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Abstract. Conformal scaling invariance should play an important role for understanding the
origin and evolution of universe. During inflation period, it appears to be an approximate
symmetry, but how it is broken remains uncertain. The appealing a-attractor inflation
implements the spontaneous breaking of conformal symmetry and a mysterious SO(1,1)
global symmetry. To better understand the SO(1,1) symmetry, here we present a systematic
treatment of the inflation models with local conformal symmetry in a more general formalism.
We find SO(2) is the other possible symmetry in the presence of Weyl gauge field. We
also obtain all the analytic solutions that relate the inflation fields between Jordan frame
and Einstein frame. We illustrate a class of inflation models with the approximate SO(2)
symmetry and trigonometric potential, and find that it can fit the current observations and
will be probed by future CMB experiments.
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1 Introduction

Inflation [1-4] in the early universe was proposed to provide an attractive solution for some
cosmological puzzles, including flatness problem and horizon problem. During the exponen-
tial expansion of inflation, the universe was nearly conformal® invariant, and the breaking of
conformal invariance can provide the primordial perturbations that account for the currently
observed inhomogeneity and anisotropy [5]. However, the exact mechanism of the breaking
is still unknown.

The local Weyl or conformal symmetry was originally motivated to unify Einstein’s
General Relativity (GR) and Maxwell’s electromagnetic (EM) theory [6], although later it
turned out that U(1) gauge symmetry correctly describes the EM interaction. Nowadays,
the symmetry still stimulates many theoretical and phenomenological studies. And various
applications of global or local conformal symmetry have been explored in, for example, in-
duced gravity [7-9], gravitational quantum field theory of fundamental interactions [10, 11],
particle physics [12-15], inflation and late cosmology [16-40].

The appealing a-attractor in refs. [41, 42] was proposed as a class of inflation models
with spontaneously broken conformal invariance. These models have an attractor point that
predicts the same cosmological observables as in Starobinsky’s model [4]. Interestingly, there
is an approximate SO(1,1) global symmetry in such models. However, the origin of the
SO(1,1) seems mysterious and it is unclear whether there are other possible symmetries for
viable inflation models with conformal symmetry.

In this work, we present a systematic investigation on the inflation models with local
conformal symmetry. To be as general as possible, we include the Weyl gauge field in the
starting Lagrangian. Our formalism goes back to a-attractor when the relevant parameters
are specified. We find an approximate SO(2) global symmetry is also possible for viable
inflation and present all the analytic, compact solutions that connect the inflation fields
between Jordan frame and Einstein frame. A class of inflation models is illustrated with

'In this paper, we use conformal and Weyl symmetry interchangeably since no ambiguity arises here.



the approximate SO(2) symmetry, which is found to be consistent with current observa-
tions. Such models can be probed by the next-generation experiments in cosmic microwave
background (CMB).

This work is organized as follows. In section 2 we shall first give an overview of the
a-attractor and establish the conventions and general formalism with Weyl gauge field for
our later discussions. Then in section 3 we work out the analytic solutions that connect
the inflation fields in the Jordan frame and Einstein frame. We show the solutions can be
classified into two categories, trigonometric functions and hyperbolic ones. Afterwards, we
provide a viable and testable inflation model in section 4. Finally, we give our conclusion.

2 General formalism

Throughout the paper, we use the metric with a sign convention (1,—1,—1,—1), and the
natural unit, M, = 1/v/87G = 1. We shall first review the formalism in a-attractor and
then present the general formalism with Weyl gauge field.

2.1 o-attractor

To set the stage for our discussions, we first present the essential formalism of the a-
attractor [41, 42]. The starting action of the a-attractor is the following one in Jordan frame,

S:/Q%Jjﬂé@%ﬂ%ﬂ@%@—;(ﬁR—&%@%ﬁ—wa), (2.1)

where R is the Ricci scalar, and the two real scalar fields, ¢ and y, are conformally coupled
with gravity. Note that the signs in front of the final kinetic terms of ¢ and x are opposite,
namely ¢ has the wrong sign while x has the right one. The above action respects the
following local conformal/Weyl symmetry,

Guv (x) — Guv (-73) =\ (x) Guv (x) )
¢ (x) = ¢ (x) = 27" () ¢ (2), (2:2)
X(x) = X (2) = A7 (2) x (2),

where A (x) is a non-zero function. In a-attractor papers [41, 42], the following specific
potential was considered,

2
V(¢ x) = F(x/9) (6" —x°)", (2:3)
so that there is an approximate SO(1,1) global symmetry for ¢ and y, except the breaking
term F'(x/¢) which is an arbitrary function that depends on x/¢ only.

Once fixing the condition that breaks the conformal symmetry spontaneously, ¢? = 1,
we can define a new metric tensor g,, through conformal transformation,

G () = 0?2 (@) guv (), 02 =1- XQ, (2.4)

and use the following identity for Ricci scalar,

R=Q%[R+6§"0,In00,In0Q)] . (2.5)
Then we can obtain the following action,
1= 3
S = /d4x\/—g {R + ———50x"x - F (x)| - (2.6)
2 (1-x%)



To normalize the kinetic term, we can define a new field viable 8 by the differential equation,

o V6

0
F éX:tanh%, (2.7)

and rewrite the final action in Einstein frame where 6 is minimally coupled to gravity,

1- 1 0
4 —
S = /d x\/—7g [QR + 58“98“9 —F (tanh Jé)] . (2.8)
Afterwards, one can choose the proper F' to get viable inflation models.
Equivalently, we can choose the fixing condition [41, 42],

¢2 - X2 = 17 (29)

which provides a simple, hyperbolic parameterization for the two scalar fields as

0 6
gi):cosh%, X:sinh%. (2.10)

Then from eq. (2.1), it is straightforward to get

S = /d4xﬂ BR + %3#93“9 - F <tanh %)] . (2.11)
The above action is the same as eq. (2.8). With the choice of F(x) o« x?", the authors in
refs. [41, 42] have shown that the cosmological predictions are essentially independent on n,
an attractor behavior in such models.

However, at this moment it is unclear what a role the approximate SO(1, 1) global sym-
metry plays here. Whether SO(1, 1) is essential for the mechanism to have viable inflationary
scenarios is not transparent in the above formalism. Below, we shall present a systematic
discussion on the general action with local Weyl/conformal symmetry and show that the role
of SO(1, 1) symmetry is not decisive.

2.2 Weyl gauge symmetry

We now present the general action with two real scalars ¢ and x being dynamical fields. Their
kinetic terms are in general coupled with Weyl gauge field to maintain the local conformal
invariance. The action can be written as follows

(0]
S = / d*z/—g [2 (¢°R — 60,00"¢) + g (X*R — 60,x9"x) — V (¢, X)
Cl ) <2 17 1 j22%
+>D,¢D" ¢ + 2= Dyx D'y — —F, F* |, (2.12)
2 2 49

where «, 3, (; are numeric parameters, the field strength F,, = 0,W, — 0, W,, W, = gww,,
wy is the Weyl gauge field and gy is the corresponding gauge coupling. The covariant
derivative is defined as

Dy = (0 = Wy).
We emphasize that there is no factor of ¢ in front of Weyl gauge field in the covariant
derivative, unlike the usual gauge theory of U(1). As long as the potential has a form as

4
Vig,x)=F (;) x (Z Ai¢iX4i) : (2.13)
=0



The above action, eq. (2.12), at classical level is invariant under local conformal transforma-
tion eq. (2.2), together with

W, — W, (z) =W, (z) — 9, In|X(z)]. (2.14)

If both « and S vanish, Einstein-Hilbert action R would disappear, which goes to a
trivial case that is out of our interest. Instead, without losing generality, we shall restrict
our discussions with a > 0. Then we can always rescale ¢ and Y, relabel the parameters or
redefine (; to make o = 1. In this formalism, 8 can take only three values, 5 = —1,0,1, for
analytic solutions. It can also be seen immediately that the a-attractor is a special case in
our formalism with = —1,; =0and \g = A4 =1, o = =2, A1 = A3 = 0.

We shall mainly work with the condition ¢? = 1 and later we shall show explicitly the
other conditions that can give the same physical models. The action with ¢? = 1 can be
written as

S = /d%\/fg [(1 + Bx%) %R + % (G2 — 6B) 9ux0'x -V

1 1
5 (C+ ) W — WD — @FWFW . (2.15)
w

3 Analytic solutions

The eq. (2.15) is the Jordan frame action we consider in the following. Now we make a
conformal transformation of the metric field

G () = 0? (@) guv (), 0% =1+ 8\, OuIn ) = Qf2ﬂxﬁux. (3.1)

The resulting equivalent action with the new metric field can be organized as

_[1 (= 652X2 (C2 —6ﬁ) V
4 o o
S_/dx\/—g{2<R+ h48LX(3X +27 ﬂa,xa X~ 51

1 1 ,

Note that the gauge kinetic term F),, F*¥ does not change due to its conformal nature.
The gauge-scalar interactions, namely the terms in the bracket of the second line, can be
organized as

(G + Gx?)

(G + Gx?) wh C3x%0,xOx
202

2 _
(W, WH —WHG, In (¢ + Gax?)] = 202 e (1 + Gx?)’

} . (32)

where we have defined the new Weyl gauge field w,,,

~ Gxux

1 2
w,u:Wu_ia/‘ln(Cl—i_@X ):W'u m

(3.3)

This redefinition or gauge transformation does not change the kinetic term for w,, F),, F*",
but contributes to the kinetic term for y, as shown in eq. (3.2).



Now we can present the total kinetic term of x for general (;, %K (X)0ux0*x. The
coefficient K () is collected as the sum of three contributions,

K= X (@=68) G GG (1+5x) — 68 (G + &)
N T % O (G +Gx?) Q1 (G + Gx?) '

As long as K(x) > 0, we can make the kinetic term canonical by defining a new field variable
0(x) through

(3.4)

=~ VEQ). (3.5)
Once obtaining the canonical kinetic term, the full action is the following

G+ <2X2(9) i

Ve 1 o
202 " ’

04 4¢3,

1- 1
S = /d4:c\/—g {2]% + 5%08“9 — F F* 4 (3.6)
which describes the Einstein’s gravity coupled with a scalar field 6 and a massive vector wy,.
6 has a potential V/Q* and couples to w,, once we expand the last term in the bracket.
For general (;, there is no compact analytical solution for the above differential equation,
eq. (3.5). However, in some special cases, we have found very simple analytic relations,

tabulated in table. 1. For example, if § % 0 and (o = 8(y, we have

VEG) = ¥ -0 (3.7)

(1+5x%)
Then, for 8 = —1, we can obtain
do /6 —
—:Lgléxztanhi.
dx  1-—x 6—-GC

When (1 = 0, this result fully agree with the a—attractor case. From this calculation, we

can also get the theoretically allowed domain (; < 6 from the right sign of the kinetic term.
For g =1, we have

df /G —6

0
a _71+X2 :X_tanifl—ﬁ’
In such a case, as long as {1 > 6, we can have a consistent theory with a normal scalar field
0 and the starting action can have an approximate SO(2) global symmetry. This illustration
also explains why in the case of {; = 0, 8 has to be —1 (the resulting SO(1, 1) symmetry is
reached). Otherwise we would get a wrong sign for the kinetic term of 6.
In the above two cases, we have

¢+ Gax?(0)

G
502 wywh = gwuw“, (3.8)

which indicates that 6 actually decouples from Weyl gauge field w, whose mass is given by
My = gW\/éTlMP

There is no apparent global symmetry in the cases of the first two rows in table. 1,
except the one with (; = 0,3 = —1, which is exactly the original a-attractor. However, if
one can allow the additional explicit breaking of some global symmetry from the Ricci scalar
term, then the cases of the first row exhibit approximate SO(1,1) and SO(2) symmetry



a=1 K (x) 0 =0(x) x=x(0)
g0 o C>O,(1>O:>9—\/aarcsinl.1(\/ax) le(fsm.h\/%
Q@;ﬁo%:o o C<0,C1<0:>9=\/T§1arcsm(\/jx) X= s o
C<0,C1>0$9:\/aarccosh(\/jx) X:\%msh%
or/andeg’ % *3:_1:%:?1“% X:tanh%
a :ﬁ_;;ELC UCJF;XS)Q ¢ >6= 0=/ —Garctanx X = tan (9_6
Q:/B,:C;ELC (16_% §<6:>9:‘/(?1ni7;§ thanh%ig

Table 1. The analytic solutions of 6 (x) or x () for different §5,¢; and (2. As far as we have
investigated, these are the only cases that allow a transparent and compact solution.

when C' = —1 and C = 1, respectively. Note that this additional breaking should not be
interpreted as a minor modification to the cases with SO(1,1) and SO(2) symmetry. In
fact, for the same potential V', the modification of inflation could be significant. Let us
take 8 = 0,(3 = 1,C = —1 as an example in comparison with g = —1 case. For concrete
discussion, we may choose V = (x/¢)"(x? — ¢#?)? as in a-attractor. Then we would have
V(#) = tanh™6/+/5 for B = —1 but V(#) = cosh™fsinh* @ for § = 0. These two potentials
have very different behaviors which result in different inflation dynamics. The potential for
B = —1 is flat at large 6 since tanh/y/5 — 1 as § — 400, hence viable inflation can happen
for positive n. While the potential for 3 = 0 goes as e(*T™? and slow-roll conditions can not
be satisfied at large 8 for positive n.

We emphasize that the above discussions by no means indicate that viable inflation
is not possible in the cases with § = 0. It just means that 3 = 0 can not be treated
as a small correction to the cases with 8 = +1. The main reason behind is the different
asymptotic behavior of the solution x(#) in different cases, which require the proper choice
of the potential V for successful inflation. For instance, if we choose V = (x/¢)~*(x? — ¢*)?
for the § = 0 case, we would get V(8) = tanh®#. This potential is very flat at large  and
can give viable inflation.

Now we explicitly demonstrate under what circumstances, the condition, ¢? + fx? = 1,
can give the equivalent final theory. For 8 = 0, it simply reduced the above case. For § = £1,
we can use the parametrization

¢ =cosf/+\/C1 — 6, X =sin@/+/(1 — 6, for f=a=1, (3.9)
¢ =cosh0/4/6 — (1, X =sinh0/+/6 — (3, for = —a = —1. (3.10)
Since there is no transparent form for the general (; case, we illustrate with ¢(; = (» for

6 =a=1,and (1 = —( for § = —a = —1. Using the above parametrization, we can
perform the calculations straightforwardly and obtain in both cases

S— /d%ﬁ—g ey Laworo —vie) - Lo FLEm 4 Suwr (3.11)
22 12, 2



There is a crucial difference in the final potential where the factor Q=% appears in eq. (3.6)
but not in eq. (3.11). This leads us to the observation that the above formula agrees with
eq. (3.6) only if the potential can be factorized into the form where one factor also respects
the global symmetries as the kinetic terms, SO(2) or SO(1, 1), which means

2 2)2 — 41 =
X) » (d) +X) ) ﬁ + 7C1 +<27 (312)

Vo) = (
2
¢ (¢2 - Xz) ) 5 =-1,G1= _CZ-
Having this form, the factor (gb? + 6 X2)2 in the potential cancels with Q=4 from the conformal
transformation, and the potential for 0 is

= (3.13)

0
m) ) /8 - 17 Cl - CQ-

In general, when (s # +(;, our calculations exhibit that the symmetry breaking condi-
tions, ¢> = 1 and ¢? + fx? = 1, would give different potentials for the field . This result has
some similarity with the Higgs mechanism in particle physics, where the physical theories
also depend on how the gauge symmetries are broken by the different vacuum configurations
of the Higgs fields.

The above discussions can be generalized to multi-field cases, ¢;(i = 1,2,...,k). We
can normalize the fields with the corresponding 3; = +1 (I positive 5; and m negative
ones with [ +m = k — 1). The results would imply that SO(l + 1,m) is the approximate
global symmetry. The parameterization of fields would be straightforward and involve high-
dimensional spherical coordinates.

. <X> F <tan \/Q%) ’ /8 = +17<1 = +<25

F (tanh

4 Phenomenology

4.1 Inflation

The analytic solutions we obtained in table. 1 can be classified into two categories, trigono-
metric functions and hyperbolic ones. Since we may choose F(x/¢) at will, any solution
in each category can be representative. The hyperbolic solutions have been extensively dis-
cussed in the literature as a-attractor [41, 42], so we do not repeat the analysis here. Instead,
we discuss the trigonometric ones and illustrate with one class of inflationary models.

For concreteness, we choose the solution in the case of § =1 and (; = (o = ¢ with an
approximate SO(2) symmetry. Then we have y = tan/,/C — 6. As long as the functions of
F(tan6/+/C — 6) can satisfy the slow-roll conditions, inflation can happen. For a proof-of-
principle example, in the following we discuss the inflationary observations with the following
function F' or potential,

1
1422

1/n
F(JU):)\( > :>F[«9}:A[COSQ(A9)]1/”, A=1/y/¢ -6, (4.1)
where n is a parameter of the chosen potentials. Note that F[#] > 0 and the potential
minimum is reached when A6 = /2 (we only consider the first period, A9 C [0,7]). For
n = 1, the potential has the same form as the one in natural inflation [43]. This also indicates
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Figure 1. Illustration of (ng,r) for A = 0.05,0.10,0.15,0.2 (from right to left) when n = 3,6. The
two solid lines and two dotted lines are for n = 3 and n = 6 respectively. The calculated values
of (ns,r) with 4 different As are shown for e-folding number N = 50 (squares) and 60 (circles), in
comparison with the shaded regions allowed by Planck [44] with 1-o (blue) and 2-¢ (purple), and the
future projection of CMB-S4 [45] in red smaller contours.

that polynomial potentials in Jordan frame can induce trigonometric potentials in Einstein
frame, providing an alternative origin of cosine-like inflation.
The slow-roll parameters are calculated as

1 (Fp\?  2A%tan?(A0)

=3 (p) - (42)
Py _2A2 sec?(A0) [cos(240) +n — 1] (4.3)
- F n? ’ '

where Fy = dF[0]/df and Fyg = dFy/df. The observable scalar index ns of the power

spectrum and tensor-to-scalar ratio r for the signal strength of primordial gravitational wave

are determined by ng = 1 — 6e 4+ 21 and r = 16,

2A2 sec?(Af) [1 + 2n — cos(246)] 32A? tan?(A0)
T =

)

. (4.4)

ng=1-—

n? n?

To solve the flatness problem, the early universe should have expanded with enough e-folding
number N ~ [50, 60] before inflation ends,

tend 0; d9
N=mn~ Hdt ~ —_—,
a; t 6 V2e
where a;(a.) is the scale factor at initial (end) time of the inflation, 6;(6.) is the corresponding
field value, and H is the Hubble parameter. Here 6, is determined by the violation of slow-roll
condition, e ~ 1 or n ~ 1.

(4.5)



For small n and 2A2N/n < 1, we have the following approximate formula for n, and 7,

o 2 1+2A2N o 16 (24N (4.6)
M N n )" Nn n )’ '

which are useful for qualitative understanding. For instance, we would expect both ng and
r should decrease as A? increases, which will be reflected in figure 1 where we employ the
precise estimation. For precision calculation, we numerically solve the eq. (4.5) with the
boundary conditions, N(f.) = 0 and N(6#;) = 50 or 60. Once having the value of §;, we put
it into eq. (4.4) and obtain ng and 7.

In figure 1 we illustrate the cases with n = 3,6 and show the theoretical predictions of
(ng,r) for A =0.05,0.10,0.15,0.2. The solid line that connects 4 squares (circles) represents
the values of (ng,r) with N(6;) = 50 (60) when n = 3, while the dotted lines are for n = 6.
We also contrast our predictions with the latest constraints from Planck [44] (color-shaded
regions) and the future projection of the next generation CMB experiments [45] (two smaller
contours). It is seen that the proposed model in eq. (4.1) can be consistent with current
observations and will be probed by future CMB experiments.

For n = 1 or natural inflation, we have verified that it has already been excluded by
Planck [44] more than 20. For n = 2, we have also checked almost all the predictions are
out of 20 region. For n > 3, our scenario is viable. For larger n, (ns,r) would be shifted
downwards to the right and the effects can be partially compensated by increasing n, which
can be understood from eq. (4.6) and seen in figure 1. In general, larger n would give
smaller 7.

The parameter A ~ 0.1 implies ¢ ~ 100 from the relation A = 1//¢ — 6. At first sight,
¢ ~ 100 might seem a large number. However, this is because we normalized o = g = 1
in the Lagrangian, eq. (2.12). If we keep both a and ¢ general from the start, we shall find

A= 1/?%. Then we would get { ~ 10 for & = 0.1 and { = 1 for a ~ 0.01, which should

be acceptably natural. This model belongs to the large-field inflations since the evolved field
value Af > M, but the energy scale at inflation is around 101GeV.

We would like to make a brief discussion about the reheating process after inflation.
When the slow-roll conditions are violated, the exponential expansion stops and the inflation
field oscillates around the potential minimum, 6y = 7/(2A4). And the universe enters the
matter-dominated era. For perturbative reheating, one may introduce interactions between
x and other fermions 9 or scalars s, such as yt1 and xs®, which preserve the conformal
symmetry but break in general the global SO(2) symmetry. The new interactions would make
0 decay and transfer its energy into radiation. So that our universe is radiation-dominant
after reheating and can have a successful nucleosynthesis.

4.2 Weyl gauge boson

We notice that in all cases there is a Z3 symmetry w, — —w, for Weyl gauge boson w,,. If
w,, particles were produced in the early universe, there could leave some relic at present.

As shown in eq. (3.8) or eq. (3.11), when there is an approximate global SO(1,1) or
SO(2) symmetry, w, is essentially decoupled from the inflation field 6 and only interacts
gravitationally. In such cases, w,’s mass is given by m, = gw/(M,. If g%,g‘ ~ 1, w,’s
mass is around Planck scale and w,, would be too heavy to be produced in the early universe
after inflation. Hence, there is no observational problem. On the other hand, if g%VC is small
enough, w,, can be produced gravitationally and actually be a dark matter candidate [36],



whose relic density is given by [46, 47],

My H 2
Qu~0.2 . 4.
0254 [ 6 < 1011 Gev (1013GeV> (47)

If we require m,, < H in an inflation model, we would get an upper bound m,, < 10°GeV
when the equality is reached. One may expect that w, as dark matter is subjected to isocur-
vature perturbation constraint since its longitudinal mode is similar to a scalar degree of
freedom. However, there is a crucial difference for vector dark matter produced from infla-
tionary fluctuation [46, 47]. Although they can be copiously produced in the early universe,
the main contribution lies around the modes with characteristic wave number k ~ am,, (a is
the scale factor at horizon crossing), which is concentrated around small scales. The perturba-
tions for the large or CMB scales still inherit from inflaton and is adiabatic. The fundamental

reason is that the equation of motion for the longitudinal mode of a massive vector,

3k2 + a’m? k?

has different behavior from that for a scalar ¢, (87 +3HO; + k*/a® + mi) o(k) = 0, see
refs. [46, 47] for detailed investigations.

In the other cases without global symmetry, there can be a direct coupling between
inflaton € and Weyl gauge boson, originating from the term %ﬁzw)wuw“. During inflation,
we would get an effective mass for Weyl gauge boson, m2g = [(1+(2x?(0)]/$2?. One immediate

conservative constraint we can get is from the requirement mgﬂf > ( to avoid tachyon, namely,

GHex0) (4.9)
L+ Bx%(9)
Another effect is that time-changing mass usually induces particle production, then w,’s
relic abundance in turn would put a constraint on x2(#). Since this production depends on
the evolution of the inflaton field or inflation models, a full discussion would be beyond our
scope here.

5 Conclusion

We have presented a systematic analysis on the inflation models with local conformal sym-
metry, together with the Weyl gauge field. One of our motivations is to understand why
SO(1,1) plays a so special role in the appealing a-attractor model. We have found that the
underlying reason is the positivity of the kinetic term for the inflaton field. Moreover, within
the general formalism in the presence of Weyl gauge field, we have identified the other viable
symmetry, SO(2). We have also tabulated in table. 1 all the possible analytic solutions that
relate the inflaton fields between Jordan frame and Einstein frame. These solutions can be
classified into two categories, trigonometric functions and hyperbolic ones. Finally, we have
demonstrated a class of inflation models with an approximate SO(2) global symmetry and
shown it can be consistent with the latest cosmological observations and will be probed by
future CMB experiments.
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