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Abstract
We develop a transfer-matrix formulation of the scattering of electromagnetic 
waves by a general isotropic medium which makes use of a notion of 
electromagnetic transfer matrix M̂ that does not involve slicing of the 
scattering medium or discretization of some of the position- or momentum-
space variables. This is a linear operator that we can express as a 4 × 4 matrix 
with operator entries and identify with the S-matrix of an effective nonunitary 
quantum system. We use this observation to establish the composition property 
of M̂, obtain an exact solution of the scattering problem for a non-magnetic 
point scatterer that avoids the divergences of the Green’s function approaches, 
and prove a general invisibility theorem. The latter allows for an explicit 
characterization of a class of isotropic media M displaying perfect broadband 
invisibility for electromagnetic waves of arbitrary polarization provided that 
their wavenumber k does not exceed a preassigned critical value α, i.e. M 
behaves exactly like vacuum for k � α. Generalizing this phenomenon, we 
introduce and study α-equivalent media that, by definition, have identical 
scattering features for k � α.

Keywords: scattering theory of electromagnetic waves, broadband 
invisibility, transfer matrix, point scatterers, implicit renormalization

1.  Introduction

Scattering of electromagnetic (EM) waves has been a subject of intensive research for over 
a century. There are excellent monographs covering its various aspects [1–4]. Most of the 
theoretical developments in this subject are based on the use of Green’s functions and the 
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related integral equations [3, 5]. The purpose of the present article is to offer an alternative 
formulation of the scattering of EM waves by isotropic media3 that has significant advantages 
over the standard Green’s function methods. This formulation relies on a notion of transfer 
matrix (operator) that can be employed for the study of the scattering of EM waves by an 
arbitrary isotropic medium.

The use of transfer matrices in the study of the scattering of waves has a long history. There 
are hundreds of research publications on theoretical aspects and applications of transfer matrix 
theories. The notion of a transfer matrix was initially developed for solving one-dimensional 
(1D) scattering problems for scalar waves [7–9] and found important applications in the study 
of (effectively) 1D optical [10–15], condensed matter [16–22], and acoustic systems [23–25]. 
The multichannel extensions of the transfer matrix have also been considered [26–30] and its 
generalization to two- and three-dimensional (3D) systems were developed through appropri-
ate discretizations of the transverse degrees of freedom to the scattering axis [31–37]. The 
common feature of the transfer matrices considered in the above references is that they are 
numerical matrices (of different sizes) storing the information about the scattering properties 
of the system and fulfilling an extremely useful composition rule. The latter allows for the 
calculation of the scattering properties of a medium by slicing it into thin layers, obtaining the 
transfer matrix for each slice, and determining the transfer matrix for the medium from those 
of its slices by invoking their composition rule.

The simplest example of a transfer matrix is that of time-independent scattering theory 
in one dimension. Consider a possibly complex-valued scattering potential v(x) and time-
harmonic scalar waves e−iωtψ(x) satisfying the Schrödinger equation:

−ψ′′(x) + v(x)ψ(x) = k2ψ(x).� (1)

Here k is the wavenumber for the incident wave which takes real and positive values. Suppose 
that v(x) decays to zero for x → ±∞ at such a rate that every solution of (1) fulfills the asymp-
totic boundary conditions:

ψ(x) → A±eikx + B±e−ikx for x → ±∞,� (2)

where A± and B± are possibly k-dependent complex coefficients. The transfer matrix of v(x) 
is the unique 2 × 2 matrix M that satisfies

[
A+

B+

]
= M

[
A−
B−

]
,� (3)

and is independent of A− and B−, [38, 39]. This matrix has two important properties [40]:

	 1.	�Its entries determine the reflection and transmission amplitudes of v(x).
	 2.	�If v1(x) and v2(x) are potentials such that v(x) = v1(x) + v2(x), and the support of v1(x) 

is to the left of the support of v2(x), i.e. there is a real number a such that v1(x) = 0 for 
x  >  a and v2(x) = 0 for x  <  a, then the transfer matrices M, M1, and M2 of v(x), v1(x), 
and v2(x) satisfy M = M2M1.

Property 1 shows that the computation of M is equivalent to the solution of the scattering 
problem for v(x). Property 2 allows for dissecting the support of v(x) into a collection of inter-
vals Ij , with j = 1, 2, · · · n and Ij  lying to the left of Ij +1, and reducing the scattering problem 
for v(x) to that of its restriction onto Ij . Specifically, denoting the latter by vj(x), so that

3 By an isotropic medium we mean a linear medium whose electromagnetic properties are characterized by scalar 
permittivity ε and permeability profiles µ, [6]. These are generally complex scalar functions of space.
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vj(x) :=
{

v(x) for x ∈ Ij,
0 otherwise,

n∑
j=1

vj(x) = v(x),

and labeling the transfer matrix of vj(x) by Mj, we have

M = MnMn−1 · · ·M1.� (4)

This is the main reason for the popularity of transfer matrices in dealing with scattering of 
scalar waves by effectively 1D multilayer and locally periodic media [8, 12, 41–43].

The composition rule (4) has provided the main guideline for various generalizations of the 
transfer matrix that are tailored for dealing with the scattering of scalar and electromagnetic 
waves in higher dimensions [18, 32, 34, 35]. The main strategy leading to these generaliza-
tions is most succinctly summarized by McLean and Pendry [35]: ‘The methodology under-
lying all transfer matrix theories is extremely simple. The system that we wish to study is 
nominally partitioned into smaller sub-units (conventionally planar slices for a 3D system). 
The relevant quantities that concern our theory are defined locally within the sub-units and the 
transfer matrix then links spatially adjacent units . The physical process of adding the subunits 
together sequentially to reproduce the bulk system is then described mathematically by the 
product of the individual transfer matrices for each sub-unit taken in the correct order’. As we 
noted above, the definition of these generalized transfer matrices involves certain discretiza-
tion of the position, momentum, or a mixture of these spaces. This leads typically to large 
numerical transfer matrices that require appropriate numerical treatments [32, 34, 35].

In [44] we introduce a multi-dimensional transfer matrix whose definition does not rely 
on a slicing or discretization scheme. It rather makes use of a remarkable feature of the trans-
fer matrix of the 1D scattering theory (3), namely that it can be written as the S-matrix of a 
nonunitary effective two-level quantum system [45]. This means that we can express it as the 
time-ordered exponential of a non-Hermitian 2 × 2 interaction-picture effective Hamiltonian 
H (x); 

M = T exp

{
−i

∫ ∞

−∞
dx H (x)

}
,� (5)

where x plays the role of time. In other words, if we denote the evolution operator for the 
Hamiltonian H (x) by U (x, x0), we have M = U (∞,−∞).

Equation (5) has many interesting implications for potential scattering in one dimension 
[46, 47]. More importantly, it provides an invaluable route towards a fundamental trans-
fer-matrix formulation of the scattering of scalar waves in two and three dimensions [44]. 
In this formulation the transfer matrix is given by the time-ordered exponential of a non- 
Hermitian effective Hamiltonian operator that acts in a certain infinite-dimensional function 
space. Therefore, the transfer matrix is no longer a numerical matrix; it is a 2 × 2 matrix with 
operator entries. This formulation of potential scattering leads to a multidimensinal extension 
of the notion of unidirectional invisibility [48, 49], allows for the exact solution of the scatter-
ing problem for infinite classes of scattering potentials in two and three dimensions [50, 51], 
and yields a method for constructing potentials that display perfect broadband invisibility in 
two dimensions [52]. The latter model the scattering of transverse electric (TE) and transverse 
magnetic (TM) waves by certain effectively two-dimensional (2D) isotropic media. Motivated 
by these developments, in this article, we propose a fundamental transfer-matrix formulation 
of the scattering of EM waves by general isotropic media. Unlike the EM transfer matrices 
considered in the literature [32, 34–37], neither the definition nor the application of our EM 
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transfer matrix requires a slicing of the scattering medium or a discretization of the position 
or momentum space.

The organization of the article is as follows. In section 2 we review the standard setup for 
EM scattering. In section 3 we provide the basic ingredients of our approach, introduce the 
EM transfer matrix, and explain how it can be used to determine the scattering amplitude 
and differential cross section for the scattering of EM waves by an arbitrary isotropic scat-
tering medium. In section 4, we identify the transfer matrix with the S-matrix of an effective 
nonunitary quantum system and establish its composition property. In section 5 we use our 
EM transfer matrix to solve the scattering problem for a nonmagnetic delta-function point 
scatterer. This turns out to avoid the divergences arising in the application of the Green’s 
function methods to this problem and produces a finite expression for the scattering ampl
itude. The latter agrees with the known result provided that we identify the coupling constant 
of our approach with a renormalized coupling constant of the Green’s function approach. In 
section 6, we discuss the application of EM transfer matrix in obtaining a general criterion 
for perfect broadband invisibility that applies for isotropic media with no particular symmety. 
This allows us to construct an infinite class of isotropic media specified by a wavenumber 
scale α that do not scatter monochromatic EM waves with wavenumber k � α (and their 
superpositions.) In section 7, we consider the problem of identifying isotropic media with 
identical scattering features for wavenumbers k � α. We call these ‘α-equivalent’ and give 
simple criteria for α-equivalence. Section 8 includes our concluding remarks.

2.  Basic setup for scattering of EM waves

Consider a time-harmonic EM wave with electric and magnetic fields, e−iωtE(r) and 
e−iωtH(r), that propagates in a stationary isotropic medium M specified by the permittivity 
and permeability profiles: ε(r) and µ(r). Here r := x êx + y êy + z êz is the position vector, 
x, y , and z are coordinates in a Cartesian coordinate system with axes aligned along the unit 
vectors êx, êy, and êz .

Let ε0 and µ0 respectively denote the permittivity and permeability of the vacuum, and 
introduce the scaled electric and magnetic fields:

E :=
√
ε0 E, H :=

√
µ0 H,� (6)

and the relative permittivity and permeability:

ε̂ := ε/ε0, µ̂ := µ/µ0,

which are generally complex-valued functions of r. Then the dynamical Maxwell equa-
tions take the form:

∇× E − ikµ̂H = 0,� (7)

∇×H+ ikε̂E = 0,� (8)

where k = ω/c is the wavenumber, and c = 1/
√
ε0µ0  is the speed of light in vacuum. In terms 

of the scaled electric and magnetic fields, the time-averaged Poynting vector takes the form:

〈S〉 = c
2

Re(E ×H∗),� (9)

where ‘Re’ stands for the real part of its argument.
The standard setup for the scattering of EM waves rests on the assumption that for 

r := |r| → ∞ the inhomogeneity of M diminishes, i.e. ε̂(r) → 1 and µ̂(r) → 1, at such a rate 
that (7) and (8) admit solutions fulfilling the asymptotic boundary condition:
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E(r) = E0

[
eiki·rêi +

eikr

r
f (ks, ki) ês

]
for r → ∞,� (10)

where E0 is a constant, ki and ks := kr/r = kr̂  are respectively the wave vectors for the inci-
dent and scattered waves, êi and ês are the unit vectors specifying the polarization of the 
incident and scattered waves, and f (ks, ki) is the scattering amplitude whose modulus-square 
yields the differential cross section; 

σd(ks, ki) = |f (ks, ki)|2 .� (11)

The first and second terms in the square bracket in (10) respectively correspond to the incident 
and scattered waves; 

E i(r) := E0eiki·rêi, E s(r) :=
E0 eikr

r
f (ks, ki) ês.� (12)

Their wave and polarization vectors satisfy:

|ki| = |ks| = k, êi · ki = 0, ês · ks = k ês · r̂ = 0.

Recall also that the differential cross section is defined in terms of the time-averaged Poynting 
vectors for the incident and scattered waves, 〈Si〉 and 〈Ss〉, according to [2]:

σd(ks, ki) :=
r2|〈Ss〉|
|〈Si〉|

.� (13)

Solving the scattering problem for M means determining the scattering amplitude f (ks, ki), 
which is generally a complex-valued function of k, the directions k̂i = ki/k and k̂s = r̂ of the 
incident and scattered wavevectors, and their polarization êi and ês.

3. Transfer matrix for scattering of EM waves

Let us choose a coordinate system in which the source of the incident wave and the detectors 
are placed on the planes z = ±∞. If the source is located at z = −∞ (respectively z = +∞) 
we use the qualification ‘left-incident’ (respectively ‘right-incident’) for the incident wave. In 
this case, k̂i · êz > 0 (respectively k̂i · êz < 0). In the following, we first consider the scattering 
problem for the left-incident waves, which we refer to as ‘scattering from the left’.

We begin our analysis by introducing a useful notation: given a vector or a vector-valued 
function, v = vxex + vyey + vzez, we use �v  to denote the projection of v onto the x–y  plane,  

i.e. �v := vxex + vyey, and identify it with the column vector 
[

vx

vy

]
.

3.1.  Four-component EM fields

In view of (7) and (8), we can express Ez and Hz  in the form

Ez =
i

kε̂
(∂xHy − ∂yHx),

Hz = − i
kµ̂

(∂xEy − ∂yEx).
�

(14)

Substituting these back into (7) and (8), we obtain a system of equations for the components 

of �E :=
[
Ex

Ey

]
 and �H :=

[
Hx

Hy

]
. In terms of the four-component field [11, 13, 34],
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Φ :=




Ex

Ey

Hx

Hy


 =

[
�E
�H

]
,� (15)

this is equivalent to the Schrödinger equation:

i∂zΦ(x, y, z) = ĤΦ(x, y, z),� (16)

where

Ĥ :=

[
0 L̂[ε̂−1, µ̂]

−L̂[µ̂−1, ε̂] 0

]
,� (17)

0 is the 2 × 2 null matrix4, and for each pair of complex-valued functions f (r) and g(r),

L̂[ f , g] :=
1
k

[
f∂x∂y + (∂x f )∂y −f∂2

x − (∂x f )∂x − k2g
f∂2

y + (∂y f )∂y + k2g −f∂y∂x − (∂y f ) ∂x

]
.� (18)

For EM waves propagating in vacuum, where ε̂ = µ̂ = 1, we have Ĥ = Ĥ0, where

Ĥ0 :=

[
0 L̂0

−L̂0 0

]
, L̂0 := L̂[1, 1].� (19)

These together with (18) imply

Ĥ2
0 = (∂2

x + ∂2
y + k2) I.� (20)

Denoting the four-component field Φ for waves propagating in vacuum by Φ0, so that

i∂zΦ0 = Ĥ0Φ0,� (21)

applying Ĥ0 to both sides of this equation from the left, and using (20), we find the Helmholtz 
equation: (∇2 + k2)Φ0 = 0. We can express the general plane-wave solutions of this equa-
tion in the form,

Φ0(r) = Φ0(�r, z) =
1

4π2

∫

Dk

d2�p ei�p·�r
[
A(�p)ei�(�p)z + B(�p)e−i�(�p)z

]
,� (22)

where

�p := pxex + pyey, �r := x ex + y ey,

Dk :=
{
�p ∈ R2

∣∣ |�p| < k
}

, �(�p) :=
√

k2 − |�p|2,

and A, B : R2 → C4 are vector-valued coefficient functions that vanish outside Dk; they 
belong to the function space F 4

k , where

F d
k :=

{
F : R2 → Cd

∣∣ F(�p) = 0 for |�p| � k
}

, d = 1, 2, 3, 4.� (23)

In the following we identify elements F of F d
k  with d-component fields whose components 

belong to F 1
k . In particular, for d  =  4, we have

4 Throughout this article we respectively use 0 and I to denote the null and identity matrix of appropriate size.
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F =




F1

F2

F3

F4


 and F1, F2, F3, F4 ∈ F 1

k .� (24)

Next, we examine the Fourier transform of the plane-wave solution (22) with respect to �r , 
i.e.

Φ̃0(�p, z) = F�p{Φ0(�r, z)} :=
∫

R2
d2�r e−i�p·�rΦ0(�r, z).� (25)

It is clear from (22) that

Φ̃0(�p, z) = A(�p)ei�(�p)z + B(�p)e−i�(�p)z.� (26)

We can use this equation together with (21) and (22) to show that

H̃0(�p)A(�p) = −�(�p)A(�p), H̃0(�p)B(�p) = �(�p)B(�p),� (27)

where

H̃0(�p) :=

[
0 L̃0(�p)

−L̃0(�p) 0

]
, L̃0(�p) :=

1
k

[
−pxpy p2

x − k2

−p2
y + k2 pxpy

]
.

� (28)
It is also easy to see that

H̃0(�p)2 = �(�p)2I.� (29)

According to equation  (27) and the fact that �(�p) �= 0 for �p ∈ Dk , A(�p) and B(�p) are 
eigenvectors of H̃0(�p) with distinct eigenvalues. This implies that they are linearly independ-
ent. In particular, we can determine A(�p) and B(�p) from their sum, C(�p) := A(�p) + B(�p), 
using the relations:

A(�p) = Π1(�p)C(�p), B(�p) = Π2(�p)C(�p),� (30)

where

Πj(�p) :=
1
2

[
I +

(−1) j

�(�p)
H̃0(�p)

]
, j = 1, 2.� (31)

It is easy to see that for every F ∈ F 4
k , Πj(�p)F(�p) is an eigenvector of H̃0(�p) with eigenvalue 

(−1) j�(�p), and

Π1(�p) +Π2(�p) = I, Πi(�p)Πj(�p) = δijΠj(�p),� (32)

where δij is the Kronecker delta symbol. Let us also note that in light of (26), (27), (30) and 
(32),

C(�p) = eizH̃0(�p)Φ̃0(�p, z).� (33)

Next, we identify 4 × 4 matrices K with the linear operators acting on the space C4 of 
4 × 1 complex matrices X by matrix multiplication, i.e. X → KX. Then (32) identifies 
{Π1(�p),Π2(�p)} with a complete orthogonal set of projection operators that project vectors 
onto the eigenspaces of H̃0(�p), i.e. they are eigenprojection operators of H̃0(�p). Because H̃0(�p) 
is manifestly non-Hermitian, the existence of a corresponding complete orthogonal set of 
eigenprojectors may seem unexpected. A simple explanation for this phenomenon is provided 

F Loran and A Mostafazadeh﻿J. Phys. A: Math. Theor. 53 (2020) 165302



8

by the fact that H̃0(�p) is an η+-pseudo-Hermitian operator, i.e. H̃0(�p)† = η+H̃0(�p)η−1
+ , for a 

positive-definite matrix (metric operator) η+, [53, 54]. This follows from the fact that H̃0(�p) 
is a diagonalizable matrix with real eigenvalues and identifies it with a self-adjoint opera-

tor acting in the inner-product space C4
η+

 obtained by endowing C4 with the inner product 
〈X, Y〉η+

:= X†η+Y, [53, 54]. We can indeed use the prescription outlined in [53, 54] to 
determine the general form of η+. A particular example is

η+ =

[
Θ 0
0 I

]
,� (34)

where

Θ :=
1

k2�(�p)2

[
(k2 − p2

y)
2 + p2

xp2
y pxpy[k2 +�(�p)2]

pxpy[k2 +�(�p)2] (k2 − p2
x)

2 + p2
xp2

y

]
.

3.2.  Definition of transfer matrix

Consider the scattering setup for EM waves and suppose that the inhomogeneity of the medium 
decays so rapidly for z → ±∞ that every solution of the Maxwell’s equations (7) and (8) tend 
to a plane wave as z → ±∞. This implies that the four-component field Φ has the following 
asymptotic expression.

Φ(�r, z) = Φ±(�r, z) for z → ±∞,� (35)

where

Φ±(�r, z) :=
1

4π2

∫

Dk

d2�p ei�p·�r
[
A±(�p)ei�(�p)z + B±(�p)e−i�(�p)z

]
,� (36)

and A± and B± belong to F 4
k . Because Φ±(�r, z) are plane-wave solutions of (21), the sum of 

A± and B±, i.e.

C± := A± + B±,� (37)

satisfies

C±(�p) = eizH̃0(�p)Φ̃±(�p, z).� (38)

Let us now recall the definition of the transfer matrix in one dimension (equation (3)) and 
its higher dimensional generalization that is given in [44]. These together with (35) and (36) 
suggest to identity the EM transfer matrix as a linear operator that maps A− and B− to A+ and 
B+. We can introduce the operators Π̂j : F 4

k → F 4
k  by

(Π̂jF)(�p) := Πj(�p)F(�p) for all F ∈ F 4
k ,� (39)

and express (30) as

A± = Π̂1C±, B± = Π̂2C±.� (40)

According to these equations, we can recover A± and B± from C±. Motivated by this observa-
tion, we propose the following definition for an EM transfer matrix.

Definition 1.  The transfer matrix for the electromagnetic waves scattered by an isotropic 

medium is the linear operator M̂ : F 4
k → F 4

k  satisfying,
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C+ = M̂C−,� (41)

where C± := A± + B±, and A± and B± are the coefficient functions determining the asymp-
totic expression for the scattering solutions of (16) via (35) and (36).

Because F 4
k  consists of four-component fields (24) with components belonging to F 1

k , 
M̂ is a 4 × 4 matrix with operator entries acting in F 1

k ; it is not a numerical matrix. We can 
identify it with an integral operator that has a complex 4 × 4 matrix-valued kernel M(�p,�q); 

(
M̂F

)
(�p) =

∫

Dk

d2�q M(�p,�q)F(�q).

The question of the existence and uniqueness of M̂ is equivalent to whether the asymptotic 
expression for the electromagnetic field at z = −∞ determines the field and consequently its 
asymptotic expression at z = +∞ in a unique manner. The latter is a physical condition that 
is clearly fulfilled for situations where ε̂− 1 and µ̂− 1 have compact supports.

3.3. Transfer matrix and the reflection and transmission amplitudes

Consider a left-incident plane wave with wavevector ki, polarization vector êi, and the scaled 
electric and magnetic fields:

E i(r) = E0 eiki·r êi, Hi(r) = E0 eiki·r k̂i × êi.� (42)

Because ki has a positive component along the z-axis, we can express it in the form

ki = �ki +�(�ki) êz,� (43)

where �ki is the projection of ki onto the x–y  plane, and

�(�ki) :=
√

k2 − |�ki|2.

In view of (42), the four-component field (15) for the above left-incident wave is given by

Φi(r) = E0 eiki·r Υi,� (44)

where

Υi :=




êx · êi

êy · êi

êx · (k̂i × êi)

êy · (k̂i × êi)


 =




êx · êi

êy · êi

(êx × k̂i) · êi

(êy × k̂i) · êi


 .� (45)

Equation (44) together with the fact that in the scattering process for a left-incident wave there 
is no wave emitted from a source located on the plane z = +∞ show that the scattering solu-
tion (10) corresponds to the following choice for the coefficient functions A−(�p) and B+(�p) 
entering (36):

A−(�p) = 4π2δ(�p −�ki)Υi, B+(�p) = 0.� (46)

Furthermore, according to (32) and (40),

Π1(�p)A±(�p) = A±(�p), Π2(�p)B±(�p) = B±(�p), Π1(�p)B±(�p) = Π2(�p)A±(�p) = 0.
� (47)
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The first of these relations together with (46) imply

Π1(�ki)Υi = Υi, Π2(�ki)Υi = 0.� (48)

Next, we introduce:

T− := B− − B+, T+ := A+ − A−.� (49)

For the scattering of a left-incident plane wave, where (46) holds, T± yield the left reflection 
and transmission amplitudes:

Tl
−(�p) := B−(�p), Tl

+(�p) := A+(�p)− 4π2δ(�p −�ki)Υi.� (50)

To see the reason for this terminology, consider the asymptotic form of the four-component 
field for the scattered wave which we label by Φs(r). According to (10) and (12), the scaled 
electric field for the scattered wave has the form E(r)− E i(r) for r → ∞. This shows that

Φs(r) = Φ(r)−Φi(r),� (51)

where Φ(r) is the four-component field given by (35), (36) and (46). Evaluating the Fourier 
transform of the both sides of (51) with respect to �r , taking the limit z → ±∞, and using 
(50), we find

Φ̃s(�p, z) =
{

Tl
−(�p)e

−i�(�p)z for z → −∞,
Tl
+(�p)e

i�(�p)z for z → +∞.
� (52)

Let us also note the following simple consequences of (39), (47), (48) and (50).

Π̂1Tl
+ = Tl

+, Π̂2Tl
− = Tl

−, Π̂1Tl
− = Π̂2Tl

+ = 0.� (53)

With the help of (46) and (50), we can express the coefficient functions C± of (37) in the 
form:

C± = Tl
± + 4π2Υiδ�ki

,� (54)

where δ�ki
 stands for the Dirac delta function centered at �ki, i.e.

δ�ki
(�p) := δ(�p −�ki).� (55)

Substituting (54) in (41), we find

Tl
+ = M̂Tl

− + 4π2(M̂ − Î)Υiδki .� (56)

Here and in what follows Î  stands for the identity operator acting in F d
k , i.e. for all F ∈ F d

k , 
ÎF := F = IF. If we apply the projection operator Π̂2 of (39) to both sides of (56) and make 
use of (48) and (53), we obtain

Π̂2M̂Tl
− = −4π2Π̂2M̂Υiδ�ki

.� (57)

Furthermore, using (53) we can respectively establish the following consequences of (56) and 
(57).

Tl
+ = −Π̂1

(
Î − M̂

)(
Tl
− + 4π2Υiδ�ki

)
,� (58)

Tl
− = Π̂2

(
Î − M̂

)(
Tl
− + 4π2Υiδ�ki

)
.� (59)
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Equations (56) and (57) turn out to be equivalent to a pair of equations that have the same 
structure as those satisfied by the entries of the transfer matrix of potential scattering in two 

and three dimensions [44]. To see this we introduce the operators M̂ij : F 4
k → F 4

k  according 
to

M̂ij := Π̂iM̂ Π̂j, i, j = 1, 2,� (60)

and employ (53) to express (57) as

M̂22Tl
− = −4π2M̂21Υiδ�ki

.� (61)

Similarly by applying Π̂1 to both sides of (56), we have

Tl
+ = M̂12Tl

− + 4π2(M̂11 − Î)Υiδ�ki
.� (62)

Equation (61) is a system of linear non-homogeneous integral equations for the left reflection 
amplitude Tl

−(�p). Solving this system and inserting the result in (56) we can determine the 
left transmission amplitude Tl

+(�p). Expressing the solution of (56) as the application of the 
inverse of the operator M̂22 on the right-hand side of this equation and using the result in (62), 
we find

Tl
− = −4π2M̂−1

22 M̂21Υiδki ,� (63)

Tl
+ = 4π2

(
M̂11 − Î − M̂12M̂−1

22 M̂21

)
Υiδki .� (64)

It is absolutely remarkable that dropping Υi in (63) and (64) we recover equations (20) of [44] 
which are derived for the entries of the transfer matrix of potential scattering in two and three 
dimensions.

3.4.  Connection to scattering amplitude and cross section

In the preceding subsection, we show that the reflection and transmission amplitudes Tl
±(�p) 

satisfy a set of linear equations involving the EM transfer matrix M̂. Here we derive explicit 
expressions for the scattering amplitude and differential cross section in terms of Tl

±(�p). This 
in turn establishes the physical significance of our transfer matrix as a linear (integral) operator 
containing the complete information about the scattering features of the scattering medium.

First, we consider the four-component field for the scattered wave,

Φs(r) =

[
�Es(r)
�Hs(r)

]
,� (65)

and recall that in view of (7), (12), and the fact that µ̂ = 1 for r → ∞,

E s(r) =
E0 eikr

r
f (ks, ki) ês for r → ∞,� (66)

Hs(r) =
E0 eikr

r
f (ks, ki) r̂ × ês for r → ∞.� (67)

We can also obtain the following asymptotic expression for Φs(r) by evaluating the inverse 
Fourier transform of both sides of (52) with respect to �p .
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Φs(�r, z) =
1

4π2

∫

Dk

d2�p Tl
±(�p)e

±i�(�p)zei�p·�r for z → ±∞.� (68)

Using the asymptotic expression for e±i�(�p)zei�p·�r  that is derived in appendix F of [44], we can 
write (68) in the form:

Φs(r) = − iEeeikr

2πr
�(�ks)Tl

±(
�ks) for z → ±∞.� (69)

Substituting (66) and (67) in (65) and comparing the result with (69), we find

f (ki, ks)Υs = − i�(�ks)

2π
Tl
±(
�ks) for ± êz · k̂s > 0,� (70)

where

Υs :=




êx · ês

êy · ês

êx · (r̂ × ês)

êy · (r̂ × ês)


 =




êx · ês

êy · ês

(êx × r̂) · ês

(êy × r̂) · ês


 =




êx · ês

êy · ês

(− cosϑ êy + sinϑ sinϕ êz) · ês

(cosϑ êx − sinϑ cosϕ êz) · ês


 ,

� (71)
and ϑ and ϕ are respectively the polar and azimuthal angles in the spherical coordinates, so 
that

k̂s = r̂ = sinϑ cosϕ êx + sinϑ sinϕ êy + cosϑ êz.

We can use (71) to determine ês in terms of Υs. To see this, we introduce

εx :=




1
0
0
0


 , εy :=




0
1
0
0


 , εz :=




0
0

sinϑ sinϕ

− sinϑ cosϕ


 ,

and use r̂ · ês = 0 to check that ε†j Υs = êj · ês for j = x, y, z . The latter equation implies

ês = Ξ†Υs,� (72)

where

Ξ† := êxε
†
x + êyε

†
y + êzε

†
z .� (73)

Applying Ξ† to both sides of (70) from the left and using (72) yield

f (ki, ks)ês = − i�(�ks)

2π
Ξ†Tl

±(
�ks) for ± êz · k̂s > 0.� (74)

Dividing both sides of this equation by the norm of its right-hand side and noting that ês is 
a unit vector, we can determine it up to a phase factor. Substituting the result in (74) yields 
f (ki, ks). The undetermined phase factor is physically irrelevant, because it does not enter the 
expression (66) for the scattered electric field. The latter is uniquely determined by the right-
hand side of (74).

Another consequence of (71) is the identity: Υ†
sΥs = 1 + cos2 ϑ. This together with (70) 

imply

f (ki, ks) = − i�(�ks)

2π
√

1 + cos2 ϑ
Υ̂

†
s Tl

±(
�ks) for ± cosϑ > 0,� (75)
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where Υ̂s := (1 + cos2 ϑ)−1/2 Υs. According to (11) and (75), the differential cross section is 
given by

σd(ki, ks) =
�(�ks)

2Tl
±(
�ks)

†Tl
±(
�ks)

4π2(1 + cos2 ϑ)
for ± cosϑ > 0,� (76)

where we have made use of the fact that Tl
±(
�ks) is a scalar multiple of Υ̂s, which is a unit four-

component vector. In appendix A we offer an alternative derivation of (76).
The above analysis reduces the solution of the scattering problem for left-incident EM 

waves scattered by an isotropic medium to the determination of the transfer matrix M̂ and the 
solution of the integral equation for Tl

−
, namely (61). This together with (62), (75) and (76) 

yield the scattering amplitude and differential cross section.
Now, consider a right-incident wave. Then the incident wavevector ki has a negative 

z-component, so that ki = �ki −�(�k)êz, and the coefficient functions A− and B+ appearing in 
the asymptotic expression for the four-component field (36) satisfy

A−(�p) = 0, B+(�p) = 4π2δ(�p −�ki)Υi.� (77)

Substituting these in (49), we find T±(�p) = Tr
±(�p) where

Tr
−(�p) := B−(�p)− 4π2δ(�p −�ki)Υi, Tr

+(�p) := A+(�p).� (78)

We can respectively interpret these as the transmission and reflection amplitudes for the right-
incident wave. In view of (30) and (77), we have Π1(�ki)Υi = 0 and Π2(�ki)Υi = Υi. Making 
use of these relations, we can repeat our derivation of the relationship between M̂ and Tl

± to 
obtain the analogs of (61) and (62) for right-incident waves. This results in

M̂22Tr
− = 4π2

(
Î − M̂22

)
Υiδ�ki

,� (79)

Tr
+ = M̂12(Tr

− + 4π2Υiδ�ki
).� (80)

Writing the solution of (79) in terms of the inverse of the operator M̂22 and substituting the 
result in (80), we find the following analogs of (63) and (64).

Tr
− = 4π2

(
M̂−1

22 − Î
)
Υiδ�ki

, Tr
+ = 4π2M̂12M̂−1

22 Υiδ�ki
.� (81)

These equations have remarkably the same form as their analogs for the scattering of scalar 
waves [48].

For a right-incident wave, the four-component field corresponding to the scattered wave 
is given by (69) with Tl

± changed to Tr
±. Because (70)–(76) follow from (69), we can use 

them for right-incident waves provided that we change Tl
± to Tr

±. In particular, making this 
change in (75) and (76) we find the scattering amplitude and differential cross section for a 
right-incident wave.

4.  S-matrix description of the EM transfer matrix and its composition property

In this section, we show that the transfer matrix M̂ for EM scattering can be expressed as the 
S-matrix of an effective quantum system, i.e. it satisfies (5) for some Hamiltonian operator 
H . This in particular allows us to establish the composition property for the EM transfer 
matrices that generalizes (4).
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First, we examine the Fourier transform of the four-component field Φ(�r, z) with respect 
to �r , i.e.

Φ̃(�K, z) = F�K{Φ(�r, z)} :=
∫

R2
d2�r e−i�r·�K Φ(�r, z).

We can use (16) to show that it satsifies:

i∂zΦ̃(�K, z) = ̂̃H(z)Φ̃(�K, z),� (82)

where

̂̃H(z) := F�K ĤF−1
�r =

[
0 ̂̃L[ε̂−1, µ̂]

−̂̃L[µ̂−1, ε̂] 0

]
,� (83)

̂̃L[ f , g] := F�K L̂[ f (�r, z), g(�r, z)]F−1
�r = L̂[ f (�r, z), g(�r, z)]

∣∣∣
�r→i�∇K,�∇r→i�K

.� (84)

F−1
�r  denotes inverse Fourier transformation with respect to �K, i.e.

F−1
�r {ψ(�K)} :=

1
4π2

∫

R2
d2�K ei�K·�rψ(�K).

�∇K := ex∂Kx + ey∂Ky, �∇r := ex∂x + ey∂y, and the L̂[ f (�r, z), g(�r, z)] appearing in (84) is the 
normal-ordered operator given by (18). The entries of this operator are second-order differ
ential operators with the following general structure:

L̂(�r, �∇r) :=
∑

i,j=x,y

fij(�r)∂i∂j +
∑
i=x,y

gi(�r)∂i + h(�r).

Therefore the computation of ̂̃H(z) involves evaluating operators of the form: F�K L̂(�r, �∇r)F−1
�r . 

Applying this operator on a test function ξ and using the definition of F�K and F−1
�r , we have

[
F�K L̂(�r, �∇r)F−1

�r ξ
]
(�K) =

[
F�K L̂(�r, �∇r)F−1

�r

]
{ξ(�q)} =

1
4π2

∫

R2
d2�q S̃L(�K−�q, i�q) ξ(�q),� (85)

where

S̃L(�K, i�q) :=
∫

R2
d2�r e−i�K·�rSL(�r, i�q)� (86)

is the Fourier transform with respect to �r  of

SL(�r, i�q) := −
∑

i,j=x,y

fij(�r)qiqj + i
∑
i=x,y

gi(�r)qi + h(�r).� (87)

The latter is known as the symbol of L̂(�r, �∇r).
For each value of z, the four-component field Φ̃(�k, z) defines a function Φ̃(·, z) : R2 → C4, 

which for brevity we denote by Φ̃(z). This allows us to express (82) as

i∂zΦ̃(z) = ̂̃H(z)Φ̃(z).� (88)

This is a time-dependent Schrödinger equation with z playing the role of time. Let z0 be an 

initial value of z, and ̂̃U(z, z0) denote the evolution operator associated with the Hamiltonian 
̂̃H(z). By definition, it satisfies
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i∂z
̂̃U(z, z0) =

̂̃H(z) ̂̃U(z, z0),
̂̃U(z0, z0) = Î,� (89)

Φ̃(z) = ̂̃U(z, z0)Φ̃(z0).� (90)

A simple consequence of (35) and (90) is

lim
z→∞

Φ+(z) = lim
z→∞

lim
z0→−∞

̂̃U(z, z0)Φ−(z0).� (91)

We can use this equation together with (38) to show that

C+ = lim
z→∞

eiẑ̃H0Φ̃+(z) =
[
lim

z→∞
lim

z0→−∞
eiẑ̃H0 ̂̃U(z, z0)e−iz0

̂̃H0

]
C−

= Û (∞,−∞)C−,
� (92)

where ̂̃H0 : F 4
k → F 4

k  is the linear operator defined by

( ̂̃H0F)(�p) := H̃0(�p)F(�p) for F ∈ F 4
k ,� (93)

H̃0(�p) is the 4 × 4 matrix given by (28),

Û (z, z0) := eiẑ̃H0 ̂̃U(z, z0)e−iz0
̂̃H0 = T exp

[
−i

∫ z

z0

dz′ Ĥ (z′)
]

is the evolution operator for the interaction-picture Hamiltonian:

Ĥ (z) := eiẑ̃H0

[̂̃H(z)− ̂̃H0

]
e−iẑ̃H0 ,� (94)

and T  stands for the ‘time-ordering’ operation with z playing the role of ‘time’. The operator 
Û (∞,−∞) is known as the scattering operator (S-matrix) [55] for the effective quantum sys-

tem S  determined by the Hamiltonian operator ̂̃H(z). Because C± belong to the function space 
F 4

k , we should think of ̂̃H(z) and Ĥ (z) as operators acting in F 4
k . They are indeed integral 

operators whose integral kernels we derive in appendix B.
Comparing (41) and (92), we are led to the following remarkable result.

Theorem 1.  The electromagnetic transfer matrix coincides with the S-matrix of S , i.e.

M̂ = Û (∞,−∞) = T exp

[
−i

∫ ∞

−∞
dz Ĥ (z)

]

= Î +
∞∑
�=1

(−i)�
∫ ∞

−∞
dz�

∫ z�

−∞
dz�−1 · · ·

∫ z2

−∞
dz1 Ĥ (z�)Ĥ (z�−1) · · · Ĥ (z1).

� (95)
A straightforward consequence of this theorem is the composition property of the EM 

transfer matrix.
Consider the scattering of EM waves by an isotropic medium M. Let us divide the space by 

n  −  1 planes that are orthogonal to the z-axis and intersect it at z  =  a1, z = a2, · · · , z = an−1. 
This yields a partition of the space into n regions that we identify with their intersection with 
the z-axis, namely I1 := (a0, a1], I2 := (a1, a2], ⋯, In−1 := (an−2, an−1], and In := (an−1, an), 
where a0 := −∞ and an := ∞. Clearly, along the z-axis, Ii is to the left of Ij  if and only if i  <  j . 
Let M� be a medium whose electromagnetic properties are identical to those of M in the region 
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I� and coincides with vacuum outside I�. We refer to I� as the ‘support’ of M�. The interaction-

picture Hamiltonian Ĥ (z) for M� is identical to that of M whenever z ∈ I� and vanishes for 
z /∈ I�. Consequently, the transfer matrix of M� is given by M̂� = Û (a�−1, a�). This obser-
vation together with the fact that Û (∞,−∞) = Û (∞, an−1)Û (an−1, an−2) · · · Û (a1,−∞) 
proves the following theorem.

Theorem 2.  Let M and M� with � = 1, 2, · · · , n be isotropic scattering media as de-
scribed above. In particular, M� has the same permittivity and permeability profiles as M in 
its support, and the support of M� lies to the left of that of M�+1 along the z-axis. Then the 
transfer matrix M̂ of M can be expressed in terms of the transfer matrix M̂� of M� accord-
ing to

M̂ = M̂nM̂n−1 · · · M̂1.� (96)

This theorem draws attention to the potential applications of the EM transfer matrix in devel-
oping numerical schemes for solving EM scattering problems.

It is important to realize that in contrast to the earlier EM transfer-matrix theories [34, 35], 
the composition rule (96) does not enter the definition or construction of the transfer matrix 
we have introduced in section  3. Consequently, the application of our EM transfer-matrix 
formalism does not require slicing of the medium (scatterer) along the z-direction, its dis-
cretization along the x- and y -directions (in position or momentum space), or the use of the 
composition property (96). In principle, we can use our approach to describe the scattering of 
EM waves by an arbitrary isotropic medium that needs not have any particular symmetry. As 
we show in sections 5–7, one can try to determine the transfer matrix by directly evaluating 
the terms in the Dyson series appearing in the right-hand side of (95). This makes the applica-
tions described in these sections beyond the reach of the conventional transfer-matrix theories.

5.  Application for a point scatterer

The scattering of electromagnetic waves by a point scatterer is of central importance for vari-
ous applications and, as a result, has been extensively studied in the literature. de Vries et al 
[5] provides an illuminating review of the application of the standard Green’s function meth-
ods to this problem. It is well-known that these methods lead to divergences which require 
renormalization of the coupling constant. In this section, we use the electromagnetic transfer-
matrix method we have developed in the preceding sections to offer a solution of the scattering 
problem for a nonmagnetic point scatterer, i.e. the permittivity and permeability profile given 
by

ε̂(r) = 1 + z δ(r), µ̂(r) = 1,� (97)

where z is a possibly complex coupling constant, and δ(r) is the Dirac delta function in three 
dimensions; δ(r) := δ(x)δ(y)δ(z).

First, we note that according to (94),

Ĥ (z) = eiẑ̃H0δ ̂̃H(z)e−iẑ̃H0 ,� (98)

where

δ ̂̃H(z) := ̂̃H(z)− ̂̃H0 =

[
0 δ ̂̃L1

−δ ̂̃L2 0

]
,� (99)
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δ ̂̃L1 := ̂̃L[ε̂−1, µ̂]− ̂̃L0 = ̂̃L[ε̂−1 − 1, µ̂− 1] = ̂̃L[ηε̂−1 , ηµ̂],� (100)

δ ̂̃L2 := ̂̃L[µ̂−1, ε̂]− ̂̃L0 = ̂̃L[µ̂−1 − 1, ε̂− 1] = ̂̃L[ηµ̂−1 , ηε̂],� (101)

̂̃L[·, ·] is defined by (84), ̂̃L0 := ̂̃L[1, 1], and for every function f : R3 → C, we use the symbol 

ηf  to denote f   −  1, i.e.

ηf (r) := f (r)− 1.

Notice also that 
(̂̃L0φ

)
(�p) = L̃0(�p)φ(�p), where φ ∈ F 2

k  is an arbitrary test function, and 

L̃0(�p) is the 2 × 2 matrix given by (28).
For a point scatterer specified by (97),

ηε̂(r) = z δ(r) = z δ(�r)δ(z), ηµ̂(r) = ηµ̂−1(r) = 0.� (102)

It is also not difficult to show that for every smooth test function ξ : R3 → C,
∫

R3
d3r′ξ(r′) ηε̂−1(r′ − r) =

∫

R3
d3r′

−z ξ(r′)δ(r′ − r)
1 + z δ(r′ − r)

= − z ξ(r)
1 + z δ(0)

= 0.

Therefore, ηε̂−1(r) = 0. In view of this relation, (18) and (98)–(102),

δ ̂̃L1 = 0, δ ̂̃L2 = −ikz δ(r)σ2,� (103)

Ĥ (z) = ikz δ(z) δ̃(i�∇p)K,� (104)

where

σ2 :=
[

0 −i
i 0

]
, K :=

[
0 0
σ2 0

]
,� (105)

and δ̃(i�∇p) is the operator acting in the function space Fd
k  according to

δ̃(i�∇p)F(�p) :=
1

4π2

∫

Dk

d�q F(�q).� (106)

Notice that the right-hand side of this equation does not involve �p , i.e. it takes the same value 
for all �p ∈ Dk .

Because K2 = 0, Ĥ (z1)Ĥ (z2) = 0. Therefore, the Dyson series expansion (95) of the 
EM transfer matrix terminates, and we find

M̂ = Î + kz δ̃(i�∇p)K =

[
I 0

kz δ̃(i�∇p)σ2 I

]
.� (107)

Next, we compute the reflection and transmission amplitudes Tl
±(�p). To do this, we first 

use (107) to express (59) in the form

Tl
−(�p) = −kzΠ2(�p)X,� (108)

where �p ∈ Dk  is arbitrary, and

X := δ̃(i�∇p)K
[
Tl
−(�p) + 4π2Υiδ(�p −�ki)

]
.� (109)

F Loran and A Mostafazadeh﻿J. Phys. A: Math. Theor. 53 (2020) 165302



18

It is important to note that, according to (106), X does not depend on �p .
Let us express Tl

−(�p), X, and Υi as:

Tl
−(�p) =

[
�T+
− (�p)

�T−
− (�p)

]
, X =

[
�X+

�X−

]
, Υi =

[
�Υ+

i
�Υ−

i

]
,� (110)

where �T±
− (�p), �X±, and �Υ±

i  are two-component column vectors. Then in view of (31), (105), 
(106) and (108)–(110), we have

�X+ = �0, �T+
− (�p) = − k z

2�(�p)
L̃0(�p)�X−, �T−

− (�p) = −k z
2

�X−,

� (111)

where L̃0(�p) is given in (28). This reduces the calculation of Tl
−(�p) to that of �X−. To deter-

mine the latter, we substitute (110) and (111) in (109) and use the result together with (28) 
and (106) to show that

�X− = σ2δ̃(i�∇p)
[
�T+
− (�p) + 4π2�Υ+

i δ(i�p −�ki)
]

= −k z
2

δ̃(i�∇p)
[
�(�p)−1σ2L̃0(�p)�X−

]
+ σ2�Υ

+
i

=
ik3z

6π
�X− + σ2�Υ

+
i .

This in turn implies

�X− =
σ2�Υ

+
i

1 − izk3/6π
.� (112)

In view of (28), (31) and (110)–(112),

Tl
−(�p) = − z k

2�(�p)(1 − izk3/6π)

[̂̃L0(�p)σ2�Υ
+

�(�p)σ2�Υ
+

]

= − z kΠ2(�p)KΥi

1 − izk3/6π
.

� (113)

Similarly, we can use (58) to show that

Tl
+(�p) = kzΠ1(�p)X =

z kΠ1(�p)KΥi

1 − izk3/6π
.� (114)

Having calculated Tl
±(�p), we can employ (75) and (76) to determine the scattering ampl

itude and differential cross section for the point scatterer. To derive a more explicit expression 
for these, we first establish the identities:

�(�p)Πj(�p)K =
1
2

[
(−1) j+1ikJ(�p) 0

�(�p)σ2 0

]
,� (115)

�(�p)2[Πj(�p)K]†Πj(�p)K =
k2 +�(�p)2

4

[
J(�p) 0

0 0

]
,� (116)
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where j = 1, 2 and

J(�p) :=
i
k

L̃0(�p)σ2 =
1
k2

[
k2 − p2

x −pxpy

−pxpy k2 − p2
y

]
.

In particular,

J(�ks) =

[
1 − sin2 ϑ cos2 ϕ − sin2 ϑ sinϕ cosϕ

− sin2 ϑ sinϕ cosϕ 1 − sin2 ϑ sin2 ϕ

]
.� (117)

Substituting (113) and (114) in (74) and (76) and making use of (45), (73) and (115)–(117) 
we find

f (ki, ks)ês =
t(k) [(r̂ ·�ei)r̂ −�ei]

4π
=

t(k) r̂ × (r̂ ×�ei)

4π
,� (118)

σd(ki, ks) =
|t(k)|2

(
|�ei|2 − |r̂ ·�ei|2

)
16π2 ,� (119)

where �ei is the projection of êi onto the x–y  plane, i.e. �ei := (êx · êi)êx+ 
(êy · êi)êy = êi − (êz · êi)êz, and

t(k) :=
−k2

z−1 − ik3/6π
.� (120)

As we mentioned above the standard treatment of the scattering problem for the point scat-
terer yields a Born series involving divergent terms. de Vries et al [5] outlines a regularization 
of these divergences. It involves identifying the coupling constant z of (97) with a bare cou-
pling constant zB  and introducing a pair of momentum cutoffs ΛL and ΛT  associated with the 
divergences arising from the longitudinal and transverse Green’s functions. These enter in the 
expression for the scattered field after one sums the regularized Born series. This procedure 
leads to the very same formulas we have found for the scattering amplitude and differential 
cross-section, namely (118) and (119), provided that we set

t(k) :=
−k2

z−1
B + (Λ3

L − k2ΛT − ik3)/6π
.� (121)

Comparing (120) and (121), we see that our method is equivalent to identifying z with the 
renormalized coupling constant defined by

z :=
zB

1 + (Λ3
L − k2ΛT)zB/6π

.� (122)

Note, however, that we did not need to deal with any divergent terms throughout our calcul
ations. Nor did we sum an infinite Born series after renormalizing its terms. This is an impor-
tant advantage of our method over the standard Green’s function approaches.

6.  Perfect broadband invisibility

A medium M does not scatter an incident EM wave with polarization vector êi and wave 
vector ki if and only if the corresponding scattering amplitude vanishes for every choice of 
the polarization and wavevector of the scattered wave, ês and k̂s. If this happens for a finite or 
infinite interval of values of the wavenumber k and irrespectively of the choice of êi and k̂i, 
we say that M displays broadband invisibility. In this section, we derive a simple criterion for 
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invisibility of an isotropic medium for wavenumbers not exceeding a prescribed critical value 
α. To emphasize that our derivation does not rely on any approximation scheme, we call this 
phenomenon: ‘perfect broadband invisibility’.

The search for broadband invisibility has a long history. Recent results on the use of con-
formal mappings [56], metamaterials [57, 58], and transformation optics [59] have led to some 
important progress in the subject. Our route to perfect broadband invisibility is fundamentally 
different from these, because as we explain below it makes use of ordinary isotropic media 
without invoking geometric optics arguments.

According to (75) M is invisible if and only if Tl/r
± = 0. We also recall that Tl/r

±  belong to 
the function space F 4

k , and the EM transfer matrix M̂ is a linear operator acting in this space.
In view of (63) and (64), the invisibility condition,

Tl/r
± = 0,� (123)

holds, if M̂ = Î . Because M̂ is the time-ordered exponential of the interaction-picture 

Hamiltonian Ĥ (z), we can satisfy (123) by demanding that Ĥ (z) vanishes identically on 

F 4
k . We can use (83) and (98) to express this condition in the form

δ ̂̃H(z)F = 0 for F ∈ F 4
k .� (124)

According to (99), we can fulfill (124), if δ ̂̃L�φ(�p) = 0 for every φ ∈ F2
k  and � = 1, 2. This 

in turn means that the entries [δ̂̃L�]ij of δ ̂̃L� satisfy

[δ̂̃L�]ijφ(�p) = 0 for φ ∈ F1
k .� (125)

With the help of (18) and (84)–(87), we can establish (125) by demanding that the following 
requirement holds for f = ε̂, ε̂−1, µ̂, and µ̂−1.

∫

Dk

d2�q η̃f (�p −�q, z)φ(�q) = 0 for φ ∈ F1
k .� (126)

Making the change of variable: �q → �q ′ := �p −�q, we can express (126) as
∫

D′
k (�p)

d2�q ′ η̃f (�q ′, z)φ(�p −�q ′) = 0 for φ ∈ F1
k ,� (127)

where D ′
k(�p) :=

{
�q ′ ∈ R2

∣∣ |�q ′ −�p| < k
}

.
In summary, (127) is a sufficient condition for the vanishing of the scattering amplitude. 

The following invisibility theorem is a direct consequence of this condition.

Theorem 3.  Consider an isotropic scattering medium M with relative permittivity and 
permeability profiles ε̂ and µ̂. Let ηf := f − 1, and α be a given wavenumber scale. Suppose 
that for f = ε̂, ε̂−1, µ̂, and µ̂−1, the Fourier transform of ηf (�r, z) with respect to �r , which we 
denote by η̃f (�K, z), satisfies:

η̃f (�K, z) = 0 for |�K| < 2α.� (128)

Then M does not scatter any incident EM plane wave whose wavenumber k � α.

Proof.  Suppose that k � α. Then for all �p ∈ Dk  and �q ′ ∈ D ′
k(�p), we have �q := �p −�q ′ ∈ Dk 

and |�q ′| = |�p −�q| � |�p|+ |�q| < 2k � 2α. This relation together with the hypothesis of the 
theorem imply that the η̃f (�q ′, z) appearing in (127) vanishes for f = ε̂, ε̂−1, µ̂, and µ̂−1. 
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Therefore (127) holds, and M is invisible for incident plane waves with k � α.� □ 

The characterization of functions f (�r, z) with f̃ (�K, z) = f̃−1(�K, z) = 0 for |�K| � 2α is not 
easy. In the following we present a slightly weaker invisibility theorem that allows for a simple 
construction of permittivity and permeability profiles displaying perfect broadband invisibil-
ity. We give a proof of this theorem in appendix C.

Theorem 4.  Let M, ε̂, µ̂, ηε, and ηµ be as in Theorem 3, αx and αy be a pair of wavenum-
ber scales, α be the smallest of αx and αy, and f̃ (Kx, y, z) and f̃ (x,Ky, z) denote the Fourier 
transform of f (x, y, z) with respect to x and y , respectively. Suppose that ε̂ and µ̂ are bounded 
functions whose real part has a positive lower bound, and the following conditions hold for 
f = ε̂  and µ̂.

η̃f (Kx, y, z) = 0 for Kx < 2αx,
η̃f (x,Ky, z) = 0 for Ky < 2αy.
� (129)

Then M does not scatter any incident EM plane wave whose wavenumber k � α.

It is easy to check that (129) is equivalent to

ε̂(x, y, z) = e2iαxxuε(x, y, z) + e2iαyyvε(x, y, z) + 1,

µ̂(x, y, z) = e2iαxxuµ(x, y, z) + e2iαyyvµ(x, y, z) + 1,
� (130)

where uε, uµ, vε, vµ : R3 → C are functions fulfilling:

ũf (Kx, y, z) = ṽf (Kx, y, z) = 0 for Kx < 0,
ũf (x,Ky, z) = ṽf (x,Ky, z) = 0 for Ky < 0.
� (131)

We can construct concrete examples of such functions by noting that they are inverse Fourier 
transform of functions w̃(Kx,Ky, z) vanishing for Kx < 0 and Ky < 0, i.e. they have the generic 
form:

w(�r, z) =
1

4π2

∫ ∞

0
dKx

∫ ∞

0
dKy ei�K·�rw̃(Ka,Ky, z),� (132)

where w̃ : R3 → C is any function such that 
∫∞

0 d2�K |w̃(�K, z)| < ∞. A typical example is

w̃(Kx,Ky, z) = z̃ e−�a·�KKnx
x K

ny
x χaz(z), χaz(z) :=

{
1 for z ∈ [0, az],
0 otherwise,

� (133)
where a = (�a, az) ∈ R3, z̃ ∈ C, and nx and ny  are positive integers. Substituting (133) in (132), 
we find

w(�r, z) =
zχaz(z)

(x/ax + i)nx+1
(y/ay + i)ny+1 ,� (134)

where z := nx!ny! z̃/[4π2(−iax)
nx+1(−iay)

ny+1]. Our analysis shows that if the relative permit
tivity and permeability of an isotropic medium M is given by (130), and uε, uµ, vε, and vµ 
have the form (134) with possibly different choices for z, a, nx, and ny , then M will be invis-
ible for every incident plane wave whose wavenumber k is smaller than both αx and αy. It is 
not difficult to see that M describes a slab of thickness az that occupies the space between the 
planes z  =  0 and z  =  az and is surrounded by vacuum.
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The above characterization of broadband invisibility in isotropic media generalizes the 
results of [52] on the construction of effectively 2D isotropic media that are invisible for the 
TE and TM waves with wavenumber not exceeding a critical value. This construction also 
involves functions whose Fourier transform vanishes on the negative real axis. The relevance 
of these functions to fullband invisibility in effectively 1D optical systems has been originally 
noted in [60]. See also [61–64]. Another notable aspect of our construction is that it does not 
rely on any approximation scheme; the broadband invisibility displayed by these media is 
absolutely exact.

7.  α-equivalent scattering media

In the preceding section we have obtained simple criteria for the broadband invisibility of 
isotropic media for wavenumbers k � α, where α is an arbitrary preassigned wavenumber 
scale. As far as its EM scattering properties are concerned such a medium is equivalent to 
vacuum whenever the incident wave is an EM plane wave with wavenumber not exceeding α 
or a superposition of such plane waves. In the following we extend this notion of equivalence 
to a pair of scattering media.

Definition 2.  Let α be a wavelength scale, and M1 and M2 be a pair of isotropic scattering 
media. M1 and M2 are said to be α-equivalent if they have the same scattering amplitude for 
every incident plane wave whose wavenumber does not exceed α.

The transfer-matrix formulation of the scattering of EM waves provides a simple charac-
terization of the α-equivalence of scattering media. This is the electromagnetic generalization 
of the notion of α-equivalent potentials we have recently developed in [65].

Let us label the relative permittivity and permeability of the medium M� by ε̂� and µ̂�, 
respectively, where � = 1, 2. If M1 and M2 have the same transfer matrix for k � α, then they 
are α-equivalent. Because the transfer matrix is the S-matrix for a corresponding effective 

quantum system, the requirement that the Hamiltonian operators ̂̃H1(z) and ̂̃H2(z) for M1 and 

M2 coincide ensures the equality of their transfer matrices and hence their α-equivalence. In 

view of (83), we can ensure ̂̃H1(z) =
̂̃H2(z) for a given k by demanding that for every ξ ∈ F 2

k ,

̂̃L[ε̂−1
1 , µ̂1]ξ(�p) =

̂̃L[ε̂−1
2 , µ̂2]ξ(�p),

̂̃L[µ̂−1
1 , ε̂1]ξ(�p) =

̂̃L[µ̂−1
2 , ε̂2]ξ(�p).

Because, according to (18), L̂[ f , g] is a linear function of both f  and g, these relations are 
equivalent to

̂̃L[ε̂−1
1 − ε̂−1

2 , µ̂1 − µ̂2]ξ(�p) = 0, ̂̃L[µ̂−1
1 − µ̂−1

2 , ε̂1 − ε̂2]ξ(�p) = 0.� (135)

As we explain in our proof of theorem 3, we can satisfy (135) for k � α provided that 
η̃(�K, z) = 0 for |�K| � 2α and η = ε̂1 − ε̂2, µ̂1 − µ̂2, ε̂−1

1 − ε̂−1
2 , and µ̂−1

1 − µ̂−1
2 . This proves 

the following theorem.

Theorem 5.  Let M1 and M2 be scattering media with ε̂� and µ̂� respectively denoting the 
relative permittivity and permeability of M�. Then M1 and M2 are α-equivalent, if the fol-
lowing condition holds for η = ε̂1 − ε̂2, µ̂1 − µ̂2, ε̂−1

1 − ε̂−1
2 , and µ̂−1

1 − µ̂−1
2 .

η̃(�K, z) = 0 for |�K| � 2α.� (136)
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Combining the content of theorems 4 and 5 we are led to the following theorem on the 
construction of α-equivalent pairs of scattering media.

Theorem 6.  Let M� with � = 1, 2, 3, 4 be isotropic scattering media with relative permit
tivity and permeability, ε̂� and µ̂�. Suppose that M3 and M4 satisfy the hypothesis of theorem 
4, i.e. (129) holds for f = ε̂3, ε̂4, µ̂3, and µ̂4, and

ε̂1 =
ηε3

2

(√
1 + 4/ηε3ηε4 + 1

)
, ε̂2 =

ηε3

2

(√
1 + 4/ηε3ηε4 − 1

)
,

� (137)

µ̂1 =
ηµ3

2

(√
1 + 4/ηµ3ηµ4 + 1

)
, µ̂2 =

ηµ3

2

(√
1 + 4/ηµ3ηµ4 − 1

)
,

� (138)

where ηf := f − 1. Then M1 and M2 are α-equivalent.

Proof.  We know that (129) and consequently (128) hold for f = ε̂3,4 and µ̂3,4. We use this 
observation to set ε̂1 − ε̂2 = ηε3 and ε̂−1

1 − ε̂−1
2 = −ηε4 . Solving these equations for ε̂1 and ε̂2, 

and demanding that Re(ε̂�) > 0 yield (137). Replacing the role of ε̂� in this argument by µ̂�, 
we obtain (138). By construction this choice for ε̂1,2 and µ̂1,2 fulfills the hypothesis of theorem 
5. Therefore M1 and M2 are α-equivalent.� □ 

8.  Concluding remarks

Transfer matrices are used in the potential scattering in one dimension mainly because of 
their composition property. A recent study of the similarity between this property and the 
composition rule for evolution operators in quantum mechanics has led to the identification 
of the transfer matrix with the S-matrix of a nonunitary effective two-level system [45, 46]. 
This curious fact has in turn paved the way for the introduction of a multidimensional gener-
alization of the transfer matrix and a corresponding transfer-matrix formulation of potential 
scattering in two and three dimensions [44]. The latter is a genuine alternative to the standard 
(Lipman–Schwinger) approach to scattering theory with many interesting applications [48, 
50–52, 65].

In the present article we have developed a transfer-matrix formulation of the scattering 
of EM waves by general isotropic media. This is a highly nontrivial generalization of the 
transfer-matrix approach to the scattering of scalar waves developed in [44]. We have shown 
that this EM transfer matrix shares the basic features of its analog for the scalar waves. In par
ticular, it has a similar composition property which should facilitate its numerical implemen-
tations. Note however that this property and the related slicing of the scattering medium is by 
no means essential for the application of this approach in dealing with specific EM scattering 
problems. The latter involves addressing two basic problems:

	 1.	�Determining the transfer matrix M̂ which is in general an integral operator acting in 
the function space F 4

k . This happens to coincide with the S-matrix for an effective non-
unitary quantum system and admits a Dyson series expansion of the form (95).

	 2.	�Solving the integral equations (61) and (79) and substituting the result in (62) and (80) to 

determine Tl/r
± , which in turn yield the scattering amplitude for the left- and right-incident 

waves.
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Developing various exact, approximate, and numerical methods of achieving these will play 
an important role in making the EM transfer-matrix formalism into a mainstream method of 
solving EM scattering problems.

A most interesting application of the transfer matrix of [44] is that it leads to an exact 
solution of the scattering problem for the δ-function potentials in two and three dimensions 
while avoiding the divergences of the conventional approach [44, 51]. In a sense, this trans-
fer matrix method has a built-in regularization mechanism. The EM transfer matrix we have 
introduced in the present article has the same property; it yields an exact and finite expression 
for the scattering amplitude of a non-magnetic delta-function point scatterer which agrees 
with the known results after we identify the original coupling constant of our approach with 
a renormalized coupling constant of the Green’s function methods. This reveals a striking 
advantage of our method, because its application to a point scatterer does not require dealing 
with divergent quantities.

Another concrete evidence for the effectiveness of our approach to EM scattering is its 
role in the discovery of a large class of isotropic media that display perfect broadband invis-
ibility for wavenumbers k not exceeding a prescribed value α. For k � α such a medium 
behaves exactly like vacuum. Motivated by this observation, we have introduced the notion 
of α-equivalent media, which share the same scattering features for wavenumbers k � α. We 
have employed our transfer-matrix formulation of the scattering of EM waves to obtain a sim-
ple quantitative scheme for constructing α-equivalent media.

The utility of our EM transfer matrix theory in dealing with basic problems such as the 
singularity-free treatment of point scatterers, the characterization of isotropic media display-
ing exact broadband invisibility, and the study of α-equivalent media reveals some of its 
advantages over the previously studied transfer matrix theories. Because the application of 
the latter for a general inhomogeneous medium requires slicing the medium, discretization 
of the slices, and the numerical evaluation of their transfer matrices, these theories cannot be 
effectively used for performing exact and analytic calculations. This in turn limits their effec-
tiveness in dealing with the type of basic problems we address in sections 5–7.
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Appendix A.  Direct calculation of differential cross section

In this appendix, we offer an alternative derivation of equation (76) that avoids the calculation 
of the scattering amplitude. First, we note that according to (11), (66) and (67),

|E s(r)|2 + |Hs(r)|2 =
2|E0|2

r2 σd(ki, ks) for r → ∞.� (A.1)

Because {r̂, ês, r̂ × ês} forms an orthonormal basis of R3, Pythagorean theorem states that

(êz · ês)
2 + [êz · (r̂ × ês)]

2 = 1 − (êz · r̂)2 = 1 − cos2 ϑ.� (A.2)

Equations (12), (65), (67), (A.1) and (A.2) allow us to relate |f (ki, ks)|2 to the asymptotic 
expression for |Φs(r)|2 := Φs(r)†Φs(r). The result is:
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|Φs(r)|2 = |�Es(r)|2 + | �Hs(r)|2 = |E s(r)|2 + |Hs(r)|2 − |êz · E s(r)|2 − |êz ·Hs(r)|2

=
|E0|2

r2 (1 + cos2 ϑ)σd(ki, ks) for r → ∞.
�

Substituting (69) in this equation and solving for σd(ki, ks), we find (76).

Appendix B.  Integral kernels for ̂̃H(z) and Ĥ (z)

The Hamiltonian operators ̂̃H(z) and Ĥ (z) are integral operators acting on the function 

space F 4
k . We can express them in terms of the corresponding integral kernels, H̃(z;�p,�q) and 

H (z;�p,�q). The latter determine the action of ̂̃H(z) and Ĥ (z) on the four-component fields 

F ∈ F 4
k  according to

( ̂̃H(z)F
)
(�p) =

∫

Dk

d2�q H̃(z;�p,�q)F(�q),
(
Ĥ (z)F

)
(�p) =

∫

Dk

d2�q H (z;�p,�q)F(�q).� (B.1)

In this appendix we derive explicit expressions for the integral kernels H̃(z;�p,�q) and H (z;�p,�q).
First, we observe that according to (83), H̃(z;�p,�q) has the following structure.

H̃(z;�p,�q) =

[
0 h̃+(z;�p,�q)

h̃−(z;�p,�q) 0

]
,� (B.2)

where h̃±(z;�p,�q) are 2 × 2 matrices depending on z,�p , and �q . In light of this equation, if we 
express F in the form,

F =

[
φ+

φ−

]
,� (B.3)

where φ± ∈ F 2
k , we have

H̃(z;�p,�q)F(�q) =

[
h̃+(z;�p,�q)φ−(�q)
h̃−(z;�p,�q)φ+(�q)

]
.� (B.4)

Next, we introduce:

̂̃L+ := ̂̃L[ε̂−1, µ̂], ̂̃L− := ̂̃L[µ̂−1, ε̂],� (B.5)

so that, according to (83),

( ̂̃H(z)F
)
(�p) =

[
(̂̃L+φ−)(�p)

−(̂̃L−φ+)(�p)

]
.� (B.6)

We can use (84), (85) and (B.1)–(B.6) to infer that
(̂̃L±φ∓

)
(�p) =

1
4π2

∫

Dk

d2�q S̃±(z;�p −�q, i�q)φ∓(�q),� (B.7)

where

S̃±(z; �K, i�q) :=
∫

R2
d2�r e−i�K·�rS±(z;�r, i�q),� (B.8)
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and S±(z;�r, i�q) are 2 × 2 matrices with the entries S±,ij(z;�r, i�q) given by

S+,11(z;�r, i�q) := k−1qy
{
−ε̂(�r, z)−1qx + i∂x[ε̂(�r, z)−1]

}
,

S+,12(z;�r, i�q) := k−1 {ε̂(�r, z)−1q2
x − iqx∂x[ε̂(�r, z)−1]− k2µ̂(�r, z)

}
,

S+,21(z;�r, i�q) := k−1 {−ε̂(�r, z)−1q2
y + iqy∂y[ε̂(�r, z)−1] + k2µ̂(�r, z)

}
,

S+,22(z;�r, i�q) := k−1qx
{
ε̂(�r, z)−1qy − i∂y[ε̂(�r, z)−1]

}
,

S−,11(z;�r, i�q) := k−1qy
{
−µ̂(�r, z)−1qx + i∂x[µ̂(�r, z)−1]

}
,

S−,12(z;�r, i�q) := k−1 {µ̂(�r, z)−1q2
x − iqx∂x[µ̂(�r, z)−1]− k2ε̂(�r, z)

}
,

S−,21(z;�r, i�q) := k−1 {−µ̂(�r, z)−1q2
y + iqy∂y[µ̂(�r, z)−1] + k2ε̂(�r, z)

}
,

S−,22(z;�r, i�q) := k−1qx
{
µ̂(�r, z)−1qy − i∂y[µ̂(�r, z)−1]

}
.

In view of (B.1) and (B.6)–(B.8), we have

h̃±(z;�p,�q) = ± 1
4π2 S̃±(z;�p −�q, i�q) = ± 1

4π2

∫

R2
d2�r e−i(�p−�q)·�rS±(z;�r, i�q).

� (B.9)
Substituting this equation in (B.2), we find the following expression for the integral kernel of 
the Hamiltonian operator H̃(z).

H̃(z;�p,�q) =
1

4π2

∫

R2
d2�r e−i(�p−�q)·�r

[
0 S+(z;�r, i�q)

−S−(z;�r, i�q) 0

]
.� (B.10)

Next, we determine the integral kernel H (z;�p,�q) for the interaction-picture Hamiltonian 
Ĥ (z). It is easy to see that according to (93), (94) and (B.1),

(
Ĥ (z)F

)
(�p) =

(
eiẑ̃H0 ̂̃H(z)e−iẑ̃HF

)
(�p)− H̃0(�p)F(�p)

=

∫

Dk

d2�q
[
eizH̃0(�p)H̃(z;�p,�q)e−izH̃0(�q) − δ(�p −�q)H̃0(�q)

]
F(�q),

� (B.11)

where H̃0(�p) is the 4 × 4 matrix given by (28), and δ(�p) is the Dirac delta-function in two 
dimensions. In view of (B.1) and (B.11),

H (z;�p,�q) = eizH̃0(�p)H̃(z;�p,�q)e−izH̃0(�q) − δ(�p −�q)H̃0(�q).� (B.12)

Appendix C.  Proof of theorem 4

To prove theorem 4 we use the following lemmas.

Lemma 1.  Let η1, η2 : R3 → C be functions satisfying

η̃1(Kx, y, z) = η̃2(Kx, y, z) = 0 for Kx < 2αx,� (C.1)

η̃1(x,Ky, z) = η̃2(x,Ky, z) = 0 for Ky < 2αy,� (C.2)

and η3 := η1η2. Then

η̃3(Kx, y, z) = 0 for Kx < 2αx,� (C.3)

η̃3(x,Ky, z) = 0 for Ky < 2αy.� (C.4)
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Proof.  According to (C.1) and the convolution formula for Fourier transform,

η̃3(Kx, y, z) =
∫ ∞

−∞
dq η̃1(Kx − q, y, z) η̃2(q, y, z) =

∫ ∞

2αx

dq η̃1(Kx − q, y, z) η̃2(q, y, z).

The Kx − q appearing in the latter integral takes values in the interval (−∞,Kx − 2α). For 
Kx < 2αx , Kx − q < 4α. Therefore, (C.1) implies that η̃1(Kx − q, y, z) = 0. This proves (C.3). 
Swapping the roles of x and y  in this argument yields a proof of (C.4).� □ 

Lemma 2.  If f : R → C is a bounded function whose real part is bounded below by a posi-
tive number, then [1 + ηf (r)]−1 admits a convergent series expansion in powers of a degree-1 
polynomial in ηf (r).

Proof.  By the hypothesis of the lemma, there are real numbers m and M such that for all 
r ∈ R3,

0 < m � Re[ f (r)] � |f (r)| � M.� (C.5)

Let β(r) := [ηf (r)− Q]/(1 + Q) and Q:  =  (M2  +  1)/2m. Then a simple calculation shows 
that

1
1 + ηf

=
1

(1 + Q)(1 + β)
.� (C.6)

The right-hand side of (C.6) admits a convergent power series in β provided that |β(r)| < 1 
for all r ∈ R3. To verify this, we use ηf = f − 1 and (C.5) to establish:

|ηf (r)|2 � |f (r)|2 + 1 � M2 + 1 �
M2Re[ f (r)]

m
+ 1 =

(
2Q − 1

m

)
Re[ f (r)] + 1

< 2Q Re[ f (r)] + 1 = 2Q Re[ηf (r)] + 2Q + 1.

This in turn implies

|β| =
|ηf − Q|
1 + Q

=

√
[Re(ηf )− Q]2 + Im(η)2

1 + Q
=

√
|ηf |2 − 2Q Re(ηf ) + Q2

1 + Q
< 1,

� (C.7)

where we have dropped the r-dependence of β and ηf  for brevity. In view of (C.7), we can 
expand the right-hand side of (C.6) as a convergent power series in powers of β(r), i.e. for all 
r ∈ R3 we have�

◻
[1 + η(r)]−1 = (1 + Q)−1

∞∑
n=0

(−1)nβ(r)n.� (C.8)

Proof of theorem 4.  It is easy to see that (129) implies (128). Because the hypothesis 
of the theorem assumes the validity of (129) for f = ε̂  and µ̂, we only need to prove (129) 
for f = ε̂−1 and µ̂−1. We can achieve this by showing that we can replace f  by f −1 in (129). 
To do this, we make use of lemmas 1 and 2. According to (C.8) of lemma 2 and the identity 

ηf−1 = −ηf /(ηf + 1), we can express ηf−1 as a convergent power series whose terms are con-

stant multiples of ηfβ
n = ηf (a1ηf + a0)

n. This is a linear combination of ηf , η2
f , · · · , ηn+1

f . 
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Lemma 1 states that these satisfy (129). Therefore, the same holds for ηfβ
n and terms of the 

above-mentioned series expansion of ηf−1. This in turn implies that the sum of the series, i.e. 
ηf−1, also satisfies (129). Applying this argument for f = ε̂  and µ̂ we see that (129) holds for 
f = ε̂−1 and µ̂−1.� □ 
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