10OP Publishing

Superconductor Science and Technology

Supercond. Sci. Technol. 33 (2020) 054006 (16pp)

https://doi.org/10.1088,/1361-6668/ab7ec3

A semi-custom design methodology and
environment for implementing
superconductor adiabatic quantum-flux-
parametron microprocessors

Christopher L Ayala' ®, Ro Saito”®, Tomoyuki Tanaka®©, Olivia Chen'®,
Naoki Takeuchi' @, Yuxing He' ® and Nobuyuki Yoshikawa'+

!Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama

240-8501, Japan
2 Department of Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai,

Hodogaya, Yokohama 240-8501, Japan

CrossMark

E-mail: ayala-christopher-pz@ynu.ac.jp

Received 28 November 2019, revised 27 February 2020
Accepted for publication 11 March 2020
Published 30 March 2020

Abstract

We present a comprehensive overview of a design methodology and environment that we
developed to enable the implementation of microprocessors and other complex logic circuits
using the adiabatic quantum-flux-parametron (AQFP) superconductor logic family. The design
environment is catered for both the AIST 10 kA cm ™2 Nb high-speed standard process as well as
the AIST 2.5 kA cm 2 Nb standard process (STP2). We detail each aspect of the design flow,
highlighting improvements in cell design, and new developments in circuit retiming to reduce
the number of synchronizing buffers in the circuit datapath. With retiming, we expect a 14-37%
reduction in the overall Josephson junction (JJ) count for some benchmarks. Finally, we show
the successful experimental demonstration of an arithmetic logic unit and data shifter for an
AQFP microprocessor using the established methodology and environment. The demonstrated

circuits show full functionality and wide excitation current margins of nearly £30%, which

corresponds well with simulation results.

Keywords: AQFP logic, microprocessor, semi-custom design, superconductor electronics

(Some figures may appear in colour only in the online journal)

1. Introduction

Superconductor electronics have the potential to provide a
high-performance, energy-efficient computing platform to
power the present era of ‘internet of things’, big data, and
social media [1-3]. Several energy-efficient superconductor
logic families exist to provide such a platform, including
energy-efficient RSFQ logic [4], energy-efficient SFQ logic
[5], reciprocal quantum logic (RQL) [6], LR-biased RSFQ
logic [7], and low voltage RSFQ (LV-RSFQ) logic [8].
Adiabatic quantum-flux-parametron (AQFP) logic is also
an extremely energy-efficient superconductor logic family.
AQFP logic can operate with bit energies of around 24kzT

0953-2048,/20,/054006+16$33.00

using a four-phase 5 GHz clock in 10kA cm 2 unshunted
Nb/AlO,/Nb Josephson junction (JJ) technology that is
available today [9]. When compared to other energy-efficient
superconductor logic families [10], adiabatic logic families
such as AQFP logic have a major advantage in terms of
switching energy. But as with any new technology, one must
consider additional overhead when it comes to building sys-
tems beyond simple logic gates. A design study on AQFP
logic was conducted in [3]. It synthesized a set of benchmark
circuits and performed a data-dependent energy analysis
while taking into account the additional overhead of buffering
data to ensure phase-to-phase propagation and synchroniza-
tion of signals. The benchmark circuit of a 32 bit adder with a

© 2020 IOP Publishing Ltd Printed in the UK

https://orcid.org/0000-0002-3510-9626
https://orcid.org/0000-0002-3510-9626
https://orcid.org/0000-0002-8581-3574
https://orcid.org/0000-0002-8581-3574
https://orcid.org/0000-0002-0020-8712
https://orcid.org/0000-0002-0020-8712
https://orcid.org/0000-0002-2208-0262
https://orcid.org/0000-0002-2208-0262
https://orcid.org/0000-0003-0396-5222
https://orcid.org/0000-0003-0396-5222
https://orcid.org/0000-0001-5628-8080
https://orcid.org/0000-0001-5628-8080
https://orcid.org/0000-0001-6191-6715
https://orcid.org/0000-0001-6191-6715
mailto:ayala-christopher-pz@ynu.ac.jp
https://doi.org/10.1088/1361-6668/ab7ec3
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6668/ab7ec3&domain=pdf&date_stamp=2020-03-30
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6668/ab7ec3&domain=pdf&date_stamp=2020-03-30

Supercond. Sci. Technol. 33 (2020) 054006

C L Ayala et al

magnitude comparator and parity check (named C7552) had
an energy efficiency of 40 aJ/op in AQFP logic. A simpler
RQL-based 32bit sparse-tree parallel-prefix adder that
underwent logic and architecture optimization had an energy
efficiency of 97aJ/op. The RQL adder also lacked the
magnitude comparator and parity check components that the
AQFP C7552 benchmark had, and yet the AQFP circuit still
used less than half the amount of energy per operation of the
RQL variant.

But in order to physically realize the circuits described in
[2, 3], let alone the systems in [1], a proper design environ-
ment including methodologies and electronic design auto-
mation tools are necessary. Additionally, it is much more than
just simply using tools and methods already available for
semiconductor or superconductor technologies. There is a
need to re-evaluate current design methodologies and perhaps
even develop new ones to enable the implementation of
complex circuits such as a microprocessor.

In this paper, we report a methodology and design
environment that adopts a semi-custom design approach
where logic circuits are built-up using a standard library of
AQFP logic cells. The logic cells themselves are designed in a
modular way so that they are easy to optimize for wide
margins and ultra-low switching energy. Starting with a
Cadence Virtuoso environment, we augment it with open-
source software as well as scripts and tools developed within
our group. The environment is capable of supporting com-
pletely manual semi-custom design as well as semi-automated
logic synthesis with new post-synthesis and retiming steps to
optimize the circuit. The flow is backed by simulation and
verification at the analog and digital levels. The design
methodology and environment has been successfully used to
design the execution units of an AQFP microprocessor. The
experimental results of the designed circuits show that they
are fully operating with wide excitation margins, indicating
the capability of our tools and approaches to deliver working
circuits. While the fabrication process used in this paper is
limited to a four-layer 10kAcm 2> and 2.5kAcm 2
Nb/AlO,/Nb process resulting in relatively large logic cell
designs and sparse circuit densities, the methodologies
describe here serve as a baseline to build upon when using
more advanced processes such as the eight-layer MIT LL
SFQS5ee process [11]. For example, a more compact AQFP
cell library can be made using the SFQ5ee process as shown
in [12], but the general approach towards building circuits and
systems would still remain the same.

The rest of the paper is organized as follows: section 2
describes how the AQFP logic cells are built and how they are
used to create logic circuits; section 3 provides a compre-
hensive overview of the design environment and design flow
that we have established for AQFP logic where we review
prior works and report new developments; section 4 describes
the demonstration and measurement of prototype circuits
designed using the established flow; and section 5 concludes
the paper.

2. Semi-custom design methodology

Semi-custom design refers to the reuse of pre-designed sub-
circuits to create a larger circuit in a hierarchical fashion, as
opposed to full-custom design where all elements of the final
circuit are made from scratch at the device-level to achieve
maximum performance and minimum area at the cost of
expensive labor and time [13, 14]. One of the most common
ways to achieve a semi-custom design flow is to establish a
standard cell library, which is a collection of sub-circuits that
perform Boolean logic functions. Standard cells tend to have
a fixed height and are designed in such a way so that cells can
abut together in a single row to gradually form the power
network of the larger circuit. The cells are also built such that
the expected functionality of a standalone cell does not
change when connected to other cells, or such that its inter-
active behavior is easy to predict and model.

One of the most successful efforts in developing a semi-
custom design methodology for superconductive electronics
is the CONNECT cell library for SFQ logic [15]. Since then,
the CONNECT cell library now accommodates the AIST
10kAcm 2 Nb nine-layer advanced process (ADP2)
[16, 17]. Drawing upon the success of the CONNECT cell
library, we developed a similar cell library for AQFP logic
using the AIST 2.5kA cm 2 Nb four-layer standard process
(STP2) [18] and the AIST 10kA cm 2 Nb four-layer high-
speed standard process (HSTP) [19]. With the established
AQFP cell libraries, we are able to arrange logic cells into
logical rows that form the power-clock network. A complete
logic circuit is composed of multiple rows of logic connected
together.

2.1. Cell library

The cell design for AQFP logic is centered on a common
schematic topology. Figure 1(a) shows the core schematic
that is shared among the three active sub-cells used to create
Boolean logic cells, namely the buffer (BFR), inverter (INV),
and constant (CONST) with some slight differences between
each sub-cell. The function of each sub-cell is as follows:

* BFR: produces the data input as the output as-is
* INV: produces the inverted data input as the output
* CONST: always produces a logical ‘0’ or ‘1’ as the output

The optimal parameters for this topology as listed in [19]
were found by identifying which pair of the normalized loop
inductance (8, = 27L(I./®y) and the normalized output
inductance (3, = 27TL,11(,/ d) gives the best trade-off in bias
margins and bit energy using practical device dimensions
[20]. By focusing on optimizing this topology, all the sub-
cells obtained a reasonable baseline parameter set after which
further optimization can easily be done on an individual basis
due to the small number of sub-cells. Simulation and refine-
ment are possible through the use of analog simulators such
as JSIM [21], and 3D inductance extractors such as Induc-
tEx [22].

Supercond. Sci. Technol. 33 (2020) 054006

C L Ayala et al

@) din (b} zgi‘:]m din cAen/ter reference
Li” l Iin
I_X> L o o 4 . I
Xin o VS O xout : xout xin—————xout Xin|
K VK . — dcout dcin = — dcout dcin'
I——N—g— =S¢ & | ==
J, kd1§ L, L, :)kdz J, ~ I
dcin o MN_¢ o dcout i
Ld
d L |
— i :
K C i
r N dout
Iout l Lout
dout INV
60 um (c) din din
CONSTO b Xin xout Xin xout Xxin xout
dcin dcout dcin dcout dcin >0/1] | dcout
= T—T i | dout dout dout
© -8 727 e (e) Interconnect stripline Corner piece Intersection piece
: I 10 pm | | S
1 e e

BRANCH3 q

AND_IB gate (g=ab)

Figure 1. Key components of the cell library. (a) Schematic of the common topology of the AQFP sub-cells. (b) Layout of the sub-cells,
namely the buffer (BFR), inverter (INV), and constant (CONST). (c) Symbol view of the sub-cells. (d) Layout of a logic cell composed of an
INV, CONSTO, and BFR, which produces the function ¢ = ab. (e) Interconnect stripline pieces to connect the logic cells together.

Figure 1(b) shows the latest layout of the AQFP library
using HSTP. The width of the sub-cells reduced from 25 to
20 pm when compared to the original HSTP sub-cells in [19]
by re-orienting the JJs. The height of 40 ym remained the
same. The general shape of the layout in terms of excitation
lines (xin/xout, dcin/dcout) and I/O pins (din/dout) are at
standard locations to enable the modular design of Boolean
logic cells. If we assume the BFR cell is the standard layout,
one can notice there are some minor differences when com-
pared to INV and CONST. In the case of INV, its output
transformer has a reversed spiral to create an inverted mutual
coupling factor (k,,;) so that it can produce an inverted output
signal. For CONST, the dc-SQUID portion of the cell has no
input and as indicated by the center reference in figure 1(b),
the CONST layout was intentionally designed with some
asymmetry so that it will always switch to a constant logic
state when it is clocked. The CONST layout as shown will
always produce a logic ‘0’ when the dc-offset flows in the
positive direction (left-to-right) across the sub-cell (CONSTO).
If we mirror the layout along the y-axis and apply a dc-offset in
the same direction, the CONST sub-cell will always produce a
logic ‘1’ (CONST1).

Figure 1(c) shows the symbolic view of the different sub-
cells. Similar to the CONNECT cell library, the symbols are
scaled to the physical layout so that the designer can

simultaneously compose the schematic/netlist as well as the
physical place and route by hand.

The sub-cells are then abutted together in different com-
binations along with a BRANCH3 sub-cell to create Boolean
logic cells. The BRANCH3 sub-cell is a passive sub-circuit that
merges (sums) the outputs of any combination of BFR, INV
and CONST. The BRANCH3 can also be reversed to create a
signal splitter (fan-out) [18]. Figure 1(d) shows how an INV,
CONSTO, and BFR form together to create an AND_IB (AND
with INV and BFR) cell which performs the logic function of
q = ab. The Boolean AND function is created by having a
CONSTO as one of the sub-cells connected to BRANCH3, and
by the same principle, the Boolean OR function is created by
having a CONST1 as one of the sub-cells connected to
BRANCH3. The other two sub-cells that would connect to
BRANCH3 can be any combination of BFR or INV. For
example, a NAND/NOR function can be made with two INV
sub-cells, and one CONST1/CONSTO respectively.

Like the CONNECT cell library, the interconnect for
AQFP logic is composed of tiles that the designer stitches
together to form the cell-to-cell interconnect. Figure 1(e) shows
the different interconnect pieces available to the designer. The
interconnect are striplines with ground shields above and below
the signal layer. The standard interconnect pitch is 10 ym and
the interconnect tiles can be abutted together.

Supercond. Sci. Technol. 33 (2020) 054006

C L Ayala et al

Inverter integrated into gate

Inputs

Vertical routing channel for feedback or “folding”
N

[
e VSZ VoY

@h/

— L T

AC2 >> I

DC << OR
q)z

AC2 rail

=il

Horizontal (side-by-side)

abuttment possible

AC1 <<

CONST-1/0 logic cells

DC>> OR
¢3
L

and gates that use them

/

(e.g. AND, OR, NAND,
NOR) should be placed

based on DC direction.

S
==

Q‘ _Y \\ATQ I \\) —Y

e Y Y Y Y

w Y VY Y

oY 7 VY

s 1Y 1Y 1Y v
I l

Clock/power rails I

Vertical (output-to-input)
abuttment possible

—<H<F—<—<T

terminated to GND
or pads

Outputs

Figure 2. An arbitrary example of AQFP logic circuit design using symbols scaled to the physical layout. The four-phase clock network is
composed of 2 ac sinusoidal signals (AC1 rail in blue and AC2 rail in green) with a relative phase shift of 90°, and a dc-offset provided by the

DC rail.

2.2. Logic circuit design

Figure 2 shows an example of an AQFP logic circuit using
symbols that are scaled to the actual physical dimensions.
Logic cells are arranged in logic rows where cells that are to
be clocked by the same phase co-exist in the same row. Cells
can be abutted together side-by-side or bottom-to-top as
depicted in the illustration. The four-phase clock is produced
by two ac lines (ACI rail and AC2 rail) and a dc offset (DC
rail). The ACI rail meanders through the odd rows, whereas
the AC2 rail meanders through the even rows. The DC rail
meanders through all logic rows. With this arrangement, one
can note the relative directions of the AC rail and DC rail for
each row. They determine which of the four excitation phases
that the entire row is being clocked by [19]. Furthermore, it is
important to note the direction of the DC rail in each row as it
determines how to orient logic cells built with the CONST
sub-cell such as AND, OR, NAND, NOR, and standalone
CONST1/0. The symbols for these logic cells are denoted

with an arrow indicating which orientation the DC rail should
flow. Designers and cell placement tools need to be aware of
this, otherwise a CONST1 cell would behave as a CONSTO
and vice versa when placed incorrectly.

Because data must flow from one clock phase to the next
in a synchronous manner, it is natural to arrange the logic
rows in an orderly fashion such that a given row i is clocked
by phase imod4 where i € Ny, with the row after that
clocked by phase (i + 1) mod4, and the next clocked by
(i + 2) mod4, and so on. This generally indicates that the
data signals are locally connected to adjacent rows as shown
in figure 2. However, in order to accommodate feedback
loops the designer should allow space within logic rows as a
feed through or pass through vertical channel for the data
interconnect to route back to other logic rows instead of just
the adjacent row. This also creates the opportunity for circuit
‘folding’ in which cells clocked by row x can be moved to
row y as long as (x mod4) = (y mod4), where x, y € Nj.

Supercond. Sci. Technol. 33 (2020) 054006

C L Ayala et al

Simulation, . SystemVerilog
data processing| = = |models, timing models
scripts . . GA-based & testbenches
Ana\l/(i)g _sslir;uI:tlon place-and-route Digital simulation
Jsim_ (optional)
Cell library| == Simulati I ificati Design rule checks| =",
(OA format)| = imulation, optimization, verification (Assura format)| ==
........................ A
y_Y A 4 A2
Physically-aware Physically-aware 8 . Layout check
START System > ysclzhen):ativc\:l yo;)tim}i,ze\(':lv N | Pl e e > Frgteall > Y u&
Overview design e —" generation placement on chip GDS generation
£ A X
\ 4 \ 4
Vﬁg'ﬁgag:{i L a1 Logic synthesis x| Post-synthesis & f— Chip arrival & | g Chip
design ” via Yosys 7~ retiming — testing ~ fabrication
y. Technology file
& design scripts
=="|Cell library == |Measurement
== |(Liberty format) == |scripts

D Cadence Virtuoso environment D Open-source software

D Developed in this work (or in previous works)

Circuit database, configuration files,
models, scripts, etc. developed in this
work (or in previous works)

Figure 3. Semi-custom design flow and environment. The yellow boxes indicate tools that belong to the commercial Cadence Virtuoso design
environment, the orange boxes indicate tools that are open-source, and the light-blue boxes indicate tools that have been developed by this
group. Design files, configuration files, models, and scripts were also developed by this group.

This can allow one to move cells on crowded rows to more
sparsely populated rows as long as timing constraints are met.

3. Design environment

The design environment is based on the Cadence Virtuoso
full-custom integrated circuit (IC) layout suite. However, we
augment this environment with various open-source tools as
well as software and scripts developed in our group. Figure 3
shows the overall diagram of the design flow and environ-
ment. A semi-custom flow would usually start with the sys-
tem overview or specification followed by the diagraming of
the circuit at the schematic-level using the cell library sym-
bols scaled to the physical layout as mentioned in section 2.1.
Because of this, we term this step as ‘physically-aware’
schematic design as the designer is already considering how
to place and route the cells using the schematic symbols. The
schematic of course forms a proper netlist which can be
simulated in an analog simulator. The designer also has the
option to run a place and route tool on their ‘physically-
aware’ schematic in which the genetic algorithm (GA) per-
forms the cell placement and the left-edge channel routing
algorithm performs the interconnect routing [23, 24]. Cells
also have built-in SystemVerilog digital models to perform
digital simulation on the schematic [25]. Once the schematic
has been optimized and verified through analog/digital
simulation, a script is ran to convert the schematic into the
physical layout. The circuit layout is then placed on a pad
frame where the circuit is wired up to the pads. A design rule
check (DRC) is performed to ensure the final layout has no
errors using Assura. In general, the generated circuit itself
should have no DRC errors as it follows a correct-by-

construction philosophy. The cells that make up the generated
circuit have already passed many DRC runs during their
development, including the careful consideration of how the
cells are structured to abut and connect with each other. This
is also why we do not have a layout-versus-schematic check
because the construction philosophy implies that the sche-
matic is already equivalent to the layout. Nonetheless, we still
do a final DRC sign-off as a sanity check before we generate
the GDS file for submission to the foundry.

Another aspect of this design environment is the ability to
code high-level behavioral Verilog/VHDL circuit descriptions
and run it through an open-source synthesis suite called Yosys
[26]. Through the use of a custom-made Liberty file for the
AQFP cell library, Yosys is able to generate a partial netlist
which we process using our own scripts and tools for post-
synthesis so that the netlist becomes a valid AQFP circuit [27].
We also introduce a new step after post-synthesis called
retiming to reduce the number of buffers needed to maintain
data synchronization. After these steps, the netlist can then be
imported into the Cadence Virtuoso environment where the
designer can continue with the design flow described earlier.

In the next sections, we describe in more detail the dif-
ferent tools that make up the environment.

3.1. Cadence Virtuoso backend

As stated previously, the design environment is centered on
Cadence Virtuoso. Being a full-custom IC suite, we started
with Cadence Virtuoso as a means to develop the AQFP
cell library. Building the cell library itself is effectively a
full-custom design task. Cadence is already well-supported
by AIST and other Japanese laboratories working with the
superconductor foundry [16, 17] and we are able to get started

Supercond. Sci. Technol. 33 (2020) 054006

C L Ayala et al

Before post-synthesis modification

.-V
Y

Excitation
bias lines

Netlist
fan-out

A

II

X Discrete
o inverters

')\ Unbalanced
| datapath

 nInIng
@téf I
- UG

After post-synthesis modification

-V

1
AQFP splitter
inserted

(O]

)

' i

|

Logic gate] i

with integrated
inverters

(b)

9

o

® N

3

Balancled
datapath
via buffer

(c) insertion

Figure 4. Post-synthesis steps for AQFP logic. (a) Replacing the passive netlist fan-out with an active AQFP splitter element. (b) Collapsing
discrete inverter cells with the proceeding logic cell. (c) Rectifying unbalanced datapaths by inserting the appropriate number of buffers to

maintain data synchronization from one clock phase to the next.

with the already provided technology files, device primitives,
and DRC decks already in place.

The suite also provides numerous ways to import and
export your circuit data including the standard GDS files and
OpenAccess format. Combined with scripts already available
from [15], we have a basic means to simulate our full-custom
schematics (e.g. JJ-level schematics) with JSIM. Furthermore,
our cell layouts can be easily exported to GDS for inductance
and mutual coupling extraction using InductEx.

On the semi-custom end, we heavily use the digital simu-
lator NC Verilog, as a part of the Cadence Xcelium suite for
digital simulation. The Assura DRC tool is applicable to both the
full-custom cell design and semi-custom logic circuit design.

3.2. Logic synthesis and retiming optimization

3.2.1. Previous work. Our initial work on a logic synthesis
methodology for AQFP logic is described in [27]. We used

Supercond. Sci. Technol. 33 (2020) 054006 C L Ayala et al

Before retiming After retiming
r —i - r— j —_"\
¢1 y; \iPL /- N Q1 i SPL e\
. e Deconstructed—" |
— Initial fan-out
fan-out

. Buffering
. Stages

Figure 5. Retiming of AQFP logic circuits. Fan-out elements can be deconstructed and placed near destination logic cells to reduce needless
buffering of data signals that were split early in the dataflow.

Table 1. Circuit optimization results before and after retiming has been applied to several benchmark circuits.

Circuit benchmark Total JJs* Total cells Buffer count® Buffers removed JJs removed Cell reduction JJ reduction
4 bit adder 326 115 71 12 24 0.14 0.07
8 bit 1088 436 338 80 160 0.19 0.15
16 bit 3790 1671 1458 378 756 0.21 0.20
32 bit 14 128 6602 6177 1704 3408 0.22 0.24
4 bit multiplier 1202 436 292 59 118 0.17 0.10
8 bit 6504 2406 1620 443 886 0.21 0.14
16 bit 30962 11564 7886 2263 4526 0.22 0.15
32 bit 130 102 48 903 33543 9250 18 500 0.22 0.14
4-to-16 line decoder 288 83 26 4 8 0.13 0.03
5-t0-32 660 206 90 23 46 0.20 0.07
6-t0-64 1888 693 457 84 168 0.16 0.09
7-t0-128 5468 2228 1757 329 658 0.16 0.12
8-t0-256 18570 8268 7325 1343 2686 0.15 0.14
9-to-512 65 670 30795 28913 5396 10792 0.16 0.16
4 bit shifter-rotator 584 179 92 11 22 0.11 0.04
8 bit 2276 760 459 128 256 0.22 0.11
16 bit 8684 3266 2424 464 928 0.16 0.11
32 bit 33358 14 051 12 003 1989 3978 0.14 0.12
64 bit 105 878 46 551 41 635 15 449 30 898 0.27 0.29
128 bit 444 802 207 204 195 531 82518 165036 0.30 0.37
Minimum reduction: 0.11 0.03
Average reduction: 0.19 0.14
Maximum reduction: 0.30 0.37

" Total JJs is the total number of Josephson junctions, total cells is the total number of logic cells including buffer cells, and buffer count is the total
number of buffers. These totals are all before retiming has been applied.

the Yosys synthesis suite [26] to generate a CMOS-like The resulting netlist resembles that of a conventional CMOS
structural Verilog netlist. Yosys is able to map combinational circuit and is not quite ready to be simulated in our AQFP
circuits to AQFP logic cells through a Liberty file that design environment. Figure 4 shows the different post-
describes our cell library and the different logical functions. synthesis modifications that must be applied before the netlist

Supercond. Sci. Technol. 33 (2020) 054006

C L Ayala et al

Y

(a) Vertically aligned rows

"

Half-cell shift correction

(b) Rows with half-cell shift correction

ST

Figure 6. Comparison of vertically aligned placement versus placement with a half-cell shift correction. (a) Due to vertically aligned rows,
there are column conflicts as shown in the red circles. Dogleg routing (highlighted in purple) is needed to overcome the column conflicts, but
also creates additional routing complexity. (b) By introducing a half-cell shift between adjacent rows, the logic cell pins no longer align and
cause column conflicts simplifying the implementation of channel routing.

appears more like a correct AQFP logic circuit. First, the
passive fan-outs in the netlist must be replaced with active
AQFP splitters (figure 4(a)). Second, an optimization step can
be applied in which standalone inverters are collapsed into the
proceeding logic cell (figure 4(b)). This is because AQFP
logic cells can create inverted data in-place for any logic cell,
there is no need to have a discrete inverter in an AQFP logic
circuit netlist. And lastly, all cells must receive their input
from the previous clock phase and transmit their output to a
cell that is clocked on the next clock phase. It is not possible
to transmit data across more than one phase; data must always
be properly synchronized from clock phase to clock phase.
Figure 4(c) shows an example of a Yosys generated netlist
where one cell transmits data to a cell that is clocked two
phases ahead of it, which is perfectly fine in a conventional
CMOS netlist but not for AQFP logic. This unbalanced path
must be re-balanced by inserting a buffer (or as many buffers
needed) so that data is safely transmitted from one phase to
the next. We automated splitter insertion and merging discrete
inverters into logic gates through a Python script developed in
[27], but inserting buffers to ensure data synchronization was
done manually.

3.2.2. Automating synchronizing buffer insertion. To
automate buffer insertion for proper data synchronization,
we first developed a structural netlist interpreter and analyzer
which determines the clock phase for each cell in the netlist.
Listing 1 shows the pseudo code of the phase analysis. If cells
and signal lines of the circuit are considered as nodes and
edges respectively, the circuit can be considered as a directed
graph. Each node in the netlist operates as an event sender and
an event receiver. An ‘event’ is a packet of information
containing a counter that corresponds to the phase number.
This event is transferred through the edge that connects two
nodes. The phase of a node is calculated as MAX (node.
receivedPhase) +1 or in other words, after events have
been received from all inputs to the node, use the largest event
information received (the phase) and increment it. Once the

phase is fixed, the node can prepare its own event packet with
its current phase information and transmit it to all output ports
(all output edges).

Listing 1. Phase analysis pseudo code

1 //Event listener

2 Function (phase) :

3 node.receivedPhase.Add (phase);

4

5 //State checker:

6 if node.inputList.Length==node.receivedPhase.
Length:

7 node.phase=Max (node.receivedPhase) + 1;

8 for output_port in node.outputList:

9 Send_Event (output_port, node.phase) ;

For example, top-level circuit input pins are fixed to
phase O at first. Then this ‘phase 0’ event is transferred from
an edge of the input pin to another cell. Assume a two-input
one-output AND cell just received a single ‘phase 2’ event. At
this time, this AND cell cannot send an event out because its
phase is not yet fixed. It still needs to wait for an event to
arrive at its other input. Next, a ‘phase 4’ event arrives at the
other input of the AND cell. Now it can calculate its phase by
taking the maximum of its two received events and
incrementing it: MAX(2, 4) + 1 = 5. The AND cell can
now send its ‘phase 5’ event to all of its outputs. Through this
process, the phase information is propagated in parallel and
eventually each node will determine its own phase. At
present, this approach does not automatically handle feedback
loops in the netlist.

To determine where to insert buffers, we calculate the
phase difference n = B — A where B and A are the phases of
two nodes connected by an edge. If n > 2 then we need to
insert a buffer chain between A and B of length n — 1.

Supercond. Sci. Technol. 33 (2020) 054006

C L Ayala et al

=
|

3.6 mm

7.5 mm

2.8 mm

3.0 mm (b)

Figure 7. GA-based place and route result of a 16 bit Kogge—Stone adder before implemented refinements (a) and after (b). The dark
rectangles are logic cells placed in rows whereas the blue lines are the interconnect.

3.2.3. Retiming for buffer reduction. Through the development
of the logic synthesis methodology, it became clear that the
largest part of the composition of the synthesized circuits are just
buffers to maintain data synchronization. Table 1 shows a list of
various benchmark circuits including parallel adders, parallel

multipliers, line decoders, and shifter-rotators of different sizes.
The table also shows the total cell count as well as the buffer
count. It is clear that for all these benchmark circuits, buffers
take up a large portion of the design. One way to reduce the
number of synchronizing buffers is through retiming [28].

Supercond. Sci. Technol. 33 (2020) 054006

C L Ayala et al

Normalized Excitation Margin

-30 -20 -10

0 10 20 30 40

Excitation Clock Skew [ps]

Figure 8. Extracted timing window at 5 GHz using JSIM_n for four-phase clocking and for three-phase clocking. The larger timing window
in four-phase clocking is a primary driver towards creating the design methodology around four-phase clocking.

Retiming involves manipulating data taps (or splitters) and
moving buffers from the output side of a splitter to the
input side.

The difference in excitation phase d between a splitter (at

phase n) and a logic cell A (at phase a) is represented as
d=n-—a.

ey

When d > 2, the splitter can be relocated just before the logic
cell. Its new excitation phase n’ can be calculated as

n=n+d-1 ()
The number of reduced buffers r is represented as
r=(-Dx@d-10, 3)

where fis the number of fan-outs of the splitter.

If another logic cell connected to one of outputs of the
splitter shows d < 2, we can recursively process the
remaining outputs of the splitter that still satisfy d > 2
resulting in deconstructing a large fan-out into two or more
smaller fan-outs as shown in figure 5.

We tested our retiming approach on a collection of
benchmark circuits synthesized by Yosys and then process
them with our post-synthesis interpreter to handle AQFP-
related optimizations. The benchmarks were written in
behavioral Verilog with a generic size parameter to easily
change the size of the circuit. Table 1 shows the results of
retiming. The approach appears to be more effective when the
circuit size grows. We note an average reduction of 14% in
JJs with 37% being the best reduction. We expect improved
reduction through the introduction of larger fan-out cells to
enable more ways to deconstruct fan-outs. For now, we only
considered retiming with a maximum fan-out of 3.

3.3. Place and route

3.3.1. Previous work. The place and route tools in this
environment were developed in [23, 24]. The logic cell placer
uses the GA [29]. The algorithm generates a population of
random placement results and evaluates each result with a
fitness function. Because AQFP logic has a soft cell-to-cell
interconnect length constraint of 1 mm [18], we designed our

10

fitness function as shown in equation (4):

Num.of nets 1

2

i=1

fitness =

(Iength; < 1 mm)? (length)): (length; x ¢) ’
4)

where ¢ is a weighted penalty multiplier. In short, the
more nets whose length is greater than 1 mm exist, the lower
the fitness of the placement result. The best placement results
are kept and undergo a crossover process where the best
results are systematically combined to generate new place-
ment results (children). The fitness of these new placement
results are then evaluated and the process repeats for the next
generation. This continues until a terminating condition is met
such as reaching a certain fitness level, reaching a certain
fitness stagnation level after a number of generations, or
reaching the maximum number of generations. Furthermore,
mutation results are also introduced randomly to prevent the
algorithm from falling into a local minimum.

The left-edge channel routing algorithm is used to route
the interconnect between placed cells [30]. Conventionally, if
we do not assume feedback loops and circuit folding, the
logical rows simply propagate data to the next adjacent row
just as we showed in figure 2. This makes the left-edge
algorithm very suitable for completing the row-to-row routing
of AQFP logic circuits. For sufficiently large circuits, it is
impossible to completely eliminate all interconnects longer
than the constraint of 1 mm. For routing channels (the routing
region between adjacent logic rows) where there exists at least
one net with a length longer than this constraint, we insert a
buffer to serve as a signal repeater [23]. To maintain data
synchronization, buffers must be applied to all nets in this
routing channel.

3.3.2. Improvement of GA and routing. As we tested our
place and route tool on larger circuits, the results became
unreasonably large in area. Our placer applied GA to the
entire circuit as a whole and when the circuit becomes large, it
becomes more difficult to converge to a sufficient solution.
One refinement we applied is we conducted the GA process
not on the entire circuit but on smaller sections of the circuit.
More specifically, we applied GA to adjacent logic rows where

Supercond. Sci. Technol. 33 (2020) 054006

C L Ayala et al

the driving logic row cells (the row that is producing the data
signals) have a fixed position, and the receiving logic row cells
(the row that receives data signals from the driving logic row)
are optimized via GA. Once a sufficient solution has been
found, the position of the receiving cells is fixed and that row
of cells now becomes the driving logic row, whereas the
subsequent logic row becomes the new receiving logic row. In
other words, optimization is now done on a row-by-row basis
and not by applying GA globally on the entire circuit.

In addition, we exploited a critical property that was key
in simplifying the routing problem which is with the way the
logic cells and the interconnects were designed relative to
each other. Assuming logic cells are tightly packed in a row
and the output pins are vertically aligned with the input pins
of the row below, we would have column conflicts that would
make channel routing more difficult. Figure 6(a) illustrates
this exact scenario. The red circles denote where column
conflicts are occurring and the highlighted purple routes show
that the channel router must be able to produce ‘dogleg’
routes in which a horizontal segment of wire must be broken
up into two horizontal segments existing on different tracks.
However, if we introduce a half-cell shift in which we
shift the entire row by half the width of a BFR cell
(20 yum/2 = 10 pm) as shown in figure 6(b), we can avoid
all those column conflicts and use a very simple implementa-
tion of channel routing without ‘dogleg’ routes. This is
possible because the data I/O pins that exist on the top and
bottom of the cells have a minimum pitch of 20 um even
when cells are abutting next to each other as depicted in
figure 6. The minimum pitch of the interconnect is 10 ym so it
is capable of using the space between pins as a branching
point (vertical wire segment) without conflicting with another
I/O pin. Of course this works if the cells are placed on
multiples of 20 ym along the x-axis but the placer has a
heuristic adjustment step to try to fit the cells in this manner
after GA finishes.

Figure 7 shows an example of a place and route result of
a 16 bit Kogge—Stone adder before we implemented the above
refinements and afterwards. Figure 7(a) is the place and route
result after the GA placer (before refinements) detected
stagnation of the fitness level. Figure 7(b) is the result using
the refined GA. Approximately 50% improvement in area was
obtained.

3.4. Analog simulation

The basic framework to support analog simulation from the
schematics designed in Cadence Virtuoso has already been
prepared in [15]. However, additional scripts were needed to
do modify the generated JSIM netlist to quickly change data
patterns, frequency, and eventually more complex scripts to
evaluate the parameter margins of cells and to characterize the
timing window of cells [31]. We are currently using the noise-
enabled flavor of JSIM (JSIM_n) [32] which also provides
more precision in the output data.

More recently, the IARPA SuperTools project has called
upon the need to develop more modern analog simulators for
superconductor electronics. One of those efforts is JoSIM [33].

11

1 2

Figure 9. First order modeling of excitation microstripline delay for a
length of 5 yum where L = 1.55pH, C, = C;, = 0.31 {F.

JoSIM is a drop-in replacement for JSIM, so it is a good fit for
our design environment. A major weakness of JSIM is its
inability to handle large circuits, often crashing when attempt-
ing to simulate a logic circuit consisting of a few thousand JJs.
JoSIM aims to rectify this issue in the long term. In the
meantime, we are still validating JoSIM with our JSIM results.

3.5. Digital simulation

3.5.1. Previous work. Our first efforts in developing the
digital cell-level models for AQFP logic started in [25]. Its
features include the following:

 Using high ‘Z’ in the data output to faithfully model the
reset/null state of the AQFP

* Built-in setup and hold time checks

* Modeling of clock skew

We used a tri-level encoding of the AQFP data signal
with logic ‘0’, logic ‘1°, and high ‘Z’. High ‘Z’ corresponds to
the AQFP when it is reset after an output is produced. This is
particularly important for adding setup (minimum time
separation for input to be steady before the clock arrival)
and hold time (minimum time input must remain steady after
the clock arrival) checks into the model. By sweeping the
clock skew applied to the AQFP, we can obtain a timing
window as shown in figure 8 and extract the timing checks to
be built into the digital models of the gates.

To model clock skew, we performed a first order
approximation of the delay of a 5 um microstrip line as seen
in figure 9 with L= 155pH and C, = C, = 0.31fF.
Equation (5) shows that the approximate delay of a 5 um
microstrip line is about 0.031 ps. This can be equivalently
expressed as a delay per millimeter or 6.20 psmm '. This
delay is provided to the logic and wiring cells as a transport
delay in the digital models

tsum = VLC = JL(G + C) ~ 0.031 ps. (5)

3.5.2. Supporting four-phase clocking. Our AQFP cell
library initially used three-phase clocking early in its
development. Figure 8 shows that four-phase clocking
has an even larger timing window when compared to
three-phase clocking. Thus, a four-phase cell library
based on using 2 ac excitation currents and 1 dc offset
was developed [19]. This introduced new challenges in

Supercond. Sci. Technol. 33 (2020) 054006

C L Ayala et al

data Logic "1 Logic '1'
signal Highz’ High 2! . High '2' High 'Z'
g (reset) (reset) Logic 0 (reset) (reset)
Phase 1 Phase 3
(act direct) [(act inverted)
aci
Phase 2 Phase 4
(ac2 inverted)| (ac2 direct)
ac2
90° delay
dc
A
»
time
(a) Digital representation of data, ac and dc signals
din
| |—| |] —
ac o . . o
e dc o biasDir °
o o} ~ -
de Lo, A\ / 0 J nomEx
din o bfr behavior » dout
_I_I_l_'_ _I_I_l_'_
—
dout e
(b) BFR symbol and corresponding digital model
Case I: ac and dc have same direction
U .
Y
ac o—— . . ——o o— . . f———o0 ac
d¢ o—| biasDir | ____J o—1 biasDir | ___ 5 §¢
(i d) (i d) I
J— ac non-inverte ac non-inverte _,—
. .
nomEx nomEx

Case lI: ac and dc have opposite directions

I
—>

ac

biasDir

biasDir

(ac inverted) (ac inverted)

nomEx nomEx

(¢) Two cases to normalize the excitation clock

Figure 10. Modeling of the four-phase clock in digital simulation. (a) The testbench provides the appropriate digital representation of the
data, ac, and dc signals as depicted. (b) Digital interfacing symbol and its internal building-blocks composed of a biasDir module and the
logic behavior of the cell. (c) biasDir creates a normalized excitation clock based on the relative directions of the ac clock and dc offset
provided to the cell.

12

Supercond. Sci. Technol. 33 (2020) 054006

C L Ayala et al

|1 1000,000p3

B @ aso
B 1 wsa
B ae
& oo |
onft] |2
@« [DC
& camy Gaﬂlfyl Wy
B B swniso
& s s'um[15
e AP AR
B somis u R
B sumiszy Py ”lm lll
B somon [0 Iul i l! ll”lll 1y 1”I i
& somiron [UPRY mnluI 1 [”llEl'I i
& wmm

ARtk kA

AR
A kA
"f"n i 1'

ol ll "“Il“lmflhlh !lt!1ll

r‘ R ILRL i ﬁ*i"‘a
il 11 i M)

ik} :
‘-nl uTh “h‘ll:i‘\”' ik

LI 0 1
T |||‘_
& s h U Ii
ottt Yttt i o St ikt o 'llhhf”“h
11 l
& s \m' RLILR i {1 n'“li'i'.h‘.‘l'h"“ TR A
J 11
& smz B TR T
| i U

Ia 000,000p

1sum[o]

Iauou 000ps Ia 000,000p3 u

o-"doocooocoaaaaaaaa

1

T
i At ¥ i At
T T ||[1 ”u“m‘.qi‘ TR TTT ST
B s B e o™
Y e lJill” T TR TR T AT
L WO
B st [YAY lml‘lx.l CTRIATITR TR Ty R TR Ty
@ sum(3] ’l? | ‘l\l. by i|!l| "ll'll || LT TTTYTRN I l‘l'l llllllrli 11} |F|F ”,]
”1 it |i"" L T L 11 ” Hl Fitihd A e
& wern éll (I A un”q KT WAL any
& s P “‘lH o A

18 16 1 10 1 s 108 00

i

i e

Figure 11. Digital simulation of a 16 bit Kogge—Stone adder at 5 GHz based on the modeled four-phase clocking approach using 2 ac signals
and 1 dc signal. Note the time skewed output produced from the first order modeling of the microstripline delay of the excitation clock line in

the inset.

modeling the clock for four-phase AQFP because each cell in
the digital simulation must understand which clock phase it
belongs to. Previously, this was simply connecting the cell to
one of three ac excitation lines in three-phase clocking.

With four-phase clocking, we need to extract the
excitation phase of a cell through both the ac signal and dc
signal it is connected to. Figure 10(a) shows how signals are
represented in digital simulation including the ac excitation
signal, the dc offset, and the data signals transmitted from one
cell to the next. Specifically, the testbench provides a
digitized version of AC1, AC2, and the dc offset. The arrival
direction of these signals at each cell during simulation is
exactly what determines the clock phase that each cell is
assigned to. Figure 10(b) illustrates the symbolic view of the
BFR from perspective of a user. Internally, that BFR is
composed of a module called biasDir. This module
observes from which direction the ac and dc signals arrive
into the cell. Figure 10(c) shows each arrival scenario and
how it manipulates the incoming ac signal to provide a
normalized excitation clock to the behavioral model of the
cell so that it operates on the correct excitation phase. There
are two cases: (1) if ac and dc arrive in the same direction, the
normalized ac signal applied to the model will remain the
same as the original ac signal. (2) If ac and dc arrive in
opposite directions, the normalized ac signal applied to the
model will be the inverted version of the original ac signal.
With the two ac signals (ACl and AC2 with a phase
difference of 90°) combined with the two cases described
above, each of the four-phases can be properly assigned to all
connected cells. The timing checks were also updated to take
into account the larger timing window of four-phase clocking.
Figure 11 shows the digital simulation of a 16 bit Kogge—
Stone adder using the newly established four-phase digital
models. Because of the physically large width of the circuit,
one can observe the notable time skew of the output bits that
our digital models support.

13

4. Demonstration of prototype chips

4.1. Previous work

Throughout the development of this design methodology and
environment, we have already designed and experimentally
verified various AQFP logic circuits including parallel adders,
register files, and shifter-rotators [24, 34—-36]. Each of them
focused on different aspects of the design environment and
served as test vehicles for debugging and refining our meth-
odologies to the state that it is now. More recently, a high-
speed demonstration of an 8 bit Kogge—Stone adder designed
and verified using this environment has been reported [9].

4.2. Microprocessor execution units

Towards the development of a microprocessor, we used this
environment to design the execution units of the microprocessor.
These include a 4 bit arithmetic logic unit (ALU) and 4 bit data
shifter. Figure 12(a) shows the micrograph of the ALU. It per-
forms 6 logical functions, namely xor, xnor, and, or,
and_notb (ab), and or_notb (a + b). It also performs inte-
ger addition and subtraction. The structure uses the Kogge—Stone
parallel prefix tree [37] and adopts majority-based logic [34]. The
circuit has an area of 2.1 x 1.7mm, a latency of 20 phases (5
cycles), and is composed of 1058 JJs. Because of the structural
nature of the design, it served as an excellent candidate for manual
design but with assistance from various interactive design scripts
to help accelerate the manual design flow and verification.

The 4 bit data shifter performs 4 types of shifter opera-
tions, namely s11 (shift left logical), s1r (shift right logical),
sla (shift left arithmetic, equivalent to shift left logical), and
sra (shift right arithmetic). The shift amount can vary from 0
to 3. This is also one of the first designs completely done
starting from a Verilog behavioral description to layout using
the tools available in our design environment, and ultimately

Supercond. Sci. Technol. 33 (2020) 054006 C L Ayala et al

dein, data_a[3:0], data_b[3:0], ALU_isSub, ALU_isLogic, ALU_logicOP[1:0] e e T Ay
== T
dc_in
ack T 1 ™ data[3:0], sh_ctrl[1:0], sh_amt[1:0]
3 ac
K'z—' Co T — T
g 25— tegu I 1A
[Y 751...1.' "!"...«""m
V- -

1.5 mm

1.7 mm

- i 0 {7
|
e~ et SR | |
¥ = %ﬁmiﬁﬁif-ﬁ data_out[3:0]
2.4 mm B cout, data_out[S:O'] i L T 3 47 &7 47° 4F]
(a) 4-bit ALU chip (b) 4-bit data shifter chip

Figure 12. Micrograph of the prototype execution units for an AQFP microprocessor under development using the established design
methodology and environment.

AC1
o

\J|
AC2
o

VIV VTV
-1 - ritical Test . . .

sor xor xnorand: or xorX norand O xor xnorand or xorxnorand?or ! ‘
0 Pt ott o s renPDLI0Q0 1 RRUIO Rt

L LA JUU AL 3
UL N3] (B A 1
A 08 R A RS M N
0 VO SO [OO R 1

100 120 140 160 180 200 220 240 260 280 | 300 320 340 360 380 400

=

[mV]
Out[0] Out[1] Out[2] Out[3] Out[4]

Time [us]
A)) add) sub)
T T T T 1
A=0011, A=1100, A=1111,,0000,{1111:|1111,,0011,,1101, A=1111,,00005,00005,11115,00115,1101,
B:O‘]O']b B=1010b B=00005,1111,f00014,11115,,0101,,0100, B=0000,,11115,,0000,,1111,,01015,0100,

Figure 13. Measurement output waveform of the 4 bit ALU. The first set of test patterns iterate through all the logic operations for a fixed data
pattern where the most significant bit (index 3) is the left-most binary digit. The two 4 bit operands collectively cover the two-input truth table
for each logic operation. The test is repeated again with the data pattern inverted. Then a series of add and subtract operations are tested

including a critical carry test where the carry signal propagates from the least-significant bit to the carry-out (out[4]). All patterns are correct.

showing full operation in experimentation. The circuit has an ACl and to AC2. The nominal dc offset is 1.2 mA. We used a
areaof 1.1 x 1.5 mm, a latency of 10 phases (2.5 cycles), and data pattern generator to create a +10 pA logic ‘1’ and a —10 A
is composed of 498 J1Js. logic ‘0’. An on-chip dc-SQUID stack [9] with additional room
Both circuits were fabricated using the HSTP 10kAcm > temperature amplification provides output read-out. It uses return-
Nb/AlO,/Nb process. The chips were tested using an immersion to-zero encoding such that logic ‘1> values produce a positive
probe lowered into a liquid helium Dewar to achieve a 42K current pulse that resets back to zero with a duty cycle propor-
cryogenic environment. We surrounded the chip carrier of the tional to the excitation cycle time. Logic ‘0’ values produce no
probe with two-layers of Mu-metal shielding. A function gen- activity on the output. Figure 13 shows correct operation over all
erator created 2 ac sinusoidal sources (AC1 and AC2) with a ALU operations for various data patterns at 100 kHz and
relative phase difference of 90°. A dc offset is coupled to both figure 14 shows correct operation over all shifter operations and
excitation lines on-chip to create the four-phase excitation clock. shift amounts for various data patterns at 100 kHz.
The excitation clock lines and dc offset are 50 (2-terminated at Furthermore, we measured 2 chips per wafer across a total
room temperature. We applied a nominal amplitude of 900 uAto of 4 wafers for each circuit. Table 2 summarizes the

14

Supercond. Sci. Technol. 33 (2020) 054006

C L Ayala et al

AC1

7!

1
0
-1
1
0

AC2

-1

50
0

out[3]

50

out[2]

[mV]

out[1]

out[0]

450

£

1

500 850 900

Time [ps]

data=1111, data=0111,

data=1000,

data=1010, data=0101,

Figure 14. Measurement output waveform of the 4 bit data shifter. Five different data patterns are tested in this example with the most
significant bit (index 3) being the left-most binary digit. For each data pattern, all four shifter operations have been demonstrated. For each
shifter operation, a shift amount of 0, 1, 2, and 3 have been applied at each cycle. All patterns are correct.

Wafer B - Chip 1 -AC1 s e s
Wafer B - Chip 1-AC2f- O b
Wafer C - Chip 1-AC1]
Wafer C - Chip 1-AC2 _ -
Wafer C - Chip 2 - AC1 e —
Wafer C - Chip 2-AC2- e ———— b
Wafer D - Chip 1-AC1 .]
Wafer D - Chip 1-AC2[| S
Wafer D - Chip 2 - AC1 .]
Wafer D - Chip 2 -AC2|- ——]
Simulated - AC1 _
i - e _____HHU
Simulated - AC2[- - z - . i
=30 -20 -10 0 10 20 30
Excitation Margin [%)]

(a) 4-bit ALU

Wafer C -
Wafer C -
Wafer C -
Wafer C -
Wafer D -
Wafer D -
Wafer D - Chip 2
Wafer D - Chip 2

Simulated

Simulated

-AC1
-AC2
-AC1
-AC2
-AC1
-AC2
-AC1
-AC2
-AC1
-AC2

Chip 1
Chip 1
Chip 2
Chip 2
Chip 1
Chip 1

-30 -20 -10 0 10

Excitation Margin [%]
(b) 4-bit data shifter

20

w
o

Figure 15. Excitation margins of all fully functional chips for the ALU (a) and the data shifter (b) measured at 100 kHz. The normalized AC

amplitude is 900 pA.

Table 2. Summary of measurement results of all ALU and shifter
chips designed for the 10 kA cm™2 process.

Measured

J. ALU ALU Shifter Shifter
Wafer ID (kAem™>) chip1 chip 2 chip 1 chip 2
Wafer A 7.156 X X X U
Wafer B 8.075 F U X X
Wafer C 8.680 F F F F
Wafer D 10.387 F F F F

Working chips: 5/8 4/8

‘X’ denotes non-working chips (no output or oscillating output).
‘U’ denotes partially working chips (unstable output).
‘F’ denotes fully functioning chips.

measurement results. The measured critical current J,. for Wafers
A and B is about 20-30% smaller than the expected value of
10kA cm ™2 This likely had a negative effect on the yield of
the circuits on those wafers. For Wafers C and D, the measured
J. was within 15% of the expected value. All circuits from
those wafers fully operated. Across all wafers, we successfully

demonstrated 5 out of 8 ALU chips, and 4 out of 8 data shifter
chips. Lastly, we measured the excitation current (AC1 and
AC2) amplitude margins as shown in figure 15 using only the
fully functional chips with the midpoint set to 900 nA. The
simulated margins are also shown. The best margins were found
on Wafer D which were measured to be nearly +30%. These
excitation margins correspond well with the simulation results.

5. Conclusion

We have developed a design methodology and environment
for AQFP logic circuits. The environment is capable of sup-
porting completely manual semi-custom design, and semi-
automated logic synthesis with post-synthesis and retiming. A
place and route tool provides a more automated means to
complete the circuit design with reasonable quality-of-results.
It has strong verification capabilities for large digital circuits,
and has already produced several working designs as
demonstrated in experiment including a 4 bit ALU and data

Supercond. Sci. Technol. 33 (2020) 054006

C L Ayala et al

shifter for a microprocessor design with wide operating
margins of the excitation currents.

The development direction was to first assist in accelerating
the manual design of our circuits with some capabilities for logic
synthesis and place and route. With the successful demonstration
of several circuits using this flow, it is now clear that future
development should be towards building a completely standa-
lone top-down design flow where a designer can simply write
the Verilog description of the circuit and provide a configuration
file that specifies which tools and/or optimization steps that the
top-down design flow should use. This would be a major step
towards being independent of expensive commercial tools and is
a direction we would like to pursue in the future. Lastly, our
environment needs to be further enhanced to support the auto-
mation of feedback loop designs and high-performance clocking
techniques.

Acknowledgments

This work was supported by the Grant-in-Aid for Scientific
Research (S) No. 26 220 904 and the Grant-in-Aid for Early-
Career Scientists No. 18K13801 from the Japan Society for
the Promotion of Science (JSPS). This work was also sup-
ported by VLSI Design and Education Center (VDEC), the
University of Tokyo in collaboration with Cadence Design
Systems, Inc. The circuits were fabricated in the Clean Room
for Analog-digital superconductiVITY (CRAVITY) of the
National Institute of Advanced Industrial Science and Tech-
nology (AIST) using the standard process (STP2), and the
high-speed standard process (HSTP).

ORCID iDs

Christopher L Ayala © https: //orcid.org/0000-0002-
3510-9626

Ro Saito ® https: //orcid.org/0000-0002-8581-3574

Tomoyuki Tanaka
Olivia Chen
Naoki Takeuchi

https: //orcid.org /0000-0002-0020-8712
https: //orcid.org /0000-0002-2208-0262
https: //orcid.org /0000-0003-0396-5222

Yuxing He @ https: //orcid.org/0000-0001-5628-8080
Nobuyuki Yoshikawa @ https: //orcid.org,/0000-0001-
6191-6715

References

(1]
(2]
(3]
(4]

)
(6l

Holmes D S, Ripple A L and Manheimer M A 2013 /EEE
Trans. Appl. Supercond. 23 1701610

Dorojevets M, Chen Z, Ayala C L and Kasperek A K 2015
IEEE Trans. Appl. Supercond. 25 1-8

Chen O, Cai R, Wang Y, Ke F, Yamae T, Saito R,
Takeuchi N and Yoshikawa N 2019 Sci. Rep. 9 10514

Kirichenko D E, Sarwana S and Kirichenko A F 2011 IEEE
Trans. Appl. Supercond. 21 776-9

Mukhanov O A 2011 [EEE Trans. Appl. Supercond. 21 760-9

Herr Q P, Herr A Y, Oberg O T and loannidis A G 2011
J. Appl. Phys. 109 103903

16

(7]
(8]
(91
[10]

[11]

[12]

[13]

[14]

[15]
[16]

(7]

(18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]

[26]
[27]

[28]

[29]
[30]

(31]
[32]
[33]
[34]
[35]
[36]

[37]

Yoshikawa N and Kato Y 1999 Supercond. Sci. Technol. 12
918-20

Tanaka M, Ito M, Kitayama A, Kouketsu T and Fujimaki A
2012 Japan. J. Appl. Phys. 51 053102

Takeuchi N, Yamae T, Ayala C L, Suzuki H and Yoshikawa N
2019 Appl. Phys. Lett. 114 042602

Takeuchi N, Yamanashi Y and Yoshikawa N 2014 Supercond.
Sci. Technol. 28 015003

Tolpygo S K, Bolkhovsky V, Weir T J, Wynn A, Oates D E,
Johnson L M and Gouker M A 2016 IEEE Trans. Appl.
Supercond. 26 1-10

He Y, Ayala C L, Takeuchi N, Yamae T, Hironaka Y, Sahu A,
Gupta V, Talalaevskii A, Gupta D and Yoshikawa N 2020
Supercond. Sci. Technol. 33 035010

Mead C and Conway L 1979 Introduction to VLSI Systems
(Boston, MA: Addison-Wesley Longman Publishing Co.,
Inc.)

Neil H E and Weste D M H 2010 CMOS VLSI Design: A
Circuits and Systems Perspective (Reading, MA: Addison-
Wesley)

Yorozu S, Kameda Y, Terai H, Fujimaki A, Yamada T and
Tahara S 2002 Physica C 378-381 14714

Hidaka M, Nagasawa S, Hinode K and Satoh T 2013 /EEE
Trans. Appl. Supercond. 23 1100906

Nagasawa S, Hinode K, Satoh T, Hidaka M, Akaike H,
Fujimaki A, Yoshikawa N, Takagi K and Takagi N 2014
IEICE Trans. Electron. E97.C 132-40

Takeuchi N, Yamanashi Y and Yoshikawa N 2015 J. Appl.
Phys. 117 173912

Takeuchi N, Nagasawa S, China F, Ando T, Hidaka M,
Yamanashi Y and Yoshikawa N 2017 Supercond. Sci.
Technol. 30 035002

Takeuchi N, Ehara K, Inoue K, Yamanashi Y and
Yoshikawa N 2013 IEEE Trans. Appl. Supercond. 23
1700304

Fang E S and Van Duzer T 1989 A josephson integrated circuit
simulator (JSIM) for superconductive electronics application
Extended Abstracts of Int. Superconductivity Electronics
Conf. pp 407-10

Fourie C J, Wetzstein O, Ortlepp T and Kunert J 2011
Supercond. Sci. Technol. 24 125015

Murai Y, Ayala C L, Takeuchi N, Yamanashi Y and
Yoshikawa N 2017 IEEE Trans. Appl. Supercond. 27 1-9

Tanaka T, Ayala C L, Chen O, Saito R and Yoshikawa N 2019
1IEEE Trans. Appl. Supercond. 29 1-6

Xu Q, Ayala C L, Takeuchi N, Yamanashi Y and Yoshikawa N
2016 IEEE Trans. on Appl. Supercond. 26 1-5

Wolf C Yosys Open SYnthesis Suite (http://clifford.at/yosys/)

Xu Q, Ayala C L, Takeuchi N, Murai Y, Yamanashi Y and
Yoshikawa N 2017 IEEE Trans. Appl. Supercond. 27 1-5

Xun L, Papaefthymiou M C and Friedman E G 2002 [EEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 21 184-203

Goldberg D E and Holland J H 1988 Mach. Learn. 3 95-9

Yoshimura T and Kuh E S 1982 IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 1 25-35

Ayala C L, Takeuchi N, Xu Q, Narama T, Yamanashi Y,
Ortlepp T and Yoshikawa N 2015 IEICE Tech. Rep. 115
7-12

JSIM and JSIM_n (http://0.sun.ac.za/ix/?q=tools_jsim)

Delport J A, Jackman K, Roux 1 P and Fourie C J 2019 IEEE
Trans. Appl. Supercond. 29 1-5

Ayala C L, Takeuchi N, Yamanashi Y, Ortlepp T and
Yoshikawa N 2017 IEEE Trans. Appl. Supercond. 27 1-7

Tsuji N, Ayala C L, Takeuchi N, Ortlepp T, Yamanashi Y and
Yoshikawa N 2017 IEEE Trans. Appl. Supercond. 27 1-4

Chen O, Saito R, Tanaka T, Ayala C L, Takeuchi N and
Yoshikawa N 2019 IEEE Trans. Appl. Supercond. 29 1-5

Kogge P M and Stone H S 1973 IEEE Trans. Comput. C-22
786-93

https://orcid.org/0000-0002-3510-9626
https://orcid.org/0000-0002-3510-9626
https://orcid.org/0000-0002-3510-9626
https://orcid.org/0000-0002-3510-9626
https://orcid.org/0000-0002-3510-9626
https://orcid.org/0000-0002-8581-3574
https://orcid.org/0000-0002-8581-3574
https://orcid.org/0000-0002-8581-3574
https://orcid.org/0000-0002-8581-3574
https://orcid.org/0000-0002-0020-8712
https://orcid.org/0000-0002-0020-8712
https://orcid.org/0000-0002-0020-8712
https://orcid.org/0000-0002-0020-8712
https://orcid.org/0000-0002-2208-0262
https://orcid.org/0000-0002-2208-0262
https://orcid.org/0000-0002-2208-0262
https://orcid.org/0000-0002-2208-0262
https://orcid.org/0000-0003-0396-5222
https://orcid.org/0000-0003-0396-5222
https://orcid.org/0000-0003-0396-5222
https://orcid.org/0000-0003-0396-5222
https://orcid.org/0000-0001-5628-8080
https://orcid.org/0000-0001-5628-8080
https://orcid.org/0000-0001-5628-8080
https://orcid.org/0000-0001-5628-8080
https://orcid.org/0000-0001-6191-6715
https://orcid.org/0000-0001-6191-6715
https://orcid.org/0000-0001-6191-6715
https://orcid.org/0000-0001-6191-6715
https://orcid.org/0000-0001-6191-6715
https://doi.org/10.1109/TASC.2013.2244634
https://doi.org/10.1109/TASC.2014.2368354
https://doi.org/10.1109/TASC.2014.2368354
https://doi.org/10.1109/TASC.2014.2368354
https://doi.org/10.1038/s41598-019-46595-w
https://doi.org/10.1109/TASC.2010.2098432
https://doi.org/10.1109/TASC.2010.2098432
https://doi.org/10.1109/TASC.2010.2098432
https://doi.org/10.1109/TASC.2010.2096792
https://doi.org/10.1109/TASC.2010.2096792
https://doi.org/10.1109/TASC.2010.2096792
https://doi.org/10.1063/1.3585849
https://doi.org/10.1088/0953-2048/12/11/367
https://doi.org/10.1088/0953-2048/12/11/367
https://doi.org/10.1088/0953-2048/12/11/367
https://doi.org/10.1088/0953-2048/12/11/367
https://doi.org/10.1143/JJAP.51.053102
https://doi.org/10.1063/1.5080753
https://doi.org/10.1088/0953-2048/28/1/015003
https://doi.org/10.1109/TASC.2016.2519388
https://doi.org/10.1109/TASC.2016.2519388
https://doi.org/10.1109/TASC.2016.2519388
https://doi.org/10.1088/1361-6668/ab6feb
https://doi.org/10.1016/S0921-4534(02)01759-8
https://doi.org/10.1016/S0921-4534(02)01759-8
https://doi.org/10.1016/S0921-4534(02)01759-8
https://doi.org/10.1016/S0921-4534(02)01759-8
https://doi.org/10.1016/S0921-4534(02)01759-8
https://doi.org/10.1109/TASC.2012.2237471
https://doi.org/10.1587/transele.E97.C.132
https://doi.org/10.1587/transele.E97.C.132
https://doi.org/10.1587/transele.E97.C.132
https://doi.org/10.1063/1.4919838
https://doi.org/10.1088/1361-6668/aa52f3
https://doi.org/10.1109/TASC.2012.2232336
https://doi.org/10.1109/TASC.2012.2232336
https://doi.org/10.1088/0953-2048/24/12/125015
https://doi.org/10.1109/TASC.2017.2721965
https://doi.org/10.1109/TASC.2017.2721965
https://doi.org/10.1109/TASC.2017.2721965
https://doi.org/10.1109/TASC.2019.2900220
https://doi.org/10.1109/TASC.2019.2900220
https://doi.org/10.1109/TASC.2019.2900220
https://doi.org/10.1109/TASC.2016.2615123
https://doi.org/10.1109/TASC.2016.2615123
https://doi.org/10.1109/TASC.2016.2615123
http://clifford.at/yosys/
https://doi.org/10.1109/TASC.2017.2662017
https://doi.org/10.1109/TASC.2017.2662017
https://doi.org/10.1109/TASC.2017.2662017
https://doi.org/10.1109/43.980258
https://doi.org/10.1109/43.980258
https://doi.org/10.1109/43.980258
https://doi.org/10.1023/A:1022602019183
https://doi.org/10.1023/A:1022602019183
https://doi.org/10.1023/A:1022602019183
https://doi.org/10.1109/TCAD.1982.1269993
https://doi.org/10.1109/TCAD.1982.1269993
https://doi.org/10.1109/TCAD.1982.1269993
http://www0.sun.ac.za/ix/?q=tools_jsim
https://doi.org/10.1109/TASC.2019.2897312
https://doi.org/10.1109/TASC.2019.2897312
https://doi.org/10.1109/TASC.2019.2897312
https://doi.org/10.1109/TASC.2016.2642041
https://doi.org/10.1109/TASC.2016.2642041
https://doi.org/10.1109/TASC.2016.2642041
https://doi.org/10.1109/TASC.2017.2656128
https://doi.org/10.1109/TASC.2017.2656128
https://doi.org/10.1109/TASC.2017.2656128
https://doi.org/10.1109/TASC.2019.2908277
https://doi.org/10.1109/TASC.2019.2908277
https://doi.org/10.1109/TASC.2019.2908277
https://doi.org/10.1109/TC.1973.5009159
https://doi.org/10.1109/TC.1973.5009159
https://doi.org/10.1109/TC.1973.5009159
https://doi.org/10.1109/TC.1973.5009159

	1. Introduction
	2. Semi-custom design methodology
	2.1. Cell library
	2.2. Logic circuit design

	3. Design environment
	3.1. Cadence Virtuoso backend
	3.2. Logic synthesis and retiming optimization
	3.2.1. Previous work
	3.2.2. Automating synchronizing buffer insertion
	3.2.3. Retiming for buffer reduction

	3.3. Place and route
	3.3.1. Previous work
	3.3.2. Improvement of GA and routing

	3.4. Analog simulation
	3.5. Digital simulation
	3.5.1. Previous work
	3.5.2. Supporting four-phase clocking

	4. Demonstration of prototype chips
	4.1. Previous work
	4.2. Microprocessor execution units

	5. Conclusion
	Acknowledgments
	References

