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1 Nordita, Stockholm University and KTH Royal Institute of Technology,
Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden
2 Centre for Mathematical Science, City, University of London, Northampton
Square, EC1V 0HB, London, United Kingdom
3 Perimeter Institute for Theoretical Physics 31 Caroline Street N, Waterloo, ON
N2L 2Y5, Canada5

E-mail: olof.ohlsson.sax@nordita.org and Bogdan.Stefanski.1@city.ac.uk

Received 18 December 2019, revised 19 February 2020
Accepted for publication 3 March 2020
Published 26 March 2020

Abstract
We investigate the analytic properties of the exact magnon S matrix of string
theory on AdS3 × S3 × T4 with R–R flux. We show that the previously pro-
posed dressing factors have the exact double-pole/zero structure expected from
Landau box diagrams. This constitutes a strong consistency check of our dress-
ing factors, much as the Dorey–Hofman–Maldacena poles do for the all-loop
dressing factor in AdS5 × S5.

Keywords: AdS/CFT correspondence, AdS3/CFT2 correspondence, integrable
systems

1. Introduction

Determining the string theory spectrum in general spacetime backgrounds can be a formidable
challenge. In some cases, however, the worldsheet theory may have special properties that can
be used to solve the spectral problem. For example, the theory might be a WZW conformal
field theory [1] or, as in the case of plane-wave backgrounds, the gauge-fixed worldsheet theory
may be free [2]. More recently, certain AdSd+1 ×M9−d backgrounds have been shown to be
integrable non-relativistic 2d worldsheet theories. 6 Such cases are physically interesting, since
they are holographically dual to d-dimensional gauge theories [4], giving an exact tool for
strong coupling computations.

In these integrable holographic backgrounds, the exact worldsheet S matrix is strongly
constrained by symmetries, leaving only a small number of scalar dressing factors
unfixed. These dressing factors in turn satisfy crossing equations [5]. Just as in relativistic

4Author to whom any correspondence should be addressed.
5 Address until July 2019.
6 See [3] and references therein.
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integrable field theories, given a particular solution of the crossing equation, new
solutions can be found by multiplying the S matrix by solutions of the homogeneous cross-
ing equation known as Castillejo–Dalitz–Dyson (CDD) factors [6]. Extra input, such as the
presence of poles in the S matrix is required to determine the physically-correct CDD fac-
tor. In the case of AdS5 × S5, the S matrix has simple poles associated to the presence of
bound states [7] and Dorey–Hofman–Maldacena (DHM) double poles due to the exchanges
of pairs of such bound states [8]. It is believed that these fix the dressing factor to precisely the
Beisert–Hernández–López/Beisert–Eden–Staudacher (BES) one [9, 10].

Strings on AdS3 × S3 × T4 are also believed to be an integrable theory [11, 12]. In this
case, symmetries fix the exact worldsheet S matrix up to four dressing factors [13–15].
When the background is supported by R–R flux only, solution of the corresponding cross-
ing equations were found in [16–18] and shown to have the expected simple poles associated
with AdS3 bound states. In this paper we analyse the structure of Landau diagrams for the
exchanges of pairs of bound states, generalising the work of [8] to AdS3 and determine the
expected location of DHM double poles. We then show that the dressing factors found in
[16–18] have precisely such double poles providing strong evidence for the validity of these
solutions.

In section 2 we discuss the set of simple and double poles we expect the S matrix to have
based on Landau diagrams. We begin in section 2.1 with a review of the AdS5 analysis of [8]
which we extend to AdS3 in section 2.2. In section 3 we show that the S matrix and dressing
phases of [16–18] have exactly the expected set of simple and double poles. Our conclusions
are given in section 4. In appendix A we discuss a particularly simple solution of the crossing
equations which does not have DHM double poles. This solution illustrates the importance of
DHM poles in identifying the physically relevant dressing factor. In appendix B, we present
explicit bound state representations and, in appendix C, we review the relation between bound
states and poles of the S matrix.

2. Expected poles of the S matrix

Poles in the S matrix are intimately related to bound states in the spectrum 7. A simple pole can
be represented by a diagram where two excitations scatter through the exchange of a single on-
shell bound state. There are two basic topologies, referred to as the S and T channels, as shown
in figure 1. In order to obtain a double pole, we need a scattering diagram where two exchanged
bound states simultaneously go on shell. A typical such diagram is shown in figure 2.

2.1. Bound states and S matrix poles in AdS5 × S5

In this sub-section we briefly review the bound states and Landau diagrams leading to poles
in the AdS5 × S5 S matrix following closely the discussion in [8]. World-sheet excitations
in AdS5 × S5 transform in short representations of the centrally extended psu(2|2)2 algebra
preserved by the light-cone gauge Hamiltonian. They are conveniently parametrised by spectral
parameters x± which are related to the energy and momentum by

eip =
x+

x−
, E = − ih

2

(
x+ − 1

x+
− x− +

1
x−

)
, (2.1)

where h is the integrable coupling constant. The fact that the representation is short is encoded
in the additional constraint

7 See appendix C for a discussion of the relation between singularities of the S matrix and bound states.
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Figure 1. S and T channel exchange of bound states. The external lines correspond to
fundamental excitations and the double line to an exchanged on-shell bound state.

Figure 2. Typical box diagram giving rise to a double pole in the S matrix.

x+ +
1

x+
− x− − 1

x−
=

2iM
h

, (2.2)

where M ∈ Z
+ is the bound state number. A fundamental representation has M = 1 while a

bound state has M > 1. The corresponding psu(2|2) representation has a highest weight state
transforming as (M + 1, 1) under the bosonic su(2) × su(2) subalgebra. A physical excitation in
AdS5 × S5 has spectral parameters satisfying |x±| > 1. The shortening condition (2.2) together
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Figure 3. Basic vertices

with (2.1) lead to the familiar dispersion relation

E =

√
M2 + 4h2 sin2 p

2
. (2.3)

The on-shell diagrams discussed above can be decomposed into trivalent vertices of the
type shown in figure 3 where we have introduced the spectral parameters x±, y± and z± cor-
responding to the psu(2|2) representations at each leg, with the three excitations have bound
state numbers Mx, My and Mz, respectively. Imposing energy and momentum conservation at
the vertex in figure 3(a) leads to the equations8(

x+ − 1
x+

− x− +
1

x−

)
+

(
y+ − 1

y+
− y− +

1
y−

)
=

(
z+ − 1

z+
− z− +

1
z−

)
,

x+

x−
y+

y−
=

z+

z−
.

(2.4)

These equations have a number of simple solutions. If we assume that all three involved
excitations are in the physical region we find

x− = y+, z+ = x+, z− = y−, (2.5)

or

x+ = y−, z+ = y+, z− = x−. (2.6)

From either solution we find the relation(
x+ +

1
x+

− x− − 1
x−

)
+

(
y+ +

1
y+

− y− − 1
y−

)
=

(
z+ +

1
z+

− z− − 1
z−

)
, (2.7)

or

Mz = Mx + My. (2.8)

Hence, in these cases the vertex has a simple interpretation in terms of two physical excitations
fusing into a larger physical bound state. When the two incoming excitations are fundamental

8 The trivalent vertex shown in figure 3(b) is related to the one in figure 3(a) by time reversal and leads to exactly the
same set of equations.
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(Mx = My = 1), the solutions (2.5) and (2.6) correspond to the so called su(2) and sl(2) bound
states, respectively. As we will see below, only the su(2) bound state appears in the physical
spectrum.

Let us now consider the case where the spectral parameters of one of the incom-
ing excitations are outside the physical region. When |x±|, |z±| > 1, |y±| < 1 we find
solutions

x− =
1

y−
, z+ = x+, z− =

1
y+

, (2.9)

and

x+ =
1

y+
, z+ =

1
y−

, z− = x−. (2.10)

These spectral parameters satisfy(
x+ +

1
x+

− x− − 1
x−

)
−
(

y+ +
1

y+
− y− − 1

y−

)
=

(
z+ +

1
z+

− z− − 1
z−

)
, (2.11)

or

Mz = Mx − My. (2.12)

Note that this process is possible only if Mx > My. In that case the vertex corresponds to a
process where a bound state fusing with an antiparticle to produce a new state with a lower
bound state number.

Starting with the solutions (2.5) or (2.6) we can obtain (2.9) or (2.10), respectively, by the
transformation

x± → z±, y± → 1
x±

, z± → y±, (2.13)

which can be interpreted as relabelling followed by crossing one of the legs by sending
y± → 1/y±.

If instead we have |x±| < 1, |y±| > 1, and |z±| > 1 we find the same set of solutions as
above, but with x± and y± swapped. Finally, there are solutions where two or more of the
spectral parameters are inside the unit circle. These solutions are again related to the ones
discussed above by simple transformations.

2.1.1. Simple poles. Let us now combine the above vertices to form physical scattering
diagrams, starting with the diagrams in figure 1, which lead to simple poles in the S
matrix.
S channel pole. We first consider the S channel diagram shown in figure 1(a), introducing
spectral parameters as in figure 4(a). We focus on the case where the external excitations are
fundamental, so that Mx = My = 1. We then only have a physical pole of the form9

x+ = y−, z+ = y+, z− = x−, (2.14)

9 When we discuss physical scattering processes we assume that the excitations are ordered along the spatial direction
so that the excitation with parameters x± is to the left of the excitation with parameters y±. This means that the solutions
in equations (2.14) and (2.15) are distinct even though the algebraic expressions are related by exchanging x± and y±.
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Figure 4. S and T channel labelled with spectral parameters.

or

x− = y+, z+ = x+, z− = y−, (2.15)

and the exchanged bound state has Mz = Mx + My = 2. To find out which solution gives
rise to a pole in the S matrix corresponding to a physical bound state, we need to exam-
ine the imaginary part of the momentum of the first particle, as discussed in appendix C.
For (2.14) we find Im(−ilogx+/x−) > 0 and for (2.15) we find Im(−ilogx+/x−) < 0, which
means that the physical pole is given by (2.14), while (2.15) corresponds to a zero of the S
matrix.10

T channel pole. Consider now the T channel diagram in figure 4(b). If the external excitations
are both fundamental (Mx = My = 1), they cannot also both be in the physical region. Instead
we find

x+ =
1

y−
, z+ =

1
y+

, z− = x−, (2.16)

or

x− =
1

y+
, z+ = x+, z− =

1
y−

. (2.17)

The exchanged bound state again has Mz = Mx + My = 2. As before we check the sign of
the imaginary part of the momentum of the x excitation to determine when the S matrix
should have a pole. For the solution (2.16) we find Im(−ilogx+/x−) > 0 and for (2.17) we
find Im(−ilogx+/x−) < 0, so that the location of the pole is given by (2.16).

2.1.2. Double poles. We now consider the box diagram in figure 5. The two on-shell bound
states y±1 and y±2 give rise to a double pole in the S matrix. The four vertices making up the box
diagram are of the same type discussed above. Imposing that the double pole is located on the

10 The easiest way to check the imaginary part of the momentum is to solve equations (2.14) or (2.15) together with
the shortening conditions (2.22) for x± and y± using, e.g., Mathematica, making sure to pick the branch where both
|x±| > 1 and |y±| > 1, and then numerically evaluate x+/x− for real values of the bound state momentum.
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Figure 5. Box diagram with spectral parameters.

physical branch we find the solution11

x+1 =
1

y−1
=

1
z−2

, x−1 = y−2 =
1
z−1

, x+2 = y+2 =
1

z+2
, x−2 =

1
y+1

=
1

z+1
, (2.18)

which leads to the relation(
x+1 +

1
x+1

+ x−1 +
1

x−1

)
−
(

x+2 +
1

x+2
+ x−2 +

1
x−2

)
= −2i

h
(Mz1 + Mz2 ) (2.19)

Introducing

ui =
1
2

(
x+i +

1
x+i

+ x−i +
1

x−i

)
, (2.20)

we thus find double poles at the locations

u1 − u2 = −2in
h

, (2.21)

where n = (Mz1 + Mz2 )/2 > 1 is an integer.

2.2. Bound states and S matrix poles in AdS3 × S3 × T4

In the case of string theory on AdS3 × S3 × T4 supported by RR flux, the fundamental exci-
tations fall into several short representations of the centrally extended psu(1|1)4 algebra pre-
served by the light-cone gauge-fixed Hamiltonian [13, 14, 19]. For now we focus on the massive
excitations, which fall into two representations denoted L and R. These representations are dis-
tinguished by the u(1) charge M, under which they have eigenvalue +1 and −1, respectively.

11 For a more detailed derivation of these conditions see [8] and the corresponding derivation for AdS3 × S3 × T4 in
the section 2.2.
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Figure 6. LL and LR vertices.

In order to understand the pole structure of the S matrix it is enough to consider a centrally
extended psu(1|1)2 sub-algebra. As in AdS5 × S5, short representations can be described by
spectral parameters x± which parametrise the energy and momentum as in equation (2.1) and
satisfy the shortening condition

x+ +
1

x+
− x− − 1

x−
=

2i|M|
h

, (2.22)

where M is the u(1) charge of the representation.12 Any short psu(1|1)2 representation is two-
dimensional. Hence, the only difference between a fundamental excitation and a bound state
in AdS3 is the u(1) charge, which plays the role of the mass as seen in the dispersion relation
(2.3).

As in AdS5 × S5, we can construct trivalent vertices from which we can build up scattering
diagrams that exhibit the poles of the S matrix. Imposing conservation of energy, momentum
and u(1) charge we obtain relations between the spectral parameters of the excitations. Let us
start with a fundamental L excitation with spectral parameters x±L and charge +1 scattering
with a state y±L with charge M = m � 1. From charge conservation we know that we can only
produce a state with charge M = m + 1, whose spectral parameters we denote by z±L . This is
illustrated in figure 6(a). We find that the spectral parameters satisfy either

x−L = y+L , z+L = x+L , z−L = y−L , (2.23)

or

x+L = y−L , z+L = y+L , z−L = x−L . (2.24)

Instead if we start with a fundamental L excitation (x±L , +1) and an R bound state (y±R ,
−m < −1), we can produce an R excitation with z±R and charge −m + 1 < 0, as illustrated
in figure 6(b) with

12 Note that the absolute value of M appears on the right-hand side of equation (2.22) since the u(1) eigenvalue can
be both positive and negative. In AdS5 the corresponding charge is non-negative since it labels the su(2) charge of a
highest weight state.
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x+L =
1

y+R
, z+R =

1
x−L

, z−R = y−R , (2.25)

or

x−L =
1

y−R
, z+R = y+R , z−R =

1
x+L

. (2.26)

Using these basic vertices we can construct box diagrams similar to those of AdS5 × S5.
From an algebraic point of view it would appear that we can consider solutions given in

equations (2.25) and (2.26) also in the case m = 1. In this case the outgoing state z±R would
have mass 1 − m = 0. Such a hypothetical solution would correspond to a massless bound
state. String theory on AdS3 × S3 × T4 does contain a massless multiplet. However, it is not
possible to identify the hypothetical massless bound states with the massless multiplet, for two
reasons. Firstly, the massless modes arising from T4 form a doublet under an auxiliary su(2)◦
which commutes with the centrally extended psu(1|1)2 algebra [13, 14]. There is no such sym-
metry acting on the hypothetical massless bound states. Secondly, the massless bound state has
opposite statistics to the physical massless excitations [13, 14]. In particular, if we consider the
full centrally extended psu(1|1)4 algebra, the highest weight state of the hypothetical massless
bound state multiplet would be bosonic.13 On the other hand the physical massless represen-
tation has a fermionic highest weight state [13, 14]. Because of this, we require the S matrix
to not have poles that would correspond to such massless bound states.

Similarly, the representation theory allows for an M = 1 ‘bound state’ which would appear
in the tensor product between a T4 massless mode and an M = 1 massive excitation. This
process is closely related to the one discussed in the previous paragraph, and again leads to
a representation with statistics which is opposite of that of the normal fundamental massive
excitations [19]. We will therefore also require the S matrix between a massive and a massless
excitation to have no corresponding poles.

Finally, we note that the representation theory does not allow for a bound state in the
scattering between two massless excitations [17, 18].

With the above remarks taken into account, the set of vertices we find in AdS3 × S3 × T4

is closely related those of AdS5 × S5. In summary, we find14

• An S channel pole in the massive LL and RR sectors, located at x+1 = x−2 , as illustrated in
figure 7(a).

• A T channel pole in the massive LR and RL sectors, located at x+1 = 1/x−2 , as illustrated
in figure 7(b).

• Double poles in all sectors involving only massive excitations, i.e., LL, LR, RL and RR,
located at

u1 − u2 = −2in
h

, n ∈ Z, n > 1. (2.27)

Let us see in more detail how the double poles appear. The relevant diagrams for LL scat-
tering are shown in figures 8(a) and (b). The external legs are the same in the two diagrams,
while the bound states in the loop run in the opposite directions. For each diagram there are

13 As we show in appendix B.3, the highest weight states of LR bound states have the same statistics for all values of
bound state number M—they are in fact bosons in the full psu(1|1)4 algebra.
14 In appendix B we give explicit matrix realisations of the corresponding bound state representations.
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Figure 7. S and T channel diagrams for AdS3. The diagrams are showing the LL
and LR processes, respectively. The diagrams for RR and RL, take exactly the same
form.

two ways to assign the four vertices.15 For figure 8(a) we find

x+1L =
1

z+1R

= y+2L, x−1L =
1

z+2R

=
1

y+1R

, x+2L =
1

z−1R

=
1

y−1R

, x−2L =
1

z−2R

= y−2R,

(2.28)

or

x+1L =
1

z−2R

=
1

y−1R

, x−1L =
1

z−1R

= y−2L, x+2L =
1

z+2R

= y+2L, x−2L =
1

z+1R

=
1

y+1R

,

(2.29)

which leads to

u1 − u2 = +
2in
h

, or u1 − u2 = −2in
h

. (2.30)

Since we assume that there is no vertex involving two massive and one massless excitation, we
get the condition n > 1. As before, we obtain a physical pole by demanding that the imaginary
part of the momentum of the excitation x±1L is positive, which selects the second solution as
indicated in equation (2.27).16

15 For each vertex we found two solution to the energy, momentum and charge conservation, so à priori there are 16
possible combinations for the box diagrams in question. However, all but two lead to lead to over constrained sets of
equations.
16 To see this we note that ∂pu(p) < 0 for real momentum p. Writing u(p + iq) − u(p − iq) ≈ 2iq∂pu(p) we find that
the solution with a negative imaginary part of u1 − u2 corresponds to the physical pole.
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Figure 8. Box diagrams for LL and LR scattering leading to double poles in the S matrix.
We indicate explicitly the masses M of the excitations, with each diagram corresponding
to a family of processes labelled by an integer n > 1.

Similarly, demanding that figure 8(b) leads to a physical pole leads to

x+1L = z−1L =
1

y−2R

, x−1L = z−2L = y−1L, x+2L = z+1L = y+1L, x−2L = z+2L =
1

y+2R

,

(2.31)

from which we again obtain the condition (2.27).
Figures 8(c) and (d) give rise to double poles in the LR S matrix. Physical poles are obtained

when

x+1L = z−1L =
1

y−2R

, x−1L = z−2L = y−1L,
1

x+2R

= z+2L =
1

y+2R

,
1

x−2R

= z+1L = y+1L,

(2.32)
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and

x+1L =
1

z−2R

=
1

y−1R

, x−1L =
1

z−1R

= y−2L,
1

x+2R

=
1

z+1R

=
1

y+1R

,
1

x−2R

= z+2L =
1

y+2L

,

(2.33)

respectively. Again these two sets of equations give rise to the condition (2.27).
In the next section we will show that this set of simple and double poles is consistent with

the dressing phases proposed in [16–18].

3. Comparison with the AdS3 dressing phase

The symmetries of the theory determined the world-sheet S matrix of AdS3 × S3 × T4 up
to four dressing factors: σ••, σ̃••, σ•◦, σ◦◦ all of which satisfy known crossing equations
[13, 14, 19]. The former two dressing factors enter the scattering of massive LL and LR
excitations, respectively, while the latter two involve mixed-mass and massless scattering. It is
convenient to express the dressing factors as phases, for example

σ••(p1, p2) = eiθ••(p1,p2), (3.1)

with similar expressions for the other σs. From the structure of higher-conserved charges in
the system, it is known that phases θ•• can be decomposed as [20]

θ•• = χ(x+1 , x+2 ) − χ(x−1 , x+2 ) − χ(x+1 , x−2 ) + χ(x−1 , x−2 ). (3.2)

Analogous decompositions hold for the other θs. The χ satisfy crossing equations that follow
from the σ ones but are simpler. Solutions forχ•• and χ̃•• were found in [16] and in the physical
|x±i | > 1 region they take the form

χ••(x1, x2) = χBES(x1, x2) +
1
2

(
−χHL(x1, x2) + χ−(x1, x2)

)
, (3.3)

χ̃••(x1, x2) = χBES(x1, x2) +
1
2

(
−χHL(x1, x2) − χ−(x1, x2)

)
, (3.4)

where χBES is the Beisert–Eden–Staudacher (BES) phase [10], which can be expressed as a
double-contour integral [8]

χBES(x1, x2) = i
∮

dw1

2πi

∮
dw2

2πi
1

x1 − w1

1
x2 − w2

× log
Γ
[
1 + ih

2 (w1 + 1/w1 − w2 − 1/w2)
]

Γ
[
1 − ih

2 (w1 + 1/w1 − w2 − 1/w2)
] , (3.5)

and

(3.6)

12
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(3.7)

We see that χ•• and χ̃•• are different from the AdS5 × S5 BES phase, but that the modification
is relatively simple and involves only terms at the Hernández-López order [21]. Compared to
the BES phase, these extra terms have a simple analytic structure, which we will analyse later
on in this section.

3.1. DHM double poles from the BES dressing factor

First, let us briefly recall how DHM double poles appear in the BES phase.17. At the level of the
χ, crossing from the physical |xi| > 1 region amounts to analytically continuing xi inside the
unit disc. In doing that, xi moves from one side of the contours that define the χs above to the
other. The Sochocki–Plemelj theorem then dictates that the analytically continued χ pick up a
term proportional to the residue of the integrand. For the BES phase inside the singly-crossed
region we find

χBES
cr (x1, x2) = χBES(x1, x2) + i

∮
dw2

2πi
1

x2 − w2
log

Γ
[
1 + ih

2 (x1 +
1
x1
− w2 − 1

w2
)
]

Γ
[
1 − ih

2 (x1 +
1
x1
− w2 − 1

w2
)
] ,

(3.8)

whereχBES
cr is the analytic continuation of the integral in equation (3.5) into the region |x1| < 1.

The first term on the right hand side above is given by the integral in equation (3.5) now evalu-
ated for |x1| < 1. The second term is needed to ensure continuity across the unit circle |x1| = 1
since the integral (3.5) is discontinuous there. This term has important physical consequences:
it introduces new cuts inside the unit disc, see for example figure 2 of [24]. To see this explicitly,
we integrate it by parts to get

h
∮

dw2

2πi

(
1 − 1

w2
2

)
log(x2 − w2)

[
ψ

(
1 +

ih
2

(
x1 +

1
x1

− w2 −
1
w2

))
+ ψ

(
1 − ih

2

(
x1 +

1
x1

− w2 −
1
w2

))]
,

(3.9)

whereψ(x) ≡ Γ′(x)/Γ(x) is the digamma function. Sinceψ(x) has poles for x a negative integer,
the last term on the right hand side of equation (3.8) has cuts when

x1 +
1
x1

− w2 −
1
w2

=
2i
h

n, n ∈ Z , n �= 0 (3.10)

The above equations are invariant under w2 → 1
w2

, hence each one gives rise to two poles at
antipodal points of the unit circle spanned by w2. Analytically continuing through one of these
cuts requires us to further modify the expression for χBES

cr . In particular, as a consequence of

17 See [22] for a review of the dressing factor and its analytic structure based on the elegant derivation [23].
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the Sochocki–Plemelj theorem, the analytic continuation through the nth cut of the term in
equation (3.9) modifies the integral expression for χBES

cr by an extra term

−i sign(n) log (u(x2) − u(x1) + in) , (3.11)

as reviewed in equation (3.23) of [22]. This term leads to double poles and zeros in the
S matrix dressing factor σ2 = e2iθ whose location [8] agrees precisely with those found in
section 2.1.2.18

3.2. Analytic structure of χ•• and χ••

The dressing phases χ•• and χ̃•• are defined in the physical region |xi| > 1 in equation (3.4).
Their continuation inside the unit circle was analysed in [16]. There it was shown that the
HL-order terms after crossing in x1 take the form19

χ−
cr(x1, x2) = χ−(x1, x2) − i

2
log

[
(x2 − x1)

(
1 − 1

x1x2

)]
, (3.12)

χHL
cr (x1, x2) = χHL(x1, x2) − i

2
log

x2 − x1

x2 − 1/x1
. (3.13)

The first terms on the right hand side of the above equations are given by the integrals in (3.6)
and (3.7), respectively, now evaluated with |x1| < 1. The final terms in the above two equations
modify the dressing factors e2iχ•• and e2iχ̃•• that enter the S matrix by a rational function of xi.
Dropping terms dependent on x2 only, which do not contribute to the final expressions for θ,
the dressing factors in the x1-crossed region are

e2iχ••cr =

(
x2 −

1
x1

)
e2iχ•• , e2iχ̃••cr =

1
x2 − x1

e2iχ̃•• . (3.14)

We see that the analytic structure inside the unit circle |x1| < 1 is determined by χBES as dis-
cussed in the previous sub-section. The HL-order terms χ−

cr and χHL
cr given in equations (3.12)

and (3.13), do not introduce any new cuts and lead to analytic modifications of the dress-
ing factor σ2

BES. This shows that (σ••)2 and (σ̃••)2, the massive dressing phases of the R–R
AdS3 × S3 × T4 S matrix, have double poles and zeros whose location (3.11) is the same as
that of the DHM double poles and zeros in AdS5 × S5.

3.3. Analytic structure of χ•◦ and χ◦◦

In [17, 18, 25], expressions for χ◦• and χ◦◦ were proposed

θ◦•(x1, x2) =

[
θAFS(x1, x2) +

1
2
θHL(x1, x2)

]
mx=0, my=1

, (3.15)

θ◦◦(x1, x2) =

[
1
2
θHL(x1, x2)

]
mx=my=0

. (3.16)

18 In the analysis leading up to equation (3.11), we were already in the x1 crossed region, and as such we should not
cross the n = 1 cut in (3.10).
19 See equations (A.7) and (A.25) of [16].
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In the physical region, the HL-order terms are given by deforming the contour of integration
in equation (3.6) to the interval [−1, 1] as described in detail in section 2.3.3 of [18], while θAFS

is constructed from

χAFS(x1, x2) =
1
x1

− 1
x2

+

(
x2 +

1
x2

− x1 −
1
x1

)
log

(
1 − 1

x1x2

)
. (3.17)

In massless kinematics the AFS-order term is trivial under crossing and so is a poten-
tial CDD factor, whose presence was not excluded in [17, 18]. In [25], however, it was
shown that such a term cannot be written in difference form in terms of the rapidity vari-
able γ ≡ logtan(p/4) introduced in [26]. As a result, we do not include the massless AFS
term.

Analytically continuing the HL-order term to the crossed region modifies the dressing fac-
tors (σ◦•)2 and (σ◦◦)2 by rational terms, entirely analogously to equation (3.14). Explicitly,
from equations (2.47) and (2.48) in [18], we find that the mixed-mass dressing factor in the
massless crossed region is given by

e2iθ◦•cr (x1 , x±2 ) =
(x1x+2 − 1)(x1 − x−2 )
(x1 − x+2 )(x1x−2 − 1)

e2iθ◦•(x1 , x±2 ), (3.18)

where x1 ≡ x+1 for the massless variable. Similarly, in the massive crossed region we find

e2iθ•◦cr (x±1 , x2) =
(x+1 x2 − 1)(x−1 − x2)

x2
2(x+1 − x2)(x−1 x2 − 1)

e2iθ•◦(x±1 , x2), (3.19)

where now x2 ≡ x+2 is the massless variable.20

From the above equations we see that the mixed-mass dressing factors have a much sim-
pler analytic structure than the massive dressing factors. As we discussed in section 3.2, the
analytic structure of χ•• and χ̃•• in the crossed region is substantially modified by the second
term on the right hand side of equation (3.8). It is this more complicated analytic structure
that leads to the DHM double poles in the massive dressing phases. The mixed mass dressing
factor on the other hand is modified only by rational terms in the crossed region. As a result,
it gives no new cuts or double poles, in agreement with the dynamical arguments presented in
section 2.

The massless dressing factor in the x1-crossed region takes the form

e2iθ◦◦cr (x1 , x2) =

(
x1x2 − 1
x1 − x2

)2

e2iθ◦◦(x1 , x2). (3.20)

We again see that no new cuts are introduced.

4. Conclusions

In this paper we have investigated the analytic structure of the exact worldsheet S matrix of
strings on AdS3 × S3 × T4 with R–R flux. The bound states of the theory in the semi-classical
regime are given by dyonic giant magnon solutions on S3 much like in AdS5 × S5 [7]. However,
the reduced dimensionality of the sphere in the AdS3 background leads to two types of dyonic

20 To similify the notation we have always crossed in the first argument of the dressing factor and so considered θ◦•

and θ•◦, respectively for the two types of mixed-mass crossed regions.
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magnons, which we labelled L and R. These arise as bound states of M = 1 and M = −1
fundamental excitations, respectively and transform in short representations of the off-shell
symmetry algebra of the gauge-fixed theory [16]. As in AdS5, it is expected that no other
bound states exist.

The presence of bound states in the physical spectrum of a theory leads to poles and zeros
in the S matrix. We showed that in the R–R AdS3 × S3 × T4 background the bound states
require simple and double poles, generalising the AdS5 × S5 analysis of [8]. Using Landau
diagrams, we determined the location of the simple poles in equations (2.16) and (2.14) and
the double poles in equation (2.27). We then showed that the exact S matrix proposed for
this theory in [13, 14] together with the dressing factors found in [16–18] has precisely the
expected simple and double poles. The location of the simple poles had already been checked
in [16], since this essentially constitutes a consistency check on the solutions of the crossing
equations.

The location of DHM double poles places a much more stringent restriction on the S matrix.
As we have shown in appendix A one can find minimal solutions of the crossing equations (see
equation (A.4)) by judicious normalization choices of the rational part of the S matrix (A.1).
The resulting dressing factors are independent of the coupling constant h, in other words come
in at the Hernández-López order [21] and have the correct simple poles and zeros. However,
due to their relatively simple analytic structure (essentially these are dilogarithms), they do
not have any DHM double poles. One then needs to add CDD-type homogeneous solutions of
the crossing equations to obtain these double poles as in equation (A.5). Given the intricate
analytic structure of these homogeneous solutions, it would have been very challenging to find
them a priori, providing further motivation for normalising the rational part of the S matrix as
in [14].

In addition to the M = ±1 excitations, the AdS3 worldsheet theory contains massless modes
[27], which do not form bound states [16]. As discussed, in section 2.2, the kinematics of the
short psu(1|1)4

c.e. multiplets does allow for massless bound states to form from L and an R fun-
damental excitations in the T channel. In the physical theory these would have to be interpreted
as fundamental M = 0 excitations. As we showed, such kinematically allowed massless bound
states need to be excluded since they have the wrong statistics and do not carry su(2)◦ charges
expected of fundamental massless excitations.

The AdS3 × S3 × T4 S matrix has dressing factors associated to mixed mass and mass-
less scattering processes. Solutions of the corresponding crossing equations were proposed
in [17, 18] and an elegant form of the massless dressing factor, based on the γ rapid-
ity [26], was found in [25, 28].21 We showed that the analytic structure of massless and
mixed mass dressing factors is much simpler than of the massive ones. They closely resem-
ble the solutions discussed in appendix A with dilogarithm-like cuts and no simple poles
or zeros in the physical strip, nor any DHM poles, in agreement with the Landau-diagram
expectations.

In summary, the analytic properties of the R–R AdS3 × S3 × T4 S matrix combine features
of two very different types of integrable theories. On the one hand, the massive S matrix exhibits
an intricate analytic structure typical of non-local spin-chains that appear in higher-dimensional
holographic models [10]. On the other hand, the mixed-mass and massless S matrices resemble
closely the more conventional analytic properties of relativistic 1 + 1 dimensional integrable
models [29]. It seems remarkable to us that it is possible to combine these into one coupled
integrable system.

21 Remarkably, the massless dressing factor [17, 18] turns out to be exactly the same as the famous soliton–anti-soliton
scattering in sine Gordon theory found by Zamolodchikovs [29] at β2 = 16π/3.
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Integrability of string theory investigated in the present paper is preserved under a number
of deformations. One can turn on moduli [30] or NS-NS flux [15, 31] or consider the family
of AdS3 × S3 × S3 × S1 geometries [11, 32] all of which are exact integrable string theory
backgrounds. We therefore expect these theories to also exhibit the striking interplay of non-
local spin chain and integrable field theory analyticity that we found in this paper. We intend
to examine this in the near future.
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Appendix A. On minimal solutions of crossing

Imposing unitarity and LR symmetry, the minimal normalisation of the AdS3 × S3 × T4 S
matrix is given by

SLL
0 (p1, p2) =

(
x+1
x−1

x−2
x+2

)1/2
x−1 − x+2
x+1 − x−2

ΣLL
p1 p2

,

SLR
0 (p1, p2) =

(
x−1
x+1

x−2
x+2

)1/2 1 − 1

x+1 x+2

1 − 1

x−1 x−2

ΣLR
p1 p2

,

SRL
0 (p1, p2) =

(
x+1
x−1

x+2
x−2

)1/2 1 − 1

x−1 x−2

1 − 1

x+1 x+2

ΣRL
p1 p2

,

SRR
0 (p1, p2) =

(
x−1
x+1

x+2
x−2

)1/2
x+1 − x−2
x−1 − x+2

ΣRR
p1 p2

.

(A.1)

The remaining phases ΣIJ
p1 p2

satisfy the crossing equations22

22 These crossing equations are minimal in the sense that the right hand side is the square root of the right hand side of
the double crossing equations, which means that the solution is the simplest solution that solves the double crossing
equation.
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ΣLL
p1 p2

ΣRL
p̄1 p2

=
x+1 − x+2
x+1 − x−2

x−1 − x−2
x−1 − x+2

, ΣLL
p̄1 p2

ΣRL
p1 p2

=

1 − 1

x+1 x−2

1 − 1

x+1 x+2

1 − 1

x−1 x+2

1 − 1

x−1 x−2

, (A.2)

which have solution of the form

ΣLL
p1 p2

= e−2iθLL(x±1 ,x±2 ), ΣLR
p1 p2

= e−2iθLR(x±1 ,x±2 ), (A.3)

with

χLL(x, y) =
1
2

(
χHL(x, y) + χ−(x, y)

)
, χLR(x, y) =

1
2

(
χHL(x, y) − χ−(x, y)

)
.

(A.4)

Following the analysis of [16], χLL(x, y) is regular both at x = y and x = 1/y, while χLR(x, y)
has a simple zero at x = 1/y. Taking this into account we see that SLL

0 (p1 p2) has the
expected S channel pole at x+1 = x−2 and SLR

0 (p1, p2) has the expected T channel pole at
x+1 = 1/x−2 .

However, we do not have any of the expected DHM type double poles. Hence we are led
to search for a phase which provides those poles and which solves the homogeneous crossing
equation. In the pure RR case, such a solution is given by

Σhom
p1 p2

=

(
x+1
x−1

x−2
x+2

)1/2 1 − 1

x−1 x+2

1 − 1

x+1 x−2

σ−2
even(p1, p2), (A.5)

where

σeven(p1, p2) = σBES(p1, p2)σ−1
HL(p1, p2) (A.6)

is the part of the BES phase that is invariant under double crossing. Once this homogeneous
phase is included we arrive at the normalisation of [14], which we use in the main text.

Appendix B. Matrix representations

For completeness, in this section we write down explicit two-particle representations in the
massive LL and LR sectors of AdS3, and show how short subrepresentations corresponding to
potential bound states appear. We follow the conventions of [14] and work in the spin-chain
frame.

B.1. Fundamental representations

The L representation acts on the basis
(
|φL

p〉, |ψL
p〉
)
, and the supercharges take the form

QL = ηp

(
0 0
1 0

)
, QR =

ηp

x−p

(
0 −1
0 0

)
,

Q̄L = ηp

(
0 1
0 0

)
, Q̄R =

ηp

x+p

(
0 0

−1 0

)
,

(B.1)
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where

ηp =

√
ih
2

(x−p − x+p ). (B.2)

Similarly, the R representation acts on the basis
(
|ψR

p 〉, |φR
p〉
)
, and the supercharges take the

form

QL =
ηp

x−p

(
0 0

−1 0

)
, QR = ηp

(
0 1
0 0

)
,

Q̄L =
ηp

x+p

(
0 −1
0 0

)
, Q̄R = ηp

(
0 0
1 0

)
.

(B.3)

For real momentum p, both the L and R representations are unitary.
In the following subsections we will consider states created as tensor products of funda-

mental representations. It will then be important to take into account the non-trivial coproduct
as discussed in [14, 19].

B.2. LL bound states

Let us start working in the basis
(
|φL

p1
φL

p2
〉, |φL

p1
ψL

p2
〉, |ψL

p1
φL

p2
〉, |ψL

p1
ψL

p2
〉
)
, and apply a similarity

transformation using the matrix

U =
1√

η2
p1
+ η2

p2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
η2

p1
+ η2

p2
0 0 0

0

√
x+p1

x−p1

ηp2 −ηp1 0 0

0 ηp1

√
x−p1

x+p1

ηp2 0

0 0 0
√
η2

p1
+ η2

p2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(B.4)

In the new basis the L supercharges are

QL =
√
η2

p1
+ η2

p2

⎛⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

⎞⎟⎟⎠ , Q̄L =
√
η2

p1
+ η2

p2

⎛⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

⎞⎟⎟⎠ , (B.5)

and the R supercharges are
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Q̄R =
ηp1ηp2

x+p1x+p2

√
η2

p1
+ η2

p2

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

−x+p2

ηp1

ηp2

− x−p1

ηp2

ηp1

0 0 0√
x+p1

x−p1

(x−p1
− x+p2

) 0 0 0

0

√
x+p1

x−p1

(x−p1
− x+p2

) x+p2

ηp1

ηp2

+ x−p1

ηp2

ηp1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

QR =
ηp1ηp2

x−p1
x−p2

√
η2

p1
+ η2

p2

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −x−p2

ηp1

ηp2

− x+p1

ηp2

ηp1

√
x−p1

x+p1

(x+p1
− x−p2

) 0

0 0 0

√
x−p1

x+p1

(x+p1
− x−p2

)

0 0 0 x−p2

ηp1

ηp2

+ x+p1

ηp2

ηp1

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(B.6)

For real p1 and p2 we have (x+p1
)∗ = x−p1

and (x+p2
)∗ = x−p2

, so that U† = U is unitary and

Q†
L = Q̄L and Q†

R = Q̄R.
Symmetric BPS state. Let us now set

x+p1
= X+

p , x−p2
= X−

p , x−p1
= x+p2

= Xp. (B.7)

The supercharges are then

QL = ηp

⎛⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

⎞⎟⎟⎠ , Q̄L = ηp

⎛⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

⎞⎟⎟⎠ , Q̄R =
ηp

X+
p

⎛⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

⎞⎟⎟⎠ ,

(B.8)

and

QR = − ηp

X−
p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

√(
1

X+
p
− 1

Xp

)
(X−

p − Xp) 0

0 0 0

√(
1

X+
p
− 1

Xp

)
(X−

p − Xp)

0 0 0 −1
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(B.9)
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Since (x+p1
)∗ and (x+p2

)∗ are no longer equal to x−p1
and x−p2

, we no longer have that Q†
R equals

Q̄R. However, if we consider the closed subalgebra generated by the upper left 2 × 2 block of
each matrix we have

QL → ηp

(
0 0
1 0

)
, QR → ηp

X−
p

(
0 −1
0 0

)
,

Q̄L → ηp

(
0 1
0 0

)
, Q̄R → ηp

X+
p

(
0 0

−1 0

)
.

(B.10)

This is just a short representation with momentum p.
Anti-symmetric BPS state. If we instead set

x+p2
= X+

p , x−p1
= X−

p , x+p1
= x−p2

= Xp (B.11)

we find

QL = ηp

⎛⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

⎞⎟⎟⎠ , Q̄L = ηp

⎛⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

⎞⎟⎟⎠ , QR =
ηp

X−
p

⎛⎜⎜⎝
0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠ ,

(B.12)

and

Q̄R =
ηp

X+
p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
1 0 0 0√(

1
X−

p
− 1

Xp

)
(X+

p − Xp) 0 0 0

0

√(
1

X−
p
− 1

Xp

)
(X+

p − Xp) −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(B.13)

In this case the invariant submodule sits in the lower right corner where the charges are given
by

QL → ηp

(
0 0

−1 0

)
, QR → ηp

X−
p

(
0 1
0 0

)
,

Q̄L → ηp

(
0 −1
0 0

)
, Q̄R → ηp

X+
p

(
0 0
1 0

)
,

(B.14)

which, up to an irrelevant overall sign, is the same two-dimensional L representation we saw
above.
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B.3. LR bound states

Let us now consider the LR tensor product. We start with the basis (|φL
p1
φR

p2
〉, |φL

p1
ψR

p2
〉, |ψL

p1
φR

p2
〉,

|ψL
p1
ψR

p2
〉), and apply a similarity transformation using

U =
1√

η2
p1
+

η2
p2

x+p2
x−p2

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
η2

p1
+

η2
p2

x+p2x−p2

0 0 0

0 −

√
x−p1

x+p1

ηp2

x+p2

−ηp1 0

0 ηp1 −

√
x−p1

x+p1

ηp2

x−p2

0

0 0 0

√
η2

p1
+

η2
p2

x+p2x−p2

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B.15)

Note that U is unitary for real p1 and p2. The supercharges in the new basis are

QL =

√
η2

p1
+

η2
p2

x+p2x−p2

⎛⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

⎞⎟⎟⎠ , Q̄L =

√
η2

p1
+

η2
p2

x+p2x−p2

⎛⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

⎞⎟⎟⎠ ,

(B.16)

and

Q̄R =
ηp1ηp2√

η2
p1
+

η2
p2

x+p2
x−p2

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1

x+p1

ηp1

ηp2

+
x−p1

x+p1

1
x+p2

ηp2

ηp1

√
x−p1

x+p1

(
1 − 1

x−p1
x−p2

)
0

0 0 0

√
x−p1

x+p1

(
1 − 1

x−p1
x−p2

)
0 0 0 − 1

x+p1

ηp1

ηp2

−
x−p1

x+p1

1
x+p2

ηp2

ηp1

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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QR =
ηp1ηp2√

η2
p1
+

η2
p2

x+p2
x−p2

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
1

x−p1

ηp1

ηp2

+
x+p1

x−p1

1
x−p2

ηp2

ηp1

0 0 0√
x+p1

x−p1

(
1 − 1

x+p1x+p2

)
0 0 0

0

√
x+p1

x−p1

(
1 − 1

x+p1x+p2

)
− 1

x−p1

ηp1

ηp2

−
x+p1

x−p1

1
x−p2

ηp2

ηp1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(B.17)

Again this representation is unitary for real p1 and p2.
Symmetric BPS state. Let us set

x+p1
=

1
x+p2

= Xp, x−p1
= X−

p , x−p2
=

1
X+

p
. (B.18)

We get

QL = ηp

⎛⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

⎞⎟⎟⎠ , Q̄L = ηp

⎛⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

⎞⎟⎟⎠ , QR =
ηp

X−
p

⎛⎜⎜⎝
0 0 0 0

−1 0 0 0
0 0 0 0
0 0 1 0

⎞⎟⎟⎠ ,

(B.19)

and

Q̄R = ηp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
X+

p

√(
1

X+
p
− 1

X

)(
1
X
− 1

X−
p

)
0

0 0 0

√(
1

X+
p
− 1

X

)(
1
X
− 1

X−
p

)
0 0 0

1
X+

p

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(B.20)

The upper left block reduces to a short fundamental L representation.
Instead of the condition (B.18) we can also set

x+p1
=

1
x+p2

=
1

Xp
, x−p1

=
1

X+
p

, x−p2
= X−

p , (B.21)

which results in a short R sub-representation. Formally, the conditions (B.18) and (B.21) are
related by a simple relabelling X±

p → 1/X∓
p , Xp → 1/Xp. However, the physical interpretation is

different. In particular, if we assume that the bound state lives in the physical region |X±
p | > 1,
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then the L sub-representation has |x±p1
| > 1 and |x±p2

| < 1, while the R sub-representation has
|x±p1

| < 1 and |x±p2
| > 1.

Anti-symmetric BPS state. If we instead set

x−p1
=

1
x−p2

= Xp, x+p1
= X+

p , x+p2
=

1
X−

p
. (B.22)

We get

QL = ηp

⎛⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

⎞⎟⎟⎠ , Q̄L = ηp

⎛⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

⎞⎟⎟⎠ , Q̄R =
ηp

X+
p

⎛⎜⎜⎝
0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠ ,

and

QR = ηp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

− 1
X−

p
0 0 0√(

1
X+

p
− 1

X

)(
1
X
− 1

X−
p

)
0 0 0

0

√(
1

X+
p
− 1

X

)(
1
X
− 1

X−
p

)
1

X−
p

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.23)

The lower right block reduces to a fundamental L sub-representation. As above, we find an R
representation instead if we send X±

p → 1/X∓
p and Xp → 1/Xp.

Appendix C. Spin-chain bound states

As a toy model for bound states let us consider a one-dimensional infinite lattice, with a nilpo-
tent creation operator J†

n which creates an excitation on site n, and short-range interactions. A
wave function describing two excitations with momentum p1 and p2, with p1 > p2 takes the
form

Ψ(p1, p2) = A(p1, p2)
∑

n1<n2

(
ei(p1n1+p2n2) + S(p1, p2) ei(p1n2+p2n1)

)
J†

n1
J†

n2
. (C.1)

In the above expression, the first term describes an incoming wave and the second term an
outgoing wave. A(p1, p2) is a normalisation factor and S(p1, p2) gives the scattering phase. We
now continue the momenta to complex values and introduce

p1 =
p
2
+ iq, p2 =

p
2
− iq, m =

n2 + n1

2
, r =

n2 − n1

2
. (C.2)

Since n1 < n2 we have that r > 0. The wave function can now be written as23

Ψ(p1, p2) = A(p1, p2)
∑
m,r

eipm
(
e2qr + S(p1, p2)e−2qr

)
J†

n1
J†

n2
. (C.3)

23 To be fully correct one needs to be careful about the summation ranges in the following expression. However these
subtleties play no role in the simple discussion here.
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If the real part of q is non-zero, either the first or second term in the above sum diverges for
large r.

• If Req > 0, the incoming wave is divergent. In order to have a normalisable wave function
we need to set A(p1, p2) = 0. However, this leads to a vanishing wave function unless
S(p1, p2) has a pole at this location.

• If Req < 0, the outgoing wave is divergent, and the wave function can only be normalisable
if S(p1, p2) = 0.

In either case, the resulting bound state wave function takes exactly the same form,24 and
describes a localised wave packet moving with momentum p.

From the above discussion we conclude that a simple pole of the scattering phase can corre-
spond to a physical bound state only if the imaginary part of the momentum of the first particle
is positive.

Note that the picture of a localised wave packet consisting of two excitations travelling
with the same momentum is simplest when p and q are both real. Let us consider the two-
particle bound state in the LL sector of AdS3 discussed in the main text. The two excitations
are described by x± and y±, satisfying

x+ +
1

x+
− x− − 1

x−
=

2i
h

= y+ +
1

y+
− y− − 1

y−
(C.4)

and

x+ = y−, z+ = y+, z− = x−, (C.5)

where we introduced the parameters z± to describe the bound state. For real bound state
momentum p we can parametrise the bound state by

z± =
2 +

√
4 + 4h2 sin2 p

2

2h sin p
2

e±
ip
2 . (C.6)

Writing the momenta of the two fundamental excitations as

p1 = −i log
x+

x−
=

p
2
+ iq, p2 = −i log

y+

y−
=

p
2
− iq, (C.7)

we find that q is real for

h <
cos p

2

sin2 p
2

. (C.8)

As long as the coupling is small enough, q is purely real and all parameters x+ (and thus y−) sits
on the real line outside the unit circle. However, if we keep the momentum p fixed and increase
the coupling constant, x+ at some point hits the unit circle and move off the real line, which
means that q acquires an imaginary part.25 When this happens the bound state momentum is
no longer evenly divided between the two fundamental excitations. However, the bound state
condition discussed above still holds.

24 Switching the sign of q exchanges p1 and p2 and hence the incoming and outgoing part of the wave function. In
this simple example we consider two identical excitations, which means that the two bound states are identical. This
would not necessarily be the case if we considered a model with excitations carrying additional quantum numbers.
25 For a discussion of this phenomena in the context of string theory on AdS5 × S5 see reference [33].
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