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Abstract
Recent studies demonstrate thatflow inducednon-uniformities of concentration can trigger shear banding
in theflowof certain viscoelasticfluids.These studies show that thedrivingmechanisms for such shear
banding are related to the coupling of the polymer stresses to an inhomogeneous concentrationprofile.
TheRolie-Poly (RP) viscoelastic constitutivemodel has beenused in such studies since it has been
comprehensively subjected to extensive experimental validationwith regards to shear banding andhas the
demonstrated ability to accurately express the rheologyof polymer solutions for awide range of strain
rates. Theprimary aimof thiswork is to develop an efficient computationalmethodology that couldbe
used to accurately simulate theflowof complexfluids governedby theRolie-Poly constitutive equation.
Thedevelopmentof such a computational platform is crucially important for the purposes of our follow
up studies on the computational analysis of shear bandingphenomenaby couplingpolymer stresswith
inhomogeneous concentrationprofile.Ournumerical algorithmswill be basedon thefinite volume
method (FVM) andwill be implementedon theopen source software packageOpenFOAM®. In this
paper,wewill present both validation results aswell as newbenchmark results fromourFVMbased
OpenFOAM®numerical solver forflowoffluids governedby theRolie-Poly constitutivemodel.Weuse
twowell-knownbenchmarkproblems, the lid-driven cavityflowand the 4:1 planar contractionflow
problems. Inorder to stabilize thenumerical algorithmathighWeissenbergnumbers,we employ either of
two stabilization techniques; theDiscreteElasticViscous Stress Splitting (DEVSS) technique aswell as the
Log-ConformationReformulation (LCR)methodology.Validationof our results is doneby comparing
our (stabilized)numerical results, against data fromexisting literature. Thenumerical results obtained for
the contractionflowusing theLCRstabilization approach are in good agreementwith the existing
literature for awider rangeofWeissenbergnumbers. TheDEVSSmethod shows a goodagreement only
for lowerWeissenbergnumbers. For the lid-driven cavityflow, goodagreementwith the existing literature
is observed for lowWeissenbergnumbers using either of the two stabilization techniques.

1. Introduction

The recent studies byCromer et al [1] demonstrate that flow induced non-uniformities of concentration can
trigger shear banding in shearflowoffluids governed by the Rolie-Poly constitutivemodel. In this workwe
develop and test a computationalmethodology that could be used to accurately simulate the flowof complex
fluids governed by the Rolie-Poly constitutive equation.

There are a number of benchmark flowproblems that are often used as test cases when developing new
numericalmethods in computational rheology, primarily for validating the newnumericalmethodologies.
Typical benchmark flows used include the lid-driven cavityflow,flows through axisymmetric and planar
contractions andflows around cylinders or spheres.
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One advantage of the lid-driven cavity flow is that the geometry is simple and thus easily yields to numerical
methodology. Notwithstanding its simple geometry, complex flow structures such as eddies and vortices can be
visualized. Basically, afluid is contained in a rectangular geometry whose topwall is translated horizontally at
some specified velocity. Fluidmotion is subsequently generated, similarly towall driven shearflows.
Discontinuity in the boundary conditions at the two top corners where the sidewallsmeet the lid are inevitable,
leading to the so called corner singularities [2]. The experimental and numerical results for the planar
contraction flow, in particular the 4:1 contraction flowproblem, have been extensively documented in the
literature for bothNewtonian and viscoelastic fluids. The abundance of suchflow results in the literature gives
an obvious advantage to using the planar contraction flows as benchmarks for newly developed numerical
methodologies on the simulation of, say, theflowof viscoelastic fluids.

In order to eliminate the effects of corner singularities, different techniques have been employed. One such
technique involves incorporating a controlled amount of leakage at the upstream and downstream corners of the
cavity as given inGrillet et al [3]. Anothermethod involves regularizing the lid velocity. This is done by imposing
a parabolic velocity distribution along themoving lid so as to have a vanishing velocity and velocity gradient at
the twoupper corners as given in theworks of Poole et al [4], Habla et al [5] andComminal et al [6] among
others.

For contraction flowbenchmark problems, the focus is on predicting the formation, development and
dynamics of the corner and lip vortices. The vortex lengths are then used in the comparison of numerical and/or
experimental results. However, the numerical simulation of such flows of viscoelastic fluids present a huge
challenge, in particular, theHighWeissenbergNumber Problem (HWNP). TheHWNP is the breakdownof
numerical schemes beyond some critical value of theDeborah (orWeissenberg)number [7]. TheDeborah
number, determines the elastic character of the flow and is given as the ratio of the polymer relaxation time
to the time scale of theflow. It has been observed that when theDeborah number exceeds some critical value,
numericalmethods for viscoelastic fluidflow computations break down. This critical value is dependent on the
viscoelastic constitutivemodel, theflow type, the numericalmethod andmesh used.

TheHWNP is a result of steep exponential profiles which arise as due to the viscoelastic stresses experiencing
a combination of deformation and convection. These exponential profiles are caused by the inappropriateness
of polynomial based approximations that are used to represent the viscoelastic stress tensor. In particular, such
polynomial based approximations are exponential in regions of high deformation rates, or near stagnation
points [8].

TheDiscrete Elastic Viscous Stress Splitting (DEVSS) and LCR techniques are some of themethods, among
many others, that have been developed tomitigate against theHWNP. TheDEVSSmethod involves re-
expressing the constitutive equation to include an explicit viscous stress and introducing the velocity gradient as
an additional variable [9]. A variant of suchmethod is the Elastic Viscous Stress Splitting (EVSS) technique [10].
Othermethods aim to stabilise the advection terms in the constitutive equations. Suchmethods include, the up-
winding techniques for convective equations, for example theDiscontinuousGalerkin (DG)method [11] and
the StreamlineUpwind PetrovGalerkin (SUPG)method [12].

The LCR approach for numerical stabilizationwas recently proposed by Fattal andKupferman [13]. This
technique reformulates the constitutive law in terms of amatrix logarithm and improves the representation of
large stress gradients by linearizing the stress profile. The LCR technique introduces a better polynomial
interpolation via logarithmic variables and preserves the positive-definiteness of the conformation tensor. It is
worth noting that the loss of the positive-definiteness of the stress tensor is a precursor to theHWNP.

The LCRmethod has been implemented in various studies such as in the finite volumemethod (FVM)
framework for creeping flows of viscoelastic fluids in steady and unsteadyflows around a confined cylinder [14],
the numerical simulation of viscoelastic flow in three-dimensional lid-driven cavity flow inOpenFoam®[15]
and in the robust simulations of viscoelastic flows at highWeissenberg numbers [6]. The LCR representation has
also been usedwith thefinite elementmethod for simulating lid-driven cavity flowofOldroyd-B fluids at high
Weissenberg numbers [16].

A combination of the LCR and pure stream-function formulations was used in [17] for the two-dimensional
flowof anOldroyd-B fluid inside a lid-driven cavity simulated over awide range ofWeissenberg numbers while
[18] employed a combination of LCR representation and an operator splitting lie scheme to simulate time-
dependent cavityflowof anOldroyd-B fluid using a regularized velocity to remove the discontinuities at the two
upper corners.

In this work, both the lid-driven cavity flow and 4:1 planar contraction flowwill be used to benchmark the
Rolie-Poly viscoelastic flow solver that we have developed. The solver is implemented on the open-source,
OpenFoam®platform. Some of the advantages of usingOpenFoam®are that, as an open source platform, it has
no limiting aspects regarding licensing fees and that it has the ability toflexibly deal effectively with complex
geometries. TheOpenFoam®software is based on the finite volumemethod and has the ability of
parallelization. OpenFoam®uses theC++ object oriented programming,making it convenient for users to
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incorporate their ownmodels since existing solvers can bemodified. For example, Favero et al [19] developed
and incorporated a viscoelastic fluid flow solver intoOpenFoam®whichwas later extended by Florian et al to
handle two-phaseflows of viscoelastic fluids. Silva and Lage [20] extended the two-phaseflow solver to include a
multi-phase flow formulation.

The purpose of the present work is to develop a viscoelastic flow solver forfluids governed by the Rolie-Poly
constitutivemodel. The solver implements both the LCRReformulation andDEVSS techniques.We assess the
efficiency and accuracy of the solver by comparing the simulation results, for values of thematerial parameters
corresponding to thewidely studiedOldroyd-B fluidmodel, with thoseOldroyd-B results in the existing
literature.We then present benchmark simulation results and predictions obtained for the full Rolie-Poly
constitutivemodel using the lid-driven cavity and 4:1 planar contraction benchmark flows.

2.Methodology

2.1. Governing equation
Weconsider the unsteady, incompressible, isothermal flowof a viscoelastic fluid. The governing equations for
theflow include themass conservation equation, themomentum equations and the constitutive equation for
the viscoelastic stress t . The equation ofmass conservation reads,

· ( ) =u 0. 1

Themomentum equations read,

⎡
⎣⎢

⎤
⎦⎥· · · ( )tr hG¶
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Wewill use the Rolie-Poly constitutive equation of Likhtman andGraham [21] tomodel the dynamics of the
viscoelastic stress t . At present, the Rolie-Polymodel remains themost advanced differential constitutive
formulation of theDoi-Edwards tubemodels for linear entangled polymermelts and it includes the processes of
reptation, convective and reptation-driven constraint release, chain stretch and contour length fluctuation. The
Rolie-Poly constitutive equationmay bewritten as,
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whereλ is the reptation relaxation time,λR is the Rouse relaxation time,β* is the convective-constraint release
(CCR) parameter and often varies from0 to 1. I is the identity tensor, †denotes thematrix transpose and tr
denotes the trace. The parameter δ is obtained from experimental data and takes the value of−1/2.Wenote that
when l  ¥R the Rolie-Polymodel reduces to theOldroyd-Bmodel.

2.2.DEVSS approach
TheDEVSS technique is used to improve the numerical stability by introducing an additional diffusion termon
each side of themomentum equations [22]. Themomentum equations (2) are then rewritten as,

⎡
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where k is a positive number that is related to the parameters of the constitutivemodel and, according to Jovani
[22], a good choice is k=ηpwhere ηp is the polymer viscosity.

2.3. Log-conformation reformulation (LCR) approach
To improve the numerical stability, the log transformation known as the Log-Conformation Reformulation
(LCR) approach is used. The approach consists in a change of variable for the polymeric extra stress which is
related to the conformation tensor (c) by the equation

( ) ( )t
h

l
= -c I , 5

p

whereλ is the relaxation time and ηp is the polymer viscosity. The viscoelastic constitutive equation can be
written in terms of the conformation tensor as
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where ( )cfR is the relaxation functionwhich is a polynomial of the conformation tensor. The process outlined in
this section is as suggested by Fattal andKupferman [13]. Since the conformation tensor c is a positive-definite
matrix, it can be diagonalized according to

· · ( )= Lc R R , 7T

whereΛ is a diagonalmatrix consisting of the eigenvalues of c andwhere thematrix R is orthogonal and
contains the corresponding eigenvectors. Instead of solving the equation (3), for the stress t , this equation is
reformulated in terms of the natural logarithmof the conformation tensor c ,

( ) · ( ) · ( )Y = = Lc R Rlog log . 8T

Y then becomes our new variable and the velocity gradient U is decomposed as

· ( ) = W + + -U B N c , 91

whereΩ and N , which both account for rotations are anti-symmetric tensors. B is a diagonal tensorwhich
accounts for pure extensions. Substituting equation (8) and velocity gradient decomposition 9 into equation (6)
yields the log-conformation equation,

( · ) ( ) ( ) [ ( )] ( )
l

Y Y Y Y Y Y¶
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t
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1

exp exp , 10R

where B andΩ are pure extension (symmetric, traceless) and pure rotation (anti-symmetric)matrices
respectively that are obtained from the projection of the velocity gradient into the base of the stress tensor. The
eigen decomposition of the conformation tensor in a two-dimensional flow is given as

⎡
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whereλ1 andλ2 are the eigenvalues andR the orthogonalmatrix containing the eigenvectors. The change of the
base of velocity gradient is given as
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The pure extension and rotationmatrices are obtained as,
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where ζ=(m12+m21)/(λ2−λ1). For thefirst time step,Ω is set to be zero and [ ( ) ]=  + B U U1 2 T ,
since =c I leads toλ2=λ1 would result in an undefined division by zero.

Figure 1.Geometry of the lid driven cavity.
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The conformation tensor c is recovered from thematrix exponential ofY, once equation (10) has been
solved. To verify the positive-definiteness of the conformation tensor ( )cdet must be greater than zero.

2.4. Solution algorithmandnumericalmethod
Weemploy the finite volumemethod implemented on the open source software packageOpenFoam®. The
algorithmused to calculate the pressure field is the semi-implicitmethod for the pressure linked equation
consistent (SIMPLEC)which is amodification of the SIMPLE algorithm since the SIMPLEC algorithmhas been
proved to have better convergence properties than the SIMPLE algorithm [23, 24]. TheConvergent and

Figure 2.The component of the log-conformation tensor Log-Conf.Ψ11 fromour simulations at time t=8 forDe=1.

Figure 3.The component of the log-conformation tensor Log-Conf.Ψ12 fromour simulations at time t=8 forDe=1.
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Universally Bounded Interpolation Scheme for the Treatment of Advection (Cubista) scheme, a high resolution
schemewith improved iterative convergence properties, is used to discretize the convective terms and temporal
derivatives appearing in themomentum and transport equations. TheCubista schemewas devised by
incorporating total-variation diminishing constraints, appropriate for unsteady problems, into an implicit time-
marchingmethod used for steadyflowproblems [25].

The computational steps followed by the solver are:

1. Initialize the variables;

2. For the LCR approach, solve forY via equation (10), or alternatively;

Figure 4.The component of the log-conformation tensor Log-Conf.Ψ22 fromour simulations at time t=8 forDe=1.

Figure 5.The component of the log-conformation tensor Log-Conf.Ψ11 fromour simulations at time t=40 forDe=2.
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3. For theDEVSS approach, Solve for t via equation (3);

4. Solve appropriatemomentum equations;

5. Solve pressure equation;

6. Correct both pressure and velocity;

7. Advance in time, t=t+δt, and return to step 2 until the predetermined final time (or alternative
terminating condition) is reached.

Figure 6.The component of the log-conformation tensor Log-Conf.Ψ12 fromour simulations at time t=40 forDe=2.

Figure 7.The component of the log-conformation tensor Log-Conf.Ψ22 fromour simulations at time t=40 forDe=2.
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The solver for the stress constitutive equations as well as for themomentum equations is the bi-conjugate
gradient stabilized (BiCGstab) solver with a Cholesky preconditioner. A preconditioned conjugate gradient
(PCG) solver is used to solve the pressure equation in conjunctionwith a simplified diagonal-based incomplete
LU (DILU) preconditioner.

3. Lid-driven cavityflow

3.1. Geometry andboundary conditions
For the lid-driven cavity flow, see figure 1, a square cavity is usedwith the upper lidmovingwith a regularized
velocity. Theflow is assumed to be two dimensional (2D), being limited to the xy-plane. No-slip boundary and

Figure 8.The component of the log-conformation tensor Log-Conf.Ψ11 fromour simulations at time t=40 forDe=3.

Figure 9.The component of the log-conformation tensor Log-Conf.Ψ12 fromour simulations at time t=40 forDe=3.
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impermeability conditions are ascribed to the velocity at thewalls. Zero normal gradient boundary conditions
are assigned for pressure, p. The polymeric extra stresses are linearly extrapolated at thewalls. A time-space
dependent condition is imposed for the lid-velocity so as to impose a smooth start of theflow. This formof
regularization has the effect of avoiding local singularities at the top-right and top-left corners as it ensures both
the velocity and velocity gradient vanish at the corners. The polynomial function used for the lid velocity is as in
[8];

( ) [ { ( )}] ( ) ( )= + - -u x t tanh t x x, 8 1 8 0.5 1 . 142 2

3.2. Numerical validation
The analysis of the flowbehaviour is based on simulating the regularized lid-driven cavity forDeborah numbers
3 and below as is done in the comparative, benchmarking literature. TheDeborah number, De, is defined in
terms of the polymer relaxation time,λ, characteristic fluid velocity, u, and a characteristic length scale, L, as

l
=De

u

L
.

For validation and becnmarking purposes of our Rolie-Poly solver, we take advantage of the fact that the
Rolie-Polymodel reduces to theOldroyd-Bmodel when l  ¥R aswell as the fact that benchmarkOldroyd-B
results widely exist in the literature.We therefore validate and benchmark our solver by recovering theOldroyd-
B results fromour Rolie-Poly solver and comparing thesewith existing literature onOldroyd-B lid-driven
cavity, say [6]. Themaximum lid velocity is set to u=1. A retardation ratioβ of 1/2 is used and the Reynolds
number is set to negligible value of Re=ρuL/η0=5×10−4 which is considered as creeping flow. The velocity
components and the components of the log-conformation tensor are obtained. As in the existing literature, the
three components of the tensor, the velocity and log-conformation profiles along vertical line x=1/2 and along
horizontal line y=3/4 including the history of the specific Kinetic energy Ekwere considered.

To validate theDEVSSmethod, we only consider the velocity profile, say, along lines x=1/2 and y=3/4
and history of specific kinetic energy since there are no log-conformation tensors.

Our obtained results were all in satisfactory agreementwith those in the existing literature, say [6]. A sample
summary of our graphical results are shown infigures 2–10.

Given the satisfactory agreement between our results and the benchmarking results from the literature for
the lid-driven cavity geometry, we therefore proceed to present the lid-driven cavity results for the full Rolie-
Poly constitutivemodel as predicted and simulated by our solver.

Figure 10.The component of the log-conformation tensor Log-Conf.Ψ22 fromour simulations at time t=40 forDe=3.
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Figure 11. Simulation results for Rolie-Poly constitutive equation for velocity profiles along the lines x=1/2 and y=3/4 comparing
LCR (R-P LogT) andDEVSS (R-P StrT) at time t=10, forDe=1, 2, 3, 4 and 5 respectively.
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3.3. Lid-driven cavity results for the full Rolie-Polymodel
In this sectionwe present the results for the numerical simulation for the lid-driven cavity flow for the full Rolie-
Poly constitutivemodel with l< < ¥0 R . As in the previous sections, wewill alsomake comparisons between
theDEVSS and the LCR stabilizationmethods. The velocity components and the components of the log-
conformation tensor are computed and plotted. The components of the tensor, the velocity and log-
conformation profiles along vertical line x=1/2 and along horizontal line y=3/4 are presented infigure 11.

Figure 11 shows no apparent difference between the LCRmethod and theDEVSS results forDeborah
numbers 1 and 2. There is a slight difference in the velocity profiles fromDeborah numbers 3.Due to the better
convergence of the LCRmethod to existing literature as demonstrated in previous section, we expect the LCR
results to be themore accurate ones. The lid-driven cavity flow results were tested and confirmed formesh
convergence.

3.4. Vortex formation and growth
Theflowof viscoelastic fluids in lid driven cavity flow geometries, such as the one under investigation, usually
leads to the formation of corner vortices.We conclude this section by presenting the streamlines diagrams for
theflowof Rolie-Polyfluids in the lid driven cavity geometry for the purposes of investigating the formation
(and growth) of corner vortices.

Figure 11. (Continued.)
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Figures 12(a)–(d), show the formation and growth of the corner vortices for various values of theDeborah
number and also for both the LCR andDEVSS stabilizationmethodologies.We observe no discernible
difference in the size of the corner vortices with an increase in theDeborah number.

Figure 12. Streamline patterns in the lid driven flowof a Rolie-Polyfluid computed using Planar 2,Mesh 2; forDe=1; (a), (b) and
De=3; (c), (d), respectively for LCR simulations (RHS) andDEVSS simulations (LHS).

Figure 13.Geometry of 4:1 planar contraction.
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4. Planar 4:1 contractionflow

4.1. Geometry andboundary conditions
For 4:1 planar contraction flow, two different dimensionswere used, one for validation and the other for
comparison of theDEVSS and LCRmethods. For validation purposes, the downstream channel has awidth of
2 w and the upstream channel has awidth 4 wwith both channels having an upstream and downstream length of
100 w as is shown schematically infigure 13. These dimensions were chosen in line with the existing validating
literature.

Figure 14.Axial velocity u (a) and stress profile τxx (b) as functions of the axial position at the line of symmetry for the LCR stabilized
Rolie-Polymodel forDeborah number 3 and for the differentmeshes, using the Planar 2 geometry.

Table 3.Planar 2 PNEofmesh 1 andmesh 2 compared tomesh 3 forDeborah number 3.

Mesh Percentage normalized error

U τxx N1

Rolie-Poly(StrT) M1 1.746 4 10.930 5 10.093 4

M2 0.723 0 4.875 5 4.519 0

Rolie-Poly (LogT) M1 1.670 0 5.029 5.022 0

M2 0.557 2 2.750 6 2.343 0

Table 1.Details ofmeshes used in Planar 1.

Mesh Δxmin/h Δymin/h Number of Control Volumes

M1 0.004 2 0.004 2 11991

M2 0.002 9 0.002 9 22287

M3 0.002 0 0.002 0 43491

Table 2.Details of themeshes used for Planar 2.

Mesh Δxmin/h Δymin/h Number of Control Volumes

M1 0.009 8 0.026 9200

M2 0.006 5 0.017 20700

M3 0.004 9 0.013 36800
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For comparison between the LCR andDEVSS, the geometry similar to the one used for validation and has an
upstream thickness of 2 H=0.025 6 m anddownstream thickness of 2 h=0.006 4 mwith an upstream length
of 80 h and a downstream length of 50 h.

To differentiate between the geometries, wewill refer to the former geometry as planar 1 and the later as
planar 2.

At the inlet, a uniform velocity profile is enforced. No-slip boundary conditions are enforced at thewalls.
Due to the long downstream channel, we assume that the velocity profile is fully developed and hence that the
inflow and outflow conditions don’t affect the flow in the contraction region.

For pressure, a zero-gradient condition is imposed at the inlet and normal to thewall. At the outlet, pressure
is assigned afixed value of zero. The stress is assigned afixed value at the inlet and a zero-gradient condition at
the outlet. As in similar 2D computation studies of viscoelastic fluid dynamics, say [26–28] the stresses will be
linearly extrapolated at thewalls.

4.2.Mesh convergence
Three different hexahedralmeshes were used to analyse themesh convergence. The characteristics of the three
meshes are listed in table 1 for Planar 1 and table 2 for Planar 2. All themeshes used are such that there is a higher
refinement near thewalls and in the vicinity of the contraction since these regions are known to possess the
largest velocity and stress gradients.

Our simulated results for the velocity profile and stress profile τxx for the full Rolie-Poly constitutivemodel
obtained via the LCR approach and using the threemeshes are compared infigure 14. The greatest differences
are observed in the vicinity the contraction region. The differences aremore significant for the stress profile tauxx
when comparingmeshes 1 and 3.

To quantitatively compare the predictions of the velocity and stress τxx for the differentmeshes for geometry
Planar 2, the percentage normalized errorwas calculated in the followingway

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ∣

( )=
-

´=PNE Max
x x

Max x
100 15j

N j
i

j
ref

ref1

Table 4.Corner vortex sizeXR as a function ofDeborah number obtained using the differentmeshes.

M1 M2 M3

De [29] LogT StrT [29] LogT StrT [29] LogT StrT

1 1.360 1.360 1.359 1.362 1.361 1.361 1.363 1.363 1.363

2 1.173 1.173 1.171 1.171 1.171 1.176 1.170 1.170 1.221

3 0.978 0.977 0.976 0.969 0.968 0.963 0.969 0.968 1.241

4 0.808 0.807 0.809 0.788 0.787 0.977 0.785 0.783 1.084

5 0.674 0.673 0.675 0.641 0.640 0.888 0.636 0.631 1.074

6 0.590 0.592 0.593 0.536 0.530 0.898 0.526 0.570 1.073

7 0.600 0.629 0.764 0.465 0.456 0.968 0.450 0.471 1.054

8 0.875 0.850 0.944 0.419 0.462 1.013 0.400 0.440 1.059

9 1.235 1.124 1.044 0.633 0.619 1.039 0.358 0.505 1.171

10 1.475 1.335 1.126 1.123 1.084 1.098 0.328 1.014 1.366

12 1.836 1.628 1.418 1.621 1.385 1.281 1.242 1.127 1.418

Table 5. Lip vortex sizeXL as a function ofDeborah numberDe computed in differentmeshes.

M1 M2 M3

De [29] LogT StrT [29] LogT StrT [29] LogT StrT

1 0.056 0.055 0.045 0.044 0.044 0.036 0.038 0.038 0.034

2 0.132 0.132 0.131 0.115 0.117 0.119 0.097 0.100 0.106

3 0.241 0.241 0.205 0.191 0.193 0.207 0.160 0.163 0.204

4 0.385 0.387 0.374 0.290 0.292 0.317 0.387 0.384 0.298

5 0.590 0.597 0.402 0.447 0.480 0.486 0.593 0.351 0.350

6 0.852 0.845 0.443 0.649 0.686 0.536 0.852 0.509 0.412
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whereN is number of discretization points,Xj is the value of the variable to be considered at amesh point of the
line of symmetry and Xj

ref are the values obtained inMesh 3. The values of the percentage normalized error
(PNE) forDeborah numberDe=3 calculated using equation (15) are shown in table 3.

The PNE values forMesh 2 in relation toMesh 3 for both the velocity and stress profiles τxx are lower than
5% implying that greater accuracy is obtained by usingMesh 3. Due to high computational costs related to using
Mesh 3,Mesh 2will be usedwith an error of less than 5%.

4.2.1. Numerical validation
Weassess the accuracy of the Rolie-Poly viscoelastic solver by benchmarking our results against the known
results for theOldroyd-Bmodel. Similarly to the lid-driven cavity validation, we recover theOldroyd-B
constitutivemodel directly fromourRolie-Polymodel, essentially achieved by switching off theλR terms The
numerical results for theOldroyd-Bmodel from the existing literature on 4:1 planar contraction flow, [29] are
then used to benchmark and validate the results fromour solver.

The Rolie-Poly constitutivemodel has a retardation constant ofβ=1/9 and the simulations are done at low
Reynolds numberflow (Re=0.01). Theflow is simulated for awide range ofDeborah numbers 1�De�12.
The evolution of the non-dimensional corner vortex sizeXR and the non-dimensional lip vortex sizeXL as
functions ofDeborah number,De, are also comparedwith results from the existing literature. Tables 4 and 5
display results from existing literature for theOldroyd-Bmodel [29] comparedwith our simulated results of the
recoveredOldroyd-Bmodel from the constitutive Rolie-Polymodel, for the differentmesh sizes. Table 4
displays the non-dimensional corner vortex and table 5 displays the results for the non-dimensional lip-vortex.

The results are displayed for the range ofDeborah numbers from1 to 12 for the corner vortex size and for the
lip vortex size, Deborah numbers 1 to 6. The lip vortex size is amore sensitive parameter than the corner
vortex size.

Generally, for the corner vortex size, good agreement is observed between our, LCRbased, results and those
of Pimenta andAlves [29] forDeborah numbers 1 to 5 and for theMeshes 1 and 2 and forDeborah numbers 1 up
to 4 for the thirdmesh. The relative error for the values forDeborah numbers 1 to 4 for LCR approach is lower
than 0.5 percent.

For theDEVSSmethod good agreement is observed forDeborah numbers 1 and 2 onlywith a relative
percentage error of less than 3.5 percent for thefirst twomeshes. The lip-corner vortex is a sensitive parameter
and there is agreement for LCR forDeborah numbers 1 to 4whereas forDEVSS, agreement is only observed for
Deborah numbers 1 and 2.

The results indicate that our solver can be usedwith relative accuracy forDeborah numbers of up to 5,
especially using the LCR stabilizationmethod.

Figure 15.Axial velocity u as a function of the axial position at the line of symmetry for the Rolie-Polymodel forDeborah numbers 4
(a) and 5 (b) using Planar 2,Mesh 2.
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Figure 16. Simulation results comparing LCR (LogT) andDEVSS (StrT)Rolie-Poly constitutive equation for stress profiles τxx and τyy
at the line of symmetry using Planar 2,Mesh 2, forDe=1, 2, 3, 4 and 5 respectively.
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4.2.2. Comparison betweenDEVSS and LCR
Comparison of Rolie-Poly LCR andDEVSS stabilization approaches was done usingMesh 2 for Planar 2 due to
the high computational cost of usingMesh 3. The axial velocity and axial normal stress as a function of the axial
position at the line of symmetry for the Rolie-Polymodel for different Deborah numbers were obtained.No
significant difference was observed between the LCR andDEVSSmethods in the axial velocities and as such only
the velocity profiles forDeborah numbers 4 and 5were presented, see figure 15.

Figure 15 shows that the velocity profiles are indistinguishable, because they do not display substantial
variations as with the stress profiles. Thefigure also shows that theflow rapidly accelerates from the fully
developedflowupstream into the smaller contraction channel leading to large extensional stresses near the
contraction plane as was observed by [30] in their experimental work. This causes themaximum stress τxx to
occur just upstreamof the contraction plane as is seen infigure 16. The stresses then recede from thismaximum.

Unlike the velocity profiles, the polymer stress profiles τxx and τyy, on the other hand, do display significant
differences for the different Deborah numbers as illustrated infigure 16.We also notice, from figure 16, that
increasing theDeborah number leads to a decrease in themaximumvalue of stress value τxx as is reported
in [30].

The velocity profile and stress profiles τxx and τyy are plotted at different positions as shown infigure 17.No
significant difference is observed in the velocities, differences are however observed in the stress profiles.

Figure 16. (Continued.)
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Figure 17. Simulation results comparing LCR (LogT) andDEVSS (StrT)Rolie-Poly constitutive equation for velocity profile ux using
Planar 2,Mesh 2, at different positions in the geometry forDe=1, 2, 3, 4 and 5 respectively.
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Figure 17 presents the axial velocity profiles at different x positions (LHS) and different y positions (RHS) in
the upstream channel. It is expected that therewill be slight differences between the LCR andDEVSSmethod
since the velocity profiles have insubstantial variations as opposed to the stress profiles. Figures 18 and 19which
present the stress profiles at different x and y positions, therefore display a greater disparity between the LCR and
DEVSSmethodswith increasingDeborah number. This could be due to the LCRmethod’s ability tomitigate the
HWNPbetter than theDEVSS.

4.2.3. Vortex formation and growth
In contraction flow geometries, such as the 4:1 contraction flowgeometry, there is fundamental observable
difference between theflowofNewtonian fluids on the one hand and that of viscoelastic fluids on the other;
namely the formation of corner vortices in the viscoelastic flow case. Such vortices are completely absent in
correspondingNewtonianflows. In this section, we therefore present the streamlines for theflowof Rolie-Poly
fluids in the 4:1 contraction geometry for the purposes of investigating the formation (and growth) of corner
vortices.

Figures 20(a)–(g), show the formation and growth of the corner vortices for various values of theDeborah
number and also for both the LCR andDEVSS stabilizationmethodologies.We observe a reduction in the size
of the corner vortices with an increase in theDeborah number. Similar behaviourwas observed by both

Figure 17. (Continued.)
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Figure 18. Simulation results comparing LCR (LogT) andDEVSS (StrT)Rolie-Poly constitutive equation for stress profile τxx using
Planar 2,Mesh 2, at different positions in the geometry forDe=1, 2, 3 and 4 respectively.
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Figure 19. Simulation results comparing LCR andDEVSSRolie-Poly constitutive equation for stress profile τyyusing Planar 2,Mesh
2, at different positions in the geometry forDe=1, 2, 3 and 4 respectively.
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Figure 20. Streamline patterns in the lid driven flowof a Rolie-Polyfluid computed using Planar 2,Mesh 2, forDe=1, 2, 3, 4 and 5
respectively for LCR (LogT) simulations (RHS) andDEVSS (StrT) simulations (LHS).
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Alfonso et al [31] andRaphaël et al [17] in their 4:1 contraction simulations of theOldroyd-Bmodel.We also
observe that the sizes of the corner vortices obtained via the LCR formulation are smaller than those calculated
with theDEVSSmethod.

5.Discussion and conclusion

Wehave developed a numerical solver for the computation of viscoelastic fluid flows. The solver is based on the
finite volumemethod and implemented in the open sourceOpenFOAM®software platform. Additionally the
solver is developed specifically for the simulation offlows of viscoelastic fluids that are governed by theRolie-
Poly constitutivemodel. The Rolie-Polymodel reduces to theOldroyd-Bmodel for certain values of thematerial
constants.We take advantage of this relationship to validate our solver based on the existing benchmark
solutions forOldroyd-B fluids.We in particular focus attention on the two benchmark problems; lid-driven
cavity flow aswell as the 4:1 contraction flow. Such benchmark comparison of our data with the existing
literature, [6] and [29], shows generally good agreement.

We report a significant improvement in dealingwith theHighWeissenbergNumber Problem (HWNP)
when using the LCR approach. TheDEVSS stabilizationmethod is also reliable, and also agrees with the results
from the existing literature, but at lower values of theDeborah numbers than those achievable with the LCR
approach. Based on our results, we can therefore confirm than the LCR stabilization technique ismore reliable
thanwidely usedDEVSS stabilizationmethod.We therefore recommend the LCR technique for the numerical
stabilization of viscoelastic flow computations going forward.

In conclusion, this work has presented a new solver for the simulation offlows of viscoelastic fluids governed
by the Rolie-Poly constitutivemodel. The results show that the solver is consistent with expectations as can be
observed from the favourable comparisonwith results from the existing literature. Our results also demonstrate
that the LCRmethod bettermitigates against theHWNPas compared to thewidely employedDEVSSmethod.
Further studies however need to be conducted to investigate the disparities in the results forDeborah numbers
greater than 7 especially for the LCR representation.
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