
Cloud Identification from All-sky Camera Data with Machine Learning

Michael Mommert
Lowell Observatory 1400 W. Mars Hill Road, Flagstaff, AZ 86001, USA; michael.mommert@lowell.edu

Received 2019 December 31; revised 2020 February 5; accepted 2020 February 7; published 2020 March 30

Abstract

Most ground-based observatories are equipped with wide-angle all-sky cameras to monitor the night sky
conditions. Such camera systems can be used to provide an early warning of incoming clouds that can pose a
danger to the telescope equipment through precipitation, as well as for sky quality monitoring. We investigate the
use of different machine-learning approaches for automating the identification of mostly opaque clouds in all-sky
camera data as a cloud warning system. In a deep-learning approach, we train a residual neural network (ResNet)
on pre-labeled camera images. Our second approach extracts relevant and localized image features from camera
images and uses these data to train a gradient-boosted tree-based model (lightGBM). We train both model
approaches on a set of roughly 2000 images taken by the all-sky camera located at Lowell Observatory’s
Discovery Channel Telescope, in which the presence of clouds has been labeled manually. The ResNet approach
reaches an accuracy of 85% in detecting clouds in a given region of an image, but requires a significant amount of
computing resources. Our lightGBM approach achieves an accuracy of 95% with a training sample of ∼1000
images and rather modest computing resources. Based on different performance metrics, we recommend the latter
feature-based approach for automated cloud detection. Code that was built for this work is available online.

Unified Astronomy Thesaurus concepts: Observational astronomy (1145); Astronomy data analysis (1858);
Astronomy software (1855); Astronomical site protection (94); Convolutional neural networks (1938); All-sky
cameras (25); Open source software (1866)

1. Introduction

Ground-based telescopes are exposed to and have to be
protected from environmental influences. Precipitation and
high relative humidity can cause significant damage to optical
surfaces, the telescope structure, as well as telescope electro-
nics. In order to protect telescopes from rain and snow, the
most conservative policy is to close their enclosures as soon as
the sky is clouded out.

All-sky cameras provide an efficient and inexpensive means
to monitor cloud coverage at night. Such cameras, which often
use inexpensive charge-coupled device (CCD) or complemen-
tary metaloxidesemiconductor detectors in combination with
wide-angle lenses provide the sensitivity and dynamic range
that is necessary to identify cloud coverage even on a dark
night. Most observatories—ranging from small aperture
telescopes to the largest available telescopes—already have
such camera systems installed and use them on a regular basis.

Typically, human telescope operators monitor all-sky camera
feeds in real-time, allowing them to react to incoming clouds
by closing the telescope enclosure on short timescales. While
the task of identifying clouds against the sky background is
mostly trivial for humans, this is a non-trivial task for a
machine. Problems arise because of the variable appearances
clouds can have during the night. Depending on illumination
conditions from the Moon or the Sun, clouds can either appear
brighter than the clear sky, or darker. Furthermore, at the low
imaging resolutions provided by all-sky cameras even the clear
sky itself contains bright and dark patches, depending on the
density and brightness of stars in a given field, creating a source
of confusion in cloud identification. Additional complications
arise from static or variable effects from terrestrial illumination
and the observatory’s local horizon. A simple classification
scheme, for instance based on sky brightness, is in most cases
not sufficient to identify clouds with high confidence.

While the main motivation for this work is the development
of a system that provides warning in the presence of opaque
clouds that can potentially carry precipitation, the same
methodology can be applied to quantify sky quality. Such a
system can be used to derive the fraction of the accessible sky
that is clear throughout a night or longer periods, or to identify
near-photometric conditions without human interaction.
The automation of cloud discovery from all-sky camera data

is worthwhile due to the ubiquity and general availability of
these camera systems. An automated system that is able to
warn a robotic telescope—or a human operator—of incoming
clouds will significantly improve the safety of observatories
and enable automated monitoring of sky quality.
In this work, we investigate the use of machine-learning

methods to identify and locate clouds in all-sky camera data
using two different approaches. In our first approach, we use a
deep-learning approach based on a residual neural network
(ResNet) model that works on image data as obtained from the
camera. Our second approach combines the extraction of
carefully designed features that are indicative of clouds from
images with a tree-based machine-learning model (lightGBM).
Our requirement is to reach an accuracy of 95% for the

identification of clouds for a given location on the sky from all-
sky camera image data.
We define our models in Section 3, present their results in

Section 4, and discuss their performances and possible
application to different use cases in Section 5. The Appendix
briefly discusses the implementation of the models and the
code used in this work.

2. All-sky Camera Data

We train and test our machine-learning models on image
data taken at Lowell Observatory’s Discovery Channel
Telescope. The images have been obtained with a Starlight

The Astronomical Journal, 159:178 (8pp), 2020 April https://doi.org/10.3847/1538-3881/ab744f
© 2020. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-8132-778X
https://orcid.org/0000-0002-8132-778X
https://orcid.org/0000-0002-8132-778X
mailto:michael.mommert@lowell.edu
http://astrothesaurus.org/uat/1145
http://astrothesaurus.org/uat/1858
http://astrothesaurus.org/uat/1855
http://astrothesaurus.org/uat/94
http://astrothesaurus.org/uat/1938
http://astrothesaurus.org/uat/25
http://astrothesaurus.org/uat/25
http://astrothesaurus.org/uat/1866
https://doi.org/10.3847/1538-3881/ab744f
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ab744f&domain=pdf&date_stamp=2020-03-30
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ab744f&domain=pdf&date_stamp=2020-03-30

Xpress Oculus all-sky camera, featuring a 1392×1040 pixel
CCD detector and a 1.55mm f/1.2 fish-eye lens with a field of
view of 180°. The camera creates a circular projection of the
sky plane with a radius of 520pixels and 16 bit dynamic range.
Image files are provided in FITS format; the image header
includes information on the date and time of the observation
and the exposure time (typically 60 s at night). The imaging
cadence at night is 1minute−1. Figure 1 (panel a) shows a raw
example image from this camera.

2.1. Data Preparation

From each image we crop a quadratic region that contains
the circular image of the sky.

We mask those parts of the image that do not show the sky—
including parts of the lens assembly, as well as local
background features like the telescope enclosure and trees—
by setting the corresponding pixel values to zero. The mask is
created from a median combination of 50 random images that
were taken under similar (bright) illumination conditions. We
blur the resulting combined image with a Gaussian filter
(scipy.ndimage.filters.Gaussian_filter) to
remove small-scale features and use a threshold to extract

those parts of the image that do not show the sky. Finally, we
smooth the edges of our selection by convolving the resulting
mask with a square kernel. The resulting mask has been applied
in Figure 1 (panel b). While this approach does not perfectly
mask all objects on the local horizon, it is sufficient for our
purposes.
To roughly localize clouds in the image data, we divide each

image into a set of subregions. The borders of these subregions
are defined in terms of radial distance from Zenith and azimuth.
The innermost subregion is a circular aperture centered on
Zenith; more distant areas are arranged in rings that are
subdivided into equidistant ring segments based on azimuth.
This radially symmetric definition has the advantage that ring
segments on the same ring correspond to the same elevation
and the same airmass. Furthermore, this definition naturally
reflects the ranked importance of finding clouds at different
elevations: while clouds close to Zenith may pose an immediate
threat to the observatory, clouds on the horizons are no
immediate threat but should be recognized and monitored. This
ranking can be directly translated into different warning levels.
For our data, we chose a scheme that consists of a circular

aperture around Zenith, three rings, and eight ring segments.

Figure 1. Preparation stages for our image data. (a) Raw image showing the circular projection of the sky and illumination on lens assembly parts. Clouds appear
bright due to the imminent rise of the Moon; the Milky Way is visible, too. (b) Cropped image in which non-relevant parts for our task have been masked (telescope
enclosure, nearby trees, and lens assembly). (c) Subregion grid resulting in 33 subregions. (d) Labeled subregion grid (subregions that contain significant amounts of
clouds are highlighted).

2

The Astronomical Journal, 159:178 (8pp), 2020 April Mommert

The distribution of the 33 resulting subregions is shown in
Figure 1 (panel c).

2.2. Training Data Sample

Our training data sample consists of 1975 images that were
randomly drawn from a set of 259,259 images taken between
2018 June and 2019 August. For each image we manually label
the presence of clouds in each subregion with a binary flag.
Subregions are assigned a unity value if they contain
considerable amounts of clouds that significantly affect the
transparency in the corresponding subregions (see Section 5.2.2
for a discussion), or zero otherwise; thick cirrus affecting
transparency is considered as a cloud, while thin cirrus may not
be considered as a cloud. Figure 1 (panel d) shows a labeled
example image.

From our 1975 training data images, we extract 65,175
labeled subregions, 28,872 (44.3%) of which contain clouds,
36,303 (55.7%) of which do not contain clouds. Hence, our
training data sample has a slight class imbalance that favors
clear sky conditions.

3. Machine-learning Model Definitions

We use two different approaches and two different machine-
learning models to learn and predict the presence of clouds in
our image data: a residual neural network (ResNet) that works
with image data, and a tree-based model (lightGBM) that
works on a set of carefully designed features that we extract
from each image and subregion.

3.1. Image-based Approach (ResNet)

We use a residual neural network (ResNet; Kaiming et al.
2015) adaptation that works directly on the cropped and
masked image data. ResNets are frequently used in computer
vision applications, including object identification, localization,
classification, and image segmentation.

Mimicking the way in which biological neural networks
(e.g., the human brain) work, artificial neural networks consist
of several layers of “neurons” that are connected with each
other and react to external stimulation in the form of an input
data vector. Each neuron is a mathematical function that uses a
weighting scheme to calculate a scalar output value based on its
weights, input data vector, and a nonlinear activation function.
In simple feed-forward neural networks, each neuron is fully
connected to all neurons in the previous layer and all neurons in
the following layer; outputs of the previous layer serve as an
input for the current layer, while the output of the current layer
serves as an input for the following layer. By carefully
designing a neural network and training it with ground-truth
data, it can learn patterns and perform tasks like image
classification. The learning process is an optimization process
that adjusts the weights in each neuron such that the output of
the model agrees with the ground-truth. See Russell & Norvig
(2009) and Goodfellow et al. (2016) for a review of the details
of neural networks.

ResNets have a more complex network architecture includ-
ing a number of convolutional layers and the outputs of
neurons do not only affect the neurons in the following layer,
but also those in later layers. This principle enables the training
of extremely deep networks (with many layers) and thus the
learning of rather complex tasks. See Kaiming et al. (2015) for
more details.

We use the ResNet-18 implementation provided by
torchvision.models.resnet and modify it in such a
way that the first convolutional layer of the model is expecting
single-channel (i.e., monochrome) images as input (instead of
three-channel red giant branch (RGB) data) and uses a 16×16
pixel convolutional kernel. Furthermore, the model produces an
output vector of length 33, representing the 33 subregions in
the image. As a loss function, we choose the Binary Cross
Entropy with Logits Loss (pytorch.nn.BCEWithLogit-
sLoss), which combines calculating the binary cross entropy
between the training features (image data) and the training
labels (presence of clouds) with a Sigmoid layer for additional
nonlinear activation. As an optimizer we use the Stochastic
gradient descent with momentum (Goodfellow et al. 2016).

3.1.1. Training Procedure

We train our model in single-batch mode using 70% of the
available training data (the remaining 30% are used as a
validation data sample) and start the optimization process with
a learning rate of 0.025, which decreases at a rate of 0.3 every
fifth epoch for 100 epochs.
The training is performed on a standard desktop computer

that is equipped with an NVIDIA GeForce GTX 1050 Ti
graphics card, thus taking advantage of Pytorch’s GPU support.
The results of the training are presented in Section 4.1.

3.2. Feature-based Approach (lightGBM)

We also use a gradient-boosted tree-based model that works
on a set of features (see Section 3.2.1) that we extract from our
images. The term “tree” refers in this case to a decision tree,
which is a simple non-parametric machine-learning model that
can be used for classification. A decision tree is a directional
graph of binary questions based on the provided feature space.
In the case of a classification task, each “branch” of the tree
ends in a “leaf,” which defines a class assignment. See Russell
& Norvig (2009) for a discussion of decision trees.
A gradient-boosted tree-based model means the combination

of a large number of decision trees and an optimization rule that
builds succinct trees to optimize the performance of the entire
ensemble. Gradient-boosted tree-based models are extremely
flexible and powerful in classification problems in pre-defined
feature spaces.
We use the lightGBM (Ke et al. 2017) model implementa-

tion in combination with the sklearn.pipeline infra-
structure to train our model. We evaluate sample scores using
the cross entropy between model outputs and training labels.

3.2.1. Feature Definitions

We base the design of the feature space in which our tree-
based model will learn on human experience and mimic criteria
that a human would use in identifying clouds and they are as
follows.

1. Source density. The presence of stars precludes the
presence of thick clouds, which implies that subregions
with a high density of sources most likely represent a
clear patch of sky. We measure the number of sources per
subregion with the Python module SEP, which in turns
makes use of Source Extractor (Bertin & Arnouts 1996).
Sources are identified based on a minimum number of
pixels that are brighter than the background by a given

3

The Astronomical Journal, 159:178 (8pp), 2020 April Mommert

threshold; tuning these parameters depends somewhat on
the detector. The source count obtained using this method
typically represents a lower limit, due to the usually
rather limited imaging resolution of the all-sky camera.
We derive the source density by dividing the number of
sources per subregion by the total subregion pixel area.

2. Background properties. Depending on the illumination
conditions (presence of the Moon or the Sun) clouds
generally appear as dark or bright patches against the
clear sky. We hence derive the average brightness,
median brightness, and brightness standard deviation
across each subregion.

3. Time derivatives. Clouds are rarely stationary; we take
advantage of this property and form differences for each
of the aforementioned features for each subregion. In
order to be sensitive to both fast-moving and slow-
moving clouds, we form subregion-based differences of
each of the aforementioned properties between the
property of the current image and that of images that
were taken 3minutes ago and 15minutes ago.

The proper interpretation of these features requires some
additional information, which we also add to the feature space
and they are as follows.

1. Solar and lunar elevation, lunar phase. All three
measures provide valuable information on the illumina-
tion circumstances and address the question whether the
model should expect clouds to be darker or brighter than
the clear sky.

2. Subregion identifier. Integer identifier of the current
subregion, indicating its location on the local sky.

In total, the feature space considered encompasses 16
different features for each subregion and image in the training

data set. In the training and prediction process we treat each
subregion of each image as an independent data point with an
input vector of length 16 and a scalar target value.

3.2.2. Training and Hyperparameter Tuning

We split the available labeled data sample into a validation
sample, containing 10% of the examples, and another sample
that is used in a randomized cross-validation approach with five
folds. We evaluate the mean training and test scores in a
uniform fashion over a wide range in the most relevant model
parameters: the number of estimators, learning rate, maximum
depth of each estimator, number of leaves per tree, and the
minimum number of examples to form a leaf. Regularization is
achieved by sampling L1 and L2 regularization parameters α
and λ on a logarithmic scale. The results of the training are
presented in Section 4.2.

4. Results

4.1. ResNet

The performance of the ResNet model is somewhat sensitive
to the learning rate and momentum, but outcomes are very
similar for learning rates of the order of (1–3)% and momentum
values 0.7–0.9. However, we do find significant variations
between independent training runs despite the use of manual
random seeding, which we attribute to random scheduling
during the GPU acceleration and the relatively small training
sample size for this type of model. In the following, we report
on the results of the best of five independent training runs.
Figure 2 shows that we find validation sample accuracies of

the order of ∼80%, peaking around 87% for individual training
epochs. After ∼20 epochs, the training sample loss becomes
mostly stationary, meaning that the model does not improve.

Figure 2. Loss (top) and test sample accuracy (bottom) of our ResNet model during 100 training epochs. After ∼20 epochs, the training sample loss is mostly
stationary and the model barely improves. Given the low test sample loss and high test sample accuracy around 10 epochs, we recommend this number of epochs for
training this model.

4

The Astronomical Journal, 159:178 (8pp), 2020 April Mommert

The test sample loss, however, is subject to significant
variations, which we attribute to the relatively small sample
size. Training of the ResNet model leads to rather high
validation sample accuracies of the order of 85% after only
∼10 training epochs. We adopt this accuracy and number of
epochs in our further analysis. We find f1-scores of the order of
0.88. The f1 score is defined as the harmonic mean of precision
and recall and serves as a measure for the overall performance
of a binary classifier, where 1 denotes a flawless classification
and lower values denote flawed classification results.

Training our ResNet adaptation for 100 epochs takes 6.9hr,
10 epochs of training takes accordingly 41minutes.

4.2. lightGBM

We adopt the following set of hyperparameters for our
lightGBM model: a maximum depth of each tree of 5, 500
estimators, a learning rate of 0.25, 30 leaves per tree, 100
examples required to form a leaf, α=10, and λ=100. This
configuration leads to a training sample accuracy of 96% and a
test sample accuracy of 95%. The accuracy on the validation
sample, which was neither used in the training of the model nor
in the tuning of the hyperparameters, is 95% too. The f1 score
on the validation sample is 0.94, underlining the good
performance of the trained model.

The training of the entire training sample using the selected
hyperparameters and a five-fold cross-validation takes 12s on
a standard desktop computer.

Figure 3 shows the feature importances extracted from the
final trained model. The feature importance used here is defined
as the number of times a feature is used in this model
throughout all individual decision trees. The comparison shows
that environmental parameters that affect sky brightness are
extremely important, followed by the subregion location.
Actual subregion properties and their time differentials follow,
the latter of which only have a small—but not negligible—
impact on the model results.

5. Discussion

5.1. Model Performance

We find the feature-based approach using lightGBM to be
both significantly faster and more accurate than our image-
based approach using the ResNet adaptation. Only our
lightGBM approach meets our requirement of properly
identifying 95% of subregions that contain clouds. This
discrepancy can be explained with the fact that our feature-
based approach takes advantage of pre-defined features guided
by human experience that the ResNet model has to learn by
itself.
While the feature-less approach using our ResNet model

shows some promise, this model most likely requires much
more training data to reach a similar accuracy as our lightGBM
model. However, the need of more training data, which has to
be labeled manually, in combination with the much higher

Figure 3. Cumulative feature importances extracted from the trained lightGBM model ordered by magnitude. Environmental parameters affecting the sky brightness
play a major role in the identification of clouds, followed by the location in the sky. Subregion properties and their differentials play a decreasingly important role
with time.

5

The Astronomical Journal, 159:178 (8pp), 2020 April Mommert

computational requirements, make this deep-learning approach
much less attractive.

5.1.1. Model Accuracy and Confusion Matrix

The cloud detection probability for a single subregion is
∼85% using ResNet and ∼95% using lightGBM. Since clouds
typically cover more than one subregion, the probability that
any subregion in a set of N subregions that actually include
clouds increases exponentially with N. In the same way, the
probability to miss clouds decreases. For example, the
probability to miss the detection of clouds in three different
subregions with the lightGBM classifier is ∼0.053=10−4.
Hence, the confidence in detecting the presence of clouds
anywhere on the sky is much higher than the probability to
detect them in a single subregion, supporting the usefulness of
this machine-learning approach.

We further investigate the performance of our models using
a confusion matrix, which not only provides information on the
overall classification accuracy, but also additional information
on the rate of false-positive and false-negative classifications.
Here, a false-positive classification means a subregion that has
been predicted to contain clouds, although this is not the case.
A false-negative classification refers to a subregion that
contains clouds that are not identified by the classifier. The
confusion matrices for both methods used here are shown in
Figure 4.

As Figure 4 shows, the false-negative and false-positive rates
using the lightGBM classifier are rather small at 5.2% and
2.7%, respectively. We point out that the false-negative rate is
roughly a factor 2 higher than the false-positive rate, which
might be slightly affected by the class imbalance inherent to the
training data sample (see Section 2.2), but is mostly likely due
to the classifier’s inability to identify non-opaque clouds that
were labeled in the training data set. This effect, as well as
additional shortcomings potentially related to the insufficient
size of the training sample (see Section 5.2.1), is much more
obvious in the results of the ResNet classifier, which achieves a
false-negative rate of 29% and a false-positive rate of 3.6%,
underlining the insufficient performance of this classifier. The
comparison of these numbers support the suitability of the
lightGBM approach for this task, which is able to identify
clouds with high confidence.

We note that for both model approaches the rate of
misclassifications (false positives and false negatives) is highest
for subregions close to the horizon. This is most likely due to
confusion with layers of haze or other near-surface effects, as
well as human subjectivity introduced in the training sample
(see Section 5.2.2). This issue is most likely to be resolved with
more consistent manual labeling of a larger training sample.

5.2. Training Data

The performance of each model depends highly on the
amount and quality of the available training data sample.

5.2.1. How Much Training Data is Needed?

We investigate the impact of the training data sample size on
the model performance by training the same models on random
subsamples of the original training data sample. We use the
same sets of hyperparameters presented in Section 4. Results
for different subsample sizes are listed in Table 1.
In the case of our ResNet approach, a steady rise of both

accuracy and F1 score can be observed through all training
sample sizes used in this analysis. The fact that neither metric
plateaus indicates that the training sample size required to max
out the performance of the ResNet model has not been reached
and that this model will benefit from additional training data.
We fit a power-law function of the form f (x; a, b,
c)=a−b·10c to the ResNet accuracy values in Table 1
and find a saturation accuracy of only 92%. Furthermore, we
find through extrapolation that our ResNet approach requires of
the order of 20,000 training samples to achieve an accuracy of
90%. We acknowledge that this extrapolation may not be

Figure 4. Confusion matrices for the methods considered in this work.

Table 1
Model Performance as a Function of Training Sample Size

Training Sample Size ResNet lightGBM

(Nimages) Accuracy F1 Accuracy F1

1975 0.843 0.877 0.946 0.937
1000 0.816 0.847 0.945 0.939
500 0.762 0.795 0.932 0.919
100 0.552 0.591 0.915 0.910

6

The Astronomical Journal, 159:178 (8pp), 2020 April Mommert

highly accurate, but it certainly provides reasonable estimates
of the orders of magnitudes for both the maximum accuracy
that can be expected and the training sample size. Based on
these estimates, we conclude that our ResNet approach in this
form is extremely expensive compared to our lightGBM model.

We find lightGBM performances that are comparable to
those reported in Section 4.2 for training sample sizes of the
order of 1000 image examples. Even in the case of only 100
image examples, an accuracy above 90% can be reached. This
result implies that the lightGBM approach is useful even if only
a small training sample is available. We furthermore conclude
that more then 1000 training examples will not significantly
improve the performance of this model.

5.2.2. Training Data Quality and Cloud Definition

The training data sample should contain as little noise as
possible in order to maximize the model performance.
However, it is not always possible to provide unambiguous
training data in the case of cloud identification, as it is a highly
subjective process even for a human.

Clouds have many different ways to manifest in all-sky
camera images, making it nearly impossible to come up with a
clear definition of what counts as a cloud and what not. Does
thin cirrus count as a cloud? Do you consider a subregion to
contain a cloud if it occupies less than 10% of that subregion’s
area? Does haze on the horizon count as a cloud? There is no
definitive answer to these questions, adding a significant
amount of noise to the training data sample.

The sensitivity of any machine-learning effort to cirrus and
other not fully opaque clouds depends highly on the training
data provided. Based on the goal set for this work—the
implementation of a cloud warning system—we chose a rather
conservative cloud definition in the sense that we expect a
cloud to be fully opaque. While this definition is less prone to
human subjectivity (leading to a more homogeneous training
sample), it clearly creates a bias in the quantification of sky
quality (e.g., cirrus is likely to be not detected as a cloud),
which becomes apparent in the false-negative rates of both
classifiers (see Section 5.1.1). A less conservative cloud
definition can lead to a better detectability of cirrus, but might
be susceptible to other phenomena like air glow and terrestrial
light sources. Additional processing of the input data might be
necessary to distinguish the latter two effects from cirrus, e.g.,
by exploiting their static nature in the night sky. We leave such
investigations for the future.

Both of our models utilize regularization mechanisms to be
able to generalize the training data and to cope with noise in the
training data. However, this also means that the subjective
uncertainty of humans is propagated into the models: if the
presence of clouds in a given subregion is vague to a human, it
will also be vague to the model trained on data labeled by a
human. Any labeling efforts by humans should thus be as
consistent as possible.

We hence believe that the performance any model can
achieve is mainly limited by the quality of the training data
sample.

6. Conclusions

We find that the identification of clouds in all-sky camera
data is a solvable task for machine-learning models. We use
two different approaches for this task: a ResNet model that

works with image data and achieves an accuracy of ∼85%, and
a lightGBM model that uses features extracted from the images
and achieves an accuracy of ∼95%. While we find false-
negative and false-positive rates of only a few percent for the
lightGBM model, the ResNet model has a false-positive rate of
∼3% and a false-negative rate of 29%. These estimates are
based on a training data sample containing 1975 images. While
we expect a slightly better performance for the ResNet model
with a larger sample size, the lightGBM model seems to require
only 1000 training samples to obtain its full performance.
In conclusion, we recommend the use of feature extraction in

combination with a simple classification model, like lightGBM,
as it provides superior performance in terms of accuracy and
run time.
The methods presented here are tailored to the detection of

opaque clouds, i.e., for the protection of observatory equipment
from weather. This is mostly achieved through the cloud
definition that is applied in the labeling of the training data set.
Additional steps will have to be taken to extend the usability of
this methods for automated sky quality quantification that is
also able to detect even thin cirrus or photometric conditions.

The author would like to thank Ryan J. Kelly and the NAU/
NASA Arizona Space Grant program for enabling a case study
for this project.
Software:astropy (Astropy Collaboration et al. 2013, 2018),

Django (https://djangoproject.com), lightGBM (https://
github.com/microsoft/LightGBM), matplotlib (Hunter 2007),
numpy (Oliphant 2006), pandas (McKinney 2010), pytorch
(Paszke et al. 2019), scipy (Virtanen et al. 2019), seaborn
(Waskom et al. 2020), SEP (https://github.com/kbarbary/
sep), SExtractor (Bertin & Arnouts 1996), scikit-image (van
der Walt et al. 2014), scikit-learn (Pedregosa et al. 2011).

Appendix
Implementation and Resources

The code built for this work is publicly available under a
three-clause Berkeley Software Distribution (BSD)-style
license athttps://github.com/mommermi/cloudynight (Mom-
mert 2020). The cloudynight repository contains (1) a
Python module for data handling and preparation, feature
extraction, model training, and prediction; (2) a Python Django
web server application for database management, data
visualization, and manual labeling; (3) example data used in
this work; and (4) a number of scripts for testing the
functionality on the example data.
Please note that this code is not intended for plug and play.

Instead, it is tailored to the example data used in this work.
However, with the descriptions in this appendix and comments
provided as part of the code, it should be easy to modify the
code of the module and the web application to run them on
other data sets.
The example data provided are sufficient to test the different

parts of the provided code. However, especially the image data
are not sufficient to train a meaningful model. Also note that
due to the small number of images included in the example
image set, it is impossible to derive time-dependent features
from images—these features are hence set to zero in this case.

7

The Astronomical Journal, 159:178 (8pp), 2020 April Mommert

https://djangoproject.com
https://github.com/microsoft/LightGBM
https://github.com/microsoft/LightGBM
https://github.com/kbarbary/sep
https://github.com/kbarbary/sep
https://github.com/mommermi/cloudynight

A.1. Design, Premises, and Setup

The cloudynight module consists of three classes:
AllskyImage, which handles individual all-sky images,
AllskyCamera, which handles image management and
provides wrapper methods for image sets, and Light-
GBMModel, which handles the lightGBM model used in this
work. Note that the ResNet model implementation is provided
as an example script, but not as part of cloudynight. A
large fraction of the module’s setting are configurable using
parameters defined by cloudynight.conf (in the file
init.py).

Camera images are expected in FITS format. Each image
should have a header containing at least the date and time of
observation (header keyword DATE-OBS). Camera images are
also expected to be sorted by night and to reside on a remote
machine. The latest data for a given night can be downloaded
from that remote machine with AllskyCamera.down-
load_latest_data, which uses an rsync call to only
copy new data; this mechanism requires the exchange of ssh
keys between both machines. Downloaded images for a given
night can be processed (prepared and feature-extracted) and
results can be uploaded to the database with AllskyCa-
mera.process_and_upload.

The database has to be setup as part of the Django web
application. The use of array fields in the database requires a
PostgreSQL database type. The setup of this web application
is detailed in the repository documentation. The web applica-
tion provides a RESTful API that can be used to access and
modify the database from any other machine on the network,
e.g., to run a trained model on a given image to detect clouds.

The database contains three tables:

1. Subregion, which contains outlines of the individual
subregions for proper display in the web application;

2. Unlabeled, which contains image features for images
that have not been labeled manually; and

3. Labeled, which contains image features and cloud
labels for images that have been labeled manually; this is
the training data set.

Before using the web application, an image mask has to be
created using the script generate_mask.py and the
subregion outlines have to be uploaded to the database using
the script subregions.py.

A.2. Training

After the proper setup of the module and the web
application, training data have be generated. For this purpose,
data from a large number of nights should be downloaded,
processed, and uploaded to the Unlabeled table of the
database using AllskyCamera.process_and_upload_-
data. The training task (label/) of the web application can
now be used to manually label subregions that contain clouds;
results are automatically saved to the Labeled table of the
database.

A.3. Model Fitting

If enough training data are available, a model can be fitted.
The script model_lightgbm.py can be used as a template
for this task. Model performances for different model
parameters can be explored with LightGBMModel.train_-
randomizedsearchcv. Once a model solution has been
found, the model has to be saved as a file using Light-
GBMModel.write_model so that the trained model can be
utilized by the web application.

A.4. Cloud Detection

The presence of clouds can be predicted for the latest camera
using the web application task predictLatestUnla-
beled/. This task returns a json object that contains an array
in which each element represents one subregion; the value of
the element will be 1 in case a cloud has been detected and 0
otherwise. This information can be utilized by the user in any
possible way.
A different way to predict the presence of clouds would be to

download data using the RESTful API and then run a model in
a Python script similar to model_lightgbm.py.
For automated cloud prediction on the latest camera image,

the user has to setup a cron job that runs a script to download
the latest image data for the current night and detects clouds in
this image using predictLatestUnlabeled/.

ORCID iDs

Michael Mommert https://orcid.org/0000-0002-8132-778X

References

Astropy Collaboration, Price-Whelan, A. M., Sipocz, B. M., et al. 2018, AJ,
156, 123

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A,
558, A33

Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (Cambridge,

MA: MIT Press)
Hunter, J. D. 2007, CSE, 9, 90
Kaiming, H., Zhang, X., Ren, S., & Sun, J. 2015, arXiv:1512.03385
Ke, G., Meng, Q., Finley, T., et al. 2017, in Advances in Neural Information

Processing Systems 30, ed. I. Guyon et al. (San Diego, CA: NeurIPS), 3149
McKinney, W. 2010, in Proc. 9th Python in Science Conf. (Austin, TX:

SciPy), 51
Mommert, M. 2020, mommermi/cloudynight: first release, Zenodo, doi:10.

5281/zenodo.3662850
Oliphant, T. E. 2006, A Guide to NumPy
Paszke, A., Gross, S., Massa, F., et al. 2019, in Advances in Neural Information

Processing Systems 32, ed. H. Wallach et al. (San Diego, CA:
NeurIPS), 8024

Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res.,
12, 2825

Russell, S., & Norvig, P. 2009, Artificial Intelligence: A Modern Approach
(3rd ed.; London: Pearson)

van der Walt, S., Schönberger, J. L., & Nunez-Iglesias, J. 2014,
arXiv:1407.6245

Virtanen, P., Gommers, R., Oliphant, T., et al. 2019, arXiv:1907.10121
Waksom, M., Botvinnik, O., Ostblom, J., et al. 2020, mwaskom/seaborn:

v0.9.1, Zenodo, doi:10.5281/zenodo.3629445

8

The Astronomical Journal, 159:178 (8pp), 2020 April Mommert

https://orcid.org/0000-0002-8132-778X
https://orcid.org/0000-0002-8132-778X
https://orcid.org/0000-0002-8132-778X
https://orcid.org/0000-0002-8132-778X
https://orcid.org/0000-0002-8132-778X
https://orcid.org/0000-0002-8132-778X
https://orcid.org/0000-0002-8132-778X
https://orcid.org/0000-0002-8132-778X
https://doi.org/10.3847/1538-3881/aac387
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A/abstract
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A/abstract
https://doi.org/10.1051/0004-6361/201322068
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://ui.adsabs.harvard.edu/abs/1996A&AS..117..393B/abstract
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
http://arxiv.org/abs/1512.03385
https://doi.org/10.5281/zenodo.3662850
https://doi.org/10.5281/zenodo.3662850
http://arxiv.org/abs/1407.6245
http://arxiv.org/abs/1907.10121
https://doi.org/10.5281/zenodo.3629445

	1. Introduction
	2. All-sky Camera Data
	2.1. Data Preparation
	2.2. Training Data Sample

	3. Machine-learning Model Definitions
	3.1. Image-based Approach (ResNet)
	3.1.1. Training Procedure

	3.2. Feature-based Approach (lightGBM)
	3.2.1. Feature Definitions
	3.2.2. Training and Hyperparameter Tuning

	4. Results
	4.1. ResNet
	4.2. lightGBM

	5. Discussion
	5.1. Model Performance
	5.1.1. Model Accuracy and Confusion Matrix

	5.2. Training Data
	5.2.1. How Much Training Data is Needed?
	5.2.2. Training Data Quality and Cloud Definition

	6. Conclusions
	AppendixImplementation and Resources
	A.1. Design, Premises, and Setup
	A.2. Training
	A.3. Model Fitting
	A.4. Cloud Detection

	References

