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Memristor-based vector neural network architecture∗

Hai-Jun Liu(刘海军), Chang-Lin Chen(陈长林), Xi Zhu(朱熙),
Sheng-Yang Sun(孙盛阳), Qing-Jiang Li(李清江), and Zhi-Wei Li(李智炜)†

College of Electronic Science, National University of Defense Technology, Changsha 410073, China

(Received 25 September 2019; revised manuscript received 11 November 2019; accepted manuscript online 27 December 2019)

Vector neural network (VNN) is one of the most important methods to process interval data. However, the VNN, which
contains a great number of multiply-accumulate (MAC) operations, often adopts pure numerical calculation method, and
thus is difficult to be miniaturized for the embedded applications. In this paper, we propose a memristor based vector-type
backpropagation (MVTBP) architecture which utilizes memristive arrays to accelerate the MAC operations of interval data.
Owing to the unique brain-like synaptic characteristics of memristive devices, e.g., small size, low power consumption,
and high integration density, the proposed architecture can be implemented with low area and power consumption cost and
easily applied to embedded systems. The simulation results indicate that the proposed architecture has better identification
performance and noise tolerance. When the device precision is 6 bits and the error deviation level (EDL) is 20%, the
proposed architecture can achieve an identification rate, which is about 92% higher than that for interval-value testing
sample and 81% higher than that for scalar-value testing sample.
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1. Introduction
Interval data processing, an important technology, pos-

sesses broad application prospects in signal classification,
speech recognition, image processing, etc. In many cases,
the data to be processed are uncertain, and this uncertainty
could be described by an interval or a vector. For exam-
ple, for an electronic support measure (ESM) system, due to
the diversity of the radar emitter parameters, the complexity
of electromagnetic environment, and the error of measure-
ment device itself, the measured radar emitter parameters,
such as radio frequency (RF), pulse width (PW), pulse rep-
etition interval (PRI), etc., would be expressed in the form
of intervals.[1–3] Various approaches, including interval fuzzy
logic system,[4] neural network,[5] are proposed to solve the
classification problem of interval data. Among those meth-
ods, the vector neural network (VNN) is the most effective.[1,2]

To the best of our knowledge, the current VNN implemented
by software algorithm is mainly based on the general-purpose
computing platform, which is a purely numerical calculation
method without considering the problem of hardware imple-
mentation. As a result, the computation cost makes it difficult
to realize the miniaturization and embedded system.

Memristive device possesses advantages of small size,
low power consumption, and high integration density,[6–10]

which are very suitable for building a brain-inspired com-
puting system.[11–14] Therefore, various network architectures
based on memristors, such as SNN, MLP, and CNN, have
been proposed and achieved good results in many application

fields.[15–19] However, the above networks can only handle
scalar type data. When the input data is interval-value, those
methods will not be workable.

To solve the above-mentioned problems of interval data
classification, in this paper we propose a memristor-based
vector-type backpropagation (MVTBP) architecture. Through
integrating together the advantages of memristor and vector
neural network, the multiplication and accumulation of inter-
val type data can speed up effectively.

The rest of this paper is organized as follows. In Sec-
tion 2, the memristor based VNN architecture is described in
detail. In Section 3, two simulation experiments are carried out
to verify the identification performance and analyze the influ-
ence of different device precision. Finally, some conclusions
are drawn from the present study in Section 4.

2. Memristor based vector neural network ar-
chitecture
The MVTBP architecture is shown in Fig. 1. In the

MVTBP architecture, the input of each neuron is a vector of
the interval type, and the output is also a vector of the interval
type. Figure 1(a) shows a schematic diagram of the MVTBP
network, where xpi =

[
xL

pi,x
U
pi

]
represents the i-th interval in-

put value of each input node, i = 1,2, . . . ,n, with n denoting
the node number of input layer, zpj =

[
zL

pj,z
U
pj

]
represents the

j-th interval output value of each hidden node, j = 1,2, . . . ,k,
with k being the node number of hidden layer, ypq =

[
yL

pq,y
U
pq
]

represents the q-th interval output value of each output node,
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and q = 1,2, . . . ,m, with m referring to the node number of
output layer. The key of the MVTBP architecture is to use
memristive arrays to realize the multiplication and accumula-
tion operations of interval type data as shown in Fig. 1(a), the
pink virtual box represents the interval process of non-linear
mapping from the space of input feature vector to the space of
the hidden layer, while the green solid box represents interval
process of non-linear mapping from the space of the hidden
layer to the space of identification or classification type.
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Fig. 1. MVTBP architecture: (a) schematic diagram of MVTBP network and
(b) hardware implementation for realizing interval type data multiplicative
and accumulative operations by using memristive synaptic arrays.

Figure 1(b) describes the hardware implementation for re-
alizing multiplicative and accumulative operation of interval
type data by using memristive synaptic arrays. It can be seen
from Fig. 1(b) that the hardware architecture consists of five
main components, namely, memristive synaptic array, multi-
plexer and read circuit, adder, activation circuit, and register.
The memristive synaptic array is further divided into a pos-
itive synaptic array and a negative synaptic array, which are
respectively used for realizing the multiplication and accumu-
lation operations of the upper and lower limit of the interval
data, and each intersection of the synaptic array is realized by
a memristive device. The multiplexer and read circuit are used
to select the column to be calculated and obtain the voltage
value. The adder is devoted to computing the voltage sum or
difference of the positive and negative synaptic array. The ac-
tivation circuit is used for calculating the activation function,

such as sigmoid function, etc., and the register is used to save
the calculation results for the next layer.

It should be noted that the input vectors V1 and V2 in
Fig. 1(b), applied to the positive and negative synaptic arrays
respectively, are complementary to each other. That is, when
the input vector V1 denotes the upper limit of the interval-value
xpi, i.e., xU

pi, the input vector V2 should be the lower limit of the
interval-value xpi, i.e., xL

pi, and the neuron vector output is the
upper limit vector zU

pj; when the input vector V1 represents the
lower bound of the interval-value xpi, i.e., xL

pi, the input vector
V2 should be the upper bound of the interval-value xpi, i.e., xU

pi,
then the neuron vector output is the lower bound vector zL

pj.
The positive memristive synaptic array stores all the positive
weights, while the negative memristive synaptic array stores
the absolute values of all negative weights, and the sign of
the negative weights is reflected in the subtraction portion of
the adder. The positive and negative weight in the same row
together constitute the weight value of the MVTBP network,
and the negative weight is subtracted from the positive weight.

The above hardware architecture mainly realizes the mul-
tiplicative and accumulative operations of interval data. Tak-
ing the hidden layer of the 3-layer MVTBP network for exam-
ple, and the neuron output of the hidden layer can be computed
as follows:

zpj =
[
zL

pj,z
U
pj

]
=
[

f
(
netL

pj
)
, f
(

netU
pj

)]
, (1)

where zpj represents the j-th interval output value of each hid-
den node, j = 1,2, . . . ,k, k denotes the node number of the
hidden layer, f is the activation function of the neurons, such
as the sigmoid function, etc., netL

pj and netU
pj refer to the lower

and upper limit of the input interval-value of the hidden neuron
respectively, and their calculation process is shown below:

netL
pj =

n

∑
i=1

w(1)
ji >0

w(1)
ji xL

pi +
n

∑
i=1

w(1)
ji <0

w(1)
ji xU

pi, (2)

netU
pj =

n

∑
i=1

w(1)
ji >0

w(1)
ji xU

pi +
n

∑
i=1

w(1)
ji <0

w(1)
ji xL

pi, (3)

where w(1)
ji denotes the weight between the i-th input node

and the j-th hidden node, and superscript 1 represents the first
layer of the network. It is noticed that the calculation process
for the hidden layer and that for the output layer are similar to
each other.

The main purpose of backward propagation of the
MVTBP architecture is also to compute the weight (such as
w(1)

ji , etc.) correction according to the output error, and we can
use a similar method to that in Refs. [1,2] to update the weight
of the memristive synaptic array.
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3. Results and discussion
In this section, the five-emitter-identification (EID) prob-

lem in Ref. [1] is taken for example to verify the performance
of the proposed MVTBP architecture. For the five-EID prob-
lem, there are 50 interval-value and scalar-value training sam-
ples in the training step (each emitter type has 10 training sam-
ples) respectively, and there are also 150 interval-value and
scalar-value test samples in the testing step (each emitter type
has 30 testing samples). It should be noted that all the simu-
lated emitter samples are from the radar manual[2] or the emit-
ter samples repository,[1] which stores the measured emitters
of five types. The parameters of the emitter samples are RF,
PRI and PW, and can be seen in detail in Ref. [1]. So, these
samples can represent the actual application situation to a cer-
tain extent.

In order to facilitate the hardware implementation, we
normalize the emitters’ parameters, making them situated in
a range between 0 and 1. In addition, to ensure the conver-
gence of the network, we also increase the node number of
hidden layers and employ the MVTBP architecture with a 3–
30–5 network. For verifying the adaptability of the proposed
MVTBP architecture to different measurement errors, it is also
necessary to test interval emitter samples with additive noise at
different levels. By introducing the error deviation level (EDL)
proposed in Ref. [2], we can generate noisy testing samples by
adding noise to the samples without noise. In this section, the
noisy interval-value testing samples with different EDLs (from
0 to 20%) are given to verify the performance of the MVTBP
architecture.

3.1. Identification performance analysis

In order to verify the identification performance under a
similar neural network architecture, the NVTBP algorithm is
selected[2] as the comparison objects in this subsection. The
identification performance on interval-value and scalar-value
testing samples are shown in Figs. 2 and 3, respectively.
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Fig. 2. Performance of NVTBP and MVTBP on interval-value testing
sample.

Compared with the NVTBP algorithm, the MVTBP ar-
chitecture has general advantages in both low EDL and high
EDL situation as can be seen in Fig. 2. When the EDL ar-
rives at 10%, the identification rate of the MVTBP architec-
ture could still achieve 100% whereas the identification rate
of the NVTBP algorithm is only about 72.94%. When the
EDL is equal to 20%, the identification rate of the MVTBP
architecture drops to 92.55%, which is about 37% higher than
that of the NVTBP algorithm. To further verify the perfor-
mance of the proposed architecture, we also introduce the
CVNN algorithm[1] with different network structures for com-
parison. Compared with the CVNN algorithm, the MVTBP
architecture has clear superiority. When the EDL is equal to
20%, the identification rate of the CVNN algorithm is only
77.67%, while the identification rate of the MVTBP architec-
ture is about 15% higher.
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Fig. 3. Performance of NVTBP and MVTBP on scalar-value testing sample.

From Fig. 3, it can be seen that with the increase of EDL,
the performances of both methods decrease, but the MVTBP
architecture drops more slowly. When the EDL reaches 10%
and 20% separately, the identification rate of the MVTBP ar-
chitecture achieves 100% and 81.55% respectively, which is
about 10% and 16% higher than that of the NVTBP algo-
rithm. In this scenario, we also chose the CVNN algorithm[1]

for comparison. Compared with the CVNN algorithm, the
MVTBP architecture also has universal superiority, especially
in the case of high EDL. As the EDL is 20%, the MVTBP
architecture is about 15% higher than that of the CVNN algo-
rithm.

From Figs. 2 and 3, it can be concluded that the MVTBP
architecture has better noise adaptability, in the case of high
EDL. The identification rate of MVTBP could be higher than
92% for interval-value testing sample and 81% for scalar-value
testing sample.

In terms of resource consumption, the MVTBP architec-
ture requires only 480 (3× 30× 2+ 30× 5× 2) memristive
devices, which is far less than those required by the traditional

028502-3



Chin. Phys. B Vol. 29, No. 2 (2020) 028502

numerical calculation method, so the proposed architecture is
very suitable for miniaturization and embedded applications.

3.2. Influence of device precision

Since the resistance state of the actual memristive device
is limited, it is of great practical significance to discuss the
radar emitter identification performances of the memristors
with different precisions (i.e., the resistance state of the mem-
ristive device). Assuming that the adjustable precision of the
memristive device is N bits, the adjustable state S of its resis-
tance value is S = 2N . For example, when the precision N of
the memristive device is 6 bits, the corresponding adjustable
resistance state number is 26 = 64.

In this subsection, the identification performance of dif-
ferent N bits (i.e., Software, 10 bits, 8 bits, 6 bits, 5 bits, 4 bits)
is discussed. The item Software denotes adopting default arith-
metic precision of Matlab, that is, the double-precision 16-bit
effective number. The identification results on interval-value
and scalar-value testing samples are discussed as follows. As
can be seen from Table 1 and Table 2, with the increase of
EDL, the identification rate of the MVTBP architecture de-
creases gradually.

Table 1. Performances on interval-value testing samples with different
precisions of memristive device.

Error deviation
Software 10 bits 8 bits 6 bits 5 bits 4 bits

level/%

20 92.55 92.99 92.91 92.94 83.13 52.53

18 95.10 94.78 94.57 93.59 83.56 53.61

16 96.55 96.34 95.98 94.98 84.09 54.74

14 98.50 98.52 98.06 96.86 84.38 55.79

12 99.55 99.74 99.63 98.96 84.56 57.11

10 100 99.95 99.97 99.82 84.48 58.26

8 100 100 100 100 84.78 59.47

6 100 100 100 100 84.53 59.95

4 100 100 100 100 84.03 60

2 100 100 100 100 83.95 60

0 100 100 100 100 83.50 60

As the precision N of the memristive device decreases, the
identification rate of the MVTBP architecture does not change
obviously at the beginning, and then suddenly drops at the end-
ing. When N = 6 bits, that is, the number of adjustable resis-
tance state is 64, it shows better identification performance, al-
most the same as the high precision case. When N = 5 bits, for
interval-value testing samples, the identification rate is about
84%, and remains basically unchanged with the increase of
EDL, while for scalar-value testing samples, the identification
rate decreases with EDL increasing. When N arrives at 4 bits,
the identification rate drops to about 50%–60%. It can be seen
from the above analysis that in order to make the emitter iden-
tification have better performance, the condition that the pre-

cision N of the memristive device should be at least 6 bits is
required to be satisfied.

Table 2. Performances on scalar-value testing samples with different
precisions of memristive device.

Error deviation
Software 10 bits 8 bits 6 bits 5 bits 4 bits

level/%

20 81.55 80.27 79.74 76.01 69.80 47.73
18 82.60 84.47 82.13 79.66 72.80 50.32
16 88.45 88.39 86.77 83.52 76.60 52.55
14 91.95 92.79 91.93 88.99 79.54 54.57
12 96.45 96.34 95.49 93.69 83.71 57.63
10 97.70 98.34 97.80 97.06 86.89 58.83
8 99.25 99.42 99.24 99.10 88.45 59.48
6 99.60 99.60 99.61 99.73 88.35 60
4 99.85 99.87 99.81 99.92 89.00 60
2 100 100 100 100 88.20 60
0 100 100 100 100 88 60

For the feasibility of the MVTBP architecture, we ver-
ify the identification performance and analyze the influence
of different device precision. Besides, we have designed neu-
ron circuits to generate the impulses needed for the network
and built a quasi-analytical model of three-dimensional (3D)
vertical-RRAM array architecture for MB-level design in the
early stage,[20] in which discussed were the influences of ar-
ray device parameters, such as resistance state, device non-
linearity, reading voltage, array scale, etc., on reading and
writing performance. All of these can provide a benchmark for
the practical application of this architecture. In addition, with
the development of device fabrication technology, the perfor-
mance of memristive array can be improved. Therefore, we
believe that the proposed MVTBP architecture will be feasi-
ble in practice in the future.

In summary, this proposed MVTBP architecture, can suc-
cessfully process the interval-value and scalar-value data with
noise, and is very suitable for building a specialized embed-
ded system, such as electronic reconnaissance system, speech
recognition system, image processing system, etc., because in
many cases, these systems have relatively high requirements
for size, power consumption, etc., and the measured input data
are generally uncertain.

4. Conclusions
Aiming at the identification problem of interval type data

and the requirements of embedded application, in this paper
we design an MVTBP architecture, which can realize mul-
tiplicative and accumulative operations of interval type data.
The results of simulation experiments verify the performance
of the proposed MVTBP architecture, and show that the pro-
posed architecture has better identification performance and
noise tolerance, and the device precision of 6 bits can meet
the requirement of emitter identification. The research in this
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paper can also provide support for extending memristor-based
network applications.

Of course, there is also some room for further improve-
ment of the MVTBP architecture, such as the resistance fluc-
tuation, yield, etc. In addition, considering other cases such as
image classification, the designing of different network archi-
tectures is also an important research hotspot. These problems
can be realized by improving the device preparation process,
optimizing the network architecture design and the like.
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