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Abstract — The output of a healthy physiological system exhibits complex fluctuation. Nonlinear
analysis, such as power-law characteristics, shows the potential for detecting changes in the biolog-
ical complexity of disease and aging. This paper characterized the heart rate variability (HRV) of
aging and patients with congestive heart failure (CHF) by three types of distribution: Zipf’s law,
Heaps’ law, and frequency distribution. All data analysis and modeling are based on a constructed
sequence, that is, the monotonous increase to monotonous decrease amplitude ratios as derived
from heartbeat interval data. The experimental result shows a significant decrease of HRV from
healthy young people to healthy elderly to CHF patients. We proposed a model by taking account
of the “rich-get-richer” theory in experimental observations, which successfully reproduced three
types of distribution characterizing the constructed ratio sequences as obtained from the analysis
of measured cardiac data. This work provides insight into the dynamic mechanism of cardiac data

underlying the regulation of autonomic nerve.

Copyright © EPLA, 2020

Introduction. — Heart rate variability (HRV) is a com-
monly used quantitative indicator for judging autonomic
nerve function. It refers to the difference between suc-
cessive heartbeat cycles [1,2]. The cardiac cycle changes
irregularly as the pacing of the sinoatrial node is coordi-
nated by both sympathetic and parasympathetic nerves,
which will cause cardiac acceleration and attenuation, re-
spectively [3-5]. In a nutshell, the higher the heart rate
variability, the better the body can adapt to internal
and external influences. Conversely, it may imply seri-
ous health diseases [6-9]. Researches have shown that
autonomic nerve activity declines in healthy people over
the age of 70, whose HRV is correspondingly lower than
healthy young adults’ one [10-12]; patients with CHF
also experience a significantly decreased HRV due to their
chronically excited sympathetic nerve [13-16]. In addition
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to its value in screening for heart disease, HRV owns
broad application prospects in the diagnosis of diseases
such as Parkinson’s [17], hypertension [18], diabetes [19],
epilepsy [20] and so on.

Numerous linear methods of calculating HRV have
emerged. Time domain analysis based on RR intervals is
used to calculate parameters like SDNN (the standard de-
viation of the normal-to-normal intervals) and rMSSD (the
root mean square successive difference of intervals), where
rMSSD can effectively assess parasympathetic nervous ac-
tivity [21]. Frequency domain methods study the distribu-
tion of HRV energy varying with frequency. They perform
a fast Fourier transform [22] or autoregression for contin-
uous RR interval values to obtain the heart rate function
spectrum. The frequency component of power spectrum
density (PSD) can be used to monitor autonomic nervous
function [23]: 1) HF (high frequency, 0.15-0.4 Hz) works
to represent parasympathetic nervous activity, 2) LF (low
frequency, 0.04-0.15 Hz) is confirmed to be associated with
baroreflex sensitivity [24,25], and 3) LF/HF reflects the
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balance of sympathovagal nervous system, while the out-
put of a normal human heartbeat fluctuates in complex
ways even at rest. The electrical activity of the heart is
so highly nonlinear that linear methods are not sufficient
to reveal its properties. Nonlinear analysis (i.e., approx-
imate entropy [26], detrended fluctuation analysis [27])
is now widely accepted to describe the biological system
dynamics in a more efficient manner and shows poten-
tial in providing reliable prognostic information in disease
stratification.

In this paper we did data analysis and modeling based
on the constructed sequences, that is, the monotonous in-
crease to monotonous decrease amplitude ratios as derived
from heartbeat interval data. With these ratio sequences,
we can observe the alternation of the increase and decrease
of heart rate due to the sympathetic and parasympathetic
nerve regulation. We aimed to evaluate cardiac risk and
monitor the aging process by three types of power-law dis-
tribution: Zipf’s law on frequency [28], Heaps’ law on the
growth of distinct values [29] and frequency distribution
analysis. Zipf’s law was originally proposed as the law
of word frequency distribution, which can be expressed
as: in the corpus of natural language, the word frequency
Z(r) is inversely proportional to its ranking r on the fre-
quency table. Heaps’ law describes how the number of
distinct words N(t) in a document grows with the docu-
ment length t. Besides, in this work, an original model
was built by considering the “rich-get-richer” theory in
experimental observations to infer the cardiac dynamics
under autonomic regulation. It is shown that the model
reproduces three types of distribution characterizing these
ratio sequences as obtained from the analysis of measured
cardiac data.

Methods and result. —

Data and preprocessing. The ECG signals used herein
come from the Physiobank Archives, where data of healthy
people are from the Fantasia database and CHF pa-
tients’ data are from the BIDMC Congestive Heart Failure
Database [30].

The MIT-BIH Fantasia database contains long-term
ECG recordings of 19 healthy young people (aged 21-34)
and 15 healthy elderly people (aged 68-85). All sub-
jects were asked to rest at sinus rhythm while watching
the Disney movie Fantasia (1940) to help maintain their
awareness. The ECG signals were collected at 250 Hz
for 2h. The BIDMC CHF database contains long-term
ECG recordings of 14 people (aged 22-71) with severe
congestive heart failure (NYHA 3-4). Each recording
includes a 20 hour dual lead ECG signal and was sam-
pled at 250 Hz. The original analog electrical signal was
recorded by a dynamic ECG recorder with a bandwidth of
0.1 Hz-40 Hz [30]. To ensure accuracy, the heart rate data
was detected with an Arrhythmia Automatic Detection
Algorithm and additional manual checks. The timestamp
of the R-wave peak was automatically detected using an
algorithm provided by the database.
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Fig. 1: The construction process of heart rate related time se-
quence AR(7). (a) is a segment of the ECG signal. (b) shows
the RR(n) sequence extracted from an ECG signal. (c) illus-
trates the calculation of IA(i) and DA(¢) that make up the
AR(1) sequence.

Based on the variation trend of heartbeat, we con-
structed a ratio sequence AR(i) (fig. 1), which will be
used for the further power-law analysis. Figure 1(a) is
a segment of the ECG signal, where RR(n) is the time
interval between two adjacent R peaks. Figure 1(b)
shows the RR(n) sequence extracted from an ECG sig-
nal. Figure 1(c) marks the two components that make
up the AR(7) sequence (eq. (1)). Monotonously increased
RR interval during TA(i) phase indicates a decrease in
heart rate, which is caused by enhanced parasympa-
thetic activity. Correspondingly, the DA(i) phase rep-
resents an increase in both heart rate and sympathetic
regulation.

TA(i)
DA(i
RR(m;) — RR(m])
RR(m;) — RR(m},,)’

AR(i) =

~—

(1)

The construction of AR(i) reflects the change of auto-
nomic nerve regulation, therefore, we think the analysis
of this ratio sequence has a certain physiological basis as
describing the complexity of cardiac data.

Power law analysis of AR(i) sequence. We first
carried out a frequency distribution analysis of AR(37).
n(k) in eq. (2) represents the number of AR(i) values
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Table 1: Statistical result of the power-law exponents. Sig-
nificant intergroup differences are indicated by 8 (probability
distribution, fitting range k& € [1,maz]), o (Zipf’s law, fit-
ting range r € [10,100]), and A (Heaps’ law, fitting range
t € [100, max]).

Scaling Young Elderly CHF
exponent ave. £ ave. *+ ave. *+
std. dev. std. dev. std. dev.
16} 248+£048 1.76+0.29 1.19+0.18
@ 0.56 £0.18 1.03+0.38 2.37+1.05
A 0.75+£0.11 0.59+0.12 0.39+0.12
that occur k times,
n(k)

Pk) = =———.
2_pn(k)
It can be found in all groups that the probability dis-

tribution P(k) of frequency k follows a power-law with
exponent 3 (fig. 2(a)),

(2)

P(k) ~ k=" (3)
However, statistically, these groups show significant dif-
ference under Student’s t-test (p < 0.01): young people
By = 2.48 £ 0.48, elderly 3. = 1.76 £ 0.29, patients with
CHF . = 1.1940.18 (fitting range k € [1, max]) (table 1).
We next perform Zipf’s rank analysis, sorting the fre-
quency of distinct AR(7) values in descending order to
obtain the corresponding Zipf’s plot. This shows that the
frequency Z(r) exhibits a power-law behavior as a function
of the rank r characterized by a scaling exponent «,
Z(r) ~r=*. (4)
Z(r) is the normalized frequency (Z = k/N, N is the total
length of sequence AR(i)). To promote the intuitiveness
of comparison between each group, the result curves of
young people (blue circle) and CHF patients (red triangle)
in fig. 2(b) were shifted up and down, respectively. Result
reveals that Zipf’s curve of all groups turns at r ~ 10.
In the high-frequency region r € [2,10], the distribution
trend is similar for all groups. By fitting all values in this
region, a = 0.54 can be obtained. In the low-frequency re-
gionr € [10,100], the three curves show obviously different
degrees of transition. The fitting result of this interval re-
veals significant intergroup differences (p < 0.01) (table 1):
young people o, = 0.56 £ 0.18, elderly o, = 1.03 £ 0.38,
CHF patients o, = 2.37 £ 1.05.
Additionally, we found that the growth of distinct values
in sequence AR(i) conforms to Heaps’ law
N(t) ~ 1, ()
where N(t) is the number of distinct values in an instance
sequence of size t. Figure 2(c) shows the Heaps-law plot,
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Fig. 2: Power-law analysis results for one subject in each group,
in which (a) is a probability distribution, (b) is Zipf’s law, and
(c) is Heaps’ law. In the Zipf plot, curves of young people
and CHF patients were shifted up and down, respectively, to
promote comparison. Straight lines indicate the fitting range.
Turning point of (b) and (c) appears at » = 10 and ¢ = 100,
respectively.

and each group exhibits different degrees of curvature at
t 2 100. In size ¢ € [1,100], the number of distinct AR(%)
values in each group maintains a similar growth trend
A = 0.91, while as the length of the sequence increases, a
significant difference (p < 0.01) appears in ¢ € [100, mazx]:
young people A\, = 0.75 4+ 0.11, elderly A = 0.59 £+ 0.12,
CHF patients A\. = 0.39 £ 0.12 (table 1).
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Modeling and simulation of cardiac dynamics. In the
language system, the Yule-Simon model [31,32] describes
text generation with the “rich-get-richer” theory, which
means that a word appearing more frequently will have
a higher probability to be copied. This theory also con-
tributes to a power-law frequency distribution and Zipf’s
law. Our work combines empirical observations with the
Yule-Simon model to derive analytical solutions of the
power-law phenomenons above.

We modeled the generation of AR(i) sequence as
follows:

i) a new value is added to the sequence with
probability p,

ii) an appeared value is randomly chosen and copied with
probability 1 — p.

Think of p as the slope of the Heaps’ plot at time t, that is,
the growth rate of the curve. Neglecting the difference in
the shorter size region ¢ € [1,100], for ¢ € [100, max], the
generation dynamics can be obtained through the power-
law relationship between N; and ¢ (fig. 2(c)),

AN,

a Pt (6)

Integrating eq. (6) with boundary condition Ny = 0, a
power function of N; can be obtained
a0t17a1

Ny = .
¢ 17(11

(7)

According to the “rich-get-richer” theory, in step ii),
the probability an appeared value is chosen depends on its
frequency in existing sequence, that is, the more frequently
a value appears, the more likely it will be chosen to add
to the end of the sequence,

s = (H2)", ®

where k(i) is the number of occurrences of the value in an
instance AR(i) sequence of size ¢, and f(k) is the prob-
ability of being chosen. Parameter as represents the de-
pendence of f(k) on k(i). Define n(t, k) as the number
of distinct values that appear k times until time ¢, then
Ny« p(k) = n(t, k). Obviously, we can get [33]
n(t+ 1k 1) = n(t -+ L= f(k+ )]+ 0L, k) F (k).
9)

Substitute eq. (8) into eq. (9), then
k4 1\*
Niepp(k+1) = AGp(k%l)[l (—————) ]

+Nup(k) <§> . t

Substituting p(k+1)—p(k) = dp/dk, Niy1 — Ny = dN,/dt,
and eq. (6) into eq. (10), a differential equation can be

obtained
E+1\"
1—(—— .

(10)

d
L _

) (11)

aot‘“ —a1
|: N ko2

By approximation, we can get the analytical expression of
p(k)

p = Be Ak~ [A(l—a2)tas]
apt®2— M

Nt(]. — (ZQ),

where B is the normalization factor. In eq. (12), the
power-law relationship between p and k is consistent with
the experimental results in fig. 1(a).

Calculate the definite integral of function p(k) [33]

o (12)

ko
ple> ko) = 1= [ plbyds
kmin (]_3)
m _ fm
= 1= Be_A 0 mzn,
m

where m =1 — [A(1 — a2) + az], and k4, is the smallest
frequency. According to p(kmaz > kmin) = 1, it could be

obtained that

eAm

= m . m
kmax kmin

B (14)
There will be p(k > ko) * N; values that appear more than
ko times. Therefore, a value that appears kg times should
be ranked at

mo_ L.
r=1+ (136—“M) N;.

~ (15)

Thus, a normalized frequency can be obtained

1/m
/x
(16

where N is the total length of sequence AR(7).

In the simulation, we considered combined data of the
entire group, which is built by connecting the AR(7) of all
subjects within each group according to their serial num-
ber. The values of ag, a1, as are confirmed by parameter
optimization: Young ag = 1.43, a1 = 0.2, as = 0.96, El-
derly ag = 1.46, a; = 0.39, as = 1.01, CHF a¢ = 1.05,
a; = 0.4, ag = 0.95. The comparison between simulation
results and the experimental data on power-law distribu-
tions is shown in fig. 3. To promote the intuitiveness of
comparison, the Zipf law plot of young people (blue cir-
cle) and CHF patients (red triangle) were shifted up and
down, respectively.

_r—1 A
N, )@ m

1
Z(r) = ko/N = —( é + K"

min

)

Conclusion. — Previous studies have demonstrated
that the mechanism for youth and health lies in physiolog-
ical complexity. As the body ages or becomes ill, the phys-
iological process will tend to become simpler. As a stable
and reliable indicator, heart rate variability can indicate
individual differences in autonomic regulatory flexibility.
Low heart rate variability predicts autonomic dysfunc-
tion and is associated with a large number of chronic dis-
eases. At present, most relevant studies focus on linear
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Fig. 3: Comparison between experimental data (symbols) and
simulation results (lines) (combined data of all subjects within
each group). (a) Probability distribution, (b) Zipf’s analysis
(curves of young people and CHF patients were shifted up and
down, respectively, to promote comparison), and (c) Heaps’
analysis.

analysis, which cannot fully reflect the nonlinear physio-
logical process.

Differently from existing nonlinear methods, this work
quantifies and models the mechanisms involved in car-
diac data by scaling characteristics. Under the analysis
of probability distribution, Zipf’s law and Heaps’ law, we

hope to further understand the organization and dynam-
ics of cardiac data. Thereinto, Heaps’ law describes the
growth of distinct values varying with system length, that
is, the faster the number of distinct values grows, the
more complex the sequence is. Specifically, exponent A, >
Ae > Ac implies that the HRV gradually decreases from
healthy young people to healthy elderly to patients with
CHF. This result is also consistent with previous research
conclusions.

The innovation of this paper in the study of cardiac dy-
namics is 1) firstly embodied in the construction of AR(7)
sequence, which is based on the monotonous increase to
monotonous decrease amplitude ratios as derived from RR
interval data. With these ratio sequences, we can observe
the alternation of the increase and decrease of heart rate
due to the sympathetic and parasympathetic nerve regula-
tion. 2) Secondly, the “rich-get-richer” mechanism, which
plays an important role in the model construction, tells us
that the autonomic nerve regulation of heart rate is not
completely random, but biased. The model used to ex-
plain and reproduce the heartbeat dynamics has not been
found in previous studies, and the agreement between sim-
ulation and experiment results also confirmed the conjec-
ture in our model.

We hope the method and model proposed in this paper
could help to better understand the regulation rules of au-
tonomic nerve on cardiovascular system with physiological
and physical foundation, and can be used for reference by
relevant researchers in this area.
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