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Thermal relaxation of magnons and phonons near resonance
points in magnetic insulators
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Abstract – We theoretically investigate the energy relaxation rate of magnons and phonons near
the resonance points to clarify the underlying mechanism of heat transport in ferromagnetic ma-
terials. We find that the simple two-temperature model is valid for the one-phonon/one-magnon
process, as the rate of energy exchange between magnons and phonons is proportional to the tem-
perature difference between them, and it is independent of temperature in the high-temperature
limit. We also find that the magnon-phonon relaxation time due to the one-phonon/one-magnon
interaction could be reduced to 1.48 μs at the resonance point by applying an external magnetic
field. It means that the resonance effect plays a significant role in enhancing the total magnon-
phonon energy exchange rate, apart from the higher-order interaction processes.
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The heat transport in insulators is generally dominated
by phonons which are the quanta of lattice vibrations.
In magnetic insulators, the spin waves (magnons) could
also act as heat carriers [1,2], as observed for yttrium
iron garnet (YIG) [3], Nd2CuO4 [4], RbMnF3 [5], and
MnF2 [6]. The notable contribution of magnons to ther-
mal conductivity has also been discovered in the spin lad-
der compound (Sr,Ca,La)14Cu24O41 [1,7,8]. In addition,
the characteristics of heat transport due to magnons have
been employed to probe spin excitations in InGaAs quan-
tum dot system [9]. In recent years, the heat current due
to spin excitations has also stimulated the field of spin
caloritronics [10], resulting in the recent discovery of spin
Seebeck effect [11], and spin Peltier effect [12].

Intuitively, the total thermal conductivity (κT ) of mag-
netic insulators could be evaluated by a simple sum of
the lattice thermal conductivity (κp) and magnon thermal
conductivity (κm) contributions: κT = κp +κm. However,
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magnons will be scattered by phonons and vice versa, thus
the interaction between phonons and magnons becomes
relevant in determining the total thermal conductivity
of magnetic materials. An effective strategy to evaluate
the heat transport through both phonons and magnons,
together with their interaction, is the two-temperature
model [13,14]. It was first proposed by Sanders and
Walton for the coupled magnon-phonon mode diffusion in
the ferrimagnet YIG and the antiferromagnet MnF2 [6].
In their paper, phonons and magnons are assumed to
be excited to their equilibrium states with different ef-
fective temperatures, with the local energy exchange rate
between these two carriers proportional to their tempera-
ture difference. They found that thermal conductivity is
not determined only by κm and κp but also by the magnon-
phonon relaxation time τmp [6]. Recently, Chen et al.
have generalized a two-temperature model including the
effect of the concurrent magnetization flow by assuming
a constant magnon-phonon relaxation time [15]. Schreier
et al. evaluated τmp through τmp ≈ h̄

αGkBT , where αG is
the Gilbert damping parameter [16]. However, there has
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been no theoretical work to check the validity of the in-
troduction of τmp as a temperature difference relaxation
time which is different from the transport lifetime [17]. In
addition, the exact relaxation time [16,18], together with
the temperature and magnetic field dependence of τmp are
also important.

We take YIG as a prototype for studying the magnon
properties in ferromagnetism [19,20]. Sato [21] suggested
that the thermal conductivity due to magnon proportional
to T 2 could be greater than that of phonons to T 3 be-
low 1 K by assuming that the mean free paths of phonons
and magnons are limited by the boundary condition and
comparable in magnitude. Later on, Daugless [22] ex-
perimentally observed a large decrease of thermal con-
ductivity in YIG when applying a magnetic field of 2 T
at 0.5 K. To explore the field and temperature depen-
dence of thermal transport properties, many theoretical
and experimental researches have been carried out. Those
have revealed that the magnetoelastic coupling between
phonons and magnons plays a significant role for govern-
ing the total thermal conductivity [14,23,24]. The strength
of the coupling reaches a peak at the resonance condi-
tion, where the one-phonon/one-magnon process with the
phonon and magnon of same frequency and wave vector
becomes relevant [25,26].

In this letter, we focus our attention on the resonance
behavior of the one-phonon/one-magnon interaction. We
derive a simple formula for the rate of energy exchange
between magnons and phonons in analogy with the
two-temperature model for electron-phonon system [27].
We present the physical conditions to set up the two-
temperature model based on the one-phonon/one-magnon
interaction process. The field dependence of the tem-
perature relaxation rate and the relaxation time corre-
sponding to the one-phonon/one-magnon interaction is
also obtained.

The magnetic Hamiltonian of YIG consists of dipo-
lar, exchange interactions between spins, and the Zeeman
splitting due to the external magnet field (H) along the
z-direction [28]:

Hmag =
μ0(gμB)2

2

∑
i�=j

|rij |2Si · Sj − 3(rij · Si)(rij · Sj)
|rij |5

−J
∑
i�=j

Si · Sj − gμBH
∑

i

Sz
i , (1)

where μ0 is the vacuum permeability, μB is the Bohr mag-
neton, g is the g-factor, J is the exchange integral. The
spin Si = S(ri) locates on the site ri with S = |Si| =
a3
0Ms/gμB, where a0 is the unit cell lattice constant, Ms

is the saturation magnetization density, and rij = ri −rj .
By employing the Holstein-Primakoff transformation, the
quantized Hamiltonian for spin excitations could be ex-
pressed as [28]

Hmag =
∑

k

Aka†
kak +

1
2
(Bka−kak + B∗

ka†
ka†

−k), (2)

with

Ak

h̄
= DFk + γμ0H +

γμ0Ms sin2 θk

2
,

Bk

h̄
=

γμ0Ms sin2 θk

2
e−2iφk , (3)

where a†
k(ak) is the magnon creation (annihilation) op-

erators with wave vector k, D = 2SJa2
0 the exchange

stiffness, γ = gμB/h̄ the gyromagnetic ratio, θk =
arccos(kz/k) the polar angle between wave vector k and
the magnetic field along the z-direction, and φ the az-
imuthal angle of k in the xy-plane. In the long-wavelength
limit, the form factor Fk ≈ k2 [28]. Equation (2) could be
diagonalized by using the Bogoliubov transformation

[
ak

a†
−k

]
=

[
uk −vk

−v∗
k uk

] [
αk

α†
−k

]
, (4)

with

uk =

√
Ak + h̄ωk

2h̄ωk
, vk =

√
Ak − h̄ωk

2h̄ωk
e2iφk . (5)

The Hamiltonian is then simplified to

Hmag =
∑

k

h̄ωkα†
kαk, (6)

and the dispersion relation for bulk magnons in the long-
wavelength limit is

ωk =
√

Dk2 + γμ0H

√
Dk2 + γμ0(H + Ms sin2 θk).

(7)

The Hamiltonian for one-phonon/one-magnon interaction
process has also been derived by Flebus et al. [28]:

Hint = h̄nB⊥

(
γh̄2

4Msρ̄

) 1
2 ∑

k,λ

kω
− 1

2
kλ e−iφak(c−kλ + c†

kλ)

×(−iδλ1 cos 2θk + iδλ2 cos θk − δλ3 sin 2θk)+H.c.,
(8)

where n = 1/a3
0 is the number density of the magnetic

particles in the system, B⊥ the magnetoelastic constants,
ρ̄ the average mass density, c†

kλ(ckλ) the phonon creation
(annihilation) operators with wave vector k. δ is the Kro-
necker delta, and λ = 1, 2 labels the transverse acoustic
(TA) phonon, λ = 3 labels the longitudinal acoustic (LA)
phonon. Under Debye approximation, the phonon disper-
sion relation is ωkλ = Cλ|k|. Following the procedure of
Bogoliubov transformation, eq. (8) could be expressed in
terms of the magnon quasiparticles operators α†

k (αk):

Hint = h̄nB⊥(
γh̄2

4Msρ̄
)

1
2

∑
k,λ

kω
− 1

2
kλ e−iφ(ukαk − vkα†

−k)

×(c−kλ + c†
kλ)(−iδλ1 cos 2θk + iδλ2 cos θk

−δλ3 sin 2θk) + H.c. (9)
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∂nm(k)
∂t

= −2π

h̄2

∑
λ

|Mk,kλ|2δ(ωm − ωp) × {nm(k)[1 + np(k, λ)] − [1 + nm(k)]np(kλ)}, (10a)

∂np(kλ)
∂t

= −2π

h̄2 |Mk,kλ|2δ(ωm − ωp) × {np(kλ)[1 + nm(k)] − [1 + np(kλ)]nm(k)}, (10b)

∂Em

∂t
= −∂Ep

∂t
= −2π

h̄2

∑
kλ

h̄ωm(k)|Mk,kλ|2δ(ωm − ωp)[nm(k) − np(kλ)]. (11)

nm(ω) − np(ω) =
z2ez

(ez − 1)2
kB

h̄ω
(Tm − Tp) +

1
3!

[
3ezz4

2(ez − 1)2
− 3e2zz5

(ez − 1)3
+

3ezz5

2(ez − 1)2

+
3e3zz6

2(ez − 1)4
− 3e2zz6

2(ez − 1)3
+

ezz6

4(ez − 1)2

](
kB

h̄ω

)3

(Tm − Tp)3 + . . . , (12)

The decay rate of the magnon and phonon distribution
functions nm(k) and np(kλ) are

see eq. (10a) and eq. (10b) above

where |Mk,kλ|2 = h̄4n2B2
⊥γ

4Msρ̄
k2ω−1

kλ βλ, β1 = |uk + vk|2 ·
cos2 2θk, β2 = |uk + vk|2 cos2 θk, β3 = |uk − vk|2 sin2 ·
2θk. In this model, we assumed that other collision
processes such as phonon-phonon interaction and magnon-
magnon interaction are strong enough to keep the lo-
cal equilibrium, then the distribution functions nm(k)
and np(kλ) can be replaced by the equilibrium ones
{exp[h̄ω(k)/kBTm] − 1}−1 and exp[h̄ω(kλ)/kBTp] − 1}−1

where magnon and phonon temperatures are noted as Tm
and Tp, respectively.

The energies of magnons and phonons are Em =∑
k h̄ωknm(k) and Ep =

∑
kλ h̄ωkλnp(kλ), thus the

changing rate of energy becomes

see eq. (11) above

A Taylor expansion of nm(ω) − np(ω) in terms of Tm −
Tp is

see eq. (12) above

where z = h̄ω/kBT and T = (Tm + Tp)/2. Since the first
term in the right-hand side of eq. (12) is much larger than
other higher-order terms, only the linear term is enough
in the evaluation. Therefore, the energy changing rate is
linearly dependent on the temperature difference, and the
temperature changing rate becomes

∂Tm

∂t
= gmp(T )(Tp − Tm), (13a)

∂Tp

∂t
= gpm(T )(Tm − Tp), (13b)

Table 1: Parameters of magnetoelastic coupling in YIG [28].

Symbol Value Unit

Lattice constant a0 12.376 Å
Average mass density ρ̄ 5.17 × 103 Kg m−3

Gyromagnetic constant γ 2π × 28 GHz T−1

Saturation magnetization μ0Ms 0.2439 T
Exchange stiffness D 7.7× 10−6 m2 s−1

Magnetoelastic coupling B⊥ 2π × 1988 GHz
TA phonon velocity c1,2 3.9×103 m s−1

LA phonon velocity c3 7.2×103 m s−1

with

gmp(T ) =

2πkB

h̄2

∑
kλ

|Mk,kλ|2δ(ωm − ωp) z2ez

(ez−1)2

Cm(T )
, (14a)

gpm(T ) =

2πkB

h̄2

∑
kλ

|Mk,kλ|2δ(ωm − ωp) z2ez

(ez−1)2

Cp(T )
. (14b)

At the same time, the temperature difference between Tm
and Tp will decay exponentially, that

∂

∂t
ΔT = − ΔT

τmp(T )
, (15)

where ΔT = Tm −Tp and τmp(T ) = [gmp(T )+ gpm(T )]−1.
We present a numerical calculation of the relaxation rate

τ−1
mp due to magnetoelastic coupling in YIG. The parame-

ters used in our calculation are listed in table 1. Figure 1
shows the temperature dependence of relaxation rate in
the absence of magnetic field. τ−1

mp decreases rapidly with
the increasing of temperature and saturates above 100 K,
which is mainly attributed to the temperature dependence
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Fig. 1: The magnon-phonon relaxation rate as a function of
temperature when μ0H = 0T.

of specific heat. The specific heat of both phonon and
magnon decreases with the decreasing of temperature,
thus magnons and phonons are heated or cooled more
efficiently. In the high-temperature limit (h̄ω � kBT ),
z2ez/(ez −1)2 → 1, Cm → NkB and Cp → 3NkB, eq. (14)
could be reduced to

gmp(T ) =
2π

Nh̄2

∑
kλ

|Mk,kλ|2δ(ωm − ωp), (16a)

gpm(T ) =
2π

3Nh̄2

∑
kλ

|Mk,kλ|2δ(ωm − ωp), (16b)

and it is obtained that τmp → 0.26 μs−1 at high-
temperature limit.

In the presence of magnetic field, the relaxation rate
at high-temperature limit is plotted in fig. 2 as a func-
tion of the strength of magnetic field. The magnetic field
could effectively shift the dispersion relation to higher en-
ergy. Thus the intersects of magnon and phonon disper-
sions which satisfy the energy conservation vary with the
magnetic field. As a result, for individual phonon modes,
the relaxation rate firstly decreases with the increasing of
magnetic field, and then increases sharply near the criti-
cal magnetic field, μ0H = (γDμ0Ms sin2 θ−c2

λ)2

4γDc2
λ

. The sharp
increasing of relaxation rate is attributed to the tangency
of phonon dispersion and magnon dispersion, which maxi-
mizes the interaction phase space as shown in fig. 3, where
the phase space is defined as Pmp = 1

3N

∑
kλ δ(ωm(k) −

ωp(kλ)). It is also noteworthy that one-magnon/one-
phonon interaction is forbidden for TA phonon and LA
phonon when μ0H > 2.807 T and μ0H > 9.567 T, re-
spectively. The magnetic field dependence of the relax-
ation rate is consistent with the observed enhancement
of magnetic-field–dependent spin Seebeck effect voltage,
which also originates from the one-magnon/one-phonon
process [20,29].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  2  4  6  8  10

m
p 

( 
s−

1 )

0 H (T)

Total
LA

TA1
TA2

0T 2.8T 9.56T

−
1

Fig. 2: The magnon-phonon relaxation rate as a function of
external magnetic field at high-temperature limit. The inset
shows the dispersion relation of acoustic phonons and magnon
as an illustration, where θk = π/2.
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Fig. 3: The phase space as a function of external magnetic field.
The inset shows the dispersion relation of acoustic phonons and
magnons as an illustration, where θk = π/2.

Considering the scattering rate, magnon-phonon inter-
actions of higher orders are dominant, mainly due to the
relatively small phase space of one-phonon/one-magnon
process [17], while at the tangency between magnon
dispersion and phonon dispersion, the one-phonon/one-
magnon process is non-negligible. Moreover, the magnon
dispersion will be affected by magnon-magnon interac-
tion at high temperature, so the temperature effect on
magnon dispersion should also be considered at high
temperature [19,30,31].

In summary, we have theoretically studied the one-
phonon/one-magnon interaction in ferrimagnet YIG.
It has been obtained that one-phonon/one-magnon
interaction is dominant at low temperature below ∼50 K
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or at the resonant condition. It has also been verified that
the two-temperature model is valid for one-phonon/one-
magnon interaction. The magnon-phonon relaxation is
found to be tunable by the external magnetic field. A max-
imum relaxation rate is obtained when the tangency of
phonon dispersion and magnon dispersion occurs.
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