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A simple tight-binding approach to topological
superconductivity in monolayer MoS2
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Monolayer molybdenum disulfide (MoS2) has a honeycomb crystal structure. Here, with considering the triangular
sublattice of molybdenum atoms, a simple tight-binding Hamiltonian is introduced (derived) for studying the phase transi-
tion and topological superconductivity in MoS2 under uniaxial strain. It is shown that spin-singlet p+ ip wave phase is a
topological superconducting phase with nonzero Chern numbers. When the chemical potential is greater (smaller) than the
spin–orbit coupling (SOC) strength, the Chern number is equal to four (two) and otherwise it is equal to zero. Also, the
results show that, if the superconductivity energy gap is smaller than the SOC strength and the chemical potential is greater
than the SOC strength, the zero energy Majorana states exist. Finally, we show that the topological superconducting phase
is preserved under uniaxial strain.
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1. Introduction
A monolayer of molybdenum disulfide (MoS2), which

has a honeycomb crystal structure, is a prototypical transition-
metal dichalcogenide (TMD). Its phonon-limited room tem-
perature mobility is dominated by the optical deforma-
tion potential and polar optical scattering versus Frohlich
interaction.[1] The dominating deformation potentials origi-
nate from couplings to the intervalley longitudinal optic (LO)
and homopolar phonons.[1] It should be noted that due to
the valley degeneracy in the conduction band, both interval-
ley and intravalley scatterings of carriers should be consid-
ered for calculating the electron–phonon coupling constant.[1]

Roldan et al. have studied the origin of superconductivity in
heavily doped MoS2 by considering the electron–phonon and
electron–electron interactions.[2] They have shown that the in-
travalley (intervalley) electron–phonon coupling constant is
equal to −0.36 (−0.13).[2] It has been shown that heavily
gated thin films of MoS2 become superconductive.[3,4] The
Rashba spin–orbit coupling (RSOC) arouse in the experiment
due to the presence of the strong gating field of the order
of 10 MeV/cm.[5–7] The RSOC induced two superconducting
phases which can be topologically nontrivial.[8] Lu et al. have
shown that the Zeeman field, which is originated from the in-
trinsic SOC induced by breaking in-plane inversion symmetry,
pins the spin orientation of the electrons to the out-of-plane
direction and protects the Ising superconductivity in gated
MoS2.[9] Also, it has been shown how the spin-triplet p-wave
pairing symmetry affects the superconducting excitations.[1]

From civil practical point of view, increasing the critical
temperature of superconductors (Tc) is a necessary condition.

For increasing Tc, both the density of states (DOS) and the
vibration frequency of a superconducting material should be
high.[11] For non-metallic materials or materials which have
low DOS, applying strain and doping can be an effective
method to induce superconductivity.[12] The elastic bending
modulus of monolayer MoS2 has been studied and it has been
shown that the binding modulus is equal to 9.61 eV.[13] Woo
et al. have used a first-principle approach and studied the elas-
tic properties of layered two-dimensional materials.[14] They
have found that the Poisson’s ratios of graphene, h-BN, and
2H-MoS2 along the out-of-plane direction are negative, near
zero, and positive, respectively, whereas their in-plane Pois-
son’s ratios are all positive.[14] Two important and main crys-
tal deformations are mechanical deformation and curvature of
crystal lattice. The bond lengths of TMDs are changed un-
der mechanical deformations and in consequence their elec-
tronic structures are changed due to the corrections in the
electronic Hamiltonian. However, the curvature of the crys-
tal lattice mixes the orbital structure of the electronic Bloch
bands. Pearce et al. have presented an effective low energy
Hamiltonian for describing the effects of mechanical deforma-
tions and curvature on the electronic properties of monolayer
TMDs.[15] In sodium intercalated bilayer MoS2, the electron–
phonon interaction strength changes and the superconductiv-
ity is significantly enhanced due to the strain effect.[16] Simi-
lar work has been reported about calcium doped MoS2 bilayer
recently.[14] Finally, Kang et al. have reported the discovery
of Holstein polarons (a small composite particle of an elec-
tron that carriers a cloud of phonons) in a surface-doped lay-
ered semiconductor MoS2

[18] and He et al. have shown that
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in a wide range of experimentally accessible regime where
the in-plane magnetic field is higher than the Pauli limit field
but lower than second critical magnetic field, a 2H-structure
monolayer NbSe2 or similarly TaS2 becomes a nodal topolog-
ical superconductor.[19]

In this paper, we study the spin-singlet p+ ip topological
superconductivity in monolayer MoS2 using a simple tight-
binding Hamiltonian when the crystal is (not) under uniaxial
strain.

Xiao et al. have considered the molecular orbitals dz2 and
1/
√

2(dx2−y2 + iτdxy) as basis functions of conduction and va-
lence bands, respectively (τ = ±1 is the valley index). They
have shown that, to the first order in k, the C3h symmetry dic-
tates a two-band 𝑘 ·𝑝 Hamiltonian.[2] Cappelluti et al. have
shown that the 4d3z2−r2 (82%), 3px,3py (12%), and other or-
bitals (6%) contribute in constructing the minimum of the con-
duction band (MCB).[21] Roldan et al. have studied the super-
conductivity effect in heavily doped MoS2 by considering the
d3z2−r2 orbital as the main orbital component.[2] The possible
topological superconductivity phase[8] and strongly enhanced
superconductivity[12] in MoS2 have been studied. In both
studies, the d3z2−r2 orbital is considered as the main orbital
component.[8,12] Therefore, we consider a single band Hamil-
tonian model including the intrinsic SOC (ISOC) and RSOC
near K and K′ points and show that there are two band inver-
sion (nodal) points which separate unoccupied states from oc-
cupied ones in the phase diagram. Using the threefold rotation
symmetry of the crystal and the properties of rotation fixed
points Γ , K, and K′, we calculate the Chern number.[22] It is
shown that when the chemical energy is greater (smaller) than
the ISOC strength, the Chern number is equal to four (two)
and otherwise it is equal to zero. Since, the 4dz2 orbital is the
dominant component of the states we only consider the Mo-
layer with triangular lattice structure for doing the numerical
calculations. The Mo-layer has both flat and zigzag edges but
we consider a zigzag nanoribbon of Mo-layer and introduce
a simple tight-binding Hamiltonian for studying the topologi-
cal superconductivity in MoS2. It is shown that when the su-
perconductivity energy gap is smaller than the ISOC and the
chemical potential is greater than the ISOC, the zero energy
Majorana states exist. Finally, we show that the topological
superconducting phase is preserved under uniaxial strain. Us-
ing a simple tight binding method and crystal symmetry for
studying the topological properties and justifying the effect of
uniaxial strain on the topological properties are the novelties
of the article in comparison with the other published ones.[8]

The structure of this article is as follows. The analytical cal-
culations are presented in Section 2. In Section 3, the tight-
binding Hamiltonian is introduced. The results are explained
and discussed in Section 4. In Section 5, the summary is pre-
sented.

2. Analytical calculations
2.1. Without applying strain

Many tight-binding Hamiltonian models have been pro-
posed for monolayer MoS2.[20,24–27] Since, the 4dz2 orbital is
the dominant component near K and K′ points, a single band
general Hamiltonian in the basis of (c𝑘↑,c𝑘↓) can be written
as[8,29]

H0 (𝑘+ ε𝐾) =

(
|𝑘|2

2m
−µ

)
σ0 +αR𝑔 (𝑘) ·𝜎+ εβsoσz, (1)

where cs is the electron annihilation operator, s =↑ / ↓ de-
notes the spin, ε = ±1 is the valley index, m is the effective
mass of the electrons, and µ is the chemical potential mea-
sured from the conduction band minimum when SOC is omit-
ted. 𝑔 (𝑘) = (ky,−kx,0) and αR are the Rashba vector and
RSOC strength coefficient, respectively. Finally, βso is the
ISOC strength coefficient and 𝜎 denotes the Pauli matrices.
And σ0 is the unit matrix.
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Fig. 1. (a) Triangular sublattice of monolayer Mo-atoms, (b) the bond-
ing vectors of Mo-atoms, and (c) the nearest-neighbor pairing phases
βi j of the spin-singlet, p-wavelike phase.[8]

The nearest-neighbor spin-singlet superconducting pair-
ing amplitudes are proportional to e−βi j

〈
ci,↓c j,↑− ci,↑c j,↓

〉
in

the two-dimensional representation.[8] Here, βi j is the nearest-
neighbor pairing of the spin-singlet p-wavelike phase (see
Fig. 1(c).[8] One can substitute the Fourier transformation of
ci,s in the relation and show

∑
〈i j〉

(
ci,↓c j,↑− ci,↑c j,↓

)
= ∑

𝑘

2cos(𝑘 ·𝜏𝑖)c−k,↓ck,↑, (2)

where 𝜏i are the bonding vectors of Mo-atoms, i.e., 𝜏1 =

a(1,0), 𝜏2 = a(−1/2,
√

3/2), 𝜏3 = a(−1/2,−
√

3/2) with lat-
tice constant a = 3.16 Å (Fig. 1(b)), and k = kx + iky.[8]

Therefore,[8]

∆ (k) = 2cos(akx)+ e
i2π

3

[
cos
(
−akx

2

)
+ cos

(
a
√

3
2

ky

)]

+ e
i4π

3

[
cos
(
−akx

2

)
+ cos

(
−a
√

3
2

ky

)]
. (3)
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By using Eqs. (1) and (3), in the basis of (ck,↑,ck,↓,c
†
−k,↑,c

†
−k,↓), the general Bogoliubov–de Genes (BdG) Hamiltonian can be

written as[8]

HBdG =


εk + εβso iαR(kx− iky) 0 ∆(k)

−iαR(kx + iky) εk− εβso −∆(k) 0
0 −∆ ∗(k) −(εk + εβso) −iαR(kx + iky)

∆ ∗(k) 0 iαR(kx− iky) −(εk− εβso)

 , (4)

where εk = k2

2m − µ . It should be noted that (ck,↑,ck,↓) and
(c†
−k,↑,c

†
−k,↓) are the basis vectors of electrons and holes, re-

spectively. One can easily show that the eigenvalues of HBdG

are

E2 = (ε2
k +β

2
so +α

2
Rk2 +∆

2)

±2
[(

β
2
so +α

2
Rk2)

ε
2
k +∆

2
β

2
so
]1/2

. (5)

Using the Tailor expansion of Eq. (3) near the K (K′) point, we
have

∆ (𝑘+ ε𝐾)≈ γε(kx + iky), (6)

where γ = 4
√

3.[8] The points Γ , K, and K′ are rotation fixed
points of threefold rotation.[21] Therefore, we can study the
change of the Chern number by the change of the rotation
eigenvalues at the K and K′ points (kx & ky → 0).[28] The
eigenvalues of Eq. (4) at K-point are E1 = −βso + µ,E2 =

−βso− µ,E3 = −βso + µ, and E4 = βso + µ with eigenfunc-
tions ψ1 = (1,0,0,0)T, ψ2 = (0,1,0,0)T, ψ3 = (0,0,1,0)T,
and ψ4 = (0,0,0,1)T, respectively. Similarly, for K′-point
we have E ′1 = −βso − µ,E ′2 = −βso + µ,E ′3 = βso + µ, and
E ′4 = −βso + µ with eigenfunctions ψ ′1 = (1,0,0,0)T, ψ ′2 =

(0,1,0,0)T, ψ ′3 = (0,0,1,0)T, and ψ ′4 = (0,0,0,1)T, respec-
tively. It should be noted that ψ1 and ψ ′1 (ψ2 and ψ ′2) are the
eigenfunctions of the spin-up (down) electrons, but ψ3 and ψ ′3

(ψ4 and ψ ′4) are the eigenfunctions of the spin-up (down) holes
in the basis of (ck,↑,ck,↓,c

†
−k,↑,c

†
−k,↓).

2.2. With applying strain

It has been shown that the low-energy d-bands ef-
fective Hamiltonian around K-point and in the space of
(dε

z2,𝑘,s,d
ε
ε2,𝑘,s) can be written as[15]

HE,ε
k,eff =

(
∆c +β |𝑘|2 v𝑘+κ𝑘+2

v𝑘++κ𝑘2 ∆v +α |𝑘|2 +2εβsosz

)
, (7)

where for MoS2, ∆c = 1.78 eV (conduction band edge), ∆v =

−0.19 eV (valence band edge), v = 2.44 eV (group velocity),
β = 0.21 eV·Å2 (effective mass), α = 0.71 eV·Å2 (effective
mass), κ = 0.32 eV·Å2 (higher order in momentum trigonal
corrections), βso = 0.06 eV, and sz = ±1.[15] Of course, the
cubic correction terms are omitted here.

The strain tensor of a two-dimensional membrane is given
by[13–15]

εi j =
1
2

∂iu j +∂ jui +(∂ih)(∂ jh) , (8)

where u(𝑟) and h(𝑟) are in-plane and out-of-plane deforma-
tion vectors, respectively such that a generic atom at position
𝑟 is shifted to 𝑟′ = 𝑟+𝑢(𝑟)+ 𝑧̂h(𝑟) under the deformation.
Without curvature, equation (7) can be written as[15]

HE,ε
k,eff =

(
∆c +β |𝑘+η2Fε |2 +δ1D+δ3D2 + szD(δβso1) v𝑘+η1Fε +κ (𝑘++η4Fε+)

2

v𝑘++η1Fε++κ (𝑘+η4Fε)2
∆v +α |𝑘+η3Fε |2 ++δ2D+δ4D2 + szD(δβso2)

)
, (9)

where, D = Tr[εi j] and Fε = (εyy− εxx + iε2εxy).[15] The val-

ues of all constants in Eq. (9) are provided in Ref. [15] and

we do not repeat them here. From Eq. (9), it can be con-

cluded that the terms β |η2Fε |2 + δ1D+ δ3D2 + szD(δβso1)

and α |η3Fε |2 + δ2D + δ4D2 + szD(δβso2) should be added

to Eq. (4 ) when we want to study the effect of strain on the

topological properties at K and K′ points (kx & ky→ 0). We

will show that the off-diagonal terms are very small and in

consequence they are negligible. It should be noted that it is

assumed the crystal is flat and there is no any curvature under

the applied deformations.

3. Tight-binding Hamiltonian
As it has been shown, the 4dz2 orbital is the dominant

component of the states near the CBM and the VBM lo-
cated at K and K′ points.[2,8,12] Therefore, we consider a
zigzag nanoribbon of Mo-layer with triangular crystal struc-
ture (Fig. 1(a)) and use a simple tight-binding Hamiltonian for
studying the topological superconductivity in MoS2. Rostami
et al. have shown that if the basis ψMo =

(
dz2 ,dx2−y2 ,dxy

)
is

used, the Hamiltonian of Mo–Mo hopping can be written in
k-space as[31]

HMM =

 ε0 0 0
0 ε2 −iβso,Mosz
0 iβso,Mosz ε2


027401-3
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+2
3

∑
i=1

tMM
i cos(𝑘 ·𝜏𝑖), (10)

where ε0 and ε2 are the on-site energies, and tMM
i is the hop-

ping matrix in 𝜏i direction (Fig. 1(b)). All constant values in
Eq. (10) are provided in Ref. [29] and we do not repeat them
here. In our real-space model, ε0 = 1.282 eV, ε2 = 0.864 eV,
and hopping terms ti = 2tMM

i are assumed. It should be noted
that the Mo–S and S–S hopping terms are not considered, and
in consequence, the values are assumed such that the next re-
sults not only provide the correct physics but also confirm the
results of analytical calculations. Figure 1 shows a zigzag
nanoribbon of Mo-atoms in triangular lattice structure. Using
Eq. (10) in real-space,[29] one can consider the central, left,
and right supercells and write their Hamiltonian matrices H00,
H01, and H01 respectively. The energy dispersion curve of the
nanoribbon can be found by finding the eigenvalues of the fol-
lowing Hamiltonian:

H↑(↓) = H↑(↓)00 + e i𝑘·𝐴H↑(↓)01 + e−i𝑘·𝐴H↑(↓)10 , (11)

where 𝐴 is the lattice vector of the nanoribbon. Since, sz =

+1 (−1) for spin-up (↑) (down (↓)) electrons, we can write
the Hamiltonians for both types of spins. In each supercell,
the nearest-neighbor pairing term is equal to ∆0 e iβi j in real-
space where βi j depends on the direction (𝜏i) as shown in
Fig. 1(c).[8] It is assumed that the pairing happens only be-
tween the 4dz2 orbitals.[30] Therefore, the pairing matrix be-
tween two Mo-nearest neighbor atoms can be written as

∆ = ∆0 e iβi j

 1 0 0
0 0 0
0 0 0

 . (12)

However, the Hamiltonian of holes is equal to −H∗e(−𝑘),
where He(𝑘) is the Hamiltonian of electrons.[8] Thus, one can
write the BdG-Hamiltonian as

HBdG =


He,↑ R
R+ He,↓

0 ∆

−∆ 0
0 −∆ ∗

∆ ∗ 0
Hh,↑ R+

R Hh,↓

 , (13)

where R stands for RSOC which is assumed to be equal to zero
in the next calculations because we study the superconductiv-
ity effect at K (K′)-point. It should be noted that for adding
the RSOC effect to the model, one should find its analytical
formula in the basis ψMo = (dz2 ,dx2−y2 ,dxy).

Another simple model can be used to study the effect of
the chemical potential, respect to the ISOC strength, on the
topological properties of MoS2. In this model, only the dz2 or-
bital is considered, and the term−µ +εβso is placed on the di-
agonal of H↑(↓)00 . For hopping between two Mo-nearest neigh-
bor atoms, the hopping energy t = (3Vddδ +Vddσ )/2 is used in
all directions[29] and the above explained method is followed
again. It should be noted that in calculations, ∆ = ∆0 e iβi j ,[8]

Vddδ = 0.228 eV, and Vddσ =−0.895 eV.[29]

4. Results and discussion
The eigenvalues of Eq. (4) at K and K′ points were found

in Section 2. Figure 2 shows them schematically. As Fig. 2
shows, the curves of negative energies touch the curves of pos-
itive energies at two points A and B which are called the band-
inversion (nodal) points. However, the points are placed on
the line E/βso = 0. Therefore, band closing happens at K and
K′ points. Since the K and K′ points are rotation fixed points,
it is possible to label the states at the fixed points by their ro-
tation eigenvalues which are e iπ(2p−1)/n with p = 1,2, . . . ,n
(fold).[22] If R stands for the rotation matrix for both elec-
tron and hole, a BdG Hamiltonian is rotation-invariant if it
satisfies[28]

RV HBdG(𝑘)V
+R+

= HBdG(R𝑘), (14)

where R= diag(R, R∗), V = diag(1, e−iϕ ), and ϕ = 2π/3. The
elements (R, 1) and (R∗, e−iϕ ) act on the electron and hole,
respectively.[28] Also, R = exp(iσzπ/3) for σz on spin,[30] and

R

(
ce,+

k,↑
ce,+

k,↓

)
=

(
e iπ/3 0

0 e−iπ/3

)(
ce,+

k,↑
ce,+

k,↓

)

=

(
e iπ/3ce,+

k,↑
e−iπ/3ce,+

k,↓

)
. (15)

That is

(
ce,+

k,↑
ce,+

k,↓

)
→

(
e iπ/3ce,+

k,↑
e−iπ/3ce,+

k,↓

)
for electrons, and for

holes
(

ce
−k,↓

ce
−k,↑

)
→

(
e i( π

3−φ)ce
−k,↓

e−i( π
3−φ)ce

−k,↑

)
=

(
e−iπ/3ce

−k,↓
e−iπ ce

−k,↑

)
.[28]

By considering the diagonal Hamiltonian diag(E1,E2,E3,E4)

at K-point, if |µ| > |βso| then the eigenvalues E1 and E2 (E ′1
and E ′2) are negative, and the eigenvalues E3 and E4 (E ′3 and
E ′4) are positive. But, if |µ| < |βso| then the eigenvalues E2

and E3 (E ′1 and E ′4) are negative, and the eigenvalues E1 and
E4 (E ′2, and E ′3) are positive. Therefore, for |µ|> |βso| the ro-
tation eigenvalues (ηi, i = 1,2,3,4) are e−iπ/3, e−iπ , e iπ/3,
and e−iπ/3 which are related to E1, E2, E3, and E4, respec-
tively at K-point. It means that RV = diag(e−iπ/3, e−iπ ,
e iπ/3, e−iπ/3).[28] Also, for |µ|< |βso|, they are e iπ/3, e−iπ ,
e−iπ/3, and e−iπ/3 at K-point, and in consequence, RV =

diag(e iπ/3, e−iπ , e−iπ/3, e−iπ/3).[28] Similarly, it can be
shown that at K′-point, for |µ| > |βso|, RV+

= diag(e−iπ/3,
e−iπ , e iπ/3, e−iπ/3) and for |µ| < |βso|, RV+

= diag(e iπ/3,
e−iπ , e iπ/3, e−iπ/3)[28] if the diagonal Hamiltonian is writ-
ten as diag(E ′1,E

′
2,E

′
3,E

′
4). But, the Chern number (C) in the

three-fold symmetric system can be written as[22,28]

e−i2πC/3 = ∏
i∈occ.

ηi(K)ηi(K′). (16)

As a result, for |µ|> |βso|,

E1 = E ′2 =−µ +βso < 0→

027401-4
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e−i2πC/3 = e−iπ/3 e−iπ = e−i4π/3→C = 2, (17)

E2 = E ′1 =−µ−βso < 0→
e−i2πC/3 = e−iπ e−iπ/3 = e−i4π/3→C = 2. (18)

Similarly, for |µ|< |βso|,

E2 = E ′1 =−µ−βso < 0→
e−i2πC/3 = e−iπ e+iπ/3 = e−i2π/3→C = 1, (19)

E3 = E ′4 = µ−βso < 0→
e−i2πC/3 = e−iπ/3 e−iπ/3 = e−i2π/3→C = 1. (20)

However, for two-dimensional materials, it has been shown
that[3]

C2D = ∑
n∈occ.

C(n). (21)

Therefore, for |µ| > |βso|, C2D = 4, for |µ| < |βso| , C2D = 2,
otherwise it is equal to zero.[8] The topological classification
of superconductors described by the BdG equation can be
found in the periodic table of Altland–Zirnbauer.[32] When the
time reversal symmetry is absent, the BdG-superconductors
are classified into two classes called C and D. In C (D)-class,
the sublattice symmetry (SLS) is absent and the particle–hole
symmetry (PHS) is −1 (+1).[32,33] It has been shown that in
monolayer MoS2, the time reversal symmetry is spontaneously
broken in the E irreducible representation of C3v and the pair-
ing matrix has spin-singlet p-wave characteristic.[8] Therefore,
PHS is −1 and SU(2) spin-1/2 rotation is preserved. It means
that the topological superconductor belongs to C-class.

-2 -1

µ/βso

-1

0

1

E
/
β
s
o A B

0 1 2

Fig. 2. Energy dispersion curve (phase diagram) of superconducting
MoS2 at K (K′)-point. The dashed and filled lines show the negative
and positive energies, espectively. The points A and B stand for band-
inversion (nodal) points. The general equation E/βso =±(1±µ/βso)
is used here.

Let us consider a nanoribbon of Mo-atoms with zigzag
edge as shown in Fig. 1(a) and use Eqs. (10) (in real-space)
and (11) to find the energy dispersion curve E(𝑘). It can be
shown that the edge states can also be found for the flat edge
of the triangular lattice of Mo layer.[8] Therefore, the similar
behavior is expected. Figure 3(a) shows the energy disper-
sion curve of the nanoribbon. As it shows, the valence and
conduction bands intersect with each other and since the DOS
at zero energy has significant value (Fig. 3(b)), there are sur-
face states and the ribbon behaves as a metal. It should be
noted that the RSOC is not considered here. Since we assume
βso = 60 meV,[29] the difference between spin up and down
electrons is negligible, and it is not shown.
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Fig. 3. (a) Energy dispersion curve of a zigzag nanoribon of Mo atoms
and (b) density of states.
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Fig. 4. Energy dispersion curve of BdG Hamiltonian with (a) βso = 60
meV, ∆0 = 6 meV, (b) βso = 6 meV, ∆0 = 60 meV, and (c) βso = 60 meV,
∆0 = 60 meV. The RSOC = 0 here. Each supercell includes 9 Mo atoms.

By using the model of zigzag nanoribbon described in
Eqs. (12) and (13), the energy dispersion curve of the BdG
Hamiltonian is found without RSOC. Figures 4(a) and 4(b)
show the E(𝑘) curves for βso > ∆0 and βso < ∆0. As Fig. 4(a)
shows, there are four zero energy states when βso > ∆0 while
it decreases to two for βso < ∆0. In addition, figure 4(c) shows
that there are zero energy states when βso = ∆0. Therefore, it
can be concluded that the model can predict the same topolog-
ical properties which were found by using the Eqs. (16)–(21)
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above. The zero energy states are referred to the Majorana
states.

Here, the simpler model which was introduced at the end
paragraph of Section 3 is used to study the effect of chemi-
cal energy in respect to the ISOC strength. Figure 5(a) shows
the energy dispersion curve when βso = 60 meV, ∆0 = 6 meV,
and µ = 87 meV.[30] As it shows, since µ > βso, there are
four zero energy states while for µ = 57 meV, there are two
zero energy states (Fig. 5(b)). The model shows that when
µ� βso, a gap is opened in the curve (it is not shown in the fig-
ures). Finally, as Fig. 6 shows, the DOS has significant values
at zero energy for both cases, i.e., µ > βso and µ < βso. There-
fore, the simple model can explain the analytical results qual-
itatively (at least). Through fourth-order Gingzburg–Landau
analysis, Yuan et al. have shown that the time reversal sym-
metry is spontaneously broken in the E irreducible representa-
tion of C3v and this phase is characterized by Chern numbers
and supports Majorana edge states.[8] In Fig. 4, the edge states
can be recognized for E = 0 eV which are related to the dif-
ferent Chern numbers. These edge states are attributed to the
Majorana state.[8]
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Fig. 5. Energy dispersion curve of BdG Hamiltonian with (a) µ =
87 meV and (b) µ = 57 meV. Here, βso = 60 meV, ∆0 = 6 meV, and
RSOC strength is equal to zero. Each supercell includes 9 Mo atoms.
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Fig. 6. Density of states versus energy for µ > βso in filled blue color
and for µ < βso in dashed red color. Here, RSOC strength is equal to
zero. Each supercell includes 9 Mo atoms.

It should be noted that, the intrinsic unconventional
superconductivity has been observed in twisted bilayer
Graphene.[34] Po et al. have invoked SU(4) ferromagnetism
interaction[35] and Xu et al. have invoked an effective anti-
ferromagnetic interaction[36] for explaining the effect, while
both have considered an effective triangular superlattice.[34,35]

We considered a triangular lattice too. But, for doing the nu-
merical calculations we considered the (dz2 , dx2−y2 ,dxy) or-
bitals and assumed that the pairing happens only between the
4dz2 orbitals while Xu et al. have considered a two-orbital
Hubbard model.[36] Also, we considered the spin-singlet p-
wavelike phase while they have expected the d-wave pairing
to be favored.

Finally, the effect of mechanical transformation on the
topological properties of monolayer MoS2 is investigated. An
uniaxial tension field (𝑇 ) is applied to the Mo-plane. The vec-
tor 𝑇 has the angle θ with the x-axis which is in parallel with
the zigzag edge of the nanoribbon. It can be shown that the
strain tensor (𝜀) can be written as[33]

𝜀= τ

 cos2 θ − v‖ sin2
θ
(
1+ v‖

)
sinθ cosθ 0(

1+ v‖
)

sinθ cosθ sin2
θ − v‖ cos2 θ 0

0 0 −v⊥

 , (22)

where τ is the tension strain, and v‖ and v⊥ are the in-plane
and out-of-plane Poisson’s ratios, respectively. Therefore,

D = Tr [εi j] = τ(1− v‖− v⊥), (23)

and for θ = 0, i.e., 𝑇 is parallel to the zigzag edge,

Fε = (εyy− εxx + iε2εxy) = τ(−1+ v‖), (24)

for θ = π/2, i.e., 𝑇 is perpendicular to the zigzag edge,

Fε = (εyy− εxx + iε2εxy) = τ(1− v‖). (25)

By using the values of all constants at Eq. (9) which were pro-
vided before,[13–15] it can be shown that

β |η2Fε |2 +δ1D+δ3D2 + szD(δβso1)

= −0.0844+0.07sz, (26)

α |η3Fε |2 ++δ2D+δ4D2 + szD(δβso2)

= −0.4295−0.0142sz, (27)

η1Fε +κη
4
4 Fε2 =−7.58×10−4, (28)

which is negligible. These values should be added to
Eqs. (17)–(20). However, as we assumed that the tension
field does not change the rotation symmetry (i.e., it is small),
these equations are satisfied, and in consequence, the topolog-
ical properties are preserved under the small uniaxial tensions
field.

It should be noted that one can calculate the effect of bi-
axial strain similarly. For example, under trigonal deformation
such as (ux,uy) =

u0
2 (xy, x2−y2

2 ), by using Eq. (8), one can eas-
ily show that Fε = u0(y− x). Also, for arc-shape deformation
(ux,uy) = ( xy

R , −x2

2R ), where R is the arc radius, Fε = ( y
R ,0).

But, the deformed new Hamiltonian is now given by Eq. (50)
of Ref. [15] and the effect of curvature and gauge fields should
be considered. Finally, the effect of deformation on the topo-
logical properties can be studied by calculating the amount of
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each element of the new Hamiltonian, if the deformation does
not change the symmetry of the lattice.

As the electronic properties of two-dimensional materials
are studied near K and K′ points in this research, the behav-
ior of energy dispersion curve near these points is considered.
But, for studying the effect of other orbitals, complete Hamil-
tonian, i.e., Eq. (2) of Ref. [31], should be considered. Then,
equations (34)–(37) of Ref. [15] can be used to calculate the
effect of deformation. Obviously, the calculation method is
more complicated than the provided method in this article and
needs more justification. The effect of doping can be only
studied by using the ab-inito methods such as density func-
tional theory, which is out of the scope of this article.

5. Summary
It has been shown that the 4dz2 orbital is the dominant

component of the states near the CBM and the VBM located
at K and K′ points in the monolayer MoS2. We have consid-
ered the triangular lattice of Mo-plane and studied the topo-
logical superconductivity in monolayer MoS2. By consider-
ing the spin-singlet pairing at K and K′ points, we have shown
that the BdG-Hamiltonian matrix is diagonal and has four dis-
tinct eigenvalues which are functions of chemical energy and
ISOC strength. By using the rotation symmetry of the fixed
points K and K′, it has been shown that the Chern number is
equal to four (two) when the chemical potential µ is greater
(smaller) than ISOC strength βso and otherwise it is equal to
zero. Also, we have introduced two simple tight-binding BdG-
Hamiltonian models for finding the zero energy states (i.e.,
Majorana states) and confirming the analytical results. In the
first model, the ISOC was considered by choosing the dx2−y2

and dxy orbitals of Mo-atoms. We have shown that when βso

is greater than pairing potential ∆0, there are four zero en-
ergy states. Under the same condition and using the second
single-band tight-binding Hamiltonian, we have shown that
for both µ > βso and µ < βso, there are zero energy states
and for µ � βso, a gap is opened in the energy dispersion
curve. Finally, we have shown that under small uniaxial strain
which can be parallel or perpendicular to the zigzag edge of
Mo-nanoribbon, the topological properties are preserved.
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