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Abstract

Recent studies demonstrate that flow induced non-uniformities of concentration can trigger shear banding
in the flow of certain viscoelastic fluids. These studies show that the driving mechanisms for such shear
banding are related to the coupling of the polymer stresses to an inhomogeneous concentration profile.
The Rolie-Poly (RP) viscoelastic constitutive model has been used in such studies since it has been
comprehensively subjected to extensive experimental validation with regards to shear banding and has the
demonstrated ability to accurately express the rheology of polymer solutions for a wide range of strain
rates. The primary aim of this work is to develop an efficient computational methodology that could be
used to accurately simulate the flow of complex fluids governed by the Rolie-Poly constitutive equation.
The development of such a computational platform is crucially important for the purposes of our follow
up studies on the computational analysis of shear banding phenomena by coupling polymer stress with
inhomogeneous concentration profile. Our numerical algorithms will be based on the finite volume
method (FVM) and will be implemented on the open source software package OpenFOAM®. In this
paper, we will present both validation results as well as new benchmark results from our FVM based
OpenFOAM® numerical solver for flow of fluids governed by the Rolie-Poly constitutive model. We use
two well-known benchmark problems, the lid-driven cavity flow and the 4:1 planar contraction flow
problems. In order to stabilize the numerical algorithm at high Weissenberg numbers, we employ either of
two stabilization techniques; the Discrete Elastic Viscous Stress Splitting (DEVSS) technique as well as the
Log-Conformation Reformulation (LCR) methodology. Validation of our results is done by comparing
our (stabilized) numerical results, against data from existing literature. The numerical results obtained for
the contraction flow using the LCR stabilization approach are in good agreement with the existing
literature for a wider range of Weissenberg numbers. The DEVSS method shows a good agreement only
for lower Weissenberg numbers. For the lid-driven cavity flow, good agreement with the existing literature
is observed for low Weissenberg numbers using either of the two stabilization techniques.

1. Introduction

The recent studies by Cromer et al [ 1] demonstrate that flow induced non-uniformities of concentration can
trigger shear banding in shear flow of fluids governed by the Rolie-Poly constitutive model. In this work we
develop and test a computational methodology that could be used to accurately simulate the flow of complex
fluids governed by the Rolie-Poly constitutive equation.

There are a number of benchmark flow problems that are often used as test cases when developing new
numerical methods in computational rheology, primarily for validating the new numerical methodologies.
Typical benchmark flows used include the lid-driven cavity flow, flows through axisymmetric and planar
contractions and flows around cylinders or spheres.

© 2020 The Author(s). Published by IOP Publishing Ltd
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One advantage of the lid-driven cavity flow is that the geometry is simple and thus easily yields to numerical
methodology. Notwithstanding its simple geometry, complex flow structures such as eddies and vortices can be
visualized. Basically, a fluid is contained in a rectangular geometry whose top wall is translated horizontally at
some specified velocity. Fluid motion is subsequently generated, similarly to wall driven shear flows.
Discontinuity in the boundary conditions at the two top corners where the side walls meet the lid are inevitable,
leading to the so called corner singularities [2]. The experimental and numerical results for the planar
contraction flow, in particular the 4:1 contraction flow problem, have been extensively documented in the
literature for both Newtonian and viscoelastic fluids. The abundance of such flow results in the literature gives
an obvious advantage to using the planar contraction flows as benchmarks for newly developed numerical
methodologies on the simulation of, say, the flow of viscoelastic fluids.

In order to eliminate the effects of corner singularities, different techniques have been employed. One such
technique involves incorporating a controlled amount of leakage at the upstream and downstream corners of the
cavity as given in Grillet et al [3]. Another method involves regularizing the lid velocity. This is done by imposing
a parabolic velocity distribution along the moving lid so as to have a vanishing velocity and velocity gradient at
the two upper corners as given in the works of Poole et al [4], Habla et al [ 5] and Comminal et al [6] among
others.

For contraction flow benchmark problems, the focus is on predicting the formation, development and
dynamics of the corner and lip vortices. The vortex lengths are then used in the comparison of numerical and/or
experimental results. However, the numerical simulation of such flows of viscoelastic fluids present a huge
challenge, in particular, the High Weissenberg Number Problem (HWNP). The HWNP is the breakdown of
numerical schemes beyond some critical value of the Deborah (or Weissenberg) number [7]. The Deborah
number, determines the elastic character of the flow and is given as the ratio of the polymer relaxation time
to the time scale of the flow. It has been observed that when the Deborah number exceeds some critical value,
numerical methods for viscoelastic fluid flow computations break down. This critical value is dependent on the
viscoelastic constitutive model, the flow type, the numerical method and mesh used.

The HWNP is a result of steep exponential profiles which arise as due to the viscoelastic stresses experiencing
acombination of deformation and convection. These exponential profiles are caused by the inappropriateness
of polynomial based approximations that are used to represent the viscoelastic stress tensor. In particular, such
polynomial based approximations are exponential in regions of high deformation rates, or near stagnation
points [8].

The Discrete Elastic Viscous Stress Splitting (DEVSS) and LCR techniques are some of the methods, among
many others, that have been developed to mitigate against the HWNP. The DEVSS method involves re-
expressing the constitutive equation to include an explicit viscous stress and introducing the velocity gradient as
an additional variable [9]. A variant of such method is the Elastic Viscous Stress Splitting (EVSS) technique [10].
Other methods aim to stabilise the advection terms in the constitutive equations. Such methods include, the up-
winding techniques for convective equations, for example the Discontinuous Galerkin (DG) method [11] and
the Streamline Upwind Petrov Galerkin (SUPG) method [12].

The LCR approach for numerical stabilization was recently proposed by Fattal and Kupferman [13]. This
technique reformulates the constitutive law in terms of a matrix logarithm and improves the representation of
large stress gradients by linearizing the stress profile. The LCR technique introduces a better polynomial
interpolation via logarithmic variables and preserves the positive-definiteness of the conformation tensor. It is
worth noting that the loss of the positive-definiteness of the stress tensor is a precursor to the HWNP.

The LCR method has been implemented in various studies such as in the finite volume method (FVM)
framework for creeping flows of viscoelastic fluids in steady and unsteady flows around a confined cylinder [14],
the numerical simulation of viscoelastic flow in three-dimensional lid-driven cavity flow in OpenFoam®[15]
and in the robust simulations of viscoelastic flows at high Weissenberg numbers [6]. The LCR representation has
also been used with the finite element method for simulating lid-driven cavity flow of Oldroyd-B fluids at high
Weissenberg numbers [16].

A combination of the LCR and pure stream-function formulations was used in [17] for the two-dimensional
flow of an Oldroyd-B fluid inside a lid-driven cavity simulated over a wide range of Weissenberg numbers while
[18] employed a combination of LCR representation and an operator splitting lie scheme to simulate time-
dependent cavity flow of an Oldroyd-B fluid using a regularized velocity to remove the discontinuities at the two
upper corners.

In this work, both the lid-driven cavity flow and 4:1 planar contraction flow will be used to benchmark the
Rolie-Poly viscoelastic flow solver that we have developed. The solver is implemented on the open-source,
OpenFoam® platform. Some of the advantages of using OpenFoam® are that, as an open source platform, it has
no limiting aspects regarding licensing fees and that it has the ability to flexibly deal effectively with complex
geometries. The OpenFoam® software is based on the finite volume method and has the ability of
parallelization. OpenFoam® uses the C++ object oriented programming, making it convenient for users to
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incorporate their own models since existing solvers can be modified. For example, Favero et al[19] developed
and incorporated a viscoelastic fluid flow solver into OpenFoam® which was later extended by Florian et al to
handle two-phase flows of viscoelastic fluids. Silva and Lage [20] extended the two-phase flow solver to include a
multi-phase flow formulation.

The purpose of the present work is to develop a viscoelastic flow solver for fluids governed by the Rolie-Poly
constitutive model. The solver implements both the LCR Reformulation and DEVSS techniques. We assess the
efficiency and accuracy of the solver by comparing the simulation results, for values of the material parameters
corresponding to the widely studied Oldroyd-B fluid model, with those Oldroyd-B results in the existing
literature. We then present benchmark simulation results and predictions obtained for the full Rolie-Poly
constitutive model using the lid-driven cavity and 4:1 planar contraction benchmark flows.

2. Methodology

2.1. Governing equation

We consider the unsteady, incompressible, isothermal flow of a viscoelastic fluid. The governing equations for
the flow include the mass conservation equation, the momentum equations and the constitutive equation for
the viscoelastic stress 7. The equation of mass conservation reads,

V-u=0. (D

The momentum equations read,
Ou
pE—I—V-FI‘:—Vp-l-nSV-Vu—i—V-T. )

We will use the Rolie-Poly constitutive equation of Likhtman and Graham [21] to model the dynamics of the
viscoelastic stress 7. At present, the Rolie-Poly model remains the most advanced differential constitutive
formulation of the Doi-Edwards tube models for linear entangled polymer melts and it includes the processes of
reptation, convective and reptation-driven constraint release, chain stretch and contour length fluctuation. The
Rolie-Poly constitutive equation may be written as,

8—1- + - V)T - (V)T — 7(Vu) = —i(r -1
ot A

()
R

where \is the reptation relaxation time, Ay is the Rouse relaxation time, 3" is the convective-constraint release
(CCR) parameter and often varies from 0 to 1. I is the identity tensor, Tdenotes the matrix transpose and tr
denotes the trace. The parameter 6 is obtained from experimental data and takes the value of —1 /2. We note that
when A\ — oo the Rolie-Poly model reduces to the Oldroyd-B model.

2.2. DEVSS approach
The DEVSS technique is used to improve the numerical stability by introducing an additional diffusion term on
each side of the momentum equations [22]. The momentum equations (2) are then rewritten as,

p[%+V-PP]—<ns+k>v-<Vu>=—VP+V-T—W'<V”>’ @

where k is a positive number that is related to the parameters of the constitutive model and, according to Jovani
[22],agood choiceis k = 1, where 17, is the polymer viscosity.

2.3.Log-conformation reformulation (LCR) approach

To improve the numerical stability, the log transformation known as the Log-Conformation Reformulation
(LCR) approach is used. The approach consists in a change of variable for the polymeric extra stress which is
related to the conformation tensor (c) by the equation

T:%(C—I), (5)

where Ais the relaxation time and 1), is the polymer viscosity. The viscoelastic constitutive equation can be
written in terms of the conformation tensor as
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u(x,t)

Figure 1. Geometry of the lid driven cavity.

oc . _ T o L
£y +w-V)c— (c.Vu +Vu-c)= )\fR(C), (6)

where f,(c) is the relaxation function which is a polynomial of the conformation tensor. The process outlined in
this section is as suggested by Fattal and Kupferman [13]. Since the conformation tensor c is a positive-definite
matrix, it can be diagonalized according to

c=R-A-R, %)

where A is a diagonal matrix consisting of the eigenvalues of ¢ and where the matrix R is orthogonal and
contains the corresponding eigenvectors. Instead of solving the equation (3), for the stress T, this equation is
reformulated in terms of the natural logarithm of the conformation tensor c,

P = log(c) = R - log(A) - RT. (8)
W then becomes our new variable and the velocity gradient VU is decomposed as
VU=Q+B+N-c} 9)

where (2 and N, which both account for rotations are anti-symmetric tensors. B is a diagonal tensor which
accounts for pure extensions. Substituting equation (8) and velocity gradient decomposition 9 into equation (6)
yields the log-conformation equation,

%—‘f + (e V)Y — (OF = ¥O) = 2B = — exp(—D)fy[exp(¥)], (10)

where B and 2 are pure extension (symmetric, traceless) and pure rotation (anti-symmetric) matrices
respectively that are obtained from the projection of the velocity gradient into the base of the stress tensor. The
eigen decomposition of the conformation tensor in a two-dimensional flow is given as

_ ol 0
C—R[O /\z]R’ (11)

where \; and ), are the eigenvalues and R the orthogonal matrix containing the eigenvectors. The change of the
base of velocity gradient is given as

T _ |
R'(VU)R = [m21 mzz]’ (12)

The pure extension and rotation matrices are obtained as,

_pl™ 0 | or _ 0 Cfpr
B—R[O mzz]R’ Q—R[_C O]R, (13)

where ( = (m1, + m,,)/(My — A)). For the first time step, Q is set to be zeroand B = 1/2[VU + (VU)T],
since ¢ = I'leadsto A, = A; would result in an undefined division by zero.
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Figure 2. The component of the log-conformation tensor Log-Conf. ¥;; from our simulations at time t = 8 for De = 1.

Figure 3. The component of the log-conformation tensor Log-Conf. ¥}, from our simulations at time t = 8 for De = 1.

The conformation tensor c is recovered from the matrix exponential of ¥, once equation (10) has been
solved. To verify the positive-definiteness of the conformation tensor det(c) must be greater than zero.

2.4. Solution algorithm and numerical method

We employ the finite volume method implemented on the open source software package OpenFoam®. The
algorithm used to calculate the pressure field is the semi-implicit method for the pressure linked equation
consistent (SIMPLEC) which is a modification of the SIMPLE algorithm since the SIMPLEC algorithm has been
proved to have better convergence properties than the SIMPLE algorithm [23, 24]. The Convergent and
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Figure 4. The component of the log-conformation tensor Log-Conf. U,, from our simulations at time t = 8 for De = 1.

Figure 5. The component of the log-conformation tensor Log-Conf. ¥}, from our simulations at time t = 40 for De = 2.

Universally Bounded Interpolation Scheme for the Treatment of Advection (Cubista) scheme, a high resolution
scheme with improved iterative convergence properties, is used to discretize the convective terms and temporal
derivatives appearing in the momentum and transport equations. The Cubista scheme was devised by
incorporating total-variation diminishing constraints, appropriate for unsteady problems, into an implicit time-
marching method used for steady flow problems [25].

The computational steps followed by the solver are:

1. Initialize the variables;

2. For the LCR approach, solve for W via equation (10), or alternatively;
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Figure 6. The component of the log-conformation tensor Log-Conf. U}, from our simulations at time t = 40 for De = 2.

nARRRRRA!
(e -] N o F =Y o N o

o
s

Figure 7. The component of the log-conformation tensor Log-Conf. ¥, from our simulations at time t = 40 for De = 2.

3. For the DEVSS approach, Solve for 7 via equation (3);
4. Solve appropriate momentum equations;

5. Solve pressure equation;

6. Correct both pressure and velocity;

7.Advance in time, t = t + 0t, and return to step 2 until the predetermined final time (or alternative
terminating condition) is reached.
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Figure 8. The component of the log-conformation tensor Log-Conf. ¥;; from our simulations at time t = 40 for De = 3.

4.8
44

=4
=36
=3.2
=28
24

2
1.6
12
0.8
04

0
04
08
-1.2
-16

Figure 9. The component of the log-conformation tensor Log-Conf. ¥}, from our simulations at time t = 40 for De = 3.

The solver for the stress constitutive equations as well as for the momentum equations is the bi-conjugate
gradient stabilized (BiCGstab) solver with a Cholesky preconditioner. A preconditioned conjugate gradient
(PCG) solver is used to solve the pressure equation in conjunction with a simplified diagonal-based incomplete
LU (DILU) preconditioner.

3. Lid-driven cavity flow

3.1. Geometry and boundary conditions
For the lid-driven cavity flow, see figure 1, a square cavity is used with the upper lid moving with a regularized
velocity. The flow is assumed to be two dimensional (2D), being limited to the xy-plane. No-slip boundary and
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Figure 10. The component of the log-conformation tensor Log-Conf. ¥,, from our simulations at time ¢ = 40 for De = 3.

impermeability conditions are ascribed to the velocity at the walls. Zero normal gradient boundary conditions
are assigned for pressure, p. The polymeric extra stresses are linearly extrapolated at the walls. A time-space
dependent condition is imposed for the lid-velocity so as to impose a smooth start of the flow. This form of
regularization has the effect of avoiding local singularities at the top-right and top-left corners as it ensures both
the velocity and velocity gradient vanish at the corners. The polynomial function used for the lid velocity is as in

[8];

u(x, t) = 8[1 + tanh{8(t — 0.5)}1x%(1 — x)2. (14)

3.2.Numerical validation

The analysis of the flow behaviour is based on simulating the regularized lid-driven cavity for Deborah numbers
3 and below as is done in the comparative, benchmarking literature. The Deborah number, De, is defined in
terms of the polymer relaxation time, ), characteristic fluid velocity, 4, and a characteristic length scale, L, as

o
.,

De

For validation and becnmarking purposes of our Rolie-Poly solver, we take advantage of the fact that the
Rolie-Poly model reduces to the Oldroyd-B model when Ay — oo as well as the fact that benchmark Oldroyd-B
results widely exist in the literature. We therefore validate and benchmark our solver by recovering the Oldroyd-
B results from our Rolie-Poly solver and comparing these with existing literature on Oldroyd-B lid-driven
cavity, say [6]. The maximum lid velocity is set to u = 1. A retardation ratio S of 1 /2 is used and the Reynolds
number is set to negligible value of Re = puL/1, = 5 x 10~ *which is considered as creeping flow. The velocity
components and the components of the log-conformation tensor are obtained. As in the existing literature, the
three components of the tensor, the velocity and log-conformation profiles along vertical line x = 1/2 and along
horizontal line y = 3/4 including the history of the specific Kinetic energy E; were considered.

To validate the DEVSS method, we only consider the velocity profile, say, alonglinesx = 1/2andy = 3/4
and history of specific kinetic energy since there are no log-conformation tensors.

Our obtained results were all in satisfactory agreement with those in the existing literature, say [6]. A sample
summary of our graphical results are shown in figures 2—10.

Given the satisfactory agreement between our results and the benchmarking results from the literature for
the lid-driven cavity geometry, we therefore proceed to present the lid-driven cavity results for the full Rolie-
Poly constitutive model as predicted and simulated by our solver.
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Figure 11. Simulation results for Rolie-Poly constitutive equation for velocity profiles along the linesx = 1/2andy = 3/4 comparing
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Figure 11. (Continued.)

3.3. Lid-driven cavity results for the full Rolie-Poly model
In this section we present the results for the numerical simulation for the lid-driven cavity flow for the full Rolie-
Poly constitutive model with 0 < Az < co. Asin the previous sections, we will also make comparisons between
the DEVSS and the LCR stabilization methods. The velocity components and the components of the log-
conformation tensor are computed and plotted. The components of the tensor, the velocity and log-
conformation profiles along vertical linex = 1/2 and along horizontalline y = 3/4 are presented in figure 11.
Figure 11 shows no apparent difference between the LCR method and the DEVSS results for Deborah
numbers 1 and 2. There is a slight difference in the velocity profiles from Deborah numbers 3. Due to the better
convergence of the LCR method to existing literature as demonstrated in previous section, we expect the LCR
results to be the more accurate ones. The lid-driven cavity flow results were tested and confirmed for mesh
convergence.

3.4. Vortex formation and growth

The flow of viscoelastic fluids in lid driven cavity flow geometries, such as the one under investigation, usually
leads to the formation of corner vortices. We conclude this section by presenting the streamlines diagrams for
the flow of Rolie-Poly fluids in the lid driven cavity geometry for the purposes of investigating the formation
(and growth) of corner vortices.

11
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Figure 12. Streamline patterns in the lid driven flow of a Rolie-Poly fluid computed using Planar 2, Mesh 2; for De = 1; (a), (b) and
De = 3;(c), (d), respectively for LCR simulations (RHS) and DEVSS simulations (LHS).

Wall
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Wall
8 —> Bw 2w :,-_G_—",
s, — 3
. ‘+— — >
100w
- -
100w

Figure 13. Geometry of 4:1 planar contraction.

Figures 12(a)—(d), show the formation and growth of the corner vortices for various values of the Deborah
number and also for both the LCR and DEVSS stabilization methodologies. We observe no discernible
difference in the size of the corner vortices with an increase in the Deborah number.
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Figure 14. Axial velocity u (a) and stress profile 7, (b) as functions of the axial position at the line of symmetry for the LCR stabilized
Rolie-Poly model for Deborah number 3 and for the different meshes, using the Planar 2 geometry.

Table 1. Details of meshes used in Planar 1.

Mesh Axpmin/h Aymin/h Number of Control Volumes

M1 0.004 2 0.004 2
M2 0.002 9 0.002 9
M3 0.002 0 0.002 0

Table 2. Details of the meshes used for Planar 2.

Mesh Axpmin/h Aymin/h Number of Control Volumes

M1 0.009 8 0.026
M2 0.006 5 0.017
M3 0.004 9 0.013

Table 3. Planar 2 PNE of mesh 1 and mesh 2 compared to mesh 3 for Deborah number 3.

Mesh Percentage normalized error
U Tax Ny
Rolie-Poly(StrT) M1 1.746 4 10.930 5 10.093 4
M2 0.723 0 4.8755 4.5190
Rolie-Poly (LogT) M1 1.670 0 5.029 5.0220
M2 0.557 2 2.750 6 2.3430

4, Planar 4:1 contraction flow

4.1. Geometry and boundary conditions

For 4:1 planar contraction flow, two different dimensions were used, one for validation and the other for
comparison of the DEVSS and LCR methods. For validation purposes, the downstream channel has a width of

2 wand the upstream channel has a width 4 w with both channels having an upstream and downstream length of
100 w as is shown schematically in figure 13. These dimensions were chosen in line with the existing validating

literature.

13



10P Publishing

J. Phys. Commun. 4(2020) 015024 J Abugaand T Chinyoka

Table 4. Corner vortex size Xg as a function of Deborah number obtained using the different meshes.

M1 M2 M3
De [29] LogT StrT [29] LogT StrT [29] LogT StrT
1 1.360 1.360 1.359 1.362 1.361 1.361 1.363 1.363 1.363
2 1.173 1.173 1.171 1.171 1.171 1.176 1.170 1.170 1.221
3 0.978 0.977 0.976 0.969 0.968 0.963 0.969 0.968 1.241
4 0.808 0.807 0.809 0.788 0.787 0.977 0.785 0.783 1.084
5 0.674 0.673 0.675 0.641 0.640 0.888 0.636 0.631 1.074
6 0.590 0.592 0.593 0.536 0.530 0.898 0.526 0.570 1.073
7 0.600 0.629 0.764 0.465 0.456 0.968 0.450 0.471 1.054
8 0.875 0.850 0.944 0.419 0.462 1.013 0.400 0.440 1.059
9 1.235 1.124 1.044 0.633 0.619 1.039 0.358 0.505 1.171
10 1.475 1.335 1.126 1.123 1.084 1.098 0.328 1.014 1.366
12 1.836 1.628 1.418 1.621 1.385 1.281 1.242 1.127 1.418

Table 5. Lip vortex size X; as a function of Deborah number De computed in different meshes.

M1 M2 M3

De [29] LogT StrT [29] LogT StrT [29] LogT StrT

0.056 0.055 0.045 0.044 0.044 0.036 0.038 0.038 0.034
0.132 0.132 0.131 0.115 0.117 0.119 0.097 0.100 0.106
0.241 0.241 0.205 0.191 0.193 0.207 0.160 0.163 0.204
0.385 0.387 0.374 0.290 0.292 0.317 0.387 0.384 0.298
0.590 0.597 0.402 0.447 0.480 0.486 0.593 0.351 0.350
0.852 0.845 0.443 0.649 0.686 0.536 0.852 0.509 0.412

A U A W N =

For comparison between the LCR and DEVSS, the geometry similar to the one used for validation and has an
upstream thickness of 2 H = 0.025 6 m and downstream thickness of2 h = 0.006 4 m with an upstream length
of 80 h and a downstream length of 50 h.

To differentiate between the geometries, we will refer to the former geometry as planar 1 and the later as
planar 2.

At the inlet, a uniform velocity profile is enforced. No-slip boundary conditions are enforced at the walls.
Due to the long downstream channel, we assume that the velocity profile is fully developed and hence that the
inflow and outflow conditions don’t affect the flow in the contraction region.

For pressure, a zero-gradient condition is imposed at the inlet and normal to the wall. At the outlet, pressure
is assigned a fixed value of zero. The stress is assigned a fixed value at the inlet and a zero-gradient condition at
the outlet. As in similar 2D computation studies of viscoelastic fluid dynamics, say [26—28] the stresses will be
linearly extrapolated at the walls.

4.2. Mesh convergence

Three different hexahedral meshes were used to analyse the mesh convergence. The characteristics of the three
meshes are listed in table 1 for Planar 1 and table 2 for Planar 2. All the meshes used are such that there is a higher
refinement near the walls and in the vicinity of the contraction since these regions are known to possess the
largest velocity and stress gradients.

Our simulated results for the velocity profile and stress profile 7, for the full Rolie-Poly constitutive model
obtained via the LCR approach and using the three meshes are compared in figure 14. The greatest differences
are observed in the vicinity the contraction region. The differences are more significant for the stress profile fau,,
when comparing meshes 1 and 3.

To quantitatively compare the predictions of the velocity and stress 7, for the different meshes for geometry
Planar 2, the percentage normalized error was calculated in the following way

xi—x9
PNE = MaxY | L—2__| x 100 (15)
= Max|x™|

14



10P Publishing

J. Phys. Commun. 4(2020) 015024 J Abugaand T Chinyoka

35 T T T T T T 35 T T T T T T

) R-P LogT -—-%-- ) R-P LogT --%--
2 - 0 1 2 3 4 5 -2 - 0 1 2 3 4 5
xh xh

(a) (b)

Figure 15. Axial velocity u as a function of the axial position at the line of symmetry for the Rolie-Poly model for Deborah numbers 4
(a)and 5 (b) using Planar 2, Mesh 2.

where Nis number of discretization points, X is the value of the variable to be considered at a mesh point of the
line of symmetry and X'¥ are the values obtained in Mesh 3. The values of the percentage normalized error
(PNE) for Deborah number De = 3 calculated using equation (15) are shown in table 3.

The PNE values for Mesh 2 in relation to Mesh 3 for both the velocity and stress profiles 7, are lower than
5% implying that greater accuracy is obtained by using Mesh 3. Due to high computational costs related to using
Mesh 3, Mesh 2 will be used with an error of less than 5%.

4.2.1. Numerical validation

We assess the accuracy of the Rolie-Poly viscoelastic solver by benchmarking our results against the known
results for the Oldroyd-B model. Similarly to the lid-driven cavity validation, we recover the Oldroyd-B
constitutive model directly from our Rolie-Poly model, essentially achieved by switching off the Ag terms The
numerical results for the Oldroyd-B model from the existing literature on 4:1 planar contraction flow, [29] are
then used to benchmark and validate the results from our solver.

The Rolie-Poly constitutive model has a retardation constant of 3 = 1/9 and the simulations are done at low
Reynolds number flow (Re = 0.01). The flow is simulated for a wide range of Deborah numbers 1 < De < 12.
The evolution of the non-dimensional corner vortex size Xz and the non-dimensional lip vortex size X; as
functions of Deborah number, De, are also compared with results from the existing literature. Tables 4 and 5
display results from existing literature for the Oldroyd-B model [29] compared with our simulated results of the
recovered Oldroyd-B model from the constitutive Rolie-Poly model, for the different mesh sizes. Table 4
displays the non-dimensional corner vortex and table 5 displays the results for the non-dimensional lip-vortex.

The results are displayed for the range of Deborah numbers from 1 to 12 for the corner vortex size and for the
lip vortex size, Deborah numbers 1 to 6. The lip vortex size is a more sensitive parameter than the corner
vortex size.

Generally, for the corner vortex size, good agreement is observed between our, LCR based, results and those
of Pimenta and Alves [29] for Deborah numbers 1 to 5 and for the Meshes 1 and 2 and for Deborah numbers 1 up
to 4 for the third mesh. The relative error for the values for Deborah numbers 1 to 4 for LCR approach is lower
than 0.5 percent.

For the DEVSS method good agreement is observed for Deborah numbers 1 and 2 only with a relative
percentage error of less than 3.5 percent for the first two meshes. The lip-corner vortex is a sensitive parameter
and there is agreement for LCR for Deborah numbers 1 to 4 whereas for DEVSS, agreement is only observed for
Deborah numbers 1 and 2.

The results indicate that our solver can be used with relative accuracy for Deborah numbers of up to 5,
especially using the LCR stabilization method.
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Figure 16. Simulation results comparing LCR (LogT) and DEVSS (StrT) Rolie-Poly constitutive equation for stress profiles 7, and 7,
at the line of symmetry using Planar 2, Mesh 2, for De = 1, 2, 3,4 and 5 respectively.
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Figure 16. (Continued.)

4.2.2. Comparison between DEVSS and LCR

Comparison of Rolie-Poly LCR and DEVSS stabilization approaches was done using Mesh 2 for Planar 2 due to
the high computational cost of using Mesh 3. The axial velocity and axial normal stress as a function of the axial
position at the line of symmetry for the Rolie-Poly model for different Deborah numbers were obtained. No
significant difference was observed between the LCR and DEVSS methods in the axial velocities and as such only
the velocity profiles for Deborah numbers 4 and 5 were presented, see figure 15.

Figure 15 shows that the velocity profiles are indistinguishable, because they do not display substantial
variations as with the stress profiles. The figure also shows that the flow rapidly accelerates from the fully
developed flow upstream into the smaller contraction channel leading to large extensional stresses near the
contraction plane as was observed by [30] in their experimental work. This causes the maximum stress 7, to
occur just upstream of the contraction plane as is seen in figure 16. The stresses then recede from this maximum.

Unlike the velocity profiles, the polymer stress profiles 7. and 7,,, on the other hand, do display significant
differences for the different Deborah numbers as illustrated in figure 16. We also notice, from figure 16, that
increasing the Deborah number leads to a decrease in the maximum value of stress value 7, as is reported
in [30].

The velocity profile and stress profiles 7, and 7,, are plotted at different positions as shown in figure 17. No
significant difference is observed in the velocities, differences are however observed in the stress profiles.

17
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Figure 17. Simulation results comparing LCR (LogT) and DEVSS (StrT) Rolie-Poly constitutive equation for velocity profile u, using
Planar 2, Mesh 2, at different positions in the geometry for De = 1, 2, 3,4 and 5 respectively.
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Figure 17. (Continued.)

Figure 17 presents the axial velocity profiles at different x positions (LHS) and different y positions (RHS) in
the upstream channel. It is expected that there will be slight differences between the LCR and DEVSS method
since the velocity profiles have insubstantial variations as opposed to the stress profiles. Figures 18 and 19 which
present the stress profiles at different x and y positions, therefore display a greater disparity between the LCR and
DEVSS methods with increasing Deborah number. This could be due to the LCR method’s ability to mitigate the
HWNP better than the DEVSS.

4.2.3. Vortex formation and growth
In contraction flow geometries, such as the 4:1 contraction flow geometry, there is fundamental observable
difference between the flow of Newtonian fluids on the one hand and that of viscoelastic fluids on the other;
namely the formation of corner vortices in the viscoelastic flow case. Such vortices are completely absent in
corresponding Newtonian flows. In this section, we therefore present the streamlines for the flow of Rolie-Poly
fluids in the 4:1 contraction geometry for the purposes of investigating the formation (and growth) of corner
vortices.

Figures 20(a)—(g), show the formation and growth of the corner vortices for various values of the Deborah
number and also for both the LCR and DEVSS stabilization methodologies. We observe a reduction in the size
of the corner vortices with an increase in the Deborah number. Similar behaviour was observed by both
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Figure 18. Simulation results comparing LCR (LogT) and DEVSS (StrT) Rolie-Poly constitutive equation for stress profile 7, using
Planar 2, Mesh 2, at different positions in the geometry for De = 1, 2, 3 and 4 respectively.
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Alfonso etal[31] and Raphaél etal [17] in their 4:1 contraction simulations of the Oldroyd-B model. We also
observe that the sizes of the corner vortices obtained via the LCR formulation are smaller than those calculated
with the DEVSS method.

5. Discussion and conclusion

We have developed a numerical solver for the computation of viscoelastic fluid flows. The solver is based on the
finite volume method and implemented in the open source OpenFOAM® software platform. Additionally the
solver is developed specifically for the simulation of flows of viscoelastic fluids that are governed by the Rolie-
Poly constitutive model. The Rolie-Poly model reduces to the Oldroyd-B model for certain values of the material
constants. We take advantage of this relationship to validate our solver based on the existing benchmark
solutions for Oldroyd-B fluids. We in particular focus attention on the two benchmark problems; lid-driven
cavity flow as well as the 4:1 contraction flow. Such benchmark comparison of our data with the existing
literature, [6] and [29], shows generally good agreement.

Wereport a significant improvement in dealing with the High Weissenberg Number Problem (HWNP)
when using the LCR approach. The DEVSS stabilization method is also reliable, and also agrees with the results
from the existing literature, but at lower values of the Deborah numbers than those achievable with the LCR
approach. Based on our results, we can therefore confirm than the LCR stabilization technique is more reliable
than widely used DEVSS stabilization method. We therefore recommend the LCR technique for the numerical
stabilization of viscoelastic flow computations going forward.

In conclusion, this work has presented a new solver for the simulation of flows of viscoelastic fluids governed
by the Rolie-Poly constitutive model. The results show that the solver is consistent with expectations as can be
observed from the favourable comparison with results from the existing literature. Our results also demonstrate
that the LCR method better mitigates against the HWNP as compared to the widely employed DEVSS method.
Further studies however need to be conducted to investigate the disparities in the results for Deborah numbers
greater than 7 especially for the LCR representation.
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