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On the basis of second-order perturbation approximate and modal expansion approach, we investigate the enhance-
ment effect of cumulative second-harmonic generation (SHG) of circumferential guided waves (CGWs) in a circular tube,
which is inherently induced by the closed propagation feature of CGWs. An appropriate mode pair of primary- and double-
frequency CGWs satisfying the phase velocity matching and nonzero energy flux is selected to ensure that the second
harmonic generated by primary CGW propagation can accumulate along the circumference. Using a coherent superposi-
tion of multi-waves, a model of unidirectional CGW propagation is established for analyzing the enhancement effect of
cumulative SHG of primary CGW mode selected. The theoretical analyses and numerical simulations performed directly
demonstrate that the second harmonic generated does have a cumulative effect along the circumferential direction and the
closed propagation feature of CGWs does enhance the magnitude of cumulative second harmonic generated. Potential
applications of the enhancement effect of cumulative SHG of CGWs are considered and discussed. The theoretical analysis
and numerical simulation perspective presented here yield an insight previously unavailable into the physical mechanism
of the enhancement effect of cumulative SHG by closed propagation feature of CGWs in a circular tube.
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1. Introduction
Circular tubes widely serve in chemical, pharmaceutical,

food and power engineering industries due to their excellent
mechanical properties.[1,2] As an effective means, ultrasonic
guided waves have been effectively used for nondestructive
assessment of circular tubes.[3–6] It is known that the guided
wave modes propagating in circular tubes can be classified into
two types: axial mode propagating along the axial direction
(including longitudinal,[7] torsional,[8] and flexural mode[9])
and circumferential mode propagating along the circumferen-
tial direction.[10,11] The circumferential mode of guide wave
propagation in a circular tube is referred to as circumferential
guided wave (CGW), where its propagation path is closed and
the corresponding standing wave is formed in the radial direc-
tion.

Due to the closed propagation feature of CGW mode
(namely, its propagation path is closed), it is especially suit-
able for detecting the radial and axial cracks in the circular
tube with a larger diameter.[10,11] Qu et al. laid a ground-
work for investigations of dispersion relations of CGWs
in a hollow cylinder.[12] Then some analytical and experi-
mental investigations of propagation feature of CGWs have
been performed.[13–16] Compared with the axial guided wave

modes, the CGWs have some unique advantages in nonde-
structive assessment of circular tube structures. Firstly, when
the axial length of a circular tube is relatively short, the axial
guided waves can readily be affected by the end-face reflec-
tions, while the CGWs can completely avoid the influence of
the end-face reflections because they propagate only along the
circumference of the given circular tube. Secondly, due to the
closed propagation feature of CGWs, the finite-duration CGW
signal can propagate periodically along the circumference of
the circular tube (or it can be repeatedly detected at the same
position of the circular tube), which may make CGWs show
more abundant nonlinear wave phenomena compared with the
axial guided waves, Lamb waves and SH plate waves investi-
gated previously.[17–20]

Considering the fact that the nonlinear ultrasonic tech-
nique is much more sensitive to early damage in materi-
als than that based on the linear feature of ultrasonic wave
propagation,[21–25] and that the CGWs have the unique advan-
tages in nondestructive assessment of circular tube structures,
it is expected that nonlinear CGWs can be used to effectively
assess the early damage in circular tubes. Recently, Gao et al.
established a theoretical model to analyze the effect of second-
harmonic generation (SHG) of primary CGW propagation.[26]
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Then, Deng et al. experimentally demonstrated that the second
harmonic generated by propagation of primary CGW mode
satisfying the phase velocity matching and nonzero power flux
could grow along the circumference of the tube.[27] On this
basis, it has been experimentally validated that the level of
the accumulated damage in a circular tube can effectively be
revealed by the acoustic nonlinearity parameter of primary
CGW propagation through one full circumference.[28] Fur-
thermore, Li et al. analyzed the nonlinear feature of CGW
propagation in a composite circular tube.[29–32] Although it is
known that the nonlinear CGWs have the potential for non-
destructive assessment of circular tube structures, the physical
mechanism how the closed propagation feature of CGWs in-
fluences the effect of SHG of primary CGW still remains unre-
vealed. Specifically, it is necessary to investigate the enhance-
ment effect of cumulative SHG, which is inherently induced
by the closed propagation feature of CGWs.

In this paper, modeling and simulation of the enhance-
ment effect of cumulative SHG by the closed propagation fea-
ture of CGWs will be conducted. The corresponding theoret-
ical predictions will be examined by the finite element (FE)
simulation. Moreover, the potential for applications of the en-
hancement effect of cumulative SHG of CGWs will be consid-
ered and discussed. The results obtained yield a previously un-
available insight into the physical mechanism of the enhance-
ment effect of cumulative SHG by closed propagation feature
of CGWs in the given circular tube.

2. Theoretical fundamentals
2.1. SHG of CGW propagation

The schematic diagram of a circular tube with inner ra-
dius R1 and outer one R2 is shown in Fig. 1, where the tube
material is assumed to be isotropic, homogeneous and disper-
sionless. It should be noted that the model shown in Fig. 1 is
also used for the FE simulations, where the excitation sources,
as well as other settings will be described in more detail later
in Section 3.

According to the stress-free boundary conditions on the
inner and outer surfaces of the circular tube, both the disper-
sion relations for CGW propagation and the corresponding
displacement fields can readily be determined.[26] When the
primary CGW with the driving frequency f and order index l
propagates clockwise along the circumference of the circular
tube shown in Fig. 1, the corresponding mechanical displace-
ment field can formally be given by

𝑈 ( f ,l) =𝑈 ( f ,l)(r)exp[jN( f ,l)
θ − jωt], (1)

where ω = 2π f is the angular frequency, N( f ,l) = ωR2/c( f ,l)
p

and c( f ,l)
p are the dimensionless angular wave number and the

phase velocity of the lth primary CGW mode, 𝑈 ( f ,l)(r) is the

corresponding displacement field function of the lth primary
CGW mode.

Due to the geometric nonlinearity and the inherent elas-
tic nonlinearity of solid, within a second-order perturbation,
accompanying propagation of the lth primary CGW along the
tube circumference, there are the traction stress tensors of dou-
ble the fundamental frequency, denoted by 𝑃 (NL), on the inner
and outer surfaces of the circular tube. In addition to 𝑃 (NL),
there is the bulk driving force at the double fundamental fre-
quency, denoted by 𝐹 (NL), inside the circular tube. The formal
expressions of 𝑃 (NL) and 𝐹 (NL) are presented in Refs. [26,28].

R

R

Q

P

excitation source S2excitation source S1

θ=0

Θ

ˆ
r̂

r

θ

θ

O

AB

»AB=-λ4

probe point 

Fig. 1. Schematic diagram of the circular tube used for analyzing CGW
propagation, where r̂ and θ̂ are the unit vectors along the radial and
circumferential directions.

Based on the modal expansion approach for waveguide
excitation,[26,33] both of 𝑃 (NL) and 𝐹 (NL) generate a series of
double-frequency CGW (DFCGW) modes. In other words, the
linear sum of a series of DFCGW modes generated by 𝑃 (NL)

and 𝐹 (NL) constitutes the second-harmonic field (denoted by
𝑈 (2 f )) of the lth primary CGW mode, namely,[26,28,33]

𝑈 (2 f ) = ∑
m

Am(θ)𝑈 (2 f ,m)(r) , (2)

where Am(θ) and 𝑈 (2 f ,m)(r) are, respectively, the expansion
coefficient and the field function of the mth DFCGW mode
generated. Based on the previous derivation,[26] the formal
expression of Am(θ) is given by

Am(θ)=
( f surf

m + f vol
m )

4Pmm

[
sin(∆Nθ)

∆N
exp( j∆Nθ)

]
exp[ jN(2 f ,m)

θ ],

(3)
where ∆N = [N( f ,l)−N(2 f ,m)] is used to describe the disper-
sion degree between the lth primary CGW mode and the mth

DFCGW mode, N(2 f ,m) = 2ωR2/c(2 f ,m)
p and c(2 f ,m)

p are the
dimensionless angular wave number and the phase velocity
of the mth DFCGW mode; Pmm is the average power flow
of mth DFCGW mode (per unit width, perpendicular to the
tube section); f vol

m and f surf
m are the bulk and surface driv-

ing source, which are associated with the second-order trac-
tion stress tensor 𝑃 (NL) and the second-order bulk driving
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force 𝐹 (NL), respectively. The formal expressions of 𝑈 ( f ,l)(r)
and 𝑈 (2 f ,m)(r), as well as Pmm, f vol

m and f surf
m are also de-

rived in Ref. [26]. When both the nonzero energy flux (i.e.,
( f vol

m + f surf
m )/4Pmm 6= 0) and the phase velocity matching (i.e.,

∆N = 0 or ∆N ≈ 0) are simultaneously satisfied, the second
harmonic field [i.e., 𝑈 (2 f ) in Eq. (2)] generated by propaga-
tion of the lth primary CGW is mainly dependent on the mth

DFCGW, and the contribution of other DFCGW modes to the
second-harmonic field can be negligible.[26] Under this cir-
cumstance, Equation (2) can thus be rewritten as

𝑈 (2 f ) =
( f vol

m + f surf
m )

4Pmm
·θ ·𝑈 (2 f ,m)(r) · exp[ jN(2 f ,m)

θ ]. (4)

Obviously, the magnitude of second-harmonic field will
grow linearly with the circumferential angle θ . Until now,
the solution of cumulative second harmonic of primary CGW
propagation in a circular tube has been exactly determined us-
ing a second-order perturbation and modal expansion analysis
approach.

2.2. Enhancement effect of cumulative second harmonic

Within a second-order perturbation, the amplitude of pri-
mary CGW signal can be regarded to be unchanged when the
acoustic attenuation of solid is neglected, while the amplitude
of cumulative second harmonic generated will grow linearly
with the circumferential angle θ (see Eq. (4)). Specifically,
at the same position of the circular tube in Fig. 1 (e.g., at the
circumferential angle θ or θ + 2nπ; n is an integer), for the
desired mode pair [i.e., the lth CGW (primary) and the mth

DFCGW (generated)], the amplitude of the lth CGW signal
(denoted by A1) received at θ for the first time is the same

as that received at θ + 2nπ , i.e., the amplitude of the primary
CGW signal (A1) will be kept unchanged even if the CGW sig-
nal propagates n cycles around the circumference. In contrast,
the amplitude of cumulative second-harmonic signal (denoted
by A2) received at θ +2nπ will be (θ +2nπ)/θ times that re-
ceived at θ . Clearly, this effect (i.e., the enhancement effect
of cumulative SHG) is induced by the closed propagation fea-
ture of CGWs. It is noticeable that the effect of cumulative
second harmonic of primary CGW mode is completely differ-
ent from that induced by propagation of primary guided wave
whose propagation path is not closed (e.g., Lamb wave, SH
plate wave, or axial guided wave in circular tube). Combin-
ing Eqs. (1) and (4), the relative nonlinear acoustic parameter,
defined by βR = A2/A2

1,[21] can be formally expressed as

βR =

∣∣∣∣ f vol
m + f surf

m

4Pmm

∣∣∣∣ ·
∣∣∣∣∣ 𝑈 (2 f ,m)(r)
[𝑈 ( f ,l)(r)]2

∣∣∣∣∣
r=R2

θ . (5)

Clearly, at the same position of the circular tube, the rela-
tive nonlinear acoustic parameter βR measured at θ +2nπ will
be (θ + 2nπ)/θ times that measured at θ . Namely, we can
get a larger βR just letting the CGW signal propagate n cycles
around the circumference.

2.3. Numerical and analytical considerations

Next some numerical and analytical considerations will
be conducted to understand the foregoing theoretical analyses.
The given circular tube shown in Fig. 1 is assumed to be a
stainless steel one with an inner radius R1 of 104.5 mm and
outer radius R2 of 109.5 mm. The material parameters of the
circular tube in Fig. 1 are given in Table 1.

Table 1. Material parameters of the circular tube.[26]

Material
Mass density Longitudinal wave velocity Shear wave velocity Third-order elastic constants/GPa

ρ/kg·m−3 cL/km·s−1 cT/km·s−1 l m n
Stain steel 7900 5.640 3.070 −50 −590 −720

According to the equations of stress-free boundary con-
ditions at the inner and outer surfaces of the circular tube, the
dispersion relations for CGW propagation can readily be cal-
culated and shown in Fig. 2.[26] Considering the fact that the
probes are generally located on the outer surface of the circu-
lar tube to receive the CGWs, the radius r is set to be R2 when
calculating the linear phase and group velocities.

In Fig. 2, the intersections (i.e., D0, D1, D2, . . .) between
the dashed line V and the DFCGW dispersion curves denote
the DFCGW modes constituting the field of the second har-
monic generated by the lth CGW mode (point F0 in Fig. 2) at
the driving frequency f = 0.434 MHz. For the mode pair at
f = 0.434 MHz (i.e., points F0 and D0; denoted by F0 and D0),
the lth primary CGW and mth DFCGW strictly satisfy both

the phase and group velocity matching, and the corresponding
linear phase (cp) and group (cg) velocities are, respectively,
4.442 km/s and 2.227 km/s. For observation of the cumulative
SHG by primary CGW propagation, the specific mode pair F0

and D0 is selected. It should be noted that the contribution of
the other DFCGWs (i.e., points D1, D2, and D3, in Fig. 2) to
the second-harmonic field of primary CGW (i.e., point F0) can
be negligible due to the mismatching of their phase velocities
with c( f ,l)

p .[26] The mth DFCGW mode (i.e., point D0) plays a
dominant role in U (2 f ) (see Eq. (4)).

Figure 3 illustrates the normalized displacement com-
ponents of the lth primary CGW mode versus the radius r.
Clearly, the radial (i.e., U ( f ,l)

r (r) = 𝑈 ( f ,l)(r) · r̂) or circum-
ferential (i.e., U ( f ,l)

θ
(r) = 𝑈 ( f ,l)(r) · θ̂ ) component of the dis-
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placement field of the lth primary CGW (point F0) is no
longer exactly symmetrical or anti-symmetrical with respect to
r = (R1 +R2)/2. Consequently, the field of the primary CGW
mode propagating in a circular tube cannot be simply divided
to be symmetric or anti-symmetric, which is quite different
from Lamb waves propagating in a single isotropic plate.
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It is known that the displacement field of the lth CGW
mode (i.e., U ( f ,l)

r (r) and U ( f ,l)
θ

(r)) can be completely deter-

mined for a set of given solution ( f ,c( f ,l)
p ) obtained from the

primary CGW dispersion curve (see Fig. 2(a)). By exerting the
specific displacement field (U ( f ,l)

r (r) and U ( f ,l)
θ

(r)) on the cir-
cular tube, it is expected that the primary CGW mode desired

can be effectively excited. By substituting the displacement
components U ( f ,l)

q (r) and U (2 f ,m)
q (r) (q = r, θ ) into Eqs. (4)

and (5), the curve of the relative nonlinear acoustic param-
eter βR at r = R2 with respect to the circumferential angle
θ can readily be calculated. Clearly, the relative nonlinear
acoustic parameter βR increases linearly with the circumfer-
ential angle θ because the phase velocity matching is satis-
fied for the mode pair F0 and D0 at the driving frequency
f = 0.434 MHz (see Fig. 2). Here we use β

(n=1)
R and β

(n=2)
R

to respectively denote the relative nonlinear acoustic parame-
ter detected at the first and second times at the same position
(e.g., point Q in Fig. 1) using the finite-duration CGW signal.
Theoretically, the difference between β

(n=1)
R and β

(n=2)
R (de-

noted by ∆βR = β
(n=2)
R − β

(n=1)
R ) at different θ (θ ∈ (0,2π])

will be the same, because ∆βR represents the relative nonlinear
acoustic parameter of the primary CGW propagating around
one full circumference and is thus independent of θ . Clearly,
based on the expression given in Eq. (5), there is ∆βR =

2π
∣∣( f vol

m + f surf
m )/(4Pmm)

∣∣ · ∣∣∣𝑈 (2 f ,m)(r)/[𝑈 ( f ,l)(r)]
2
∣∣∣
r=R2

.

3. Finite element simulations
3.1. Modeling of unidirectional CGW propagation

Generally, the CGWs generated by an excitation source
exerted on the given circular tube propagate both clockwise
and counterclockwise around the circumference. In the previ-
ous investigations,[29–31] only the CGWs propagating clock-
wise are taken into account. To avoid the interference of
CGWs that propagate counterclockwise, in the previous FE
simulation model, a section cut is made on the circular tube.
For investigation of enhancement effect of cumulative SHG
by closed propagation feature of CGWs, it is required that the
CGW signal can unidirectionally propagate (e.g., clockwise)
around the full circumference. Here a model is proposed based
on the coherent superposition of multi-waves to ensure the
unidirectional propagation of primary CGW around the full

circumference. As shown in Fig. 1, the angle Θ =
⌢
AB/R2 be-

tween two exactly the same (coherent) excitation sources S1

and S2 is set to be λ/(4R2) (i.e., the arc length
⌢
AB is λ/4),

where λ is the wavelength of the lth primary CGW mode de-
sired, and the phase of the source S1 is set to be π/2 ahead of
that of S2. Assuming that the amplitudes of both waves gen-
erated respectively by S1 and S2 are A, and that they remains
constant during the propagation process. The points P and
Q are, respectively, two arbitrary probe points in the counter-
clockwise and clockwise directions (see Fig. 1). At the arbi-
trary point P, the phase difference ∆φ between the two CGWs,
generated respectively by S1 and S2 and propagating counter-
clockwise, is given by

∆φ = φ2−φ1− (2π/λ ) ·
⌢

∆ , (6)
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where
⌢

∆ =
⌢
PA−

⌢
PB =

⌢
AB, φi (i = 1,2) is the phase of the

source Si, and φ2−φ1 = −π/2. For the arbitrary probe point
P in Fig. 1, the phase difference ∆φ is readily found to be
−π . That is, when the two CGWs are respectively generated
by S1 and S2 and propagate counterclockwise around the cir-
cumference, the phase difference between them is always π

at the arbitrary point P. Theoretically, the amplitude of wave
detected at the arbitrary probe point P is equal to zero. It can
be deduced that there is no desired CGW propagating coun-
terclockwise around the circumference. In the same way, for

the arbitrary probe point Q, there are
⌢

∆ =
⌢
QA−

⌢
QB = −λ/4

and ∆φ = 0 in Eq. (6). That is, when the two CGWs are re-
spectively generated by S1 and S2 and propagate clockwise
around the circumference, the phase difference between them
is always zero at the arbitrary point Q. Thus the amplitude of
wave detected at the arbitrary point Q is equal to 2A. Based on
the model presented here, it is expected that the unidirectional
propagation of the primary CGW around the full circumfer-
ence will take place.

3.2. Finite element simulations on enhancement effect

Here, FE simulations on enhancement effect of the cu-
mulative SHG by closed propagation feature of CGWs are
conducted using a commercial software COMSOL 5.3r. The
model used for FE simulations is also shown in Fig. 1, where
the geometrical and materials parameters of the circular tube
are the same as that given in Subsection 2.3. The Murnaghan
model and plane strain conditions are used.[34] To guarantee
the high efficiency and error convergence, the mapped element
type of 0.25 mm is used to discretize the model. To satisfy the
stability analysis, the time step ∆t is chosen to be 0.02 µs in
FE simulations. Two exactly the same excitation sources S1

and S2 with the specific displacement field distribution of the
primary CGW mode (i.e., point F0 in Fig. 2) are applied in the
given circular tube to generate the unidirectional CGW prop-
agation (see Fig. 1). To effectively generate the pure primary
CGW mode desired and to inhibit unwanted CGW modes, the
prescribed displacement distributions applied on two exactly
the same excitation sources S1 and S2 are set to be Dq(r, t) =
T0Aq(t)U

( f ,l)
θ

(r) (q = 1,2), where T0 is the amplitude, and its

value is set to be 1 µm; U ( f ,l)
θ

(r) is the field function of circum-
ferential displacement component of the primary CGW mode
(point F0 in Fig. 2), as that shown in Fig. 3; Aq(t) (q = 1 and
2) are the tone-burst temporal waveform consisting of N cycles
of Hanning windowed sine signal, which are, respectively, de-
fined as A1(t) = sin(2π f0t + π/2)× [1− cos(2π f0t/N)] and
A2(t) = sin(2π f0t)× [1− cos(2π f0t/N)].[35] In FE simula-
tions, the central frequency f0 and the cycle number N are,
respectively, set to be 0.434 MHz and 49. Stress free bound-
ary conditions are applied on the inner and outer surfaces of

the circular tube, and the probe points (see Fig. 1) are posi-
tioned on the outer surface to pick up the radial displacement
component.
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Fig. 4. Temporal signals received at points P and Q in Fig. 1; (a) only S1
is driven by D1(r, t), and (b) both S1 and S2 are simultaneously driven
by D1(r, t) and D2(r, t).

In the model shown in Fig. 1, the enhancement effect of
SHG by the closed propagation feature of unidirectional CGW
propagation in the given circular tube is modeled and simu-
lated with FE simulations. First of all, it is necessary to verify
that the model of FE simulations can effectively excite the de-
sired unidirectional CGW signal. When only the excitation
source S1 is driven by the prescribed displacement D1(r, t),
the temporal signals respectively received at the probe points
P and Q in Fig. 1 are shown in Fig. 4(a). Obviously, both the
temporal signals are remarkable, which means that the CGW
signals propagating clockwise and counterclockwise along the
circumference are generated simultaneously. When the two
exactly same excitation sources S1 and S2 are simultaneously
driven by the prescribed displacements D1(r, t) and D2(r, t),
the temporal signals respectively received at the probe points
P and Q are shown in Fig. 4(b). Clearly, the temporal signal
received at the probe point P almost disappears completely
while the temporal signal received at the probe point Q almost
increases two times than that in Fig. 4(a). This FE simulation
result is completely consistent with the prediction based on
modeling of unidirectional CGW propagation given in Subsec-
tion 3.1. Considering the similar physical features of guided
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wave propagation, it is expected that the modeling of unidi-
rectional CGW propagation presented here is also suitable for
other guided waves such as Lamb waves propagating in plate-
like structures.

Next, the enhancement effect of SHG by the closed prop-
agation feature of unidirectional CGW propagation will be
examined by FE simulations, which has been analyzed in
Subsection 2.2. When the primary CGW signal [like that
in Fig. 4(b)] propagates clockwise in the circular tube, the
first two clear time-domain signals [denoted by C and D in
Fig. 5(a)] can be detected at the probe point positioned at
an appropriate circumferential angle (e.g., θ = π/2) as long
as the time frame is set to be long enough, which is consis-
tent with the results measured in our previous experimental
work.[28] Theoretically, the group delay of the primary CGW
mode desired [i.e., point F0 in Fig. 2(a); c( f )

g = 2.227 km/s]
around one full circumference of the tube examined is calcu-
lated to be 2πR2/c( f )

g = 308.93 µs, which is very close to the
group delay ∆t = 310.12 µs between the two signals C and
D (R.E. 0.395%). Hereby, the carrier of the signals C and D
is certainly the CGW mode (point F0), and their correspond-
ing propagation circumferential angles are, respectively, π/2
and 2π + π/2 in Fig. 1. The spectrogram obtained by using
short time Fourier transform (STFT) for the time-domain sig-
nal shown in Fig. 5(a) is illustrated in Fig. 5(b), where the
frequencies of the fundamental wave and second harmonic

generated are marked with the dotted horizontal lines (H1 and
H2). The two slices along the dotted horizontal lines H1 and
H2 are, respectively, shown in Figs. 5(c) and 5(d), through
which the corresponding amplitudes of the primary CGW at
f = 0.434 MHz (point F0) and the second harmonic generated
at f = 0.868 MHz, denoted by A(q)

1 and A(q)
2 (where q = C

or D corresponds to the signal C or D), can readily be de-
termined. Also, it can be observed that the signal magnitude
of primary CGW remains almost constant, while the signal
magnitude of the second harmonic generated at θ = π/2 is
obviously smaller than that at θ = 2π + π/2, which is con-
sistent with the theoretical prediction where the second har-
monic generated grows along the tube circumference. By an-
alyzing the time-domain signals shown in Fig. 5(a) and the
STFT results shown in Figs. 5(b), 5(c) and 5(d). It is con-
vinced that the CGW mode desired can be selectively excited
using the FE simulation model established in Fig. 1. Based
on the amplitudes of primary CGW and second harmonic gen-
erated [i.e., A(q)

1 and A(q)
2 in Figs. 5(c) and 5(d)], the corre-

sponding β
(n=1)
R = A(C)

2 /
[
A(C)

1

]2
and β

(n=2)
R = A(D)

2 /
[
A(D)

1

]2
,

as well as ∆βR = β
(n=2)
R −β

(n=1)
R can readily be determined,

where β
(n=1)
R and β

(n=2)
R are, respectively, the relative nonlin-

ear acoustic parameter detected at the first and second times
at the same position (θ = π/2) using the finite-duration CGW
signal (see Subsection 2.3).
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Fig. 5. (a) Time-domain signal detected at the probe point θ = π/2, (b) the corresponding spectrogram, (c) the slice at the fundamental
frequency (line H1), and (d) the slice at the second-harmonic frequency (line H2).
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The probe points are placed around the outer surface of
the given circular tube (see Fig. 1), where the propagation
circumferential angle θ is set to be changed from π/8 rad to
15π/16 with an interval of π/8. For different probe points,
the time-domain signal similar to that shown in Fig. 5(a) can
be simulated, then the values of A(q)

1 and A(q)
2 like that shown

in Figs. 5(c) and 5(d) can be calculated by using STFT. The
corresponding values of β

(n=1)
R and β

(n=2)
R , as well as ∆βR,

can readily be determined subsequently, and these parame-
ters with respect to the propagation circumferential angle θ

are shown in Fig. 6. Obviously, the results of FE simulations
are reasonably consistent with the theoretical predictions. Fig-
ure 6(a) illustrates that the amplitude of the second harmonic
generated will linearity increase with propagation circumfer-
ential angle θ in each propagation cycle when the strict phase
velocity matching and nonzero power flux are simultaneously
satisfied (see mode pair F0 and D0 in Fig. 2). It can be found in
Fig. 6(b) that the parameter ∆βR measured at different θ is al-
most kept the same. Obviously, the FE simulations performed
are completely consistent with the theoretical and analytical
considerations involving the enhancement effect of cumulative
SHG by closed propagation feature of CGW in Section 2.
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Fig. 6. Normalized relative nonlinearity parameter of primary CGW
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R and β
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R , and (b) ∆βR.

4. Discussion
The results of aforementioned theoretical considerations

and FE simulations have verified that the closed propagation
feature of CGWs can enhance the effect of cumulative second

harmonic generated. What we are more interested in is how
to apply this closed propagation feature of CGWs in practical
applications. Generally, the potential is mainly reflected from
the following aspects.

Firstly, the source of nonlinearity can be effectively dis-
tinguished using the enhancement effect of cumulative SHG
by closed propagation feature of CGWs. It is known that in
the measurement of second harmonics generated by primary
guided wave propagation, the nonlinearity of the measurement
system composed of signal generator, power amplifier, ultra-
sonic transducer, couplant and so on will lead to the appear-
ance of an extra second-harmonic signal. This extra second-
harmonic signal may be even larger than that induced by de-
fects in material. Generally, it is difficult to distinguish the
measured second-harmonic signal whether from the measure-
ment system, material itself or both. It is worth noting that the
material nonlinearity of interest can be distinguished from the
measurement system using the enhancement effect of cumula-
tive SHG by closed propagation feature of CGWs. Take our
previous experimental investigation as an example,[28] when
the wedge transmitting transducer for generation of the desired
primary CGW is driven by the specified tone-burst voltage,
the receiving wedge transducer successively receives two clear
time-domain signals similar to that in Fig. 5(a), and the corre-
sponding β

(n=1)
R and β

(n=2)
R , as well as ∆β = β

(n=2)
R −β

(n=1)
R

can readily be determined. Generally, the origin of β
(n=1)
R

includes two aspects: the nonlinearity of the measurement
system (including couplant) and the material nonlinearity of
the circular tube through which the primary CGW propagates
along the path of θR2,[28] while the origin of β

(n=2)
R is the

same as that of β
(n=1)
R except for the difference in the length of

propagation path (i.e., θR2 +2πR2). Thus, the relative acous-
tic nonlinearity parameter ∆β = β

(n=2)
R − β

(n=1)
R completely

eliminates the influence of the measurement system (including
couplant), and quantitatively characterizes the material non-
linearity of the circular tube through which the primary CGW
propagates through one full circumference.[28]

Secondly, the detection sensitivity of early damage stage
can be improved using the enhancement effect of cumulative
SHG by closed propagation feature of CGW. Previous inves-
tigates indicate that in the early damage stage of material,
change in the second-order elastic constants (SOECs) of ma-
terial is inconsiderable, and variation in the relative nonlinear
acoustic parameter should be mainly attributed to change in
the three-order elastic constants (TOECs) of material.[21] To
facilitate the investigation of assessing early damage in ma-
terial (characterized by change in TOECs) by using the rela-
tive nonlinear acoustic parameter, the TOECs are assumed to
change from its initial values (A, B, C) to rc× (A, B, C),[31]

where rc is the damage status coefficient used to describe the
degree of early damage, while the remaining material prop-
erties and geometric parameters of the circular tube are kept
unchanged. Base on Eq. (5), the curves of normalized β

(n=1)
R ,

∆βR = β
(n=2)
R −β

(n=1)
R and ∆β ′R = β

(n=3)
R −β

(n=1)
R detected at
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an appropriate circumferential angle (e.g., θ = π/4) versus the
scale coefficient rc are shown in Fig. 7, where rc varies from
1.0 to 1.5 with an interval of 0.1. Obviously, ∆βR and ∆β ′R
are more sensitive to early damage of the tube material than
β
(n=1)
R . It can also be seen that the detection sensitivity to the

early damage is further improved by properly increasing prop-
agation cycle number n, that is, ∆β ′R is more sensitive to early
damage than ∆βR.

Theoretically, increasing the propagation cycle number
n can improve the detection sensitivity to the early damage.
However, it should be noted that increasing the propagation
cycle number n is equivalent to increasing the propagation
path. Practically, the propagation attenuation of CGWs will in-
evitably increase with the propagation cycle number n, which
will reduce the signal-to-noise ratio (SNR). Thus, it is neces-
sary to find a balance between keeping an appropriate SNR
and improving the detection sensitivity of early damage in
practical measurements.
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5. Conclusions
A theoretical model is established for analyzing the en-

hancement effect of cumulative SHG by the closed propaga-
tion feature of CGWs in a circular tube. Using a second-order
perturbation and a modal expansion analysis, the mathemati-
cal expression of the second-harmonic fields by primary CGW
propagation in a circular tube has been derived. In order to re-
alize the unidirectional propagation of CGWs, a model is pro-
posed based on coherent superposition of multi-waves to en-
sure the unidirectional propagation of primary CGWs around
the full circumference. Regarding the enhancement effect of
cumulative SHG by the closed propagation feature of CGWs,
some numerical and analytical considerations are performed,
and then FE simulations are conducted to further validate the
said effect. A close agreement between the theoretical predic-
tions and FE simulations verifies the effectiveness of using the
model based on the coherent superposition of multi-waves to
realize the unidirectional propagation of primary CGWs, and
the enhancement effect of cumulative SHG by closed prop-
agation feature of CGWs. On this basis, the potential for
applications of the closed propagation feature of CGWs are
considered and discussed. It is convinced that, in the SHG

based nonlinear measurements, the enhancement effect of cu-
mulative SHG by closed propagation feature of CGWs can be
used to effectively remove the unwanted nonlinearity coming
from the measurement system. In addition, with the enhance-
ment effect of cumulative SHG by closed propagation feature
of CGWs, the detection sensitivity of early damage of circu-
lar tube can be improved, especially when the SHG effect of
CGW propagation is not enough to accurately characterize the
early damage of material. The potential mentioned here is ex-
pected to play an important role in the nonlinear CGW de-
tection technology. The results obtained here yield a previ-
ously unavailable insight into the physical mechanism of the
enhancement effect of cumulative SHG by closed propagation
feature of CGWs in a circular tube.
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