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Chaotic motion and quasi-periodic motion are two common forms of instability in the giant magnetostrictive actuator
(GMA). Therefore, in the present study we intend to investigate the influences of the system damping coefficient, system
stiffness coefficient, disc spring cubic stiffness factor, and the excitation force and frequency on the output stability and
the hysteresis vibration of the GMA. In this regard, the nonlinear piezomagnetic equation, Jiles–Atherton hysteresis model,
quadratic domain rotation model, and the GMA structural dynamics are used to establish the mathematical model of the
hysteresis vibration system of the GMA. Moreover, the multi-scale method and the singularity theory are used to determine
the co-dimensional two-bifurcation characteristics of the system. Then, the output response of the system is simulated to
determine the variation range of each parameter when chaos is imposed. Finally, the fourth-order Runge–Kutta method
is used to obtain the time domain waveform, phase portrait and Poincaré mapping diagrams of the system. Subsequently,
the obtained three graphs are analyzed. The obtained results show that when the system output is stable, the variation
range of each parameter can be determined. Moreover, the stability interval of system damping coefficient, system stiffness
coefficient, and the coefficient of the cubic stiffness term of the disc spring are obtained. Furthermore, the stability interval
of the exciting force and the excitation frequency are determined.
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1. Introduction
The giant magnetostrictive actuator (GMA) is a device,

which is fabricated by using the giant magnetostrictive ma-
terial (GMM) as the core component to convert the mag-
netic energy and the mechanical energy.[1] These devices
possess a wide variety of applications, including driving
electro-hydraulic servo valves,[2,3] vibration control,[4–6] en-
ergy harvesting,[7–9] electronically controlled injectors,[10,11]

and others.[12–14]

However, studies show that the GMM rod has a nonlin-
ear hysteresis characteristic so that there is a hysteresis phe-
nomenon between input current and output displacement of
the GMA, which seriously damages the nonlinear stability
of the GMA.[15–17] There are nonlinear instability and even
chaotic motion in the GMA so that neither the long-term pre-
diction nor long-term control of the GMA is almost possible.
This drawback seriously hinders the application of the GMA
in numerous fields, including the vibration control and energy
collection. In order to break through this limitation, different
methods, including the robust control,[18,19] adaptive control
algorithm,[20] optimal control,[21] and the H∞ control[22] have
been proposed so far. Therefore the influence of nonlinear fac-

tors is reduced and the GMA stability is improved.
Haomiao et al.[23] proposed a one-dimensional nonlinear

magneto–thermal–mechanical coupling constitutive model for
a GMM under multiple physical loads. Although the proposed
model reflects the actual working condition of the material
within a certain range, it cannot reflect the magnetic saturation
nor hysteresis of the material. Tan and Baras[24] replaced the
Jiles–Atherton (JA) model with the phenomenological model
of the Preisach operator. Although this innovation enhances
the versatility of the model, it requires complicated calcula-
tions and defines a large number of non-physical parameters.
Yuchuan et al.[25] proposed a method to evaluate the static
and dynamic characteristics of GMAs with hysteresis loops.
Moreover, Huifang et al.[26] proposed a dynamic nonlinear
multi-field coupling model for precise magnetostrictive actua-
tors. The proposed design was based on the nonlinear piezo-
magnetic equation, JA hysteresis model, quadratic domain ro-
tation model, and the GMA structural dynamics principle. The
combined model is a low-order ordinary differential equation.

It should be indicated that the chaotic motion is a typi-
cal form of the motion in a nonlinear phenomenon. On the
other hand, chaos phenomena are a hotspot of research on
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current nonlinear science. In fact, it has been considered
to be one of the major discoveries of the 20th century since
the advent of quantum mechanics, relativity and genes.[27] At
present, the bifurcation and chaos characteristics can be ana-
lyzed by variational principle,[28–31] Melnikov method,[32,33]

multi-scale method, etc.[34–36] Zeng[37] investigated the non-
linear chaotic motion in the GMA system. Moreover, Sun
et al.[38] conducted numerical simulations to study the phe-
nomenon of double-cycle and double-folding bifurcation of
the transducer system under a certain equivalent spring stiff-
ness and damping coefficient. Yuan et al.[39] performed nu-
merous numerical simulations and found that the vibration
system of the giant magnetostrictive transducer has compli-
cated bifurcation and chaotic behavior. However, they did
not study the regularity of the chaotic motion characteristics
when parameters of the GMA system are varying. Moreover,
they formed neither a systematic design method nor a theo-
retical basis. In fact, the stability design of the best match-
ing model for multi-parameters of the GMA structure has not
been explored so far. Reviewing the literature indicates that
few researches have been carried out so far on the bifurca-
tion and chaos of the GMA hysteresis vibration systems. On
the other hand, majority of these researches have been per-
formed on the bifurcation and chaos of other nonlinear vibra-
tion systems.[40–48]

In the present work, we initially introduce the working
principle of the GMA, establish the mathematical model for
hysteresis vibration system of the GMA and then analyze the
bifurcation characteristics of the system. Finally, the bifur-
cation diagram, time domain waveform, phase portrait, and
Poincaré mapping diagrams are used to analyze the chaotic
motion characteristics of the system. In the present study, the
method of the bifurcation and chaos of the GMA hysteresis
nonlinear vibration system is proposed and its theoretical basis
is established. It should be indicated that the research results
of this study provide theoretical basis and technical support for
the structural stability design of the GMA.

2. Working principle of GMA

Figure 1 illustrates the structure of the GMA. The work-
ing principle can be described as follows. The input current
of the exciting coil is adjusted to generate a driving magnetic
field for controlling the elongation of the GMM rod. Then, the
offset magnetic field generated by the DC current is used to
eliminate the frequency doubling of the GMA. Moreover, the
disc spring pretension structure is utilized to exert the pressure
on the GMM rod so that it can achieve higher expansion. The
magnetically permeable sleeve, ring and the sheet are used to
form a closed magnetic circuit, which reduces the magnetic

leakage and the interference of external magnetic devices in
the drive.
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Fig. 1. GMA structure.

3. Mathematical model of GMA hysteresis vi-
bration system
The GMA can be regarded as a combination of a single-

degree-of-freedom mass elastic damping system and a second-
order mass elastic damping system based on their working
principle. Figure 2 shows a GMA equivalent mechanical sys-
tem.
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Fig. 2. Equivalent mechanical model of GMA.

It is assumed that the axial length of the GMM rod and
the axial length of coil are the same and the internal strain ζ ,
stress σ , and the magnetic field strength H are uniform. Dur-
ing the movement of the GMA system, the GMM rod has no
displacement at one end and the same displacement x(t), ve-
locity ẋ(t), and acceleration ẍ(t) at the other end as the load is
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applied. Under the action of the exciting coil and the nonlinear
disc spring and considering the mass and damping coefficient
of the GMM rod, the nonlinear piezomagnetic equation with
hysteresis can be obtained below. The total strain ζ of the
GMM rod is the sum of the elastic strain σ/EH

y of the GMM
rod, originating from the applied stress, the magnetostrictive
strain λ with hysteresis caused by the applied magnetic field,
the strain

(
ρl2

M/3EH
y
)

ζ̈ caused by the GMM rod quality, and
the strain

(
cD/EH

y
)

ζ̇ caused by the internal damping coeffi-
cient of the GMM rod. Therefore, the total strain ζ of the
GMM rod can be mathematically written as[49]

ζ =
σ

EH
y
+λ −

(
cD

EH
y

)
ζ̇ − ρl2

M
3EH

y
ζ̈ , (1)

where EH
y and λ are the elastic modulus of the magnetic field

and the magnetostrictive strain of the GMM rod, respectively.
Furthermore, lM, cD, and ρ denote the effective length, internal
damping coefficient, and the mass density of the GMM rod, re-
spectively. The approximate correlation between the magne-
tostrictive strain λ of the isotropic material and the magnetiza-
tion M can be defined, based on the quadratic domain rotation
model, as[50]

λ =
3λs

2M2
s

M2, (2)

where λs and Ms indicate the saturation magnetostriction co-
efficient of an isotropic material, saturation magnetization, re-
spectively. Moreover, M is the total magnetization generated
by the exciting magnetic field, which is composed of the re-
versible magnetization Mrev and the irreversible magnetization
Mirr.

By neglecting the crystal anisotropy, the Jiles–Atherton
nonlinear hysteresis model can be expressed as[51,52]

Mrev = c(Man−Mirr) , (3)

Mirr = (M− cMan)/(1− c) , (4)

Man = Ms

[
coth

(
He

a

)
− a

He

]
, (5)

dMirr

dH
=

Man−Mirr

kδ −𝛼(Man−Mirr)
, (6)

He = H +𝛼M, (7)

H = χrH0 sin(ωt) . (8)

The parameters from Eq. (3) to Eq. (8) are listed in Table 1.

Table 1. Parameters appearring in Eqs. (3)–(8).

Man Non-hysteresis magnetization

He effective magnetic field inside the GMM
H0 excitation magnetic field amplitude
𝛼 equivalent parameter of internal magnetic domain interaction of GMM rod
a hysteresis magnetization shape parameter
c reversible coefficient
k irreversible loss coefficient
χr influence factor of the internal magnetic field distribution of the material
ω frequency of excitation magnetic field
δ symbol constant of magnetic field direction

When the hysteresis loss of the ferromagnetic material is
in an ideal state, there is no energy loss and the total magne-
tization M is equal to the hysteresis magnetization Man. This
can be expressed as

M = Man = Ms

[
coth

(
He

a

)
− a

He

]
. (9)

Taylor expansion of Eq. (9) results in the following equation

M = Ms

(
He

3a

)
+o
(

H3
e

3a3

)
. (10)

By substituting high-order term into Eq. (7) the following
equation is obtained

M =
Ms

3a
(H +𝛼M) . (11)

Therefore, the following equation can be obtained:

M =
Ms

3a−𝛼Ms
H. (12)

For the force analysis, the force acting on the GMM rod is
described as follows:

Fd = mLẍ(t)+ cLẋ(t)+ kLx(t)+bx3 (t) , (13)

where mL, cL, and kL denote the equivalent mass, equivalent
damping coefficient, and equivalent stiffness coefficient of the
load, respectively. Moreover, Fd and b are the output force of
the load and the third stiffness coefficient of disc spring term,
respectively.

According to Newton’s third law,

F =−(Fd +σ0AM) , (14)

where F and σ0 are the output force of the GMM rod and the
applied pre-stress, respectively. Moreover, AM is the equiva-
lent cross-sectional area of the GMM rod.

Integrating Eqs. (13) and (14) results in the following
equation:

F =−
(
mLẍ(t)+ cLẋ(t)+ kLx(t)+bx3 (t)+σ0AM

)
, (15)
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where mM, cM, and kM are equivalent mass, equivalent damp-
ing coefficient, and equivalent stiffness coefficient of the
GMM rod, respectively.

The GMA hysteresis vibration equation is obtained by
combining the strain ζ = x/lM with Eqs. (1) and (15) in the
following form:

mẍ(t)+ξ ẋ(t)+ k1x(t)+bx3 (t) = AMEH
y λ −σ0AM, (16)

where

m = mM +mL, ξ = cM + cL, k1 = kM + kL (17)

with

mM =
ρlMAm

3
, cM =

cDAm

lM
, kM =

EH
y Am

lM
, (18)

and m, ξ , and k1 being the sum of the equivalent mass of
the load and the equivalent mass of the GMM rod, system
damping coefficient, and the system stiffness coefficient of the
GMA hysteresis nonlinear vibration system, respectively.

When equations (2), (8), and (12) are substituted into
Eq. (16), the simplified equation is written as follows:

mẍ(t)+ξ ẋ(t)+ k1x(t)+bx3 (t)+C0−F0 cos(2ωt) = 0, (19)

where

C0 = σ0AM +
3EH

y AMλSχ2
r H2

0

4(3a−𝛼Ms)
2 ,

F0 =
3EH

y AMλSχ2
r H2

0

4(3a−𝛼Ms)
2 (20)

with F0 denoting the exciting force of the GMA system.

4. Bifurcation characteristics analysis of hys-
teresis vibration system of GMA
Equation (19) is normalized and the left- and right-hand

sides are both divided by m and the resulting equation is

ẍ(t)+2µ ẋ(t)+ω
2
0 x(t)+βx3 (t)+ c0− f cos(Ω t) = 0, (21)

where

2µ =
ξ

m
, ω

2
0 =

k1

m
, β =

b
m
, Ω = 2ω,

c0 =
C0

m
, and f =

F0

m
. (22)

The nonlinear term in Eq. (21) is preceded by a small pa-
rameter ε , then the resulting equation is given as follows:

ẍ+ω
2
0 x = ε

(
f cos(Ω t)−2µ ẋ−βx3− c0

)
. (23)

The following approximate solution is obtained by the multi-
scale method below:[53]

x(t,ε) = x0 (T0,T1)+ εx1 (T0,T1) , (24)

where Ti = ε it (i = 0,1).
When equation (24) is substituted into Eq. (23), the re-

sulting linear partial differential equation is similar to ε power
factor and is given below:

D2
0x0 +ω

2
0 x0 = 0, (25)

D2
0x1 +ω

2
0 x1

= −2D0D1x0−2µD0x0−2βx3
0− c0 + f cos(Ω t) , (26)

where Dn = ∂/∂Tn (n = 0, 1).
In order to obtain the general solution of Eq. (25), it is

assumed that

x0 = A(T1)cos [ω0T0 +ϕ (T1)]

+CC def
= A(T1) e jω0T0 +CC, (27)

where CC is the conjugate of the preceding paragraph. More-
over, A(T1) is defined as

A(T1)
def
=

1
2

a1 (T1) e jϕ(T1). (28)

When the external excitation frequency Ω nears the natural
frequency ω0 (Ω = ω0) of the system, detuning parameter σ

is obtained to be

Ω = ω0 + εσ1. (29)

The substitution of Eqs. (27) and (29) into Eq. (26) eliminates
long-term expressions and results in the following equation:

2 jω0 (D1A+µA)+3βA2Ā− 1
2

f e jσ1T1 = 0. (30)

By substituting Eq. (28) into Eq. (30), the real and imag-
inary parts are obtained to be

D1a1 =−µa1 +
f

2ω0
sinγ, (31)

a1D1γ = σ1a1−
3βa3

1
8ω0

+
f

2ω0
cosγ, (32)

where γ = σT1−ϕ .
Equations (31) and (32) can be combined to obtain a1,

γ , and the zero-order approximate solution of the nonlinear
hysteresis vibration equation of the GMA system, and the fol-
lowing equation is obtained:

x(t) = a1 (T1)cos(Ω t− γ)+O(ε) . (33)

For the solution of steady state motion, it is assumed that
D1a1 = 0 and D1γ = 0 in Eqs. (31) and (32)

µa1 =
f

2ω0
sinγ, (34)

σ1a1−
3βa3

1
8ω0

=− f
2ω0

cosγ. (35)
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The sum of the square of Eqs. (34) and (35) is added to ob-
tain the bifurcation response equation of the GMA hysteresis
nonlinear vibration system

X1a6
1 +X2a4

1 +X3a2
1 +X4 = 0, (36)

where

X1 = 9β
2, X2 =−48σ1ω0β ,

X3 = 64ω
2
0
(
µ

2 +σ
2
1
)
,X4 =−16 f 2. (37)

Equation (36) can be re-written as follows:

a6
1 + pa4

1 +qa2
1−ψ = 0, (38)

where

p =
−16σ1ω0

3β
, q =

64ω2
0
(
µ2 +σ2

1
)

9β 2 , ψ =
16 f 2

9β 2 . (39)

Since equation (38) does not have Z-axis symmetry, it is mul-
tiplied by a1 to obtain the following equation:

G(a1,ψ,q, p) = a7
1 + pa5

1 +qa3
1−ψa1 = 0. (40)

Equation (40) satisfies G(−a1, ψ)=−G(a1, ψ), and thus
has Z-axis symmetry. Assuming that v = a2

1, the following
equation is obtained:

G(a1,ψ,q, p) = R(v,ψ,q, p)a1,

g(a1,ψ) = a7
1−ψa1 = r (v,ψ)a1, (41)

where

R(v,ψ,q, p) = v3 + pv2 +qv−ψ,r(v,ψ) = v3−ψ,

and g(a1,ψ) ∈ εa1,ψ = (Z). According to the singularity
theory, G(a1,ψ,q, p) is a universal opening of normative
g(a1,ψ) = a7

1−ψa1, where p and q are opening parameters
and the singularity is the codimension 2.

Figure 3 illustrates the transition set and branch topology
of the system.

q

pD







H01

H1

H02

Fig. 3. System’s transition set and fork topology.

1: Bifurcation point set: B(Z) = ϕ (ϕ is an empty set);
2: Lag point set: H01(Z)= {q= 0, p> 0}; H02(Z)= {q=

0, p < 0}; H1(Z) = {q = p2/3, p≤ 0};
3: Double limit point set: D(Z) = {q = p2/4, p≤ 0};
4: Transition set: ∑ = B∪H ∪D.

5. Numerical simulation
For Eq. (19), the following values are obtained: m = 1,

ξ = 0.5, k1 =−1, b = 1, C0 = 1.5, F0 = 1, and ω = 1. More-
over, the initial value is taken to be (0, 0). Then, the range of
value of each parameter in the GMA hysteresis nonlinear vi-
bration system is determined by calculating the response of the
GMA hysteresis nonlinear vibration system with the variation
of each parameter. The time domain waveform, phase portrait,
and Poincaré mapping diagram of each parameter in the GMA
hysteresis nonlinear vibration system are drawn by the fourth-
order Runge–Kutta method. Moreover, the chaotic motion
characteristics of the system with the GMA hysteresis non-
linear vibration system damping coefficient, system stiffness
coefficient, coefficient of cubic stiffness term of disc spring,
exciting force, and the exciting frequency are studied.

5.1. Bifurcation characteristics of system and path to
chaos when system damping coefficient changes

Figure 4 shows the bifurcation diagram of the system
variation as the damping coefficient ξ changes. The flowchart
for leading the system to chaos when the damping coefficient
ξ changes is as follows:

Periodic motion → jump motion → chaotic motion →
paroxysmal chaos→ degenerate into period 3→ chaotic mo-
tion → paroxysmal chaos → degenerate into period 4→
chaotic motion→ paroxysmal chaos→ degenerate into period
2→ periodic motion. The regions of system damping coeffi-
cient ξ are shown in Table 2.
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Fig. 4. Bifurcation diagram when system damping coefficient changes.

Table 2. Regions of system damping coefficient ξ .

Ranges of ξ Motion form

(0.05, 0.215) periodic motion
(0.215, 0.38) chaotic motion (Fig. 5)
(0.38, 0.43) degenerate into period 3
(0.43, 0.51) chaotic motion (Fig. 6)
(0.51, 0.55) degenerate into period 4
(0.55, 0.61) chaotic motion

(0.61, 0.765) degenerate into period 2 (Fig. 7)
(0.765, 1.00) periodic motion
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Figure 4 indicates that when the system damping coeffi-
cient is ξ ∈ (0.05, 0.215), the motion of the system obtains
a steady-state period of 1. However, when the system damp-
ing coefficient ξ is greater than 0.215, the periodic motion of
the system jumps. Moreover, figure 5 shows that when the
system damping coefficient is ξ ∈ (0.215, 0.38), the system
jumps from periodic motion to chaotic motion. Paroxysmal
chaos occurs near the boundary from chaotic motion to regu-
lar motion. When the system damping coefficient ξ is about
0.38, the system generates paroxysmal chaos, which is accom-
panied by bifurcation degradation into a period of 3. When the
system damping coefficient is ξ ∈ (0.38, 0.43), the system per-
forms a motion with a period of 3. Furthermore, figure 6 shows
that when the system damping coefficient is ξ ∈ (0.43, 0.51),
the system is in chaotic motion. When the system damping
coefficient is ξ ∈ (0.51,0.55), the system will again generate

paroxysmal chaos, and then the system will present the pe-
riod 4 motion. When the system damping coefficient is ξ ∈
(0.55, 0.61), the system performs chaotic motion. Moreover,
when the system damping coefficient ξ is greater than 0.61,
the system degenerates into the period 2 motion with the in-
verse bifurcation, and finally degenerates into a steady state
with a period of 1. When the system damping coefficient is
ξ ∈ (0.61, 0.765), the system performs a motion with a pe-
riod of 2. Figiure 7 illustrates that when the system damping
coefficient is ξ = 0.65, the phase portrait is a closed curve;
the time domain waveform is regular and the period is stable.
Moreover, it is observed that the Poincaré mapping diagram
has two attracting points, so the system has a typical two-cycle
motion. Finally, when the system damping coefficient is ξ ∈
(0.765, 1.00), the system performs a steady-state motion with
a period of 1.
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Fig. 5. Nonlinear response of GMA system for ξ = 0.25: (a) time domain waveform, (b) phase portrait, and (c) Poincaré mapping diagram.
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Fig. 6. Nonlinear response of GMA system for ξ = 0.45, showing (a) time domain waveform, (b) phase portrait, and (c) Poincaré mapping diagram.
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Fig. 7. Nonlinear response of GMA system for ξ = 0.65, showing (a) time domain waveform, (b) phase portrait, and (c) Poincaré mapping diagram.

Figures 5 and 6 show the diagrams of time domain wave-
form, phase portrait, and Poincaré mapping for chaotic motion
in the system when the system damping coefficientis ξ = 0.25
and ξ = 0.45, respectively. It is observed that the time domain
waveform in Figs. 5(a) and 6(a) are irregular and the periodic

vibration is unstable. Moreover, the phase portrait in Figs. 5(b)
and 6(b) are both filled with the phase space and are not closed
for a long time and do not overlap each other nor entangle each
other. Furthermore, it is indicated that the Poincaré mapping
diagram in Fig. 5(c) is neither a finite point set nor a closed
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curve, while the Poincaré mapping diagram in Fig. 6(c) is a
lattice with a certain geometry. Therefore, it indicates that the
system is in a chaotic state.

5.2. Bifurcation characteristics of system and path to
chaos when system stiffness coefficient changes

Figure 8 shows the bifurcation diagram of the system
when the stiffness coefficient k1 changes. The flowchart that
the system enters into chaos when the stiffness coefficient k1

changes indicates the following steps:
Chaotic motion→ paroxysmal chaos→ periodic motion

→ chaotic motion→ paroxysmal chaos→ period 4→ chaotic
motion → paroxysmal chaos → period 2→ periodic motion.
The regions of system stiffness coefficient k1 are listed in Ta-
ble 3.

Figure 8 shows that when the system stiffness coefficient
is k1 ∈ (0.05, 0.07), the system performs a chaotic motion.
When the system stiffness coefficient is k1 ∈ (0.07, 0.48), the
system performs a steady state period of 1 motion. More-
over, when the system stiffness coefficient k1 is 0.57, 0.62,
and 0.67, the multiple burst chaos occurs in the system. Fig-
ure 9 indicates that when the system stiffness coefficient is
k1 ∈ (0.48, 0.735), the system performs chaotic motion. Fig-
ure 10 indicates that when the system stiffness coefficient is
k1 ∈ (0.735,0.765), the system degenerates from chaotic mo-
tion to motion with period 4. Furthermore, it is observed that
when the system stiffness coefficient is k1 = 0.75, the phase
portrait is a closed curve; the time domain waveform is regu-
lar and the period is stable. Moreover, the Poincaré mapping
diagram has four attracting points, so the system is in a mo-
tion with a period of 4. Figure 11 illustrates that when the

system stiffness coefficient is k1 ∈ (0.765, 0.835), the system
performs chaotic motion. When the system stiffness coeffi-
cient k1 is greater than 0.835, the system degenerates into a
period 2 motion with the inverse branching and finally degen-
erates into a steady-state motion with a period of 1. When the
system stiffness coefficient is k1 ∈ (0.835, 0.865), the system
performs a motion with a period of 2. Finally, when the system
stiffness coefficient is k1 ∈ (0.865, 1.00), the system performs
a steady-state motion with a period of 1.
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Fig. 8. Bifurcation diagram when system stiffness coefficient changes.

Table 3. Regions of system stiffness coefficient k1.

Ranges of k1 Motion form

(0.05, 0.07) chaotic motion
(0.07, 0.48) periodic motion
(0.48, 0.735) chaotic motion (Fig. 9)

(0.735, 0.765) period 4 (Fig. 10)
(0.765, 0.835) chaotic motion (Fig. 11)
(0.835, 0.865) period 2
(0.865, 1.00) periodic motion
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Fig. 9. Nonlinear response of GMA system for k1 = 0.65, showing (a) time domain waveform, (b) phase portrait, and (c) Poincaré mapping diagram.
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Fig. 10. Nonlinear response of GMA system for k1 = 0.75, showing (a) time domain waveform, (b) phase portrait, and (c) Poincaré mapping diagram.
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Fig. 11. Nonlinear response of GMA system for k1 = 0.8, showing (a) time domain waveform, (b) phase portrait, and (c) Poincaré mapping diagram.

Figures 9 and 11 show the diagram of time domain wave-
form, phase portrait and Poincaré mapping for the chaotic
motion of the system when the system stiffness coefficient
is k1 = 0.65 and k1 = 0.8, respectively. Figures 9(a) and
11(a) illustrate the non-period irregular reciprocating motion
of the time domain waveform. Moreover, figures 9(b) and
11(b) show that the phase portraits are curves of a disordered
multi-turn phase set. Furthermore, figure 9(c) shows that the
Poincaré mapping diagram is linearly distributed by infinite
points, while the Poincaré mapping diagrams in Fig. 11(c) is
neither a finite point set nor a closed curve. Therefore, it indi-
cates that the system is in a chaotic state.

Based on the aforementioned analysis, as the system
damping coefficient (ξ ) and the system stiffness coefficient
(k1) increase, the system output state tends to be stable. More-
over, equations (17) and (18) indicate that the increasing of pa-
rameters cM and kM of the GMM rod can increase parameters
ξ and k1 and enhance the system stability. Therefore, select-
ing an elongated GMM rod is disadvantageous for the stability.
Meanwhile, the damping and rigidity of the disc spring can be
appropriately increased accordingly.

5.3. Bifurcation characteristics of system and path to
chaos when coefficient of cubic stiffness term of disc
spring changes

Figure 12 shows that the bifurcation diagram of the sys-
tem when the coefficient of cubic stiffness term of disc spring
b changes. The flowchart leading the system to be chaotic
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Fig. 12. Bifurcation diagram when coefficient of cubic stiffness term of
disc spring changes.

when the coefficient of cubic stiffness term of disc spring b
changes is written as follows:

Periodic motion → quasi-periodic motion → periodic
doubling bifurcation→ period 4→multiple paroxysmal chaos
→ chaotic motion. The motion forms in different regions of
coefficient of cubic stiffness with disc spring b are listed in
Table 4.

Table 4. Motion forms in different regions of coefficient of cubic stiff-
ness with disc spring b.

Ranges of b Motion form

(0.1, 0.145) periodic motion

(0.145, 0.275) quasi-periodic motion (Fig. 13)

(0.275, 0.355) periodic doubling bifurcation

(0.355, 0.38) period 4

(0.38, 1.00) chaotic motion (Fig. 14)

Figure 12 illustrates that when the coefficient of the cubic
stiffness term of the disc spring is b ∈ (0.1, 0.145), the motion
of the system is a motion with a steady-state period of 1. When
the coefficient of the cubic stiffness term of the disc spring is
b ∈ (0.145, 0.275), the system switches from the steady-state
periodic motion to the quasi-periodic motion. Moreover, fig-
ure 13 shows that when the coefficient of the cubic stiffness
term of disc spring is b = 0.2, the phase portrait is filled with
the phase space and it is closed. The time domain waveform
is the superposition of two periodic signals, and the Poincaré
mapping diagram is the finite point setforming a semi-closed
curve, so the system is a quasi-periodic motion. When the co-
efficient of the cubic stiffness term of the disc spring is b ∈
(0.275, 0.355), the pseudo-periodic motion of the system oc-
curs with a period-doubling bifurcation. Furthermore, when
the coefficient of the cubic stiffness term of the disc spring
is b ∈ (0.355, 0.38), the system period doubling is a period-4
motion. When the coefficients of the cubic stiffness term of
the disc spring b are 0.54, 0.59, 0.71 and 0.86, multiple burst
chaos occurs in the system. Figure 14 shows that when the
coefficient of the cubic stiffness term of the disc spring is b ∈
(0.38, 1.00), the system performs the chaotic motion.
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Fig. 13. Nonlinear response of GMA system for b = 0.2, showing (a) time domain waveform, (b) phase portrait, and (c) Poincaré mapping diagram.
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Fig. 14. Nonlinear response of GMA system for b = 0.5, showing (a) time domain waveform, (b) phase portrait, and (c) Poincaré mapping diagram.

Figure 14 shows the time domain waveform, phase por-
trait and Poincaré mapping diagram of the chaotic motion in
the system when the coefficient of the cubic stiffness term of
the disc spring is b = 0.5. Figure 14(a) shows that the time
domain waveform is irregular and no periodic motion occurs.
Moreover, figure 14(b) indicates that the phase portrait is filled
with the phase space region and cannot be closed for a long
time. It is observed that the phase portrait motion is a recip-
rocating motion and the period is an infinitely long motion.
Furthermore, figure 14(c) illustrates that the Poincaré mapping
diagram is neither a finite point set nor a closed curve. There-
fore, it is indicated that the system is in a chaotic state.

Based on the above analysis, the system output state tends
to be stable as the coefficient of cubic stiffness of the disc
spring b increases.

5.4. Bifurcation characteristics of system and path to
chaos when exciting force changes

Figure 15 shows the bifurcation diagram of the system
when the exciting force F0 changes. The flowchart leading
the system to be chaotic when the exciting force F0 changes is
written asfollows:

Periodic motion → quasi-periodic motion → double pe-
riod bifurcation → multiple paroxysmal chaos → chaotic
motion → paroxysmal chaos → degenerate into period 3→
chaotic motion→ jump motion→ periodic motion. The mo-
tion forms in different regions of exciting force F0 are listed in
Table 5.
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Fig. 15. Bifurcation diagram when exciting force changes.

Table 5. Motion forms in different regions of exciting force F0.

Ranges of F0 Motion form

(0.05, 0.225) periodic motion
(0.225, 0.44) quasi-periodic motion
(0.44, 0.51) double period bifurcation

(0.51, 0.835) chaotic motion (Fig. 16)
(0.835, 0.86) period 3
(0.86, 0.88) chaotic motion
(0.88, 1.00) periodic motion (Fig. 17)

Figure 15 shows that when the exciting force is F0 ∈
(0.05, 0.225), the motion of the system has a steady-state
period of 1. When the exciting force is F0 ∈ (0.225, 0.44),
the system converts the steady-state periodic motion into the
quasi-periodic motion. Moreover, when the exciting force is
F0 ∈ (0.44,0.51), the pseudo-periodic motion of the system
occurs in the period-doubling bifurcation. When the values of
exciting force F0 are 0.45, 0.47, and 0.48, multiple episodic
chaos occurs in the system. Figure 16 indicates that when
the exciting force is F0 ∈ (0.51, 0.835), the system performs
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chaotic motion. When the exciting force F0 is about 0.835,
the system again generates paroxysmal chaos and then enters
into the motion with a period of 3. When the exciting force is
F0 ∈ (0.835, 0.86), the system performs a motion with a pe-
riod of 3. When the excitation force is F0 ∈ (0.86, 0.88), the
system has a chaotic motion. Furthermore, when the exciting
force F0 is greater than 0.88, the chaotic motion of the system

jumps. Moreover, when the exciting force is F0 ∈ (0.88, 1.00),
the system jumps from chaotic motion to steady-state motion
with period of 1. Figure 17 shows that when the exciting force
is F0 = 0.9, the phase portrait is a closed curve, the time do-
main waveform is regular and the period is stable. Moreover,
it is observed that the Poincaré mapping diagram is an isolated
point, so the system has a typical single-cycle motion.

Time/s Displacement/mm Displacement/mm

D
is
p
la
c
e
m
en
t/
m
m

V
e
lo
c
it
y
/
m
m
Ss
-
1

V
e
lo
c
it
y
/
m
m
Ss
-
1

500 540 580 620
-1.5

-0.5

0.5

1.5

-1.5 -0.5 0.5 1.5
-1.0

-0.5

0

0.5

1.0

-2 0 2 4 6
-8

-4

0

4

8
(a) (b) (c)

Fig. 16. Nonlinear response of GMA system for F0 = 0.55, showing (a) time domain waveform, (b) phase portrait, and (c) Poincaré mapping diagram.
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Fig. 17. Nonlinear response of GMA system for F0 = 0.9, showing (a) time domain waveform, (b) phase portrait, and (c) Poincaré mapping diagram.

Figure 16 shows the time domain waveform, phase por-
trait and Poincaré mapping diagram of the chaotic motion in
the system when the exciting force is F0 = 0.55. Figure 16(a)
illustrates that the time domain waveform is irregular and the
periodic vibration is not stable. Moreover, figure 16(b) indi-
cates that the phase portrait is filled with the phase space re-
gion and cannot be closed for a long time. It is observed that
the phase portrait motion is a reciprocating motion and the pe-
riod is an infinitely long motion. Figure 16(c) illustrates that
the Poincaré mapping diagram is neither a finite point set nor
a closed curve. Therefore, it is indicated that the system is in
a chaotic state.

According to the foregoing analysis, as the excitation
force F0 increases, the system output state becomes more un-
stable.

5.5. Bifurcation characteristics of system and path to
chaos when excitation frequency changes

Figure 18 shows the bifurcation diagram of the system
when the excitation frequency ω changes. The flowchart lead-
ing the system to be chaotic when the excitation frequency ω

changes is described as follows:
Multiple paroxysmal chaos → chaotic motion → parox-

ysmal chaos→ degenerate into period 2→ chaotic motion→

paroxysmal chaos → periodic motion → chaotic motion →
paroxysmal chaos → periodic motion. The motion forms in
different regions of excitation frequency ω are given in Ta-
ble 6.
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Fig. 18. Bifurcation diagram when excitation frequency changes.

Figure 18 shows that when the excitation frequency is
ω ∈ (0.05, 0.465), the system enters into the chaotic motion af-
ter multiple bursting chaos has occurred. When the excitation
frequency ω is about 0.465, the system again undergoes the
paroxysmal chaos and then enters into the motion of period 2.
Moreover, when the excitation frequency is ω ∈ (0.465,0.59),
the chaotic motion of the system occurs in a period-doubling
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bifurcation and enters into a motion with a period of 2. When
the excitation frequency is ω ∈ (0.59, 0.645), the system per-
forms a chaotic motion. Figure 19 (ω = 0.6) shows that when
the excitation frequency is ω ∈ (0.645, 0.67), the system ex-
hibits a short-term periodic motion. Moreover, when the ex-
citation frequency is ω ∈ (0.67, 0.72), the system obtains a
chaotic motion. Finally, when the excitation frequency is ω ∈
(0.72, 1.00), the system performs a steady-state motion with a
period of 1.

Table 6. Motion forms in different regions of excitation frequency ω.

Ranges of ω Motion form

(0.05, 0.465) chaotic motion
(0.465, 0.59) period 2
(0.59, 0.645) chaotic motion (Fig. 19)
(0.645, 0.67) periodic motion
(0.67, 0.72) chaotic motion
(0.72, 1.00) periodic motion
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Fig. 19. Nonlinear response of GMA system for ω = 0.6, showing (a) time domain waveform, (b) phase portrait, and (c) Poincaré mapping diagram.

Figure 19 shows the time domain waveform, phase por-
trait and Poincaré mapping diagram of the chaotic motion in
the system when the excitation frequency is ω = 0.6. Fig-
ure 19(a) shows that the time domain waveform is irregular
and the periodic vibration is unstable. Moreover, figure 19(b)
illustrates that the phase portrait is filled with the phase space
region and cannot be closed for a long time. It is observed that
they do not overlap each other and are entangled with each
other. Furthermore, figure 19(c) indicates that the Poincaré
mapping diagram is neither a finite point set nor a closed
curve. Therefore, it is indicated that the system is in a chaotic
state.

6. Conclusions and perspectives
(i) The mathematical model of the hysteresis nonlinear

vibration of the GMA system is established by analyzing the
working principle of the GMA. Moreover, the vibration equa-
tion of the GMA system is described.

(ii) The output response of the GMA hysteresis nonlinear
vibration system is simulated, and the range of values of each
parameter is determined when the periodic solution is gen-
erated. Moreover, the system damping coefficient possesses
a periodic characteristic in the intervals (0.05, 0.215), (0.38,
0.43), (0.51, 0.55), (0.61, 0.765), and (0.765, 1.00). The sys-
tem stiffness coefficient has a periodic property in the inter-
vals (0.07, 0.48), (0.735, 0.765), (0.835, 0.865), and (0.865,
1.00). Moreover, the coefficient of the cubic stiffness term
of the disc spring indicates a periodic behavior in the inter-
vals (0.1, 0.145) and (0.355, 0.38). Furthermore, the excit-
ing force presents a periodic property in the intervals (0.05,
0.225), (0.835, 0.86), and (0.88, 1.00). Finally, the excita-
tion frequency is periodic in the intervals (0.465, 0.59), (0.645,
0.67), and (0.72, 1.00).

(iii) The dynamic simulation analyses of the GMA system
are conducted for different values of characteristic parameter.
The analysis is performed from a purely theoretical point of
view. Increasing the system damping coefficient, increasing
the system stiffness coefficient, increasing the coefficient of
the square stiffness term of the disc spring, reducing the coef-
ficient of the cubic stiffness term of the disc spring, reducing
the exciting force and increasing the excitation frequency all
can effectively compress the chaotic motion range of the sys-
tem and increase the periodic motion range of the system, thus
improving the stability of the GMA system.

(iv) In the present study, the theoretical basis of the bi-
furcation and chaos characteristics of the GMA for hystere-
sis nonlinear vibration systems is established. It is found that
changing the characteristic parameters can cause the GMA
system to perform chaotic motion, or to avoid the chaotic mo-
tion, and can even control the vibration characteristics of the
system. It should be indicated that the present study can pro-
vide the theoretical basis and technical supports for the struc-
tural stability design of the GMA.
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