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Abstract

We consider the problem of determining the noncompact real forms of maximal
reductive subalgebras of complex simple Lie algebras. We briefly describe two
algorithms for this purpose that are taken from the literature. We discuss appli-
cations in theoretical physics of these embeddings. The supplementary material
to this paper contains the tables of embeddings that we have obtained for all real
forms of the semisimple Lie algebras of rank up to 8.
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1. Introduction

The classification of maximal reductive subalgebras of exceptional and classical complex Lie
algebras is well known. A systematic study started with the work of Dynkin [Dyn52a, Dyn52b].
Subsequently, it was developed in a number of works, such as [LG72, Min06, dG11]. For
what concerns non-compact real forms, the maximal reductive subalgebras of exceptional and
classical Lie algebras which give rise to symmetric embeddings are listed e.g. in table 9.7 of
[Gil06], which reports results taken from a rather vast literature (see the references therein).
On the other hand, the non-compact real forms of maximal, semisimple (reductive) subalge-
bras of exceptional Lie algebras which give rise to non-symmetric embeddings are studied in a
number of papers scattered in works of mathematics and of theoretical physics, which are not
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easily collected; for instance, in the high-energy physics literature (Maxwell-Einstein-scalar
theories, possibly endowed with some amount of local supersymmetry), some maximal subal-
gebras giving rise to non-symmetric embeddings have been considered in [AFMTO0S, FMT12,
FMZ13]. In the mathematical literature Gray [Gra72] classified the real forms of the maxi-
mal reductive subalgebras that arise as fixed point subalgebras of automorhisms of order three
(overlooking two cases, see section 3.1). Komrakov [Kom90] also classified all real forms of
the maximal (non-symmetric) embedding A4 & A4 C Eg, and he also carried out a classification
of the maximal S-subalgebras of exceptional real Lie algebras.

Recently algorithms, together with their implementations, have been developed to compute
the real forms of embeddings of complex semisimple Lie algebras, [DFdG15, FAG15]. How-
ever, a classificatory and exhaustive approach was not pursued in these papers. In the present
paper, by developing and systematically applying these techniques we aim at obtaining the
complete list of noncompact real forms of embeddings of maximal reductive subalgebras of
the simple complex Lie algebras of ranks up to 8.

Some remarks to clarify our aim are in order. Firstly, with a real form of an embedding of
complex Lie algebras we mean a pair of real forms a, g of complex reductive Lie algebras a“, g¢
such that a® C g and a C g. Secondly, it is possible to have a pair of complex semisimple (or
reductive) Lie algebras a® C g° with real forms a, g such that a is maximal in g without a“
being maximal in g°. In fact, Komrakov [Kom90] has a list of cases where that happens. We do
not quite understand this list (for example, the cases appearing under item a) in the cited paper
seem to be maximal reductive subalgebras, and also appear in our tables), nor do we have
methods to detect those cases independently. Therefore we restrict to listing the real forms
of embeddings of the maximal complex reductive subalgebras of complex semisimple Lie
algebras.

The second part of the paper has the tables that we obtained containing the maximal reduc-
tive subalgebras of the noncompact simple real Lie algebras of rank up to 8. These subalgebras
are also contained, in explicit form, in the latest version of the CoReLG package for GAP4
([DFdG19]).

The remainder of this paper is divided in a few sections. In section 2 we describe the max-
imal reductive subalgebras of the simple complex Lie algebras. Section 3 gives an overview
of some applications of real embeddings of reductive Lie algebras in high-energy theoretical
physics. After that we have section 4 giving a brief overview of the computational meth-
ods that we used to obtain real forms of complex embeddings. The supplementary mate-
rial to this paper has the tables of those real forms for the simple Lie algebras of rank up
to 8.

2. Maximal reductive subalgebras of complex semisimple Lie algebras

In this section we describe the complex embeddings of which we compute the real forms.

Let g¢ be a complex simple Lie algebra. After Dynkin [Dyn52b], a subalgebra a® C g¢ is
said to be regular if there is a Cartan subalgebra h° of g© with [, a“] C a‘. Such a subalgebra
is spanned by root spaces with respect to h¢ along with h N a. A subalgebra of g¢ is called an
R-subalgebra if it is contained in a proper regular subalgebra of g°. A subalgebra that is not an
R-subalgebra is called an S-subalgebra.

Dynkin showed that every non-semisimple subalgebra of g¢ is an R-subalgebra ([Dyn52b],
theorem 7.3). Hence S-subalgebras are necessarily semisimple. So the maximal reduc-
tive S-subalgebras coincide with the maximal semisimple S-subalgebras. These have been
classified by Dynkin [Dyn52a, Dyn52b], and are also contained in the lists obtained
in [dG11].
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Table 1. Maximal reductive non-semisimple subalgebras of the simple Lie algebras.
Here T, denotes a 1-dimensional center.

Type Max reductive Type Max reductive

A, Avy+A, i +Ty D, A+ T
1<k<n—-1 D, +T

B, B, 1 +T Es Ds + T,

C, A+ T E; E¢+ Ty

Now we consider the regular maximal reductive subalgebras. Let A be a set of simple roots
of the root system of g° with respect to a Cartan subalgebra h* C g°. Furthermore, let § denote
the highest root of the root system and write

0= Znaa

acA

where the n,, are positive integers.

Lete,, f, (for a in the root system of g°) be elements spanning the root spaces corresponding
to o and —a respectively. Let &, be a scalar multiple of [e,,f,] such that [A,, e,] = 2e,. Let
a € A. Then by g°(«) we denote the subalgebra generated by es, f3 for 5 € A\{a} along
with e, f5. By g°[«] we denote the subalgebra generated by eg, f3 for 5 € A\{a} along with
€as ho. Then g°(a) is a maximal subalgebra if and only if n, is prime (this statement goes
back to [BDS49], see also [GG78], chapter 8). The g°(«v) are semisimple, so they are maximal
reductive subalgebras. On the other hand, a maximal reductive, non semisimple subalgebra is
contained in a g°[«]. The latter has a unique (up to conjugation) maximal reductive subalgebra,
which we denote by g°[«]’; it is generated by es, f3 for § € A\{a} along with &,. However,
it is possible that g°[a]’ is contained in a g°(3). This situation can be characterized as follows.
Consider the Dynkin diagram of the set of roots A U {—4} (this is called the extended Dynkin
diagram). Now g[a]’ is contained in a g°(3) if and only if the diagram obtained by removing
the node corresponding to « is not the Dynkin diagram of g¢. (Indeed, if the latter diagram is
not the Dynkin diagram of g° then g°(«) is not equal to g¢ and g°[a]” C g°(«). Conversely, if the
mentioned diagram is the Dynkin diagram of g¢ then none of the g(3) contain the semisimple
part of g°[a]’.) By inspection this then leads to the maximal reductive R-subalgebras listed in
table 1.

Remark 2.1. The subalgebras of table 1 are also given by Dynkin in [Dyn52b], table 12a.
This table lists the regular semisimple subalgebras a® C g such that no semisimple regular sub-
algebra a¢ exists with a® C a C g°. However, in one case this appears to be not quite correct.
In fact, for the embeddings B,—; C B, we have the chain

B, , CD, CB,.

Here both subalgebras B,,_| and D,, are regular, but they are not normalized by the same Cartan
subalgebra.

We also have the dual chain D,_; C B,—; C D,. But here, obviously, B,_; is not regular
in D,.

Remark 2.2. Here we point out two oversights that are present in some places in the litera-
ture. Firstly, in various works (such as [MP81, Sla81, Yam15]), the subalgebraA; @& A; G A is
reported to be maximal in Dg, while actually it is not. We have that A} & A; & A, is a maximal
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(non-symmetric) subalgebrain A; @& Cs, which in turn is maximal (and non-symmetric) in De.
This has been noted in the tables in [LG72].

Secondly, the maximal S-subalgebra Cs in C; (giving rise to a non-symmetric embedding) is
not listed in some works (such as [MP81, Sla81, Yam15]), whereas it is considered in [Dyn52a],
[LG72], table 7. All in all, the existence of a maximal Cs in C7 is a consequence of the anti-
self-conjugation (i.e., symplecticity) of the irreducible representation 14’ = A36 of C;. It is
here worth recalling that the action of C3 on the 14 is ‘of type E;” [Bro69]. In [Kac80] it
has been proved that such action has a finite number of nilpotent orbits, with one-dimensional
ring of invariant polynomials generated by a quartic homogeneous polynomial. The latter is
related to the square of the Bekenstein—Hawking entropy of extremal black hole solutions
to the ‘magic’ Maxwell-Einstein A" = 2 supergravity having the split real form sp(6, R) of
C5 as electric-magnetic duality symmetry [GST83] (see [BFKMO08] for a review and a list of
references).

3. Physical applications of real embeddings of reductive Lie algebras

3.1. Super-Ehlers embeddings, and their non-supersymmetric versions

The non-compact real form sl(5,R) @ sl(5,R) C Egg, of the maximal (non-symmetric)
embedding A4 & A4 C Eg is known in supergravity as an example of ‘super-Ehlers’ embed-
ding, concerning the maximally supersymmetric Einstein gravity in 7 space-time dimensions.
Super-Ehlers embeddings, which unify the Ehlers gravity embeddings with the global electric-
magnetic duality symmetries of Einstein—Maxwell theories (at least in the cases with sym-
metric scalar manifolds), have been introduced and studied, in presence of underlying (local)
supersymmetry, in [FMT12]; in particular, in the appendices of [FMT12] a general proof of
existence of such regular and rank-preserving embeddings, which are non-symmetric in most
cases, is given, within an approach completely different from the ones employed in the present
paper. The general structure of super-Ehlers embeddings is the following (with 3 < D < 11
denoting the number of Lorentzian space-time dimensions):

gpn ®sl(D—2,R) C g3 3.1

where gp_y is the electric-magnetic duality Lie algebra of D-dimensional Maxwell-Einstein
theories endowed with 2/ local supersymmetries (corresponding, in D = 3, to A -extended
supergravity), and sI(D — 2, R) is the Ehlers symmetry Lie algebrain D Lorentzian dimensions.
In presence of supersymmetry, super-Ehlers embeddings are listed and classified in [FMT12]
(for the D = 5 case, see also [FMZ13]). Note that

Ese) @ sl(3,R) C Eg),
Eg—26) D sl(3,R) C Eg_24)

are super-Ehlers embeddings for ' = 16 and V' = 4 supergravity theories in D = 5, respec-
tively. (These two embeddings have been overlooked in [Gra72].) On the other hand, non-
supersymmetric Maxwell-FEinstein theories (coupled to non-linear sigma model of scalar
fields) in various dimensions are not considered in [FMT12], but nevertheless they display
some ‘non-supersymmetric Ehlers embeddings’; whose some examples list as follows:

50(6,6) B sl(2,R) C E7(7); (3.2)
516, R) @ sl(3,R) C Eq(7; 3.3)
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516, R) @ 512, R) C Ege; (3.4)
sI(3,R) @ sl(3,R) @ sl(3,R) C Eg). (3.5)

These embeddings have been discussed in the so-called non-supersymmetric magic
Maxwell-Einstein theories in [MPRR17] (see also [MR19]), in which the role of the Ehlers
symmetry and related truncations has been highlighted.

3.2. Cubic Jordan algebras, their symmetries and related embeddings

Various embeddings reported in the tables of the present paper have an interpretation in terms
of symmetries of cubic Jordan algebras. Such symmetries are given by the et (derivations),
sty (reduced structure), conf (conformal) and qconf (quasi-conformal) Lie algebras associated
to a given cubic Jordan algebra. The quasi-conformal realizations of non-compact groups were
discovered by the authors of [GKNO1] and were further developed and applied in [GNPWO6,
GP10, GP09, GNPP08, GNPWO07]. The conformal groups associated with Jordan algebras
were studied much earlier in [Gun75, Gun93]. Over the reals R, the Lie algebras strg , conf
and qconf respectively correspond to the electric-magnetic duality (U-duality®) Lie algebras
of some Maxwell-Einstein supergravity theories in D = 5, 4, 3 Lorentzian space-time dimen-
sions (cfr. e.g. [GP10], and the references therein; in D = 3 all vectors need to be dualized
into scalars); such symmetries are non-linearly realized on the scalars, while vectors do sit
in some linear representations of them. Jordan algebras, such as J;HI“‘, J;C“' and Ra Ty, with
m (or n) # 1 and 5, are associated to non-supersymmetric models [MPRR17, MR19]. When
considering simple cubic Jordan algebras, all the aforementioned related Lie algebras fill the
first (der), second (stry), third (conf) and fourth (qconf) rows of the relevant magic square of
Freudenthal-Rozenfeld-Tits [Fre63, Tit66, Roz56], and the following maximal embeddings
hold (see [CCM15], and references therein):

et C strp; 3.6)

oer @ sl(2,R) C conf; 3.7

strg @ so(1, 1) C conf; (3.8)
conf @ sl(2, R) C qeonf; 3.9)
strg @ sI(3,R) C qeonf; (3.10)
ver @ Gopy C qeonf. (3.11)

Within the physical interpretation of such symmetries as U-duality Lie algebras, the com-
muting so(1, 1) in (3.8) can be regarded as the Kaluza—Klein compactification radius of
the S'-reduction D = 5 — 4; alternatively, such an so(1, 1) can also be conceived as the
Lie algebra of the pseudo-Kéhler connection of the pseudo-special Kéhler (and pseudo-
Riemannian) symmetric coset® g—¢ty, obtained from mcf(tg‘iro) by applying the inverse
R*-map pertaining to a timelike compactification D =s+¢t =4+ 1 — 4 4+ 0 where s and
t respectively denote the number of spacelike and timelike dimensions [dWV VP93, ACO09,

CLL + 98]. On the other hand, the commuting s[(2, R) in (3.9) can be identified with the Ehlers

3 Here U-duality is referred to as the ‘continuous’ symmetries of [CJ78, CJ79]. Their discrete versions are the U-duality
non-perturbative string theory symmetries introduced in [HT95].

6 As intuitive, the names starting with a capital letter denote the Lie groups whose Lie algebra is the same name starting
lowercase. Moreover, ‘mcs’ denotes the maximal compact subgroup.
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Table 2. The single-split MS L3(A;,B) [GST83] (see [CCMI15] for details)
R C H O

R SO@3) SU@3) USp(3)  Fus
C, SLB,R) SL(3,C) SLGB.H) Eg 6
H, Sp6,R) SU@B,3) SO*(12) Ey»s
Oy Fyy Eg) Eqs) Eg(—24)

Table 3. The double-split MS L3(A,, B) [BS03] (see [CCM15] for further details)

R CS H.Y @.Y
R S0(3) SL(3,R) Sp3,R)  Fuw
C, SL3,R) SL3,R)xSLB3,R) SLO6,R)  Ege
H;  Sp(6,R) SL(6,R) SO(6,6) Ey
O,  Fy Eg) Eray  Ege)

symmetry arising from the S'-reduction D = 4 — 3; such an sl(2, R) can also be interpreted as

. _ . . R . . QConf
the connection of the para-quaternionic (and pseudo-Riemannian) symmetric coset =5 SLOR)”
Conf

obtained from mes(Cond) by applying the inverse c¢*-map pertaining to a timelike compactification
D=(@3,1)— (3, 0) [BMGS88, CFG89, CLL + 98]. As the embeddings (3.6)—(3.11) are
obtained by moving along the columns of the relevant (real form of the) Magic Square (for
a fixed row entry), another class of embeddings can be obtained by moving along the rows
of the relevant Magic Square (for a fixed column entry). In the symmetric (real forms of the)
rank-3 Magic Square, as the double-split £3(Ay, By) given in table 3, these embeddings trivially
coincide with (3.6)—(3.11), but their intepretation corresponds to the restriction from one (divi-
sion A or split A,) algebra to a smaller one. For the non-symmetric, single-split Magic Square
L3(A;, B) reported in table 2, different maximal embeddings hold true, which are different
from the ones given in (3.6)—(3.11); namely (G5 = Ga(_14)):

JF) COUS) (3.12)

su(2) B oJ5) C AU (3.13)
w(l) oY) C 3 (3.14)
su(2) ©o(E) C o) (3.15)
su(3) @ o(JS) C aUY) (3.16)
G @ oJ5) C U3 (3.17)

(where ? can be each of der, stry, conf, geonf).
Similar embeddings holds for simple Lorentzian cubic Jordan algebras (see [CCM15]).
3.3. Semisimple subalgebras of simple Jordan algebras, and their symmetries

Another remarkable class of embedding stems from the relation between simple cubic Jor-
dan algebras [JVNW34] J4 or J;% and some elements of the (bi-parametric) infinite sequence
of semi-simple Jordan algebras R ¢ I';,,, mentioned above, exploiting the Jordan-algebraic
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isomorphisms J4 22 Ty 441 (2 Tyi11) and J5° 2 Tyyap1 47211, Where g == dimpA = 8,4,2, 1
for A=0,H,C,R, and g :=dimzA = 8§8,4,2 for A, = O, H, C, (see e.g. appendix A of
[GP10]—and references therein—for an introduction to division and split algebras). Indeed,
the following (maximal, rank-preserving) Jordan-algebraic embeddings hold:

JSOROAZROT, 441 (3.18)

I OR®I 2RO, 1001 (3.19)

Thus, one can consider their consequences at the level of symmetries of cubic Jordan algebras
defined over the corresponding algebras, obtaining:

YR B I DA, COUL) (3.20)
UR DIy ® A, COJE) (3.21)

(where as above 0 can be each of det, stry, conf, qeonf).
Note the maximal nature of the embeddings (3.20)—(3.21), as well as the presence of the
commuting algebras A, and A,, defined as follows:

Ay = tri(g) © so(q) = D, s0(3), s0(2), & forg=8,4,2,1; (3.22)

A, = tii(g) & 50(q) = @, sl(2,R), so(1,1) for g = 8,4,2, (3.23)

where tri and so respectively denote the triality and orthogonal (norm-preserving) symme-
tries (and they are tilded when pertaining to split algebras; see e.g. [CFMZ10, CCM13], and
references therein). Analogous results hold for Lorentzian Jordan algebras. Within the phys-
ical (U-duality) interpretation, 4, and A, are consistent with the properties of spinors in
g + 2 dimensions, with Lorentzian signature (¢, s) = (1, g + 1) respectively Kleinian signature
(t,s) = (q/ 24+ 1,9/2+ 1); indeed, the electric-magnetic (U-duality) symmetry Lie algebra in
D = 6 (Lorentzian) space-time dimensions is so (1,¢ + 1) ® A, for A-based theories (which
are endowed with minimal, chiral (1, 0) supersymmetry) and so (¢/2 + 1,¢/2+ 1) & qu for
Ay -based theories (which are non-supersymmetric for ¢ = 2,4, and endowed with maximal,
non-chiral (2, 2) supersymmetry for g = 8); cfr. e.g. [KT83], [GSS11] (and references therein)
and [MNY11] for further discussion.

4. Computational methods

In this section we briefly describe the computational methods that we used to construct the real
forms of the maximal semisimple (or reductive) subalgebras of the simple Lie algebras of ranks
up to 8. We have one procedure for constructing the regular subalgebras (taken from [DFdG15])
and one procedure for the S-subalgebras (from [FdAG15]). First we recall some general notation,
and subsequently describe the methods in two subsections. Our main reference for the general
theory is [Oni04].

By ¢ € C we denote the imaginary unit. Let g° be a complex simple Lie algebra. An anti-
involution of g° is a map 7 : g° — g with n(x +y) = nx) + n(©), n(ux) = iox, n([x,y]) =
[17(x), n(], n(n(x)) = x for all x,y € g¢, u € C. If n: g° — g is any map then we set g; =
{x € g°In(x) = x}.
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A real form g of g is given by three maps, 7, 0,60 : g° — g where

e 7,0 are anti-involutions and @ is an involution,

e l=710=0T,

e g¢ is compact and g = g,

e setting £ = {x € g|0(x) = x},p = {x € g|f(x) = —x}; then g = £ @ p is a Cartan decom-
position of g (note that #(g) = g because # commutes with ¢); the restriction of 6 to g is
called a Cartan involution of g,

e set u = g¢, then 6 leaves u invariant so that u = u; @ u_; (the eigenspaces of ¢ with
eigenvalues 1) and € = uy, p = tu_;.

Let a C g be a semisimple subalgebra and a“ = a + ¢a, which is a semisimple subalgebra
of g°. Then a is a real form of the complex subalgebra a“. So a has a Cartan decomposition
a =€, ®py It follows from the Karpelevich—Mostow theorem ([Oni04], corollary 1 of
section 6) that a is conjugate by an inner automorphism to a subalgebra a’ such that ¢, C ¢
and py C p. Equivalently, # maps o' to itself, and its restriction to a’ is a Cartan involution of
a’. So we may restrict to finding 6-stable subalgebras of g.

4.1. Real forms of regular subalgebras

We say that a subalgebra a of g is regular if it is normalized by a Cartan subalgebra § of g.
If we want to stress the particular Cartan subalgebra that we are referring to we say that a is
h-regular. In that case a“ is spanned by root spaces of g¢ (relative to h°) along with a“ N h°. By
P (h, a) we denote the set of roots involved in this. It is a subset of the root system of g° with
respect to h¢.

Let G° denote the adjoint group of g¢. This group can be characterized in several ways.
Firstly it is the connected algebraic subgroup of GL(g®) with Lie algebra adg®. Secondly it is
the group generated by all elements exp(adx) where x € g€ is nilpotent. Thirdly, it is the identity
component of Aut(g®). By G we denote the group consisting of all g € G such that g(g) = g. If
we represent elements of G by their matrices with respect to a basis of g then G = G°(R), the
group of all elements of G° with coefficients in R. Let G be the identity component of G. In
this section we outline how to obtain the regular semisimple subalgebras of g up to conjugacy
by Go.

First of all, Dynkin ([Dyn52b]) devised an algorithm to obtain the regular semisimple
subalgebras of g up to conjugacy by G° (see [Gral7], section 5.9 for a recent account). We
can use this algorithm to obtain all h-regular semisimple subalgebras up to G°-conjugacy,
for a fixed Cartan subalgebra h° of g°. We have that two h-regular semisimple subal-
gebras af, aj of g are G°-conjugate if and only if W(h¢, af), U(h, a5) are W(g, h°)-
conjugate, where the latter denotes the Weyl group of the root system of g with respect
to h°.

If one is only interested in subalgebras of g° then it suffices to consider just one Cartan
subalgebra as they are all conjugate under G°. In general the real form g has more Cartan sub-
algebras that are non-conjugate. Sugiura ([Sug59]) proved that g has a finite number of Cartan
subalgebras up to Gy-conjugacy. In [DFG13] Sugiura’s method was made into an algorithm
for listing the Cartan subalgebras of g up to conjugacy by Gy.

Let a be a regular semisimple subalgebra of g. Then the normalizer ng(a) = {x € g|[x,a] C
a} is reductive. Therefore it has a unique maximally noncompact Cartan subalgebra (that
is, a Cartan subalgebra whose intersection with p has maximal dimension, (see [KnaO2],
proposition 6.61). We say that a is strongly b-regular if b is a maximally noncompact Cartan
subalgebra of ny(a).
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Let b be a Cartan subalgebra of g. Set N = {g € Go|g(h) = b} and Z = {g € Gy|g(x) =
xforallx € h}. Then W(g,h) = N/Z is called the real Weyl group of §. It can naturally be
identified with a subgroup of W(g, h°), (see [Kna02], section 7.8). There are algorithms to
compute W(g, h), see [DG19].

We have the following criterion: let a;, a, be two strongly h-regular semisimple subalgebras
of g. They are Gy-conjugate if and only if W(h<, af), U(h, a$) are conjugate under W(g, bh) (see
[DFdG15], proposition 24). This gives an immediate method for deciding whether a;, a, are
Go-conjugate.

Now the algorithm for obtaining all regular semisimple subalgebras of g (up to Gy-
conjugacy) runs as follows:

(a) Compute the Cartan subalgebras of g (up to Gy-conjugacy). For each obtained Cartan
subalgebra h perform the following steps:
(1) Compute the h°-regular subalgebras of g using Dynkin’s algorithm. For each
obtained subalgebra a¢ perform the following steps:
(1) Compute the stabilizer S of U(hH°, a“) in W = W(g, h°). Compute a list of
representatives wy, . . ., w; of the double cosets W(g, h)w;S in W.
of g with U(H, af)

c

(i1) Construct the H-regular subalgebras af
= w; - U(h°, a°).

(iii) Throw away the af that are not o-stable.

(iv) Of the remaining ones compute a basis of a; = af N g, and throw away
those that are not strongly h-regular. Add the remaining ones to the final
list.

As before, let 6 denote the Cartan involution of g. The Cartan subalgebras found in the first
step are 0-stable (see the algorithm in [DFG13]). Therefore the subalgebras constructed by the
above procedure are automatically 6-stable as well ([DFdG15], proposition 21).

Note that the above algorithm is correct. Indeed, each h-regular semisimple subalgebra b¢
of g¢ that is G°-conjugate to a“ has W(h, b¢) = w - W(h©, a) for some a‘ from the initial list.
Furthermore, note that the w; - ¥(h°, a“) exhaust the images under W(g¢, h) of W(H¢, a“) up to
conjugacy by W(g, h).

4.2. Real forms of S-subalgebras

From section 2 we recall that a subalgebra of g¢ is called an S-subalgebra if it is not con-
tained in a proper regular subalgebra. For these subalgebras we have no method to list all real
forms in g up to conjugacy by Gy. Therefore we are more modest and consider the following
question. Let ¢ : g¢ < g be an embedding of semisimple complex Lie algebras and let g be a
real form of g°. Find (up to isomorphism) the real forms g of g such that (g) C g. Because
two real forms g, g’ of g° are isomorphic if and only if there is a ¢ € Aut(g®) with ¢(g) = ¢’
([Oni04], section 2, proposition 1) we may replace the given embedding € by ¢¢ for any
¢ € Aut(g®).

Let 6, 6 be Cartan involutions of g, g respectively. A classical theorem of Karpelevich states
that e(g) C g if and only if £ 0 0 = f o ¢ (see [OV94], theorem 3.7 of chapter 6). Here we
consider 6 and g to be given, and hence have to construct real forms g with Cartan involution
0 satisfying the mentioned condition. Our method is based on proposition 4.2.

Let o : g° — g° be the conjugation with respect to the real form g. Let u be a fixed com-
pact form of g¢ with corresponding conjugation 7 : g¢ — g¢ with o7 = 70. Set § = o. Then
the restriction of 6 to g is a Cartan involution of g. From [FdG15] we have the following
result.
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Proposition 4.1. Let g C g° be a real form of g° such that e(g) C g. Then there are a
compact form i C g° of g¢, with conjugation 7 : g¢ — g¢, and an involution 0 of §¢ such that

(a) e(u) C u,
(b) €0 = B¢,
(c) 7 = 70,

(d) there is a Cartan decomposition g = o JS, such that the restriction of 0 1o g is the
corresponding Cartan involution, and it = € @ 1p.

Conversely, if u C g is a compact form, with corresponding conjugation 7, and 9~ is an
involution of g¢ such that (a), (b) and (c) hold, then 0 leaves u invariant, and setting t= u,
p =iy (Where 1, is the k-eigenspace of 0), we get that g = tD p is a real form of §° with

e(g) Cg

To construct the real forms g the strategy is now the following. First we fix a compact form
uof g¢ and replace € by ¢e fora ¢ € Aut(g) in order to have e(u) C u. Secondly we construct
the space

A = {A € End(g")|A(ad(¢0(y))) = (ade(y))A forally € g°}.

(Note that a basis of A can be computed by solving a set of linear equatlons [FdG15] also has
a more efficient method to construct A.) Let 6 be an involution of §¢. Then €0 = ¢ if and only
if § € Aand

(adx)f = adf(x) for allx € g 4.1)

([FdG15], proposition 3.6). Hence A contains the maps 6. The conditions that 6 be an involu-
tion, (4.1), (c) are translated to polynomial equations on the coefficients of 6§ with respect to a
basis of .A. These polynomial equations are then studied and solved by means of the technique
of Grobner bases (see [CLO15]).

For the details of this procedure we refer to [FdG15]. But we do remark that if
e(g) C g for some real form g of g¢ then we get just one subalgebra of g. However, there
may be more subalgebras a C g such that a¢ is G°-conjugate to &(g¢), without a being
Go-conjugate to e(g). This method does not detect such a situation (unlike the method
for the regular case). Furthermore, there are cases in type D, for n even, where there
are subalgebras af, a C g that are not conjugate under G°, but are conjugate under an
outer automorphism. In these cases we just consider one of the corresponding embed-
dings in g° because changing the embedding £ to a ¢c may identify the subalgebras
af, as.

4.3. Implementation

We have implemented these methods in the computer algebra system GAP4 ([GAP18])
using the packages SLA ([dGGT19]) and CoReLG ([DFdG19]). The implementation of the
algorithm of section 4.1 is quite straightforward. For the procedure indicated in section 4.2 we
remark that the package SLA contains tables with the semisimple subalgebras of the simple
complex Lie algebras. The embeddings € are simply given by those tables.

ORCID iDs

Alessio Marrani ‘& https://orcid.org/0000-0002-7597-1050

10


https://orcid.org/0000-0002-7597-1050
https://orcid.org/0000-0002-7597-1050

J. Phys. A: Math. Theor. 53 (2020) 155203 W A de Graaf and A Marrani

References

[ACO9] Alekseevsky D V and Cortés V 2009 Geometric construction of the r-map: from
affine special real to special Kihler manifolds Commun. Math. Phys. 291
579-90
[AFMTOS8] Andrianopoli L, Ferrara S, Marrani A and Trigiante M 2008 Non-BPS attractors in 5d and
6d extended supergravity Nucl. Phys. B 795 428-52
[BDS49] Borel A and De Siebenthal J 1949 Les sous-groupes fermés de rang maximum des groupes
de Lie clos Comment. Math. Helv. 23 200-21
[BFKMO8] Bellucci S, Ferrara S, Kallosh R and Marrani A 2008 Extremal black hole and flux vacua
attractors Lect. Notes Phys. 755 115-91
[BMGS88] Breitenlohner P, Maison D and Gibbons G W 1988 Four-dimensional black holes from
Kaluza—Klein theories Commun. Math. Phys. 120 295
[Bro69] Brown R B 1969 Groups of type e7 J. Reine Angew. Math. 236 79—102
[BSO3] Barton C H and Sudbery A 2003 Magic squares and matrix models of Lie algebras Adv.
Math. 180 596—647
[CCM13] Cacciatori S L, Cerchiai B L and Marrani A 2013 Magic coset decompositions Adv. Theor.
Math. Phys. 17 1077-128
[CCM15] Cacciatori S L, Cerchiai B L and Marrani A 2015 Squaring the magic Adv. Theor. Math.
Phys. 19 923-54
[CFG89] Cecotti S, Ferrara S and Girardello L 1989 Geometry of type II superstrings and the moduli
of superconformal field theories Int. J. Mod. Phys. A 4 2475
[CFMZ10] Cerchiai B L, Ferrara S, Marrani A and Bruno Z 2010 Charge orbits of extremal black holes
in five dimensional supergravity Phys. Rev. D 82 085010
[CJ78] Cremmer E and Julia B 1978 The N=8 supergravity theory. 1. The Lagrangian Phys. Lett.
B 80 48
[CJ79] Cremmer E and Julia B 1979 The SO(8) supergravity Nucl. Phys. B 159 141-212
[CLL + 98] Cremmer E, Lavrinenko I V, Lu H, Pope C N, Stelle K S and Tran T A 1998 Euclidean
signature supergravities, dualities and instantons Nucl. Phys. B 534 40-82
[CLO15] Cox D A, Little J and O’Shea D 2015 Ideals, Varieties, and Algorithms: An Introduction to
Computational Algebraic Geometry and Commutative Algebra (Undergraduate Texts
in Mathematics) 4th edn (Cham: Springer)
[DFdG15] Dietrich H, Faccin P and de Graaf W A 2015 Regular subalgebras and nilpotent orbits of
real graded Lie algebras J. Algebra 423 1044-79
[DFdG19] Dietrich H, Faccin P and de Graaf W A Nov 2019 computation with real lie groups Version
1.53 https://gap-packages.github.io/corelg/ Refereed GAP package
[DFG13] Dietrich H, Faccin P and de Graaf W A 2013 Computing with real Lie algebras:
real forms, Cartan decompositions, and Cartan subalgebras J. Symbolic Comput. 56
27-45
[dG11] de Graaf W A 2011 Constructing semisimple subalgebras of semisimple Lie algebras J.
Algebra 325 416-30
[DG19] Dietrich H and de Graaf W A 2019 Computing the real Weyl group (arXiv:1907.01398
[math.RT])
[dGGT19] de Graaf W A and GAP Team T 2019 SLA, computing with simple lie algebras Version
1.5.2 https://gap-packages.github.io/sla/ Refereed GAP package
[dWVVPI93] de Wit B, Vanderseypen F and Van Proeyen A 1993 Symmetry structure of special
geometries Nucl. Phys. B 400 463—524
[Dyn52a] Dynkin E B 1952 Maximal subgroups of classical groups Trudy Moskov. Mat. Obshch
39-166
Dynkin E B 1957 Amer. Math. Soc. Transl 6 245-378 (Engl Transl)
[Dyn52b] Dynkin E B 1952 Semisimple subalgebras of semisimple Lie algebras Mat. Sbornik N.S.
30 349-462
Dynkin E B 1957 Amer. Math. Soc. Transl. 111-244 (Engl Transl)
[FdG15] Faccin P and de Graaf W A 2015 Constructing semisimple subalgebras of real semisim-
ple Lie algebras Lie Algebras and Related Topics (Contemp. Math. volume 652)
(Providence, RI: Amer. Math. Soc.) pp 75-89


https://doi.org/10.1007/s00220-009-0803-7
https://doi.org/10.1007/s00220-009-0803-7
https://doi.org/10.1016/j.nuclphysb.2007.11.025
https://doi.org/10.1016/j.nuclphysb.2007.11.025
https://doi.org/10.1007/bf02565599
https://doi.org/10.1007/bf02565599
https://doi.org/10.1007/978-3-540-79523-0_3
https://doi.org/10.1007/978-3-540-79523-0_3
https://doi.org/10.1007/bf01217967
https://doi.org/10.1007/bf01217967
https://doi.org/10.1016/s0001-8708(03)00015-x
https://doi.org/10.1016/s0001-8708(03)00015-x
https://doi.org/10.4310/atmp.2013.v17.n5.a4
https://doi.org/10.4310/atmp.2013.v17.n5.a4
https://doi.org/10.4310/atmp.2015.v19.n5.a1
https://doi.org/10.4310/atmp.2015.v19.n5.a1
https://doi.org/10.1142/s0217751x89000972
https://doi.org/10.1142/s0217751x89000972
https://doi.org/10.1103/physrevd.82.085010
https://doi.org/10.1103/physrevd.82.085010
https://doi.org/10.1016/0370-2693(78)90303-9
https://doi.org/10.1016/0370-2693(78)90303-9
https://doi.org/10.1016/0550-3213(79)90331-6
https://doi.org/10.1016/0550-3213(79)90331-6
https://doi.org/10.1016/s0550-3213(98)00515-x
https://doi.org/10.1016/s0550-3213(98)00515-x
https://doi.org/10.1016/j.jalgebra.2014.10.005
https://doi.org/10.1016/j.jalgebra.2014.10.005
https://gap-packages.github.io/corelg/%20https://gap-packages.github.io/corelg/
https://doi.org/10.1016/j.jsc.2013.05.007
https://doi.org/10.1016/j.jsc.2013.05.007
https://doi.org/10.1016/j.jalgebra.2010.10.021
https://doi.org/10.1016/j.jalgebra.2010.10.021
https://arxiv.org/abs/1907.01398
https://gap-packages.github.io/sla/%20https://gap-packages.github.io/sla/
https://doi.org/10.1016/0550-3213(93)90413-j
https://doi.org/10.1016/0550-3213(93)90413-j

J. Phys. A: Math. Theor. 53 (2020) 155203 W A de Graaf and A Marrani

[FMT12] Ferrara S, Marrani A and Trigiante M 11 2012 Super-Ehlers in any dimension J. High
Energy Phys. JHEP(63)(068)
[FMZ13] Ferrara S, Marrani A and Bruno Z 2013 Jordan pairs, E6 and U-duality in five dimensions
J. Phys. A: Math. Theor. 46 065402
[Fre63] Freudenthal H 1963 Lie groups in the foundations of geometry Adv. Math. 1 145
[GAP18] 2018 GAP-groups, algorithms, and programming Version 4.10.0 https://gap-system.org
[GG78] Goto M and Frank D G 1978 Semisimple Lie algebras (Lecture Notes in Pure and Applied
Mathematics vol 38) (New York: Dekker)
[Gil06] Gilmore R 2006 Lie Groups, Lie Algebras and Some of Their Applications paperback
version edn (New York: Dover)
[GKNO1] Gunaydin M, Koepsell K and Nicolai H 2001 Conformal and quasi-conformal realizations
of exceptional Lie groups Commun. Math. Phys. 221 57-76
[GNPPO8] Gunaydin M, Neitzke A, Pavlyk O and Pioline B 2008 Quasi-conformal actions, quater-
nionic discrete series and twistors: SU(2, 1) and G»(2) Commun. Math. Phys. 283
169-226
[GNPWO06] Gunaydin M, Neitzke A, Pioline B and Waldron A 2006 BPS black holes, quantum attractor
flows and automorphic forms Phys. Rev. D 73 084019
[GNPWO07] Gunaydin M, Neitzke A, Pioline B and Waldron A 2007 Quantum attractor flows J. High
Energy Phys. JHEP09(2007)056
[GP09] Gunaydin M and Pavlyk O 2009 Quasi-conformal realizations of E(6)(6), E(7)(7), E(8)(8)
and SO(n+3,m+-3), N; =4 supergravity and spherical vectors Adv. Theor. Math. Phys.
13 1895-940
[GP10] Gunaydin M and Pavlyk O 2010 Spectrum generating conformal and quasi-conformal U-
duality groups, supergravity and spherical vectors J. High Energy Phys. JHEP(04)070
[Gra72] Gray A 1972 Riemannian manifolds with geodesic symmetries of order 3 J. Diff. Geom. 7
343-69
[Gral7] Willemde Graaf A 2017 Computation with linear algebraic groups Monographs and
Research Notes in Mathematics (Boca Raton, FL: CRC Press)
[GSS11] Gunaydin M, Samtleben H and Sezgin E 2011 On the magical supergravities in six
dimensions Nucl. Phys. B 848 62—89
[GST83] Gunaydin M, Sierra G and Townsend P K 1983 Exceptional supergravity theories and the
magic square Phys. Lett. B 133 72—-6
[Gun75] Gunaydin M 1975 Exceptional realizations of Lorentz group: supersymmetries and Leptons
Nuovo Cim. A 29 467
[Gun93] Gunaydin M 1993 Generalized conformal and superconformal group actions and Jordan
algebras Mod. Phys. Lett. A 8 1407-16
[HT95] Hull C M and Townsend P K 1995 Unity of superstring dualities Nucl. Phys. B 438
109-37
[JVNW34] Jordan P, von Neumann J and Wigner E P 1934 On an Algebraic generalization of the
quantum mechanical formalism Ann Math. 35 29-64
[Kac80] Kac V G 1980 Some remarks on nilpotent orbits J. Algebra 64 190-213
[Kna02] Knapp A W 2002 Lie Groups Beyond an Introduction (Progress in Mathematics vol 140)
2nd edn (Boston, MA: Birkhéuser)
[Kom90] Komrakov B P 1990 Maximal subalgebras of real Lie algebras and a problem of sophus Lie
Sov. Math. - Dokl. 41 269-73
[KT83] Kugo T and Townsend P K 1983 Supersymmetry and the division Algebras Nucl. Phys. B
221 357-80
[LG72] Lorente M and Gruber B 1972 Classification of semisimple subalgebras of simple Lie
algebras J. Math. Phys. 13 1639
[Min06] Minchenko A N 2006 The semisimple subalgebras of exceptional Lie algebras Trans.
Moskow Math. Soc. 236 225-69
[MNY11] Mkrtchyan R, Nersessian A and Yeghikyan V 2011 Hopf maps and Wigner’s little groups
Mod. Phys. Lett. A 26 1393-405
[MP81] McKay W G and PateraJ 1981 Tables of Dimensions, Indices, and Branching Rules for Rep-
resentations of Simple Lie Algebras (Lecture Notes in Pure and Applied Mathematics
vol 69) (New York: Dekker)
[MPRR17] Marrani A, Pradisi G, Riccioni F and Romano L 2017 Nonsupersymmetric magic theories
and Ehlers truncations Int. J. Mod. Phys. A 32 1750120

12


https://doi.org/10.1007/jhep11(2012)068
https://doi.org/10.1088/1751-8113/46/6/065402
https://doi.org/10.1088/1751-8113/46/6/065402
https://doi.org/10.1016/0001-8708(65)90038-1
https://doi.org/10.1016/0001-8708(65)90038-1
https://gap-system.org
https://doi.org/10.1007/pl00005574
https://doi.org/10.1007/pl00005574
https://doi.org/10.1007/s00220-008-0563-9
https://doi.org/10.1007/s00220-008-0563-9
https://doi.org/10.1103/physrevd.73.084019
https://doi.org/10.1103/physrevd.73.084019
https://doi.org/10.1088/1126-6708/2007/09/056
https://doi.org/10.4310/atmp.2009.v13.n6.a8
https://doi.org/10.4310/atmp.2009.v13.n6.a8
https://doi.org/10.1007/jhep04(2010)070
https://doi.org/10.4310/jdg/1214431159
https://doi.org/10.4310/jdg/1214431159
https://doi.org/10.1016/j.nuclphysb.2011.02.010
https://doi.org/10.1016/j.nuclphysb.2011.02.010
https://doi.org/10.1016/0370-2693(83)90108-9
https://doi.org/10.1016/0370-2693(83)90108-9
https://doi.org/10.1007/bf02734524
https://doi.org/10.1007/bf02734524
https://doi.org/10.1142/s0217732393001124
https://doi.org/10.1142/s0217732393001124
https://doi.org/10.1016/0550-3213(94)00559-w
https://doi.org/10.1016/0550-3213(94)00559-w
https://doi.org/10.2307/1968117
https://doi.org/10.2307/1968117
https://doi.org/10.1016/0021-8693(80)90141-6
https://doi.org/10.1016/0021-8693(80)90141-6
https://doi.org/10.1016/0550-3213(83)90584-9
https://doi.org/10.1016/0550-3213(83)90584-9
https://doi.org/10.1063/1.1665888
https://doi.org/10.1063/1.1665888
https://doi.org/10.1090/s0077-1554-06-00156-7
https://doi.org/10.1090/s0077-1554-06-00156-7
https://doi.org/10.1142/s0217732311035833
https://doi.org/10.1142/s0217732311035833
https://doi.org/10.1142/S0217751X17501202
https://doi.org/10.1142/S0217751X17501202

J. Phys. A: Math. Theor. 53 (2020) 155203 W A de Graaf and A Marrani

[MR19] Marrani A and Romano L 2019 Orbits in Non-supersymmetric magic theories
(arXiv:1906.05830 [hep-th])
[Oni04] Arkady L and Onishchik 2004 Lectures on Real Semisimple Lie Algebras and Their
Representations (Ziirich: European Mathematical Society)
[OV94] Onishchik A L and Vonberg E B 1994 Lie Groups and Lie Algebras 11l (Berlin: Springer)
[Roz56] Rozenfeld B A 1956 Geometrical interpretation of the compact simple Lie groups of the
class e Dokl. Akad. Nauk. SSSR 106 600
[Sla81] Slansky R 1981 Group theory for unified model building Phys. Rept. 79 1-28
[Sug59] Sugiura M 1959 Conjugate classes of Cartan subalgebras in real semi-simple Lie algebras
J. Math. Soc. Jpn 11 374-434
[Tit66] Tits J 1966 Algebres alternatives, algebres de Jordan et algebres de Lie exceptionnelles. 1.
construction Nederl. Akad. Wetensch. Proc. Ser. A 69 223
[Yam15] Yamatsu N 2015 Finite-dimensional Lie algebras and their representations for unified model
Building (arXiv:1511.08771 [hep-ph])

13


https://arxiv.org/abs/1906.05830
https://doi.org/10.2969/jmsj/01140374
https://doi.org/10.2969/jmsj/01140374
https://doi.org/10.1016/s1385-7258(66)50028-2
https://doi.org/10.1016/s1385-7258(66)50028-2
https://arxiv.org/abs/1511.08771

	Real forms of embeddings of maximal reductive subalgebras of the complex simple Lie algebras of rank up to 8
	1. Introduction
	2. Maximal reductive subalgebras of complex semisimple Lie algebras
	3. Physical applications of real embeddings of reductive Lie algebras
	3.1. Super-Ehlers embeddings, and their non-supersymmetric versions
	3.2. Cubic Jordan algebras, their symmetries and related embeddings
	3.3. Semisimple subalgebras of simple Jordan algebras, and their symmetries

	4. Computational methods
	4.1. Real forms of regular subalgebras
	4.2. Real forms of S-subalgebras
	4.3. Implementation

	ORCID iDs
	References


