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Interference properties of two-component matter wave solitons
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Wave properties of solitons in a two-component Bose–Einstein condensate are investigated in detail. We demonstrate
that dark solitons in one of components admit interference and tunneling behavior, in sharp contrast to the scalar dark
solitons and vector dark solitons. Analytic analyses of interference properties show that spatial interference patterns are
determined by the relative velocity of solitons, while temporal interference patterns depend on the velocities and widths of
two solitons, differing from the interference properties of scalar bright solitons. Especially, for an attractive interactions
system, we show that interference effects between the two dark solitons can induce some short-time density humps (whose
densities are higher than background density). Moreover, the maximum hump value is remarkably sensitive to the variation
of the solitons’ parameters. For a repulsive interactions system, the temporal-spatial interference periods of dark–bright
solitons have lower limits. Numerical simulation results suggest that interference patterns for the dark–bright solitons are
more robust against noises than bright–dark solitons. These explicit interference properties can be used to measure the
velocities and widths of solitons. It is expected that these interference behaviors can be observed experimentally and can
be used to design matter wave soliton interferometer in vector systems.
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1. Introduction
Bose–Einstein condensate (BEC) is a prototypical quan-

tum many-body systems. In the framework of mean-field the-
ory, the dynamics of BEC systems are commonly described
by nonlinear Schrödinger equation (NLSE), also known as
the Gross–Pitaevskii (GP) equation.[1] The atomic interac-
tions are described by a nonlinear term proportional to the s-
wave scattering length and the condensates density. Therefore
BECs provide a good platform to study soliton excitations.[2,3]

Bright solitons,[4–7] and dark solitons[8–11] are observed in
BECs with attractive and repulsive interatomic interactions,
respectively. Solitons admit both particle and wave prop-
erties. The interactions between solitons are usually elastic
just like particles.[12–14] Recently, wave properties of solitons
were discussed intensively,[15–24] mainly including interfer-
ence behavior and tunneling dynamics, since wave proper-
ties can be used to design high-precision matter wave soli-
ton interferometers.[17–21] With respect to the interference be-
havior, some bright soliton interferometers were proposed in
BECs with attractive interactions.[17–21] The interference and
tunneling properties of scalar bright solitons have been de-
scribed analytically in BECs.[22,23] In contrary to the scalar
bright solitons, scalar dark solitons do not admit interference
or tunneling behavior, due to its effective negative mass na-
ture. However, the dark soliton is an another common soliton

excitation, which can be used to measure physical quantities in
BECs with repulsive interactions. Therefore, we will discuss
the wave properties of vector solitons related to dark soliton in
multi-component BECs.

The multi-component coupled systems, far from be-
ing a trivial extension of the single-component one, have
shown many novel and fundamentally different dynamical
behaviors.[25–31] Recently, it was shown that tunneling oscil-
lations could be observed between the interaction of two dark
solitons in binary repulsive BECs.[24] It indicated that dark
solitons in one of components can admit wave properties when
it is coupled with bright solitons in the other component. Then,
it is natural to expect that dark solitons can allow interference
behavior in multi-component BECs, and vector solitons can
be used to measure more physical parameters than scalar soli-
tons. Therefore, we intend to study interference properties of
bright–dark solitons as well as dark–bright solitons in a two-
component BECs system. Similar discussions can be extended
to more component coupled BECs.

In this paper, we mainly study the interference proper-
ties of bright–dark solitons (dark–bright solitons) in a two-
component BEC system with attractive (repulsive) interac-
tions. We show that dark solitons in one of components can ad-
mit interference and tunneling behavior due to the feedback of
the wave properties of bright-soliton component onto the dark
one, in sharp contrast to the scalar dark solitons and dark–dark
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solitons. The explicit interference periods are characterized
analytically, which suggests that interference patterns can be
manipulated precisely by controlling the velocities and widths
of the two solitons. For attractive interactions, particularly, we
note that the collision of dark solitons can induce some short-
time humps above the background density in the dark-soliton
component. The detailed analyses show that the maximum
hump value of the dark-soliton component is sensitive to the
relative phase, relative velocity, and relative width of the two
solitons. Additionally, we exhibit tunneling dynamics of soli-
tons in both components. For repulsive interactions, temporal
and spatial interference periods are found to have lower lim-
its. The maximum density value of the dark-soliton compo-
nent is equal to the background, differing substantially from
the attractive interactions system. Furthermore, the numerical
results show that dark-bright solitons are more robust against
noises than brigh-t-dark solitons.

The rest of this paper is arranged as follows. In Section 2,
we introduce the theoretical model and present the bright–
dark soliton solutions. In Section 3, we analyze in detail the
wave properties of two bright–dark solitons during the interac-
tion processes in BECs with attractive interactions, mainly in-
cluding interference patterns, short-time humps in dark-soliton
component, and tunneling dynamics. In Section 4, we explore
the interference behavior of dark–bright solitons in BECs with
repulsive interactions. The analysis shows that the temporal
and spatial interference periods have lower limits. Addition-
ally, we demonstrate the stability of dark–bright solitons by
numerical simulations. Finally, we summarize our results in
Section 5.

2. Theoretical model and bright–dark soliton so-
lutions
In the framework of the mean-field theory, the dynam-

ics of a two-component BEC with attractive interactions can
be described well by the following dimensionless coupled
NLSE[32,33]

iqb,t +
1
2

qb,xx +(|qb|2 + |qd|2)qb = 0,

iqd,t +
1
2

qd,xx +(|qb|2 + |qd|2)qd = 0, (1)

where qb(x, t) and qd(x, t) represent the mean-field wave func-
tions of bright-soliton component and dark-soliton compo-
nent, respectively. Generally, a dark soliton cannot exist
in a system with attractive interactions. But for bright–
dark solitons, bright soliton can create an − f sech2(

√
f x)-

type quantum well,[34,35] which enables dark soliton to ex-
ist as the first-excited state in the quantum well. Therefore,
the dark soliton can be described in such an attractive cou-
pled system. The bright–dark solitons have been reported in
Refs. [36,37]. To study the collision dynamics of the bright–
dark solitons, we re-derive soliton solutions by performing

Darboux transformation[33,38] with the seed solutions q0b = 0
and q0d = e it . For simplicity and without loss of generality,
we discuss the collision dynamics of the two bright–dark soli-
tons based on the exact solutions. The two-soliton solutions
are

q2b = q1b−
i2λ2iΦ

∗
1 Φ2

|Φ1|2 + |Φ2|2 + |Φ3|2
,

q2d = q1d−
i2λ2iΦ

∗
1 Φ3

|Φ1|2 + |Φ1|2 + |Φ3|2
, (2)

where ∗ means the complex conjugation. The explicit expres-
sions for Φ1, Φ2, and Φ3 are presented in Appendix A. q1b and
q1d are bright–dark one-soliton solutions

q1b = w1

[
1+

1
w2

1 + v2
1

]1/2

sech[w1(x− v1t)−η/2]e iβ1+it ,

q1d =
1

v1− iw1

{
v1− iw1 tanh[w1(x− v1t)−η/2]

}
e it ,

η = ln
(

1+
1

v1 +w2
1

)
.

Based on the bright–dark two-soliton solutions (2), the asymp-
totic expressions of q2b before the collision take the following
forms (in the limit t→−∞ with assuming v1 > v2, w1,w2 > 0):

BS1 = c1 sech
[
w1(x− v1t)+

η1

2

]
e iβ1+t ,

BS2 = c2 sech
[
w2(x− v2t)+

η2

2

]
e iβ2+t , (3)

where BS1 and BS2 correspond to the first bright soliton and
the second bright soliton in the component q2b before colli-
sions, respectively,

β j = i
[

v jx+
1
2
(w2

j − v2
j)t−ϕ j

]
, j = 1,2

c1 =−iw1
(1+ v2

1 +w2
1)

(v2
1 +w2

1)

(v1− v2 + iw1− iw2)

(v1− v2− iw1− iw2)
,

c2 =−iw2
(1+ v2

2 +w2
2)

(v2
2 +w2

2)

(v1− v2− iw1− iw2)

(v1− v2 + iw1− iw2)

× (v1 + iw1)[1+(v1− iw1)(v2 + iw2)]

(v1− iw1)[1+(v1 + iw1)(v2 + iw2)]
,

eη1 =
(v2

1 +w2
1)

(1+ v2
1 +w2

1)

(v1− v2)
2 +(w1 +w2)

2

(v1− v2)2 +(w1−w2)2 ,

eη2 =
(v2

2 +w2
2)

(1+ v2
2 +w2

2)

(v1− v2)
2 +(w1−w2)

2

(v1− v2)2 +(w1 +w2)2

× (v1v2 +1)2 +(w1w2−1)2 + v2
2w2

1 + v2
1w2

2−1
(v1v2 +1)2 +(w1w2 +1)2 + v2

2w2
1 + v2

1w2
2−1

.

In the above expressions, the parameters v j and w j correspond
to two soliton velocities and widths respectively. ϕ j is the ini-
tial phase of the two bright solitons. Based on the asymptotic
expressions (3), the peak values of the two bright solitons can
be calculated as

Pj = w j

[
1+ v2

j +w2
j

v2
j +w2

j

]1/2

.

020303-2



Chin. Phys. B Vol. 29, No. 2 (2020) 020303

It is seen that the peak values of the two bright solitons in the
component q2b are depend on both the widths and velocities
of the two solitons. Namely, the amplitude is no longer an in-
dependent physical parameter. This is distinct from the case
for scalar bright solitons,[22] for which the soliton amplitude
does not depend on the moving velocity. Therefore, the ve-
locity and width are two independent physical parameters for
bright–dark solitons.

3. Bright–dark soliton collisions in an attractive
interaction system
We study the collision process of two solitons based on

the two-soliton solutions Eqs. (2). There are mainly three
striking characters: interference patterns, humps induced by
dark solitons interactions, and tunneling behavior, in contrast
to the scalar dark solitons and dark–dark solitons.[8–11] In what
follows, we will discuss them separately.

3.1. Interference pattern

As we know, solitons admit both particle and wave prop-
erties. The interference behavior is a remarkable character-
istics of the wave properties of solitons. The interference
properties of scalar bright solitons and bright solitonic matter-
wave interferometers have been widely investigated in nonlin-
ear systems.[17–22,39,40] However, neither scalar dark solitons
nor vector dark solitons admits interference behavior. Interest-

ingly, we note that, during the collision process of bright–dark
two solitons, not only the collision between two bright soli-
tons generates the interference pattern in the component q2b,
but two dark solitons’ interplay can also yield the interference
pattern in the component q2d. As an example, we show one
case in Fig. 1 by choosing parameters v1 = −2.4, v2 = 1.1,
w1 = 0.324, w2 = 0.224, ϕ1 = 0, and ϕ2 = 0. The top panels
show the density distributions of temporal-spatial interference
patterns; Figures 1(a) and 1(b) correspond to the component
q2b and the component q2d, respectively. The bottom pan-
els depict their corresponding spatial interference fringes (at
t = 0, blue solid curve) and temporal interference fringes (at
x = 1.05, red dotted curve). These figures clearly demonstrate
the interference behavior of the bright–dark solitons. It is seen
that the temporal-spatial interference pattern in the component
q2b gives excellent agreement with scalar scenario in Ref. [22]
[see Figs. 1(a), 1(a1) and 1(a2)]. However, the interference be-
havior is very unusual for dark solitons in the component q2d

[see Figs. 1(b), 1(b1) and 1(b2)], because scalar dark solitons
and vector dark solitons do not admit wave properties due to
its effective negative mass nature. This indicates that the non-
linear interaction between the two components makes the in-
terference behavior in the component q2b induce the collision
of two dark solitons to generate the interference pattern in the
component q2d simultaneously. Namely, due to the feedback
of the wave properties of bright soliton onto the dark one, dark
solitons can interfere with each other.
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Fig. 1. Interference patterns between bright–dark two solitons. Top panel: density evolutions for soliton collisions, panels (a) and (b) correspond to the
component q2b and component q2d, respectively. Bottom panel: spatial interference fringes (blue solid curve) and temporal interference fringes (red dotted
curve); They are the cutaway view of the interference patterns in Figs. 1(a) and 1(b) at t = 0 and x = 1.05, respectively. Panels (a1) and (a2) correspond
to the component q2b; panels (b1) and (b2) correspond to the component q2d. It is shown that the spatial-temporal interference patterns are formed in both
components. For dark solitons, interference behavior was absent in the previous studies. The parameters are v1 =−2.4, v2 = 1.1, w1 = 0.324, w2 = 0.224,
ϕ1 = 0, and ϕ2 = 0.
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It is important to emphasize that the interference patterns
can not always be observed during soliton interaction pro-
cesses, since the interference periods should be smaller than
soliton scales for visible interference fringes.[22,23] By means
of the asymptotic analysis technique, the spatial and temporal
periods are calculated as

S =
2π

|v1− v2|
, (4)

T =
4π

|v2
2− v2

1 +w2
1−w2

2|
, (5)

where S and T denote spatial period and temporal period, re-
spectively. Obviously, the relative velocity (v1 − v2) deter-
mines the spatial interference pattern Eq. (4), while temporal
period is determined by both widths w j and velocities v j of the
two solitons Eq. (5). This is quite different from the interfer-
ence properties of the scalar bright soliton reported previously
in Ref. [22], in which temporal period was depended on both
the peaks and velocities. By applying the spatial-temporal pe-
riod expressions Eqs. (4) and (5), the interference patterns can
be manipulated by controlling soliton velocities and widths.
When the absolute values of velocities of two solitons are iden-
tical, the spatial interference pattern will not be formed; When
two solitons are of the same width and equal velocity squared,
the temporal pattern will disappear. Based on the matter wave-
length theory,[41] the temporal-spatial interference patterns are
visible when the soliton parameters satisfy the condition that
spatial period S is smaller than the scales of two solitons and
temporal period T is smaller than the time scale of collision
(as shown in Fig. 1).

Particularly, we note that the two-dark soliton interfer-
ence effect gives rise to some short-time humps above the
background density, as shown in the right panel of Fig. 1, in
sharp contrast to scalar dark solitons and dark–dark solitons.
This clearly indicates that bright solitons could induce dark
solitons to allow much richer dynamics than their own in the
repulsive interaction systems. This point is further investigated
in the following text.

3.2. Maximum hump density value in dark-soliton compo-
nent

In general, dark solitons collide elastically and could pro-
duce some dips in collision region in the repulsive interac-
tion system.[42] Nevertheless, we have shown that dark soli-
ton collisions can form some short-time density humps above
the background density in the attractive interaction system
Eqs. (1), as depicted in the right panel of Fig. 1. To show
this character more clearly, we plot Fig. 2 by setting the pa-
rameters as w1 = 1.8, v1 = −1, w2 = 1.8, v2 = 1, ϕ1 = 1.8π ,
and ϕ2 = 0. Figures 2(a1) and 2(b1) correspond to the density
evolutions of component q2b and component q2d, respectively.

A highlighted feature is that the interactions of the two solitons
in both components generate a high hump and two valleys in
the collision center simultaneously. Their corresponding in-
tensity profiles at t = 0 (shown in Figs. 2(a2) and 2(b2)) de-
scribe clearly this characteristic. Of particular note is that the
hump appearing in the component q2d is significantly higher
than the background density. This dynamical behavior is also
not admitted for scalar dark solitons and vector dark solitons.
It should be mentioned that the humps produced by dark soli-
ton interactions are not always visible. One has to wonder how
does the soliton parameters w j,v j, ϕ j affect the hump values
in the component q2d? For simplicity, we choose Fig. 2 as
an example to discuss the change of maximum hump value of
component q2d at t = 0, with varying the relative phase, rela-
tive velocity, and relative width of the two solitons by means
of the control variate method.

Firstly, we study the effect of the relative phase between
bright solitons on the maximum density value at t = 0 in the
component q2d. Generally, in a two-soliton circumstance, one
soliton can be regarded as the reference (ϕ2 = 0 herein), and
the other soliton initial phase (ϕ1) will become the relative
phase (denoted by ϕ) between the two bright solitons. Then,
one can observe the change of the maximum hump value of
component q2d as the variation of the ϕ value. As presented
in Fig. 3(a), ϕ = ϕ1 and the other parameters are the same as
those given in Fig. 2. Obviously, the hump value |q2d| is very
sensitive to the relative phase ϕ of the two bright solitons.
With the increasing of ϕ , the hump value of component q2d

appears decreasing at first and then increasing gradually after
reaching the minimum hump value (at ϕ ≈ 0.835π) which ap-
proximates the background density. Subsequently, the hump
value reaches to the maximum value (at ϕ ≈ 1.835π). It
indicates that the density distribution of the component q2d

strongly depends on the relative phase between the two bright
solitons in the component q2b. This character could be used to
measure the relative phase between solitons.

In the second scenario, we investigate the changes of the
maximum hump value of the component q2d at t = 0 by vary-
ing the relative velocity (rv) of the two solitons by setting the
parameter v1 = v2− rv, and the other parameters are the same
as those in Fig. 2. As shown in Fig. 3(b), there are two criti-
cal relative velocities, at rv≈ 0.63 and rv≈ 3.91 respectively.
When rv . 0.63 or rv & 3.91, the change of the maximum
density value is nearly imperceptible with the increasing of rv
value. When 0.63 < rv < 3.91, the density value firstly in-
creases to the maximum value at rv≈ 1.66 and then decreases
to be very closer to the background density with the increas-
ing of the rv value. The critical values of relative velocity vary
with the relative phase between the bright solitons. The under-
lying definite properties still need further studies.
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Fig. 2. The interaction of bright–dark two solitons. Top panel: density distributions of two solitons collisions in two components; (a1) for component q2b
and (b1) for component q2d. Bottom panel: intensity profiles for both components at t = 0; panels (a2) and (b2) correspond to the component q2b (thin blue
curve) and the component q2d (thick blue curve) respectively. It is seen that the two dark solitons collisions lead to a very high density hump above the
background density in component q2d. The parameters are w1 = 1.8, v1 =−1, w2 = 1.8, v2 = 1, ϕ1 = 1.835π , and ϕ2 = 0.
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Fig. 3. The variation of maximum hump value in dark-soliton component q2d versus soliton parameters. (a) The maximum hump value varies with the
relative phase (ϕ) for the choice of parameters w1 = 1.8, v1 = −1, w2 = 1.8, v2 = 1, ϕ1 = ϕ , and ϕ2 = 0. (b) The maximum hump value varies with the
relative velocity (rv) between the two solitons, with parameters setting as w1 = 1.8, v1 = v2− rv, w2 = 1.8, v2 = 1, ϕ1 = 1.835π , and ϕ2 = 0. (c) The
maximum hump value varies with the relative width (rw) between the two solitons with parameters w1 = w2− rw, v1 =−1, w2 = 1.8, v2 = 1, ϕ1 = 1.835π ,
and ϕ2 = 0. It is shown that the maximum density hump value is very sensitive to soliton parameters.

Thirdly, we investigate the change of the maximum hump
value of component q2d at t = 0 by varying the relative width
(rw) between the two solitons by setting parameters w1 =

w2 − rw and the other parameters are the same as those in
Fig. 2. This is depicted in Fig. 3(c). Note that the maxi-
mum density value becomes progressively discernible as the
increasing of rw value. When the difference between their
width value keeps decreasing, the maximum density value
continues to increase. When rw ≈ 0.44, the density of the
component q2b reaches the highest value. With further in-
creasing the rw value, the width of the first soliton tends to
be very small, the maximum density value decreases rapidly
being close to the background density. This reveals that the
scales of the two solitons dramatically affect the density dis-
tribution of the component q2d. It should be pointed out that
when the relatively velocity of the two solitons is relatively
large, the change of the rw value has no significant effect on

the maximum density value of the component q2d.
More recently, a method was proposed to split the ground

state of an attractively interacting BEC into two bright solitary
waves with controlled relative phase and velocity.[43] Combin-
ing the above discussions, one expects these properties could
be used to test some physical quantities related to solitons in
the near-future experiments.

3.3. Tunneling behavior

The quantum tunneling dynamics of solitons have been
discussed well in Refs. [23,24,44–49]. Recently, tunneling dy-
namics of dark solitons in a harmonic trap were investigated in
binary repulsive BECs,[24] based on different initial conditions
of the phase difference and population imbalance of the bright
solitons. Then, it would be natural to expect that the tunneling
dynamics between dark solitons can also be observed in the
coupled system Eqs. (1).
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Based on the quantum tunneling theory,[50] the nonlin-
ear term −(|qb|2 + |qd|2) in Eqs. (1) can be seen as an effec-
tive double-well potential, which is self-induced by the dis-
tribution of atoms. The structure of quantum wells evolve si-
multaneously with the evolution of bright solitons and dark
solitons in both components, since atoms tunneling from one
soliton to the other change the quantum well structure syn-
chronously. Therefore, we call it as the tunneling behavior
of matter-wave solitons in a self-induced quantum wells, in
contrast to the external double-well potential in usual quan-
tum theory. One of the typical examples of the density for
tunneling behavior is depicted in Fig. 4 by setting the parame-
ters w1 = 2.9, v1 =−0.05, w2 = 3.9, v2 = 0.05, ϕ1 = ϕ2 = 0,
panels (a) and (b) correspond to component q2b and compo-
nent q2d respectively. It is seen that the coupled nonlinear
effects between the two components force dark solitons per-
forming periodic oscillation in time evolution together with
the bright solitons. In contrary, scalar dark solitons and dark–
dark solitons do not allow these features due to its effective
negative mass nature. The tunneling period is calculated as
T = 4π/|v2

2− v2
1 +w2

1−w2
2|, determined by widths and veloc-

ities of solitons. For visible tunneling behavior, the tunneling
period should be smaller than the half of time scale of colli-
sion. Tunneling dynamics shown in Fig. 4 is different from
those observed in Ref. [24], in which oscillations were related
with the deviation from the in-phase or out-of-phase stationary
solution.
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Fig. 4. The tunneling behavior between the two bright–dark solitons.
Panel (a) shows the density of the bright-soliton component, (b) for the dark-
soliton component. It is seen that the oscillating tunnleing behavior emerges
during the interaction process. Parameters are w1 = 2.9, v1 = −0.05,
w2 = 3.9, v2 = 0.05, and ϕ1 = ϕ2 = 0.

Next, we simulate the evolutions of the bright–dark soli-
tons in the coupled system (1) to test their stability by the dis-

crete cosine transform method with homogeneous Neumann

boundary conditions.[51] The numerical evolution results of

the bright–dark solitons are displayed in Fig. 5, which initial

excitation forms are given by the same parameters of Fig. 1

at t =−7, panel (a) for component q2b and (b) for component

q2d. It is seen that the numerical results in Fig. 5 reproduce the

the interference fringes with high visibility when solitons col-

lide with each other in both components, which agrees pretty

well with the analytical results in Figs. 1(a) and 1(b). How-

ever, there are some other localized waves emerging in dark-

soliton component when t & 1.5, induced by the modulational

instability of the background fields.[52] In view of this fact,

we would like to further investigate the interference behavior

of the dark–bright solitons in two-component BECs with re-

pulsive interactions, since the background field does not admit

any modulational instability.
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Fig. 5. Numerical simulations of the bright–dark solitons with the same pa-
rameters as given in Fig. 1: (a) for bright-soliton component q2b, and (b) for
dark-soliton component q2d. It is seen that the background density presents
to be unstable in the dark-soliton component q2d after the time t ≈ 1.5.

4. Dark–bright soliton interference in repulsive
interaction system

For the dark–bright solitons in a two-component BECs
with repulsive interactions, the dark solitons in one of com-
ponents play the role of an effective potential that enables the
bound-state trapping of the bright-soliton component.[10,53–55]

It is expected that the dark solitons can show more exotic dy-
namics behaviors in this system, coupled with bright solitons.
We consider the two-component coupled NLSE with repulsive
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interactions of the forms

iqd,t +qd,xx−2(|qd|2 + |qb|2)qd = 0,

iqb,t +qb,xx−2(|qd|2 + |qb|2)qb = 0. (6)

The dynamics of the two dark–bright solitons can be described
by the well-known exact solutions in Ref. [54]

qd = q0 e−2iq2
0t
{

1+
1
D

[
Γ1

z1(z∗1− z1)
+

Γ2

z2(z∗2− z2)

+Γ3
e−iβ (q2

0− z∗1z2)δ
∗
1 δ2

z2(z2− z∗1)
+Γ3

e iβ (q2
0− z1z∗2)δ1δ ∗2

z1(z1− z∗2)

+
z∗1z∗2− z1z2

z1z2
Γ5

]}
, (7)

qb = −
q0e−2iq2

0t

D

[
δ̄1z∗1
q2

0
e−iz∗1(x+z∗1t)+

δ̄2z∗2
q2

0
e−iz∗2(x+z∗2t)

+Γ4
δ̄1δ̄2z∗1z∗2(q

2
0− z∗1z∗2)(z

∗
1− z∗2)

2

q2
0(q

2
0− z1z2)

]
, (8)

where the explicit expressions for D, δ̄1,2, and Γi (i =

1,2, . . . ,5) are presented in Appendix A. qd(x, t) and qb(x, t)
describe the wave functions of the dark-soliton component and
the bright-soliton component, respectively. q0 is the amplitude
of background. z j = κ j + iρ j corresponds to the eigenval-
ues of the inverse scattering transform problem with |z j|< q0,
j = 1,2. The soliton velocity is v j = 2κ j. δ j = 2ρ j/[q0(q2

0−
z2

j)
1/2]ex j+iφ j is the so-called norming constants. The posi-

tion offset and phase of solitons are described by x j and φ j

respectively.
The dark–bright solitons in the repulsive interactions sys-

tem Eqs. (6) have similar wave properties to the bright–dark
solitons in the attractive interactions system Eqs. (1), such as
interference behavior and tunneling dynamics. As an example,
herein we show their interference patterns with high visibility
in both components shown in Fig. 6: panel (a) for component
qd and (b) for component qb (see the caption for details). By
further simplifying soliton solutions (7) and (8) and combining
the asymptotic analysis expressions in Ref. [54], the interfer-
ence periods can be obtained. The spatial interference period
is S = 4π/|v1− v2|, and temporal interference period is

T = 2π/|w2
1−w2

2− (1/4)(v2
1− v2

2)|,

where w1 and w2 are the widths of the two solitons with
w j = ρ j. It is shown that the spatial interference period de-
pends on the relative velocity of the two solitons, and the tem-
poral interference period is determined by the velocities and
widths of the two solitons (herein the parameter settings in
Fig. 6 make the temporal period be zero). Their interference
properties are similar to the bright–dark solitons mentioned in

Section 3. But it must be emphasized that interference peri-
ods of the dark–bright solitons are found to have lower lim-
its, namely, S > π/q0 and T > π/q2

0. This is induced by the
velocity of the dark soliton, it is always lower than the sound
speed of the system for the dark–bright soliton, and is different
from the bright–dark soliton as mentioned above. Moreover,
we note that the maximum density value of the dark-soliton
component is always equal to the background density, in stark
contrast to bright–dark solitons in attractive interaction system
(comparing Fig. 1(b) and Fig. 2(b1) to Fig. 6(a)).
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Fig. 6. Interference patterns of the two dark–bright soliton interactions:
(a) for dark-soliton component and (b) for bright-soliton component. The
parameters are ρ1 = ρ2 = 1, κ1 = −κ2 = −6, q0 = 10, x1 = x2 = 0, and
φ1 = φ2 = π/4.

We further perform numerical simulations to verify the
stability of the dark–bright solitons.[51] In the present study,
we simulate the initial excitation condition perturbed with 2%
white noise of small amplitudes. Namely, we multiply the qd

and qb by the factor (1+ 0.02Random [−1,1]). For instance,
we show the simulation results for the two dark–bright solitons
as shown in Fig. 7. The initial excitation forms are given by
the exact ones at t = −0.5 in Fig. 6 with adding small noise.
It is seen that, under the noise perturbation, simulation results
reproduce the stable interference patterns in both components,
which agree well with the analytical results shown in Fig. 6.
It reveals that the dark–bright solitons are very robust against
perturbations than the bright–dark solitons since there is no
modulational instability for the repulsive interaction system
Eqs. (6).

020303-7



Chin. Phys. B Vol. 29, No. 2 (2020) 020303

↩.       ↩.                   .         . 

↩.       ↩.                   .         . 

.

.

.

.

↩.

↩.



.

.

↩.

↩.



.

. .

.

.



x

x

t
t

(a)

(b)

Fig. 7. The numerical simulations of the dark–bright solitons with small
noise: (a) for dark-soliton component and (b) for bright-soliton component.
The initial excitation conditions are given by the same parameters as in Fig. 6
at t =−0.5 by multiplying a factor (1+0.02Random [−1,1]). It is seen that
the dark–bright solitons are robust against small noise.

5. Conclusion and Discussion
In this paper, we show that interactions between the

bright–dark two-soliton (attractive interactions) and the dark–
bright two-soliton (repulsive interactions) both can generate
temporal-spatial interference patterns, which are not admitted
for scalar dark solitons and vector dark solitons. The explicit
interference periods expressions can be used to measure some
physical quantities, such as soliton velocity, width, and re-
lated acceleration fields. In the attractive interaction system,
the maximum density value of the dark-soliton component can
be higher than the background density and changes obviously
as the variation of soliton parameters. Additionally, we dis-
play the tunneling dynamics of the bright–dark solitons. In the

repulsive interactions system, since soliton’s velocity cannot
exceed the speed of sound, the spatial-temporal interference
periods both have lower limits. Moreover, we use numerical
simulations to test the stabilities of the bright–dark solitons
and dark–bright solitons. The results indicate that the dark–
bright solitons are more robust than the bright–dark solitons as
the background field does not admit any modulational instabil-
ity for the repulsive system. From a physical perspective, the
nonlinear feedback of the bright soliton into the dark soliton
leads the latter to admit more interesting dynamics in the other
component, rather than only retaining the characters as scalar
dark solitons or dark–dark solitons.

Experimentally, dark solitons are prepared firstly and then
provide an effective potential to excite bright solitons, for
dark–bright solitons in BEC with repulsive interactions.[10,55]

Based on the well-developed density and phase modulation
techniques in BECs,[4–11] the bright–dark solitons could be
observed in BEC with attractive interactions. To excite bright–
dark solitons, one should prepare bright soliton firstly and
then dark solion can be excited as the first-excited state
in the effective quantum well created by the bright-soliton
component.[34] As far as we know, the bright–dark solitons
have not been observed in BEC systems, mainly due to the
modulational instability of the dark soliton background. More-
over, soliton interactions have been also demonstrated exper-
imentally in BECs.[16,43] Recently, interferometer with BECs
in microgravity,[56] spin–orbit coupled interferometer,[57] and
multicomponent interferometer in a spinor BECs[58] were pro-
posed, which demonstrate that the interference pattern holds
great promise for implementing quantum tests and measure-
ment information for uncorrelated systems. One can expect
that the interference patterns and tunneling behavior of vector
solitons obtained here can be used to measure some physical
quantities in some ultra-cold atomic gases.

Appendix A
The explicit expressions for Φ1, Φ2, Φ3 of Eqs. (2) are as

follows:

Φ1 =
λ2Φ21

λ2−λ ∗1
+

λ1Φ11(Φ
∗
11Φ21 +Φ∗12Φ22 +Φ∗13Φ23)+λ ∗1 [(|Φ12|2 + |Φ13|2)Φ21−(Φ∗12Φ22 +Φ∗13Φ23)Φ

∗
11]

(λ ∗1 −λ2)(|Φ11|2 + |Φ12|2 + |Φ13|2)
,

Φ2 =
λ2Φ22

λ2−λ ∗1
+

λ1Φ12(Φ
∗
11Φ21 +Φ∗12Φ22 +Φ∗13Φ23)+λ ∗1 [(|Φ11|2 + |Φ13|2)Φ22− (Φ∗11Φ11 +Φ∗13Φ23)Φ

∗
12]

(λ ∗1 −λ2)(|Φ11|2 + |Φ12|2 + |Φ13|2)
,

Φ3 =
λ2Φ23

λ2−λ ∗1
+

λ1Φ13(Φ
∗
11Φ21 +Φ∗12Φ22 +Φ∗13Φ23)+λ ∗1 [(|Φ11|2 + |Φ12|2)Φ23− (Φ∗11Φ21 +Φ∗12Φ22)Φ

∗
13]

(λ ∗1 −λ2)(|Φ11|2 + |Φ12|2 + |Φ13|2)
,

where Φ j1 = eα j−iβ j , Φ j2 = e it , Φ j3 = (eα j−iβ j+it)/(iw j− v j), α j = w j(x− v jt), β j = v jx− (1/2)(v2
j −w2

j)t − ϕ j, λ j =

λ jr + iλ ji, λ ji = w j
[
1/(v2

j +w2
j)+1

]
, λ jr = v j

[
1/(v2

j +w2
j)−1

]
, j = 1,2.
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The expressions for δ̄1,2, D, and Γi of Eqs. (7) and (8) are

δ̄1 =−
q2

0(q
2
0−|z1|2)(q2

0− z∗1z2)

(z∗1)
2(q2

0− z∗1z∗2)
δ
∗
1 , δ̄2 =−

q2
0(q

2
0−|z2|2)(q2

0− z1z∗2)
(z∗2)

2(q2
0− z∗1z∗2)

δ
∗
2 ,

Γ1 =
q2

0(q
2
0−|z1|2)|q2

0− z∗1z2|2|δ1|2

|q2
0− z1z2|2

e−2ρ1ξ1 , Γ2 =
q2

0(q
2
0−|z2|2)|q2

0− z∗1z2|2|δ2|2

|q2
0− z1z2|2

e−2ρ2ξ2 ,

Γ3 =
q2

0(q
2
0−|z1|2)(q2

0−|z2|2)
|q2

0− z1z2|2
e−(ρ1ξ1+ρ2ξ2), Γ4 =

δ1z1 e−2ρ1ξ1−iz∗2(x+z∗2t)

(z∗1− z1)2(z1 + z∗2)
2 +

δ2z2 e−2ρ2ξ2−iz∗1(x+z∗1t)

(z∗2− z2)2(z2− z∗1)
2 ,

Γ5 =
(q2

0−|z1|2)(q2
0−|z2|2)|q2

0− z∗1z2|2|z1− z2|4

16ρ2
1 ρ2

2 |q2
0− z1z2|2|z∗1− z2|4

×q4
0|δ1|2|δ2|2 e−2(ρ1ξ1+ρ2ξ2), (ξ j = x+2κ jt, j = 1,2),

D = Γ3

[
−e iβ (q2

0− z1z∗2)δ1δ ∗2
(z1− z∗2)

2 −
e−iβ (q2

0− z∗1z2)δ
∗
1 δ2

(z2− z∗1)
2

]
+1+

Γ1

4ρ2
1
+

Γ2

4ρ2
2
+Γ4.
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