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Abstract

The Event Horizon Telescope (EHT), a global submillimeter wavelength very long baseline interferometry array,
unveiled event-horizon–scale images of the supermassive black hole M87* as an asymmetric bright emission ring
with a diameter of 42±3 μas, and it is consistent with the shadow of a Kerr black hole of general relativity. A
Kerr black hole is also a solution of some alternative theories of gravity, while several modified theories of gravity
admit non-Kerr black holes. While earlier estimates for the M87* black hole mass, depending on the method used,
fall in the range » ´ - ´M M3 10 7 109 9

 , the EHT data indicated a mass for the M87* black hole of
(6.5± 0.7)×109Me. This offers another promising tool to estimate black hole parameters and to probe theories
of gravity in its most extreme region near the event horizon. The important question arises: Is it possible by a
simple technique to estimate black hole parameters from its shadow, for arbitrary models? In this paper, we present
observables, expressed in terms of ordinary integrals, characterizing a haphazard shadow shape to estimate
the parameters associated with black holes, and then illustrate its relevance to four different models: Kerr,
Kerr–Newman, and two rotating regular models. Our method is robust, accurate, and consistent with the results
obtained from existing formalism, and it is applicable to more general shadow shapes that may not be circular due
to noisy data.

Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); Galactic center (565); Black hole physics
(159); Gravitation (661); Gravitational lensing (670)

1. Introduction

Black holes are one of the most remarkable predictions of
Einstein’s theory of general relativity, which also provides a
means to probe them via unstable circular photon orbits
(Bardeen 1973). A black hole, due to its defining property at
the event horizon along with the surrounding photon region, casts
a dark region over the observer’s celestial sky, which is known as
a shadow (Bardeen 1973; Falcke et al. 2000). Astronomical
observations suggest that each galaxy hosts millions of stellar-
mass black holes, and also a supermassive black hole at the
nucleus of the galaxy (Melia & Falcke 2001; Shen et al. 2005).
However, the majority of these black holes have very low
accretion luminosity and thus are very faint. Due to their relatively
very large sizes and close proximity, the black hole candidates at
the center of the Milky Way and in the nearby galaxy Messier 87,
respectively, Sgr A* and M87*, are prime candidates for black
hole imaging (Broderick & Narayan 2006; Doeleman et al.
2008, 2012). Probing the immediate environment of black holes
will not only provide images of these objects and the dynamics of
nearby matter but will also enable the study of the strong gravity
effects near the horizon. The Event Horizon Telescope (EHT),3 a
global array of millimeter and submillimeter radio observa-
tories, is using the technique of very long baseline inter-
ferometry by combining several synchronized radio telescopes
around the world. This Earth-sized virtual telescope has
achieved an angular resolution of 20 μas, sufficient to obtain
the horizon-scale image of supermassive black holes at a
galaxy’s center. The EHT has published the first direct image
of the M87* black hole (Akiyama et al. 2019a, 2019b, 2019c,
2019d). Further, fitting geometric models to the observational
data and extracting feature parameters in the image domain

indicates that we see emission from near the event horizon that
is gravitationally lensed into a crescent shape around the
photon ring (Akiyama et al. 2019c, 2019d).
It turns out that photons may propagate along unstable

circular orbits due to the strong gravitational field of the black
hole, and these orbits have a very important influence on
quasinormal modes (Cardoso et al. 2009; Hod 2009; Konoplya
& Stuchlik 2017), gravitational lensing (Stefanov et al. 2010),
and the black hole shadow (Bardeen 1973). Synge (1966) and
Luminet (1979), in pioneering works, calculated the shadow
cast by a Schwarzschild black hole, and thereafter Bardeen
(1973) studied the shadows of Kerr black holes over a bright
background, which turn out to deviate from a perfect circle.
The past decade saw more attention given to analytical
investigations, observational studies, and numerical simulations
of shadows (see Cunha & Herdeiro 2018). The shadows of
modified theory black holes are smaller and more distorted
when compared with the Kerr black hole shadow (Bambi &
Freese 2009; Johannsen & Psaltis 2010; Falcke & Markoff
2013; Broderick et al. 2014; Younsi et al. 2016; Giddings &
Psaltis 2018; Mizuno et al. 2018; Breton et al. 2019; Held et al.
2019; Konoplya & Zhidenko 2019; Kumar et al. 2019; Long
et al. 2019; Vagnozzi & Visinelli 2019; Wang et al. 2019;
Yan 2019).
The no-hair theorem states that the Kerr black hole is the

unique stationary vacuum solution of Einstein’s field equations,
however, the exact nature of astrophysical black holes has not
been confirmed (Johannsen & Psaltis 2011; Bambi 2018), and
the possible existence of non-Kerr black holes cannot be
completely ruled out (Johannsen 2013a, 2016). Indeed, the Kerr
metric remains a solution in some modified theories of gravity
(Psaltis et al. 2008). For rotating black holes, significant
deviations from the Kerr solution are found in modified theories
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(Bambi & Modesto 2013; Berti et al. 2015). The Bardeen
perspective of a shadow of a black hole in front of a planar-
emitting source was applied to several black hole models, e.g.,
Kerr–Newman black hole (Young 1976; De Vries 2000), Chern-
Simons modified gravity black hole (Amarilla et al. 2010),
Kaluza–Klein rotating dilaton black hole (Amarilla & Eiroa
2013), rotating braneworld black hole (Amarilla & Eiroa 2012;
Eiroa & Sendra 2018), regular black holes (Abdujabbarov et al.
2016; Amir & Ghosh 2016; Kumar et al. 2019), and black holes
in higher dimensions (Papnoi et al. 2014; Abdujabbarov et al.
2015a; Amir et al. 2018; Singh & Ghosh 2018). The black hole
shadow in asymptotically de-Sitter spacetime has also been
analyzed (Grenzebach et al. 2014; Eiroa & Sendra 2018; Perlick
et al. 2018). Black hole shadows have been investigated for a
parameterized axisymmetric rotating black hole, which gen-
eralizes all stationary and axisymmetric black holes in any metric
theory of gravity (Rezzolla & Zhidenko 2014; Konoplya et al.
2016; Younsi et al. 2016).

However, developing a methodological way to estimate
parameters from astrophysical observations of a black hole
image is a promising avenue to advance our understanding of
black holes. The observations commonly used for the estimation
of the mass and size of a black hole are based on the motion of
nearby stars and spectroscopy of the radiation emitted from the
surrounding matter in Keplerian orbits, i.e., stellar dynamical and
gas dynamical methods (Gebhardt et al. 2000; Schodel et al.
2002; Shafee et al. 2006). The dynamical mass measurements
from X-ray binaries only provide lower limits of the black hole’s
mass (Häring & Rix 2004; Narayan 2005; Casares &
Jonker 2014). Unlike for the mass, effects of the black hole’s
spin and any possible deviation from standard Kerr geometry are
manifest only at the small radii. The two most commonly used
model-dependent techniques to estimate the spin are the analysis
of the Kα iron line (Fabian et al. 1989) and the continuum-fitting
method (McClintock et al. 2014). Though black hole parameters
have been inferred in a number of contexts through the
gravitational impact on the dynamics of surrounding matter
(Matt & Perola 1992; Narayan et al. 2008; Broderick et al. 2009;
Steiner et al. 2009, 2011; McClintock et al. 2011; Narayan &
McClintock 2012; Bambi 2013), the EHT observations can put
stringent bounds on the parameters. Furthermore, it is found that
the non-Kerr black hole shadows strongly depend on the
deviation parameter apart from the spin (Atamurotov et al. 2013;
Johannsen 2013b; Wang et al. 2017, 2018). Thus, shadow
observations of astrophysical black holes can be regarded as a
potential tool to probe their departure from an exact Kerr nature,
and in turn, to determine the black hole parameters (Johannsen &
Psaltis 2010). Hioki & Maeda (2009) discussed numerical
estimations of Kerr black hole spin and inclination angle from
the shadow observables, which was extended to an analytical
estimation by Tsupko (2017). These observables, namely
shadow radius and distortion parameter, were extensively used
in the characterization of black holes shadows (De Vries 2000;
Amarilla et al. 2010; Amarilla & Eiroa 2012, 2013; Papnoi et al.
2014; Abdujabbarov et al. 2015a, 2016; Amir & Ghosh 2016;
Amir et al. 2018; Eiroa & Sendra 2018; Singh & Ghosh 2018).
However, it was found that the distortion parameter is degenerate
with respect to the spin and possible deviations from the Kerr
solution; a method for discriminating the Kerr black hole from
other rotating black holes using the shadow analysis is presented
by Tsukamoto et al. (2014). An analytic description of distortion

parameters of the shadow has also been discussed in a
coordinate-independent manner (Abdujabbarov et al. 2015b).
Motivated by the above, we construct observables that can
uniquely characterize shadows to estimate the black hole
parameters.
The aim of this paper is to give simple shadow observables

and show their applicability to determining the black hole
parameters with emphasis on the characterization of various
black hole shadows of more general shape and size. The
proposed observables do not presume any symmetries in
the shadow and completely depend upon the geometry of the
shadow. The characterization of the shadow’s size and shape is
not restricted to a circle and is applicable to a large variety of
shadows. The prescription is applied to four models of rotating
black holes to get an estimation of black hole parameters, and
when compared with the existing results (Tsukamoto et al.
2014), we find that our prescription gives an accurate
estimation. Thus, this simple approach enables us to estimate
the black hole parameters accurately, and the method is robust,
as it is applicable to haphazard shadow shapes that may result
from noisy data.
The paper is organized as follows. In Section 2, we discuss

the propagation of light in rotating black hole spacetime.
Further, in Section 3, we present the observables for shadow
characterization and use them to estimate the parameters
associated with four black holes in Section 4. In Section 5, we
summarize our main results. We use geometrized units G=1,
c=1, unless units are specifically defined.

2. Black Hole Shadow

The metric of a general rotating, stationary, and axially
symmetric black hole, in Boyer–Lindquist coordinates, reads
(Bambi & Modesto 2013)
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where m(r) is the mass function such that =¥m r Mlimr ( )
and a is the spin parameter defined as a=J/M; J and M are,
respectively, the angular momentum and ADM mass of a
rotating black hole. Obviously metric (1) reverts back to the Kerr
(1963) and Kerr–Newman (Newman et al. 1965) spacetimes
when m(r)=M and m(r)=M−Q2/2r, respectively. Photons
moving in a general rotating spacetime (1) exhibit two conserved
quantities, energy  and angular momentum , associated with
Killing vectors ∂t and ∂f. To study the geodesics motion in
spacetime (1), we adopt the Carter (1968) separability prescrip-
tion of the Hamilton–Jacobi equation. The complete set of
equations of motion in the first-order differential form read
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(Carter 1968; Chandrasekhar 1985)
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The conserved quantity associated with the hidden symmetry
of the conformal Killing tensor is related to the Carter integral
of motion  through = + -   a 2( ) (Carter 1968).
One can minimize the number of parameters by defining
two dimensionless impact parameters η and ξ as follows
(Chandrasekhar 1985)

x h= =   , . 92 ( )

Due to spacetime symmetries, geodesics along t and f
coordinates do not reveal nontrivial features of orbits, therefore
the only concern will be mainly for Equations (4) and (5).
Rewriting Equation (5) in terms of μ=cosθ, we obtain
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Obviously η�0 is required for possible θ motion, i.e., Θμ�0
(see Figure 1). For the Schwarzschild black hole, due to
spherical symmetry, all null circular orbits are planar, i.e.,

orbits with q = 0 . However, in the Kerr black hole, frame-
dragging effects may lead to nonplanar orbits as well. Indeed,
planar and circular orbits around Kerr black hole are possible
only in the equatorial plane (θ= π/2) that leads to a vanishing
Carter constant ( = 0). Furthermore, generic bound orbits at
a plane other than θ=π/2 are nonplanar (q ¹ 0 ) and cross the
equatorial plane while oscillating symmetrically about it. These
orbits are identified by > 0 (or η> 0) and are commonly
known as spherical orbits (Chandrasekhar 1985), and θ motion
freezes only in the equatorial plane. Equation (10) reveals that
the maximum latitude of a spherical orbit, q m= -cosmax

1
max( ),

depends upon the angular momentum of photons, i.e., the
smaller the angular momentum of photons the larger the
latitude of orbits; μmax correspond to the solution of

mQ =m 0( ) . Only photons with zero angular momentum
(ξ= 0) can reach the polar plane of the black hole (θ= 0,
μ= 1) and cover the entire span of θ coordinates (see Figure 1).
Depending on the values of the impact parameters η and ξ,

photon orbits can be classified into three categories, namely
scattering orbits, unstable circular and spherical orbits, and
plunging orbits. Indeed, the unstable orbits separate the
plunging and scattering orbits, and their radii (rp) are given
by (Chandrasekhar 1985)
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Solving Equation (11) yields the critical locus (ηc, xc)
associated with the unstable photon orbits, that for nonrotating
black holes are at a fixed radius, e.g., rp=3M for a Schwarzs-
child black hole, and construct a spherical photon sphere. In the
rotating black hole spacetime, photons moving in unstable circular
orbits at the equatorial plane can either corotate with the black
hole or counterrotate, and their radii can be identified as the real
positive solutions of ηc=0 for r, -rp and +rp , respectively. Photon
orbit radii are an explicit function of black hole spin and lie in
the range - M r M3p and + M r M3 4p for the Kerr black
hole, and - +r rp p due to the Lens–Thirring effect. Whereas,
spherical photon orbits (orbits at q p¹ 2) are no longer affixed
to a fixed plane and instead are three-dimensional orbits with radii
in the interval - +r r,p p[ ], i.e., for ηc>0 orbits, radii lie in the range

< <- +r r rp p p . Although rotating black holes generically have
two distinct photon regions, inside the Cauchy horizon (r−) and
outside the event horizon (r+), for a black hole shadow we will be
only focusing on the latter, i.e., for > +r rp (Grenzebach et al.
2014). The critical impact parameter xc is a monotonically
decreasing function of rp with x >-r 0c p( ) and x <+r 0c p( ) , such

that at x= < <- +r r r r rp p p p p c
0 0( ) is vanishing. Even though for

orbits at rp
0 the angular momentum of photons is zero, they still

cross the equatorial plane with nonzero azimuthal velocity f ¹ 0
(Wilkins 1972; Chandrasekhar 1985).
A black hole in a luminous background of stars or glowing

accreting matter leads to the appearance of a dark spot on the
celestial sky accounting for the photons which are unable to
reach the observer, popularly known as a black hole shadow.
Photons moving on unstable orbits construct the edges of the
shadow. A far distant observer perceives the shadow as a
projection of a locus of points ηc and xc on the celestial sphere
on to a two-dimensional plane. Let us introduce the celestial

Figure 1. Left panel: schematic of a photon region around a rotating black
hole. Right panel: variation of Θμ with μ for η=1 and x = 1.2. Horizontal
dashed lines correspond to the maximum and minimum values of Qm.
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coordinates (Bardeen 1973)
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Here, we assume the observer is far away from the black hole
(  ¥rO ) and θO is the angle between the line of sight and the
spin axes of black hole, namely, the inclination angle. Since the
black hole spacetime is asymptotically flat, we can consider a
static observer at an arbitrarily large distance, and this yields
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Solving Equation (11) for rotating metric (1) and using
Equation (14), the celestial coordinates of the black hole
shadow boundary take the following form
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and which is exactly the same as obtained for the Kerr black
hole (Hioki & Maeda 2009). The contour of a nonrotating
black hole shadow (a= 0) can be delineated by
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which implies that the shadow of a nonrotating black hole is
indeed a perfect circle, and further returns to a b+ = M272 2 2

for the Schwarzschild black hole m(r)=M. Though the shape
of the shadow is determined by the properties of null geodesics,
it is neither the Euclidean image of the black hole horizon nor
that of its photon region, rather it is the gravitationally lensed
image of the photon region. For instance, the horizon of Sgr

A*, with M≈4.3×106Me at a distance d≈8.35 kpc, spans
an angular size of 20 μas, whereas its shadow has an expected
angular size of ≈53 μas. Whereas, EHT measured the angular
size of the M87* gravitational radius as 3.8±0.4 μas, and its
crescent-shaped emission region has an angular diameter of
42±3 μas, with a scaling factor in the range 10.7−11.5
(Akiyama et al. 2019c, 2019d).

3. Characterization of the Shadow via New Observables

A nonrotating black hole casts a perfectly circular shadow.
However, for a rotating black hole, an observer placed at a
position other than in the polar directions witnesses an off-
center displacement of the shadow along the direction of black
hole rotation. Furthermore, for sufficiently large values of the
spin parameter, a distortion appears in the shadow because of
the Lense-Thirring effect (Johannsen & Psaltis 2010). Hioki &
Maeda (2009) characterized this distortion and shadow size by
the two observables δs and Rs, respectively. The shadow is
approximated to a circle passing through three points located at
the top, bottom, and right edges of the shadow, such that Rs

is the radius of this circle and δs is the deviation of the left edge
of the shadow from the circle boundary (Hioki & Maeda 2009).
It was found that the applicability of these observables was
limited to a specific class of shadows, demanding some
symmetries in their shapes, and they may not precisely work
for black holes in some modified theories of gravity
(Abdujabbarov et al. 2015b), which leads to the introduction
of new observables (Schee & Stuchlik 2009; Johannsen 2013b;
Tsukamoto et al. 2014; Abdujabbarov et al. 2015b; Cunha et al.
2015; Younsi et al. 2016; Tsupko 2017; Wang et al. 2018).
EHT observations can constrain the key physical parameters of
black holes, including black hole mass and other parameters.
However, EHT observations do not give any estimation of
angular momentum (Akiyama et al. 2019a, 2019d). Their
measurement of the black hole mass in M87* is consistent with
the prior mass measurement using stellar dynamics, but is
inconsistent with the gas dynamics measurement (Gebhardt
et al. 2011; Walsh et al. 2013; Akiyama et al. 2019d). Here, we
would propose new observables for the characterization of the
black hole shadow, which unlike previous observables (Hioki
& Maeda 2009), do not require the apparent shadow shape to
be approximated as a circle.
We consider a shadow of general shape and size to propose

new observables, namely the area (A) enclosed by a black hole
shadow, the circumference of the shadow (C), and the
oblateness (D) of the shadow. The observables A and C,
respectively, are defined by
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The prefactor 2 is due to the black hole shadow’s symmetry
along the α-axis. A and C have dimensions of [M]2 and [M],
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respectively. A shadow silhouette can be taken as a parametric
curve between celestial coordinates as a function of rp for
- + r r rp p p , i.e., a plot of β(rp) versus α(rp). We can also
characterize the shadow of a rotating black hole through its
oblateness (Takahashi 2004; Grenzebach et al. 2015; Tsupko
2017), the measure of distortion (circular asymmetry) in a
shadow, by defining the dimensionless parameter D as the ratio
of horizontal and vertical diameters:

a a
b b

=
-
-

D . 20r l

t b
( )

The subscripts r l t, , , and b stand for right, left, top, and
bottom, respectively, of the shadow boundary. For a spherically
symmetric black hole shadow, D=1, while for a Kerr shadow

< D3 2 1 (Tsupko 2017). Thus, ¹D 1 indicates that the
shadow has distortion and hence corresponds to a rotating
black hole. In particular, the quasi-Kerr black hole metric may
lead to a shadow with D>1 or D<1, depending on the sign
of the quadrupole deviation parameters (Johannsen & Psaltis
2010). The definitions of these observables require neither any
nontrivial symmetry in shadow shape nor any primary curve to
approximate the shadow. It can be expected that an observer
targeting the black hole shadow through astronomical observa-
tions can measure the area, the length of the shadow boundary,
and also the horizontal and vertical diameters. In what follows,
we show that these observables uniquely characterize the
shadow and it is possible to estimate the black hole parameters
from these observables.

The EHT observations indicated that the M87* black hole
shadow is consistent with that of Kerr black hole, however, the
exact nature of the Sgr A* black hole is still elusive.
Astronomical observations have placed constraints on their
masses and distances from Earth as = ´M M4.3 106

 and
d=8.35 kpc for Sgr A* (Ghez et al. 2008; Gillessen et al.
2009; Falcke & Markoff 2013; Reid et al. 2014), and =M

 ´ M6.5 0.7 109( )  and = d 16.8 0.8( ) Mpc for M87*

(Akiyama et al. 2019a). Presuming the exact Kerr nature of
these black holes, we determine the area spanned by their
shadows, the solid angle covered by them on the celestial sky,
and also their angular sizes. In general, for rotating black holes,
the vertical (or major JM) and horizontal (or minor Jm) angular
diameters are not the same and can be defined as

J
b b

J
a a

=
-

=
-

d d
, , 21M

t b
m

r l ( )

and the solid angle is W = A d2. Clearly, ϑM is not dependent
on black hole spin.

Obviously, for a=0, J J= = 52.7344M m μas for Sgr A*

and J J= = 39.6192M m μas for M87*. The shadow observa-
bles and angular diameters of the Sgr A* and M87* black hole
shadows are calculated for various values of spin parameter a
(see Tables 1 and 2). Nevertheless, the shadow observables for
a Schwarzschild black hole take the values A/M2=84.823,
C/M=32.6484, and D=1, whereas for a maximally rotating
Kerr black hole A/M2=76.6101, C/M=31.1998, and D=
0.876375.

4. Application to Various Black Hole Spacetimes

We examine several rotating black holes such as Kerr–
Newman, Bardeen, and nonsingular black holes. In general
these black holes are given by metric (1) with an appropriate
choice of mass function m(r). We assume that the observer is in
the equatorial plane, i.e., the inclination angle θO=π/2 for the
estimation. One can use either of the two observables A or C
along with D to estimate the black hole parameters. For the
sake of brevity, we shall use only A and D for our purpose, but
shall calculate all three.

4.1. Kerr–Newman Black Hole

We start with a Kerr–Newman black hole, which encom-
passes Kerr, Reissner–Nordstrom, and Schwarzschild black
holes as special cases. One can analyze null geodesics to the
shadow of a Kerr–Newman black hole (Young 1976; De
Vries 2000). In the case of the Kerr–Newman black hole, the
mass function m(r) has a form

= -m r M
Q

r2
. 22

2
( ) ( )

In Figure 2, we have shown the allowed range of parameters a
and Q for the existence of a black hole horizon. The Kerr–
Newman black hole shadows are distorted from a perfect circle
and possess a dent on the left side of shadow (De Vries 2000).
This distortion reduces as the observer moves from the

Table 1
Table Representing the Values of Observables, Solid Angle, and Angular
Diameter with Varying Spin Parameter for the Sgr A* Black Hole Shadow

a/M A C D Ω ϑm
(1020m2) (1010m) m-10 as3 2( ) (μas)

0.0 34.079 20.6942 1 2.1818 52.7344
0.10 34.06 20.6884 0.999443 2.18059 52.705
0.20 34.0025 20.671 0.997748 2.1769 52.6156
0.30 33.9046 20.6413 0.994847 2.17064 52.4626
0.40 33.7629 20.5984 0.990607 2.16157 52.239
0.50 33.572 20.5406 0.984808 2.14934 51.9332
0.60 33.3227 20.4655 0.977083 2.13338 51.5259
0.70 32.9998 20.3688 0.966783 2.11271 50.9827
0.80 32.5742 20.2427 0.952608 2.08546 50.2352
0.90 31.9754 20.0699 0.931145 2.04713 49.1033
0.998 30.7793 19.776 0.876375 1.97055 46.2151

Table 2
Table Representing the Values of Observables, Solid Angle, and Angular
Diameter with Varying Spin Parameter for the M87* Black Hole Shadow

a/M A C D Ω Jm

m1027 2( ) m1014( ) m-10 as4 2( ) (μas)

0.0 7.78711 3.12819 1 1.23151 39.6192
0.10 7.78278 3.12732 0.999443 1.23083 39.5971
0.20 7.76963 3.12468 0.997748 1.22875 39.53
0.30 7.74726 3.12019 0.994847 1.22521 39.4151
0.40 7.7149 3.1137 0.990607 1.22009 39.2471
0.50 7.67126 3.10498 0.984808 1.21319 39.0173
0.60 7.6143 3.09362 0.977083 1.20418 38.7113
0.70 7.54052 3.079 0.966783 1.19252 38.3032
0.80 7.44327 3.05994 0.952608 1.17714 37.7416
0.90 7.30644 3.03382 0.931145 1.1555 36.8912
0.998 6.99973 2.65529 0.866025 1.10699 34.3112
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equatorial plane to the axis of black hole symmetry, and
eventually disappears completely for θO=0, π (De Vries
2000). It is straightforward to calculate the celestial coordinates
α and β using the m(r) in Equation (15). Though for these α

and β the observables A, C, and D could not be obtained in
exact analytic form, we have calculated them approximately in
the Appendix A.

In Figures 3 and 4, respectively, charge Q and spin
parameter a are plotted with varying observables A, C, and
D. Interestingly, estimated values of black hole parameters
decrease with independently increasing observables. For a far
extremal black hole, parameters decrease rapidly with obser-
vables, whereas for a near extremal black hole, parameters
decrease relatively slowly with increasing D. Therefore, one
can conclude that the size of the shadow decreases with an
increase in the electric charge, which is consistent with the
earlier results (De Vries 2000). On the other hand, Figure 3
suggests that shadows of Kerr–Newman black holes get more
distorted as the charge increases. Shadow observables for Kerr–
Newman black holes are numerically compared with those for
Kerr black holes in Figure 4, and it can be inferred that
observables for Kerr–Newman black holes are smaller than
those for Kerr black holes for fixed values of a.

The apparent shape and size of the Kerr–Newman black hole
shadow depend on a and Q (De Vries 2000). Next, we see the
possibility of estimating a and Q for the Kerr–Newman black
hole by using the two observables A and D, expecting that mass
M can be fixed through other astrophysical observations. We
plot the contour map of the observables A and D in the (a, Q)
plane (see Figure 5). Each point of the contour plot in Figure 5
has coordinates (a, Q) that can be described as a unique
intersection of the lines of constant A and D. Hence, from
Figure 5, it is clear that intersection points give an exact
estimation of parameters a and Q when one has the values of A
and D for a Kerr–Newman black hole. In Table 3, we have
presented the estimated values of a and Q for given shadow
observables A and D for the Kerr–Newman black hole.

4.1.1. Kerr Black Hole

When the electric charge is switched off (Q= 0), the Kerr–
Newman spacetime becomes Kerr with m(r)=M. We plot the

spin parameter a (  a0 1) with varying observables A, C,
and D in Figure 4. It is evident that with increasing observables
A, C, and D the estimated Kerr spin parameter decreases.
Figure 4 indicates that the black hole shadow gets smaller and
more distorted for a rapidly rotating black hole, as shown in
earlier studies as well (Bardeen 1973).
Kerr black holes have only two parameters associated with

them, namely, mass M and spin a, however, presuming the
knowledge of only mass through the stellar motion around
the black hole, one has only one unknown parameter i.e., spin.
The spin parameter for the Kerr black hole can be uniquely
determined by knowing any one of the shadow observables
defined above (see Figure 4).

4.2. Rotating Bardeen Black Hole

The first regular black hole was proposed by Bardeen (1968)
with horizons and no curvature singularity—a modification of
the Reissner–Nordstrom black hole. The rotating Bardeen
black hole (Bambi & Modesto 2013) belongs to the prototype
non-Kerr family with the mass function m(r) given by

=
+

m r M
r

r g
. 23

2

2 2

3 2⎛
⎝⎜

⎞
⎠⎟( ) ( )

The Bardeen black hole is an exact solution of the Einstein
field equations coupled with nonlinear electrodynamics asso-
ciated with the magnetic monopole charge g (Ayon-Beato &
Garcia 1999). The Kerr black hole can be recovered in the
absence of the nonlinear electrodynamics (g= 0). For the
existence of a black hole, the allowed values of a and g are
constrained and shown in Figure 6, and the extremal values
of parameters correspond to those lying on the boundary line.
The shadows of rotating Bardeen black holes get more
distorted and their sizes decrease due to the magnetic charge
g (Abdujabbarov et al. 2016).
The Bardeen black hole parameters g and a versus the

observables A, C, and D are depicted in Figures 7 and 8,
respectively. Within the allowed parameter space, they have a
similar behavior to that of the Kerr–Newman black hole. The
parameters decrease with increasing observables, however, for a
near extremal black hole, parameters decrease comparatively
slowly with increasing D. Further, the observables of a rotating
Bardeen black hole are smaller when compared with the Kerr
black hole for a given a, i.e., ¹ < =A g A g0 0( ) ( ) and

¹ < =D g D g0 0( ) ( ) (see Figure 8). An interesting compar-
ison between shadows of Bardeen and Kerr black holes shows
that for some values of parameters, a Bardeen black hole
( = = =M a M g M1, 0.5286, 0.6) casts a similar shadow
to that of Kerr black hole ( = =M a M0.9311, 0.9189);
(Tsukamoto et al. 2014). In this case, the observables for a
Bardeen black hole are = = =A C D69.1445, 29.5269, and
0.925402, whereas for a Kerr black hole, they are A=68.68015,
C=29.4213, and D=0.925402. Thus, the A and C for the two
black holes differ by 0.671% and 0.357%, respectively. The
differences in their major and minor angular diameters are
0.0331% and 2.158%, respectively,. Figure 9 shows the contour
map of observables A and D for the rotating Bardeen black hole as
a function of (a, g). In Table 3, we have shown the estimated
values of Bardeen parameters a and g for given shadow
observables A and D, and compare them with the estimated
values of other black hole parameters. Thus, from Figure 9 and
Table 3 it is clear that if A andD are known from the observations,
this uniquely determines a and g.

Figure 2. Allowed parametric space (a, Q) for the existence of a Kerr–Newman
black hole. The solid line corresponds to the extremal black hole with
degenerate horizons and demarcates the black hole case from the no black
hole case.
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4.3. Rotating Nonsingular Black Hole

The Bardeen regular black holes have a de-Sitter region at
the core. Next, we consider a class of rotating regular black
holes with asymptotically Minkowski cores (Simpson & Visser
2020), which have an additional parameter k=q2/2M>0

due to nonlinear electrodynamics that deviates from Kerr and
asymptotically (r k ) goes over to a Kerr–Newman black
hole (Ghosh 2015). While this rotating regular black hole
shares many properties with Bardeen rotating regular black
holes, there is also a significant contrast, and for definiteness,
we name it a rotating nonsingular black hole. It also belongs to
the non-Kerr family with mass function

= -m r Me . 24k r( ) ( )
Figure 10 shows the allowed values of parameters a and k for

the black hole’s existence. The effect of varying observables A,
C, and D on the inferred rotating nonsingular black hole
parameters k and a are depicted in Figures 11 and 12,
respectively. The characteristic behavior is again similar to
that for the Kerr–Newman, but the effect on k is visible for

Figure 3. Charge parameter Q vs. observables A, C, and D for the Kerr–Newman black hole, for a/M=0 (solid black curve), for a/M=0.3 (solid green curve), for
a/M=0.5 (dashed blue curve), and for a/M=0.8 (dotted red curve).

Figure 4. Spin parameter a vs. observables A, C, and D for the Kerr–Newman black hole, for Kerr black hole Q/M=0.0 (solid black curve), for Q/M=0.4 (dashed
blue curve), for Q/M=0.6 (dotted dashed magenta curve), and for Q/M=0.8 (dotted red curve).

Figure 5. Contour plot of the observables A and D in the plane (a, Q) for a
Kerr–Newman black hole. Each curve is labeled with the corresponding values
of A and D. The solid red lines correspond to the area observable A, and the
dashed blue lines correspond to the oblateness observable D.

Figure 6. Allowed parametric space of a and g for the existence of a rotating
Bardeen black hole. The solid line corresponds to the extremal black hole with
degenerate horizons.
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both nonrotating and rotating nonsingular black holes (see
Figures 11 and 12). The estimated values of k show a similar
sharp decreasing behavior with increasing A and C, whereas it
slowly decreases with D for near extremal black holes. The
observables for rotating nonsingular black holes are examined
in contrast with those for Kerr black holes in Figure 12, and for
a fixed value of a they turn out to be smaller. This indicates that
shadows of rotating nonsingular black holes are smaller and
more distorted than those of Kerr black holes (Amir &
Ghosh 2016). Contour maps of A and D as a function of (a, k)

are shown in Figure 13. We can easily determine the specific
points where curves of constant A and D intersect each other in
the black hole parameter space, yielding unique values of a
and k.

4.4. Comparison of Estimated Black Hole Parameters

Applying the method described in Section 3, the numerical
values of the three considered rotating black holes parameters,
for a given shadow area A and oblateness D, are summarized in
the Table 3. Here, we compare the estimated black hole

Table 3
Estimated Values of Parameters for Different Black Hole Models from Known Shadow Observables A and D

Shadow Observable Black Hole Parameters

Kerr–Newman Bardeen Nonsingular

A/M2 D a/M Q/M a/M g/M a/M k/M

82.0 0.995 0.28284 0.29079 0.26954 0.28938 0.283082 0.042578
82.0 0.98 0.55344 0.20523 0.5396 0.20487 0.553528 0.021183
82.0 0.97 0.66713 0.11830 0.66130 0.11840 0.66714 0.0070
80.0 0.995 0.27224 0.392001 0.24911 0.388453 0.272684 0.077867
80.0 0.97 0.64252 0.29326 0.608567 0.292265 0.642787 0.043316
80.0 0.95 0.80151 0.18123 0.783569 0.181885 0.801557 0.016468
75.0 0.995 0.245457 0.56651 0.20174 0.5550 0.24706 0.165303
75.0 0.95 0.724557 0.4614554 0.623425 0.45764 0.726799 0.108487
75.0 0.87 0.9725687 0.231468 N.A. N.A. N.A. N.A.
70.0 0.995 0.2180449 0.692545 0.15845 0.669714 0.2218 0.251415
70.0 0.95 0.64521 0.620045 0.479736 0.607512 0.653064 0.199267
70.0 0.90 0.825472 0.536881 N.A. N.A. 0.8321695 0.1476488
67.0 0.995 0.20126 0.75515 0.1337 0.723888 0.20681 0.30231
67.0 0.98 0.394672 0.735403 0.263005 0.707514 0.40475 0.2856
67.0 0.90 0.76314 0.628296 N.A. N.A. 0.776511 0.2042426
55.0 0.995 0.13035 0.944071 N.A. N.A. 0.1478 0.497943
55.0 0.95 0.381534 0.91421 N.A. N.A. 0.435251 0.460537
55.0 0.92 N.A. N.A. N.A. N.A. 0.518359 0.437666

Figure 7. Magnetic charge parameter g vs. observables A, C, and D for the Bardeen black hole, for nonrotating Bardeen black hole a/M=0.0 (solid black curve), for
a rotating Bardeen black hole with a/M=0.3 (solid green curve), for a/M=0.5 (dashed blue curve), and for a/M = 0.8 (dotted red curve).

Figure 8. Spin parameter a vs. observables A, C, and D for the Bardeen black hole, for g/M=0.0 (solid black curve), for g/M=0.4 (dashed blue curve), for
g/M=0.6 (dotted dashed magenta curve), and for g/M=0.7 (dotted red curve).
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parameters for the three black holes. For a given shadow area
A, we find that the spin parameter decreases with increasing
oblateness D, and that for a fixed area A and oblateness D the
spin parameters are aNS>aKN>aBardeen and the charge
parameters are Q>g>k. For a fixed oblateness D, the charge
parameters Q, g, and k increase and the spin parameter a
decreases with a decrease in the area A. For small area A and
oblateness D, e.g., A=55M2 and D=0.92, one could
estimate parameters associated with only the rotating non-
singular black hole (see Table 3).

5. Conclusion

The EHT has obtained the first image of the M87* black hole,
and thus its shadow becomes an important probe of spacetime
structure, parameter estimation, and testing gravity in the extreme
region near the event horizon. Even though most of the available

tests are consistent with general relativity, deviations from the
Kerr black hole (or non-Kerr black hole) arising from modified
theories of gravity are not ruled out (Johannsen & Psaltis 2011;
Berti et al. 2015). These non-Kerr black holes, in Boyer–Lindquist
coordinates, are defined by the metric (1) with mass function m(r),
and Kerr black holes are included as special case when m(r)=M.
In this paper, we have proposed observables, namely, shadow area
(A), its circumference (C), and oblateness (D). The observables A
and C characterize the size of the shadow, and D defines its shape
asymmetry. These observables are calculated for Sgr A* and
M87*, assuming their Kerr nature, and we find that their angular
diameters are approximately 52 μas and 39 μas, respectively, and
decrease for a rapidly rotating black hole. This is consistent with
other predicted results (Falcke & Markoff 2013; Fish et al. 2014;
Akiyama et al. 2019a, 2019b, 2019d; Brinkerink et al. 2019).
We highlight several other results that are obtained by our

analysis.

1. The method can estimate, at most, two parameters by
using either A or C along with D; for example, the Kerr
black hole parameters a and θO can be estimated. In order
to estimate a single parameter, we require any one of
these observables.

2. For given shadow observables, we have estimated
parameters associated with Kerr–Newman (a, Q), rotating
Bardeen (a, g), and rotating nonsingular (a, k) black
holes. Here, our analysis assumes that the observer is in
the equatorial plane, i.e., at a fixed inclination angle
θO=π/2.

3. Our results for the considered black holes are consistent
with existing results (Tsukamoto et al. 2014).

4. We have interpolated the numerical values of observables
from integrals in Equations (18) and (19) and used
Equation (20) to approximate these observables as
polynomials in terms of the black hole parameters.

5. Our analysis is applicable to a large variety of shadow
shapes and does not require approximating the shadow as
a circle.

Thus, by comparing the theoretically calculated values of
these observables with those obtained from astrophysical
observations, it is expected that one can completely determine
information about a black hole. Our analysis is clearly different
from other approaches but leads to the correct estimation of
black hole parameters. Our framework can be extended to other
classes of black holes.
A set of shadow observables can correspond to various black

holes with different values of parameters involved (see
Table 3). Indeed, we find that a strong correlation between
the spin and the deviation of parameters from the Kerr solution
makes it difficult to discern two black hole models with given
shadow observables. It will be interesting to find new
observables characterizing the shadows in the presence of an
accretion disk; this and related projects are being investigated.

S.G.G. would like to thank the DST INDO-SA bilateral
project DST/INT/South Africa/P-06/2016 and also IUCAA,
Pune for the hospitality while this work was being done. R.K.
would like to thank UGC for providing SRF, and also Md Sabir
Ali and Balendra Pratap Singh for fruitful discussions. The
authors would like to thank the anonymous reviewer for
providing insightful comments which immensely helped to
improve the paper.

Figure 9. Contour plot of the observables A and D in the plane (a, g) for a
Bardeen black hole. Each curve is labeled with the corresponding values of A
(solid red curve) and D (dashed blue curve).

Figure 10. Allowed parametric space of a and k for the existence of rotating
nonsingular black hole. The solid line corresponds to the extremal black hole
with degenerate horizons.
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Appendix A
Analytic form of Observables

The celestial coordinates α and β can be calculated via
Equation (15) for a given mass function, and in turn, they help
us to calculate observables A, C, and D numerically. Here, we
present an approximate and analytic form of A, C, and D
obtained from the best fit of the numerical data for the three

discussed rotating black holes. For a Kerr–Newman black hole
it yields
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Figure 11. Charge parameter k vs. observables A, C, and D for the nonsingular black hole, for a/M=0.0 (solid black curve), for a/M=0.2 (solid green curve), for
a/M=0.5 (dashed blue curve) and for a/M=0.8 (dotted red curve).

Figure 12. Spin parameter a vs. observables A, C, and D for the nonsingular black hole, for k/M=0.0 (solid black curve), for k/M=0.2 (dashed blue curve), for k/
M=0.4 (dotted dashed magenta curve), and for k/M=0.6 (dotted red curve).

Figure 13. Contours of constant A and D as a function of (a, k) for a rotating
nonsingular black hole. Each curve is labeled with the corresponding value of A
(solid red curve) and D (dashed blue curve).
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Clearly, A, C, and D are functions of spin a and charge Q. For
the Bardeen black hole, they depend upon the magnetic charge

g in addition to a, and are given by
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For the rotating nonsingular black hole, they are functions of
a and k and read as
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Here, we have presented the series up to - M 7( ). The
nonrotating black hole (a= 0) casts a perfect circular
shadow (Synge 1966; Chandrasekhar 1985), which is also
fully consistent with Equations (25)-(27), i.e., =D Q0,( )

= =D g D k0, 0, 1( ) ( ) .
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Appendix B
Observables in Association With Noisy Data

The observables A, C, and D are described in terms of the
celestial coordinates (α, β), which are easy to calculate for a
given black hole. Astronomical observations may not give a
sharp shadow boundary demarcating the bright and dark
regions; rather there will be intrinsic uncertainty in determining
the shadow boundary because of noise in the observational
data. In such observational data, we consider the set of
visibility data points (αi, βi) along the hazy shadow boundary.
The geometric center (αG, βG) of the apparent shadow reads

å åa a b b= =
= =N N

1
;

1
, 28G

i

N

i G
i

N

i
1 1

( )

where N is the total number of data points. In the coordinate
system centered at a b,G G( ), the shadow boundary can be
parameterized by a b¢ ¢,i i( )

a a a b b b¢ = - ¢ = -; . 29i i G i i G ( )

Thus, we can calculate the shadow observables, A and C,
respectively, as

å
b b

a a=
¢ + ¢

¢ - ¢
=

-
-A

2
, 30

i

N
i i

i i
1

1
1

∣ ∣ ∣ ∣ ( )

and

å a a b b= ¢ - ¢ + ¢ - ¢
=

- -C , 31
i

N

i i i i
1

1
2

1
2 1 2(( ) ( ) ) ( )

where a¢ = 00 or a a= G0 and data points are arranged such
that a a¢ ¢-i i 1∣ ∣ ∣ ∣. In this case, the oblateness D becomes

a a
b b

=
¢ - ¢
¢ - ¢

D , 32r l

t b

( )

where a¢, 0l( ) and a¢ , 0r( ) are, respectively, coordinates for the
left and right edges of the shadow boundary, and a b¢ ¢,t t( ) and
a b¢ ¢,b b( ) are for the top and bottom edges. Let’s consider a
contorted Kerr black hole shadow, whose boundary is
artificially perturbed from a Kerr shadow (a b,i i) and
parameterized by (a b+ + ,i i i i), where òi are random real
numbers arbitrarily chosen in the interval [−0.01, 0.01]
mimicking the noise in observational data. For a Kerr black
hole reference shadow (a= 0.3M), we have developed a large
number of synthetically perturbed shadows with the 104

random noise distributions. The probability density functions
P for each observable are shown in Figure 14, which are

centered around the mean values of the corresponding shadow
observable. It is seen that for a Kerr black hole shadow
(a= 0.3M), we have A=84.3889M2, C=32.5649M, and
D=0.994847, whereas mean observables for the contorted
Kerr black hole shadows are A=84.2628M2, C=31.9872M,
and D=0.990859.
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