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Abstract

The high-contrast imaging technique is meant to provide insight into those planets orbiting several astronomical
units from their host star. Space missions such as Wide-Field InfraRed Survey Telescope, Habitable Exoplanet
Imaging Mission, and Large Ultra-Violet/Optical/InfraRed Surveyor will measure reflected light spectra of cold
gaseous and rocky planets. To interpret these observations, we introduce EXORELR (Exoplanetary Reflected Light
Retrieval), a novel Bayesian retrieval framework to retrieve cloud properties and atmospheric structures from
exoplanetary reflected light spectra. As a unique feature, it assumes a vertically nonuniform volume mixing ratio
(VMR) profile of water and ammonia, and uses it to construct cloud densities. In this way, clouds and molecular
mixture ratios are consistent. We apply EXORELR on three test cases: two exoplanets (υ And e and 47 Uma b) and
Jupiter. We show that we are able to retrieve the concentration of methane in the atmosphere, and estimate the
position of clouds when the signal-to-noise ratio of the spectrum is higher than 15, in line with previous works.
Moreover, we described the ability of our model to give a chemical identity to clouds, and we discussed whether or
not we can observe this difference in the planetary reflection spectrum. Finally, we demonstrate how it could be
possible to retrieve molecular concentrations (water and ammonia in this work) below the clouds by linking the
nonuniform VMR profile to the cloud presence. This will help to constrain the concentration of water and ammonia
unseen in direct measurements.

Unified Astronomy Thesaurus concepts: Planetary science (1255); Planetary atmospheres (1244); Bayesian
statistics (1900); Exoplanets (498); Extrasolar gas giants (509); Radiative transfer (1335); Spectroscopy (1558)

1. Introduction

The diversity observed in the thousands of exoplanets present
nowadays in our catalog has extended the horizon of our
knowledge of the dynamical, physical, and chemical properties
of these alien worlds. This has mostly been made possible by
characterizing their atmospheres. Focusing on the gaseous-giant
planets population, the majority of them are made of hydrogen
and helium. Therefore, the relevant questions concern the
amounts of elements other than hydrogen and helium, i.e., the
heavy elements, that are present. The atmospheres of short-
period gaseous planets (these are generally hot or warm), Jupiter-
and Neptune-sized, have been observed. The emission and
transmission spectra have revealed molecular absorption of H2O,
CO, CH4, CO2, TiO, and VO (Swain et al. 2008, 2009; Snellen
et al. 2010; Fraine et al. 2014; Evans et al. 2016; Sing et al.
2016; Damiano et al. 2017, 2019; Tsiaras et al. 2018) and in
some cases the presence of clouds and hazes in the atmosphere
(Berta et al. 2012; Knutson et al. 2014; Sing et al. 2016; Barstow
et al. 2017; Tsiaras et al. 2018). The transit technique has
provided most of the current results, as it benefits more from
target planets being close to their parent stars. However, these
planets show a different environment compared to the scenario
emerging from the studies conducted in our solar system planets
due to higher irradiation received (Burrows et al. 1997;
Karkoschka 1998; Seager & Sasselov 1998).

The high-contrast imaging technique is poised to provide
insight into those planets orbiting several astronomical units from
their host star so that their equilibrium temperature is low enough
to let different chemical and dynamical behavior emerge (e.g.,
condensation mechanism, cold trap effects, etc.) with respect to
their better-studied hot counterparts. This technique has been

successfully tested in studies of star- and planet-forming regions
(Barman et al. 2011; Skemer et al. 2014; Macintosh et al. 2015).
Future direct-imaging exoplanet space mission and mission
concepts, e.g., Wide-Field InfraRed Survey Telescope (WFIRST;
Spergel et al. 2013, 2015), Habitable Exoplanet Imaging Mission
(HabEx; Mennesson et al. 2016), Large Ultra-Violet/Optical/
InfraRed Surveyor (LUVOIR; Peterson & Fischer 2017), and
Starshade rendezvous probe,3 will have the opportunity to
observe the starlight reflected by exoplanets via high-contrast
imaging and also to unveil their atmospheric structure.
Rayleigh scattering, molecular absorption, and scattering and
absorption by atmospheric condensates determine the reflection
spectra of gaseous exoplanets (Marley et al. 1999; Seager et al.
2000). Clouds, if present in the atmosphere, are the primary
factor that controls the appearance of an exoplanet. Previous
studies have shown that the presence and formation of the
clouds are regulated by atmospheric temperature (Sing et al.
2016; Barstow et al. 2017). Assuming an atmospheric
elemental abundance the same as the Sun and a suitable
atmospheric temperature (∼200–300 K), gaseous-giant exopla-
nets may have ammonia, water, or silicate clouds in their
atmospheres (Sudarsky et al. 2000, 2003; Burrows et al. 2004).
The radiative properties of the clouds are sensitive to the
vertical extent and density of the cloudy layers and the sizes of
cloud particles (Ackerman & Marley 2001). The elemental
abundance of the atmosphere also affects the formation of the
clouds (Cahoy et al. 2010). For these reasons, reflected light
spectra of exoplanets contain rich information on the
composition and dynamic processes of the exoplanetary
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atmosphere. In the wavelength range 0.4–1.0 μm, where
reflection spectroscopy mostly operates, it is possible to probe
the molecular signatures of methane, ammonia, and water
vapor (Burrows 2014; Hu 2014; Marley et al. 2014) along with
their relative condensates. For example, the Jupiter reflection
spectrum (e.g., Karkoschka 1998) contains different levels of
methane absorption that have been used to reject simple models
of a single reflective cloud deck, favoring a more complex
double-layer cloud structure (Sato & Hansen 1979).

To interpret a spectrum and extrapolate information from it, a
comparison between the observed data and the proposed model
should be performed through a statistical inverse modeling.
While several transmission and emission spectra inverse retrieval
frameworks have been developed and established (e.g., Irwin
et al. 2008; Madhusudhan & Seager 2009; Benneke & Seager
2012; Waldmann et al. 2015a, 2015b), reflected light spectro-
scopic retrieval models, to date, have just started to be explored.
Several models have been proposed (e.g., Lupu et al. 2016; Feng
et al. 2018; Batalha et al. 2019), but these models use optical
properties of clouds (optical depth, scattering albedo, and
asymmetry factor) as free model parameters without bounding
them to a physical model of the cloud structure (e.g., particle size
and chemical cloud identity).

In this work, we present EXORELR (Exoplanetary Reflected
Light Retrieval), a novel inverse retrieval framework based on
a modified version of EXOREL (Hu 2019), which is a cloud
formation and radiative transfer model to synthesize the
wavelength dependence of the albedo (and therefore planetary
flux) of a gaseous planetary atmosphere. EXORELR uses a non-
constant volume mixing ratio (VMR) vertical profile of water
and ammonia as an input to compute the density and particle
size of water and ammonia clouds, as well as a T-P profile
consistent with the lapse-rate equation. This algorithm is used
as forward model for the Bayesian sampler nested sampling
(Skilling 2004, 2006; Sivia & Skilling 2006) and its
implementation MULTINEST (Feroz & Hobson 2008; Feroz
et al. 2009, 2019; Buchner et al. 2014) to perform inverse
retrieval processes on reflected light spectra.

The parameters adopted in this work are consistent with the
gas-giant-exoplanets scenario that have equivalent orbital
distances of 1–6 au around nearby F-G-K stars. Moreover,
we adopted a spectral resolution of R=70 for our tests
(similar to the WFIRST detector spectral resolution), to explore
the reflection spectra of giant exoplanets at 0.4–1.0 μm except
for the Jupiter case (Section 5), which has been studied with a
spectral resolution of R=120. Results and settings of this
work are also generally applicable to future direct-imaging
mission concepts as they will be sensitive to similar regimes of
planetary parameters.

In this paper, we describe our model and the basic concept
behind reflection spectroscopy. We provide insight on the
Bayesian analysis, and we present and discuss the results. The
manuscript is organized as follows: In Section 2, we provide
details of EXORELR. In particular, we discuss the atmospheric
structure model, free-parameter space, and details related to the
retrieval settings. In Section 3, we provide insights on the impact
that each free parameter has on the albedo spectrum and,
therefore, on the planetary reflected flux. In Sections 3.4 and 3.5,
we show some of the implications of the setup adopted in this
work. In Section 4, we explore the performance and the ability of
our model to retrieve information from different scenarios by
applying it to two exoplanetary test cases (υ And e in Section 4.1

and 47 Uma b in Section 4.2). In Section 5, we report the results
of the analysis of the albedo of Jupiter (Section 5). In Section 6,
we discuss the results obtained and the implications introduced
by this novel model. Finally, in Section 7, we summarize the key
points of the paper and discuss the future development of
EXORELR.

2. EXORELR

2.1. Amended Forward Model

The forward model that synthesizes the planetary geometric
albedo and the reflection spectrum is a modified version of the
self-consistent EXOREL model presented in Hu (2019). In
particular, in EXOREL, the atmosphere is divided into layers,
and in each of these, the saturation point of water and ammonia
in the gas phase is checked. If one or both reaches the
saturation, the humidity is calculated, and the relative VMR
vertical profile decreases accordingly. The amount subtracted
from the VMR is then used to calculate the physical and optical
properties of the clouds.
In EXORELR, we wanted to preserve this causal relationship

defined in Hu (2019), but we also wanted the flexibility to
change parameters to obtain a different atmospheric structure.
Therefore, we “reverse-engineered” the process by directly
defining a nonuniform VMR profile for water and ammonia to
be used as a trigger for the calculation of the respective clouds
properties. We do not consider the saturation point; rather, we
use four free parameters that uniquely define each VMR profile
(Figure 1 left panel).
The forward model can synthesize either the albedo at a

specific phase angle or the planet/star contrast ratio. In this
work, we focus on the albedo at a specific phase angle
(hereafter referred to simply as “albedo”) as proof of concept.
We fix the phase angle to α=60° for the synthesized
examples (Sections 3 and 4) and to the one reported in
Karkoschka (1994) for the Jupiter example (Section 5). For the
retrieval process, choosing to synthesize the albedo makes the
gravity of the planet less significant as a free parameter, which,
instead, is important if the planet/star contrast ratio is the
quantity to be retrieved (see Section 3.1).

2.2. Free-parameter Space

We chose to design the free-parameter space to include
general/observable features. For this reason, we did not include
the single scattering albedo (w̄), the asymmetry factor (ḡ), or
the optical depth (τ) within our free parameters (Lupu et al.
2016; Batalha et al. 2019). These parameters are calculated
self-consistently from other parameters since the clouds are
linked to a physical model. The parameters space counts at a
maximum 10 parameters when both water and ammonia
condensates are considered. Four parameters are used to
determine the VMR vertical profile of the water and four more
describe the ammonia profile. As mentioned in Section 2.1, we
define the following free parameters for each molecular VMR
vertical profile:

1. the VMR of the molecule below the respective cloud
layers;

2. the Ptop as the altitude in terms of pressure, where the top
layer of the cloud is present;

2

The Astronomical Journal, 159:175 (17pp), 2020 April Damiano & Hu



3. the vertical extension of the cloud (Dcld), which quantifies
(in terms of difference) how much the cloud extends
downwards from the Ptop;

4. the condensation ratio (CR), which accounts for the ratio
between the leftover water in the gaseous form above the
cloud and the molecular VMR below it.

The vertical profiles of water and ammonia are defined on a
pressure grid spanning from 101 to 109 Pa, from top to bottom
(see Figure 1 left panel). Moving upwards, the VMR could
drop due to condensation of the relative molecular species. The
drop is modeled as a linear decrease in logarithmic space. The
number of layers where the VMR drops is regulated by the Ptop

and Dcld. The VMR drop is then defined as

D =
- ´

X
X X

N
Log

Log Log CR
1bot bot

layers
( ) ( ) ( ) ( )

where Nlayers is the number of layers between Ptop and Pbot, and
X is the VMR. The four free parameters, previously mentioned,
uniquely define the molecular vertical profile. This assumption
does not create appreciable differences with the proper and
consistent calculation of the cloud density profile presented in
Hu (2019). The right panel of Figure 1 shows the cloud relative
to the defined molecular VMR vertical profile shown in the left
panel. According to Hu (2019), the cloud density is calculated
as follows:

r
m

=
DX P

RT
2i i

i
cld ( )

where ΔXi is the VMR difference between two consecutive
layers, μ is the molecular mean weight of the atmosphere, Pi

and Ti are, respectively, the pressure and the temperature of the
relative layer, and R is the gas constant.

Finally, the remaining two parameters are the VMR of the
methane (considered constant) and the gravity acceleration of
the planet.

A few challenges of the model used in this work arise from
the assumptions of the model itself. The configuration used (see
Section 2) implies that the clouds are water or ammonia purely;
however, this is not always the case. In the case of Jupiter, for
example, the ammonia clouds are not solely made of ammonia,
photochemical hazes are present, and their influence can also
be appreciated in the bluest part of the reflection spectrum

(Weidenschilling & Lewis 1973; Sato & Hansen 1979;
Karkoschka 1994, 1998). Since the model does not include
the effects of hazes yet, we did not include the data points
below 0.6 μm of the Jupiter albedo in our retrieval exercise (see
Section 5). We can also expect that other cold gaseous
exoplanets may have photochemical hazes in their atmosphere.
It is crucial, then, to include the effects of hazes to obtain the
best realistic scenario.
In light of the mechanism of this model, other condensable

species (e.g., NH4SH and CH4) have to be included, so that
other cold gaseous planet scenarios can also be addressed (e.g.,
Neptune-like planets).

2.3. MULTINEST Settings

The MULTINEST algorithm (Skilling 2004, 2006; Sivia &
Skilling 2006; Feroz & Hobson 2008; Feroz et al. 2009, 2019;
Buchner et al. 2014) is an established and robust method in the
analysis of free-parameter space to recognize correlations and
the best parameter values for a model. Among its qualities,
MULTINEST is designed to better handle multimodal posteriors.
Unlike Monte Carlo Markov Chain algorithms, MULTINEST
can better avoid getting stuck into a local minimum. Moreover,
the calculation of the Bayesian evidence is already included in
the MULTINEST algorithm. This evidence allows us to
generalize the Occams razor: a theory with compact parameter
space (i.e., simpler) will have larger evidence than a more
complicated one unless the latter is significantly better at
explaining the data. We implemented this concept in our model
by calculating the Bayesian factor,  to determine which
between two models (1 and2) better represents the data.
The Bayesian factor has been calculated as follows
(Trotta 2008):

= =
  

  





 

 



31

2

1

2

1

2
1
2

( ∣ )
( ∣ )

( )
( )

( )

where  is the total Bayesian evidence of the model and 
represents the data. Generally, we would assume that1 and
2 are equally likely. For this reason, the ratio  

 
1

2

( )
( )

is

irrelevant for the determination of which model is better for the
data. The choice is only related to the total evidence of the
Bayesian sampling of the two models.

Figure 1. Left panel: the molecular vertical profile. In this work, we refer to it as water or ammonia. Where the drop of molecular VMR occurs, the cloud is present to
compensate. Right panel: vertical profile of the cloud density relative to the VMR profile in the left panel.
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For the MULTINEST algorithm, we choose a Gaussian as
likelihood function (i.e., the standard choice). The priors for all
possible scenarios implemented in the algorithm are listed in
Table 1. The choice of priors is fundamental for our scope, as
they reflect our initial knowledge of the problem. For this
reason, the priors have been defined uniformly among the
ranges in Table 1 to give the same probability to all possible
values. Moreover, the ranges have been defined to be large
enough not to influence the final result of the Bayesian
sampling (Skilling 2004, 2006; Sivia & Skilling 2006).

Note that in the case of the two-cloud model, the Ptop of the
deeper cloud (in EXORELR the water cloud is always below
the ammonia one) is instead defined relative to the bottom of the
upper cloud and not to the top of the atmosphere. In this way, the
two clouds are always separated and well distinguished.

3. Impact of Parameters on the Planetary Albedo Spectrum

3.1. VMRCH4 and g

In the wavelength range 400–1000 nm, there are numerous
methane absorption bands (see Figure 2 left panel). The
concentration of CH4 affects the depth of these absorption
bands. In the left panel of Figure 2, the clouds have been
located at low altitude to show the methane molecular bands.
The absorption can be severe with a high concentration of CH4.

Gravity plays a weaker role in the calculation of the albedo.
Mostly, it affects the shape and depth of molecular features. For

the planet studied through high-contrast imaging, we assume to
know the mass of the planet, so the gravity will give us
information about the radius of the planet. Note that the effect
of gravity will be better appreciated when the planetary flux or
the planet/star contrast ratio is retrieved, instead of the albedo,
as it depends directly on the planetary radius.

3.2. Ptop, Dcld, and CR

Ptop, Dcld, and CR are the parameters that, together with the
molecular VMR, uniquely define the cloud density vertical
profile (see Section 2.2 and Figure 1).
Ptop regulates the vertical position of the cloud, and the

effects on the planetary reflectivity can be seen in the top left
panel of Figure 3. When the cloud is located high in the
atmosphere (low pressure), the cloud density is not high
enough to let the cloud be completely opaque. In this regime,
light passes through, and the resultant reflectivity is weak.
While Ptop increases (moving down in the atmosphere), the
cloud is denser as the reflectivity increases. However, if the
cloud is too deep, the molecular absorption (mostly CH4) is
predominant and the albedo shows deep absorption bands.
Dcld affects the extension of the cloud in the atmosphere, and

it represents the vertical depth from Ptop. While all other
parameters are kept fixed, the cloud depth affects the cloud
density, and the layer where the optical depth reaches unity
( t=P 1). If the cloud depth is small, it means that the cloud is
quite thin, letting most of the light through and resulting in low
scattering and strong molecular absorption. While the cloud
extends further into the atmosphere, the cloud density
increases, and the cloud can scatter more light back to the
space. At the same time, Pτ=1 moves down and molecular
absorption features emerge as more column abundance is
present on top of the cloud.
Since Pbot is calculated as the sum of Ptop and Dcld, one of

the two values may dominate the other; for this reason, we
expect long tails in the posterior distribution that are not
necessary related to the physics of the scenario, and each case
has to be carefully considered.
The CR regulates the gradient of the cloud density from the

top to the bottom of the cloud. The overall effect on the albedo
is not significant, but it is useful to describe the vertical
structure of the cloud. Moreover, it regulates the concentration
of water and ammonia in the gas phase on top of the clouds,
affecting the absorption of such molecules.

Table 1
Priors for Each Scenario for the MULTINEST Algorithm

Parameter Cloud Models
Water Ammonia Two-cloud

Log VMRH O2( ) -12, 0[ ] -12, 0[ ] -12, 0[ ]
Log VMRNH3( ) -12, 0[ ] -12, 0[ ] -12, 0[ ]
Log VMRCH4( ) -12, 0[ ] -12, 0[ ] -12, 0[ ]

PLog top,H O2( ) 0, 9[ ] L 0, 8[ ]
DLog cld,H O2( ) 0, 9[ ] L 0, 8.5[ ]

Log CRH O2( ) -12, 0[ ] L -12, 0[ ]
PLog top,NH3( ) L 0, 9[ ] 0, 8[ ]
DLog cld,NH3( ) L 0, 9[ ] 0, 8.5[ ]

Log CRNH3( ) L -12, 0[ ] -12, 0[ ]
g 10, 100[ ] 10, 100[ ] 10, 100[ ]

Figure 2. Left panel: the effect on the albedo due to the variation of the concentration of molecular methane in the atmosphere. Right panel: the variation of the
planetary reflectivity produced by different gravity value. For these graphs, the following parameters have been adopted: log(VMRH O2 )=−2.5, log
(VMRNH3)=−3.4, log(Ptop,H O2 [Pa])=4.0, log(Dcld,H O2 [Pa])=5.5, and log(CRH O2 )=−8.0, log(Ptop,NH3 [Pa])=3.0, log(Dcld,NH3 [Pa])=3.60, and log
(CRNH3)=−8.0, and where applicable log(VMRCH4)=−2.8, g=50 m s−2. The spectral resolution is R=70 and the phase angle is α=60°.
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3.3. VMRH O2 and VMRNH3

Even though we are not able to directly measure the
molecular VMR below the cloud, its effect can still be observed
in the total reflectivity of the planet. The molecular VMR is
directly linked to the cloud density; the higher the concentra-
tion of that molecule, the greater the amount of material that
can condense. For both ammonia and water, the behavior
is indeed similar, low spectral continuum with a lower VMR
and high continuum with higher VMR (see Figure 4 and
Section 3.4).

To calculate the albedos shown in Figure 4, we tried to
isolate the sole effect of the VMR to the planetary albedo.
Other self-consistently calculated parameters such as the
optical depth, however, may have affected the result. In the
following section, we show a test case where the pressure level
of the optical depth equal to unity has been kept constant while
changing some of the other parameters.

The impact of the H2O VMR has previously been explored
on atmospheric reflected spectra (MacDonald et al. 2018). Also
in their work, MacDonald et al. (2018) suggested that VMR
H2O signatures impact the height of clouds and the continuum
of the albedo.

3.4. Probing Deep Down into the Atmosphere

EXORELR has been designed to reflect some key concepts
explained in Weidenschilling & Lewis (1973) and Sato &
Hansen (1979). Our clouds are not opaque from the top layer
downward, and they are not semi-infinite clouds; rather, they

are finite and located in altitude. In our radiative transfer code,
we perform calculations to a maximum optical depth value of
τmax=1000. By adopting this strategy, we can model photons
that are absorbed or scattered by regions of the atmosphere
where τ>1. This gives the possibility of modeling the bottom
part of the atmosphere. By taking into account the relation
between the vertical VMR with the cloud structure (see
Equations (1) and (2)) defined in this model, we may be able to
recover the molecular VMR of some trace gasses before the
depletion due to the condensation.
Figure 5 shows a test case. We consider two clouds: one

cloud is the extension of the other (the cloud described with the
orange color is the extended version of the blue one). Both
clouds extend below the τ=1 line (dashed line). The cloud
illustrated in orange requires a higher molecular concentration
(in this case NH3) to reach a higher density in the lower layer.
The right panel of Figure 5 shows the albedo that results from
the cloud structure scenarios. The difference between the two
models is significant and is due to higher scattering from the
denser layer of the model in orange, but also to higher
absorption from NH3 in the gas phase, as it increases more than
two orders of magnitude (the solely NH3 absorption feature is
around 0.64 μm).
By using the VMR profile to define the cloud structure

(Figure 1), we can estimate the depth of the clouds as well as
the VMR of the studied molecule before it condenses. For the
test case and the arguments presented in this section, we expect
a correlation between the Dcld and the molecular VMR below
the clouds.

Figure 3. Top left panel: the effects of the variation of the albedo due to the Ptop. Top right panel: the variation of the planetary reflectivity produced by different cloud
thicknesses. Bottom panel: the albedo in relation to the condensation ratio. The behavior of these parameters on ammonia clouds is similar. For these graphs, the
following parameters have been adopted: log(VMRH O2 )=−2.5, log(VMRNH3)=−3.4, log(VMRCH4)=−2.8, g=50 m s−2, and where applicable log(Ptop [Pa])
=4.0, log(Dcld [Pa])=5.5, and log(CR)=−8.0. The spectral resolution is R=70 and the phase angle is a = 60 .
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3.5. Clouds: H2O versus NH3

The setup used in this work to define the atmospheric
vertical cloud distribution allows us to identify different types
of clouds chemically. Depending on which VMR, either H2O
or NH3, is modified, different types of clouds are calculated
with particular cloud properties (e.g., single scattering albedo).
In this section, we wanted to test if the cloud chemical
composition difference can also be observed in terms of the
planetary albedo spectrum. To test this hypothesis, we
artificially constructed three different test cases (Figure 6).
We simulated three artificial atmospheric scenarios for a
Jupiter-like gas giant. First, we synthesized the atmospheric
albedo spectrum (black curve on the right panel of Figure 6)
resulting from the presence of a water cloud at around
0.1–1 bar and constant VMR for NH3 and CH4 (top left panel
of Figure 6). Second, we switched the role of ammonia and
water by mirroring the values used for the first case (middle
right panel of Figure 6). This case is unrealistic, as the
condensation of NH3 implies the one of H2O (ammonia
condenses at lower temperature), so the VMR of water should
be lower in the higher part of the atmosphere. However, as
proof of concept, the resulting albedo of the second scenario
(blue curve on the right panel of Figure 6) is noticeably
different from the first case, mostly in the red part of the

spectrum. This is because in the second case, the water VMR is
high across the atmosphere resulting in stronger water
absorption bands. Finally, we simulated a more realistic third
case (bottom left panel of Figure 6) in which the NH3 cloud
structure is the same as the one used in the second scenario, but
the water is now at a realistically lower VMR (similar to the
one obtained in the first case above the water cloud). Even in
this scenario, the resulting albedo spectrum shows differences
at longer wavelengths (red curve on the right panel of
Figure 6). The absorption due to water is now weak, and the
albedo values at about 0.82 and 0.95 μm are high.
By analyzing these three cases, it is then possible, in

principle, to discriminate between the different scenarios and
cloud structures. However, it is essential to underline that the
algorithm presented in this work is used as a forward model for
a Bayesian sampler that always finds the best set of parameters
that produce the best model to approximate the data. For this
reason, we want to point out that an intermediate scenario
between cases 2 and 3 (middle and bottom right panels of
Figure 6) could be indistinguishable from case 1. However, the
resulting VMR of water would be too high to be physically
possible. This degeneracy can be ruled out by inferring other
information from the model, e.g., the temperature of the planet,
as the ammonia condenses at a lower temperature than the
water.

Figure 4. Left panel: the effect on the albedo due to the variation of the VMR of the water. Only a water cloud has been considered. Right panel: same as left panel but
relative to the ammonia. Only an ammonia cloud has been included. For both graphs, we used log(VMRCH4)=−2.8 g=50 m s−2. Also, the Ptop, Dcld, and CR are
the same, but relative to two different models: log(Ptop [Pa])=4.0, log(Dcld [Pa])=5.5, and log(CR)=−8.0. The spectral resolution is R=70, and the phase angle
is a = 60 .

Figure 5. Left panel: cloud structure for the test case. The orange cloud is an extension of the blue cloud. The two models have the same values for the other
parameters not reported in figure: log( = -VMR 4.0H O2 ) , log( = -VMR 4.0CH4) , log( = -P 4.0top) , g=50 m s−2. Right panel: the albedo resulting from considering
the cloud structure on the left panel. The colors between the two panels are related. The orange cloud results in a higher reflectivity; however, more NH3 is required to
define such a cloud.
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4. Result: Exoplanet Scenarios

4.1. υ And e

EXORELR has been initially tested on synthesized data. We
simulated the υ And e scenario (Butler et al. 1999; Curiel et al.
2011), which is a cold-Jupiter planet. It is one of the most Jupiter-
like exoplanets found in terms of mass (M×sin(i)=1.059MJup)

and semimajor axis (5.2456 au) (see Table 2). But orbiting a star
larger than the Sun, it receives the same irradiation as a planet at
2.8 au in the solar system. The wavelength dependence of the
albedo of this planet is expected to be mostly dominated by the
methane absorption and deep water cloud presence (see Figure 7).
For this reason, we synthesized the data point with values reported

Figure 6. Left panels: the three different scenarios adopted to show the differences in the planetary albedo spectrum between the water and ammonia clouds. The top panel
shows a water cloud vertical profile with constant ammonia and mathane VMR. The middle and bottom panels are referred to as the ammonia-cloud scenarios but with
different constant water VMR value. Right panel: the resulting atmospheric albedo spectrum for each of the three scenarios in the left panels.

Table 2
Relevant Parameters Used in the Model for the υ And e Scenario

Stellar parameter υ And

Rå (Re) 1.56±0.01a

Teff (K) 6100±80a

Planetary parameters (υ And e)

´M isinp ( ) (MJup) 1.059±0.028b

a (au) 5.24558±0.00067b

e 0.00536±0.00044b

Tinternal (K) 110c

α (rad) 1.0472c

Notes.
a Butler et al. (1999).
b Curiel et al. (2011).
c Assumed.

Figure 7. Albedo-wavelength dependence for the simulated planet υ And e.
The red points represent the planetary albedo with a resolution of R=70 and
an S/N=20. The EXORELR best-fit model is also plotted (R=300 blue line,
and R=70 blue diamond).
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in the “Input” column of Table 3. The error bars have been
calculated by considering a particular signal-to-noise ratio (S/N;
e.g., 15, 20, etc.) with respect to the difference between the albedo
continuum and the bottom of the strongest methane absorption
band at ∼0.9 μm.

For the information retrieval process, we set uniform priors
to the parameters listed in Table 1 relative to the water cloud
case scenario.

We then run EXORELR on the planetary albedo by fitting
only water clouds. The marginalized distribution of the free
parameters of the model is reported in Appendix A.1. We have
been able to not only detect and quantify the amount of
methane in the atmosphere, but we also recovered quantitative
information about the concentration of water before its
condensation level. The resulting gravity is unconstrained, as
it does not affect the total albedo of the planet (see Section 3.1).
Finally, the water cloud is located between 103.45 and 105.55 Pa
with a strong CR that led the VMR of water on top of the cloud
to be about 10−11. The results shown in Appendix A.1 and

reported in Table 3 led to a pressure level where the optical
depth reaches unity (τ=1) to 105 Pa (1 bar). By looking at the
marginalized distribution, we noted a weak correlation between
the VMR of water and the cloud parameters as well as methane
concentration with Ptop, as expected. Overall, no strong
correlations have been found across free-parameter space.
Additionally, we have used EXORELR to perform an S/N

analysis to observe the performance on the retrieved parameters
(see Table 3 and Figure 8). We calculated the error bars at
different S/Ns relative to the baseline. At S/N=5, we noticed
that no constraints can be determined. At this S/N, we only
have weak information about the presence of methane in the
atmosphere. At S/N=10, we have a weak detection of water
below the clouds and how much water has condensed, but it is
not enough to quantitatively constrain these parameters. There
is also a marginal quantification of methane content in the
atmosphere, and the cloud depth is constrained. S/N=15
presents a similar scenario with water (VMR and CR) and
methane weakly constrained and the cloud depth quantified. At

Table 3
Retrieval Results for υ And e as a Function of S/N

Parameter Input S/N=5 S/N=10 S/N=15 S/N=20

Log VMRH O2( ) −2.51 - -
+1.39 2.58

1.28 - -
+1.82 0.77

1.46 - -
+2.26 0.80

1.36 - -
+2.18 0.40

0.61

Log VMRNH3( ) −3.37 - -
+6.98 4.55

4.86 - -
+5.64 5.04

4.39 - -
+6.02 5.48

3.85 - -
+7.20 4.35

4.59

Log VMRCH4( ) −2.81 - -
+2.79 1.59

1.20 - -
+2.32 1.20

1.14 - -
+2.75 0.96

0.91 - -
+2.66 0.37

0.59

g 48.97 -
+50.29 37.18

44.88
-
+48.86 33.61

47.08
-
+64.26 46.58

32.65
-
+45.75 33.55

49.84

PLog top,H O2( ) 4.14 -
+3.34 2.98

2.80
-
+1.91 1.75

3.55
-
+3.97 2.95

1.82
-
+3.31 2.59

1.53

DLog cld,H O2( ) 5.52 -
+6.51 1.50

1.82
-
+5.53 0.65

0.91
-
+5.74 0.68

0.83
-
+5.50 0.50

0.48

Log CRH O2( ) −8.39 - -
+5.95 5.36

3.99 - -
+8.85 2.95

5.25 - -
+8.15 3.60

4.88 - -
+8.91 2.88

4.91

ln 68.0±0.3 92.3±0.1 102.8±0.2 116.9±0.2

Note. The table also reports the median and 1σ uncertainties for the marginalized distribution of the listed parameters.

Figure 8. Marginalized distribution of the retrieved parameters at different S/Ns. The example is relative to the water cloud model; however, similar results are
obtained with the ammonia-cloud model.

8

The Astronomical Journal, 159:175 (17pp), 2020 April Damiano & Hu



S/N=20, the results get much better with detection of most of
the parameters (except for gravity, which does not play a
significant role in the albedo modulation) with most of them
also constrained (e.g., H2O, CH4, Ptop and Dcld). NH3 has
narrow absorption bands in the probed wavelength range, and
for this reason, it is difficult to constrain it completely.

We have also tried to retrieve information from the spectrum
by excluding the bluest points of the spectrum (data points with
λ<0.6 μm). We did not notice significant shifts from the
results presented before.

4.2. 47 Uma b

One of the exoplanets that is most likely to be observed by
WFIRST for spectroscopic studies is 47 Uma b (Butler &
Marcy 1996). It is a cold-Jupiter planet orbiting a sunlike star
(G0V) at 2.1 au (see Table 4). With respect to the Jupiter–Sun
system or the υ And e case, 47 Uma b (as it is closer to its host
star) has a higher equilibrium temperature. In terms of cloud
structure, this means that the upper atmosphere of the planet is
expected to contain water clouds, as opposed to the ammonia
clouds typical of Jupiter (Sudarsky et al. 2000). We used our self-
consistent model (Hu 2019) to simulate the cloud structure. The
simulated scenario agrees with the upper water clouds and
absence of ammonia condensates. We interpolated the albedo in

the same wavelength grid used for the υ And e scenario
(Section 4.1), in which we considered an S/N of 20, and we
added the error bars to the data points according to the chosen
S/N. We then used our framework to fit water clouds only to the
simulated data (Figure 9). The input parameters used to synthesize
the data and the resulting values are reported in Table 5. The
marginalized distributions of the process are reported in
Appendix A.2, and the theoretical and retrieved cloud structure
is shown in Figure 10. Bayesian sampling was able to retrieve and
quantify the cloud extension (Dcld), the VMR of methane, and the
VMR of the water in the deep layers of the atmosphere. There is a
weak correlation between VMRCH4 and Dcld. The median values
and the errors of the marginalized distribution agree with the true
value used to synthesize the albedo with the exception of the
VMR of ammonia (not enough NH3 bands in the wavelength
range) and the CR of the water. However, the retrieved CRH O2

value ensures that on top of the clouds, the water concentration
drops substantially; in this way, the water absorption is absent.
The Ptop marginalized distribution is broad, as the less dense part
of the cloud (i.e., the top part) is difficult to constrain. However,
its retrieved distribution is fairly consistent with the input value.

5. Result: Jupiter Test Case

Most of the models used to explain the observation of hot
exoplanets relied entirely on theoretical consideration, as in the
solar system these kind of planets are not present. In the case of

Figure 9. Best-fit models to the 47 Uma b simulated data. The data have a
spectral resolution of R=70, and the best-fit models are shown at R=300
(solid blue line) and R=70 (blue diamond).

Figure 10. The dark blue lines show the theoretical water cloud structure and
theoretical VMR vertical profile of water synthesized by using our self-
consistent model (Hu 2019). The light blue lines show the retrieved cloud
structure (solid line) and the water VMR (dashed line). The VMR of ammonia
(orange dashed line) and methane (purple dashed line) have been considered
constant across the atmosphere.

Table 4
Relevant Parameters Used in the Model for 47 Uma b

Stellar parameter 47 Uma

Rå (Re) 1.24±0.04a

Teff (K) 5892±70a

Planetary Parameters 47 Uma b

Mp (MJup) 2.53±0.07b

a (au) 2.1±0.02b

e 0.032±0.014b

g (m s−2) 27.8750c

Tinternal (K) 110c

α (rad) 1.0472c

Notes.
a Fuhrmann et al. (1997).
b Butler & Marcy (1996).
c Assumed.

Table 5
Retrieval Results for 47 Uma b

Parameter Input Results

Log VMRH O2( ) −1.50 - -
+1.46 0.43

1.15

Log VMRNH3( ) −2.37 - -
+7.43 4.22

5.14

Log VMRCH4( ) −1.80 - -
+1.90 0.52

0.51

PLog top,H O2( ) 3.36 -
+2.70 2.32

1.93

DLog cld,H O2( ) 4.84 -
+4.99 0.26

0.40

Log CRH O2( ) −4.84 - -
+8.83 2.98

5.63

Note. The table reports the median and 1σ uncertainties for the marginalized
distribution of the listed parameters alongside the input parameters used to
synthesize the data.
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temperate/cold planets, we can test our model on realistic
observations before applying them to exoplanetary observa-
tions. The scenario of the gaseous-giant planets (Jupiter and
Saturn) in our solar system is within the scope of the model
presented in this work. In this section, we present the results of
the information retrieval analysis on Jupiter recorded by
Karkoschka (1998). This also gives us the possibility to
present and discuss the two-cloud versus one-cloud model.

The largest among the solar system’s planets has been the
object of deep studies to understand the composition and
structure of its atmosphere (Weidenschilling & Lewis 1973;
Sato & Hansen 1979; Karkoschka 1994, 1998; Simon-Miller
et al. 2001; Wong et al. 2004; Sato et al. 2013). In the literature,
the Jupiter cloud structure is defined respectively from the
highest to the lowest in the atmosphere in terms of altitude, by
NH3, NH4SH, and H2O clouds positioned between 1 and 10
bars (Weidenschilling & Lewis 1973; Sato & Hansen 1979). In
those works, NH3 and NH4SH clouds are expected to be
enough to describe the observations. This makes Jupiter a
suitable candidate to explore the performance of our two-cloud
model (in this case, we can fit only ammonia and water clouds).
We adopted Jupiter’s albedo measured by Karkoschka (1998).
The phase angle relative to those observations is α=6°.8. We

reduced the resolution to R=120 and added error bars in
agreement with an S/N=20 relative to the baseline of the
albedo. We then used this albedo to feed our algorithm and try
to retrieve information from it.
We ran EXORELR on Jupiter’s albedo with the two-cloud

model and with the ammonia-cloud-only model in two different
instances. We calculated the Bayesian factor (see Section 2.3)
associated with these two models ( =ln 1.22 clouds

NH3 cloud
( )‐

‐
), and the

preference toward the two-cloud model is not significant, as the
ammonia clouds alone can explain most of the spectral
information (see Figure 11).
The results of the retrieval are reported in Table 6, and the

posterior distribution are reported in Appendices A.3 and A.4.
For completeness, we report both the two-cloud model and
ammonia-cloud posteriors because the preference toward one
or the other model is not significant. The two posteriors are
indeed similar in some aspects. From the retrieval, we obtained
a quantification of ammonia and methane with a ratio
CH4/NH3∼ 1. The ammonia concentration, however, drops
above the clouds to about 10−7. The log-concentration of
methane has been recovered as - -

+3.65 0.23
0.27 for the two-cloud

model and as - -
+3.54 0.19

0.25 for the ammonia-cloud-only model.
The reported error bar corresponds to 1σ confidence. If we
consider 3σ, the methane concentration values are in agreement
with the value reported in Wong et al. (2004) and other
retrieval work (Lupu et al. 2016) in which the process has been
performed on Jupiter data taken from Karkoschka (1994). We
found a multimodal solution for the concentration of water,
probably due to the not-so-high significance of the two-cloud
model. The depth of the water cloud is not significant, making
the cloud too thin, which is the reason why there is not much
difference between the two-cloud model and the NH3 cloud
model.
The cloud’s retrieved position (see Table 6 and Figure 12) is,

in general, in agreement with the theorized atmospheric structure
of Jupiter being between 1 and 20 bars (Weidenschilling & Lewis
1973; Sato & Hansen 1979). However, the actual structure is
much more complex than the one that we obtained, with NH4SH
clouds and different haze layers (West et al. 1986).
We noticed, however, some correlations among the free

parameters; the strongest is the one between the retrieved value
of ammonia below the clouds and the concentration of
methane. This is a consequence of the correlations of these

Figure 11. Best-fit models to the Jupiter albedo data (Karkoschka 1998). The
continuous lines are relative the different cloud models: blue for the two-cloud
model and orange for the ammonia-cloud model. The data have been reduced
to spectral resolution R=120, and the best-fit models are also reported at
R=120. Data with wavelengths lower than the vertical black dashed line have
been excluded during the retrieval process.

Table 6
Retrieval Results for Jupiter

Parameter Two-cloud NH3 Cloud

Log VMRH O2( ) - -
+4.63 2.34

3.29 - -
+6.64 4.22

0.43

Log VMRNH3( ) - -
+3.65 0.21

0.27 - -
+3.54 0.22

0.24

Log VMRCH4( ) - -
+3.65 0.23

0.27 - -
+3.54 0.19

0.25

PLog top,NH3( ) -
+1.60 1.50

2.51
-
+1.38 1.18

2.35

DLog cld,NH3( ) -
+6.32 0.34

0.45
-
+6.19 0.26

0.25

Log CRNH3( ) - -
+3.49 3.35

2.01 - +3.643.40
1.89

PLog top,H O2( ) -
+3.67 3.40

3.22

DLog cld,H O2( ) -
+3.72 3.48

3.06

Log CRH O2( ) - +5.376.15
4.17

ln 135.8±0.1 134.6±0.1

Note. The table reports the median and 1σ uncertainties for the marginalized
distribution of the listed parameters.

Figure 12. Retrieved atmospheric vertical profile of Jupiter. The values used to
compute this graph are relative to the maximum likelihood of each parameter
shown in the posterior distribution (Figure 15). The volume mixing ratios of the
trace gasses are represented by the dashed lines, while the clouds are
represented by continuous lines.
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two parameters with the depth of the ammonia cloud. Both the
abundance of ammonia and the depth affect the density of the
clouds (see Section 3.4). The correlation between the methane
VMR and the cloud position is also well known in previous
works (Irwin et al. 2015; Lupu et al. 2016).

6. Discussion

Reflection spectroscopy is an emergent topic, and for this
reason, different retrieval models have been proposed and
tested. Regarding cold gaseous planets, a few models have
been published (Lupu et al. 2016; Nayak et al. 2017; Batalha
et al. 2019; Lacy et al. 2019). One of these models (Lacy et al.
2019) is inspired by empirical observations, but the free
parameters are not necessarily linked to physical quantities.
The other models agree on having the single scattering albedo
(w̄), the asymmetry factor (ḡ), and the optical depth (τ) within
their free parameters, as the cloud model is not linked to a
physical model of cloud structure (e.g., particle size and
chemical identity of cloud constituents are not taken into
account).

In this work, we wanted to follow some of the other models’
aspects and eventually propose a different point of view. For
the interpretation of hot-Jupiter observations, we could not gain
insight from observations in the solar system, as it lacks these
types of planets. For cold gaseous planets, it is different: we
can observe them closely with much more detail and take
inspiration for developing general models.

Weidenschilling & Lewis (1973) and Atreya et al. (1999)
have successfully predicted the bulk cloud structure of Jupiter
by considering water and ammonia as condensable species.
This fact has been implemented in our model, and we made a
distinction between water and ammonia clouds as their physical
properties are linked to the relative nonuniform molecular
VMR vertical profile. However, the distinction between the two
clouds given by the information retrieval of the spectrum
depends on the case. The VMR of water and ammonia in the
atmosphere is directly linked with the density of the
corresponding cloud (Equation (2)); the more water or
ammonia is present in the atmosphere, the more dense a cloud
can be, affecting the optical properties of the cloud itself. Our
cloud model is linked with a physical model that calculates
cloud density and particle size. As presented in the literature,
this is likely to bring a correlation between the VMR of
methane and cloud position (Irwin et al. 2015; Lupu et al.
2016). However, there might be cases in which this correlation
is not significant; as highlighted by Hu (2019), it depends on a
combination of S/N, spectral resolution, and particular
combinations of cloud positions and methane VMR.

6.1. The Role of Ptop and Dcld

Unlike the common definition of Ptop (Irwin et al. 2008;
Madhusudhan & Seager 2009; Benneke & Seager 2012;
Waldmann et al. 2015a, 2015b; Lupu et al. 2016; Feng et al.
2018; Batalha et al. 2019), in the algorithm presented here, it
does not play a central role. The Ptop regulates the least-dense
part of the cloud where not much scattering is happening. This,
in part, explains why we observe a broad posterior of Ptop in
our marginalized histograms. Most of the scattering happens at
the bottom of the cloud where it is denser. Dcld is the parameter
related to the lower part of the cloud where most of the
scattering happens. Moreover, most of the time, the pressure

value at which the optical depth reaches the unity (Pτ=1) is
close to the bottom of the cloud. Finally, since Pbot is defined as
the sum of Ptop and Dcld, most of the time, Dcld will dominate
the summation, making the posterior of Ptop broader toward
lower values. To compare our work to those in the literature,
Dcld is the parameter in which the attention should be
focused on.

6.2. Jupiter Results

Even though our model is inspired by solar system
observations and by Weidenschilling & Lewis (1973) and
Sato & Hansen (1979), there are assumptions and simplifica-
tions that create differences between the literature and our
models. Jupiter’s cloud structures theorized in the literature
assume the presence of hazes and multiple (even more than
two) cloud layers of different molecular species. In our model,
instead, we did not include hazes. We have not modeled the
condensation of NH4SH, which could be necessary to have a
better fit of Jupiter’s and other scenarios of reflected spectra.
The results we obtained for Jupiter (Table 6, Figures 11 and

12) show that a single cloud layer can be sufficient to explain
the albedo modulation. However, since we have the sensibility
to differentiate cloud species, using a two-cloud model
configuration with NH3 and NH4SH condensates and the
presence of hazes may have a better outcome than the water
cloud, which does not really contribute to the albedo
modulation. The overall position of the NH3 cloud reflects,
however, the clouds position reported in Weidenschilling &
Lewis (1973) and also the position of clouds measured by
planetary missions (West et al. 1986). We want to point out that
even if the theoretical values are used in the fully consistent
model EXOREL (Hu 2019) and a theoretical cloud structure is
considered, the calculated albedo, while it matches with Jupiter
in its bulk part, cannot sufficiently account for the methane
weak bands. This suggests that further effects need to be taken
into account (Hu 2019). This may also explain why the
concentration of methane has been underestimated by our
model. However, we would like to point out that even though
these simplifications have been adopted, our recovered free-
parameter values agree with the literature works within 3σ
confidence.
Bayesian samplers are designed to explore the parameter

space to find the solution that best approximates the data. The
result of this process will closely reflect reality only if most of
the effects that take place in the process under study are taken
into account. In this sense, hazes, other absorbers, and cloud
species may be required for future studies.

6.3. Water versus Ammonia Clouds

In Section 2.1, we described the steps required for the
atmospheric structure to be constructed. We differentiated
water clouds from ammonia clouds by considering different
VMR vertical profiles for the two molecules and different
particle sizes (as we used the mean molecular mass for the
calculation). Also, the opacities of the two molecules are
different, and this creates a further distinction between the two
cloud species when the single scattering albedo is calculated.
In Section 3.5, we synthesized three different scenarios to try

to distinguish between water and ammonia clouds. However,
whether or not we are able to distinguish between the two
species with this algorithm will be case-dependent. By

11

The Astronomical Journal, 159:175 (17pp), 2020 April Damiano & Hu



combining information from the Bayesian factor, the expected
temperature of the planet, and the use of the self-consistent
model, we might be able to discriminate between the two cloud
species. The results of the Bayesian sampling could indeed be
compared with a self-consistent model and used to determine if
the two outcomes agree with each other.

6.4. Implication of Constraining the Molecular VMR below the
Clouds

Direct quantification of molecular abundances below the
cloud deck has been a difficult task. Most of the models in the
literature that interpret atmospheric spectra do not quantify
parameters below Pτ=1 by design. In our work, we tried to link
the presence of condensates to the variation of molecular
concentration. This gave us the freedom to fit the concentration
value below the clouds. Essentially, we are assuming that for a
certain condensate to be present (defined by density, particle
size, and extension, see Section 3.4), a particular non-constant
VMR vertical profile is required. This assumption may have an
important implication: in the cold gaseous planets scenario, it
could help improve atmospheric modeling and detect the
presence of water and ammonia unseen in direct measurements.
This behavior is also embedded in our algorithm as the VMR of
such molecules on top of the clouds drops drastically, making
them almost undetectable.

6.5. Spectral Noise Realization

In this work, we showed a novel approach to modeling and
retrieving chemical abundance and cloud information from
cool gaseous-giant-planet spectra. For this reason, we focused
on the description and performance of the model without
stressing the aspect of the spectral noise. In the retrieval
exercises presented in this work (Sections 4 and 5), we added
error bars to the spectral data points by calculating the average
albedo across the wavelength range and scaling it by the chosen
S/N. This may lead to underestimating the retrieval error and
introducing biases. Previous works (Lupu et al. 2016; Feng
et al. 2018) have shown that accounting for a random noise
increases the uncertainty of the retrieved values significantly as
the data points are extracted from a Gaussian distribution that
changes the value of each measurement away from a simple
model mean. In this context, the results presented in this work
are optimistic, and including a random noise to the data points
would weaken the constraint on the retrieved values at high
S/N (20 or 15) and completely fade out any quantitative
detection at lower S/N (10 or 5).

7. Conclusion

In this work, we presented EXORELR, our novel Bayesian
inverse retrieval algorithm for exoplanetary reflected light
spectra. The gas giants’ albedo (key ingredient of reflection
spectroscopy) in the visible and near-infrared wavelength is
mostly affected by cloud scattering and molecular absorption
from H2O, NH3, and CH4. We used a nonuniform VMR
vertical profile of water and ammonia to construct water and
ammonia clouds. Compared to previous retrieval models of

reflected light spectra, EXORELR enforces the causal relation-
ship between the gas abundance and the corresponding cloud
density. Since EXORELR calculates the single scattering
albedo, the asymmetry factor and the optical depth consistently,
it employs a set of free parameters that define the nonuniform
VMR of water and ammonia, e.g., the cloud depth (Dcld) and
the VMR below the clouds (see Figure 1). We presented the
performances of our model with two exoplanetary test cases: υ
And e and 47 Uma b, which are candidates to be observed and
characterized by the upcoming WFIRST mission. Finally, we
have run our algorithm on a realistic case by trying to analyze
the Jupiter albedo.
The key results of our work comprise the evidence of cloud

presence and position estimation, the physical characterization
of clouds (cloud density and particle size profiles), possibility
to determine cloud chemical constituent (distinction between
water and ammonia clouds), and the quantification of methane
concentration and possible indirect quantification of the VMR
of condensable molecules below the cloud.
The retrieval exercises presented in this paper show that the

reflected light spectra expected to be recorded by future space
missions should be sufficient to put meaningful constraints on
the presence of clouds and the abundance of methane. This
conclusion is validated by the solar system test case, where we
fit a relatively simple model to the Jupiter planetary atmosphere
known to be complex. If the S/N is high enough, reflected light
spectroscopy may help us quantify the cloud extension, which
reflects the position of the clouds, as well as the below-cloud
concentration of the gas responsible for the presence of the
cloud itself.
For this initial instance, some approximations have been

made (e.g., log-linear condensation of water and ammonia, and
absence of hazes). In this work, we have focused on the
possibility of retrieving parameters about the atmospheric
characteristics of cold gaseous planets. In a future work, this
algorithm will be further developed to also include temperate/
cold rocky planet scenarios with H2- and non H2-dominated
atmospheres.
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Appendix
Posterior Distributions

A.1. υ And e—Water Cloud

Result of the Bayesian statistical analysis on the υ And e
simulated spectrum. The posterior distribution is shown in
Figure A.1.
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A.2. 47 Uma b—Water Cloud

Result of the Bayesian statistical analysis on the 47 Uma b
simulated spectrum. The posterior distribution is shown in
Figure A.2.

Figure A.1. Posterior distribution of the free parameters of the model for the υ And e scenario. The red lines indicate the ground truths of the synthesized model. The
numbers reported on top of the 1D distributions are relative to the median and 1σ values of the distributions. The correlation between CH4 and Ptop is weak. In this
example, the correlation between VMRH O2 and both VMRCH4 and Dcld,H O2 can be seen; however, the relative 2D distributions are quite localized. No multimodal
solutions have been found.

13

The Astronomical Journal, 159:175 (17pp), 2020 April Damiano & Hu



A.3. Jupiter (♃)—Two-cloud Model

Result of the Bayesian statistical analysis on the Jupiter
binned spectrum. The EXORELR model used here is relative to
the two-cloud model. The posterior distribution is shown in
Figure A.3.

Figure A.2. Posterior distribution of the free parameters of the water model for the 47 Uma b science case. The numbers reported on top of the 1D distributions are
relative to the median and 1σ values of the distributions. The solid red lines refer to the input parameters (ground truths) used to synthesize the data.
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A.4. Jupiter (♃)—Ammonia Cloud

Result of the Bayesian statistical analysis on the Jupiter
binned spectrum. The EXORELR model used here is relative to
the ammonia cloud model solely. The posterior distribution is
shown in Figure A.4.

Figure A.3. Posterior distribution of the free parameters of the two-cloud model for the Jupiter scenario. The numbers reported on top of the 1D distributions are
relative to the median and 1σ values of the distributions.
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