where δdp and δap are the operators of fluctuations. d̄p and
āp are respectively the mean values of the operators dp and ap.
Considering Eqs. (2) and (3) in its steady state, one can obtain

āp =
−iεp e iφp

κp/2− i∆ ′
p
, (11)
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d̄p =
−igp | āp |2

γp/2+ iωMp

, (12)

where ∆ ′
p = ∆p − gp(d̄p + d̄*

p), is considered as the effec-
tive cavity detuning which depends on the displacement of
the mirrors due to the radiation pressure force. Replacing
dp = d̄p +δdp and ap = āp +δap in Eqs. (2) and (3), thus

˙δdp = −
(

iωMp +
γp

2

)
δdp

+𝒢p(δap −δa†
p)+

√
γpdin

p , (13)

˙δap = −
(

κp

2
− i∆ ′

p

)
δap

−𝒢p(δd†
p +δdp)+

√
κpain

p , (14)

where 𝒢p = gp | āp | is the many-photon optomechanical cou-
pling inside the pth cavity, φp is the arbitrary phase of pth in-
put laser φp = −arctan(2∆ ′

p/κp) and āp = −i | āp |. Using

the notations δap(t) = δ ãp(t)e i∆ ′
pt , δdp(t) = δ d̃p(t)e−iωMp t ,

ãin
p = e−i∆ ′

ptain
p , and d̃in

p = e iωMp tdin
p , equations (13) and (14)

became

δ
˙̃dp = −

γp

2
δ d̃p +𝒢p

(
δ ãp e i(∆ ′

p+ωMp )t −δ ã+p e−i(∆ ′
p−ωMp )t

)
+
√

γpb̃in
p , (15)

δ ˙̃ap = −
κp

2
δ ãp −𝒢p

(
δ d̃+

p e−i(∆ ′
p−ωMp )t +δ d̃p e−i(∆ ′

p+ωMp )t
)

+
√

κpãin
p . (16)

Using the rotating wave approximation (RWA)[10,36] (i.e.,
ωMp ≫ κp with p = 1,2), the effective cavity detuning is re-
duced to ∆ ′

p ≈ ∆p, and one can neglect the terms rotating
at ±2ωMp . When the cavity is driven at the red sideband
(∆ ′

p =−ωMp with p = 1,2), equations (15) and (16) become(
δ

˙̃dp

δ ˙̃ap

)
=

(
−γp/2 𝒢p

−κp/2 −𝒢p

)(
δ d̃p

δ ãp

)
+

(√
γpd̃ in

p
√

κpã in
p

)
. (17)

4. Steady state covariance matrix
The linear quantum Langevin equations allow us to de-

duce the covariance matrix (CM) that describes the evolution

of the steady state of the system, then to characterize pu-
rity, entanglement, and beyond entanglement between various
modes by making use of different criteria and quantifiers of
correlations.

For the sake of simplicity, we consider that the two co-
herent sources have identical strength, and the thermal baths
of two mechanical mirrors are at the same temperature T1 =

T2 = T (nth1 = nth2 = nth). Furthermore, m1 = m2 = m, ωr1 =

ωr2 = ωr, ωM1 = ωM2 = ωM, κ1 = κ2 = κ , and γ1 = γ2 = γ .
To derive the explicit formula of the CM for continuous

variables, we consider the EPR-type quadrature operators for
the two subsystems

δ Q̃dp =
δ d̃†

p +δ d̃p√
2

, δ P̃dp =
δ d̃p −δ d̃†

p

i
√

2
, p = 1,2, (18)

δ Q̃ap =
δ ã†

p +δ ãp√
2

, δ P̃ap =
δ ãp −δ ã†

p

i
√

2
, p = 1,2. (19)

Equation (17) becomes in terms of quadrature operators[14]

δ
˙̃Qdp =−γ

2
δ Q̃dp +𝒢δ Q̃ap +

√
γQ̃ in

dd
, p = 1,2, (20)

δ
˙̃Pdp =−γ

2
δ P̃dp +𝒢δ P̃ap +

√
γP̃ in

dp
, p = 1,2, (21)

δ
˙̃Qap =−κ

2
δ Q̃ap −𝒢δ Q̃dp +

√
κQ̃ in

ap , p = 1,2, (22)

δ
˙̃Pap =−κ

2
δ P̃ap −𝒢δ P̃dp +

√
κP̃ in

ap , p = 1,2 (23)

with

Q̃ in
dp

=
d̃ in†

p + d̃ in
p√

2
, P̃ in

dp
=

d̃ in
p − d̃ in†

p

i
√

2
, p = 1,2, (24)

Q̃ in
ap =

ã in†
p + ã in

p√
2

, P̃ in
ap =

ã in
p − ã in†

p

i
√

2
, p = 1,2. (25)

Equations (20)–(23) are given in a compact matrix[37]

u̇(t) =𝒜u(t)+λ (t) (26)

with the following form of

uT(t) =
(
δ Q̃d1 ,δ P̃d1 ,δ Q̃d2 ,δ P̃d2 ,δ Q̃a1 ,δ P̃a1 ,δ Q̃a2 ,δ P̃a2

)
,

λ
T(t) =

(√
γQ̃ in

d1
,
√

γP̃ in
d1
,
√

γQ̃ in
d2
,
√

γP̃ in
d2
,
√

κQ̃ in
a1
,
√

κP̃ in
a1
,
√

κQ̃ in
a2
,
√

κP̃ in
a2

)
,

where

𝒜=



−γ/2 0 0 0 𝒢 0 0 0
0 −γ/2 0 0 0 𝒢 0 0
0 0 −γ/2 0 0 0 𝒢 0
0 0 0 −γ/2 0 0 0 𝒢
−𝒢 0 0 0 −κ/2 0 0 0
0 −𝒢 0 0 0 −κ/2 0 0
0 0 −𝒢 0 0 0 −κ/2 0
0 0 0 −𝒢 0 0 0 −κ/2


.

(27)

Since all eigenvalues of the drift matrix 𝒜 are negative (for
𝒢 > κ,γ , i.e., 2𝒢 > κ+γ), the system under study is stable.[38]

The steady state of the system can be described by the co-
variance matrix whose form is Vi j = (1/2)(⟨ui(t)u j(t ′) +
u j(t ′)ui(t)⟩). Then, the covariance matrix in steady state can
be derived by considering Lyapunov equation, given by[39,40]

𝒜V+V𝒜T =−D (28)
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with D being the matrix of stationary noise correlations,
whose elements are Dmnδ (t − t ′) = (1/2)(⟨λm(t)λn(t ′) +
λn(t ′)λm(t)⟩), the explicit expression of D is

D=



γ ′ 0 0 0 0 0 0 0
0 γ ′ 0 0 0 0 0 0
0 0 γ ′ 0 0 0 0 0
0 0 0 γ ′ 0 0 0 0
0 0 0 0 κ ′ 0 ℳκ 0
0 0 0 0 0 κ ′ 0 −ℳκ

0 0 0 0 ℳκ 0 κ ′ 0
0 0 0 0 0 −ℳκ 0 κ ′


,

(29)
where γ ′ = γ(nth +1/2) and κ ′ = κ(𝒩 +1/2).

The covariance matrix in steady state is given by

V=



V1 0 V13 0 V15 0 V17 0
0 V1 0 −V13 0 V15 0 −V17

V13 0 V1 0 V17 0 V15 0
0 −V13 0 V1 0 −V17 0 V15

V15 0 V17 0 V2 0 V57 0
0 V15 0 −V17 0 V2 0 −V57

V17 0 V15 0 V57 0 V2 0
0 −V17 0 V15 0 −V57 0 V2


. (30)

For the two-mode symmetric squeezed thermal states, the co-
variance matrix for each subsystem (mirror 1–mirror 2 and
optic 1–optic 2), can be derived considering the global covari-
ance matrix Eq. (30)

V(m1m2) =


V1 0 V13 0
0 V1 0 −V13

V13 0 V1 0
0 −V13 0 V1

 ,

V(o1o2) =


V2 0 V57 0
0 V2 0 −V57

V57 0 V2 0
0 −V57 0 V2

 , (31)

where

V1 =
κC cosh(2r)+(1+2nth)(κ + γ + γC)

2(κ + γ)(1+C)
,

V13 =
κC sinh(2r)

2(κ + γ)(1+C)
, (32)

V2 =
(κ + γ +κC)cosh(2r)+(1+2nth)γC

2(κ + γ)(1+C)
,

V57 =
(κ + γ +κC)sinh(2r)

2(κ + γ)(1+C)
. (33)

The opto-mechanical cooperativity C is given by[10]

C =
4𝒢2

γκ
=

8ω2
a

mγωMωLL2
𝒫

[(κ/2)2 +ω2
M]

. (34)

The covariance matrices given in Eq. (31) can also be written,
for the two-mode symmetric squeezed thermal states, in the
following compact matrix form

𝒱( j) =


s 0 k 0
0 s 0 −k
k 0 s 0
0 −k 0 s

≡
(

𝒮 𝒦
𝒦T 𝒮

)
. (35)

In Eq. (35), the index j represents a subsystem m1m2

(mirror 1 and mirror 2 modes) or o1o2 (optic 1 and op-
tic 2 modes) and the matrix blocks 𝒮 = diag(s,s) and 𝒦 =

diag(k,−k) are the covariance matrix 2× 2 respectively de-
scribing the single mode and the nonclassical correlations be-
tween the mechanical and optical modes. For subsystem m1m2

(s = V1 and k = V13) and for subsystem o1o2 (s = V2 and
k = V57).

5. Gaussian intrinsic entanglement and purity

In this section, we will study the entanglement of the me-
chanical (m1−m2) and optical (o1−o2) modes in the symmet-
rical state by using the Gaussian intrinsic entanglement (GIE)
and the purity. For the two-mode Gaussian states with continu-
ous variables (CV), the Gaussian intrinsic entanglement is de-
fined in Ref. [25]. For the symmetric squeezed thermal states
with the covariance matrix given by (Eq. (35)), the Gaussian
intrinsic entanglement is[25]

EG
↓ =

 Ln
[

4(s− k)2 +1
4(s− k)

]
, iff s < k+1/2 and s < 1.205,

0, iff s ≥ k+1/2.
(36)

The condition of entanglement of the two modes is EG
↓ > 0,

therefore if EG
↓ = 0, the two modes are separable.

The purity of the two modes is given by[26,27]

µ
( j) =

1
4
√

detV( j)
, (37)

where the index j represents a subsystem m1m2 (mirror 1 and
mirror 2 modes) or o1o2 (optic 1 and optic 2 modes). The pu-
rity µ( j) is a witness of the mixedness of the Gaussian state
with 0 ≤ µ( j) ≤ 1: the state of the two modes is mixed if
µ( j) < 1, and is pure if µ( j) = 1.

The explicit expression of the purity for mechanical and
optical modes is written respectively

µ
m1m2 =

(1+C)2(κ + γ)2

[(1+2nth)(κ + γ(1+C))+κC cosh(2r)]2 −κ2C2 sinh2(2r)
, (38)

µ
o1o2 =

(1+C)2(κ + γ)2

(κ + γ)(κ + γ +2κC)+C2(κ2 + γ2(1+2nth)2)+2γC(1+2nth)(κ + γ +κC)cosh(2r)
. (39)
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If r = 0 and nth = 0, equations (38) and (39) lead to the maxi-
mum value of purity, i.e., µm1m2 = 1 and µo1o2 = 1.

We consider recent experimental parameters:[41] The
laser frequency ωL/2π = 2.82×1014 Hz (λ = 1064 nm). The
cavity length and frequency are respectively L = 25 mm and
ωa/2π = 5.26×1014 Hz. The movable mirrors oscillate with
frequency ωM/2π = 947× 103 Hz, the mechanical damping
rate γ/2π = 140 Hz and having the mass m = 145 ng.

In Fig. 2, we show the evolution of GIE of the mechanical
modes (a) and optical modes (b) as a function of the thermal
bath photons number nth for various values of the squeezing
parameter r with a fixed values of C and γ/κ . When the GIE
disappears, the two modes are not entangled. It is clear that,
when the parameter r is equal to zero (r = 0), the two sub-
systems remain separable, as shown in Fig. 2. For a fixed
value of photons number nth, the generation of the entangle-
ment between, on the one hand, the mirror–mirror modes (see
Fig. 2(a)) and, on the other hand, between the optic–optic

modes (see Fig. 2(b)) improves with the increase of the pa-
rameter r (r > 0). This shows the dependence between the
entanglement and the squeezing parameter r, as in Ref. [12].
In addition, figure 2 shows that for a given r (r > 0), the
two optical modes (Fig. 2(b) remain entangled over a wider
range of nth than the two mechanical modes (Fig. 2(a)). We
can also see that movable mirrors and optical modes become
separable when the photons number is around nth ≥ 4 and
nth ≥ 6.5 respectively. Since the number of photons is di-
rectly related to the temperature, we can deduce that the op-
tical modes remain entangled over a wider temperature range
than the mechanical modes. This effect of temperature is the
sign of decoherence.[18] Note also that as the photons number
increases, the entanglement decreases quickly which means
that the transfer of quantum correlations from two-mode light
to the mechanical modes decreases monotonically. This phe-
nomenon can also be explained by the concept of entangle-
ment sudden death (ESD) as in Ref. [19].
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Fig. 2. Plots of GIE [(a) and (b)] and purity µ [(c) and (d)] of the two subsystems versus the thermal bath photon numbers nth for different values of the
squeezing parameter r: (a)–(c): mirror 1–mirror 2; (b)–(d): optic 1–optic 2. The optomechanical cooperativity is C = 34 and κ = 20γ .

In Figs. 2(c) and 2(d), we plot the evolution of the purity

respectively of mirror–mirror modes and field–field modes as

a function of thermal bath photon numbers nth for different

values of r. It is clear that for the two subsystems, the pu-

rity reaches its maximum value (µm1m2 = 1 , µo1o2 = 1) when

r = 0 and nth = 0, according to Eqs. (38) and (39); then it

decreases when the number of photons nth increases. We no-

tice that the witness of mixedness increases with increasing

thermal effect, and also with increasing squeezing parameter

r, but the entanglement between the two mechanical modes

and the entanglement between the two optical modes increase

with increasing r. Indeed, for a fixed value of r > 0, when

the purity increases also the entanglement increases as illus-

trate in Figs. 2(a)–2(c) and Figs. 2(b)–2(d). The comparison

between Figs. 2(c) and 2(d) shows for r > 0 that the purity

of optical modes remains superior for a wider range of tem-

perature than mechanical modes, this may explain why optical

modes remain entangled for a wider range of nth than mechan-
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ical modes as in Figs. 2(a) and 2(b). For example, when r =
0.5 and nth ≈ 2, we have GIE ≈ 0.06 for mechanical modes,
and GIE ≈ 0.14 for optical modes. This finding can also be
explained by the phenomenon of decoherence.

We remark also the importance of studying the effect of
optomechanical cooperativity on the evolution of the entan-
glement between mechanical and optical modes. Figure 3(a)
shows, for a fixed values of r and γ/κ , that there exists a min-
imum optomechanical cooperativity Cmin (i.e., C > Cmin) for
which the mechanical modes (movable mirrors) start entan-

gled if nth < 5 (i.e., the entanglement is vanishing if nth ≥ 5).

We observe that the entanglement (GIE) between mechanical

modes increases with the increase of C for a fixed value of nth,

whereas for a given C, the GIE decreases with the increase

of nth (see Fig. 3(a). Moreover, the value of Cmin, which cor-

responds to the birth of the entanglement of the mechanical

modes, increases with the increase of nth (see Fig. 3(a)); this

is explained by the effect of the decoherence on the entangle-

ment of the two mobile mirrors.
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Fig. 3. Plots of GIE [(a) and (b)] and purity µ [(c) and (d)] of the two subsystems versus the optomechanical cooperativity C for various values of the thermal
bath photon numbers nth. (a)–(c): Mirror 1–mirror 2; (b)–(d): optic 1–optic 2 with r = 0.5 and κ = 20γ .

Figure 3(b) shows that the optical modes are entangled
even if nth ≥ 5, but mechanical modes are separable (see
Fig. 3(a)). Moreover, when nth increases, we note that there
exists a maximum value of the optomechanical cooperativity
(C < Cmax) for which the optical modes are entangled. It is
clear that the increase in the photons number nth causes the de-
crease of Cmax, for a given nth the GIE decreases with increas-
ing optomechanical cooperativity, whereas when C is fixed,
the GIE increases with decrease of nth.

Figures 3(c) and 3(d) illustrate the evolution of the pu-
rity of the mirror 1–mirror 2 and optic 1–optic 2 subsystems
respectively with respect to the optomechanical cooperativity
for different values of nth. For the two subsystems, the figures
show that the purity decreases with the increase of nth, as it is
clear from Eqs. (38) and (39), this due to the decoherence phe-
nomenon. Remarkably, for mobile mirrors, purity increases
very rapidly with C increases. In the case of optical modes,

we observe a rapid decrease in purity for low values of C fol-

lowed by a small variation and then it seems to stabilize for

the large values of C (see Fig. 3(d)). Finally, following Fig. 3,

we can conclude that the transfer of quantum correlations from

the two-modes squeezed light to the mechanical modes has the

effect of improving entanglement (when C >Cmin) and purity;

but for both optical modes, the effect is reversed.

6. Gaussian discord with the Hellinger distance

In this section, we will study the progress of Gaussian

geometric discord in terms of Hellinger distance (GGD-Hd),

in order to characterize the quantum correlations in bipartite

Gaussian states,[28] using RWA. The two subsystems (mirror–

mirror and optic–optic) are described by the covariance matri-

ces, e.g., Eqs. (31) and (35), the explicit expression of GGD-

Hd for the two-modes symmetric squeezed thermal states is

020304-6



Chin. Phys. B Vol. 29, No. 2 (2020) 020304

given by[28]

D( j)
H = 1−

4(det(V( j)))
1/4

2s+2(det(V( j)))
1/4(

√
N1 −

√
N2)

, (40)

where the index j represents a subsystem m1m2 (mirror 1 and
mirror 2 modes) or o1o2 (optic 1 and optic 2 modes) with
N1 = (λ1 +1/2)2, N2 = (λ2 −1/2)2, and λ1 = λ2 =

√
s2 − k2

being the symplectic eigenvalues of the covariance matrices
Eqs. (31) and (35), with s =V1 and k =V13 for mirror–mirror
subsystem, and s =V2 and k =V57 for optic–optic subsystem.

Figures 4(a) and 4(b) represent respectively the evolution
of GGD-Hd of the two mirror–mirror and optical–optical sub-
systems as a function of the thermal bath photons numbers nth

for different values of the squeezing parameter r with fixed
values of C and γ/κ parameters. Indeed, when r = 0 the quan-
tum correlations are not transferred between the two modes;
this shows the strong relationship between squeezed light and
quantum correlations. These figures show that GGD-Hd de-
grades with the increase of nth, but improves by increasing the
parameter r. The comparison between Figs. 2(a) and Figs. 4(a)
and 4(b) allows us to notice that when the two subsystems (me-
chanical or optical) are no longer entangled, GGD-Hd does not
disappear. Therefore, GGD-Hd can quantify quantum correla-
tions beyond entanglement. For example, when nth = 6 and
r = 0.5, we have GIE=0 while GGD-Hd ≈ 0.08 for the two
mechanical modes.
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Fig. 4. Plots of the Gaussian Hellinger discord (GGD-Hd) of the two sub-
systems versus the thermal bath photon numbers nth for different values of
the squeezing parameter r: (a) mirror 1–mirror 2, (b) optic 1–optic 2. The
optomechanical cooperativity is C = 34 and κ = 20γ .

Figures 5(a) and 5(b) show respectively the effect of op-
tomechanical cooperativity C on the GGD-Hd of the mirror–

mirror and optical–optical subsystems for various values of the
thermal bath photons numbers nth with fixed values of r and
γ/κ . It is clear that, for the mechanical modes, the GGD-Hd
decreases with the increase of nth, whereas it increases with
the increase of C (Fig. 5(a)). For the optical modes, on the
one hand, the GGD-Hd decreases with the increase of nth; this
shows the effect of the thermal bath temperature which is pro-
portional to the number of photons. On the other hand, the
GGD-Hd exhibits a very rapid degradation with the increase of
C, then seems to keep a stable value after a certain value of C
which is less than 4 (Fig. 5(b). This behavior can be explained
by the freezing phenomenon that has also been discussed in
Ref. [42]. The comparison between Fig. 5 and Fig. 3 shows
us that, when the mechanical and optical modes are separable,
the GGD-Hd remains non-zero. Therefore, we can conclude
that GGD-Hd is more robust than Gaussian intrinsic entangle-
ment (GIE) under the thermal effect. In other words, GGD-Hd
measures the total quantum correlations even if the two modes
are not entangled under the thermal effect.
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Fig. 5. Plots of the Gaussian–Hellinger discord (GGD-Hd) of the two sub-
systems versus the optomechanical cooperativity C for various values of the
thermal bath photon numbers nth: (a) mirror 1–mirror 2, (b) optic 1–optic 2
with r = 0.5 and κ = 20γ .

7. Conclusion

In summary, we have studied and compared entangle-
ment, purity and Gaussian geometric discord in terms of
Hellinger distance in an optomechanical system in the Gaus-
sian state of continuous variables. The system consists of two
spatially separated Fabry–Pérot cavities. Each cavity has a
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fixed mirror and a movable mirror, and is powered by two-
mode squeezed light source and a coherent laser source. Af-
ter giving the Hamiltonian expression and the non-linearized
quantum Langevin equations, we derived the linearized quan-
tum Langevin equations describing the dynamics of the sys-
tem by considering the linearization scheme. Using the rotat-
ing wave approximation, we derived the explicit expression of
the covariance matrix Eq. (30) of the Gaussian stationary state
for the mechanical modes and the optical modes. We have
used Gaussian intrinsic entanglement of two-mode continuous
variables Gaussian states to quantify the amount of entangle-
ment between mechanical and optical modes at strong cou-
pling under thermal effect, which allowed us to highlight the
phenomenon of sudden death entanglement under thermal ef-
fect. We have also shown the influence of various factors, such
as temperature T , squeezing parameter r and optomechanical
cooperativity C on entanglement generation. The analysis of
purity as a witness of the mixing between the mechanical and
optical modes, has shown that the purity is degraded under
the thermal effect. The general nonclassical correlations were
also quantified using Gaussian geometric discord in terms of
Hellinger distance (GGD-Hd). We have found that GGD-Hd
is more robust than entanglement for mechanical and optical
modes under thermal effect. Indeed, this thermal effect lead to
decoherence phenomenon, which remains a major challenge
for information and quantum processing.
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[41] Gröblacher S, Hammerer K, Vanner M R and Aspelmeyer M 2009 Na-

ture 460 724
[42] El Qars J, Daoud M and Ahl Laamara R 2018 J. Mod. Opt. 65 1584

020304-8

http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1103/RevModPhys.77.1225
http://dx.doi.org/10.1103/RevModPhys.77.1225
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1088/0953-4075/49/15/153001
http://dx.doi.org/10.1088/0953-4075/49/15/153001
http://dx.doi.org/
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/PhysRevA.81.041803
http://dx.doi.org/10.1364/JOSAB.31.002821
http://dx.doi.org/
http://dx.doi.org/10.1140/epjd/e2018-90151-6
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/10.1142/S0219749918500430
http://dx.doi.org/10.1142/S0219749918500430
http://dx.doi.org/10.1016/j.cjph.2018.11.020
http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1103/PhysRevA.77.012117
http://dx.doi.org/10.1103/PhysRevLett.93.140404
http://dx.doi.org/10.1016/j.optcom.2006.01.061
http://dx.doi.org/10.1103/PhysRevLett.97.140403
http://dx.doi.org/10.1126/science.1167343
http://dx.doi.org/10.1126/science.1139892
http://dx.doi.org/10.1103/PhysRevLett.117.240505
http://dx.doi.org/10.1103/PhysRevA.68.012314
http://dx.doi.org/10.1103/PhysRevA.68.012314
http://dx.doi.org/10.1103/PhysRevLett.92.087901
http://dx.doi.org/10.1088/1751-8113/48/11/115301
http://dx.doi.org/10.1103/PhysRevA.82.053806
http://dx.doi.org/10.1103/PhysRevLett.108.153603
http://dx.doi.org/10.1209/epl/i2005-10317-6
http://dx.doi.org/10.1103/PhysRevA.63.023812
http://dx.doi.org/10.1103/physreva.46.4363
http://dx.doi.org/10.1103/PhysRevLett.56.1917
http://dx.doi.org/10.1103/PhysRevA.84.053817
http://dx.doi.org/10.1103/PhysRevA.91.013807
http://dx.doi.org/10.1103/PhysRevLett.103.213603
http://dx.doi.org/10.1103/PhysRevA.35.5288
http://dx.doi.org/10.1103/PhysRevLett.98.030405
http://dx.doi.org/
http://dx.doi.org/10.1038/nature08171
http://dx.doi.org/10.1038/nature08171
http://dx.doi.org/10.1080/09500340.2018.1455925

	1. Introduction
	2. Model
	3. Linearization of quantum Langevin equations
	4. Steady state covariance matrix
	5. Gaussian intrinsic entanglement and purity
	6. Gaussian discord with the Hellinger distance
	7. Conclusion
	References

