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Abstract

Machine learning allows for efficient extraction of physical properties from stellar spectra that have been obtained
by large surveys. The viability of machine-learning approaches has been demonstrated for spectra covering a
variety of wavelengths and spectral resolutions, but most often for main-sequence (MS) or evolved stars, where
reliable synthetic spectra provide labels and data for training. Spectral models of young stellar objects (YSOs) and
low-mass MS stars are less well-matched to their empirical counterparts, however, posing barriers to previous
approaches to classify spectra of such stars. In this work, we generate labels for YSOs and low-mass MS stars
through their photometry. We then use these labels to train a deep convolutional neural network to predict glog ,
Teff, and Fe/H for stars with Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra in the
DR14 data set. This “APOGEE Net” has produced reliable predictions of glog for YSOs, with uncertainties of
within 0.1 dex and a good agreement with the structure indicated by pre-MS evolutionary tracks, and it correlates
well with independently derived stellar radii. These values will be useful for studying pre-MS stellar populations to
accurately diagnose membership and ages.

Unified Astronomy Thesaurus concepts: Astroinformatics (78); Computational methods (1965); Young stellar
objects (1834); Low mass stars (2050); Stellar classification (1589)

Supporting material: machine-readable table

1. Introduction

Spectroscopy is a powerful technique for measuring stellar
properties, and in recent years, large surveys such as Sloan Digital
Sky Survey (SDSS) Apache Point Observatory Galactic Evolution
Experiment (APOGEE; Abolfathi et al. 2018), RAVE (Kunder
et al. 2017), and GALAH (Buder et al. 2018) have observed 105–6

stars each. This necessitates an effective method to uniformly and
efficiently process these spectra to extract the stellar properties
(e.g., effective temperature (Teff), surface gravity ( glog ), and
metallicity (Fe/H)).

A common approach to spectral analysis relies on compar-
isons between the target spectrum and a grid of spectral
standards (that may be difficult to come by for specific source
types or wavelength ranges) or synthetic templates (that may
systematically differ from the real data). Synthetic templates
typically offer more regular coverage of parameter space,
enabling an individual targets’ parameters to be inferred
precisely by using a higher-order function to interpolate the
goodness of fit parameters between the points for which the grid
is defined. Many surveys adopt this approach in constructing
their stellar parameter pipelines (e.g., García Pérez et al. 2016),
but the process is computationally intensive, particularly when
fitting multiple parameters simultaneously, as well as determin-
ing the corresponding uncertainties.

Computational efficiency aside, the reliability of parameters
determined via direct model fitting can also vary strongly as a
function of target type, with young stellar objects (YSOs)
representing a particularly challenging target class (e.g., Doppmann
et al. 2005). Spectral fits can return reasonably accurate estimates of
Teff for YSOs, but glog has proven more difficult to accurately

constrain. This parameter is particularly valuable for YSOs, as it
serves as a proxy for stellar age and is, therefore, of great value for
calibrating pre-MS evolutionary models or inferring star-formation
histories within a given star-forming complex. The APOGEE
survey has conducted extensive surveys of several nearby star-
forming regions, providing a valuable opportunity to infer glog
and age constraints for large samples of YSOs, but those
constraints have been difficult to achieve in practice. For APOGEE
data in particular, obtaining reliable glog values for dwarf or pre-
MS stars have been challenging: neither APOGEE’s primary stellar
parameter pipeline, ASPCAP (Holtzman et al. 2015; García Pérez
et al. 2016), nor the community-provided Payne model-fitting
framework (Ting et al. 2019) released glog estimates for dwarf
stars, due to the presence of clear systematic errors in uncalibrated
values and the lack of a densely sample comparison sample for
deriving calibration relations. The IN-SYNC pipeline (Cottaar et al.
2014; Kounkel et al. 2018), developed and optimized for YSO
spectra, provided glog values whose age dependence agrees well
with physical models (i.e., older populations have higher glog than
the younger ones; see Section 4 for discussion), but the precise
values also show unphysical systematics, likely due to mismatches
between the empirical and theoretical spectra.
Data-driven analysis pipelines eliminate errors due to model

mismatches, by training prediction systems with empirical
spectra for stars with well-determined stellar parameters. One
data-driven method that has demonstrated considerable success
in assigning labels to APOGEE spectra is ‘The Cannon’ (Ness
et al. 2015), which uses a reference sample of APOGEE spectra
to train a generative model that can then be used to infer stellar
parameters for any object with an APOGEE spectrum. Using

The Astronomical Journal, 159:182 (18pp), 2020 April https://doi.org/10.3847/1538-3881/ab7a97
© 2020. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-5365-1267
https://orcid.org/0000-0002-5365-1267
https://orcid.org/0000-0002-5365-1267
https://orcid.org/0000-0002-0748-9115
https://orcid.org/0000-0002-0748-9115
https://orcid.org/0000-0002-0748-9115
https://orcid.org/0000-0001-6914-7797
https://orcid.org/0000-0001-6914-7797
https://orcid.org/0000-0001-6914-7797
https://orcid.org/0000-0002-3481-9052
https://orcid.org/0000-0002-3481-9052
https://orcid.org/0000-0002-3481-9052
http://astrothesaurus.org/uat/78
http://astrothesaurus.org/uat/1965
http://astrothesaurus.org/uat/1834
http://astrothesaurus.org/uat/1834
http://astrothesaurus.org/uat/2050
http://astrothesaurus.org/uat/1589
https://doi.org/10.3847/1538-3881/ab7a97
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ab7a97&domain=pdf&date_stamp=2020-04-01
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ab7a97&domain=pdf&date_stamp=2020-04-01


the full wavelength information within the spectrum, and
training the parameters of the generative model on empirical
standards (i.e., the high-quality APOGEE spectra with known
stellar labels that eliminate the potential for model-data mis-
fitting), the Cannon is able to provide parameters of
comparable quality to ASPCAP’s for APOGEE spectra with
a signal-to-noise ratio (S/N)�25. As informed by a set of 60
dwarf calibrators in the Hyades, the 2015 Cannon results also
included realistic glog values for the upper main sequence
(MS), but became incomplete for dwarfs with Teff<4500 K,
similar to the limit reached by the Payne results. While data-
driven models offer important performance and calibration
advantages, they are unable to overcome the limits of their
training sets.

Neural networks offer a promising data-driven method for
inferring accurate stellar parameters from spectra and with a
potentially greater flexibility in inference methods than is offered
by the polynomial formalism adopted in the Cannon. Neural
networks are a common machine-learning model, in which
multiple nonlinear transformations of the input features are
performed before assigning an output classification. A number of
studies have demonstrated the ability of neural networks to
classify stellar spectra and derive stellar parameters and
abundances, (e.g., Bailer-Jones et al. 1997; Bailer-Jones 2000;
Bazarghan & Gupta 2008; Fabbro et al. 2018; Leung & Bovy
2019; Sharma et al. 2020). Neural networks also offer important
efficiencies for processing large data sets. Direct fitting can only
consider a single spectrum at a time, redoing the same operation
regardless of how similar two target spectra may be. On the other
hand, neural networks can process in excess of 106 observations
in under an hour. As with all data-driven methods, however,
the network must be trained on a reliable reference sample
whose parameters span the full range of interest, making the
construction of a label-set as important as the construction of the
network itself.

In this paper, we aim to train a deep neural network (DNN)
to accurately classify APOGEE DR14 spectra of dwarfs, giants,
and pre-MS stars. To realize this goal, we first supplement the
stellar labels provided by the Payne with a set of labels inferred
from Gaia, Two Micron All Sky Survey (2MASS), and Pan-
STARRS photometry and astrometry for YSOs and M dwarfs
with APOGEE spectra. In Section 2, we describe the data and
the procedure used to generate the labels. In Section 3, we then
construct a convolutional neural network (CNN) that predicts
parameters from the APOGEE spectra, which we refer to as the
APOGEE Net. In Section 4, we highlight analysis that could be
derived from these spectral properties. Finally, we summarize
our results and discuss the implications in Section 5.

2. Data

2.1. APOGEE

APOGEE is a high-resolution (R∼22,500) near-infrared
(1.51–1.7 μm spectrograph mounted on the Sloan Foundation
2.5 m telescope (Gunn et al. 2006; Wilson et al. 2010; Blanton
et al. 2017; Majewski et al. 2017). APOGEE is capable of
observing up to 300 targets in a field of view with radius of 1°.5.
Over the years, the survey and its targeting priorities has evolved.
The primary objective of both APOGEE-1 and APOGEE-2 has
been to observe red giants to trace the dynamical and the chemical
patterns of the Galaxy (e.g., Hayden et al. 2015; Bovy et al. 2016;
Anders et al. 2017; Zasowski et al. 2017). However, among other

programs, it has also observed a number of star-forming regions,
including Orion Complex (Da Rio et al. 2016, 2017; Kounkel
et al. 2018), NGC 1333 (Foster et al. 2015), IC 348 (Cottaar et al.
2015), NGC 2264, as well as several more evolved clusters, and
some of the nearby MS stars.
As of the public Data Release 14 (Abolfathi et al. 2018),

over 263,000 stars in the bulge, disk, and halo have been
observed. We restrict the current analysis only to these sources.
The sources in the catalog typically have been observed for

multiple epochs. Therefore, the data are stored in two formats:
“apVisit,” which contains the raw spectrum at a particular epoch,
and “apStar,” in which the Doppler shift has been removed from
the epochs, placing them all in a common rest frame with identical
wavelength solution across all sources, and multiple visits for the
same source are combined into one, increasing the resulting
signal-to-noise (Nidever et al. 2015).

2.2. Payne Labels

Ting et al. (2019) used their newly developed spectral
interpolator, along with a new grid of Kurucz spectral models
calculated with an improved line list (Cargile et al. 2019), to
identify best-fit models and infer revised stellar parameters for
222,707 spectra within the APOGEE DR14 data set. The labels
inferred from this interpolator, dubbed “The Payne” in honor of
Cecilia Payne-Gaposchkin’s seminal work in physically-based
stellar models, are comparable to the calibrated parameters
provided in DR14 for stars along the Red Giant Branch.
Moreover, the Payne provides realistic Teff and glog labels for
warmer (Teff>4250 K)MS stars, for which calibrated parameters
are not available in the DR14 data set. Typical uncertainties, both
random and systematic, are∼100 K in Teff,∼0.1 dex in glog , and
∼0.03 dex in abundance space (Ting et al. 2019).
However, the Payne has nonphysical correlations between
glog and Fe/H toward cooler dwarfs. Indeed, these systematics

dominated the information content of the Payne labels to such a
degree that dwarfs stars with Teff<4000 K were intentionally
removed from the Payne outputs to avoid potential misinter-
pretation of the spurious correlation between the inferred log g
and [Fe/H] values.
In training APOGEE Net, we adopt labels for Teff, glog , and

Fe/H from the Payne’s outputs for stars with Teff>4000 K or
glog <3.5.As the Payne does not yet produce reliable labels

for stars with lower Teff and higher glog than these limits, in
the next section, we use empirically calibrated photometric
relationships to generate new labels for 4480 low-mass MS
stars and 2446 YSOs.

2.3. Deriving Alternate Labels for Pre-MS and Low-mass MS
Stars

2.3.1. MS Stars

To derive labels of the low-mass MS stars, we rely on various
empirical photometric relationships. We begin by identifying
bona fide lower MS stars with potentially erroneous Payne
labels, using 2MASS and Gaia DR2 photometry, as well as
Gaia’s parallax measurements. We selected low-mass MS stars
by requiring 2MASS photometry of 0.7<J−K < 1.05,
3.37<g−K < 8.46, and 5<MK < 10. To ensure accurate
MK, we further restricted the sample to only those sources in
which the Gaia DR2 measured π/σπ>3; this removed any
giants with erroneous MK values due to spurious, low-quality
parallaxes. Since the empirical relations used in this section
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were calibrated for MS stars, we flag all spectra within APOGEE
fields covering known star-forming regions and young clusters
—namely the Orion Complex, Perseus clusters, NGC 2264, and
the Pleiades—for a separate label generation procedure, which is
described in the next section.

We infer metallicities for these stars using the relation by
Hejazi et al. (2015)
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This calibration is derived from a sample of 73 M dwarfs with
high-quality SDSS+2MASS photometry and robust metallicity
estimates inferred from high-resolution spectroscopy of a common
proper motion companion (18) or from moderate-resolution
spectra of the M dwarf itself (53). The derived calibration is
applicable for stars between K6 and M6.5, with −0.73�
[Fe/H]�+0.3 dex, 3.3�g−K�8.46 and 0.71�J−K�
1.01. By design, these limits nearly exactly match the color–
magnitude cuts used to select candidates for our alternate, pre-MS
focused label generation procedure. We do allow a modestly
broader range of g−K colors, by a few hundredths of a
magnitude in each direction, as the extrapolated metallicities will
nonetheless likely be more accurate than the Payne parameters,
which clearly suffer from systematic errors in this space.

To estimate Teff, we use the relation derived from a sample
of 183 M dwarfs with accurate (σπ<5%) pre-Gaia parallaxes
and reliable spectrophtometric data by Mann et al. (2015)
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which hold for 4.6<MK<9.8, 2700<Teff<4100 K, and
−0.6<[Fe/H]<0.5.

Finally, to estimate glog , we use the relation calibrated from the
analysis of Y-band spectra of 29 M dwarfs (Veyette et al. 2017)
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which hold for 3200<Teff<4100 K and −0.7<[Fe/H]<
0.3.

2.4. YSOs

The APOGEE fields designed to target star-forming regions
nonetheless include sources other than YSOs. To calculate
parameters for a pure YSO sample, we restricted the sample to
likely cluster members tabulated by Kounkel et al. (2019), with
spectra publicly released in DR14 (Abolfathi et al. 2018).

We attempted multiple approaches to interpolate each YSO’s
photometry onto a grid of isochrones to generate initial Teffand

glog labels (Figure 1). We considered various isochrones for
this purpose, including those from Baraffe et al. (2015),
PARSEC (Marigo et al. 2017), and MIST (Choi et al. 2016).
We assessed combinations of various photometric bands from
2MASS, Wide-field Infrared Survey Explorer, and Gaia, and
explored the ability to assign reliable stellar labels using
standard isochrone fits (as implemented via the “isochrones”
python package, developed by Timothy Morton).
Ultimately, we were unable to achieve astrophysically

realistic parameters for the majority of YSOs in our sample
using standard interpolation methods. This is due to several
factors that reinforce one another:

1. Extinction:Many of the YSOs in our sample possess
nontrivial extinctions due to the interstellar or circumstellar
dust that is typically found in star-forming regions. A
YSO’s photometry can be plausibly explained by a
degenerate set of parameters that lie along an extinction
vector in a single color–magnitude space. This degeneracy
can typically be broken, however, by simultaneously fitting
multiband photometry to leverage differences in the slopes
of the isochrones and extinction vectors in different
projections of color–magnitude space. The isochrones
package provides a multiband fitting capability, which we
utilized to infer a maximum likelihood AV value along with
each YSO’s other stellar parameters (i.e., mass and age).
The quality of these estimates, and the resolution of
degeneracies between extinction and stellar properties,
depend on the underlying agreement between the YSO’s
observed colors and those expected from reddened stellar
models, the factor we consider next.

2. Systematic offsets between isochrones and empirical
data: As shown in Figure 1, many YSOs lie outside the
bounds of an unreddened grid of isochrones. This offset
is most prominent in J–K, and larger for members of the
youngest clusters (i.e., Δ(J−K )∼0.3 mag. in NGC
1333, IC348, and NGC 2264), but still present in
∼120 Myr old stars (i.e., Δ(J−K )∼0.05 mag for
Pleiades members).

In principle, extinction may contribute to this offset
but cannot explain it entirely. This is best illustrated by the
J–K offset between the isochrones and the low-mass stars
in the Pleiades, as the extinction measured toward the
Pleiades is far too low to produce the necessary E(J–K )
excess (Stauffer et al. 1998; Schlafly & Finkbeiner 2011,
AV=0.12; E(J–K )=0.178). This previous work has
shown that these stars have offsets with respect to synthetic
colors that are inconsistent with standard reddening vectors
(Bell 2012; Covey et al. 2016).

Even worse, the youngest YSOs possess intrinsic
infrared excesses due to emission by warm circumstellar
dust, which are not included in standard isochrones and are
inconsistent with color offsets predicted by standard
extinction vectors. These astrophysically meaningful sys-
tematic offsets between isochrones and empirical photo-
metry are not gracefully handled by standard isochrone
fitting methods, which attempt to reproduce the offset with
secondary model parameters (i.e., extinction), but self-
consistent solutions are difficult to achieve when the offset
is inconsistent with standard extinction curves and sig-
nificantly larger than the YSOs photometric errors.

3. Error Normalization and Grid Edge Effects: The isochrones
package fundamentally performs a chi-squared minimization
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of the residuals between each YSO’s photometry and that
predicted for synthetically reddened stellar models across a
range of physical parameters. In this process, the residuals in
each band are normalized by the associated photometric
errors to identify the global best-fit solution. This process
works well for sources whose photometry is consistent with
standard reddened stellar spectra, and where the model-data
agreement is primarily disrupted by random photometric
noise. As outlined above, however, many of the YSOs in our
sample do not meet this criteria: the quality of their fits is
fundamentally limited by the systematic offsets with respect
to the data, a factor that is decoupled from the precision of
their photometry. In this case, the figure of merit drives the
fit to areas of parameter space that minimize systematic
model offsets, particularly in the photometric bands with the
highest average precision. This often drives the fit to select
models with unrealistic combinations of Teff glog and AV,
and at least one parameter (most often AV) hitting the limits
of the parameter space included in the search.

Ultimately, we were unable to overcome these limitations
with the standard isochrone fitting approach. Our output labels,

for example, typically featured a strong, but nonphysical,
correlation between Teff and AV, and these effects did not
substantially diminish when we eliminated the bands with the
strongest model-data systematic offsets (i.e., the 2MASS
photometry) or restricted the sample to sources with lower
intrinsic reddening (i.e., Class III/Weak T Tauri stars versus
Class II/Classical T Tauri Stars).
As an alternative to traditional isochrone fitting, and to more

gracefully fit YSOs whose photometry lies beyond the edges of
the standard isochronal grid, we used a neural network trained
on synthetic photometry to infer labels for YSOs across a broad
range of parameter space. It proved to be less biased to
systematic effects of the individual bands, rather, through
assigning different weight to the inputs and treating them as a
whole, it resulted in more physically realistic solutions.
Specifically, we constructed a CNN with three convolutional
layers using max pooling and two fully connected layers. This
network was trained on parameters from synthetic stars drawn
from the PARSEC isochrones (they provided a better
convergence compared to other isochrones we tested). The
synthetic stars were generated using a uniform distribution of

Figure 1. Color–magnitude diagrams constructed using Gaia and 2MASS photometry for the YSOs across the various regions. The gray lines show the isochrones at
ages of 1, 2, 5, 10, 20, 50, 100, 200, and 300 Myr, and 8.5 dex, as well as the evolutionary tracks for 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 M stars from the PARSEC
isochrones (Marigo et al. 2017). The black arrow shows the extinction vector corresponding to 1 AV.
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stellar masses from 0.08 to 3 M, ages from 1 to 100Myr,
extinction from 0 to 20 AV, and distance from 50 to 1000 pc.
Only isochrones with Fe/H=0 were used, which is consistent
with the nearby star-forming regions (e.g., D’Orazi et al.
2009, 2011). The empirical parameters the network used to
evaluate the labels included nine photometric bands, stellar
radii r*, stellar luminosities Llog , and the distance. In cases
where the photometry in a particular band was too faint to be
reliably detected in the real data, it was set to the limiting
magnitude (G<19, GBP<20.5, GRP<17.5, J<17,
H<16, K<16, W1<16, W2<16, W3<13.5), with only
G band being required. The additional two parameters r* and

Llog , were drawn from the isochrone but modeled after those
reported by Gaia DR2, in that they were only reported if
r*>0.5re, Llog >−1.54, and MG<10. Similarly, with the
photometric bands, they were set to the limiting cases if they
were not detectable. No scatter due to uncertainties was applied
to the synthetic parameters.

The CNN was trained on ∼42,000 synthetic stars to predict
ages, masses, AV, Teff, and glog based on these input
parameters. Applied on a separate synthetic sample that was
generated similarly to the one on which it has been trained, not
accounting for any uncertainties or systematic offsets, the
neural network could recover glog with a precision of 0.01
dex, and log Teff with a precision of 0.003 dex.

When applied to the real data, the CNN produced glog that are
consistent with the isochrones corresponding to the typically
accepted ages of the individual clusters covered by APOGEE
(Section 4). Additionally, it could generally recover Teff estimated
by Gaia DR2 with no evidence for bias in the quality of fit as a
function of independently inferred extinction values (Figure 2).

3. APOGEE Net

The APOGEE Net was designed to take in the raw spectra and
to return the predictions on Teff, glog , and Fe/H (Figure 3). The
sources, labels of which were determined in Section 2, were split
into three different subsets: a training set on which the model is
trained, a held out development set that is used to evaluate the

model’s generalization performance during training and to tune
hyperparameters, and finally a held out test set that is used to
evaluate the model’s performance once it has completed training.

Figure 2. Comparison of the Teff derived from the photometric CNN vs. Teff
from Gaia Collaboration et al. (2018) for the YSOs. Each point is color coded
with the AV from Kounkel et al. (2018).

Figure 3. Teff and glog distribution of the sample. Top panel: categorization of
the input parameters based on the origin of the measurements. Middle panel:
the input parameters used in training. Bottom panel: the resulting predictions
from the APOGEE Net.
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For the Payne catalog, the split between the train, dev, and test
sets was 80/10/10%. Due to a smaller number of sources in other
categories, to have a sufficient number of sources in the test set, M
dwarf and YSO catalogs were split 60–20–20%.

3.1. Feature and Target Preprocessing

While we experimented with using various lossless normal-
ization techniques for the input flux (i.e., not altering the underlying
shape of the spectrum, merely scaling it) these standardized fluxes
failed to converge in training, and we found that training on the raw
flux from the “apStar” readily converged to good results. We did
not investigate the performance of the “apStar” spectrum normal-
ized in a way that removes the underlying shape of the spectral
energy distribution (SED), as, depending on the spectral type, such
normalization may be uncertain and result in additional noise in the
line profile. The main benefit of the normalization would be the
removal of the extinction signature from the spectrum; however, it
should be possible for a neural network to learn to ignore reddening
from the raw flux as well. Nonetheless, comparison in the
performance between normalized and raw spectra could be a
fruitful avenue for further investigation.

In contrast, in order to predict Teff, glog , and Fe/H
simultaneously, it was necessary to normalize these target
values; normalizing the targets put the losses (and gradients
during training) onto a comparable scale. To normalize, we
calculated the mean (μ) and standard deviation (σ) of each
target variable using the training set and then standardized all
prediction targets across all sources and all sets (train,
development, and test). Specifically, we normalized as follows:

m
s
-x

, 4i x

x
( )

where x denotes a target variables (Teff, glog , or Fe/H) and i
denotes a specific data point. Normalization values can be
found in Table 1.

For evaluation purposes, the model’s predictions are
converted back to their physical units using the inverse
relations from the above.

3.2. Convolutional Spectral Model

Our model is a one-dimensional CNN, inspired by the
VGG16 CNN architecture (Simonyan & Zisserman 2014). It
consists of 12 convolutional layers separated every two layers by
a max-pooling layer, followed by two fully connected layers
(See Appendix A for term definitions and details). The model
was implemented in PyTorch (Paszke et al. 2017). The
architecture of the network is defined precisely in Appendix B.

3.3. Training and Tuning

We trained the APOGEE Net using stochastic gradient descent
to minimize mean squared error (MSE) loss. To improve the
model’s ability to generalize to new data, we employed early
stopping; i.e., we stopped training when performance on the
development set begins to decrease, which is indicative of
overfitting to the training set at the expense of ability to be
generalized. After each full pass through the training data, the
model’s performance is evaluated on the development set. If the
development set performance has improved, as measured by a
decrease in loss, then the model is saved. If, however, the loss on
the development set does not improve after five consecutive
evaluations, training is stopped. If the loss improves before the
fifth evaluation, the model is saved, the counter resets, and
training resumes.
After a modest amount of hyperparameter tuning, we settled

upon the following hyperparameter configuration: learning rate
of 0.001, dropout rate of 0.1, and a training batch size of 128.

3.4. Model Adaptation

In order to obtain high model performance on our set of
interest (YSOs and M-Stars), we explored various strategies for
adapting a model trained on a larger set of data to our smaller
set of YSOs and M-Stars. Training on the full set of stars
allowed us to achieve a good performance on the Payne
subsample, but because it is much larger than the other two,
APOGEE Net struggled to achieve acceptable loss for YSOs
and M-stars. Another strategy was to first train on all stars, and
then further train exclusively on the subset of interest.
Unfortunately, this approach also proved suboptimal: while
the model performance did improve significantly for M-Stars
and YSO stars, it resulted in a dramatic degradation in
performance for the red giants in the Payne catalog.
Instead, we used a stratified sampling strategy to balance

the sizes of these three subsets in the training sample. After
initially training APOGEE Net to convergence on the entire
data set, we continued training on the YSO and M-Star
samples plus a random 5% of the Payne catalog. Each time the
model stopped from early stopping, the last best performing
model was reloaded, and another random 5% of the Payne
catalog was selected to train on. Through this method, we
were able to focus training on the M-Star and YSO data
without losing performance on the broader Payne data set.
This process continued until the performance on M dwarfs
and YSOs did not show continuing improvement. Final
normalized MSE loss performances for training, development,
and testing after tuning are reported in Table 2, and the
resulting performance for each parameter in the native units is
shown it Table 3.

Table 1
Normalization values for Teff, glog , and Fe/H

μlog g 2.88
σlog g 1.16
mT eff 4716.92

sT eff 733.01
μFe/H −0.22
σFe/H 0.30

Table 2
Combined Standardized MSE Loss

MSE loss

Train Dev. Test

Full 0.044 0.049 0.063
MStar 0.08 0.098 0.196
YSO 0.153 0.168 0.217
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3.5. Uncertainties

Fundamentally, the predictions of a CNN are deterministic:
after a model is trained, passing the same set of inputs always
results in the same outputs. As is, the CNN is unable to realize
the uncertainties in either the original data or in its predictions
(other than through a difference relative to the input labels).

However, given that the data themselves are uncertain, it is
possible to vary inputs within the errors and retain the same
underlying information. Each one of the realizations of the
same spectrum would be perceived by the CNN as a distinct
input, and would produce a slightly different prediction from
the original. Measuring the scatter in these predictions can give
an estimate of the uncertainties on the per source basis, akin to
a Markov chain Monte Carlo. Although, unlike MCMC, this
analysis is not particularly costly in terms of the computa-
tional time.

APOGEE has measured per pixel errors in flux. Therefore, at
every pixel, we generated a random value drawn from a normal
distribution, multiplied it by the corresponding uncertainties,
and added this noise profile to the flux. Some pixels (such as
those near the chip gaps, or those that correspond to the telluric
lines) had abnormally high uncertainties, so to prevent them
from skewing the model, we capped the maximum allowed
error at five times the mean in the spectrum.

This procedure was repeated to generate 100 different
realizations for each spectrum, and all of them were passed
through the APOGEE Net. The mean and standard deviation
values were then measured for each parameter for each source.

3.6. Validation of the Stellar Parameters

We report on the resulting predictions with the corresp-
onding uncertainties in Table 4.

The typical agreement between the input labels and the
resulting predictions is 100 K in Teff, 0.15 dex in glog , and
0.07 dex in Fe/H (Table 3, Figure 4, left). The scatter in Teff
and glog is slightly higher for the YSOs, as it improved on
some of the systematic issues the photometric labels had, which
were originally derived somewhat crudely, fine-tuning them
based on the overall grid. For the M-stars, comparison between
the labels and the predictions for Fe/H is slightly offset from
the line of unity, with predictions somewhat compressing the
range of Fe/H offered by the labels, having fewer sources as
metal-rich, and fewer as metal-poor, but showing a good linear
agreement overall.

The typical reported uncertainties are 25 K in Teff, 0.04 dex
in glog , and 0.015 dex in Fe/H; thus, they underestimate the
scatter between the labels and the predictions by approximately
a factor of four. In comparison to other pipelines, the
uncertainties for the same sources are not strongly correlated,
but they are generally comparable to the errors reported by the
IN-SYNC pipeline, and approximately a factor of two smaller
than those reported by ASPCAP pipeline. The reported
uncertainties strongly depend on the S/N of the spectrum, as
well as on the spectral parameters (Figure 4, right). As
expected, the parameters of hotter or more metal-poor stars
would be more uncertain due to a fewer number of lines that
can be used to determine stellar properties. Similarly, sources
with higher glog would have shallower lines, resulting in more
uncertain predictions. Although the APOGEE Net had no
information on the uncertainties in the labels, and the errors
were generated from slightly perturbing the input spectral
fluxes and taking an rms of the resulted predictions, it was able
to reproduce physically expected trends.
At low S/N (<10–20), the uncertainties in all parameters

reach a ceiling of ∼200 K in Teff, ∼0.2 dex in glog , and ∼0.1
dex in Fe/H. This ceiling suggests that the uncertainties for
these sources are underestimated and, furthermore, that the
CNN does not derive any meaningful information in the low-
S/N spectra. This brings into question the reliability of other
parameters (e.g., v isin , radial velocity) derived by other means
in these low-S/N spectra. Some of the sources with S/N∼0
have unphysical parameters, i.e., located far outside of the
bounds of the Figure 3. These sources were removed from the
catalog.
A similar approach to determining spectroscopic parameters

from the APOGEE spectra for the M dwarfs was recently
undertaken by Birky et al. (2020), based on the Cannon (Ness
et al. 2015) data-driven spectral modeling code (Figure 5).
While some YSOs are included in their sample, they tend to
have higher χ2 for the fit compared to the rest of the sample. In
particular, because their code did not train to distinguish
between metallicity and glog , it considered YSOs to be more
metal-rich than they are likely to be due to deeper spectral
lines. In the M-dwarf sample, for the metallicity, there is a good
agreement at Fe/H<0, but at Fe/H>0, they tend to
systematically differ by a factor of two; it is not clear why.
The predicted Teff appears to be comparable between the two
works, with a scatter of ∼100 K. However, because they have
not included any sources hotter than ∼4100 K, they tend to run
into the edge effects at ∼4000 K, with sources piling at the
boundary. We note that a similar effect occurs in this work as
well at Teff∼8000 K—any stars intrinsically hotter than this
temperature are interpolated toward this value. This potentially
explains the excess of metal-poor stars in Figure 3. For this
reason, we do not include any stars hotter than 6700 K in
Table 4. In the future, however, by generating more reliable
labels for massive stars and including them in the training, it
would be possible to minimize these edge effects.

4. Results

4.1. Overall Properties

As can be seen in Figure 6, the quality of the derived Teff
and glog for YSOs improves with each method for extracting
them. The original parameters from the IN-SYNC pipeline are
systematically offset from the isochrones, have an odd shape of

Table 3
Typical Scatter between the Input Labels and the Predictions for Each

Parameter in Each Group

Train Dev. Test
Full

log g 0.189 0.203 0.216
Teff (K) 144.82 158.72 183.74
Fe/H 0.0769 0.0792 0.0914

MStar
log g 0.186 0.216 0.346
Teff (K) 129.69 167.15 273.7
Fe/H 0.129 0.137 0.18

YSO
log g 0.366 0.364 0.4
Teff (K) 413.92 436.87 490.99
Fe/H 0.0616 0.0669 0.0879
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the MS, and have various unphysical gaps, the most notable of
which is at Teff=3600 K. The labels derived from the
photometry show similar agreement to the isochrones in the
sequences of the ages of the individual regions, and it
renormalizes the derived parameters to the appropriate range,
but it does show a somewhat peculiar behavior especially at
low Teff as it attempts to reconcile the differences between
various bands and the isochrones.

Finally, the APOGEE Net connects the derived parameters
for the YSOs to those for the M dwarfs and the red giants,
making it possible to interpret the resulting values and
removing all of the systematic gaps that persisted in the
previous iterations. However, there may still be a weak
systematic offset in the shape of the isochrones and the YSOs
at Teff<3500 K, as at a particular age, the isochrone tends to
result in somewhat lower glog at lower Teff. On the other hand,

glog traced by the individual stellar populations either remains
flat throughout or slightly increased toward higher values at
low Teff, oriented in parallel to the MS. Considering that the
photometric labels showed the opposite trend at lower Teff, it is
unclear how such a potential discrepancy could be better
rectified in the future, or if the cause of the discrepancy is
necessarily in the predicted parameters as opposed to the
isochrones.

The spectroscopic parameter space that the low-mass YSOs
occupy can be rather cleanly separated from the other stellar
objects, as they have glog typically lower than the MS stars,
and Teff typically cooler than the red giants. Thus, by selecting
the sources in this parameter space, we can robustly identify
young stars in the catalog and look at their spatial distribution
(Figure 7). With a simple cut, restricting the selection bound by
(Teff, glog ) of (2200, 4.4) (4500, 3.9), and (3200, 1.7), it is
possible to recover all of the star-forming regions in the
sample: the Orion Complex, Perseus clusters NGC 1333 and
IC348, as well as NGC 2264. Some of the sources from
Pleiades end up in this selection as well. Surprisingly, some
fields (K2_C4_172-20 and K2_C4_177-21) also appear to
include sources from the Taurus Molecular Clouds. While
Taurus has been observed with APOGEE, the dedicated
observations of young stars in this region have not begun until
after the release of DR14. Thus, the sources we see have been
observed serendipitously.

The aforementioned selection does not recover all of the
young stars that have been observed, particularly those that are
hotter or those that are somewhat more evolved. Additionally,
approximately 6% of the sources from this simple selection are
scattered all across the sky, many at high galactic latitudes,
which do not appear to be associated with any particular star-
forming region, suggesting that they are impostors, i.e.,
contamination.
The distribution of the selected sources in the spectroscopic

space is comparable to the distribution of sources in the HR
diagram. Even the impostors appear to be bona fide sub-giants
(i.e., appearing above the MS and below the red giant branch. It
is unclear what mechanism may drive them, although these
sources appear to be fast rotators). Furthermore, this compar-
ison demonstrates that it is possible to use the spectroscopically
derived parameters to effectively derive stellar properties, even
for sources that are located in regions of high extinction, those
have very uncertain parallaxes, or no parallax measurements
at all.

4.2. Ages

It is possible to use the derived glog values as a proxy for age.
We have not explicitly interpolated the Teff and glog across the
isochrones; however, we divided the sample into five bins:

glog <3.6 dex (1 Myr), 3.6< glog <3.8 dex (1∼2 Myr),
3.8< glog <4.0 dex (2∼3 Myr), 4.0< glog <4.2dex
(3∼5 Myr), and 4.2< glog dex (5 Myr). We then con-
structed a density map of sources in each bin (Figure 8). This is
done to further test the glog on the more granular scale, in order
to compare these age estimates to the known distribution of ages
in various populations in the sample.
In Orion, the distribution of ages is largely consistent what

has been previously measured for each individual region. For
example, in λ Ori, the central cluster is ∼5 Myr, and the outer
shell that has been triggered by a supernova is consistent with
what has been previously measured by Kounkel et al. (2018).
In the vicinity of Orion B, there is a clear separation between
∼1 Myr old clusters, NGC 2068 and NGC 2024, a somewhat
older (2–3 Myr) cluster σ Ori, and 3–5Myr extended
population associated with it. A similar agreement with
previously measured ages can also be observed in ψ2 Ori.

Table 4
Results for Combined Evaluation

APOGEE ID α δ glog glog σ glog Teff Teff σ Teff
(J2000) (J2000) (label, dex) (prediction, dex) (dex) (label, K) (prediction, K) (K)

2M00003379+7940362 0.140803 79.676727 4.94 4.47 0.06 3307 3357 28
2M00013219+0016012 0.384140 0.267008 4.74 4.64 0.08 3997 3998 47
2M00024474+6158060 0.686431 61.968346 4.74 4.50 0.10 3787 4062 50
2M00025988+0148410 0.749506 1.811404 4.72 4.65 0.07 3959 3919 32
2M00030930+0110025 0.788757 1.167374 4.73 4.66 0.07 3947 3974 33

Fe/H Fe/H σ Fe/H S/N Data Data
(label, dex) (prediction, dex) (dex) Set Type

−0.03 −0.05 0.01 137.0 Train Mstar
−0.34 −0.25 0.02 57.2 Train Mstar
0.02 −0.15 0.02 57.7 Train Mstar
−0.20 −0.19 0.02 82.1 Train Mstar
−0.21 −0.24 0.02 88.1 Train Mstar

Note.

(This table is available in its entirety in machine-readable form.)
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In the ONC, Beccari et al. (2017) have observed three
distinct populations with mean ages of 1.2, 1.9, and 2.9 Myr,
and they observed that these populations, while overlapping,
cover different volumes in the sky, with the youngest one being
the most centrally concentrated and the oldest one being the
most diffuse. However, they could not rule out that these

populations are not due to an unresolved binary and tertiary
sequences. Cross-matching against their catalog of sources
does indeed show that the these populations are separated in the

glog space, independently confirming different ages (Figure 9,
top). While there is some crossover between the sources, the
“Very Young” sources peak at glog =3.7 dex, corresponding

Figure 4. Left panel: comparison between the input labels and the predicted spectroscopic parameters. Right panel: uncertainties as a function of S/N.
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to ∼1Myr. The “Young” sources peak at glog =3.9 dex, or at
the age of ∼2Myr, and the “Old” sources peak at glog =4
dex, or at ∼3Myr, consistent with the original age estimates.

It should be noted, though, that in the full spectroscopic
sample, there do not appear to be distinct age sequences; rather,
the distribution appears to be more continuous. This does not
appear to be explained by the smearing of the sequences from
the uncertainties. But, examining the density of sources at
given age slices in Figure 8, similarly to in Beccari et al.
(2017), we do indeed find that the youngest sources are located
primarily close to the center of the cluster, while the older stars
are more distributed throughout the cluster. A similar trend can
also be seen in Perseus, in IC348.

Along L1641, there are curious chains of coeval stars running in
parallel to the cloud. Hacar et al. (2018) have found a large network
of gas fibers toward the ONC, any one of which is in the process of
forming stars along its length, and the stars that would form from
the same gas fiber are approximately coeval. Hacar et al. (2016)
have previously searched for chains of stars in the APOGEE data in
Orion A that are comoving in the position–position–velocity
diagram, although the stellar ages have not been considered. Only a
few such chains have been found in L1641, and they did not
exhibit any preferential orientation relative to the cloud. It is unclear
whether the chains we see in this work exhibit just a chance
alignment or if their arrangement could be thought of as significant.

The derived parameters are not strongly confused by multi-
plicity—the spectroscopic binaries identified by Kounkel et al.
(2019) do not appear to occupy a systematically different Teff or

glog space from other single stars in their corresponding clusters
(Figure 9, middle panel). The uncertainties in the parameters also
do not appear to be affected. Metallicity is the only parameter
where there might be a slight, barely significant systematic shift,
with spectroscopic binaries being, on average, more metal-poor by
0.02 dex. There still may also be nonsystematic offsets that might
affect the parameters of binary stars. A more advanced fitting of
multiple templates to blended spectra would be needed to properly
disentangle the companions in order to understand the magnitude
of these potential offsets.

However, there is a strong difference in glog as a function of
whether a YSO has a protoplanetary disk or not (Figure 9,
bottom), with the disk-bearing Class II sources having glog 0.2
dex lower than their diskless Class III counterparts, although
there is much overlap between the two populations. In a given

cluster, this effect translates to 1–2Myr systematic difference
in age. A similar separation in glog has previously been
observed by Yao et al. (2018) using the values derived from the
IN-SYNC pipeline. It is notable that despite the fact that the
aforementioned pipeline does not produce reliable absolute
calibration, it does discriminate between the effects of veiling
from disks and other spectral parameters. Thus, it is likely that
the systematic difference we observe is real and not due to
Class II sources being deviating from the model produced by
APOGEE Net.
This difference is also apparent when examining the

distribution of AV (Figure 10), as YSOs with a higher degree
of extinction from their parental cloud and protoplanetary disk
are more likely to be somewhat younger compared to those
whose extinction is driven only by the external foreground
dust. It should be noted that values of AV for the individual stars
are available only for the Orion regions and that they were
computed using the previously measured Teff from the IN-
SYNC pipeline (Kounkel et al. 2018).
One way to independently validate our spectroscopically

determined glog is with the stellar radii that we have
previously measured empirically via the bolometric flux from
the SED and parallax in Kounkel et al. (2018) using methods
described by Stassun et al. (2017). Since g is proportional to
M/R2, we expect that the spectroscopic glog will correlate
strongly with the SED-based radius, with some secondary
dependence on the stellar mass. And because the young, low-
mass stars in our sample are expected to still be contracting
along roughly vertical Hayashi tracks in the HR diagram, we
can take Teff as a proxy for the stellar mass. As expected,
Figure 11 shows that our spectroscopic glog are well correlated
with the SED-based radii overall, especially when controlled
for Teff. Indeed, stars of a given Teff (i.e., mass) show a very
strong correlation between glog and radius, and cooler (lower-
mass) stars show smaller radii for a given glog .

4.3. Metallicity

Stars that form from the same parental cloud form with the
same chemical composition; therefore, they should have
comparable Fe/H. Indeed, the GALAH survey did not reveal
any chemical inhomogeneity in any of the elements inside the
Orion Complex (J. Kos et al. 2020, in preparation), to within

Figure 5. Left and middle panels: comparison of Fe/H and Teff derived in this work compared to those in Birky et al. (2020). The sources in the Valid sample satisfy
the quoted ranges of the parameter space from Birky+ over which their extra extrapolation is applicable, combined with having uncertainties in the predicted
parameters in our work of s < 100Teff K and s < 0.1glog dex (typically corresponding to S/N>20), restricting the comparison to 5893 stars. The YSO sample is a
subset of the Valid sample, with the overlapping sources from Kounkel et al. (2019). Right panel: comparison of the derived Teff in this work and Teff from Gaia
DR2. Note the edge effect at Teff∼4000 K for the sample from Birky et al., and 8000 K for the sample in this work.
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0.03 dex. Furthermore, the young populations in the solar
neighborhood all have near-solar metallicity (D’Orazi et al.
2009, 2011).

Abundances derived by the APOGEE Net do show similar
agreement—the dispersion in Fe/H abundances is within
0.04–0.05 dex in the overall sample of young stars, as well

Figure 6. Distribution of Teff and glog values for the YSOs across the various regions. The compilation of the measurements from the IN-SYNC pipeline (top panel),
photometrically derived input labels (middle panel), and the resulting output from the APOGEE Net (bottom panel) are shown. The gray lines show the isochrones at
ages of 1, 2, 5, 10, 20, 50, 100, 200, and 300 Myr, and 8.5 dex, as well as the evolutionary tracks for 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 M stars from the PARSEC
isochrones (Marigo et al. 2017).

11

The Astronomical Journal, 159:182 (18pp), 2020 April Olney et al.



as inside any given population (Figure 12). There are slight
systematic inhomogeneities, however: hotter stars, as well as
stars that have lower glog tend to be marginally more metal-
poor, whereas cooler dwarfs tend to be marginally more metal-

rich. The effect is larger than the typical estimated errors, but it
is not greater than than a few 0.01 dex.
These systematics slightly affect the average Fe/H between

different populations. While most of them have an average

Figure 7. Top panels: selection of the YSOs based on the predicted stellar parameters. Objects are considered YSO candidates if they fall into the parameter space
bounded by (Teff, glog ) of (2200, 4.4) (4500, 3.9), and (3200, 1.7). The top left panel shows the spectroscopic parameters, and the top right panel shows the HR
diagram constructed using Gaia photometry for the same sources. The sources in blue that fall bellow the photometric MS are known YSOs, most likely with poor
Gaia parallaxes and/or fluxes. Bottom panel: spatial distribution of the identified candidates in galactic coordinates. Sources that do not coincide with nearby star-
forming regions are flagged as the potential impostors (6% of the sources in the selected area).
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Fe/H∼0 dex, two of the youngest populations (NGC 1333
and Orion B), appear to be somewhat offset, with average
Fe/H∼−0.02 dex. Furthermore, the furthest cluster, NGC

2264, appears to be somewhat metal-poor at Fe/H∼−0.06
dex—notably in part because low-mass stars cooler than
∼3900 K were not targeted to be included in the sample.

Figure 8. Contour plots showing the density distribution of sources with different glog values, as a proxy for age, color coded from the youngest (1 Myr, blue), to
the oldest (5 Myr, red).
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5. Discussion

Machine learning is an effective approach for classifying
stellar spectra, and for the first time we have applied it to

spectra of young stars to derive meaningful Teff and glog that
are interpolatable over the isochrones to determine ages. The
performance of these parameters can rival the usage of

Figure 9. Left panels: distribution of Teff and glog for the sources in Orion A shown against 1, 2, 5, 10, and 20 Myr isochrones. Right panels: Kernel Density
Estimation of the glog with the kernel size of 0.1 dex. The top panels show the three populations identified by Beccari et al. (2017). The middle panels highlight
spectroscopic binaries from Kounkel et al. (2019). The bottom panels show the difference in the distribution of disk-bearing Class II YSOs and diskless Class III
photospheres.
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Figure 10. Top panel: distribution of Teff and glog of sources toward Orion,
color coded by the measured AV from Kounkel et al. (2018). Extinction tends to
be higher in the youngest stars, decreasing incrementally as they age. The
dwarfs in the field are all nearby, without much dust along the line of sight. Red
giants tend to be more extinct the further away they are. Middle panel: Teff vs.
G−H color. Bottom panel: Teff vs. the unreddened G−H color.

Figure 11. Comparison of spectroscopically derived glog and stellar radii
measured from the SED fitting from Kounkel et al. (2018), color coded by Teff.
The top panel shows all sources toward Orion, and the middle panel shows
only the YSOs. The bottom panel shows the relation between the stellar radii
and Teff, color coded by the photometrically derived ages of YSOs.
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photometric color–magnitude diagrams, offering two major
advantages over them: spectroscopic parameters are unaffected
by extinction or by the binary sequence. Using both of these

approaches in conjunction with one another could allow for a
more detailed analysis of the star-forming history inside young
populations.
The main limiting factor for machine learning is the

existence of reliable input labels over which it would be
possible to generalize a particular parameter space. However, it
is not necessary to derive those labels from scratch a priori
every single time. Instead, through incremental building on
previous efforts, it is possible to improve on even coarse
estimates. As the parameter space gets further explored, it may
be possible to add other properties to the analysis (e.g., other
abundance labels that may be more meaningful in analyzing the
chemical content of star-forming regions, such as α/H), and
extend the grid to other types of stars (e.g., with Teff>8000
K), to produce a fully unified spectral model. Furthermore, if
different large spectroscopic surveys with different instruments
(having different resolutions or different wavelength cov-
erages) have observations of a few sources in common, it
would be possible to cross-reference them relative to one
another, allowing one to extract stellar parameters in a way that
would have fewer systematic offsets.
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Appendix A
DNN Background

DNNs are parameterized functions that map from an input
domain to an output domain, the parameters of which are
learned through a training process. While a DNN can be used
for both regression and classification tasks, this work is
principally concerned with its utility for performing regres-
sions, as stellar parameters are continuous variables.

We are utilizing a particular architecture of DNN known as a
CNN. The CNN is particularly well-suited for extracting local
patterns in spatial data. It has been widely used to achieve state-of-
the-art results in various image recognition tasks (Krizhevsky et al.
2012; Simonyan & Zisserman 2014; Szegedy et al. 2015; He et al.
2016). A CNN typically consists of a sequence of convolutional
and pooling layers, followed by a set of fully connected layers. A
convolutional layer transforms a subsection of the input, a pooling
layer downsamples the input, and a fully connected layer is a
classic DNN or multilayer perceptron. Broadly speaking, the
convolutional layers can be interpreted as feature extractors, and
the fully connected layers as the predictors. However, this is just an
approximation, as the model prediction error is passed back across
all its parameters through backpropagation.

A.1. Training via Backpropagation

To train a DNN model through backpropagation, it is
necessary to use an optimizer and evaluation criteria. In our
case, we will be using classic stochastic gradient descent for
our optimizer. For our evaluation criterion, we will be using
MSE loss.
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in which N is the number of training data points, A is the
number of stellar parameters that are considered, Y is a target
label, and Ŷ is the corresponding model prediction. This loss is
then propagated back through the model to produce gradients
with respect to each model weight, which are used to update
the weights to slightly reduce loss; after enough steps in the
direction of the negative gradient, a local minimum is reached.

While the MSE loss sums over all training data points, it is
inefficient, and our case infeasible, to load all of the training
data into memory at once. Instead, data is usually divided into
minibatches, and at each iteration the MSE loss is approxi-
mated by summing only over the data points in the minibatch.
Using gradient descent with these approximate losses is known
as stochastic minibatch gradient descent. A full pass through
the training set is called an epoch. Typically, the training set is
shuffled after each epoch and re-partitioned into minibatches.
In addition to the memory consideration, smaller minibatch
sizes and shuffling the training set also have the added benefit
of helping to improve model generalization; the randomness in
the gradient helps to avoid settling into shallow local minima.
However, the smaller the minibatch size is, the more often the
parameter weights need to be updated, increasing computa-
tional expense.

A.2. Hyperparameters

Machine-learning models typically have design parameters
that cannot be learned by the network and must be chosen
outside of the training process. These “hyperparameters” are
typically adjusted by evaluating the model’s performance
against the held out development data. The number of data
points in a minibatch is one such hyperparameter.
Another hyperparameter is the learning rate (also known as

step size), the coefficient scaling the gradient used in gradient
descent. If the learning rate is too large, the model may fail to
converge to a good local minimum. If it is too small, training
can be prohibitively slow.
We also treat the dropout rate as a hyperparameter. Dropout

is a technique that helps with model generalization by using a
mask to zero out a random subset of hidden units during each
gradient calculation. This forces the model to distribute the
learned representation of the input across all of its hidden units,
yielding a more robust internal representation. A dropout rate
of 0.1 implies that on any given training pass, 10% of the
hidden units on the fully connected layer are masked out: they
cannot contribute to the prediction, and gradients will not
propagate through them.

Appendix B
APOGEE Net Model Code

class APOGEE_Net(nn.Module):

def_ _init_ _(self, num_layers, num_targets, drop_p=0.0):
super(Net, self)._ _init_ _()
# 3 input channels, 6 output channels, convolution
# kernel
self.conv1=nn.Conv1d(num_layers, 8, 3, padding=1)
self.conv2=nn.Conv1d(8, 8, 3, padding=1)
self.conv3=nn.Conv1d(8, 16, 3, padding=1)
self.conv4=nn.Conv1d(16, 16, 3, padding=1)
self.conv5=nn.Conv1d(16, 16, 3, padding=1)
self.conv6=nn.Conv1d(16, 16, 3, padding=1)
self.conv7=nn.Conv1d(16, 32, 3, padding=1)
self.conv8=nn.Conv1d(32, 32, 3, padding=1)
self.conv9=nn.Conv1d(32, 32, 3, padding=1)
self.conv10=nn.Conv1d(32, 32, 3, padding=1)
self.conv11=nn.Conv1d(32, 64, 3, padding=1)
self.conv12=nn.Conv1d(64, 64, 3, padding=1)

#an affine operation: y=Wx + b
self.fc1=nn.Linear(64∗133∗1, 512)
self.fc1_dropout=nn.Dropout(p=drop_p)
self.fc2=nn.Linear(512, 512)
self.fc3=nn.Linear(512, num_targets)

def forward(self, x):
# Max pooling over a (2) window

x=F.max_pool1d(F.relu(self.conv2(F.relu(self.conv1(x)))), 2)
x=F.max_pool1d(F.relu(self.conv4(F.relu(self.conv3(x)))), 2)
x=F.max_pool1d(F.relu(self.conv6(F.relu(self.conv5(x)))), 2)
x=F.max_pool1d(F.relu(self.conv8(F.relu(self.conv7(x)))), 2)
x=F.max_pool1d(F.relu(self.conv10(F.relu(self.conv9(x)))), 2)
x=F.max_pool1d(F.relu(self.conv12(F.relu(self.conv11(x)))), 2)
x=x.view(−1, self.num_flat_features(x))
x=F.relu(self.fc1_dropout(self.fc1(x)))
x=F.relu(self.fc1_dropout(self.fc2(x)))
x=self.fc3(x)
return x
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(Continued)

def num_flat_features(self, x):
size=x.size () [1:] # all dimensions except the batch dimension
num_features=1
for s in size:
num_features ∗=s
return num_features
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