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Abstract. This paper proposes a four-direction search method for obstacle avoidance of mobile 

robots, and the collision energy of obstacles is modeled based on the neural network. For 

comparison and discussion purposes, the different invariant step lengths are tested in the static 

environment. To take the advantages of the large and small step lengths effectively, a variable 

step length method is adopted to improve the performance, such as less iteration number and 

lower total energy. The variable step length method is also applied to the dynamic environment 

to explore the real-time performance for path planning. Simulation results demonstrate the 

effectiveness and practicability of the presented scheme.  

1. Introduction 

In the field of robotics, one of the hot research issues is how to make a mobile robot move to the 

goal point as quickly as possible with obstacle-avoidance in an environment [1-10]. Generally 

speaking, the obstacle-avoidance problem solving of a mobile robot can be transformed into path 

planning. The set of a series of points or lines interconnecting from the initial point to the goal point is 

called a path, and the decision to form the path is called path planning. Main problem to be solved in 

the process of path planning can be described as generating a path from the initial point to the goal 

point, using algorithms to make a mobile robot avoid obstacles in the path, and making the generated 

path as smooth as possible [1].  The path planning problem of a mobile robot can be divided into 

global path planning and local path planning, which depends on the environment of the mobile robot. 

In global path planning, the environment around the mobile robot is known, and environmental 

information is static and known. In local path planning, the environment surrounding the mobile robot 

is unknown or partially known, and then, environmental information can be seem dynamic [2]. 

 In the field of path planning, many scholars have conducted a series of studies. For path planning 

in a static environment, Priyanka Sudhakara applied an enhanced artificial potential field method to 

improve the oscillations in navigable trajectories. However, the final generated path was not smooth 

enough [3]. For the dynamic environment situation, Huckleberry Febbo put forward a method, in 

which a hard constraint formulation was proposed to solve the moving obstacle avoidance problem of 

large, high-speed autonomous ground vehicles in an unstructured environment. Nevertheless, after the 

sensors detected obstacles, it cannot build a suitable mathematical model in the map [4]. Mohamed 

Elhoseny presented a modified genetic algorithm based on Bezier Curve for path planning in a 

dynamic environment, in which the local optima may be considered further [5]. In this paper, we 

propose a mobile robot path planning scheme for a dynamic environment, which can obtain a smooth 

optimal path and avoid local optima. 

2. Problem Formulation 
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In this section, the algorithm for path planning based on neural network is described for discussion. 

2.1. Formulation of Collision Energy Function 

Normally, if we have information about the location and shape of the obstacle, we can 

reformulate the obstacle as a stationary convex polygon or a circle for a known two-dimensional 

environment [6-8]. For the path planning problem, the collision energy ( )( , )i iG i x y  of every coordinate 

point  is obtained by using neural network [6-8]. In the neural network structure, the input layer is set 

as the environmental coordinate point. The first hidden layer U is determined by the shape of the 

environmental obstacles. Based on the neural network, every convex polygon can be represented as a 

number of closed line segments [6-8], and the line can be described as
.
  

                                                                      0x yw x w y                                                             (1)                                        

where xw , yw  and   are the line function coefficients. We reformulated the -thj  obstacle as a 

rectangle and we have the information of its four sides as follows:  

1 1 1

2 2 2

3 3 3

4 4 4

0

0

0

0

xj i yj i uj

xj i yj i uj

xj i yj i uj

xj i yj i uj

w x w y

w x w y

w x w y

w x w y









  


  


  
   

 

where 
ujk  is its threshold coefficient, and 

xjkW , 
yjkW are weight values of the input neurons ix ,

iy  to the 

-thjk hidden layer neuron with 1,2,3,4k  . For the -thk side of -thj  obstacle, the first hidden layer 

neuron function  is set as  
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where T  is the positive design parameter. In addition, If the  -thj obstacle is circular,  r is its radius, 

and 
jxC and

jyC are the center coordinates, then we can set its first hidden layer neuron function as 

22 )()(),( jyijxiiij CyCxryxu                                            (3)
 

The second hidden layer neuron function for the -thj  obstacle consisted of k  sides is taken as  
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where 0.5oj k   (for the circular obstacle, 0.5oj  ). For an environment with n  obstacles,  we can 

obtain the energy of a point  as 
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It is worth mentioned that the distributed shape of collision energy by Eqs. (2) and (4) is 

influenced by the design parameter T. When parameter T is larger, the shape is more smooth.   

In view of the above-mentioned discussion, we can obtain the energy distribution associated with 

obstacles in the environment. 

2.2. Four-direction search scheme 

In this section, we propose a four-direction search method for mobile robot path planning. we 

connect the start point to the goal point as the initial path, and then divide the initial path into many 

equally-long line-segments as shown in Figure 1(a). Different from the search algorithm of Refs. [6,7], 

we present a four-direction search method for mobile robot avoidance obstacle, shown in Figure 1(b). 
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In Figure 1(b), the search step length is  , and thus, for the th-i node, we can obtain the four search 

direction as follows: 
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where the superscript ( 1)k  denotes the ( 1)-thk   iteration, and 3,2,1,0j . We link the new four 

nodes with the ( 1)-thi  and ( 1)-thi  nodes, and calculate their obstacle energy. According to the -thk  

iteration result, we can obtain the path with the minimum energy. Furthermore, in order to reduce the 

path search computing again, for a path with n  nodes, we present the variable step length l̂ . 

ˆ max( )G l l  

where 
1 2[ , ,..., ]nG g g g

, 
)max( selects the maximum of a vector, and l is an initial invariant step 

length. 

                                               
 (a) Initial path                                                        (b) Four-direction search 

Figure 1. The initial path and four direction search 

2.3. Formulation of Path Energy Function 

Obviously, if we only consider the path energy, the mobile robot will move towards the place 

where the energy becomes as small as possible, but the final path may be very long. In order to solve 

this problem, we must consider the obstacle energy as well as the path energy. According to the above-

mentioned discussion, we introduce the square of the difference between two adjacent nodes as the 

path segment energy to solve this problem. 
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where L denotes the total path energy, and ix and iy denote the coordinates of -thi  path-node ( 0x and 

0y  denote the coordinates of start path-node). 

3. Simulation studies 

                                         
(a) Environmental obstacle                                             (b) Energy profiles 

Figure 2. Environmental obstacle and energy profiles 
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In this section, the simulation is conducted based on the presented four-direction search method 

with invariable step length in the static environment, and the mutation point problem arising in the 

simulation is discussed and improved. To enhance the performance of the four-direction search method, 

a variable step length is applied to reduce the iteration times and make the generation path more 

smooth. Finally, the four-direction method is tested in the dynamic environment. The simulations 

verify the effectiveness of the presented four-direction method. 

3.1. Invariable search step length situation 

In this subsection, obstacle-avoidance is studied and discussed with  an invariant search step 

length for a single circular stationary obstacle. 

We set up a simulation environment (i.e., a planar space with ]10,0[x , ]10,0[y ), which has a 

circular obstacle with {(5,5), r=2}, as shown in Figure 2(a). Moreover, the energy distribution of the 

obstacle is modeled and shown in Figure 2(b). According to the predefined requirements, the mobile 

robot requires to move from start point (0, 0) to the goal point (10, 10). 

In order to make the experiment easy to discuss, we use the invariant search step length 0.05l
for the four-direction scheme in the first test. The simulation results are shown in Figure 3. We can see 

that the final path can meet the experimental requirement. However, the final path has mutation points 

and is not smooth enough. Known from the simulation tests, the appearing mutation points result from 

the premature convergence caused by the larger search step length. In addition, the total energy (i.e., 

sum of the path energy and the collision energy) decreases from 15.51 of the initial path to 0.7424 of 

the final path, and the iteration number is 74. To improve premature convergence, we consider a 

smaller search step length, e.g., 0.03 . The corresponding simulation results are shown in Figure 4. 

Comparing with the final energy 0.7424 of Figure 3, the total energy has reduced to 0.7346 in the 97th 

iteration, and then continue converging to 0.6015, which implies that the reduced search step length 

can improve the phenomenon of premature convergence. In addition, with reduction of the iteration 

step length, the generated path is more smooth and the path mutation point is also improved. However, 

it is worth mentioning that the smaller step length makes the iteration times increase apparently to 118, 

which may decrease the computation efficacy of this scheme. 

 
(a) Final path                    (b) Path profiles                    (c) Total energy profiles 

Figure 3. Path planning and paths synthesized by FDS scheme with 0.05l                                                               

 
(a) Final path                      (b) Path profiles                    (c) Total energy profiles 

Figure 4. Path planning and paths synthesized by FDS scheme with 0.03l  
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(a) Final path                              (b) Path profiles                     (c)Total energy profiles  

Figure 5. Path planning and Paths synthesized by FDS scheme with ˆ Max( )Gl  

3.2. Variable search step length situation 

In order to take the advantages of the large step length (i.e., less iteration number) and small step 

length (i.e., lower total final energy), a variable search-step-length method is proposed and adopted, 

inspired by the above analysis and discussion. Therefore, we replace the invariant step-length with 

variable step-length 
0

ˆ Max( )G l l , with 0l denoting the initial step length ( 10  for this test). The 

simulation results are shown in Figure 5. For the comparison purpose, we can see that the total energy 

of the 26th iteration has been reduced to 0.7408, which is better than 0.7424 of the 74th iteration in 

Figure 3. Moreover, the final energy converges to 0.5595 after 79 iterations, which shows that the 

variable step-length method can find the optimal path with lower final energy and lower iteration 

number. The simulation results demonstrate the variable step-length has better performances than the 

invariant one, and the scheme can obtain a satisfactory solution.  

3.3. Path planning in dynamic environment 

Path planning in the dynamic environment is a challenging issue. Due to its real-time requirement, 

the FDS scheme with the variable step-length can be a feasible alternative. For the test purpose, we set 

up a map (i.e., a planar space with ]2,0[x , ]2,0[y ), and a circular obstacle with {(2, 0), r=0.2} is 

assumed to move for the start point (2,0) to the goal point (0,2) along the diagonal straight-line path.  

The variable step length for the dynamic test is set as ˆ Max( ) 0.02G l . The simulation results are 

shown in Figure 6, and corresponding iteration numbers and total energies are shown in Table 1. From 

Figure 6, we can see that the generated path can avoid the obstacle. For details, Figure 6(a)-(c) show 

the critical moments, and we can see that the mobile robot moves towards the lower-energy place, but 

the subsequent planning path will bypass the obstacle automatically. As a comparative result, the final 

path and the initial path are shown in Figure 6(d). From Table 1, we can see that the FDS scheme 

works well, and the total energies decrease at the critical moments. This simulation results substantiate 

that the proposed FDS scheme is effective for obstacle avoidance in a dynamic environment. Note that 

in this simulation design parameters T is set as 0.28. 

 

                 
    (a) Node 9                       (b) Node 10                       (c) Node 11              (d)Initial and final paths 

Figure 6.   Path planning of FDS scheme for dynamic environment 
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Table 1. Iteration number of  FDS scheme for dynamic environment. 

# Iteration number Initial energy Final energy 

1-5 1 104 160 173 116 0.0611 0.0991 0.1881 0.3594 0.6287 0.0611 0.0724 0.0813 0.0961 0.1535 

6-10 83 33 18 12 6 0.9707 1.3137 1.568 1.6637 1.5746 0.2723 0.5111 0.8963 1.2984 1.2880 

11-15 5 2 1 1 1 1.3246 0.9807 0.6329 0.3541 0.1727 1.1337 0.9541 0.6329 0.3541 0.1727 

16-19 1 1 1 1  0.0753 0.0309 0.013 0.0058  0.0753 0.0309 0.0130 0.0058  

4. Conclusions 

This paper focuses on the path planning method based on the neural network for collision energy 

building in the map, and a four-direction search method is presented and tested for the problem in the 

static and dynamic environment. Moreover, the proposed variable step length can improve the search 

performance apparently. The simulation results verify the effectiveness and practicability of the 

improved FDS scheme. Future work can consider to improve the generated path in the dynamic 

environment, and  to realize proposed scheme physically. 
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