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Two-dimensional (2D) semiconductors isoelectronic to phosphorene have been drawing much attention recently due
to their promising applications for next-generation (opt)electronics. This family of 2D materials contains more than 400
members, including (a) elemental group-V materials, (b) binary III–VII and IV–VI compounds, (c) ternary III–VI–VII and
IV–V–VII compounds, making materials design with targeted functionality unprecedentedly rich and extremely challenging.
To shed light on rational functionality design with this family of materials, we systemically explore their fundamental
band gaps and alignments using hybrid density functional theory (DFT) in combination with machine learning. First,
calculations are performed using both the Perdew–Burke–Ernzerhof exchange–correlation functional within the general-
gradient-density approximation (GGA-PBE) and Heyd–Scuseria–Ernzerhof hybrid functional (HSE) as a reference. We
find this family of materials share similar crystalline structures, but possess largely distributed band-gap values ranging
approximately from 0 eV to 8 eV. Then, we apply machine learning methods, including linear regression (LR), random
forest regression (RFR), and support vector machine regression (SVR), to build models for the prediction of electronic
properties. Among these models, SVR is found to have the best performance, yielding the root mean square error (RMSE)
less than 0.15 eV for the predicted band gaps, valence-band maximums (VBMs), and conduction-band minimums (CBMs)
when both PBE results and elemental information are used as features. Thus, we demonstrate that the machine learning
models are universally suitable for screening 2D isoelectronic systems with targeted functionality, and especially valuable
for the design of alloys and heterogeneous systems.
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1. Introduction

Last decade has witnessed the rocketing development of
two-dimensional (2D) materials, which find promising appli-
cations in next-generation electronics and optoelectronics.[1–4]

The performance of a 2D electronic device depends sensitively
on the fundamental electronic properties of the candidate ma-
terial: a non-zero band gap, proper band edge positions, and
high mobility are in general the requisites. In contrary to
semi-metallic graphene[1,2] and low-mobility transition metal
dichalcogenides (TMDs)[5,6] that fail to deliver good device
performance, phosphorene is semiconducting while still main-
taining a high hole mobility,[7–11] thereby emerging as a po-
tential candidate for 2D electronics. However, poor chemical
stability has limited its practical applications.[12] To overcome
such obstacles, searching for 2D materials with similar elec-
tronic properties but better chemical stability is essential.

Recently, high-throughput materials screening has

emerged as an effective method to search for materials with
targeted functionality.[13–16] The workflow for materials dis-
covery is separated to different layers: starting with crude and
low-precision computations to narrow the candidacy pool, and
followed by precise but expensive calculations to identify the
candidate materials. The initial materials pool is usually a sub-
set of the ICSD database[17] with large amount of candidates,
resulting in tedious prescreening and large computational ef-
forts. A prescreening method that is both accurate and compu-
tationally efficient is greatly desired, where machine learning
can play an important role. In combination with density func-
tional theory (DFT), machine learning has demonstrated valu-
able applications in functional materials design,[18] properties
predictions,[19–22] and many other fields[23,24] for traditional
bulk materials. It is intriguing to apply such machine learning
methods to two-dimensional systems to accelerate materials
discovery, which is largely unexplored but fundamentally and
technologically important.
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Here, we have explored the fundamental band gaps and
band alignments of a group of 2D semiconductors that are iso-
electronic to phosphorene using machine learning techniques
in combination with density functional theory. The methodol-
ogy is discussed in Section 2, including details of density func-
tional calculations (Subsection 2.1) and a brief introduction of
machine learning models (Subsection 2.2). We describe the
isoelectronic materials design method in Subsection 2.3. Fol-
lowing this method, more than 400 materials are constructed
and calculated, including (a) elemental group-V materials,
(b) binary III–VII and IV–VI compounds, and (c) ternary III–
VI–VII and IV–V–VII compounds. Among this family of
materials, many have been successfully synthesized[25,26] and
found special applications in different research fields.[27,28]

The richness in electronic properties of these materials is cat-
egorized and analyzed in Section 3. Next, in Section 4, we
apply machine learning methods, including linear regression
(LR), random forest regression (RFR), and support vector ma-
chine regression (SVR), to predict electronic properties for this
family of 2D materials. Then we summarize our key findings
in Section 5.

2. Methodology
2.1. Computational details of density functional methods

All our calculations are based on DFT using projector-
augmented waves[29] (PAW) as implemented in the VASP[30]

code. We have used periodic boundary conditions through-
out the study, with monolayer structures represented by a pe-
riodic array of slabs separated by a vacuum region at least
15 Å thick. We use the Perdew–Burke–Ernzerhof (PBE)[31]

exchange–correlation functional for the initial structure op-
timization based on the conjugate gradient method[32] with
a 400 eV energy cutoff. All geometries are treated as opti-
mized when none of the residual Hellmann–Feynman forces
exceed 10−2 eV/Å. On top of PBE-optimized structures, a
single-shot screened hybrid functional calculation (HSE)[33,34]

is performed to obtain the fundamental band gap and align-
ment of the material. We have used standard values for the
mixing parameter (0.25) and the range-separation parameter
(0.2 Å−1). The reciprocal space is sampled by a grid[35] finer
than 10×10×1 k-points in the Brillouin zone of the primitive
unit cell.

2.2. Machine learning methods

The obtained DFT results are then analyzed with machine
learning models as implemented in scikit-learn[36] package.
The relation between target electronic properties and predic-
tors can be established via supervised learning methods. A
good predictive model depends sensitively on the choice of re-
gression models, selection of predictors, as well as the quality

of our dataset. For a given data set, it is important to select
proper predictors and suitable regression models to achieve
good predictive ability with high accuracy. To achieve this
goal in current study, we have selected three different predictor
sets, which are different combinations of the computed PBE
results and fundamental signatures of constituent elements.
Then, we utilize a variety of regression methods, including lin-
ear regressions, random forest regression, and support vector
machine regression, to predict the target electronic properties.

In the LR method, the regression coefficients of predic-
tors, w, are determined by optimizing the following cost func-
tion L(𝑤): L(𝑤) = ||𝑦−𝑋𝑤||2. In addition, other LR meth-
ods with regularizations, LASSO and Ridge, are also used
in this study. On top of the ordinary least square linear re-
gression method, LASSO includes an additional L1 penalty
term ∑i ||αwi|| in the cost function, while the Ridge regres-
sion method adds an L2 regularization term ∑i ||αwi||2. These
penalty terms can effectively mitigate the overfitting problem
especially when the predictor sets are large.

When the relation between the target property and the pre-
dictors is not linear, regression methods like RFR and SVR
with a non-linear kernel are supposed to capture the nonlinear
feature–target relationship. Random forest is one type of en-
semble methods. It grows a number of decision trees via boot-
strapping the sample space. For each decision tree, a randomly
selected subset of the feature space is used, which can effec-
tively minimize the correlation between different trees. Then,
the target value is predicted by majority vote of these trees for
classification or averaging the predicted result of each tree in
regression problems. Importantly, the random forest model is
easy to interpret and it can output the relative importance of
different features, thereby providing insights on the elemental
signatures that determine the targeted electronic properties of
materials in the present study.

We also use a SVR model with a radial basis function
(RBF) kernel to predict the calculated electronic properties
with fundamental materials features. The support vector ma-
chine model utilizes the kernel trick to map low-dimensional
non-separable data to a higher dimension where they can be
separated via a hyper-plane. The optimized hyper-plane can
be identified by the so-called supported vectors. The ker-
nel trick makes it possible to compute the inner product of
the projected data in the higher dimension without specify-
ing the mapping function, which is usually time-consuming or
even impossible to specify. SVR uses a hinge-loss function

∑i max(0,1− yi f (xi)), which is minimized during the model
training process. The RBF kernel used in the present work has
the form of K(xi,x j) = exp(−γ||xi− x j||2).
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Table 1. Three sets of predictors used for machine learning models to predict electronic band gaps and band alignments.

Target property Predictors set-I Predictors set-II Predictors set-III

Eg (HSE) Eg (PBE) elements signatures Eg (PBE), elements signatures

VBM (HSE) VBM (PBE) elements signatures VBM (PBE), elements signatures

CBM (HSE) CBM (PBE) elements signatures CBM (PBE), elements signatures

In addition to the type of machine learning methods we
choose, a proper selection of feature space is also critical
to achieve robust and accurate prediction. Previous studies
usually include a large amount of predictors in the feature
space and then conduct dimension reduction, which is likely
to hide important physical insights of the model. Here, in-
stead, we intend to compare the prediction power of PBE re-
sults as features and merely fundamental chemical and phys-
ical signatures of constituent elements in the materials. With
this consideration, as shown in Table 1, we have built three
different sets of predictors: In set-I, PBE results, band gap,
valence-band maximum (VBM), and conduction-band mini-
mum (CBM) are the only features used to predict related HSE
values; In set-II, we include only elemental signatures for
each material, such as atomic mass, ionization energy, elec-
tron affinity, electronegativity, as well as electronegativity dif-

ference between cations and anions; set-III is a combination
of set-I and set-II. The features in set-I depend on less time-
consuming PBE calculations, while set-II is more convenient
to obtain with no requirement of any DFT calculations.

2.3. Isoelectronic materials design

The 2D group-V elemental materials, such as
phosphorene[8,37] and antimonene,[38] can be stabilized in
two distinct structural phases, the black and blue phosphorene
phases, as defined to be phases I and II in Fig. 1(a) and 1(b),
respectively. In both structural phases, each atom forms three
covalent bonds of sp3 type with adjacent atoms, as well as
lone-pair electrons, which fulfils the octet rule. The pyramid
formed by a center atom and its three nearest neighbors can be
arranged in a variety of ways, thereby leading to a rich design
space for structural polymorphs.[39]

top  
view

side 
view

(a) (b) (c) (d) (e)

Fig. 1. Equilibrium structures of elemental materials and binary compounds in black-phosphorene-type phase-I, (b) blue-phosphorene-type
phase-II, (c) indium-iodide-type phase-III, and their ternary counterparts in (d) phase-I and (e) phase-II. All structure are shown in both
top and side views. The different colors represent the V-group, or IV–VI, or III–VII elements without any specifications, except that the
brown in (c) represents the III-group element, the dark purple in (d) and the light green in (e) represent the III- or IV-group element, and
the grey in (d), (e) represents the VII-group element.

Binary compounds can be derived from their elemental
counterparts by cation mutation while the averaged valence
electrons are conserved to be five.[40] Based on such a princi-
ple, group IV–VI and III–VII compounds can be conveniently
designed and they are isoelectronic to the well-studied group-
V elemental materials. In addition to two base structures men-
tioned previously, III–VII compounds can also be stabilized
in a special structure with a primitive cell of approximately
square shape, as defined to be the phase III in Fig. 1(c). In
fact, for indium iodide, an existing compound of the III–VII
family, phase-III is the most energetically favored structure
among the polymorphs mentioned here.[41,42] Thus, we also
include this structural phase as one of the base structures for
the 2D materials design in the present study.

The isoelectronic design principle can be further general-
ized to construct ternary compounds. As shown in Figs. 1(d)
and 1(e), III–VI–VII and IV–V–VII compounds share similar
structures with the elemental and binary materials discussed
above; indeed, they are isoelectronic. Taking phosphorene of
phase-II as the starting material, we change half of the P atoms
to a group IV element, such as Si. The sp3 bonding in the ma-
terial is maintained and the P atoms still have the close-shell
electron configuration. However, as Si has one less valence
electron, one unpaired electron exists for Si rather than a lone
pair in P. Furthermore, a group-VII halogen element can form
an additional bond with Si, thereby satisfying the octet rule for
the ternary compounds. Therefore, the IV–V–VII compounds
are isoelectronic to the group-V elemental materials. Simi-

046101-3



Chin. Phys. B Vol. 29, No. 4 (2020) 046101

larly, the III–VI–VII compounds can be shown as isoelectronic
counterparts to the IV–VI compounds. Importantly, in the el-
ement mutation process to construct the ternary compounds,
half of the lone pairs in the original materials no longer exist,
but instead form covalent bonds between the metal and halo-
gen atoms. In fact, ternary compounds are not limited to these
two groups of materials. Simply applying the cation-mutation
principle to the IV–VI and III–VII compounds, we can obtain
III–V–VI2 and II–IV–VII2 ternary compounds. As they are ex-
pected to be rather similar to their parent binary compounds,
these groups of ternary materials are not computed using DFT
methods in the present work, but instead their electronic prop-
erties can be predicted from our machine learning models that
are to be discussed in Subsection 4.4.

To build a database for this family of 2D materials, we
have considered entire group-III, group-IV, group-V, group-
VI, and group-VII elements (except the radiative Tl, Po, and
At) for isoelectronic materials design. For elemental and bi-
nary materials, three structural phases, phase-I, phase-II, and
phase-III, are treated as the base structures to perform element
mutation. Following the design principle above, we have con-
structed 15 elemental materials and 108 binary compounds.
For ternary compounds, we only use phase-I and phase-II as
the base to construct isoelectronic compounds, giving 328 dis-
tinct 2D materials. Then, we perform DFT calculations to ob-
tain the optimized structures, the fundamental band gaps, and
the absolute positions of band edges at both PBE and HSE lev-
els. In fact, not all the element combinations can maintain the
structural phases we are interested in the present work. Espe-
cially, materials containing B, C, O, and N are in general not
able to be stabilized in the desired structural form. The data

points corresponding to these materials are eliminated from
the database and not used for machine learning exploration.

3. Electronic properties by DFT-PBE and HSE
The calculated electronic properties, fundamental band

gaps, VBMs, and CBMs, are shown in Fig. 2. It is known that
for the same semiconductor, the HSE band gap would scale
linearly with the mixing parameter and the DFT-PBE band
gap value is in general the intercept. However, for different
materials, it is not clear how the HSE band gaps are related to
that predicted by DFT-PBE. Here in Fig. 2, we illustrate that
the HSE band-gap values scale approximately linearly with
that of DFT-PBE. The linear relation can be further improved
when these isoelectronic materials are separated to different
categories based on the number of constituent elements, which
is reflected by the color-distinguished data points in Fig. 2(a).

For the absolute positions of band edges, the linear rela-
tionship between HSE and DFT-PBE is even more clear. The
VBM position of a material, referenced to the vacuum level,
corresponds to its electron ionization energy, which in general
can be predicted by HSE to a good agreement with experi-
ments. As shown in Fig. 2(b), HSE predicts lower VBMs than
those of PBE and we also find a linear relationship between
VBMs of HSE and PBE. Therefore, promisingly, the PBE re-
sults may act as efficient descriptors for expensive HSE calcu-
lations, as well as experimental results, which is to be assessed
in Section 4. Similarly, HSE CBMs also scale linearly with
that obtained by PBE, illustrated in Fig. 2(c). However, for
CBMs, the HSE results are slightly higher than those of PBE,
in sharp contrast to the case for VBMs.
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Fig. 2. Relation between PBE and HSE results of (a) fundamental band gaps, (b) VBMs, and (c) CBMs. The dashed lines are guide to the
eyes, indicating the case of HSE values equaling PBE values.

To gain deeper insights into the electronic properties of
this family of materials, we have shown the distributions of
band gaps, VBMs, and CBMs with respect to both materials
types and structural phases (Fig. 3). Clearly, for both elemen-
tal and binary materials, the phase-II structures have larger
band gap values than those of phase-I, which is closely related
to the fact that VBMs of the former are in general lower than

those of the later, indicated in Fig. 3(b). The similar trend for
these two groups of materials can be explained by the fact that
they are isoelectronic and the band-edge states are similar. On
the contrary, for the ternary compounds, the averaged band
gap value of the phase-I structures is larger than that of the
phase-II structures by ∼ 1 eV. Especially, they have very sim-
ilar distributions of VBMs. The different behaviors between
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the ternary compounds and the others is due to the presence
of halogen ligand that satisfies the octet rule without form-
ing lone-pair electrons. In fact, the ternary compounds are
not “perfectly” isoelectronic to their parent compounds. Since
the signature of long-pair electrons is still partially persevered
in the ternary compounds, CBMs share similar characters for
all three types of materials (Fig. 3(c)). Furthermore, the bi-

nary compounds are found to have larger averaged band gap

than that of elemental materials, which can be attributed to the

increased ionicity in the materials: a larger electronegativity

difference between cation and anion usually leads to a larger

band gap value.[43] The factors that affect the band gaps and

alignments of materials are to be discussed in Subsection 4.4.

phase I
8

(a) (b) (c)

H
S
E
 b

a
n
d
 g

a
p
/
e
V 6

4

2

elemental banary

Materials type

ternary elemental banary

Materials type

ternary elemental banary

Materials type

ternary
0

-8

-10

H
S
E
 V

B
M

/
e
V

-6

-4

-2

0

-8

-10

H
S
E
 C

B
M

/
e
V

-6

-4

-2

0

phase II
phase I
phase II

phase I
phase II

Fig. 3. Distributions of (a) band gap values, (b) VBMs, and (c) CBMs based on HSE calculations for different materials types. The blue-colored
areas represent materials of phase-I, while the green-colored ones are for phase-II. The long-dashed line indicates the mean of the distribution.

4. Machine learning predictive models
As mentioned in Section 2, computational results in the

present work are at two distinct levels of theory: DFT-PBE and
the screened hybrid functional method (HSE). The former is
computationally less demanding, but severely underestimates
the fundamental band gap; HSE, on the other hand, can pre-
cisely predict the band-gap values and alignments of standard
semiconductors (without localized d or f orbitals as valence
electrons), but is formidable for large-scale functional mate-
rials screening due to high computational cost. Therefore, it
is desirable to build computational efficient methods that can
also achieve high accuracy simultaneously. Given different
predictor sets as described in Subsection 2.2, we apply ma-
chine learning methods, including LR, RFR, and SVR, to pre-
dict computed electronic properties at HSE level, which can
be further utilized to predict experimental observations.

4.1. Set-I predictors

As inferred from Section 3, the HSE band gaps have ap-
proximately linear relation with that of PBE. Intuitively, the
PBE band gaps have been used as the only feature in pre-
dictors set-I. The LR model is applied to model the relation
between the results of HSE and PBE with 10-fold cross vali-
dation, while RFR and SVR are not applicable for such simple
feature space. The predicted HSE gaps of the validation sets
are shown with respect to the calculated values in Fig. 4(a).
The relation is

EHSE
g = 1.21EPBE

g +0.52 eV. (1)

The residues, difference between the predicted and computed
band-gap values, are presented in Fig. 4(d) and the majority

fall into the [−0.5 eV, 0.5 eV] energy range, indicating good
prediction accuracy. There are only two data points where
the difference is larger than 1.0 eV. Even though they might
be outliers, their influence on our regression model is mini-
mal. Furthermore, we also calculate the root mean square er-
ror (RMSE) and the mean absolute percent error (MAPE) to
evaluate the predictive model and the small prediction error,
0.25 eV for RMSE and 10.67% for MAPE (see Table. 2), also
reflects the high accuracy of the model.

Similarly, in order to predict VBMHSE positions, the
VBMPBE values are used as the only feature in set-I predictors
space. The predicted VBMHSE positions of validation sets are
presented in Fig. 4(b), showing excellent agreement with tar-
geted values. All the residues [Fig. 4(e)] are in the [−0.5 eV,
0.5 eV] energy range. The better linearity of the VBM pre-
dictive model, comparing with that of band gap, also leads to
smaller prediction errors as listed in Table. 2. The predicted
relationship between VBMPBE and VBMHSE is

VBMHSE = 1.15VBMPBE +0.23 eV. (2)

CBMHSE can also be predicted by CBMPBE with LR method
and the model accuracy is illustrated in Figs. 4(c) and 4(f). For
CBM, the relation between the HSE and PBE results is

CBMHSE = 1.07CBMPBE +0.51 eV. (3)

Since these three linear models are cross-validated by ran-
domly selected samples from our 2D materials data set, they
should be universally valid for materials that are isoelectronic
to current family members.
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Fig. 4. Comparison of predicted (a) band gaps, (b) VBMs, and (c) CBMs by LR with calculated HSE values. Computed relevant PBE value
(predictors set-I) is used as the single descriptor for the predictive LR model. Corresponding residues are shown in (d), (e), and (f) to access
the accuracy of the model. The dashed lines are guide to the eyes, representing that the predicted values are equal to the computed HSE data.

Table 2. Prediction errors of band gaps in the LR, RFR, and SVR models.

Regr. methods Pred. sets Band gap RMSE/eV Band gap MAPE/% VBM RMSE/eV VBM MAPE/% CBM RMSE/eV CBM MAPE/%
LR set-I 0.25 10.67 0.15 1.85 0.14 2.53

set-II 0.87 35.07 0.88 10.30 0.80 16.03

set-III 0.15 5.55 0.09 1.04 0.09 1.56

RFR set-I – – – – – –

set-II 0.70 26.37 0.67 7.23 0.57 10.22

set-III 0.25 7.44 0.18 1.75 0.18 2.64

SVR set-I – – – – – –

set-II 0.57 16.80 0.49 4.83 0.43 7.07

set-III 0.13 4.93 0.08 0.96 0.09 1.65

4.2. Set-II predictors

The ideal predictive model would rather have elemental
information of constituent elements as the feature space, in-
stead of DFT results at any level of theory. This would greatly
improve the model efficiency and even make real-time inter-
active prediction possible. We have created predictors set-II to
fulfill such a purpose. Details about this set of predictors are
discussed in Subsection 2.2.

For this set of predictors, we have applied LR, RFR, and
SVR to predict the targeted electronic properties. The per-
formances of these models are shown in Fig. 5, as inferred
from the relationship between the predicted values and com-
puted values. Here the LR model shows much inferior pre-
dictive ability comparing with the case when the PBE results

are used as predictors. This is also reflected by its high RMSE
(0.87 eV) and high MAPE (35.07%) as presented in Table 2.
Comparing with band-gap prediction, the accuracy of the LR
model is slightly improved for VBMs and CBMs: MAPE val-
ues are 10.30% and 16.03%, respectively. To avoid overfitting,
we have also compared the simple LR model with regularized
models, such as Ridge regression and LASSO, and found no
improvement in the model performance.

The undesired performance of the LR model indicates
that the nonlinear relationship between the set-II predictors
and computed HSE results is essential. Complicated models,
like RFR and SVR, are likely to capture the nonlinearity in
the feature–target relation. Indeed, we find both RFR and
SVR models have better performance than the former LR
model. SVR is found to give the lowest RMSEs: 0.57 eV
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Fig. 5. Comparison of calculated HSE values with predicted fundamental band gaps and band edges by LR, RFR, and SVR models. These
models are evaluated with 10-fold cross-validation and only the predicted results of the validation sets are shown. Each column of the subfigures
represents one predictive model and each row shows one selected electronic property. Selected signatures of constituent elements are used as
predictors (predictors set-II) for these machine learning models. The dashed lines are guide to the eyes, representing that the predicted values
are equal to the computed HSE data.

for band gaps, 0.49 eV for VBMs, and 0.43 eV for CBMs,
corresponding to MAPEs of 16.80%, 4.83%, and 7.07%,
which achieve approximately 50% error reduction from the
LR model. Even though the performance is still inferior to
LR with DFT-PBE results as the features, it should be noted
that the SVR model we developed here is of advantage to be
used for fast materials screening due to its convenient feature
space with no requirements for DFT calculations.

Although RFR is not the best predictive model, it can pro-
vide precious insights into important features that determine
the underlying materials properties. Alongside training of a
RFR model, we can also obtain the relative importance of pre-
dictors in the feature space. For band-gap prediction, the most
significant feature is the average mass: the heavier the com-
pounds, the smaller the band gap. It is noted that increased
metallicity is inherited naturally from larger atomic mass for
elements from the same element group, which weakens both
bonding strength and ionicity, resulting in the narrowing of the
band gap. Other important features include the electronegativ-
ity difference between cation and anion, cation electronegativ-
ity, phase type, and so on. For VBMs and CBMs, the rankings
of feature importance are different: the average mass is not
as important as for the band-gap prediction. VBMs depend
strongly on the electronegativity difference between cation and
anion, while the anion electron affinity is the most significant
factor determining CBMs.

4.3. Set-III predictors

The predictive models can be further improved when pre-
dictors of set-I and set-II are combined as the new feature
space: set-III predictors. As DFT-PBE can also be viewed
as a good predictive model, machine learning methods based
on set-III predictors can thus be viewed as a process of model
stacking, which in general give better prediction performance.
The predicted results for the validation sets are compared with
the computed values in Fig. 6. Indeed, we find that the RMSE
and MAPE of all three regression models are significantly
reduced with respect to the case where the feature space is
spanned by either set-I or set-II predictors. Among the ma-
chine learning models used here, SVR outperforms the other
two for all three targeted materials properties, with RMSEs
of 0.13 eV for band gap, 0.08 eV for VBM, and 0.09 eV for
CBM. In fact, the prediction errors are within the accuracy of
HSE calculations, thereby justifying the validity and accuracy
of our models for properties prediction.

4.4. Discussion

Model selection By carefully comparing the perfor-
mance of different machine learning models, we have elu-
cidate the general principle for model selection. Both RMSE
and MAPE are computed to evaluate the accuracy of LR, RFR,
and SVR models. Among these three models in the present
study, SVR is found to have the best accuracy, when either set-
II or set-III predictors are used as the feature space. Especially,
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Fig. 6. Comparison of calculated HSE values with predicted fundamental band gaps and band alignments by LR, RFR, and SVR models, where
both relevant PBE results and selected signatures of constituent elements are used as predictors (predictors set-III). These models are evaluated
with 10-fold cross-validation and only the predicted results of the validation sets are shown. Each column of the subfigures represents one
predictive model and each row shows one selected electronic property. The dashed lines are guide to the eyes, representing that the predicted
values are equal to the computed HSE data.

when only elemental information is used to span the feature
space, SVR shows significant advantage in predicting targeted
materials properties over the other two methods. Therefore,
SVR is suggested to use when no prior DFT-PBE results are
available. On the other hand, if DFT-PBE values are available,
LR is a good model to start with. In this method, the relation
between HSE values and DFT-PBE features can be expressed
in a simple analytical model, thus the target values can be read-
ily predicted.

Performance for different target properties The same
machine learning model is found to have different perfor-
mances when target properties vary. Even though the band
gap is closely related to VBM and CBM, the later two targets
almost always have smaller RMSE and MAPE than the for-
mer. The difference in accuracy is likely caused by the fact
that for band-gap prediction, a good predictor reflecting both
VBM and CBM states is a requisite, which is unlikely to be
included in our simple feature space. On the other hand, for
VBM- or CBM-prediction, the requirement is less stringent
and more likely to be covered by our selection of predictors.
To further improve the model performance, we expect to have
a more complicated feature space, including different opera-
tions between predictors in current feature space. This is be-
yond the scope of current study.

Applications As mentioned in Subsection 2.3, the mate-
rials used in the present work are just a small fraction of this
large family of materials following proposed isoelectronic ma-

terials design principle. Our trained models, especially SVR
with set-II predictors, can be applied to predict the fundamen-
tal band gaps and alignments of other family members with
minimal computation cost. The predicted results are informa-
tive and valuable even when the designed materials are not the
most stable structural phase. It has been shown that alloying
unstable materials with stable ones in the desired structural
phase is likely to stabilize the former compounds. For ex-
ample, CaSe can be stabilized in phase-I when alloying with
SnSe.[44] The electronic properties of such alloys can also
be predicted by our models where the weighted average of
the constituent elements are taken as predictors. Therefore,
the trained machine learning models in the present study pro-
vide a computational efficient method to accurately obtain the
band gaps and alignments of a large amount of 2D materials,
which enables fast screening of 2D functional materials for
electronic, optoelectronic, and photocatalysis applications.

5. Conclusions
We have explored fundamental band gaps and alignments

of a group of two-dimensional semiconductors isoelectronic
to phosphorene using machine learning techniques in combi-
nation with density functional theory. This family of 2D ma-
terials shares similar crystalline structures, but possesses un-
precedented rich band-gap values ranging approximately from
0 eV to 8 eV. Based on the machine learning methods, we
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trained predictive models that can predict band-gap values and
band-edge positions with surprisingly high accuracy. Among
models discussed in the present work, SVR is found to have
the best performance with RMSEs less than 0.15 eV for the
predicted band gaps, VBMs, and CBMs when both PBE re-
sults and elemental information are used as predictors. We
also demonstrate that the predictive models can be utilized for
electronic properties prediction for more complicated systems,
like quaternary compounds and alloys, shedding light on ra-
tional materials design for (opto)electronic and photocatalysis
applications.
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Cheng M M C, Tománek D and Zhou Z 2013 ACS Nano 7 4449

[7] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang
Y 2014 Nat. Nanotechnol. 9 372

[8] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014
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