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Influence of the Earth’s rotation on measurement of gravitational
constant G with the time-of-swing method∗

Jie Luo(罗杰)1, Tao Dong(董涛)1, Cheng-Gang Shao(邵成刚)2,
Yu-Jie Tan(谈玉杰)2,†, and Hui-Jie Zhang(张惠捷)1,‡

1School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
2MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics,

PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

(Received 15 November 2019; revised manuscript received 13 December 2019; accepted manuscript online 25 December 2019)

In the measurement of the Newtonian gravitational constant G with the time-of-swing method, the influence of the
Earth’s rotation has been roughly estimated before, which is far beyond the current experimental precision. Here, we present
a more complete theoretical modeling and assessment process. To figure out this effect, we use the relativistic Lagrangian
expression to derive the motion equations of the torsion pendulum. With the correlation method and typical parameters, we
estimate that the influence of the Earth’s rotation on G measurement is far less than 1 ppm, which may need to be considered
in the future high-accuracy experiments of determining the gravitational constant G.
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1. Introduction
The Newtonian gravitational constant G is one of the

most fundamental and universal constants, which is closely
related to theoretical physics, astrophysics, and geophysics,
while its precision is the lowest so far.[1–5] Although the pre-
cision of G has been improved over the past few decades,
the values in CODATA 2014 are still in poor agreement be-
cause of the extreme weakness and nonshieldability of grav-
ity, which indicates that there may be some systematic er-
rors that have not been discovered or correctly understood in
the experiments.[6,7] At present, the best results of G mea-
surement have been given by a group in Huazhong Univer-
sity of Science and Technology (HUST), who reported two
independent values of G using torsion pendulum experiments
with the time-of-swing method[4,8–10] and the angular accel-
eration method.[1,11,12] The G values given by these two ex-
periments are 6.674184×10−11 m3·kg−1·s−2 and 6.674484×
10−11 m3·kg−1·s−2, with relative standard uncertainties of
11.64 ppm and 11.61 ppm, respectively.[13]

The effect of the Earth’s rotation[6,14,15] on G measure-
ment has been roughly estimated to be very small before, but
it is necessary to conduct a comprehensive and detailed mod-
eling for it, which may be helpful for the G measurement with
higher accuracy in the future. In the G measurement with the
angular acceleration method, the effect of the Earth’s rotation
has been fully analyzed, but the analysis of this effect in the
time-of-swing method is still missing. This work is to solve

this problem. In this paper, we present the derivation of the
Lagrangian of the torsion pendulum in the general relativistic
frame. Based on this, the motion equations of the torsion pen-
dulum can be obtained. With the correlation method[16–18] and
the numerical simulation in MATLAB, we extract the periods
of the torsion pendulum before and after adding the perturba-
tion brought by the Earth’s rotation, respectively. From the
difference of the periods, the effect of the Earth’s rotation on
measuring G can be obtained. This study shows that the influ-
ence of the Earth’s rotation mainly contributes to the G mea-
surement by coupling itself with the pendulum motion of the
torsion pendulum and if the amplitude of the pendulum motion
is controlled at the milliradian level, the Earth’s rotation only
contributes an uncertainty about 10−3 ppm to the G value.

The outline of this paper is as follows. Section 2 briefly
introduces the principle of measuring the gravitational con-
stant G with the time-of-swing method. In Section 3, the La-
grangian expression of the torsion pendulum is derived in de-
tail in the relativistic frame. In Section 4, we obtain the mo-
tion equations of the torsion pendulum from the Lagrangian,
and estimate the influence of the Earth’s rotation on G mea-
surement with the correlation method. Finally, the paper is
concluded in Section 5.

2. The principle of the time-of-swing method
Let us have a simple review on the principle of the time-

of-swing method. The time-of-swing method was proposed by
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Braun in the 1890s and developed by Heyl, Cohen, and Taylor
later,[19–22] which has been widely used to measure G now. In
this method, a torsion pendulum is suspended by a very thin
fiber, and two source masses are placed on opposite sides of
the pendulum, as shown in Fig. 1. When the line connecting
the source masses is parallel to the pendulum, namely, the near
configuration, the attraction of the source masses to the pen-
dulum provides an additional positive restoring torque, so that
the total restoring torque increases. This leads to the increase
of the torsional oscillation frequency and the decrease of the
torsional oscillation period. In contrast, when the line con-
necting the source masses is vertical to the pendulum, namely,
the far configuration, the attraction of the source masses to the
pendulum provides an additional negative restoring torque, so
that the total restoring torque decreases. This leads to the de-
crease of the torsional oscillation frequency and the increase
of the torsional oscillation period.

torsion fiber

farnear

torsion fiber

Ma Mb

Ma

Mb

(a) (b)

Fig. 1. The (a) near and (b) far configurations of G measurement with
the time-of-swing method, where Ma and Mb are the source masses.

In vacuum, when the source masses are placed around,
the motion equation of the torsion pendulum can be written
as[23,24]

Iθ̈ + kθ +GCgθ = 0, (1)

where I denotes the moment of inertial of the torsion pendu-
lum, θ is the deflection angle, k is the fiber torsion constant,
GCg is the effective gravitational torsion constant, and Cg is
the coupling constant determined by the mass distributions and
positions of the pendulum and source masses. From Eq. (1),
we can obtain the period of the torsion pendulum as

τ = 2π

√
I/(k+GCg). (2)

Based on the two configurations mentioned above, two
different periods τn and τ f can be obtained, respectively.
Therefore, G can be determined by

G =
4π2I
Cg

(
1
τ2

n
− 1

τ2
f

)
. (3)

3. The Lagrangian expression of the torsion pen-
dulum in the general relativistic frame
Here, we consider the influence of the Earth’s rotation on

G measurement with the time-of-swing method. This section

focuses on obtaining the motion equations of the torsion pen-
dulum containing the Earth’s rotation. In order to achieve this,
the Lagrangian expression of the torsion pendulum should be
obtained first. We start from the relativistic expression of the
Lagrangian density in any curvilinear coordinate system

L = c2

(
1− 1

c

√
−gµν

dxµ

dt
dxν

dt

)
, (4)

with gµυ being the four-dimensional metric tensor and c be-
ing the speed of light. In this work, we adopt the following
convention: Greek (space–time) indices including µ , υ , α ,
. . . will run from 0 to 3, and small Roman (spatial) indices i, j,
k, . . . will run from 1 to 3; that is, x0 is considered as the time
coordinate and xi as the spatial one. In weak field approxima-
tion up to the Newtonian order, gµυ is usually split into the
3+1 formalism as

g00 ≈−1+g(2)00 , g0i ≈ g(1)0i , gi j ≈ δi j. (5)

By substituting Eq. (5) into Eq. (4), the Lagrangian can be fur-
ther expressed as

L =
𝑣2

2
+

1
2

g(2)00 c2 +g(1)0i c𝑣. (6)

Usually, the external gravitational field of the Earth described
by the Schwarzschild space–time is written in the spherical
coordinates as[6]

ds2 = −
(

1+
2φ

c2

)
(cdt)2

+(dr2 + r2 dθ
2 + r2 sin2

θ dϕ
2), (7)

where φ = −GMe/r is the Newtonian gravitation potential
with Earth’s mass Me. With the coordinate transformation
ϕ → Ωet +ϕ , in which Ωe is the angular speed of the Earth’s
rotation, we can directly obtain the metric in the rotating frame
as

ds2 = −
(

1+
2φ

c2 −
Ω 2

e r2 sin2
θ

c2

)
(cdt)2

+2Ωer2 sin2
θ dt dϕ

+(dr2 + r2 dθ
2 + r2 sin2

θ dϕ
2). (8)

Selecting the coordinate origin on the surface of the Earth with
the transformation 𝑟→𝑅e +𝑟, we can rewrite the metric of
the local laboratory frame in the rectangular coordinates as

ds2 = −
(

1−2
𝑔 ·𝑟
c2

)
(cdt)2 +2𝛺e× (𝑅e +𝑟) · d𝑟dt

+(dx2 + dy2 + dz2). (9)

Here, 𝑅e is the radius of the Earth and 𝑔 = −GMe𝑅e/R3
e −

𝛺e ×𝛺e ×𝑅e is the gravity acceleration on the surface of
the Earth. The linear speed of the Earth’s rotation is 𝑉e =
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𝛺e×𝑅e. Based on Eqs. (6) and (9), the Lagrangian for a tor-
sion pendulum in the local laboratory frame can be expressed
as

Lm =
∫ (

𝑣2

2
−gz+𝑉e ·𝑣+𝛺e ·𝑟×𝑣

)
dm, (10)

where dm denotes the infinitesimal mass and the z direction
is assumed to be along the plumb line with 𝑔 = −g𝑒z. Since
the suspension point of the torsion fiber is fixedly connected
with the laboratory, the local laboratory frame can actually be
regarded as the suspension point frame.

When we only consider the angle deflection θ , the posi-
tion vector of the infinitesimal mass dm can be expressed as (x,
y, z) = (Lp cosθ , Lp sinθ , −l) in the suspension point frame,
in which Lp is the distance between an arbitrary point on the
torsion pendulum and the center of the pendulum, and l is the
length of the torsion fiber. However, in real experiments, due
to the vibrational noise from seismicity or control systems, the
torsion pendulum has a pendulum motion in addition to the
horizontal rotation. Therefore, the position vector of dm will
change. For simplicity, we set δϕx(t) and δϕy(t) as the an-
gular displacements of the fiber from the vertical position in y
and x directions, respectively. With the coordinate transform
shown below

x→ zsinδϕy + xcosδϕy,

y→ ycosδϕx− zsinδϕx,

z→ ysinδϕx + zcosδϕx + zcosδϕy− xsinδϕy− z,
(11)

the position vector of dm turns out to be

(Lcosθ cosδϕy− l sinδϕy, Lsinθ cosδϕx + l sinδϕx,

L(sinθ sinδϕx− cosθ sinδϕy)

+ l(1− cosδϕx− cosδϕy)). (12)

By substituting Eq. (12) into Eq. (10), we can obtain a La-
grangian function related to θ , δϕx, and δϕy. Here, we set
I1 = ∫ l2 dm as the moment of inertia of the torsion pendulum
related to the pendulum motion and I2 = ∫ L2

p dm as the mo-
ment of inertia of the torsion pendulum related to the rotation
motion. Because the torsion fiber goes through the center of
the pendulum and the pendulum is symmetric, the relations
of ∫𝐿p dm = 0, ∫ xydm = 0, ∫ zxdm = 0, and ∫ zydm = 0 are
satisfied. As the angular displacements δϕx(t) and δϕy(t) are
very small, the approximation of sinδϕ ≈ δϕ and cosδϕ ≈
1 is reasonable. Therefore, the final simplified Lagrangian in
the suspension point frame can be expressed as

L(θ ,δϕx,δϕy)

= I1

[
1
2
(δ ϕ̇

2
x +δ ϕ̇

2
y )+δ ϕ̇xΩx +δ ϕ̇yΩy

−δ ϕ̇xΩzδϕy +δ ϕ̇yΩzδϕx

]

+ I2

[1
2
(δ ϕ̇

2
x sin2

θ +δ ϕ̇
2
y cos2

θ)

+
1
2

θ̇
2 + θ̇(δ ϕ̇xδϕy sin2

θ −δ ϕ̇yδϕx cos2
θ +Ωz

+Ωxδϕy−Ωyδϕx)+δ ϕ̇xΩx sin2
θ +δ ϕ̇yΩy cos2

θ

]
+
∫

(gl)dm+
∫
[δ ϕ̇x(Vyl +Vzlδϕx)

+δ ϕ̇y(−Vxl +Vzlδϕy)]dm, (13)

in which only the first order terms of δϕx(t) and δϕy(t) are
kept.

4. Evaluating the influence of the Earth’s rota-
tion
Based on the Lagrangian expression in Eq. (13), the mo-

tion equations of torsion pendulum’s rotation and pendulum
motion can be respectively obtained. For the rotation of the
torsion pendulum, the following equation is satisfied:

d
dt

∂L
∂ θ̇
− ∂L

∂θ
=−GCgθ − kθ . (14)

Substituting Eq. (13) into Eq. (14), we can further obtain

I2θ̈ + kθ = −GCgθ − I2Ω̇z− I2[Ω̇xδϕy +Ωxδ ϕ̇y− Ω̇yδϕx

−Ωyδ ϕ̇x−2θ(Ωxδ ϕ̇x−Ωyδ ϕ̇y)]. (15)

Due to the high stability of the Earth’s rotation, Ω changes
very little with time and affects the motion of the torsion pen-
dulum mainly by coupling itself with the pendulum motion.
Here, we set Ω̇ = 0, equation (15) can be rewritten as

I2θ̈ + kθ = −GCgθ − I2[Ωxδ ϕ̇y−Ωyδ ϕ̇x

−2θ(Ωxδ ϕ̇x−Ωyδ ϕ̇y)]. (16)

For the pendulum motion of the torsion pendulum, it can be
decomposed into separate x and y components. For the y com-
ponent, we can obtain

d
dt

∂L
∂δ ϕ̇x

− ∂L
∂δϕx

=−I1
g
l

δϕx, (17)

and further derive the motion equation as

I1(δ ϕ̈x−2Ωzδ ϕ̇y)+ I2(δ ϕ̈x sin2
θ

+ θ̈ δϕy sin2
θ + θ̇ δ ϕ̇x sin2θ + θ̇ δ ϕ̇y

+ θ̇
2
δϕy sin2θ + θ̇Ωx sin2θ + θ̇Ωy)

+
d
dt

∂

∂δ ϕ̇x

{∫
[δ ϕ̇x(Vyl +Vzlδϕx)]dm

}
− ∂

∂δϕx

{∫
[δ ϕ̇x(Vyl +Vzlδϕx)]dm

}
=−I1

g
l

δϕx. (18)

Similarly, the motion equation of the x component is

I1(δ ϕ̈y +2Ωzδ ϕ̇x)+ I2(δ ϕ̈y cos2
θ

− θ̈ δϕx cos2
θ − θ̇ δ ϕ̇y sin2θ − θ̇ δ ϕ̇x

+ θ̇
2
δϕx sin2θ − θ̇Ωy sin2θ − θ̇Ωx)
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+
d
dt

∂

∂δ ϕ̇y

{∫
[δ ϕ̇y(−Vxl +Vzlδϕy)]dm

}
− ∂

∂δϕy

{∫
[δ ϕ̇y(−Vxl +Vzlδϕy)]dm

}
=−I1

g
l

δϕy. (19)

Since the pendulum motion has little effect on the rotation of
the torsion pendulum, only the main effects need to be consid-
ered, while some small coupling effects can be ignored. Thus,
equations (18) and (19) can be approximated as

I1

(
δ ϕ̈x +

g
l

δϕx

)
= 0, (20)

I1

(
δ ϕ̈y +

g
l

δϕy

)
= 0, (21)

and the corresponding solutions to Eqs. (20) and (21) can be
derived as

δϕx(t) = Ax cos(ω f t +ϕx), (22)

δϕy(t) = Ay cos(ω f t +ϕy), (23)

where ω f =
√

g/l ≈
√

9.8/0.9≈ 3.3 rad · s−1 denotes the os-
cillation frequency, Ax (Ay) and ϕx (ϕy) are the amplitude and
initial phase, respectively.

Substituting Eqs. (22) and (23) into Eq. (16), we can ob-
tain

I2θ̈ + kθ +GCgθ

= −I2{−ΩxAyω f sin(ω f t +ϕy)+ΩyAxω f sin(ω f t +ϕx)

+2θ [ΩxAxω f sin(ω f t +ϕx)−ΩyAyω f sin(ω f t +ϕy)]},
(24)

and the corresponding general solution is

θ0(t) = A0 sin(ω0t +ϕ0), (25)

with the angular frequency ω0 =
√

(k+GCg)/I2. This solu-
tion describes the free oscillation of the torsion pendulum. By
substituting Eq. (25) into the right side of Eq. (24), it can be
rewritten as

I2θ̈ + kθ +GCgθ

= I2ω f {[ΩxAy +2ΩyA0Ay sin(ω0t +ϕ0)]sin(ω f t +ϕy)

− [ΩyAx +2ΩxA0Ax sin(ω0t +ϕ0)]sin(ω f t +ϕx)}. (26)

To simply make the order estimate, equation (26) can be ap-
proximately expressed as

I2θ̈ + kθ +GCgθ

= I2ω f (ΩxAy +2ΩyA0Ay)sin(ω f t +ϕy). (27)

Assume that the form of the particular solution of Eq. (27) is
θ f (t) = A f sin(ω f t +ϕy) with

A f =
I2ω f (ΩxAy +2ΩyA0Ay)

k+GCg− I2ω2
f

, (28)

which includes the perturbation brought by the Earth’s rota-
tion. Eventually, the complete solution of Eq. (24) is approxi-
mate to

θ(t) = A0 sin(ω0t +ϕ0)+A f sin(ω f t +ϕy). (29)

Based on the typical parameters A0 ∼ 3 mrad, Ay ∼ 1 mrad,
I2 ∼ 4.8× 10−5 kg·m2, Ωx ≈ Ωy ∼ 7.2× 10−5 rad·s−1, k ∼
1.1 × 10−8 N·m·rad−1, Cg ∼ 0.9 kg2·m−1, G ∼ 6.674 ×
10−11 m3·kg−1·s−2, we can obtain A f ≈−2.4×10−8 rad.

To extract the effective oscillation frequency of the mo-
tion described by Eq. (29), the correlation method[16–18] is
usually used, which determines the frequency by comparing
the measured signal with a strictly sinusoidal reference sig-
nal. Here, we generate two groups of data with sampling
time of 840 s by MATLAB. One group is a strictly sinusoidal
signal with amplitude A0 and period τ0 = 2π /ω0 ≈ 420 s.
The other group is based on the first group, and additionally
includes a perturbative signal with amplitude A f and period
τ f = 2π /ω f ≈ 1.9 s. With the correlation method, the pe-
riod difference between the first and second data groups is
∆τ ≈−6.5×10−9 s. The contribution to the uncertainty of G
measurement with the time-of-swing method can be expressed
as

∆G
G

=
√

2
∆τ

τn− τ f
. (30)

Taking τn − τ f ≈ 1.5 s, we can obtain ∆G/G ≈ −6.1 ×
10−3 ppm. This means that if the amplitude of the pendu-
lum motion of the torsion pendulum is controlled at the level
of milliradian, the uncertainty brought by the Earth’s rotation
will be far less than 1 ppm.

5. Summary
At present, the highest precision of G value is given by the

angular acceleration method and the time-of-swing method.
However, there are still some systematic errors that need de-
tailed modeling and analysis, such as the Earth’s rotation ef-
fect. For the angular acceleration method, the relevant anal-
ysis of the Earth’s rotation effect has been completed, but in
experiments of the time-of-swing method, we only roughly
estimated the magnitude of the effect before. Therefore, we
present a more complete analysis and assessment process of
this effect here. We derive the motion equations of the torsion
pendulum with the Lagrangian expression in the general rel-
ativistic frame. After the calculation and simulation, we find
that the main effect of the Earth’s rotation contributes to G
measurement by coupling itself with the pendulum motion of
the torsion pendulum. This effect is far less than 1 ppm, as
long as we control the amplitude of the pendulum motion at
the level of milliradian. The model we put forward is appli-
cable to other similar gravitational experiments with torsion
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pendulum, in which the influence of the Earth’s rotation may
need to be carefully considered.
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