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Unified approach to various quantum Rabi models with
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A general approach is proposed to the quantum Rabi model and its several variants within the extended coherent
states. The solutions to all these models including the anisotropy and the nonlinear Stark coupling are then obtained in an
unified way. The essential characteristics such as the possible first-order phase transition can be detected analytically. This
approach can be easily applied to the recent experiments with various tunable parameters without much additional effort,
so it should be very helpful to the analysis of the experimental data.

Keywords: exact solutions, quantum Rabi models, circuit QED, anisotropy

PACS: 03.65.Ge, 02.30.Ik, 42.50.Pq, 42.50.Lc DOI: 10.1088/1674-1056/ab6555

1. Introduction
The basic interaction between a two-level atom and a

classical light field was described by the Rabi model many
years ago.[1] Its fully quantized version in the rotating wave
approximation (RWA) was introduced by Jaynes and Cum-
mings later.[2] The Jaynes–Cummings model can be easily
solved due to the conserved excitations of the atom and the
photonic number. It has been widely used in the quantum
optics, because the basic physics explored in the Jaynes–
Cummings model alone can be realized and observed in the
earlier experiments due to the extremely weak coupling be-
tween the atom and the cavity, such as Rabi oscillations, col-
lapses and revivals of quantum state populations, quadrature
squeezing, and photon anti-bunching.[3,4]

However, the situation has changed in the past decade.
In many advanced solid devices, such as the circuit quan-
tum electrodynamics (QED) system, two-dimensional electron
gases, and trapped ions, the ultrastrong coupling[5,6] and even
deep strong coupling[7,8] between the artificial atom and res-
onators have been accessed, and the RWA is demonstrated
to be invalid.[5] On the other hand, the two-level system ap-
pearing in the quantum Rabi model (QRM) and its variants
is a qubit, which is the building block of quantum informa-
tion technologies with the ultimate goal to realize quantum al-
gorithms and quantum computations. Just motivated by the
experimental advances and potential applications in quantum
information technologies, the QRM in which the RWA is not
made has attracted extensive attention.[9–20] For more com-
plete review, please refer to Refs. [21–23].

The QRM continues to inspire exciting developments
in both experiments and theories recently. The anisotropic

QRM[24–26] was motivated by the recent experimental
progress.[27–29] It can be mapped onto the model describing a
two-dimensional electron gas with Rashba (rotating wave cou-
pling relevant) and Dresselhaus (counter rotating-wave cou-
pling dependent) spin–orbit couplings subject to a perpendic-
ular magnetic field.[27] These couplings can be tuned by an ap-
plied electric and magnetic field, allowing the exploration of
the whole parameter space of the model. This model can di-
rectly emerge in both cavity QED[28] and circuit QED.[29] For
example, in Ref. [30], a realization of the anisotropic QRM
based on resonant Raman transitions in an atom interacting
with a high finesse optical cavity mode was proposed. On the
other hand, Grimsmo and Parkins proposed a novel scheme by
adding a nonlinear coupling term to the QRM Hamiltonian.[31]

This nonlinear coupling term has been discussed in the quan-
tum optics literature under the name of dynamical Stark shift,
a quantum version of the Bloch–Siegert shift, so it was later
named the quantum Rabi–Stark model (RSM).[32] This model
also attracted much attention in recent years.[33–35] Recently,
the anisotropic Dicke model with the Stark coupling terms,
which can be called as the anisotropic Dicke–Stark model, was
demonstrated via cavity assisted Raman transitions in a con-
figuration using counterpropagating laser beams.[36] For one
atom case, it is just the anisotropic RSM.

With the progress on various extensions of the QRM rel-
evant experiments, different approaches have been developed
to solve various QRMs.[37] In this work, we will introduce a
generical approach to solve the QRM and its several variants,
such as the anisotropic QRM, RSM, and anisotropic RSM, in
an unified way.

The paper is structured as follows. In Section 2, we pro-
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pose and describe an unified analytic approach to the general-
ized QRM, which can be reduced to many different QRMs,
using tunable coherent states. By solving the Schrödinger
equation, all coefficients in the wave function can be related
through the recurrence equations. The solutions for all eigen-
functions and eigenvalues of the model are obtained by locat-
ing zeros of a one-variable polynomial. The results are pre-
sented and discussed in Section 3, where the closed-form so-
lutions for the ground-state and the first excited state are also
given. The last section contains some concluding remarks.

2. Model and solutions
The general QRM can be described as follows:

H =

(
1
2

∆ +Ua†a
)

σz +ωa†a

+g1
(
a†

σ−+aσ+

)
+g2

(
a†

σ++aσ−
)
, (1)

where ∆ is the qubit energy difference, a† (a) is the photonic
creation (annihilation) operator of the single-mode cavity with
frequency ω , g1 and g2 are the rotating wave and counter
rotating-wave coupling constants, respectively, σk (k = x,y,z)

are the Pauli matrices, and U is the nonlinear Stark coupling
strength. Set r = g2/g1 as the anisotropic parameter. Note that
if U = 0, it is the original QRM for g1 = g2 and anisotropic
QRM for g1 6= g2, while if U 6= 0, it is no other then RSM
for g1 = g2 and anisotropic RSM for g1 6= g2. If r = 0, these
models are reduced to their RWA counterparts. Therefore,
equation (1) describes the most general and also the most com-
plicate model.

Fortunately, associated with this very general Hamilto-
nian is still the conserved parity Π = exp(iπN̂), [Π ,H] = 0,
where N̂ = (1+σz)/2+a†a is the total excitation number. Π

has two eigenvalues ±1, depending on whether N̂ is even or
odd. Due to this parity symmetry, we can study the general
model (1) with the same scheme.

First, we employ the following transformation:

P =
1√
2

(√
r 1
−
√

r 1

)
, P−1 =

1√
2

(
1√
r − 1√

r
1 1

)
, (2)

then Hamiltonian (1) can be written as a matrix below (in units
of ω = 1):

H1 = PHP−1 =

(
a†a+βa+ λ+

β
a† −

( 1
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− λ−

β
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−
( 1
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)
, (3)

where λ± =
(
g2

1±g2
2
)
/2 and β =

√
g1g2.

Next, we expand the eigenfunction as

|Ψ〉=
(

∑
∞
n=0 cn

(
a†
)n exp

(
αa†

)
|0〉

Π ∑
∞
n=0 cn (−a†)

n exp(−αa†) |0〉

)
, (4)

where α is the tunable displacement of the coherent states and
each term can be regarded as an extended coherent state.

By the Schrödinger equation, we have the same follow-
ing equation for both up and down levels due to the conserved
parity: [

a†a+βa+
λ+

β
a†
]

∞

∑
n=0

cn
(
a†)n

exp
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= E
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Each term in both sides of the above equation can be grouped
into terms in (a†)m exp

(
αa†

)
|0〉. Equating the coefficients of

these terms in m-th order yields

Ecm = (m+βα)cm +

(
α +
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β

)
cm−1 +(m+1)βcm+1

−Π (−1)m
m

∑
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2
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+

(
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β

)
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}
. (5)

Similar to Refs. [34,38], looking at the eigenfunction (4), one
can note that c0 is flexible in the Schrödinger equation where
the normalization for the eigenfunction is not necessary, so we
select c0 = 1. The linear term in a† in the Fock space can be
also determined by the displacement α in the pure coherent
state, so we do not need c1, which can be set to zero. The con-
stant term in Eq. (5) by m = 0 gives the relation between the
energy and the tunable parameter α ,

E = βα− Π

2
∆ . (6)

Inserting Eq. (6) into Eq. (5) leads to the following recursive
relation for coefficients c’s:

cm+1 =

(
m+ ∆

2 Π
)

cm +
(

α + λ+
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)
cm−1

−(m+1)β

+
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. (7)
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For any real physical systems, the wavefunction should
be analytic and well defined, so the higher order coefficients
should be vanishingly small. Strictly speaking, cm→∞ → 0.
But in the real calculation, one cannot set m to infinite as the
numerical diagonalization proceeds in the truncated Hilbert
space. Thus we need truncate the summation by setting
cmtr+1 = 0. cmtr+1 is actually a polynomial in α , also in the
energy E if using relation (6). The zero locations of Eq. (7)
converge reasonably well with increasing truncated number
mtr. In principle, we can set infinite truncated number, but it is
impossible to implement practically in the numerical calcula-
tions. All the coefficients can be obtained by this E-dependent
polynomial equation, thus the eigenstates (4) can be also ob-
tained. We actually can determine the solutions of the model
with any desired accuracy by increasing truncated number mtr.
The solutions are demonstrated in the next section for arbitrary
model parameters in various quantum Rabi models.

3. Results and discussion

Most importantly, for arbitrary model parameters, the sat-
uration calculation can be arrived at if mtr is large enough,
which results in exact solutions. It is very crucial to obtain the
real roots of Eq. (7) for sufficient large truncation number mtr.
We plot a two-dimensional diagram cmtr+1(E). The schematic
view of the solutions for the one-variable polynomial equation
cmtr+1(E) with different model parameters in the most general
model (1) are presented in Fig. 1. The real roots are just the
intersection points of the curve and abscissa axis. The cross-
ing points are just the solutions for eigenvalues E. Here the
relative difference of the energy is less than 10−6 for all cou-
pling strengths if mtr is around 40. To confirm that all obtained
eigenvalues are true ones of the model, we perform the numer-
ical exact diagoanlizations (ED) in the Fock space. The ED
results are indicated by the open circles. Excellent agreement
is found for various parameters.

By this method, we can further calculate the energy spec-
tra for the general model (1) with arbitrary parameters. In
Fig. 2, we plot the spectra for ∆ = 0.5, U = 0.5, and r = 0.5.
The numerical ED results are also exhibited with open circles.
Both results are almost the same. Interestingly, the first two
energy levels cross at one point. The level crossing just indi-
cates the first-order quantum phase transition, because the first

derivative of the lowest energy is discontinuous at this crossing
point.
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Fig. 1. Schematic view of the solutions for the one-variable (E) poly-
nomial Eq. (7) with (a) g = 0.5, U = 0.5, r = 0.5; (b) g = 1, U = 0.5,
r = 0.5; (c) g = 0.5, U = 0.5, r = 2; and (d) g = 0.5, U =−0.5, r = 0.5.
Even parity is denoted by blue and odd parity by red. The black circles
are numerical ED solutions for the energy. ∆ = 0.5.
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Fig. 2. Energy spectra for ∆ = 0.5, U = 0.5, r = 0.5 by both present
approach (solid lines) and the numerical ED (black circles).

In the studies of the original simplest QRM, the analyti-
cal closed-form solution is very interesting and helpful.[39,40]

Now, in our unified framework, we can also present the closed-
form solutions to this general model by terminating the sum-
mation in Eq. (7) at mtr = 2, i.e., c3 = 0, which yields

α
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1−U2−U∆ +Π∆ −2Πλ−
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α

+
(λ+−λ−Π)(1−ΠU)

β 2Π (2U +∆)
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(
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)
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±

√
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2

4β 2 (2U +∆)2 − (λ+−λ−Π)(1−ΠU)

β 2Π (2U +∆)
.

Checking with numerics, we obtain the first energy for even and odd parity in the closed-form, respectively

EΠ=1 =
U2−U∆ −∆ −1+2λ−−∆ 2

2(2U +∆)
+

√
(1−U2−U∆ +∆ −2λ−)

2
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2U +∆
, (8)
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EΠ=−1 =
U2−U∆ +∆ −2λ−−∆ 2−1

−2(2U +∆)
−

√
(1−U2−U∆ −∆ +2λ−)

2

4(2U +∆)2 +
(λ++λ−)(1+U)

(2U +∆)
. (9)

Also considering the most complicate case, i.e., nonzero
U and r 6= 1, we plot the above two energies Eqs. (8) and (9)
in Fig. 3 for ∆ = 0.5,U = 0.5,r = 0.1. The first 4 energy
levels from the exact solutions are also displayed for compari-
son. The level crossing of the first two exact energy levels also
appears in the corresponding closed-form solutions. Although
deviating from the true crossing point, the qualitative feature is
still captured in the simple closed-form study. One may note
that the present closed-form solution is only a second-order
approximation, but the essential feature of the model is still
included. It may highlight that in the present ansatz (4), only
a few terms in the expansion can dominate the true one.
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Fig. 3. A few low levels for ∆ = 0.5, U = 0.5, r = 0.1 by both the
closed form (filled circles) and the exact solutions by zeros of Eq. (7)
(solid lines). Level crossing appears for both cases.

In the recent experiments, many solid-state devices can
be operated in the ultra-strong cavity–cavity coupling regime,
i.e., g < 0.2. From Fig. 3, one may see that the closed-form
solutions are very close to the true ones up to the ultra-strong
coupling regime. This situation becomes even better for the
ground-state energy. In Fig. 4, we plot the ground state energy
up to g = 0.5 by Eq. (8). An excellent agreement in wider
coupling regime is obviously exhibited.
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Fig. 4. Comparisons of the ground-state energies by the present closed
form solution (filled circles) and the exact solutions by zeros of Eq. (7)
(solid curves) for ∆ = 0.5, U = 0.5, (a) r = 0.5 and (b) r = 2 (right).

4. Conclusion
We have proposed a unified approach to the quantum Rabi

model and its several variants. A polynomial equation with a
single variable is derived by tunable extended coherent states
for the most general model, which is more complicate than the
often studied models. The solutions to this polynomial equa-
tion recover exactly all eigenvalues and eigenfunctions of the
models for arbitrary model parameters. Closed-form solutions
are also given for the first two levels, which are very accurate
up to the ultrastrong coupling regime. The first-order quantum
phase transitions for some parameters are observed in the uni-
fied exact solutions, and also appear in the closed-form ones.
Further physics phenomena in the presence of anisotropy and
nonlinear Stark coupling will be explored within this unified
scheme in the near future.

Finally, we like to point out that this unified method
should be very helpful to analyze the experimental data in
the recent circuit QED systems from the weak coupling, ultra-
strong coupling, and deep-strong coupling regimes. For some
experimental device, the underlying interactions information
such as anisotropy and nonlinearity are not very clear, and thus
the specified model is unknown in priori. By using the present
universal approach, one can easily fit the experiential data to
the theoretical results based on the generalized model where
all possible interactions are taken into account, and finally de-
tect the real interactions in the experiments.
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