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Abstract – Considering the modified entropy-area relation from doubly special relativity-
generalized uncertainity principle (DSR-GUP), we obtain the modified Friedmann equations from
the first law of thermodynamics at apparent horizon. Due to the importance of GUP at Planck
scale, we investigate the Friedmann equations and show the maximum energy density ρ at Planck
scale. Since GUP implies a minimal length, we find a minimum apparent horizon which has a
potential to remove the Big Bang singularity. Furthermore, we analyse the effects of DSR-GUP
on the deceleration parameter q for the equation of state p = ωρ and the flat case. Finally, we
check the validity of the generalized second law (GSL) of thermodynamics and show that it is
valid for all eras of the universe for any spatial curvature.
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Introduction. – Considering black holes as thermo-
dynamic systems reveals the fundamental connection be-
tween gravity and the laws of thermodynamics [1–6].
A black hole has temperature and entropy proportional
to its surface gravity and horizon area, respectively. Moti-
vated by the thermodynamics properties of the black hole,
Jacobson [7] first interpreted the Einstein field equation as
an equation of state. He derived the field equation from
the proportionality of entropy and horizon area together
with the Clausius relation δQ = TdS which connects heat,
temperature and entropy. Later, the deeper fundamen-
tal connection between gravitational dynamics and hori-
zon thermodynamics was indicated in many papers [8–25].
Motivated by Jacobson’s work, Cai and Kim [10] obtained
the (n+1)-dimensional Friedmann equations from the first
law of thermodynamics (−dE = ThdSh) at apparent hori-
zon. Here −dE is interpreted as the amount of energy flux
crossing the apparent horizon for the infinitesimal time in-
terval at fixed horizon radius. We assume that the appar-
ent horizon has temperature and entropy given as follows:

Th =
1

2πr̃A
, Sh =

A

4
, (1)
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where A is the area of the apparent horizon1. Using the
corresponding entropy-area formula in the Gauss-Bonnet
and Lovelock gravities, they were derived the Friedmann
equations in each gravity. Following Cai and Kim’s ap-
proach, Friedmann equations in the scalar-tensor and f(R)
gravities were obtained in ref. [11]2. Despite one can ob-
tain the Friedmann equations in [10], it can be seen that
the temperature of the apparent horizon is not propor-
tional to the surface gravity κ of the horizon, since the
surface gravity is given by

κ = − 1
r̃A

(
1 −

˙̃rA

2Hr̃A

)
, (2)

where dot denotes the derivative with respect to time and
H is the Hubble parameter. Since the r̃A does not change,
the first law of thermodynamics, which is proposed in
ref. [10], is satisfied. However, this approximation has

1We use the units h̄ = c = GN = l2Pl = 1.
2We recall that the extended gravity framework arises from the

necessity to extend standard general relativity in order to attempt
to achieve the famous Dark Energy and Dark Matter problems [26].
In this framework, the recent start of gravitational wave astronomy
with the famous detections of LIGO [27] could be, in principle, deci-
sive to confirm the physical consistence of standard general relativity,
or, alternatively, to endorse the framework of extended theories of
gravity [28]. In fact, some differences between general relativity and
alternative theories can be pointed out in the linearized theory of
gravity through different interferometer response functions [28].

50002-p1
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a limitation on the equation of state as p ≈ −ρ, i.e., the
equation of state implies vacuum energy or de Sitter space-
time. Assuming the temperature Th = κ

2π and entropy
Sh = A

4 , Akbar and Cai [12] showed that the differential
form of Friedmann equations can be rewritten as the first
law of thermodynamics at apparent horizon

dE = ThdSh + WdV, (3)

where W is the work density which is given in terms of en-
ergy density ρ and pressure p of the matter in the universe,
E = ρV is the total energy inside the apparent horizon,
and V is the volume of the apparent horizon.

On the other hand, it is well known that the entropy-
area relation can be modified via various quantum gravity
(QG) approaches [29–31] since the QG effects are remark-
able at the Planck scale. For example, motivated by loop
quantum gravity (LQG), a modified version of Friedmann
equations was obtained in refs. [15,16]. Besides LQG,
one can consider modification of the entropy-area rela-
tion from GUP which is one of the phenomenological QG
model and a modification of the standard uncertainty prin-
ciple [32–34]. One of the most characteristic implications
in GUP is the concept of minimal length. Since the min-
imal length notion may cure the singularities in general
relativity, it is also interesting to consider both applica-
tions of black hole thermodynamics and cosmology in the
context of GUP [35–50]. Taking into account the simplest
form of GUP, Awad and Ali [17] obtained the modified
Friedmann equations. They showed that modified Fried-
mann equations exhibit the maximum energy denisty (or-
der of Planck energy density) at minimal length. Their
work extended in ref. [18] for a new version of GUP. Sim-
ilarly, an upper bound was shown for the energy of the
universe. Furthermore, it is possible to define a cyclic
universe from the modified GUP. Another modification of
the standard uncertainty principle may be considered in
the context of DSR. We recall that DSR modifies standard
special relativity by adding an observer-independent max-
imum energy scale and minimum length scale (the Planck
energy and Planck length) to the observer-independent
maximum velocity (the speed of light) of standard spe-
cial relativity [51]. In refs. [52,53], authors considered the
GUP based on DSR and renamed it as DSR-GUP. Apart
from special relativity, DSR also has an extra upper bound
as Planck energy. Therefore, DSR plays a crucial role in
investigating the quantum gravity effects near the Planck
scale. Motivated by this, we would like to investigate the
modified Friedmann equations for the DSR-GUP in the
present paper.

The paper is organized as follows: In the next section,
we review the DSR-GUP and obtain the modified entropy-
area relation. In the third section, we obtain the modified
Friedmann equation from DSR-GUP. In the fourth sec-
tion, we investigate the effects of DSR-GUP on the de-
celeration parameter. In the fifth section, we check the
validity of GSL for the modified Friedmann equations. Fi-
nally, the conclusions are presented in the last section.

GUP based on DSR. – In this section, we briefly
review the DSR-GUP and calculate the modified entropy-
area relation [52,53]. Let us start giving the new form of
GUP which is based on DSR:

ΔxΔp ≥ 1
2

(
1 − 2α +

Δp2

ε2p

)
, (4)

where εp is the Planck energy and 0 < α < 1/2. In order
to obtain the modified entropy-area relation, we consider
the heuristic analysis in ref. [46]. Firstly, we need to solve
the inequality of DSR-GUP for the lower bound of Δp,

Δp ≥ Δxε2p − εp

√
Δx2ε2p + 2α − 1, (5)

which gives the standard uncertainty when α → 0 and
εp → ∞. Using eq. (5) with Δx ∼ 2rh event horizon, one
can write ΔxΔp as

ΔxΔp ≥ 4r2
hε2p − 2rhεp

√
4r2

hε2p + 2α − 1. (6)

Moreover, the smallest increase of the black hole area can
be considered as

ΔA ≥ ΔxΔp, (7)

when a particle is absorbed by a black hole. Therefore, we
obtain the increase of area

ΔxΔp ≥ 4r2
hε2pγ − 2rhεpγ

√
4r2

hε2p + 2α − 1, (8)

where γ is the calibration factor. We know that minimum
increase of entropy (ΔS)min = ln 2, in the information
theory. Hence, we obtain the modified area-entropy rela-
tion based on DSR-GUP [53]

dS

dA
≈ (ΔS)min

(ΔA)min
=

1

32ε2pr
2
h

⎡
⎢⎣1 −

√
1 + 2α−1

4ε2pγr2
h

(
1−

√
1+ 2α−1

4ε2pr2
h

)
⎤
⎥⎦

, (9)

where the calibration factor is obtained as γ = 8 ln 2, in
the limits of α → 0 and εp → ∞.

Modified Friedmann equations. – We firstly start
to review the basic elements of the Friedmann-Robertson-
Walker (FRW) universe. The line element of the FRW
universe is given by

ds2 = habdxadxb + r̃dΩ2, (10)

where r̃ = a(t)r, a is the scale factor, xa = (t, r), hab =
diag

(−1, a2/(1 − kr2)
)

is the two-dimensional metric, and
k corresponds to the values −1, 0, 1 for the open, flat
and closed universe, respectively. The dynamical apparent
horizon is given by

r̃A = ar =
1√

H2 + k/a2
, (11)
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where H = ȧ/a is the Hubble parameter. The tempera-
ture of the apparent horizon is obtained from eq. (2)

Th =
κ

2π
= − 1

2πr̃A

(
1 −

˙̃rA

2Hr̃A

)
. (12)

Since entropy is the function of area, we can write the
general expression for entropy in the following form:

Sh =
f(A)

4
, (13)

and the differential of entropy is given by

dSh

dA
=

f ′(A)
4

, (14)

where prime denotes the derivative with respect to area
A = 4πr̃A

2. By assuming the matter and energy of the
universe as an ideal fluid, so energy-momentum tensor
yields

Tμν = (ρ + p)uμuν + pgμν , (15)

where uμ is the four velocity of fluid. The conservation
of energy-momentum tensor, i.e., T μν

;ν = 0, leads to the
continuity equation as

ρ̇ + 3H(ρ + p) = 0. (16)

Following the arguments of ref. [54], we can define the
work density as

W = −1
2
T abhab =

1
2
(ρ − p). (17)

Work density W corresponds to the work done by the
volume change of the universe. Now, we can calculate the
terms of eq. (3). Since the volume and the total energy of
the universe are V = 4

3πr̃A
3 and E = ρV , the differential

of E is given by using the continuity equations in eq. (16):

dE = ρdV + V dρ = 4πρr̃A
2dr̃A − 4π(ρ + p)r̃A

3Hdt,

(18)

and the WdV term is calculated as

WdV = 2π(ρ − p)r̃A
2dr̃A. (19)

Finally, the TdS term is found

ThdSh = −
(

1 −
˙̃rA

2Hr̃A

)
f ′(A)dr̃A. (20)

Combining eqs. (18), (19) and (20) in the first law at the
apparent horizon and using the relation

dr̃A = −Hr̃A
3
(

Ḣ − k

a2

)
dt, (21)

we get
f ′(A)
r̃A

3
˜drA = 4π(ρ + p)Hdt. (22)

If we use the continuity equation in eq. (16) with the above
equation, we get the differential form of the Friedmann
equation as

f ′(A)
r̃A

3 dr̃A = −4π

3
dρ, (23)

and rearranging eqs. (21) and (22), one can simply find
the dynamical equation as follows:

f ′(A)
(

Ḣ − k

a2

)
= −4π(ρ + p). (24)

Using the modified entropy-area relation in eq. (9) with
eq. (14), then we can find f ′(A). Therefore, we find the
Friedmann equations from eqs. (23) and (24),

−4π

3
ρ = − 1

4r̃A
2(1 − 2α)

+
(4r̃A

2ε2p + 2α − 1)3/2

12r̃A
3εp(1 − 2α)2

+ C,

(25)(
Ḣ − k

a2

)
1

8ε2p

(
1 −

√
1 + 2α−1

4ε2pr̃A
2

)
r̃A

2
= 4π(ρ + p),

(26)

where C is the integration constant and can be deter-
mined from initial conditions. As the universe expands,
r̃A goes to infinity and energy density is the vacuum en-
ergy ρvac = Λ, where Λ is the cosmological constant. So
we find the integration constant C = − 4πΛ

3 − 2ε2p
3(1−2α)2 and

first Friedmann equation is given as follows:

8π

3
(ρ − Λ)(1 − 2α)2

=
1
6

⎡
⎣3(1 − 2α)

r̃A
+ 8ε2p

⎛
⎝1 −

(
1 +

2α − 1
4r̃A

2ε2p

) 3
2
⎞
⎠
⎤
⎦. (27)

Note that the modified Friedmann equations can be re-
duced to the standard forms in the limits of α → 0 and
εp → ∞.

Now, let us investigate eq. (27). In order to get a real
and positive energy density ρ, r̃min

A should have a mini-
mum value which is given by

r̃min
A =

√
1 − 2α

2εp
, (28)

which removes the singularity at the beginning. We stress
that such removal of the initial singularity depends on the
quantum behavior of the GUP of eq. (4). The GUP ex-
pressed by eq. (4) implies indeed a non-zero lower bound
on the minimum value of the uncertainty on the particles’
position (Δx) which is of order of the Planck length. This
issue has no classical correspondence because in standard
general relativity all time-like radial geodesics of the par-
ticles in the universe start at the “initial point” r̃A = 0
and it is impossible to extend the global space-time man-
ifold beyond that “initial point”. This is the meaning of
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the classical initial singularity. At the minimum apparent
horizon, we can obtain the maximum allowed value of en-
ergy density as ρmax = 5ε2P

4π(1−2α)2 + Λ, for the inflationary
scale. Since Λ is too small, it can be neglected and we can
easily see that the energy density is order of Planck en-
ergy. Apart from standard Friedmann equations, we find a
non-zero minimum apparent horizon and finite maximum
energy density for the modified Friedmann equations. It is
also clear that r̃min

A goes to zero and ρmax diverges in the
limits of α → 0 and εp → ∞.

Using eq. (11), we give the Friedmann equation in terms
of the Hubble parameter H as follows:

8π

3
(ρ − Λ)(1 − 2α)2 =

1
6

[
3(1 − 2α)

(
H2 +

k

a2

)

+8ε2p

(
1 −

(
1 +

(2α − 1)
4ε2p

(
H2 +

k

a2

))3/2
)]

, (29)

(
Ḣ − k

a2

)
1

8ε2p

(
H2 + k

a2

)
1 −

√
1 + (2α−1)

4ε2p

(
H2 + k

a2

) = −4π(ρ+p),

(30)
which will be used to investigate the deceleration param-
eter in the next section.

Deceleration parameter. – In this section, we inves-
tigate the effects of DSR-GUP on the deceleration param-
eter which is defined as

q = −1 − Ḣ

H2 , (31)

where positive q implies deceleration, while negative q im-
plies acceleration. Now, choosing the equation of state as
p = ωρ, and combining eqs. (29) and (30) with eq. (31)
gives the deceleration parameter as

q = −1 +
2(ω + 1)ε2p

(1 − 2α)2H2

[
3(1 − 2α)

+
8ε2p
H2

(
1 −

(
1 +

(2α − 1)
4ε2p

H2
)3/2

)

+
16π(1 − 2α)2Λ

H2

] [
1 −

√
1 +

2α − 1
4ε2p

H2

]
, (32)

for the flat case k = 0. We choose the Euclidean case for
the shape of the universe because it seems in agreement
with current cosmological observations [26]. Except for
the vacuum-dominated universe (p = −ρ), we can mostly
neglect the cosmological constant Λ. First, we calculate
the value of the deceleration parameter for the inflation-
ary stage. At the minimal length, we can find the maxi-
mum H as

Hmax =
2εp√

1 − 2α
, (33)

which leads to
q =

3
2

+
5ω

2
, (34)

for the inflationary stage. Interestingly, we find that ω
should satisfy the condition ω < −3/5 to imply the accel-
erated universe for the beginning of the inflationary stage.
Since the effects of GUP may be sufficiently small for
radiation- and matter-dominated eras, we can expanded
the deceleration parameter as follows:

q =
1
2
(1 + 3ω) +

3H2(1 + ω)(1 − 2α)
64ε2p

+ . . . . (35)

From eq. (35), the deceleration parameter for radiation
(ω = 1/3) and matter (ω = 0) dominated eras can be
given by

q = 1 +
(1 − 2α)H2

16ε2p
, (36)

q =
1
2

+
3H2(1 − 2α)

64ε2p
, (37)

respectively. Let us remind that 0 < α < 1/2, the correc-
tion term certainly gives a positive contribution to both
cases. So taking into account the effects of DSR-GUP,
we can deduce that the expansion of the universe is more
decelerated for the radiation- and matter-dominated eras.
Furthermore, DSR-GUP effects are not an alternative to
dark energy (DE) for the matter-dominated universe since
eq. (37) is always positive3. Since the correction term
in eq. (35) is too small for the late time, one may con-
sider that most contribution comes from the first term.
Equation (35) implies that it must be ω < −1/3 to explain
the acceleration of the late time universe. Therefore, we
still need DE for the late time of the universe.

Generalized second law of thermodynamics. – In
this section, we want to check the validity of the GSL
in the presence of DSR-GUP. According to the GSL of
thermodynamics, total entropies of matter fields and ap-
parent horizon do not decrease with time. Rearranging
the eq. (22), one can obtain

˙̃rA = 32π(ρ + p)r̃A
5Hε2p

(
1 −

√
1 +

2α − 1
4r̃A

2ε2p

)
. (38)

It is clear that the sign of eq. (38) depends on the sign of
ρ + p. Combining the eqs. (38) and (20), we obtain the
following expression as

ThṠh = 4π(ρ + p)r̃A
3H

×
[
1 − 16π(ρ + p)ε2pr̃A

4

(
1 −

√
1 +

2α − 1
4r̃A

2ε2p

)]
,

(39)

which may violate the second law of thermodynamics for
accelerated universe. Therefore, we should check the va-
lidity of GSL of thermodynamics.

3In contrast to our results, an accelerated universe is possible
without invoking DE. The reader may refer to refs. [24] and [55]
which consider Tsallis and rainbow gravity corrections to Friedmann
equations, respectively.
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Now, let us consider the Gibbs equation [56] which is
defined as

TmdSm = d(ρV ) + pdV = V dρ + (ρ + p)dV, (40)

where Tm and Sm are the temperature and the entropy of
the matter fields inside the horizon. We use the assump-
tion that the apparent horizon remains in equilibrium with
the system. So we have Tm = Th. Form eq. (40), we
can find

Th
˙Sm = −4π(ρ + p)r̃A

3H

×
[
1 − 32π(ρ + p)ε2pr̃A

4

(
1 −

√
1 +

2α − 1
4r̃A

2ε2p

)]
.

(41)

From eqs. (39) and (41), we can obtain the time evolution
of entropy

Th(Ṡh+ ˙Sm) = 64π2(ρ+p)2Hε2pr̃A
7

(
1 −

√
1 +

2α − 1
4r̃A

2ε2p

)
,

(42)
which is useful to check the GSL of thermodynamics.
The right-hand side of the above equation is always non-
decreasing for the all eras of the universe. Therefore, the
GSL of thermodynamics is always valid for the all eras of
the universe.

Conclusions. – In this work, we obtained the DSR-
GUP modified Friedmann equations from the first law of
thermodynamics at apparent horizon. We investigated the
modified Friedmann equations since GUP effects are not
negligible at Planck scale. We showed a nonzero minimum
apparent horizon which leads to a maximum and finite en-
ergy density. These may have the potential to remove the
singularity at beginning of universe. Moreover, we stud-
ied the DSR-GUP effects on the deceleration parameter
for the flat case and equation of state as p = ωρ. We
found that acceleration at the beginning of inflation imply
the condition ω < −3/5. The effects of DSR-GUP were
also investigated for the radiation- and matter-dominated
eras. The deceleration parameter is still positive in the
presence of DSR-GUP. DSR-GUP may have contribution
to deceleration for the radiation- and matter-dominated
eras. Hence, DSR-GUP effects are not an alternative to
DE for the matter-dominated universe. As for the late
time, we still need DE to explain the accelerated late time
expansion. Finally, we checked the validity of GSL of ther-
modynamics and found that it is always valid for the all
eras of universe.

In contrast to standard Friedmann equations, the DSR-
GUP modified Friedmann equations have more reason-
able and acceptable properties such as minimal length and
maximum energy density.

Note added in proofs : For the sake of completeness, we
take the opportunity to cite some further important work

on the GUP [57–60]. In particular, in ref. [59] the au-
thors introduced modification of the background metric
due to GUP, while in ref. [60] interesting cosmological con-
sequences of the GUP have been discussed.
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