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elements: Dynamics of the low frequency modulated waves
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The dynamics of modulated waves in a nonlinear bi-inductance transmission line with dissipative elements are exam-
ined. We show the existence of two frequency modes and carry out intensive investigations on the low frequency mode.
Thanks to the multiple scales method, the behavior of these waves is investigated and the dissipative effects are analyzed.
It appears that the dissipation coefficient increases with the carrier wave frequency. In the continuous approximation, we
derive that the propagation of these waves is governed by the complex Ginzburg–Landau equation instead of the Korteweg–
de-Vries equation as previously established. Asymptotic studies of the dynamics of plane waves in the line reveal the
existence of three additional regions in the dispersion curve where the modulational phenomenon is observed. In the low
frequency mode, we demonstrate that the network allows the propagation of dark and bright solitons. Numerical findings
are in perfect agreement with the analytical predictions.
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1. Introduction
Formation, propagation, interaction of modulated waves

and related properties in various nonlinear dispersive media
have been subjects of intensive studies.[1] The present study
of nonlinear electrical transmission lines (NLTLs) is motivated
by their universality. Since the pioneering work of Hirota and
Suzuki[2] on electrical lines, the growing interest in the use
of NLTLs can be justified by two factors. Firstly, these lines
are suitable implements to study wave propagation in nonlin-
ear dispersive media[3] with applications in signal processing
and microwaves range.[4] In fact, Nejoh found the envelope
soliton of the electron plasma wave in a nonlinear dispersive
transmission line.[5] Recently, Makenne et al. simulated pe-
riodic and chaotic movements of plants subjected to the wind
action based on electrical lines.[6] Similarly, Ndzana et al. also
studied the dynamics of ionic waves in a microtubule modeled
by a nonlinear resistor, inductor, and capacitor (RLC) trans-
mission line.[7] Secondly, NLTLs possess the capacity to sup-
port localized disturbances which act somewhat like particles
and are known as solitons.[8] Qualitatively, the origin of soli-
ton in NLTLs is explained by the balance between the effects
of dispersion (due to the periodic location of the capacitor in
the nonlinear electrical lines) which tends to spread out the
wave and nonlinearity (due to the voltage dependence of the
capacitance) that leads to the compression of a packet wave.[9]

Furthermore, envelope solitons can also be viewed as the re-

sult of an instability that leads to a self-induced modulation of
the steady state: this phenomenon is well-known as the mod-
ulational instability (MI).[10–12]

Despite this great interest in NLTLs and their wide range
of applications, two great insufficiencies are noted. First, in
the real media, dissipative effects coexist with nonlinear and
dispersive effects and may intervene in the wave generation
and its propagation. But, only few works analyzed these dis-
sipative effects in the NLTLs. Indeed, Yemele et al. inves-
tigated analytically the dynamics of modulated waves in a
nonlinear LC transmission line with dissipative elements and
derived the damped nonlinear Schrödinger equation as the
amplitude equation.[13] They showed that the effects of the
dissipative losses in the series branch are more manifested
than those resulting from the dissipative losses in the shunt
branch. Moreover, Ndzana et al. exploited a similar dissi-
pative network and established in the semi-discrete limit that
transmission of modulated waves is described by the cubic-
quintic complex Ginzburg-Landau equation.[14] Their work
revealed that solitonlike excitations can be induced by MI.
Recently, Abdoulkary et al. considered the dynamics of a
dissipative discrete nonlinear electrical transmission line with
negative nonlinear resistance and showed that the wave prop-
agation is described by a generalized dissipative discrete com-
plex Ginzburg–Landau equation.[15] They established the gen-
eralized discrete Lange–Newell criterion for MI phenomenon.
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More recently, Doka used a dissipative nonlinear transmission
line analog of the microtubules protein structure to derive a
nonlinear lattice equation governing the voltage motion in the
system.[16] Through the continuum approximation, he derived
a nonlinear perturbed Korteweg–de-Vries (KdV) equation as
the amplitude equation and studied theoretically the dynam-
ics of its dark soliton solution. Next, one could easily note
that very few investigations dealing with the nonlinear electri-
cal bi-inductance transmission line (NLBTL) have been made.
Within these studies[17–21] and to the best of our knowledge,
no paper reports the dynamics of modulated waves in a dissi-
pative NLBTL using the continuum approximation.

The outline of this paper is structured as follows. In
Section 2, we present the model of discrete electrical bi-
inductance transmission line with dissipative elements and
find the differential difference equation governing its dynam-
ics. In the low-amplitude limit (linear plane wave) of the volt-
age, the linear dispersion relation and the linear dissipative pa-
rameter of the damped oscillations are derived in Section 3. It
appears that the system exhibits two modes of propagation:
the low-frequency (LF) mode and the high-frequency (HF)
mode. The effects of the linear dissipative coefficient on the
frequency domain are checked. In Section 4, we consider the
dynamics of the modulated waves in the continuum limit and
recover the two modes of transmission. In Section 5, the dy-
namics of the modulated waves in the LF mode are deeply in-
vestigated and the complex Ginzburg–Landau equation is de-
rived. The asymptotic behavior of the finite amplitude wave in
this line is investigated and the impact of the dissipative factor
is checked. The existence of both bright and dark solitons is
established. Section 6 is devoted to discussion and concluding
remarks.

2. Model description and basic equations

Consisting of N identical unit cells, our distributed dis-
sipative NLBTL contains constant inductors (L1,L2) and
voltage-dependant capacitors C (V ) as illustrated in Fig. 1.
This network represents an electrical equivalent of a diatomic
lattice in which atoms interact with their first nearest neighbors
through an inter-atomic potential with cubic nonlinear interac-
tions. Hereafter, the losses due to the resistances (r1,r2) of the
inductors as well as the conductance gp of the capacitances are
taken into account in the study. By applying Kirchhoff’s laws
to the circuit of Fig. 1, we obtain the following set of funda-
mental equations:

L2I2n−1,t+r2I2n−1=V2n−1−V2n,
L1I2n,t+r1I2n=V2n−V2n+1,
Igp2n=V2ngp,


Igp2n+1=V2n+1gp,
Q2n,t = I2n−1−I2n−Igp2n,
Q2n+1,t = I2n−I2n+1−Igp2n+1,

(1)

in which Q2n(t) is the charge stored in the 2n-th nonlinear
capacitor biased by the dc voltage V0; and I2n stands for the
current passing through the 2n-th linear inductor with con-
stant inductance L1. The subscript t denotes the time dif-
ferentiation. In Fig. 1, the nonlinear capacitor consists of a
reverse-biased capacitance diode with differential capacitance
C(V2n) = dQ2n/dV2n which is a nonlinear function of the volt-
age V2n. For low voltages taken around V0, the dependence
Q2n(V2n) may be approximated by[17,18]

Q2n(V2n)≈C0
(
V2n−αV 2

2n
)
, (2)

where the nonlinear parameter α and the characteristic ca-
pacitance C0 = C(V0) are given respectively by[17,18] α =

0.159 V−1 and C0 = 540 pF for V0 = 1.5 V. Relation (2)
is used to eliminate the current in systems (1). Computa-
tions lead to a system of 2N coupled nonlinear difference-
differential equations, expressed in terms of the voltages V2n

and V2n+1, that describes the evolution of the voltages along
the dissipative bi-inductance transmission line,

(
V2n−αV 2

2n
)

tt +Yr1
(
V2n−αV 2

2n
)

t +YrpV2n,t

= Y2 (V2n−1−V2n)−Y1 (V2n−V2n+1)−Yr1YrpV2n,(
V2n+1−αV 2

2n+1
)

tt +Yr2
(
V2n+1−αV 2

2n+1
)

t +YrpV2n+1,t

= Y1 (V2n−V2n+1)−Y2 (V2n+1−V2n+2)−Yr2YrpV2n+1,

(3)

with Y1 = 1/L1C0, Y2 = 1/L2C0, Yr1 = r1/L1, Yr2 = r2/L2, and
Yrp = gp/C0. For convenience, we denote by Un(t) the voltage
of the even cells (V2n) with inductance L2 and Wn(t) the volt-
age of the odd cells (V2n−1) with inductance L1. Therefore,
system (3) becomes
(
Un−αU2

n
)

tt +Yr1
(
Un−αU2

n
)

t +YrpUn,t
= Y2 (Wn−Un)−Y1 (Un−Wn+1)−Yr1YrpUn,(
Wn+1−αW 2

n+1
)

tt +Yr2
(
Wn+1−αW 2

n+1
)

t +YrpWn+1,t
= Y1 (Un−Wn+1)−Y2 (Wn+1−Un+1)−Yr2YrpWn+1,

(4)

with n= 1,2, . . . ,N, where N is the number of cells considered
in the network. We intend to solve this set of equations in the
upcoming sections.

L2 L1r2 r1A2n

C↼V↽ C↼V↽
V2n V2n⇁

gp gp

A2n⇁

I2nI2n↩

Fig. 1. One unit cell of the dissipative nonlinear bi-inductance transmission
line. The network consists of N identical units.

3. Linear analysis of the network
This section examines the properties of the circuit of

Fig. 1 in the linear domain. Consequently, the nonlinear pa-
rameter α no longer exists, the capacitance C(V ) becomes
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constant and the stored charge is directly proportional to the
voltage. Therefore, equation (2) is reduced to Q2n(Un) ≈
C0Un. However, these conditions do not affect the voltage
range. The basic equation (4) characterizing the network takes
the form

(Un)tt +Yr1(Un)t +YrpUn,t
= Y2(Wn−Un)−Y1(Un−Wn+1)−Yr1YrpUn,

(Wn+1)tt +Yr2(Wn+1)t +YrpWn+1,t
= Y1(Un−Wn+1)−Y2(Wn+1−Un+1)−Yr2YrpWn+1.

(5)

Hereafter, we will examine the behavior of the plane waves
travelling in the network. To consider the dissipative char-
acter of the lattice, we introduce a complex wave number
k = kp+ iχ in which kp and χ are, respectively, the wave num-
ber of the carrier wave and its linear dissipation coefficient.
Let us mention that i =

√
−1. Thus, the linear wave solutions

of system (5) can be taken as

Un (t) = B2 exp(−2nχ)exp
[
i(2nkp−ωt)

]
+ c.c, (6a)

Wn (t)=B1 exp [−(2n−1)χ]exp
{

i
[
(2n−1)kp−ωt

]}
+c.c, (6b)

in which ω is the frequency of the carrier waves of amplitudes
B1 and B2; c.c defines the complex conjugate of the preced-
ing term since the signal voltage is real. Equation (6a) defines
waves that evolve in cells with linear inductance L2 and the
grandeur (6b) corresponds to signals that propagate in the cells
with linear inductance L1. By substituting the voltages (6) into
system (5) and retaining only the linear terms, one obtains a
linear homogeneous system for B1 and B2,{

a B1 +bB2 = 0,
dB1 + cB2 = 0, (7)

wherein a = ω2 + Yr2 iω + Yrp iω − Yt − Yr2Yrp; b =

Y1 exp
(
χ− ikp

)
+Y2 exp

(
−χ + ikp

)
; Yt = Y1 +Y2; c = ω2 +

Yr1 iω + Yrp iω − Yt − Yr1Yrp, and d = Y2 exp
(
χ− ikp

)
+

Y1 exp
(
−χ + ikp

)
.

The condition for the existence of nontrivial solutions of
the homogeneous system (7) yields{

exp(2χ)cos(2kp)+ exp(−2χ)cos(2kp)+
F0

D0

}
+ i
{

exp(−2χ)sin(2kp)− exp(2χ)sin(2kp)+
G0

D0

}
= 0, (8)

with

D0 =−Y1Y2,

G0 = ω
3 [Yr1 +Yr2 +2Yrp

]
−ω

[
2Yr1Yr2Yrp+Yr1Y 2

rp+Yr2Y 2
rp+Yr1Yt+Yr2Yt+2YrpYt

]
,

F0 = ω
4−ω

2 [Yr1Yr2 +2Yr1Yrp +2Yr2Yrp +Y 2
rp +2Yt

]
+Yr1Yr2Y 2

rp +Yr1YrpYt +Yr2YrpYt −Y 2
1 −Y 2

2 +Y 2
t .

Due to the uniqueness of the development of Eq. (8), the real
part of this equation acts as the linear dispersion relation be-

tween kp and ω , and its imaginary part may act as the linear

dissipation equation for χ . We get from Eq. (8) the linear dis-

persion relation

cos(2kp) =−
F0

2D0 cosh(2χ)
(9)

and the linear dissipation coefficient

χ = 2−1 ln
(

ϑ +
√

ϑ 2−1
)
, (10)

where the quantity ϑ is defined by

ϑ =

√
1+

(
H2

0 + I2
0 −1

)
−
[
(H2

0 + I2
0 +1)2−4H2

0

]1/2

2
,

H0 =−
F0

2D0
, I0 =

G0

2D0
. (11)

In the absence of dissipation (i.e., Yr1 =Yr2 =Yrp = 0, then

ϑ = 1 and χ = 0), the linear spectrum (9) is reduced to the

well-known dispersion relation of the typical cut-band filter of

the lossless nonlinear bi-inductance transmission line[17,18]

ω
2 =

1
C0


(

1
L1

+
1
L2

)
±

√(
1
L1

+
1
L2

)2

− 4
L1L2

sin2 (kp
) ,

(12)

wherein the signs + and – refer, respectively, to the LF and

HF modes of transmission. In the following, we focus our at-

tention on the nonlinear behavior of the network. Therefore,

equation (9) establishes the link between the wave number and

the angular frequency in the general case of the dissipative bi-

inductance transmission line.

Numerical resolution of Eq. (9) displays solutions plotted

in Fig. 2. The curve of Fig. 2(a) exhibits all the existing solu-

tions. Such mixed results were obtained by Essimbi et al.[22]

during the study of a coupled nonlinear mono-inductance

transmission line. From these results, we deduce the typical

solution drawn in Fig. 2(b). This plot shows the existence of

two modes of transmission in the dissipative NLBTL: the LF

mode for frequencies f ∈ [0,1.835 MHz] and the HF mode

for frequencies belonging to [2.582 MHz,3.186 MHz]. These

two modes are separated by a forbidden frequency domain

[1.835 MHz, 2.582 MHz] that defines the gap zone of the sys-

tem.

On the other hand, we check the behavior of the linear

dissipation coefficient χ as function of the carrier wave fre-

quency picked in the LF mode of transmission (Fig. 3). This

graph shows that the dissipation (χ) grows as the carrier fre-

quency increases. In the forthcoming sections, we analyze its

impact on the other system parameters.
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Fig. 2. Dispersion curves (versus the wave number k) of the carrier for
the line parameters L1 = 28 µH, L2 = 14 µH, V0 = 1.5 V, C0 = 540 pF,
r1 = 10−3 Ω, r2 = 0.5×10−3 Ω, gp = 10−7 S, and α = 0,159 V−1. (a) Var-
ious solutions of Eq. (9); (b) the simple symmetric solution of Eq. (9).
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Fig. 3. Variation of the linear dissipation coefficient χ (cell−1) in terms of
the frequency f (MHz) chosen in the LF mode for various values of r1.

4. Dynamics of modulated waves in the continu-
ous approximation
Here, we start by presenting the mathematical approach

used to examine the dynamics of modulated waves in the dis-
sipative NLBTL using the continuous approximation (CA). To
understand our motivations, we remind that Kofane et al.[17]

established that the dynamics of nonlinear excitations in a
lossless bi-inductance transmission line are described by a
KdV-type equation. Recently, Pelap et al.[19] exploited the
same network and demonstrated that the propagation of mod-

ulated waves in the CA is governed by a complex Ginzburg–
Landau (CGL) equation. These results (Pi,Qi 6= 0) show that
the bi-inductance line seems to generate damped dispersion
and nonlinearity. To further understand the occurrence of
this phenomenon, we plan to use the CA and deeply ana-
lyze the behavior of modulated excitations in the dissipative
NLBTL by soliciting analytical techniques developed for di-
atomic chains.[23] Therefore, by applying the CA for the volt-
age of each inductance separately (i.e., if we set x = 2n), one
obtains the upcoming expansions for Un±1 and Wn±1 in terms
of the Taylor series

Un±1 =U±2ε
∂U
∂x

+2ε
2 ∂ 2U

∂x2 ±
4
3

ε
3 ∂ 3U

∂x3 +
2
3

ε
4 ∂ 4U

∂x4

± 4
15

ε
5 ∂ 5U

∂x5 +
4

45
ε

6 ∂ 6U
∂x6 +O

(
ε

7) , (13a)

Wn±1 =W ±2ε
∂W
∂x

+2ε
2 ∂ 2W

∂x2 ±
4
3

ε
3 ∂ 3W

∂x3 +
2
3

ε
4 ∂ 4W

∂x4

+
4

15
ε

5 ∂ 5W
∂x5 +

4
45

ε
6 ∂ 6W

∂x6 +O
(
ε

7) . (13b)

In these relations, ε is a small scaling parameter such that
∂/∂ t ∼ O(ε), ∂/∂x ∼ O(ε) which means that we are only
interested in waves varying slowly in time and space. Within
relations (13), the quantity 2ε measures the distance between
two consecutive identical linear inductances. Based on rela-
tions (13), system (4) is transformed into two partial differen-
tial equations for U(x, t) and W (x, t),

(U−αU2)tt +Yr2(U−αU2)t +YrpUt

= −Y2(U−W )+Y1(Wn+1−U)−Yr2YrpU, (14a)

(W −αW 2)tt +Yr1(W −αW 2)t +YrpWt

= Y2(U−W )−Y1(W −Un+1)−Yr1YrpW. (14b)

One could note that equations (14) are still coupled. To decou-
ple them entirely, we call the following decoupling ansatz:[23]

W = σ

[
U + εb1Ux +

1
2

ε
2b2U2x +

1
6

ε
3b3U3x +

1
24

ε
4b4U4x

+
1

120
ε

5b5U5x +
1

720
ε

6b6U6x +O
(
ε

7)] , (15)

in which σ and b j ( j = 1, . . . ,6) are grandeurs to be deter-
mined. Substituting Eq. (15) into system (14) leads to

ε
2(U−αU2)tt + εYr2(U−αU2)t + εYrpUt

= AU + εBUx + ε
2CU2x + ε

3DU3x + ε
4EU4x

+FU5x +GU6x, (16a)

ε
2(W −αW 2)tt + εYr1(W −αW 2)t + εYrpWt

= A′U + εB′Ux + ε
2C′U2x + ε

3D′U3x + ε
4E ′U4x

+F ′U5x +G′U6x, (16b)

in which the diverse parameters are defined in Appendix A.
The left hand sides of Eqs. (16a) and (16b) have the same
shapes with the proper characteristics (L2,r2), (resp. (L1,r1))
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that are related to the nature of the wave U(x, t), (resp. W (x, t))
in each cell. If the right hand sides of these two equations are
identical, then one could exploit either expression (16a) for
U(x, t) or relation (16b) for W (x, t) to examine the dynamics
of the signal in the network. For this to occur, the upcoming
equivalences should be satisfied for the linear terms:

A = A′, (17a)

B = B′, (17b)

C =C′, (17c)

D = D′, (17d)

E = E ′, (17e)

F = F ′, (17f)

G = G′. (17g)

The resolution of Eqs. (17) helps to complete information
about our system. Indeed, from Eq. (17a), we obtain two val-
ues of σ ,

σ =±1. (18)

The value σ = +1 deals with the LF mode of propagation
where the voltages U and W , in one unit cell, are in phase
whereas the value σ = −1 links to the HF mode of transmis-
sion where the two voltages are opposite in phase. Hereafter,
we investigate the dynamics of the network in the LF mode of
transmission.

5. Wave dynamics in the low frequency mode
5.1. Amplitude equation

In this subsection, the behavior of modulated excitations
along the dissipative NLBTL is investigated in the LF mode
of transmission which deals with σ =+1. For this value of σ ,
we solve Eqs. (17b)–(17g) by keeping terms up to O(ε7) and
obtain respectively

b1 = 2L/L1; b2 = 4L2/L2
1 = b2

1;

b3 = 3b3
1−6b2

1 +4b1; b4 = 9b4
1−24b3

1 +16b2
1;

b5 = 45b5
1−180b4

1 +240b3
1−120b2

1 +16b1;

b6 =−b61/b62, (19)

with

b61=128Y1

(
225Y 5

1 −540Y 4
1 Yt+450Y 3

1 Y 2
t −150Y 2

1 Y 3
t +16Y1Y 4

t

)
,

b62 = Y 5
t
(
YtYr2Yrp−Yr1Yrp−2Yt

)
.

The report of expressions (19) into system (16) provides
a single equation for U(x, t) (or W (x, t)) which includes the
influence of cells of the other rank (odd or even) owing to the
starting considerations, namely,

Utt −α
(
U2)

tt +αYr2U2
t = AU +CU2x +EU4x +GU6x +HUt ,

(20)

where

A =−Yr2Yrp; C =−2Y1
(
4Y 2

1 −Y1Yt −Y 2
t
)
/Y 2

t ;

B = D = F = 0; H =−Yr2−Yrp;

E =
b4

24
Yt −

b3

3
Y1 +b2Y1−

4
3

b1Y1 +
2
3

Y1,

G =
b5

120
Yt −

b4

12
Y1 +

b3

3
Y1−

2
3

b2Y1 +
2
3

b1Y1−
4

15
Y1.

Relation (20) is a damped Boussinesq-type equation for the
voltage U(x, t)[24] in which the quantity C defines the veloc-
ity of the linear non dispersive waves and A,E,G,H are pos-
itive constants. In the limit case dealing with L1 = L2 = L,
r1 = r2 = 0, and gp = 0, equation (20) is reduced to the well-
known Boussinesq equation

(
U−aU2

)
tt = C (U2x +U4x/12)

with C = 1/L that describes the wave propagation in the mono-
inductance line.[25] With some suitable transformation, equa-
tion (20 ) can be reduced to the KdV equation.[17]

Instead of looking for the pulse solutions characteristic of
the KdV systems,[17] we seek but the possible modulated wave
solutions of Eq. (20). For this purpose and owing to the slow
variation of the voltage from one cell to another, we introduce
the multiple scales method where x and t are scaled into in-
dependent variables x0,x1, . . . ,xn and t0, t1, . . . , tn, respectively,
with xn = εnx and tn = εnt. By assuming this expansion, equa-
tion (20) is transformed up to the second harmonic generation.
For convenience, we introduce U→ εU1 and replace x0,x1 and
t0, t1, respectively, by x,X and t,T . Then, expression (20 ) be-
comes

U1,tt+2εU1,tT +ε
2U1,T T−α

{
U2

1,tt+2ε
(
U2

1
)

tT

+ε
2 (U2

1
)

T T

}
+αYr2

{(
U2

1
)

t + ε
(
U2

1
)

T

}
= AU1 +C

{
U1,2x +2εU1,xX + ε

2U1,XX
}

+E
{
U1,4x+4εU1,3xX+6ε

2U1,2x2X+4ε
3U1,x3X+ε

4U1,4X
}

+G
{

U1,6x +6εU1,5xX +15ε
2U1,4x2X +20ε

3U1,3x3X

+15ε
4U1,2x4X +6ε

5U1,x5X + ε
6U1,6X

}
+HU1,t . (21)

The modulated wave solutions of Eq. (21) are taken in the gen-
eral form[23]

U1 = εU11 (X ,T )exp [i (kx−ωt)]+ c.c+ ε
2U20 (X ,T )

+ε
2U22 (X ,T )exp [2i (kx−ωt)]+ c.c. (22)

in which c.c. stands for the complex conjugate of the preced-
ing term; ω and k are, respectively, the angular frequency and
the complex wave number (k = kp + iχ) of the carrier that sat-
isfy the following complex relation:

ω
2 +A+C(χ2− k2

p)+E(χ4−6χ
2k2

p + k4
p)

+G(χ6−15χ
4k2

p +15χ
2k4

p− k6
p)

+ i
[
−2Cχkp +E(−4χ

3kp +4χk3
p)

+G(−6χ
5kp +20χ

3k3
p−6χk5

p)−Hω

]
= 0. (23)

Equation (23) leads both to the dispersion relation (9) and the
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linear dissipative coefficient (10) for the low frequency mode
of transmission. Now, we pursue by substituting the general
voltage (22) into Eq. (21) and applying the secular conditions
to the resulting equation. Therefore, the terms proportional to
ε2 exp

[
2i(kpx−ωt)

]
and ε4 exp

[
0i(kpx−ωt)

]
permit to de-

termine, respectively, the voltages

U22 = A1U2
11, U20 = A2 |U11|2 , (24)

in which

A1=[4αω− i2αYr2ω]/D1, A2=2αV 2
g exp(−2χx)/

(
V 2

g −C
)
,

with

D1 = 4ω +A+4C
(

ikp−χ
)2

+16E
(

ikp−χ
)4

+64G
(

ikp−χ
)6−2iωH.

Then, we set z = X −VgT , τ = εT and collect information
from the third order terms of the first harmonic. It appears that
the evolution of a packet wave in the LF mode of transmission
in the network is governed by the dissipative CGL equation

i
∂U11

∂τ
+P

∂ 2U11

∂ z2 +Q|U11|2U11 = iJU11. (25)

Equation (25) is a basic model utilized to describe phase tran-
sitions and wave propagation in various systems.[26,27] In this
expression, the factor J represents the intrinsic dissipation of
the circuit that deals with the imperfection of the differential
capacitance C (V ) and justifies the presence of the conductance
gp. Within Eq. (25), the dispersion coefficient P = Pr+ iPi and
the nonlinear coefficient Q = Qr + iQi are defined by

P =
1

2ω

{
−V 2

g +C+β
2
2 −2iβ2Vg +6E

(
ikp−χ

)2

+15G
(

ikp−χ
)4
}
, (26a)

Q = iαωYr2A2−αω [A1 exp(−2χx)+A2] , (26b)

with
β2 =

K0H11 +K1H12

16β1

[
H13 +

√
K2

0 +K2
1

] ,
wherein the other quantities are defined below:

K0 = −4Gχ
6 +60Gχ

4k2
p−60Gχ

2k4
p +4Gk6

p−4Eχ
4

+24Eχ
2k2

p−4Ek4
p−4Cχ

2 +4Ck2
p−H2−4 A,

K1 = 24Gχ
5kp−80Gχ

3k3
p +24Gχk5

p +16Eχ
3kp

−16Eχk3
p +8Cχkp,

H11 = −24Gχ
5 +240Gχ

3k2
p−120Gχk4

p−16Eχ
3

+48Eχk2
p−8Cχ,

H12 = 120Gχ
4kp−240Gχ

2k3
p +24Gk5

p +48Eχ
3kp

−16Ek3
p +8Ckp,

H13 = 48Gχ
4kp−480Gχ

3k2
p +240Gχk4

p +32Eχ
2

−96Eχk2
p +16Cχ,

β1 =
1
4

(
2
√

K2
0 +K2

1 −2K0

)1/2

+
1
4

H.
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Fig. 4. Plots of the dispersion coefficient (Pr, Pi) in terms of kp for the line
parameters of Fig. 2 and several values of χ .
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parameters of Fig. 4. These plots show that those coefficients are non null.
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5.2. Modulational instability

In modern nonlinear physics, modulational instability (or
self-modulation) is considered as a basic process that classifies
the qualitative behavior of modulated waves and may initialize
the formation of stable entities such as envelope solitons.[28]

The MI phenomenon informs on the asymptotic behavior of
a plane wave during its evolution in a physical system. Pelap
et al.[18] studied theoretically this phenomenon in a lossless
bi-inductance transmission line and found that, in the low fre-
quency mode, the plane wave remains stable under the mod-
ulation for wave numbers kp lower than a critical value kc

and becomes unstable for values of kp greater than kc. These
authors showed that the MI phenomenon in the network is
strongly linked to the sign of the pseudo product PrQr +PiQi.
They established that a plane wave introduced in the lattice de-
scribed by a complex Ginzburg–Landau equation is unstable
under modulation if PrQr +PiQi is positive and modulation-
ally stable otherwise. These results were recovered by other
researchers.[29] Now, we investigate the MI phenomenon in a
dissipative NLBTL made of inductors and capacitors consid-
ered in a real experimental environment. Since the amplitude
equation (25) is a CGL-type, we will use the existing results
to examine the MI instability phenomenon in the network of
Fig. 1. Then, the behavior of this pseudo product in terms
of the carrier wave number for the dissipative model is scru-
tinized (Fig. 6). This curve shows that PrQr +PiQi changes
its sign for particular values of kp chosen in the first Bril-
louin zone (0 6 kp 6 π/2) and for the linear dissipation factor
taken as χ = 0.09749. This plot also exhibits the existence
of five regions concerning the modulational behavior of plane
wave in the network (Fig. 6) and possible soliton solutions of
Eq. (25).[18,30] Details are given below.

In region I, the carrier wave number kp is in the range
0 6 kp 6 k1 with k1 = 0.01533 rad·cell−1 that corresponds to
the frequency domain f ∈ [0, f1] with f1 = 22.4 kHz. Here,
the pseudo product PrQr +PiQi is always negative and a plane
wave travelling in the line is modulationally stable. It appears
from the results established in Refs. [18,30] that equation (25)
admits a dark soliton solution.

In region II, the wave number kp belongs to k1 6 kp 6 k2

with k2 = 0.08072 rad·cell−1. Since PrQr +PiQi > 0 in this
region, a plane wave moving in the lattice with a frequency
f belonging to [ f1, f2] with f2 = 119.5 kHz is unstable under
modulation and, equation (25) possesses an envelope soliton
solution.[18,30]

In region III, the carrier wave number kp and frequency f
are chosen in the ranges k2 6 kp 6 k3 and f ∈ [ f2, f3], respec-
tively, with k3 = 0.99 rad·cell−1 and f3 = 1390 kHz. Within
this region, we have PrQr+PiQi < 0 and any plane wave intro-
duced in the line is stable under modulation. Then, the ampli-
tude wave equation (25) admits a hole soliton solution.[18,30]
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Fig. 6. Evolution of the pseudo product PrQr +PiQi as a function of kp in
the LF mode with the parameters of Fig. 4. It appears that PrQr + PiQi
changes its sign for particular values of the wave number. These criti-
cal wave numbers are k1 = 0.01533 rad·cell−1, k2 = 0.08072 rad·cell−1,
k3 = 0.99 rad·cell−1, and k4 = 1.025 rad·cell−1.

In region IV, we have kp ∈ [k3,k4] with k4 =

1.025 rad·cell−1. Here, the pseudo product PrQr +PiQi is al-
ways positive and a plane wave evolving in the network with
a frequency f belonging to [ f3, f4] with f4 = 1432 kHz is
modulationally unstable and equation (25) has a bright soli-
ton solution.[18,30]

In region V, the carrier wave characteristics
(
kp, f

)
be-

long to k4 6 kp 6 π/2 and f ∈ [ f4, fBmax], respectively. Here,
we have PrQr +PiQi < 0 that deals with the modulational sta-
bility of a plane wave moving in the system and a hole soliton
solution for the amplitude equation (25).[18,30]

These results are summarized on the dispersion curve of
Fig. 7. As we can observe, this curve possesses five regions of
modulational phenomena depending on the sign of PrQr+PiQi
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Fig. 7. Dispersion curve with a frequency band divided into five domains
linking with the stability of the system and depending on the sign of the
pseudo product PrQr + PiQi. The critical frequencies of the carrier are
f1 = 22.4 kHz, f2 = 119.5 kHz, f3 = 1390 kHz, and f4 = 1432 kHz. Previ-
ous finding[21] displays only two domains of frequency in the LF mode.
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instead of two regions as established in Ref. [21] for the loss-
less model. The solitary waves and the asymptotic behavior of
plane waves expected theoretically in each region are stressed.
It also appears from Fig. 6 that increasing the dissipation fac-
tor modifies the values of the wave numbers k1 and k3 but does
not modify the number of modulational regions which remains
equal to five. In the forthcoming section, we take a step to-
wards experiment by doing numerical simulations.

5.3. Implementation and simulations

The entire simulation system is implemented and simu-
lated by means of the professional LT-Spice software using
realistic components for circuit simulations (Fig. 8). Similar
experiment that exhibits very good results was recently carried

out on the one-dimensional (1D) mono-inductance nonlinear

transmission line.[31] The network has 58 identical unit cells.

Each cell contains two diodes BB112 biased by a dc voltage

Vp = 1,5 V through a resistance rd = 5 MΩ. The linear ca-

pacitors Cc and Cosc are used to block the dc biased current

but have no effect on the frequencies range. The linear resistor

R f is also introduced to protect the SRC generator. The lin-

ear inductors L1 = 28 µH and L2 = 14 µH possess associated

resistances r1 and r2, respectively. The conductance of the dif-

ferential diode is linked to the resistance rp (gp = 1/rp). The

sine waves are created in the programmable electronic gener-

ator (PEG) and the waveforms are observed and stored in the

numerical oscilloscope XSC1.

Rf Cf
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Vp BB112

L2

Cc
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Vp
BB112

rp rp
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Rosc

r2
r1

1 3

2 4

XSC1

numerical
1

2

3

4

31

2

cell 1 cell n

PEG

4
oscilloscope

SRC

Fig. 8. Representation of the global simulation system.

To build the numerical results, the frequency of each wave
is chosen in the different regions of the LF mode of transmis-
sion depicted in Fig. 7. To analyze numerically the MI phe-
nomenon in the dissipative NLBTL, a plane wave generated
by the PEG with desired characteristics is directly injected in
the first cell of the line and its asymptotic behavior is watched
in cells 1, 30, 41, 56 arbitrary chosen. The obtained results
are displayed in Figs. 9–12 with the carrier wave frequencies
taken, respectively, in regions I, III, IV, and V.
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Fig. 9. Evolution of the signal voltage versus time exhibiting stability
of a plane wave of frequency fp = 19,7 kHz chosen in region I of the
dispersion curve.

It appears from Figs. 9, 10, and 12 that after a slide adap-

tation to the line, the plane waves propagate without modula-
tion. Furthermore, one observes the attenuation of the signal
amplitude by about 5.5% in cell 30 and around 12% in cell
56 compared to the initial wave. On the other hand, figure 11
displays a signal unstable under modulation during its motion
in the line. These curves show that the dissipation induces the
decrement of the signal amplitude during the MI phenomenon.
All these results are in perfect agreement with our analytical
predictions.
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Fig. 10. Modulational stability of the plane wave of amplitude Ap = 500 mV
and frequency fp = 300 kHz belonging to region III. We could observe the
attenuation of the signal amplitude by about 5.5% in cell 30 and 12% in cell
56 during its motion in the network.
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Fig. 11. Modulational instability of the plane wave with frequency
fp = 1420 kHz (region IV).
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Fig. 12. Signal voltage in terms of time displaying stability of the plane
wave for the frequency fp = 1673 kHz taken in region V.

It should be mentioned that in region II, we observe mod-
ulational stability phenomenon instead of the modulational in-
stability behavior predicted by the theory. This situation is
probably due to the small frequency width of region II, which
is comprised between two regions of modulational stability.

To experience the propagation of solitons in the dissipa-
tive NLBTL of Fig. 1, we subsequently adjust the PEG to de-
liver an envelope soliton with characteristics Ap = 500 mV,
fp = 1420 kHz, fm = 875 kHz, and m = 1,[31] where Ap, fp,
fm, and m are the amplitude, the carrier frequency, the modu-
lation frequency, and the modulation index, respectively. We
also adjust the PEG to generate a dark soliton with parameters
Ap = 500 mV, fm = 875 kHz, m = 0.66, and fp = 562 kHz or
fp = 1673 kHz. The frequency of the carrier wave belongs to
region I, III, IV, or V. Cells 1, 16, 32, 48 are arbitrarily picked
to seek the behaviors of the input waves. Figures 13 and 15 ex-

hibit the attenuated motion of the hole soliton in the network
while figure 14 depicts the same behavior but for a bright soli-
ton.
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Fig. 13. Transmission of the dark soliton generated by the PEG with the
characteristics Ap = 500 mV, fm = 875 kHz, m = 0.66, and fp = 562 kHz
(region III) throughout the network of Fig. 8. We observe the propagation
of the hole with diminution of its amplitude.
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Fig. 14. Propagation of the bright soliton generated by the PEG with the
parameters of Fig. 13 for fp = 1420 kHz (region IV). The signal moves in
the lattice with attenuation of its amplitude due to the dissipation.
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Fig. 15. Dissipative motion of the hole soliton issue from the PEG in
the lattice with the parameters of Fig. 13 for fp = 1673 kHz (region V).

6. Conclusion
We have studied analytically and numerically the dy-

namics of modulated waves in a nonlinear dissipative bi-
inductance transmission line. The characteristic equation gov-
erning the propagation of the voltage propagation in the sys-
tem was derived. In the linear limit, we have found that the
network supports two propagation modes and carried out in-
tensive investigations for the low frequency mode. We have
shown that the dissipative effects increase with the frequency
of the carrier wave. In the continuous approximation, we have
established that the propagation of the modulated waves in
the line is described by the complex Ginzburg–Landau equa-
tion instead of the Korteweg–de-Vries equation as usually
known. While examining the asymptotic behavior of a plane
wave traveling in the dissipative NLBTL, we obtained five re-
gions of modulational phenomenon instead of two as previ-
ously established[18] for the LF mode of the lossless NLBTL.
Moreover, plane waves generated by the PEG allowed the nu-
merical observation of the modulational behavior in these dif-
ferent regions. Furthermore, an emphasis was made on the
MI predicted analytically in region II which was not observed
numerically. This may be due to the small frequency width
of this region. Finally, we observed numerically the damped
transmission of the bright and dark LF solitons generated by
the PEG in the network. The numerical results obtained are in
perfect agreement with the analytical predictions. Neverthe-

less, work is underway to examine the wave dynamics in the
high frequency mode of the dissipative NLBTL.

Appendix A: Parameters of Eqs. (16a) and (16b)

A = Yt (σ −1)−Yr2Yrp; B = σ (b1Yt −2Y1) ;

C = σ

(
b2

2
Yt −2b1Y1 +2Y1

)
;

D = σ

(
b3

6
Yt −b2Y1 +2b1Y1−

4
3

Y1

)
;

E = σ

(
b4

24
Yt −

b3

3
Y1 +b2Y1−

4
3

b1Y1 +
2
3

Y1

)
;

F = σ

(
b5

120
Yt −

b4

12
Y1 +

b3

3
Y1−

2
3

b2Y1 +
2
3

b1Y1−
4

15
Y1

)
;

G = σ

(
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Yt −

b4
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Y1 +

b3

3
Y1−

2
3

b2Y1 +
2
3

b1Y1−
4

15
Y1

)
;

A′ =−Yt
(σ −1)

σ
−Yr1Yrp;

B′ =−Ab1−b1Yt +
2Y1

σ
−Yr1Yrpb1;

C′ =−Bb1−A
b2

2
− b2

2
Yt +

2Y1

σ
−Yr1Yrp

b2

2
;

D′ =−Cb1−B
b2

2
−A

b3

6
− b3

6
Yt +

4
3

Y1−
b3

6
Yr1Yrp;

E ′ =−Db1−C
b2

2
−B

b3

6
−A

b4

24
− b4

24
Yt +

2
3σ

Y1−
b4
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Yr1Yrp;

F ′ =−Eb1−D
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2
−C

b3

3
−B

b4
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−A

b5
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− b5
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Yt

+
4

15σ
Y1−

b5
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Yr1Yrp;

G′ =−Fb1−E
b2

2
−D

b3

6
−C

b4
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−B
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−A

b6
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Yt
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