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Analytical expressions of non-relativistic static multipole
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Analytical formulas for the static multipole polarizabilities of hydrogen-like ions are derived by using the analytical
wave functions and the reduced Green function and by applying a numerical fitting procedure. Our results are then applied
to the studies of blackbody radiation shifts to atomic energy levels at different temperatures. Our analytical results can be
served as a benchmark for other theoretical methods.
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1. Introduction

Hydrogen is one of the most studied atomic systems.
Hydrogen is also a prototype for studying alkali atoms and
highly charged hydrogen-like ions. The static polarizabilities
of hydrogen-like systems are very important for high-precision
spectroscopy experiments. Different computational methods
have been developed for evaluating the static polarizabilities
of simple atomic systems.[1–4] The analytical expressions for
both the Schrödinger and Dirac–Green functions of hydrogen
have been derived by Swainson and Drake.[5–7] In their ap-
proach, the wave functions and the Green functions are ex-
pressed as infinite series involving Laguerre functions, which
is a Sturmian form in essence. A formal scheme for deriv-
ing the dipole polarizabilities of hydrogen has been given by
Krylovetsky et al.,[8] where the Sturmian polynomials are also
used in their work to describe the wave functions and the
Green function. Analytical expressions for the dipole polar-
izabilities of hydrogen in an arbitrary atomic state have been
obtained by Baye.[9] The analytical asymptotic behavior of
dipole polarizabilities in Rydberg state for helium has also
been studied by different methods.[1,10] However, analytical
results for multipole polarizabilities of hydrogen are still less
investigated, which will be the main focus of the present work.
This paper is organized as follows. In Section 2, we introduce
the theoretical formalism. In Section 3, we demonstrate our
fitting procedure for obtaining analytical expressions of the
static multipole polarizabilities. In Section 4, we apply our
results to the calculations of the blackbody radiation shifts of
the hydrogen atom.

2. Formalism
In spherical coordinates, the wave function for a spheri-

cally symmetric potential V (r) can be written in the form

ψnlm(r,θ ,φ) = Rnl(r)Ylm(θ ,φ), (1)

where Rnl(r) is the radial part and Ylm(θ ,φ) is the spherical
harmonics. In atomic units, the radial equation for Rnl(r) is{

1
r2

d
dr

(
r2 d

dr

)
− l(l +1)

r2 +2[E −V (r)]
}

Rnl(r) = 0. (2)

For hydrogen, V (r) = −1/r and the energy eigenvalue is
−1/(2n2).

When an external electric field exists, the atomic energy
levels will be shifted due to the Stark effect. We can treat the
electric field as a perturbation if it is weak. The energy shift
∆E can then be expanded in terms of the external field ℰ ac-
cording to Ref. [11]

∆E =−1
2

αdℰ2 − 1
6

αq(∂ℰ)2 + · · · , (3)

where αd and αq are the dipole and quadrupole polarizabil-
ities, respectively. Considering a multipole electric polariz-
ability, a general expression for a two-photon process can be
written as

α
(λ )
µ = ⟨ψ|Q(λ )

µ

(
1

E0 −H0

)′
Q*(λ )

µ

+Q*(λ )
µ

(
1

E0 −H0

)′
Q(λ )

µ |ψ⟩. (4)

Equation (4) attributes to the two-photon process, which
means that the electron absorbs one photon and then emits
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one photon or vice versa. Or it is derived from the second-
perturbation theory of energy shift. Q(λ )

µ is the multipole op-
erator defined by[12]

Q(λ )
µ =

√
4π/(2λ +1)rλYλ µ(θ ,φ),

where λ is the multiplicity, such as λ = 1 for dipole, λ = 2 for
quadrupole, and so on. And µ is the component notation cor-
responding to the spheric harmonic expansion, whose possible
values are −λ ,−λ + 1, . . . ,λ . The validity condition of the
multipole expansion of an external field is when the external
field wavelength is much longer than the characteristic length
of the atom. The prime notation on 1/(E0 −H0) indicates that
it is the reduced Green function, where H0 is the nonrelativistic
Hamiltonian of hydrogen and E0 is its eigenvalue. Rewriting
Eq. (4) in the spatial representation, we have

α
(λ )µ
nl =

∫
ψ

†
nlm (𝑟1)

[
Q̂(λ )

µ G′ (𝑟1,𝑟2;En) Q̂*(λ )
µ

+ Q̂*(λ )
µ G′ (𝑟1,𝑟2;En) Q̂(λ )

µ

]
ψnlm (𝑟2)d𝑟1d𝑟2, (5)

where 𝑟1 and 𝑟2 are different positions of electrons due to the
propagation, G′(𝑟1,𝑟2;En) is the reduced Green function in
the position representation.

Following Refs. [5,7], the radial part of the non-
relativistic wave function can be written as

Rnl (r) = Nnl (2r/n)l e−r/nL2l+1
n−l−1 (2r/n) , (6)

where Ll
n(z) is the generalized Laguerre function and Nnl is the

normalization factor

Nnl =
(
2/n2)√(n− l −1)!/(n+ l)!.

The reduced Green function in the spherical coordinates can
be expressed as

G′ (𝑟1,𝑟2;En) = ∑
l′m′

gl′ (r1,r2;En)Yl′m′ (θ1,φ1)Y *
l′m′ (θ2,φ2) , (7)

where the radial function gl′(r1,r2;En) can be expressed as a
Sturmian polynomial

gl′ (r1,r2;En)

= 2
(

2
n

)2l′+1

(r1r2)
l′ e−(r1+r2)/n

×
{

∞

∑
k=0

k!
(2l′+1+ k)!(l′+1+ k−n)

L2l′+1
k

(
2r1

n

)
×L2l′+1

k

(
2r2

n

)
+

(n− l′−1)!
2n(n+ l′)!

{
L2l′+1

n−l′−1

(
2r1

n

)
×
[(

n− l′
)

L2l′+1
n−l′

(
2r2

n

)
−
(
n+ l′

)
L2l′+1

n−l′−2

(
2r2

n

)]
+L2l′+1

n−l′−1

(
2r1

n

)
L2l′+1

n−l′−1

(
2r2

n

)
+

[(
n− l′

)
L2l′ +1

n−l′

(
2r1

n

)
−
(
n+ l′

)
L2l′+1

n−l′−2

(
2r1

n

)]

×L2l′+1
n−l′−1

(
2r2

n

)}}
. (8)

With these expressions, we can rewrite Eq. (5) in the form of
separated radial and angular parts

α
(λ )µ
nl =

8π

2λ +1 ∑
l′

[∫
dr1dr2r2+λ

1 r2+λ

2

×Rnl (r1)gl′ (r1,r2;En)Rnl (r2)

× ∑
m′

∫
dΩ1dΩ2Y *

λ µ
(Ω1)Y *

lm (Ω1)Yl′m′ (Ω1)

×Yλ µ (Ω2)Y *
l′m′ (Ω2)Ylm (Ω2)

]
. (9)

The treatment of the angular part is quite straightforward by
using ∫

dΩYλ µ(Ω)Ylm(Ω)Yl′m′(Ω)

=

√
(λ , l, l′)

4π

(
λ l l′

0 0 0

)(
λ l l′

µ m −m′

)
, (10)

where (λ , l, l′) ≡ (2λ + 1)(2l + 1)(2l′+ 1). The angular part
thus becomes

(−1)µ (λ , l, l′)
4π

(
λ l l′

0 0 0

)2(
λ l l′

µ m −m′

)2

. (11)

In the case of scalar polarizability, we should sum over mag-
netic quantum numbers m and m′ and average over m. Using
the relation

∑
m1,m2

(
l1 l2 l3
m1 m2 m3

)(
l1 l2 l′3
m1 m2 m′

3

)
=

1
2l3 +1

δ
(
l3, l′3

)
δ
(
m3,m′

3
)
,

we can obtain the final expression of the angular part

𝒜(λ )µ
ll′ = (−1)µ (2l′+1)

4π

(
λ l l′

0 0 0

)2

. (12)

Let us now consider the radial part in Eq. (9). Introducing the
following integral:

ℳ(λ )
nll′ =

8π

2λ +1
|Nnl |2

∫
∞

0
rλ+2

1 Rnl (r1)gl′ (r1,r2;E0)

×rλ+2
2 Rnl (r2)dr1dr2, (13)

the scalar polarizability can be written in the form

α
(λ )µ
nl = ∑

l′
ℳ(λ )

nll′𝒜
(λ )µ
ll′ . (14)

It is noted that the range of l′ in the above is from |l −λ | to
l + λ with step 2. Recalling the Sturmian form of the wave
function and the reduced Green function Eqs. (6) and (8), the
radial integral ℳ(λ )

nll′ can be reduced as a series of the basic
integral[18]∫

∞

0
xρ e−xLβ

ν (x)Lβ ′

ν ′ (x) dx
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= (−1)ν+ν ′
Γ(ρ +1)∑

k

(
ρ −β

ν − k

)(
ρ −β ′

ν ′− k

)(
ρ + k

k

)
, (15)

where
(

ρ

k

)
= ρ!

(ρ−k)!k! . Thus ℳ(λ )
nll′ should be a polynomial of

the principal quantum number n and angular quantum num-
ber l. Therefore, we can assume that the polarizability can be
written in the following general form:

α
(λ )
s = ∑

i
C(λ )

i (l)nxi ,

C(λ )
i (l) = ∑

j
D(λ )

i j lyi j , (16)

where C(λ )
i (l) and D(λ )

i j are the expansion coefficients that
need to be determined.

3. Scalar polarizabilities
3.1. Dipole polarizability

We first discuss the dipole polarizability when λ =

1 and the corresponding dipole operator is Q(1)
µ =√

4π/3 rY1µ(θ ,φ). According to Eq. (14), the dipole polariz-
ability is

α
(1)µ
nl = ∑

l′
ℳ(1)

nll′𝒜
(1)µ
ll′ . (17)

For each l′, we fit our expression to an analytical formula and
then sum over l′ to obtain a final expression.

We first consider the radial integral

ℳ(1)
nll′ =

8π

3
|Nnl |2

∫
∞

0
r3

1Rnl (r1)gl′ (r1,r2;E0)

×r3
2Rnl (r2)dr1dr2. (18)

According to Eqs. (6), (8), and (15), ℳ(1)
nll′ in the above equa-

tion can be easily evaluated numerically or analytically. It
should be noted that, since the binomial coefficient

(m
n

)
re-

quires both m and n to be non-negative integrals, the range of
k in Eq. (8) is actually finite. We choose the upper limit of k
to be 100, which is sufficient for this work. The radial inte-
gral ℳ(1)

nll′ can be written in a similar form as Eq. (16) but with
different coefficients

ℳ(1)
nll′ = ∑

i
c(1)i (l)nxi , c(1)i (l) = ∑

j
d(1)

i j lyi j . (19)

We set l from 1 to 20, and for each of them, we take 20 al-
lowed principal quantum numbers n. Since in the dipole case,
l′ is |l − 1| and l + 1, we have two cases of radial integrals
ℳ(1)

nl,|l−1| and ℳ(1)
nl,l+1. Thus these radial integrals can form

a matrix of 20× 20 with respect to n and l, with their matrix
elements denoted by ℳ(1)

nl (n, l). Recalling the simultaneous

equation (19), our task is to determine the coefficients c(1)i
and d(1)

i j by a fitting procedure. In order to do this, we must
first make some appropriate assumptions. We assume that the

power index of n has a pattern of 2λ + 2i, (i = 1,2, . . . ,20).
In the dipole case, it is 4,6,8, . . .. Then we have an initial
form for this radial integral as c(1)1 n4 + c(1)2 n6 + c(1)3 n8 + · · · .
The maximum value of xi is still unknown at this stage and we
temporarily set it to be 20. We first fit c(1)i to the exact values
by solving the following equations:

ℳ(1)
nl (n j, lk) =

20

∑
i=1

c(1)i nxi
j , j,k = 1,2, . . . ,20, (20)

where ℳ(1)
nl (n j, lk) are the matrix elements evaluated numeri-

cally according to Eq. (18). For given lk, we select 20 values of
n j and solve the resulting equations simultaneously. We show
the results of c(1)i in Table 3 of Appendix A to demonstrate the
fitting process. We can see that only the coefficients c(1)1 and
c(1)2 are non-zero in the dipole case. The fitted values of c(1)i
can be written in two 20×20 matrices

c(1)
(
l′ = l +1

)
=



3
2

21
4 0 0 · · · 0 0

17
8

127
8 0 0 · · · 0 0

11
4

139
4 0 0 · · · 0 0

...
...

...
...

...
...

...
97
8

22703
8 0 0 · · · 0 0

51
4

13179
4 0 0 · · · 0 0

107
8

30385
8 0 0 · · · 0 0


,

c(1)(l′ = |l −1|) =



1
4

−1
4 0 0 · · · 0 0

− 3
8

3
8 0 0 · · · 0 0

−1 1
4 0 0 · · · 0 0

...
...

...
...

...
...

...

− 83
8 − 12973

8 0 0 · · · 0 0

−11 − 7759
4 0 0 · · · 0 0

− 93
8 − 18375

8 0 0 · · · 0 0


,

where the row and column indexes are l and n, respectively.
After determining c(1)i , we further solve the following equa-
tions to obtain d(1)

i j :

c(1)(li,xk) =
20

∑
j=1

d(1)
j l

y j
i , (i,k = 1,2, . . .20), (21)

where c(1)(li,xk) are matrix elements. At this stage, we as-
sume that y j are non-negative integers and l is from 1 to 20,
the same as the c(1)i fitting. After finishing the above fitting
process, we substitute d(1)

i j into Eq. (19) and obtain the follow-
ing radial analytical expressions:

ℳ(1)
nl,|l−1| =

8π

3

[(
−3l3

8
+

15l2

8
− 19l

8
+

5
8

)
n4

+

(
7
8
− 5l

8

)
n6
]
,

ℳ(1)
nl,l+1 =

8π

3

[(
3l3

8
+3l2 +

29l
4

+
21
4

)
n4
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+

(
5l
8
+

3
2

)
n6
]
. (22)

By including the following angular coefficients defined in
Eq. (12) with µ = 0:

𝒜(1)0
l,|l−1| =

1
4π

l
2l +1

, 𝒜(1)0
l,l+1 =

1
4π

l +1
2l +1

, (23)

we finally obtain the analytical expression for the scalar dipole
polarizability denoted by α

(1)
s ,

α
(1)
s = ℳ(1)

nl,|l−1|𝒜
(1)0
l,|l−1|+ℳ(1)

nl,l+1𝒜
(1)0
l,l+1

=
7
4
(
l2 + l +2

)
n4 +n6, (24)

which agrees with Ref. [9].

3.2. Multipole polarizabilities

The expressions for the higher-order polarizabilities can
be obtained in a similar way. In this work, we mainly deal
with the quadrupole (λ = 2) and octupole (λ = 3) polarizabil-
ities. Again, we focus on the scalar polarizabilities. For the
quadrupole case, Q(2)

µ =
√

4π/5 r2Y2µ(θ ,φ) and the orbital
quantum number l′ of the intermediate states takes 3 different
values: |l −2|, l, l +2. The radial integral is now

ℳ(2)
nll′ =

8π

5
|Nnl |2

∫
∞

0
r4

1Rnl (r1)gl′ (r1,r2;E0)

×r4
2Rnl (r2)dr1dr2. (25)

By applying the same fitting procedure used above, we obtain

ℳ(2)
nl,|l−2| =

8π

5

[(
35l5

12
− 1085l4

48
+

415l3

8

− 1495l2

48
− 193l

24
+

7
4

)
n6

+

(
5l3

4
+15l2 − 745l

12
+

2135
48

)
n8

+

(
541
48

− 14l
3

)
n10
]
,

ℳ(2)
nl,l+2 =

8π

5

[(
− 35l5

12
− 595l4

16
− 4115l3

24

− 5625l2

16
− 2519l

8
− 395

4

)
n6

+

(
−5l3

4
+

45l2

4
+

265l
3

+
1925

16

)
n8

+

(
14l
3

+
255
16

)
n10
]
,

ℳ(2)
nl,l =

8π

5

[(
−21l4

16
− 21l3

8
− 147l2

16
− 63l

8
+

7
4

)
n6

+

(
−45l2

8
− 45l

8
+

345
16

)
n8 +

143n10

16

]
. (26)

Inserting the angular parts in Eq. (12) with µ = 0, we have the
scalar quadrupole polarizability denoted by α

(2)
s ,

α
(2)
s = ∑

l′
ℳ(2)

nl,l′𝒜
(2)0
l,l′

= ℳ(2)
nl,l−2𝒜

(2)0
l,l−2 +ℳ(2)

nl,l𝒜
(2)0
l,l +ℳ(2)

nl,l+2𝒜
(2)0
l,l+2

=

[
− 399

40
l2 (l +1)2 − 1581

20
l (l +1)− 79

2

]
n6

+

[
3l (l +1)+

385
8

]
n8 +

51
8

n10. (27)

In the octupole case, l′ takes |l − 3|, |l − 1|, l + 1, l + 3,
and Q(3)

µ =
√

4π/7 r3Y3µ(θ ,φ). The radial integrals are given
by

ℳ(3)
nl,l−3 =

[(
− 3605l7

256
+

44765l6

256
− 198485l5

256
+

381605l4

256

− 153139l3

128
+

44233l2

128
− 4209l

64
+

405
32

)
n8

+

(
2975l5

256
− 68005l4

256
+

504245l3

384

− 273525l2

128
+

406735l
384

− 27265
128

)
n10

+

(
19859l3

768
+

3619l2

256
− 433307l

768
+

185885
256

)
n12

+

(
20805
256

− 6075l
256

)
n14
]
× 8π

7
,

ℳ(3)
nl,l−1 =

[(
− 135l7

256
+

765l6

128
− 1935l5

128
+

45l4

32

+
24161l3

256
− 3909l2

128
− 6699l

64
+

621
32

)
n8

+

(
− 315l5

256
− 165l4

128
+

1015l3

8

− 2915l2

16
− 87465l

256
+

32395
128

)
n10

+

(
2219l3

256
− 6461l2

128
− 21777l

128
+

10829
32

)
n12

+

(
7365
128

− 2025l
256

)
n14
]
× 8π

7
,

ℳ(3)
nl,l+1 =

[(
135l7

256
+

2475l6

256
+

15885l5

256
+

47385l4

256

+
6413l3

32
− 1707l2

32
− 3801l

32
+

355
16

)
n8

+

(
315l5

256
+

1245l4

256
− 15325l3

128

− 71455l2

128
− 12875l

32
+

2285
8

)
n10

+

(
−2219l3

256
− 19579l2

256
+

11053l
256

+
115045

256

)
n12

+

(
2025l
256

+
16755
256

)
n14
]
× 8π

7
,

ℳ(3)
nl,l+3 =

[(
3605l7

256
+

4375l6

16
+

135695l5

64
+

67865l4

8

+
4839023l3

256
+

188405l2

8
+

490659l
32

+
65205

16

)
n8
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+

(
− 2975l5

256
− 1295l4

4
− 239225l3

96

− 249165l2

32
− 7981925l

768
− 159985

32

)
n10

+

(
− 19859l3

768
− 1015l2

16
+

98861l
192

+
40915

32

)
n12

+

(
6075l
256

+105
)

n14
]
× 8π

7
. (28)

The scalar octupole polarizability denoted by α
(3)
s is thus

α
(3)
s = ∑

l′
ℳ(3)

nl,l′𝒜
(3)0
l,l′

=

[
10005

224
l3 (l +1)3 +

503775
448

l2 (l +1)2

+
94335

32
l (l +1)+

9315
8

]
n8

+

[
− 24855

448
l2 (l +1)2 − 18845

14
l (l +1)− 22855

16

]
n10

+

[
5845

16
− 595

32
l (l +1)

]
n12 +30n14. (29)

For the higher-order polarizabilities, we simply list the results
for the cases of λ = 4 and λ = 5

α
(4)
s =

[
− 2225

12
l4 (l +1)4 − 1152875

96
l3 (l +1)3

− 10350025
96

l2 (l +1)2

− 3003935
16

l (l +1)− 124299
2

]
n10

+

[
9835

24
l3 (l +1)3 +

8539195
384

l2 (l +1)2

+
7460075

64
l (l +1)+

2737085
32

]
n12

+

[
− 18165

128
l2 (L+1)2 − 398055

32
l (l +1)

− 3012009
128

]
n14

+

[
137235

64
− 13545

64
l (l +1)

]
n16 +

16495
128

n18, (30)

α
(5)
s =

[
525315

704
l5 (l +1)5 +

595596225
5632

l4 (l +1)4

+
3466632645

1408
l3 (l +1)3 +

18923161215
1408

l2 (l +1)2

+
6365941155

352
l (l +1)+

42728175
8

]
n12

+

[
− 13401675

5632
l4 (l +1)4 − 192584175

704
l3 (l +1)3

− 6068288037
1408

l2 (l +1)2

− 868148127
64

l (l +1)− 973745157
128

]
n14

+

[
34965

16
l3 (l +1)3 +

170846235
704

l2 (l +1)2

+
6106752099

2816
l (l +1)+

1316905205
512

]
n16

+

[
224721

704
l2 (l +1)2 − 60183963

704
l (l +1)

− 134357685
512

]
n18 +

[
5498955

512

− 359289
256

l (l +1)
]

n20 +
272713

512
n22. (31)

As we assumed at the beginning of our fitting process, the
scalar polarizabilities can be expressed as a polynomial of the
principal quantum number n, written as ∑i Cinxi , where Ci are
the polynomials of the orbital quantum number l, written as
Ci = ∑ j di jlyi j . We can now see that the actual l dependence of
Ci is a polynomial of l(l +1).

We now compare our results with the calculations of Tang
et al.,[4] as listed in Table 1, for the cases of scalar quadrupole,
octupole, and hexadecapole polarizabilities of the ground state
hydrogen-like systems. It should be noted that the work
of Tang et al. is based on the Dirac–Coulomb Hamiltonian,
which means that their results include relativistic corrections,
whereas ours are fully nonrelativistic.

Table 1. Quadrupole, octupole, and hexadecapole polarizabilities.

Z This work Ref. [4]

α
(2)
s

1 15 14.998829822856441699
2 0.234375 0.2343018679357912100
5 0.00096 9.581285372324045392×10−4

α
(3)
s

1 131.25 131.237821447844662
2 0.5126953125 0.51250503752377047
5 0.000336 3.3522106087870162×10−4

α
(4)
s

1 2126.25 2126.02867449912883
2 2.076416015625 2.07555154606120519
5 0.000217728 2.1716184269455411×10−4

There is a scaling relation for the multipole polarizabili-
ties of different nuclear charge Z. The multipole polarizability
has a general expression

〈
𝑟λ 1

E−H 𝑟λ
〉
, where λ is the multi-

plicity. By noting that 𝑟 scales as 1/Z and E −H scales as Z2,
the term

〈
𝑟λ 1

E−H 𝑟λ
〉

thus scales as 1/Z2λ+2. We therefore
have the following relation:

α
(λ )
Z =

α
(λ )
1

Z2λ+2 , (32)

as reflected in Table 1.
As the multiplicity λ increases, the range of the n-

power index xi becomes larger, 2λ +2i, with i = 1,2, . . . ,λ +

1. Taking λ = 5 as an example, the n-power indexes are
12,14,16,18,20,22, which are exactly ranging from 2λ + 2
to 2λ + 2(λ + 1) with a step of 2. For a certain Ci, the
l(l + 1)-power index yi j ranges from 0 to (xmax − xi)/2. Tak-
ing λ = 5 as an example again, xmax = 22, then the coeffi-
cient of n12 has the terms from [l(l + 1)]y in which y ranges
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from 0 to (22 − 12)/2 = 5. The correspondent coefficient
of n14 has terms of [l(l + 1)]y (y = 1,2,3,4) just because of
(22− 14)/2 = 4. The highest-order term n22 has coefficient
with only [l(l +1)]0. This pattern can be tested in different λ

cases we listed. However, the pattern of l(l + 1) coefficients
di j has not been found, which may be an interesting question.

4. Application on blackbody radiation shift
Blackbody radiation (BBR) shift in an atomic system is

due to the AC Stark effect, which is related to the dynam-
ical polarizability of the system. The BBR is isotropic and
thus it can be described by the scalar polarizability. Some
studies on BBR shifts to atomic energy levels can be found
in Refs. [13–17], including relativistic and QED corrections.
Here we only focus on the nonrelativistic energy shift due to
the BBR, which is given by

∆E =
−2e2

π

∫
dω

ω3

eω/(kBT )−1

〈
𝑟

(E0 −H0)

(E0 −H0)
2 −ω2

𝑟

〉
, (33)

where [(E0 − H0)
2 − ω2]−1 is the Green function, ω is the

photon energy from BBR, and kB is the Boltzmann constant.
Usually the photon energy is much smaller than the energy in-
tervals in atom so that we may expand [(E0 −H0)

2 −ω2]−1

according to

1

(E0 −H0)
2 −ω2

∼ 1

(E0 −H0)
2 +

ω2

(E0 −H0)
4

+
ω4

(E0 −H0)
6 + · · · .

Then we recast Eq. (33) into the following form:

∆E =
−2e2

π

∫
∞

0

ω3

eω/kBT −1

×
〈
𝑟

[
1

(E0 −H0)
+

ω2

(E0 −H0)
3 + · · ·

]
𝑟

〉
dω

= ∆E(1)+∆E(2)+ · · · , (34)

where (E0 −H0)
−1 is the reduced Green function shown in

Eqs. (7) and (8). We can see that the BBR shift can be ex-
pressed in terms of the static polarizabilities. The leading-
order BBR shift is

∆E(1) =
−2e2

π

∫
∞

0
dω

ω3

eω/kBT −1

〈
𝑟

1
E0 −H0

𝑟

〉
(35)

in natural units, or

∆E(1) =
−e2

2
h̄

π2c3ε0

∫
∞

0
dω

ω3

eh̄ω/kBT −1

×
〈
𝑟

1
(E0 −H0)

𝑟

〉
a2

0
EH

(36)

in SI unites, where c is the speed of light, ε0 is the permit-
tivity, a0 is the Bohr radius, and EH is the Hartree energy. In

the above equation,
〈
𝑟(E0 −H0)

−1𝑟
〉

is nothing but the static
dipole polarizability, as shown in Eq. (24). The remaining in-
tegration over ω can be done and the result is∫

∞

0
dω

ω3

eh̄ω/kBT −1
=

π4k4
BT 4

15h̄4 . (37)

In Table 2, we list the BBR shifts to the 1S and 2S states of
hydrogen. Our results for the 1S state are in good agreements
with those in Ref. [13]. For the 2S state, however, there ex-
ist significant discrepancies between our results and Ref. [13],
especially at low temperatures. We will discuss this issue later.

Table 2. Blackbody radiation shifts (in Hz) to the 1S and 2S states of
hydrogen.

Temperature/K This work Ref. [13] Ref. [14]
1S

300 −3.8786×10−2 −3.88×10−2 −0.04128
77 −1.6832×10−4 −1.68×10−4

3 −1.2258×10−9 −1.22×10−9

2S
300 −1.0343 −9.89×10−1 −1.077
77 −4.4887×10−3 −1.44×10−3

3 −3.2689×10−8 7.79×10−7

The second-order BBR shift is given by

∆E(2) =
−e2

2
h̄

π2c3ε0

∫
∞

0
dω

ω5

eh̄ω/kBT −1

×
〈
𝑟

1

(E0 −H0)
3 𝑟

〉
a2

0

E3
H
. (38)

In the coordinate representation, the key quantity we need to
calculate is

ℐ(3)
nll′ ≡

∫
ψ

†
nlm (𝑟1)𝑟1G′

1 (𝑟1,𝑟2;En)G′
2 (𝑟2,𝑟3;En)

×G′
3 (𝑟3,𝑟4;En)𝑟4ψnlm (𝑟4)d𝑟1d𝑟2d𝑟3d𝑟4.

The angular part of this integral can be easily evaluated due
to the orthogonality relation of the spherical harmonics. The
radial part can be written in the form∫

r2
1dr1r2

2dr2r2
3dr3r2

4dr4Rnl (r1)gl1 (r1,r2;En)

×gl2 (r2,r3;En)gl3 (r3,r4;En)Rnl (r4) .

Since the angular part contains δl1l2 and δl2,l3 , the three radial
functions gli will have the same intermediate orbital angular
quantum numbers, i.e., |l−1| and l+1. By applying the same
method introduced in Section 2, we can obtain the following
expressions:

ℳ(1,3)
nl,|l−1| =

(
− 5l5

96
+

45l4

64
− 163l3

48
+

495l2

64
− 647l

96

+
21
16

)
n8 +

(
−35l3

96
+

55l2

16
− 845l

96
+

341
64

)
n10

+

(
91
64

− 7l
12

)
n12,
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ℳ(1,3)
nl,l+1 =

(
5l5

96
+

185l4

192
+

323l3

48
+

4351l2

192
+

1135L
32

+
319
16

)
n8+

(
35l3

96
+

145l2

32
+

805l
48

+
3443
192

)
n10

+

(
7l
12

+
385
192

)
n12. (39)

The corresponding angular parts are

𝒜(1,3)
l,|l−1| =

l
6l +3

, 𝒜(1,3)
l,l+1 =

l +1
6l +3

. (40)

We thus have

ℐ(3)
nl = ∑

l′
ℐ(3)

nll′ =ℳ(1,3)
nl,l+1𝒜

(1,3)
l,l+1 +ℳ(1,3)

nl,|l−1|𝒜
(1,3)
l,|l−1|

=

[
55
96

l2(l +1)2 +
539
48

l(l +1)+
319
24

]
n8

+

[
25
9

l(l +1)+
3443
288

]
n10 +

385n12

288
. (41)

The corresponding BBR shift to the 1S state of hydrogen at
300 K is −3.8878×10−6 Hz, which is much smaller than the
leading-order one and can be omitted in most cases.

In Appendix, we give the analytical expressions for
⟨𝑟(E0 − H0)

−2𝑟⟩ and
〈
𝑟(E0 −H0)

−4𝑟
〉
, which will be use-

ful in higher-order perturbation calculations. For instance,
one should calculate

〈
𝑟(E0 −H0)

−2𝑟
〉

when considering the
second-order perturbation of Eq. (36).

Our approach here is nonrelativistic in nature, which
works well for the ground states, as shown in Table 2. How-
ever, for the exited nS states, even for n = 2, the discrepancy
appears, especially at lower temperatures. In Ref. [13], the ra-
dial wave function is treated under the Schrödinger–Pauli ap-
proximation, whereas the angular part is treated using a Dirac
spinor and the Dirac angular quantum number. Further, they
also consider the Lamb shift and fine-structure contributions.
Table 2 also shows that, for the 2S state, the discrepancy be-
tween our results and Ref. [13] becomes more significant as
the temperature decreases due to the relativistic effect. In the
nonrelativistic limit, the BBR shift acts as T 4/Z4; whereas the

relativistic correction acts as (ZαT )2. Therefore, the relativis-
tic correction becomes more important for high Z and/or low
T .[13,17]

5. Summary
In this work, based on the analytical wave function

and the reduced Green function, we have obtained the an-
alytical expressions for the scalar multipole polarizabilities
of hydrogen-like ions through a numerical fitting procedure.
These analytical expressions can be expressed as a polynomial
of n and l(l +1). We have applied our results to the BBR cal-
culations and found that the relativistic effects are particularly
important at low temperatures. Our analytical formulas can be
served as a benchmark for other computational methods.

Compared with the known numerical results, it is found
that our results are in good agreement with the ground state.
We also discuss the influence of relativistic effects in black-
body radiation correction. It is worth mentioning that for sim-
ple atoms, the mean velocity of electron will be smaller in the
excited states, which means that the higher the excited state,
the less significant the relativistic effect of the atom. In this
case, the results of our nonrelativistic-based-derivation could
be more accurate. However, for the highly charged hydrogen-
like ions, the relativistic effects can be more significant. For
other systems, like helium in Rydberg states, the analytical
asymptotic behavior of the dipole polarizabilities has few simi-
larities with that of the hydrogen-like atoms.[1,10] That is, more
details should be studied if we want to use these hydrogen an-
alytical expressions to help describing polarizabilities of other
systems.

Appendix A: Supplementary materials
In this appendix, we give Table A1 on the fitting progress

to help understanding, and two analytical results of two inte-
grals which could be useful in higher-order perturbation cal-
culations.

Table A1. An example of the ci fitting. The values of radial integrals in different n are also listed. The coefficients ci have only non-zero c1
and c2. For simplicity, we only list the results of l = 0,1,9 for l′ = l +1, and l = 1,2,9 for l′ = |l −1|.

l′ = l +1
l = 0 l = 1 l = 9

ℳ(1)(n, l)
n = 1,2, . . . ,20

{27/4, 180, 6075/4, 7488,
106875/4, 76788, 756315/4,
414720, 3326427/4,
1552500, 10936827/4,
4587840, 29560635/4,
11495988, 69406875/4,
25509888, 146579355/4,
51569460, 285012027/4,
96840000}

{390, 2835, 12768,
43125, 119718, 288120,
622080, 1233468, 2283750,
3996993, 6674400,
10710375, 16610118,
25008750, 36691968,
52618230, 73942470,
102041343, 138540000,
185340393}

{12993750, 21214809,
33444576, 51152751,
76193334, 110868750,
157999104, 220996566,
303944886, 411684039,
549900000, 725219649,
945310806, 1218987396,
1556319744, 1968750000,
2469212694, 3072260421,
3794194656, 4653201699}

c(1)i (i = 1, . . . ,20) {3/2,21/4,0,0, . . . ,0} {17/8,127/8,0,0, . . . ,0} {57/8,4695/8,0,0, . . . ,0}
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Table A1. (Continued).

l′ = |l −1|
l = 1 l = 2 l = 9

ℳ(1)(n, l)
n = 1,2, . . . ,20

{12, 162, 960, 3750,
11340, 28812, 64512,
131220, 247500, 439230,
741312, 1199562,
1872780, 2835000,
4177920, 6013512,
8476812, 11728890,
15960000, 21392910}

{–243, –1440, –5625,
–17010, –43218, –96768,
–196830, –371250,
–658845, –1111968,
–1799343, –2809170,
–4252500, –6266880,
–9020268, –12715218,
–17593335, –23940000,
–32089365, –42429618}

{–6172500, –10497597,
–17133120, –26990145,
–41229972, –61306875,
–89014272, –126534315,
–176490900, –242006097,
–326760000, –435053997,
–571877460, –742977855,
–954934272, –1215234375,
–1532354772, –1915844805,
–2376413760, –2926021497}

c(1)i (i = 1, . . . ,20) {1/4,−1/4,0,0, . . . ,0} {−3/8,3/8,0,0, . . . ,0} {−19/4,−569/4,0, . . . ,0}

Here we present the analytical results for the integrals
〈
𝑟G′2𝑟

〉
and

〈
𝑟G′4𝑟

〉
. In the coordinate representation, they can be

written as

ℐ(2)
n,ll′ ≡

∫
ψ

†
nlm (𝑟1)𝑟1G′

1 (𝑟1,𝑟2;E0)G′
2 (𝑟2,𝑟3;E0)𝑟3ψnlm (𝑟3)d𝑟1d𝑟2d𝑟3, (A1)

ℐ(4)
n,ll′ ≡

∫
ψ

†
nlm (𝑟1)𝑟1G′

1 (𝑟1,𝑟2;E0)G′
2 (𝑟2,𝑟3;E0)G′

2 (𝑟3,𝑟4;E0)G′
2 (𝑟4,𝑟5;E0)𝑟5ψnlm (𝑟5)d𝑟1d𝑟2d𝑟3d𝑟4d𝑟5. (A2)

Using Eqs. (6), (8), and (15) and applying the fitting procedure, we can obtain the following analytical expressions after
summing over l′:

ℐ(2)
nl =

[
5

48
l2(l +1)2 +

14
3

l(l +1)+
163
24

]
n6 +

[
5
12

(l +1)l +
61
16

]
n8 +

7n10

48
, (A3)

ℐ(4)
nl =

[
35

3456
l3 (l +1)3 +

3595
1728

l2 (l +1)2 +
7385
288

l (l +1)+
1255
48

]
n10

+

[
385
3456

l2 (l +1)2 +
40765
3456

l (l +1)+
58145
1728

]
n12 +

[
1393
3456

l (l +1)+
2779
384

]
n14 +

491n16

3456
. (A4)
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