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Abstract
Deep convolutional neural network (DCNN) has shown great success in various medical image
segmentation tasks, including organ-at-risk (OAR) segmentation from computed tomography
(CT) images. However, most studies use the dataset from the same source(s) for training and
testing so that the ability of a trained DCNN to generalize to a different dataset is not well studied,
as well as the strategy to address the issue of performance drop on a different dataset. In this study
we investigated the performance of a well-trained DCNNmodel from a public dataset for thoracic
OAR segmentation on a local dataset and explored the systematic differences between the datasets.
We observed that a subtle shift of organs inside patient body due to the abdominal compression
technique during image acquisition caused significantly worse performance on the local dataset.
Furthermore, we developed an optimal strategy via incorporating different numbers of new cases
from the local institution and using transfer learning to improve the accuracy and robustness of the
trained DCNNmodel. We found that by adding as few as 10 cases from the local institution, the
performance can reach the same level as in the original dataset. With transfer learning, the training
time can be significantly shortened with slightly worse performance for heart segmentation.

1. Introduction

Approximately 60% of cancer patients are treated with radiation at some time during their course of
treatment (Miller et al 2016). As early detection and better treatment has increased the cancer patient survival
rate, the importance of protecting normal organs to reduce long term toxicity has gained more attention.
Defining organs-at-risk (OARs) by correctly segmenting them from simulation computed tomography (CT)
scans is a critical task for radiation oncologists when aiming to optimize the benefit of radiation therapy,
with delivery of the maximum dose to the tumor while sparing healthy tissues. Automatic segmentation has
the potential to significantly improve the accuracy and reliability while reduce the human efforts for this task
(Sharp et al 2014, Cardenas et al 2019). In recent years, deep learning (DL) methods using deep convolution
neural networks (DCNN) have demonstrated superior performance in multiple OAR segmentation tasks.
DCNNs were used to classify voxels in extracted patches to segment OARs (Ibragimov and Xing 2017) and
clinical target volumes (Cardenas et al 2018) in head and neck CT images. A dense V-network, which based
on the popular U-Net structure (Ronneberger et al 2015) but with dense blocks (Huang et al 2016), was
developed for automatic multi-organ segmentation on abdominal CT (Gibson et al 2018). A fully
convolutional network with boundary sensitive representation was developed to increase the performance at
boundaries for male pelvic organ segmentation (Wang et al 2019). A shape representation model constrained
DCNN was developed to utilize the shape information for multi-organ segmentation from head and neck
CT (Tong et al 2018). Dilated DCNNs with dilated convolutions were used for clinical target volume and
OARs in the planning CT for rectal cancer (Men et al 2017). A few other studies were also using modified
network structure and/or combination with traditional image processing algorithms to improve the
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segmentation performance (Liu et al 2018, Zhu et al 2019, Dong et al 2019, Seo et al 2019, Trullo et al 2019).
Furthermore, to obtain a fair comparison among different algorithms, challenges were often organized in
which the same training and testing data sets were provided to all participants. In 2017, the American
Association of Physicists in Medicine (AAPM) organized a thoracic auto-segmentation challenge and showed
that all top 3 methods were using DCNNs and yielded statistically better results than the rest, including atlas
based and other deep learning methods (Yang et al 2018). In addition, the performance achieved by the top 3
methods was compared with human expert contours and found to be ‘within human contour variation’. As
one participating team for this challenge, we developed an optimized DCNNmethod by using the cropped
images and achieved the 2nd place in the live phase and 1st place in the ongoing phase (Feng et al 2019).

Despite the superior performance of DCNNs as reported in the literature, one issue that is often
overlooked is the ability of the trained networks to generalize to completely unseen datasets, especially if
there are systemic differences due to imaging modalities, protocols and practices (Azulay and Weiss 2018,
Chen et al 2019). In the 2017 AAPM challenge, all cases were from the same 3 institutions with roughly equal
distribution between the training and testing cases. However, when we directly deployed the trained model to
randomly selected clinical cases in our institution (University of Kentucky (UK)), we observed that the
segmentation accuracy was much worse compared with the testing cases from the challenge. In particular,
heart segmentation completely failed as it extended to the abdomen in many cases. One possible reason for
the discrepancy in performance is the subtle differences in CT appearance compared between the local and
the challenge dataset. Although the most effective solution for this issue is to add more cases to the training
set, the impact of the number of cases and the selection criteria is not well studied. Furthermore, transfer
learning (Hesamian et al 2019, Kim et al 2019), in which the part or even the whole DCNN can be initialized
from another network to reduce the training effort and/or improve the performance, has not been studied in
such a scenario. In this study, we first analysed the differences among the datasets and tested the solution of
adding cases with different numbers and selection criteria, such as using the cases with the worst
performance from the previous network. We also implemented a transfer learning strategy and compared its
performance against the traditional method of training from scratch. The segmentation performance was
evaluated using contour comparison metrics as well as the time taken by physician to review and modify.

2. Materials andmethods

2.1. Segmentation framework
3D U-Net structure (Cicek et al 2016) was used for building the thoracic OAR segmentation network.
However, the size of clinical CT volumes is often too big to fit into the graphic processing unit (GPU)
memory in typical hardware and it is also inefficient to use the entire volume to segment one organ. To
overcome this issue, we utilized a multi-stage process. First, the original CT was down-sampled to fit into
GPU memory. A 3D U-Net (localizer) was trained to segment organs in the down-sampled CT. Bounding
box for each organ was then generated on the original CT volume. Then, for each organ, a separate 3D U-Net
network (segmenter) was trained to provide accurate contouring on high resolution CT. Augmentation and
ensembling were used to improve the performance. A detailed description of the segmentation method can
be found in our previous paper (Feng et al 2019).

2.2. Datasets
Two datasets were used in this study: 2017 AAPM Thoracic Auto-segmentation Challenge (challenge dataset)
and a private dataset from UK (UK dataset). The challenge dataset contains 60 thoracic CT scans from three
clinical sites (MD Anderson Cancer Center (MDACC), Memorial Sloan-Kettering Cancer Center (MSKCC)
and MAASTRO clinic), with 20 cases from each institution. The dataset contains CT volumes acquired with
different motion management protocols, including average intensity projection of the 4DCT (MDACC),
exhale phase of 4DCT (MAASTRO), and free-breathing (MSKCC) contrast-enhanced CT. The datasets were
divided into three groups with 36 for training, 12 for offline testing, and 12 for online testing. Each group has
1:1:1 ratio from the three clinical sites.

The UK dataset contains 45 randomly selected thoracic CT scans. The institutional review board (IRB)
approval was obtained for retrospective clinical data usage for research. Abdominal compression technique
was used for motion management on most patients. CTs were acquired with a GE Lightspeed-16 scanner at
120 kVp. Clinically accepted contours were quality checked to ensure the adherence to the Radiation Therapy
Oncology Group (RTOG) 1106 contouring guidelines, as followed by the challenge dataset. The UK dataset
was further divided into 30 cases for enhancing the network performance with re-training and 15 for final
evaluation.
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Figure 1. Anatomic information of the heart. Heart offset and heart SI size are defined as illustrated to compare the anatomical
changes between datasets.

2.3. Dataset comparisonmetrics
Since the model trained with challenge dataset performed much worse in UK dataset, it is likely that the UK
dataset contained features that were not found in challenge dataset. The difference may come from the CT
scanner setting (kernel, post processing, kVp) that affected image contrast or come from the motion
management technique (abdominal compression) that affected the anatomic relationship. Since our CT is
routinely calibrated to ensure that water has 0 Hounsfield unit (HU), and our mis-segmentation happens
primarily on heart, we computed the HU histogram in heart and used the histogram peak position and
full-width-half-maximum of the peak as the comparison. The bin size used for histogram calculation was 10
HU. Additionally, we used the heart offset, defined as the distance between the top of the right lung and the
bottom of the heart in superior-inferior (SI) direction, and the heart SI size, defined as the distance between
the superior and inferior end of the heart contour, to evaluate the anatomic changes. Figure 1 shows the
heart offset and heart SI size as the anatomical markers.

2.4. Contour evaluationmetrics
We used Dice similarity coefficient (DSC) (Dice 1945, Sorensen 1948), mean surface distance (MSD) and
95% Hausdorff distance (HD95) to evaluate the agreement between the auto-segmented contours and the
ground-truth contours. The DSC is calculated as:

DSC=
2 |X∩Y|
|X|+ |Y|

(1)

where X and Y are the ground truth and the algorithm segmented contours, respectively. The directed
average Hausdorff measure is the average distance of a point in X to its closest point in Y, given as

d⃗H,avg (X,Y) =
1

|X|
∑
x∈|X|

miny∈|Y|d(x,y) (2)

The mean surface distance (MSD) is then defined as the average of the two directed average Hausdorff
measures:

MSD=
d⃗H,avg (X,Y)+ d⃗H,avg (Y,X)

2
(3)

The 95% directed percent Hausdorff measure is the 95th percentile distance over all distances from
points in X to their closest point in Y. Denoting the 95th percentile as Rank95, this is given as:

d⃗H,95 (X,Y) = Rank95(miny∈|Y|d(x,y)) ∀x ∈ X (4)
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The undirected 95% Hausdorff distance (HD95) is then defined as the average of the two directed
distances:

HD95=
d⃗H,95 (X,Y)+ d⃗H,95 (Y,X)

2
(5)

Spinal cord and esophagus are long, tubular structures that span across many slices. However, in our
clinical practice, they were often only contoured in slices that were relevant to the treatment. Therefore, when
evaluating auto-segmented contours against the clinical accepted contours for these two organs, we only
consider those slices that have been contoured in clinical plan.

These metrics provide an objective way to evaluate the relative performance for different models and
training schemes. However, it is difficult to assess the quality of the segmentation in the context of clinical
practice based on the metric scores alone. Human contour variability can vary with organs, as well as the
impact to clinical practice of these evaluation metrics. In addition to the usage of inter-rater variability
collected by challenge organizers as the reference, we also recorded the time taken by expert physicians to
review and edit the auto-segmented contour as a metric to evaluate whether the model is ready for clinical
use.

2.5. Model training and testing with UK dataset
To update the model with new cases, we followed the same procedure as in our previous study. The model
was first re-trained from scratch with a learning rate of 0.0005 and epochs of 200 for both the localizer and
segmenter networks. Alternatively, for the transfer learning experiment, we first loaded the network weights
from the original model and fine-tuned the network using the new dataset. As all layers may contribute to
the segmentation accuracy, no layer was ‘frozen’ during the fine-tuning process; instead, the same loss was
back-propagated to each layer. As the Adam optimizer used in the training process can automatically adapt
the learning rate (Kingma and Ba 2014), we used the same learning rate of 0.0005; however, the number of
epochs were reduced to 100 as the network was initialized with meaning parameters. To reduce overfitting,
random 3D translation, rotation and scaling were applied to the input images and the corresponding
ground-truth label maps as data augmentation. First, all 30 UK training cases were mixed with the challenge
data to train a model from scratch and with transfer learning from the original model, respectively. We then
deployed the original model on the 30 UK training cases and ranked them based on the overall segmentation
accuracy using the same scoring method as in the challenge. The best performing 10 cases, worst performing
10 cases, and the worst performing 20 cases were mixed with the challenge data respectively to train the
corresponding models in order to evaluate the impact of number of added cases on the model performance
as well as whether neural network learns more effectively from the cases it did poorly previously. To obtain a
fair comparison, all the three models were trained from scratch.

3. Results

3.1. Dataset comparison
Figures 2(a) and (b) show the comparison of two datasets in terms of image contrast and anatomic positions
of heart. The challenge data showed greater variations in HU peak position and width as the data came from
3 different institutions, with one of the institution’s data contained a few contrast-enhanced CT. The image
contrast variations in UK data were much smaller and were well within the range of the challenge data used
for training. For anatomic positions, the UK data showed statistically significant difference with the challenge
data in both the heart position (p= 0.0036) and the heart size (p= 0.0056) in S-I direction. The heart in UK
data is smaller in S-I direction and more superior in position relative to the top of the lung. As indicated in
the median position in figure 2(b), more than 50% of the UK data are located below the lower quartile mark
of the challenge data. This is likely the reason why the model trained using only the challenge data did not
perform well on UK data.

To further investigate the reason for systematic differences in heart location and size, we compared the
sagittal images from the two datasets. Figure 3 shows the example cases and indicates that the differences
originate from the different motion management techniques. In UK, most of our patients underwent
abdominal compression so that the heart was pushed higher in thoracic cavity and slightly compressed in the
S-I direction.

3.2. Model training and testing with UK dataset
Figure 4 shows the DSC, MSD and HD95 achieved on the 15 UK test dataset using the original model
(UKorig) and the model trained from scratch with 30 UK cases added to the original challenge training
dataset (UKadd30). For a better comparison against the performances achieved in the challenge testing
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Figure 2. Comparisons of image contrast and anatomical position for heart between challenge and UK datasets. HU Peak Pos: HU
value corresponding to the peak on HU histogram for heart; HU Peak Width: the full-width-half-maximum of the histogram
peak; Max Lung_Heart SI: distance between the top of the right lung and the bottom of the heart in superior-inferior (SI)
direction; Heart SI: the span of heart contour in SI direction.

Figure 3. Example cases from the challenge and UK dataset. Left: Challenge case, Right: UK case. The belly compression device is
visible in the UK case.

dataset and the inter-observer variability from the experiment conducted by the challenge organizers, the
mean and standard deviation of DSC, MSD and HD95 were listed in tables 1–3, respectively. The metrics
that are better than human expert’s contouring variability are highlighted in bold. When the original model
was directly applied to UK data, a large drop in contouring accuracy was observed in heart. As shown in
figure 4(a), while the median DSC is still greater than 0.9, the distribution is heavily tilted to lower scores,
with a few cases showing almost completely failed segmentation (DSC < 0.5). The top quantile for HD95 and
MSD for heart were much worse as well. Spinal cord contouring accuracy also decreased slightly. The
esophagus showed a slightly better performance compared with the challenge, which is likely due to that the
esophagus in the UK data is slightly easier to segment. After the model trained with the inclusion of UK data,
the performance for all ROIs were improved. The performances in heart and spinal cord increased to similar
levels achieved in challenge. Esophagus performance also increased. Overall, 3 of the 5 organs segmented
have performances significantly better than human expert’s contouring variability and the remaining 2
organs achieved performances comparable with expert’s contour variability.

The tables also show the comparison between training using transfer learning and from scratch. The
overall performance is similar; however, for heart segmentation, although the mean DSC values are
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Figure 4. Improvements of DSC, MSD and HD95 after 30 UK cases were added to training. This shows the original model and the
model trained from scratch.

Table 1. DSC achieved by the original model (UKorig) and improved model by adding 30 UK cases and trained from scratch and using
transfer learning. The inter-observer value and evaluated on the challenge test cases were also shown as a comparison. Values in Bold
indicates better than expert contouring variability.

Inter observer Challenge UKorig UKadd30 (scratch) UKadd30 (transfer)

SpinalCord 0.862 0.89± 0.04 0.85± 0.04 0.88± 0.03 0.89± 0.02
Lung_R 0.955 0.97± 0.02 0.97± 0.01 0.98± 0.01 0.98± 0.01
Lung_L 0.956 0.98± 0.01 0.98± 0.01 0.98± 0.01 0.98± 0.01
Heart 0.931 0.93± 0.02 0.79± 0.23 0.92± 0.03 0.91± 0.09
Esophagus 0.818 0.73± 0.09 0.77± 0.04 0.80± 0.04 0.78± 0.04

Table 2.MSD in mm achieved by the original model (UKorig) and improved model by adding 30 UK cases and trained from scratch and
using transfer learning. The inter-observer value and evaluated on the challenge test cases were also shown as a comparison. Values in
Bold indicates better than expert contouring variability.

Inter observer Challenge UKorig UKadd30 (scratch) UKadd30 (transfer)

SpinalCord 0.88 0.7± 0.3 1.0± 0.3 0.8± 0.2 0.7± 0.1
Lung_R 1.87 0.9± 0.6 0.8± 0.3 0.7± 0.3 0.7± 0.2
Lung_L 1.51 0.6± 0.3 0.6± 0.2 0.5± 0.1 0.5± 0.1
Heart 2.21 2.3± 0.5 9.5± 11.8 2.5± 0.8 3.0± 1.7
Esophagus 1.07 2.3± 2.4 1.6± 0.5 1.4± 0.4 1.5± 0.4

comparable, there are two cases with suboptimal performances, causing a substantial increase in its standard
deviation and the two distance measures. This indicates that although transfer learning can significantly
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Table 3.HD95 in mm achieved by the original model (UKorig) and improved model by adding 30 UK cases and trained from scratch
and using transfer learning. The inter-observer value and evaluated on the challenge test cases were also shown as a comparison. Values
in Bold indicates better than expert contouring variability.

Inter observer Challenge UKorig UKadd30 (scratch) UKadd30 (transfer)

SpinalCord 2.38 1.9± 0.6 2.5± 0.6 2.2± 0.4 2.1± 0.3
Lung_R 6.71 4.0± 2.9 3.2± 1.5 3.5± 1.6 2.9± 1.3
Lung_L 5.17 2.1± 0.9 2.2± 0.5 1.8± 0.6 1.9± 0.6
Heart 6.42 6.6± 1.5 26.7± 28.8 7.1± 2.2 10.0± 8.1
Esophagus 3.33 8.7± 11 6.2± 3.4 5.2± 3.0 5.3± 2.4

Figure 5. Examples of heart and spinal cord segmentation before and after the inclusion of local data in training. (a) Heart
segmentation before the inclusion of local data. (b) Heart segmentation after the inclusion of local data. Blue curves are ground
truth heart segmentation. Light green curves are auto-segmentation results. (c) Spinal cord segmentation before the inclusion of
local data. (d) Spinal cord segmentation after the inclusion of local data. Green curves are ground truth segmentation. Magenta
curves are auto-segmentation results.

reduce the training time, it is not as effective as training from scratch in terms of ‘forgetting’ the previous
model as the failure mode in these two cases with transfer learning is similar as the previous model.

Figure 5 shows examples of heart and spinal cord segmentation before and after the inclusion of local
data in training. The re-training was performed from scratch. As in figure 5(a), the main issue associated
with heart was gross mis-segmentation that included part of liver with the original model. This problem was
fixed after inclusion of local data in training (figure 5(b)). For spinal cord, the segmentation with original
model was clinically acceptable as shown in figure 5(c). However, due to the different contouring criteria
used in the local ground truth, contouring evaluation metrics showed a slightly poorer score. At our
institution, the dosimetrist prefers to contour spinal cord using a circular paintbrush sized appropriately to
fit inside the spinal canal. Expansions from the circle are used conservatively. After the inclusion of local data
in training, the model learnt this practice and produced segmentation that agrees with local ground truth
better as illustrated in figure 5(d).

The auto segmented contours were then evaluated by an expert physician. The review and editing time
taken to produce clinical accepted contours was recorded. The contours from the original model required
7.5± 3.8 mins for each case. After adding 30 local cases for re-training from scratch, the review and edit time
for each case was reduced to 2.7± 1.0 mins.

Figure 6 shows the improvement of DSC and HD95 metrics in heart, esophagus and spinal cord as the
amount and quality of the local data added to the training varied. All models were re-trained from scratch.
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Figure 6. Contouring accuracy improvements as the amount and quality of local data used in training varied.

All organs showed improvements in contouring accuracy and robustness with only 10 worst performing
local cases of the original model added to the existing 36-case training dataset (addL10). Further
improvements with more local cases (addL20 and add30) were limited. As a comparison, adding 10 best
performing cases to the training dataset (addH10) is slightly inferior to the approach of adding 10 worst
performing cases (addL10) for esophagus and spinal cord. However, for heart where the most improvement
was observed, no such discrepancy in performance could be observed, indicating that the model can adapt
well to the systematic differences of the data from multiple institutions with only a few cases.

4. Discussion

We studied the generalizability of DCNN model for thoracic OAR segmentation. We discovered that the
drop-off in performance of the original model when applied to the data from our institution is due to the
belly compression technique we adopt in our patient simulation, causing systematic differences in the
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datasets. This performance drop-off highlights the vulnerability of DCNN as it heavily relies on the training
data. While it is easy for human to handle this subtle change in anatomy, DCNN often have problems dealing
with even simple transformations (Cicek et al 2016). DCNN usually has multi-million parameters and those
parameters are determined (learned) from the limited examples (training data) provided. Even though data
augmentation is performed to prevent overfitting, the variation of image appearance as well as anatomy is
still very limited. When presented with a case that is much different from training, it is highly likely that the
output from the DCNN is unexpected, as evident from the outlier cases on heart segmentation observed.

While implement data augmentations that simulate all variations in image appearance and anatomy is a
possible solution, it is challenging to develop such algorithms to accurately simulate real patient CTs without
introducing physically unrealistic distortion artefacts, especially in thoracic regions as different techniques
are used to handle respiratory motion. In addition, augmentation only works if we can identify the subtle
difference between datasets, which is often difficult to do. An easier solution is to incorporate the local cases
into the training of the DCNN and let DCNN learn to handle the subtle differences in datasets. In addition,
although consensus guidelines have reduced the contouring variability among physicians and clinics,
variations and personal preferences still exists. Adding local cases into the training of the DCNN can also
help DCNN learn to adapt to these local contouring preferences, as demonstrated by the improvement in
cord contouring accuracy in our study. Our results showed that adding local cases into DCNN training can
dramatically improve the accuracy and robustness of the DCNN applied on local data. We also demonstrated
that as few as 10 local cases were sufficient in enabling the DCNN to learn those subtle features, despite that
the majority of the training data is from other institutions and thus lack those features.

Human usually learns effectively from their mistakes, by reviewing the cases they did poorly against the
ground truth. However, our preliminary test showed that, providing DCNN cases that it performed poorly as
training data does not have significant advantage over providing it cases that it performed relatively well.
This indicates that the DCNNmay learn things differently from human being. It also suggests that we do not
have to pay special attention to pick particular cases for training as long as they all contain the desired image
or anatomical features.

When comparing the transfer learning and the learning from scratch strategy, our study showed that
although transfer learning can significantly reduce the training time, as it trains from the existing model, the
performance is slightly reduced, especially for the organ that the previous model failed the worst, even with
the same dataset. This is likely due to that the transfer learning is more prone to local minima that is roughly
determined by the previous model and therefore may inherit more errors from it. As a comparison, learning
from scratch eliminates the previous model and can lead to more robust results.

There are several limitations of this study. First, although we aim to study the systematic differences from
multi–institutional environment, we only validated the performance in our local institute with a relatively
small dataset (45 cases) and therefore limited the scope of this study. However, we also demonstrated a
successful solution and evaluated the quantitative impact of the number of cases as well as the utilization of
transfer learning. The encouraging results will lead to continued studies on multiple institutions. The second
limitation is we did not fully explore different options of transfer learning, such as freezing multiple layers.
However, empirically we hypothesize that it will not change the conclusion, or can make the case even worse
as freezing layers further limit the parameter updates.

5. Conclusions

We have demonstrated that a DCNN segmentation model trained on public dataset did not perform well on
our institution’s data due to the difference in clinical practice. Re-training the model with local cases added
to the training data successfully resolved the problem, in which re-training from scratch is slightly more
effectiveness than transfer learning in terms of performance enhancement. We have also found that it did not
take too many local cases for the DCNN to learn about the difference in the underlying patient anatomy. In
addition, we did not observe any advantage of collecting cases that DCNN performed poorly as training data.
Our study showed that the DCNN based segmentation can overcome the problem of data heterogeneity
across different clinical practice with fairly small effort.
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