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Abstract: Taiwan Photon Source (TPS) has been operated for 6 years, and the mean time between
fails has reached world-class standards since the first light was delivered on 31 December 2013.
To maintain satisfactory research facilities, all subsystems are constantly updating their equipment.
The power supply group dramatically increases the output current bandwidth on bipolar corrector
magnet power supplies, thereby increasing the number of calculations of the fast orbit feedback
system and improving the stability of beam current. Finally, a DC/DC high-bandwidth corrector
was built in the laboratory with the maximum prototype output current and voltage of 10A/40V.
The power switch is metal-oxide-semiconductor field-effect transistor (MOSFET,) and the power
state is a full-bridge (H-Bridge) circuit with a 145 kHz signal. The effectiveness of the control loop
design can be verified from the gain margin and output current ripple. The prototype achieved a
11 kHz bandwidth with less than 3 dB attenuation for a reference signal of 0.1V (equal to 0.1A).
Finally, a hardware prototype circuit was constructed in a power group laboratory. It had an input
voltage of 48V, output current of 10A and maximum power of 400W.
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1 Introduction

Light is made up of electromagnetic waves and is an important basis for human beings to observe
nature. In addition to visible light, electromagnetic waves also comprise radio waves, microwaves,
infrared light, ultraviolet light, X-rays and gamma rays depending on the wavelength. Different light
sources play varying functions in human history because of their characteristics. “Synchronous
accelerator light source” covers electromagnetic waves in the wavelength range of infrared light,
visible light, ultraviolet light and X-ray. It was first discovered in 1947 on the synchrotron of General
Electric Company of the United States. Light’s continuous wavelength, extremely high brightness,
small cross-sectional area and wavelength range that covers tens of microns to several hundredths of
a nanometres can help scientists observe the world that is invisible to the naked eye. The synchrotron
source illuminates the material and produces different effects, such as photoelectron emission, ion
or neutral atom detachment, absorption, scattering and diffraction. Each effect is closely related to
the physical or chemical properties of the substance itself [1, 2]. Therefore, the use of synchrotron
light source to observe the substance accurately allows the exploration of the internal structure of
the substance and the interaction among the electrons within. In the 21st century, synchrotron light
sources have become cutting-edge basic scientific research materials that can be widely used in
materials, biology, medicine, physics, chemistry, chemical, geology, archaeology, environmental
protection, energy, electronics and micro-mechanics [3]–[5].

The modified magnet power supply has a full-scale modular design. It consists of a control
module and eight power modules. The control signals are provided by the control module and
distributed to the power modules via the backplane. When each monitoring signal shows an

– 1 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
T
0
1
0
0
5

abnormality, the interlock mechanism starts to turn off the output current until the reset signal
is released. The chassis specifications are in accordance with the IEC standard 19-inch standard
chassis, and the motherboard and module circuit board dimensions and connectors follow relevant
IEC specifications. The heat dissipation of the chassis is obtained by the fan below and blown
out by the fan above. The front panel is equipped with LED lights to indicate system status.
For the corrector power supply specification, the input voltage is 48V, and the output current and
voltage are ±10A and ±40V, respectively. In this study, the output loading is an iron core with an
inductance of 1mH. A 0.1-Ω resistor was used. Iron is the cheapest material, its core loss is higher
than that of more advanced alloys, but this property can be compensated by increasing the core
size. This material is advantageous in situations where cost is more important than mass and size.
Saturation flux was set to approximately 1 to 1.5 Tesla. Relatively high hysteresis and eddy current
loss were observed, and operation was limited to low frequencies (approximately below 100 kHz).
The following are used in energy storage inductors: DC output chokes, differential mode chokes,
chokes for power factor1 correction, resonant inductors and pulse and Flyback transformers [6]–
[9].2 The binder used is usually epoxy or other organic resins that are susceptible to thermal aging.
At temperatures higher than 125◦C, the binder is degraded, and the core magnetic properties may
change. By using heat-resistant binders, the cores can be used up to 200◦C.

Fast orbit feedback (FOFB) system requires a current ripple of less than ±0.1mA peak-to-peak
at 1–5 kHz. In addition, the current setting resolution is 20 bits, whereas the current feedback
resolution is 19 bits at full scale 10A. Hence, the maximum resolution reaches 64 µA. Therefore,
this paper designed a high-resolution, high feedback system and low-output ripple DC–DC corrector
power supply to supply energy to a corrector iron magnet [10]–[14]. This power supply can verify
the output current ripple under 50 µA at a full load of 10A output current. The bandwidth can
achieve over 5 kHz. The national synchrotron light source FOFB can increase the detection from
200 times/second to 5,000 times/second. The stability of beam current can be greatly improved.

2 Correction power supply, power stage and auxiliary power stage

2.1 Power stage

This traditional full bridge circuit is selected as corrector power supply that can easily change
the polarity of an output current to a load. The power stage includes an input filter, full bridge
circuit and output filter. The input filter is for the electromagnetic interference (EMI) and noise. It
comprises a 10 µH parallel inductor filter and a 470 µF/100V capacitor filter (4 pcs). Full bridge
was combined with four MOSFET IXFK180N15 with voltage and current rating of 150V and
180A, respectively, and Rds(on) =11mΩ. The output filter is a 60 µH parallel output inductor filter
(2 pcs) and 0.82 µF/100V output filter capacitor (6 pcs) with damping components. The power state
circuit structure is shown in figure 1. An H-bridge is an electronic circuit that switches the polarity
of a current applied to a load. The output loading has positive current when S1 and S4 are turned
on, and S2 and S3 are turned off. The input power supplies energy to the output load depending on
the duty cycle. Alternately, output loading has a negative current when S2 and S3 are turned on,

1https://en.wikipedia.org/wiki/Power_factor.
2https://en.wikipedia.org/wiki/Magnetic_core#cite_note-coilws-4.
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and S1 and S4 are turned off. S1, S3, S2 and S4 cannot be turned on at the same time, because short
circuit may occur and damage the component.

Figure 1. H-bridge circuit structure.

The output shunt used was the RUG-Z-R-100-0.1-TK1 product by ISABELLEN Ltd., which
is a high-resolution current feedback sense. It was used to measure the current and provide the
feedback signal for the current regulation. It has a resistor value of 100mΩ, tolerance of 0.1%,
temperature coefficient of <1 ppm/k and load capacity of 250W. Figure 2 shows the shunt resistor
component.

Figure 2. Shunt resistor RUG-Z-R001-TK1-0.1.

2.2 Auxiliary power

Auxiliary power refers to the electric power provided by an alternate source that serves as backup
for the primary power source at the station main bus or prescribed sub-bus. This high bandwidth
power supply uses a regulator integrated circuit (IC) to provide high stability DC voltages of
approximately +15V, +5V, −15V, +12V, +8V and −8V supplied to the control IC or operation
amplifier. A voltage regulator is an IC that provides a constant fixed output voltage regardless of the
change in the load or input voltage. IC 78L08 has an input voltage of +15V and an output voltage
that supplies +8V. IC 79L08 has an input voltage of −15V and output voltage of −8V. IC 7812 has
an input voltage of +15V and output voltage of +12V. Figure 3 shows the auxiliary power circuit
in this prototype.
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Figure 3. Auxiliary power circuit.

3 Corrector power supply protection circuit and control circuit

3.1 Protection circuit

The protection circuit is an important part of power electronics. It is related to safe and stable
operation issues in the power electronics. This power supply is equipped with damping load
temperature protection (T-R36 & T-R37), heat sink temperature protection (T-Heat Sink), pulse
widthmodulation (PWM) power protection (PWMPOWER), high voltage protection (HVPOWER)
and current over loading protection (IOVL). Upon receiving the fault signal, the power supply
immediately stops supplying power. Figure 4 shows the protection circuit of the corrector magnet
power supply.

(1) T-R36, T-R37, T-Heat Sink: damping load and heat sink temperature protection occur when
the damping resistor and heat sink temperatures exceed 70◦C, and the TMP01 output signal
shifts from low to high levels.

(2) PWM Power: the UC3525 of pulse width modulator integrated circuits are designed to offer
improved performance and decreased external part count when used to design all types of
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switching power supplies. This IC failure leads to a disorder in the switch timing, thereby
resulting in short circuit. Hence, UC3525 pulse width modulator integrated circuits fault
triggers the signal of the PWM power.

(3) HV Power: most electronic converters include an under-voltage lockout (UVLO) function
to disable the converter. Subsequently, the input power source is left with low voltage and
protects the device from damage. When the supply voltage is very low and has no relevant
protection, the function and performance of the converter may be undefined. For example,
the logic circuit could malfunction or the MOSFET may operate in the linear region mode
instead of the saturation mode, thereby releasing a large amount of heat in the MOSFET and
eventually causing damage. For this prototype, the normal operation voltage is 48V, and the
HV power fault signal is triggered at an input voltage of less than 45V.

(4) IOVL: overload protection provides prevents the existence of a running overcurrent that would
cause overheating of the protected equipment. This prototype has a maximum output current
rating of ±10A and ±40V. Therefore, when the system has over ±10A or ±40V, IOVL fault
signal occurs, and the energy supply stops.

Figure 4. Protection circuit.
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3.2 Control circuit and MOSFET driver circuit

A closed loop control system is a set of electronic devices that automatically regulates a process
variable to a desired state or set point without human interaction. The closed loop has a proportional
integral (PI) controller, which is a feedback control loop that calculates an error signal by taking the
difference between the outputs of a system. The input signals of the PI controller are the reference
and feedback signals. The reference signal is the high-precision signal source provided by the user.
The central control board is set to 1V reference signal corresponding to the 1A output current. The
feedback signal is generated by the voltage converted from the current flowing through the shunt
resistor. The second-order control of the PI controller is composed of resistors and capacitors.
Changing the parameters of the components adjusts the gain margin and phase margin of the
converter. This condition is critical for correcting the bandwidth and stability of the converter.
The output signal of the PI controller is provided to the UC3525 for comparison with the built-in
oscillator frequency. For this control circuit, the oscillator frequency is designed at 145 kHz. After
operating the UC3525 pulse width modulation integrated circuit, a high-frequency PWM signal
is generated, and the power component MOSFET IXFK 180N15 is driven by the HIP4081 driver
IC. Figure 5 shows the power converter feedback voltage system, which comprises a PI controller
circuit, pulse width modulation circuit and MOSFET drive circuit.

Figure 5. Control circuit and MOSFET driver circuit.

4 Experimental result of the output current ripple, bandwidth and current stability

For this study, the prototype fast corrector power supply was tested using a horizontal 15mH
corrector and 98mΩ ironmagnet by the National Synchrotron Radiation Research Center (NSRRC),
which is normally field 116 Gauss and bending angle 35.8 µrad. Iron is the cheapest material that
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has higher core loss than some more advanced alloys, but this property can be compensated by
increasing the core size. The use of iron is advantageous if cost is more important than mass and
size. The experimental testing items included the output current ripple, output current bandwidth
and the measured magnetic field and output current relationship at different frequencies. Long-term
stability testing also provides important experimental data. Hence, the full load was measured for
8 hours, and the current change was observed. Figure 6 shows the iron core magnet loading test in
the laboratory.

Figure 6. Iron core magnet loading.

Figure 7 and table 1 show the corrector power supply and specification with input voltage of
48V and output current and voltage of ±10A and ±40V, respectively. The output current ripple
needs to be less than ±0.1mA peak-to-peak in 1–10 kHz. The long-term current stability needs
to be within ±2mA peak-to-peak. The current setting resolution is 20 bits. The current feedback
resolution is 19 bits at full scale 10A. The maximum resolution of 64 µA was reached. The
switching frequency was increased to 145 kHz, which greatly optimised the bandwidth to 10 kHz.

Figure 7. Corrector magnet power supply.
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Table 1. Corrector power supply specification.

Corrector

Type Bipolar, switched-mode

Input Voltage 48V ± 10%

Maximum Current/voltage rating ±10A/±40V

Current control range −10–10 Ampere

Current accuracy Within ±1mA

Current stability (0–30min) Within ±1mA peak-to-peak

Current stability (0–8 h) Within ±2mA peak-to-peak

Current reproducibility Within ±1mA

Current ripple (frequency from 1Hz to 10 kHz) Within ±1mA peak-to-peak

Current setting resolution 20 bits

Current feedback resolution 19 bits

Voltage feedback resolution 19 bits

4.1 MOSFET power switching waveforms

In electronics,3 switching frequency refers to the rate at which an electronic switch4 performs its
function. Switching frequency is an important design and operating parameter in systems. It
indicates the rate at which the DC voltage is switched on and off during pulse width modulation in
a switching power supply. The switching frequency in an inverter or converter is the rate at which
the switching device is turned on and off. Typical frequencies range from 20 kHz to 2MHz. The
increase in switching frequency can reduce the output filter inductor and capacitor. Simultaneously,
the bandwidth of the corrector magnet power supply can be increased. For this prototype, the
bandwidth can reach up to 10 kHz. Figure 8 shows the S1 & S2 MOSFET (IXFK180N15) gate
signal and drain to source voltage waveforms (Ch1: Vgs1, Ch2: Vds1, Ch3: Vgs2, Ch4: Vds2) during
a duty cycle. Figure 8 shows that the turned on of S1 transition is longer than S2 transition, and the
output is in the positive current mode. Conversely, the turned on S2 is greater than S1 when the
output is in the negative current mode. The main power switch supplies 145 kHz. A 20 ns delay
was observed between the off and on gate signals. This delay time ensures that the MOSFET is
completely turned off before the other MOSFET is turned on, thereby avoiding a shoot-through
situation.

4.2 Output current ripple

Current ripple in electronics is the residual periodic variation of the DC current within a power
supply, which is derived from an alternating current (AC) source. This ripple is due to the incomplete
suppression of the alternating waveform after rectification. For this prototype, a rectifier inductor

3https://en.wikipedia.org/wiki/Electronics.
4https://en.wikipedia.org/wiki/Electronic_switch.
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Figure 8. MOSFET Power Switching Waveforms.

and capacitor are used to reduce the output current ripple. A 40 µH rectifier inductor was placed
parallel to a 2.46 µF capacitor, whereas a 33 µF damping circuit capacitor was placed in series with
a 10Ω resistor. Figure 9 shows the measured output current ripple waveform for a full load of
10A output current. The output current was measured using a dynamic signal analyser HP35670A,
and the frequency of scan was 1–12.8 kHz. The maximum output current ripple was 12.75 µA at
10 kHz, and the required output current was satisfied within ±0.1mA peak-to-peak power supply
specification.

Figure 9. Output Current Ripple Waveform.

4.3 Long term stability

The parameter of electronic device is thermally dependent, and the temperature inside increases
during the operation of the power supply. Therefore, the output current devices of control circuitry
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are unable to stabilise, and the output current remains unstable. Keeping the devices of control
circuitry of power supply in a temperature controlled environment is straightforward and is the best
way to achieve high output current stability. The long-term output current stability of corrector
magnet power supply in (NSRRC) requires ±1,000 ppm (equal to 1mA). The stability of the beam
current depends on the constant output current for a long time. This prototype power supply must
have high precision and constant output current during an 8 hours period. During this time, energy
is supplied to the magnet load. The HP 34410 8.5 digital multi-meter and LEM IT 600-S Ultrastab
DCCT were used for measurements. Figure 10 shows the output current of 10A at full-load testing,
and the output current is within ±0.2mA peak-to-peak or within ±20 ppm.

Figure 10. Output Current Long-Term Stability.

4.4 Bandwidth

The power bandwidth of an amplifier is sometimes considered the frequency range for which the
rated power output of an amplifier can be maintained to at least half of the full-rated power. Current
amplifiers often use the term full current bandwidth to indicate the highest frequency at which the
achievable peak-to-peak output current swing is equal to the DC output current range.

In this study, the frequency response of the corrector power supply was measured using a
dynamic signal analyser HP35670A in the frequency range of 10–51 kHz. The input DC voltage
was 48V. The reference signal was 100mV sweep sine waveform to prototype. Figure 11 shows
a corrector power supply bandwidth of −20 dB at 10Hz with amplitude attenuation of −23.13 dB
at 350Hz. Figure 11 shows the prototype corrector power supply bandwidth of −20 dB at 10Hz
with amplitude attenuation of −23.05 dB at 11.2 kHz. The prototype increased the bandwidth
from 350Hz to 11.2 kHz (equivalent to 32 times), which greatly contributed to the performance
optimisation of the accelerator. This power supply enabled the operation to proceed at a considerably
high frequency region. The FOFB system can be operated at 10 kHz to increase the calculated
number and improve beam current stability.

5 Conclusions

A novel high-frequency corrector power supply was developed for the TPS upgrade with high
bandwidth, high stability of output current and low ripple. The test results indicated the operation
of a corrector magnet power supply with a bandwidth of 11.05 kHz for a small signal of 1% of the
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Figure 11. Previous Corrector Power Supply Bandwidth.

Figure 12. Prototype Corrector Power Supply Bandwidth.
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full range. This is currently the highest bandwidth for the power supply in the accelerator field
with a frequency response time of less than 100 µs. It can quickly adjust error correction value to
beam current, which has a significant effect on the stability of beam current. The maximum output
current ripple was 12.75 µA at 10 kHz, thereby satisfying the required output current of within
±0.1mA peak-to-peak power supply specification. When the output current of 10A was subjected
to full-load testing for a long time (8 hours), the output current variation was 10 µAwithin ±0.2mA
peak-to-peak or within ±20 ppm.
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