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Abstract
In a noiseless linear estimation problem, the goal is to reconstruct a vector x∗ 
from the knowledge of its linear projections y = Φx∗. There have been many 
theoretical works concentrating on the case where the matrix Φ is a random 
i.i.d. one, but a number of heuristic evidence suggests that many of these results 
are universal and extend well beyond this restricted case. Here we revisit this 
problem through the prism of development of message passing methods, and 
consider not only the universality of the �1-transition, as previously addressed, 
but also the one of the optimal Bayesian reconstruction. We observed that the 
universality extends to the Bayes-optimal minimum mean-squared (MMSE) 
error, and to a range of structured matrices.
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1.  Introduction

The problem of recovering a signal through the knowledge of its linear projections is ubiqui-
tous in modern information theory, statistics and machine learning. In particular, many appli-
cations require to reconstruct an unknown n  −  dimensional signal vector x∗ from the linear 
projections

y = Φx∗ ,� (1)

where y is a m-dimensional vector, and Φ is an m × n random matrix. For instance, if x∗ is 
sparse, this task of estimating the signal from its linear random projections is at the roots of 
compressed sensing [1]. A fundamental question in the field is how much the algorithmic and 
the information theoretic performance depends on the choice of the random matrix Φ.

In the present letter, we concentrate on the noiseless and asymptotic, large n, regime with 
a fixed value α=m/n. We consider x∗ to be k-sparse, i.e. to have only k non-zero values, and 
we shall work in the limit where n → ∞, k → ∞, and a finite value of ρ=k/n. In such set-
ting, a classical result is the following: for random matrices Φ which entries are identically and 
independently generated from a Gaussian distribution, that we call Gaussian i.i.d. matrices, 
the (convex) reconstruction with �1-penalty displays a precisely determined phase transition. 
For a certain region in the (α, ρ)-phase diagram, it typically finds back the vector x∗, being 
the sparsest solution, whereas outside that region, it typically fails. The boundary between 
these two regions is called the Donoho–Tanner line [2]. It has been shown empirically that the 
very same phase transition location seems to hold for a wider range of random matrix ensem-
bles, see e.g. [3, 4], suggesting a large universality of the Donoho–Tanner phase transitions. 
Another line of work showed that the convex �1-reconstruction problem can be treated through 
conic geometry, and the success probability of signal recovery only depends on a geometric 
number characterizing a subcone (statistical dimension or Gaussian width) [5, 6].

Here we investigate the universality of the phase transition not only for the �1-transition, 
but also to the performance of the optimal Bayesian reconstruction. We analyze this question 
through the prism of information theory, message passing methods, and random matrix theory. 
We shall see that the universality indeed extends to a more generic set of properties than the 
�1-transition, such as the minimum mean-squared (MMSE) error or the easy-hard phase trans
ition for optimal Bayesian learning, and empirically to structured matrices such as the one 
appearing in [7, 8].

We note that investigation of universality are very common to physics problems, and 
understanding how large is the class of model for which a given result applied is a very fun-
damental question. The message-passing-based algorithm that we investigate in this paper to 
demonstrate the universality also has their origin in physics works, such as [9].

2.  A short review of results for independent and identically distributed (i.i.d.) 
random matrices

A first well-understood case of universality holds for random matrices Φ where all the ele-
ments are generated identically and independently from a well-behaved distribution -with zero 
mean and unit variance- which all exhibit the same transitions as Gaussian random matrices. 
This is known for multiple retrieval problems:
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2.1.  �1-recovery

Consider for instance the Donoho–Tanner line [2] that regulates the �1-recovery. Thanks to 
the approximate message passing solver (see below) that has been shown to be universal with 
respect to all matrices which are independent and identically distributed with finite moments 
[10, 11], we know that the Donoho–Tanner phase transition is the same for all those matrices.

2.2.  Information theoretic optimal reconstruction

There has been a considerable amount of work in the information theory community on the 
computation of the mutual information and on the MMSE for problems such as (1) with 
Gaussian matrices. In particular, following the replica method from statistical physics (the 
Tanaka formula [12]), a heuristic formula has been postulated in different situations, see e.g. 
[13–16]. This heuristic replica result has been recently rigorously proven in a series of papers 
[17, 18]. In a more recent proof [19], it has been shown, again, that the formula is not specific 
to Gaussian i.i.d. matrices, but that any matrix with i.i.d elements of unit variance and zero 
mean leads to the same exact result for the mutual information and the MMSE.

2.3.  Hard phase for Bayesian decoders

A third interesting point is to ask about tractable decoders that aim at performing the opti-
mal Bayesian estimation, i.e. with a perfect prior knowledge on the distribution of x∗. For 
simplicity, consider for instance the case where each element of x∗ has been sampled from a 
Gauss–Bernoulli distribution:

xi ∼ (1 − ρ)δ(x) + ρN (0, 1) .

ρ ∈ [0, 1] is the ratio of non-zero components of x∗. In this case, the best known solver is again 
AMP, using a Bayesian decoder (instead of the soft thresholding function for �1-recovery) [14, 
15, 20, 21]. Interestingly, it shares with the �1-recovery a similar phase transition: for a certain 
region in the (α, ρ) plane it typically finds back the vector x∗, whereas outside that region it 
fails. We shall denote the limit between these regions the ‘Bayesian hard-phase’ transition. 
The ‘Bayesian hard-phase’ line, that has been precisely computed in [14, 15] is always bet-
ter than the Donoho–Tanner line (as it should, since it exploits additional information). Once 
more, the universality of AMP shows that this phase transition is not restricted to Gaussian 
matrices, but extends as well to all (well normalized) i.i.d. matrices.

The fact that these three properties (the �1, the hard-phase line, as well as the MMSE) are 
universal for all i.i.d. matrices makes the case for Gaussian computations, as done in theor
etical computation, stronger. We shall see that this universality extends well beyond these 
simple cases.

3.  Random rotationally invariant matrices

Moving away from the well-known i.i.d. examples, we start by considering a much larger 
set of random matrices defined through their singular value decomposition (SVD): any real 
matrix Φ can be decomposed into Φ = UΣV , with U and V  orthogonal matrices, and Σ’s ele-
ments being Φ’s singular values. We shall look at the left rotationally invariant random matrix 
ensemble: these are matrices Φ that can be written as

Φ = UΣV
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with an arbitrary rotation matrix U and singular values Σ, but where the matrix V  has been 
randomly (and independently of Σ and U) generated from the Haar measure (that is, uniformly 
from all possible rotations).

When the singular values are different from zero, it is straightforward to justify the univer-
sality property for matrices from this subclass. We start by the definition of the problem: we 
wish to find x such that

y = Φx = UΣVx.� (2)

If m � n, then Σ is written as Σ =
[
Σ̃ 0

]
 and we define

Σinv =

[
Σ̃−1

0

]
such that ΣinvΣ =

[
Im 0
0 0

]
.

Multiplying (2) on both sides by UT, and then by Σinv; one reaches

ỹ = ΣinvUTy = Ṽx� (3)

where Ṽ  is an m × n matrix composed of the first m lines of V . If instead m  >  n, Σ is written 
as

Σ =

[
Σ̃

0

]

and we define Σinv =
[
Σ̃−1 0

]
 such that ΣinvΣ = In. Multiplying (2) by UT then Σinv, we 

obtain a similar equation

ỹ = ΣinvUTy = Vx.� (4)

In both cases, we thus see that the problem has been transformed—in a constructive way—
into a standard linear system with the sensing matrix Ṽ  when m � n being a (sub-sampled) 
random rotation one, or sensing matrix V  when m  >  n. This shows that all rotationally invari-
ant matrices, which satisfy U and Σ’s independence on V , can be transformed the same way 
and are in the same universality class as far as noiseless linear recovery is concerned, i.e. they 
will display the same phase transitions.

Since Gaussian i.i.d. matrices belong among random rotationally invariant matrices (in 
this case Σ follows the Marcenko–Pastur law [22]) this means that all the information theo-
retic rigorous results (such as phase transitions and MMSE value) with zero noise for ran-
dom Gaussian matrices applies verbatim to all rotationally invariant ensemble, as long as the 
SVD’s matrices U and Σ are independent of V . This is a very strong universality, that applies 
to the phase transitions of the three cases (1, 2, 3) from section 2. Note that the universality of 
the Donoho–Tanner line with rotationally invariant matrices was already hinted by the replica 
method [23].

However, note that the above construction depends crucially on the fact that we consider 
here noiseless measurements. It would not work if an additional Gaussian noise were added in 
equation (1): in this case, the transformation would make the i.i.d. Gaussian noise a correlated 
one. Indeed, the replica formula for noisy measurements underlines that the MMSE depends 
on the precise set of matrices in noisy reconstruction [13, 24] (this formula is not yet fully 
rigorous, but see [25] for a proof in a restricted setting). Any differences, however, must go to 
zero in the noiseless limit.
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4.  Approximate message passing

Having discussed the universality with respect to random rotationally invariant matrices, we 
now wish to discuss its effect on specific solvers, concretely the message passing algorithms.

4.1.  AMP

We first consider the original approximate message passing (AMP) [26] to compute the phase 
transition between the phase where the algorithm reconstructs x∗ perfectly, and the one where 
reconstruction may be possible but is not achieved by the algorithm. AMP is an iterative 
algorihm that follows:

x̂t+1 = ηt(Φ
T x̂t)

zt = y − Φx̂t +
1
α

zt−1〈η′t−1(Φ
Tzt−1 + x̂t−1)〉.

where t is the iteration index, xt  is the current estimate of x∗, zt the current residual, 〈·〉 is an 
averaged sum of components, and ηt  is a prior-dependent threshold function applied comp
onent-wise (the soft thresholding for �1, or the Bayesian decoder [14, 15]).

One of the most interesting features of AMP is that, if Φ is a Gaussian i.i.d. matrix, its mean 
squared error (MSE) σt can be tracked accurately by the state evolution formalism [10, 11, 
26]. State evolution is a relatively simple recursive equation:

σ2
t+1 = Ψ(σ2

t ) , Ψ(σ2) = E

[(
ηt(X +

σ√
α

Z)− X
)2

]
,� (5)

where the expectation is with respect to independent random variables Z ∼ N (0, 1) and X, 
whose distribution coincides with the empirical distribution of the entries of x*. Analyzing the 
evolution of this equation for the �1-decoder yields the Donoho–Tanner line [26], while using 
the Bayesian decoder it yields the hard-phase line for Bayesian decoding [14].

It would be interesting to use AMP for rotationally invariant matrices. In order to do this, 
we follow the construction of section 3: starting from equation (3) we then multiply by Σ0, 
an m × m diagonal matrix with singular values sampled from Marcenko–Pastur law (singular 
values of a Gaussian i.i.d. matrix3), and U0 an m × m Haar-generated orthogonal matrix, thus 
ensuring that Σ0 and U0 are generated independently of V :

U0Σ0Σ̃
−1UTy = U0Σ0Ṽx� (6)

y′ = Φ′x.� (7)

After this transformation, Φ′ = U0Σ0Ṽ  is a random matrix that belongs to an ensemble very 
close to the Gaussian i.i.d. matrices ensemble. In fact, a recent work showed that AMP applied 
to a Gaussian matrix follows the same state evolution as matrices such as Φ′ where U0, Ṽ  are 
uniform orthogonal matrices and Σ0 diagonal’s elements are singular values sampled from 
the Marcenko–Pastur law [27]. Combining this result with the matrix transformation, we have 
thus constructively mapped the noiseless reconstruction problem back to the well-understood 
noiseless compressed sensing case for a Gaussian i.i.d. matrix, where we can safely apply the 

3 The singular values of a Gaussian matrix are correlated, so in fact we may want to generate Σ0 by first generating 
a random Gaussian matrix, and then calculating its singular values.

A Abbara et alJ. Phys. A: Math. Theor. 53 (2020) 164001
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algorithm, and its state evolution. In the section 5.2, we apply this matrix transformation for 
numerical experiments using AMP.

4.2.  Vector-AMP

While the transformation trick allows to make AMP work with random rotationally invariant 
matrices, another alternative is to work directly with a dedicated solver. To this means, differ-
ent but related approaches were proposed [24, 28], in particular, using the general expectation-
propagation (EP) [29, 30] scheme. Ma and Ping proposed a variation of EP called OAMP [31] 
specially adapted to rotation matrices. Rangan, Schniter and Fletcher introduced a similar 
approach called VAMP [32] and proved that it follows state evolution equations corresponding 
to the fixed point of the replica potential [13, 24, 25]. The multi-layer AMP algorithm of [33] 
also display the same fixed point.

We shall concentrate here on the VAMP (Vector-AMP) approach, and for a moment, put 
back a small additional random Gaussian i.i.d. noise of variance ∆ in the measurement in 
equation (1) as it is needed for stating the algorithm. VAMP then consists in the following 
fixed-point iteration:

ut+1
� =

x̂l
t

〈Vart
�(x)〉

− ut
r, ρt+1

� =
1

〈Vart
�(x)〉

− ρt
r,

ut+1
r =

x̂r
t

〈Varr(x)〉
− ut

�, ρt+1
r =

1
〈Vart

r(x)〉
− ρt

�,
� (8)

where Et
�,r and Vart

r,�(x) are the expectation and variance of the tilted distributions

Q̃t
�,r(x) ∝ P�,r(x)Qt

�,r(x),� (9)

where

Ql,r(x) = e−
1
2 ρl,rxT x+uT

l,tx� (10)

Pl(x) ∝ e−||y−Φx||22/2∆,� (11)

and Pr(x) is the prior used in the algorithm (i.e. the Laplace prior for the �1-model, or the 
actual distribution of the signal for Bayesian reconstruction). In particular

x̂l
t = (ΦTΦ+∆ρt

rIp)
−1(ΦTy +∆ut

r),

〈Vart
�(x)〉 =

∆

N
Tr(φTΦ+∆ρt

rIp)
−1,

� (12)

where, as for AMP, we define the denoiser that yields the estimates of x by 
z(u, ρ) =

∫
dxPr(x)e−

1
2 ρx2+ux ,

(x̂r)j =
∂

∂u
log z(u, ρ)

∣∣∣
ut
�k ,ρt

�

,

〈Vart
r(x)〉 =

1
n

p∑
j=1

∂2

∂u2 log z(u, ρ)
∣∣∣
ut
�k ,ρt

�

.
� (13)

Again, the performance of the recursion can be analyzed rigorously through the state evo
lution [32]. For simplicity, let us concentrate on the Bayes optimal case in which case the state 
evolution can be closed on the variables (see [32]):

A Abbara et alJ. Phys. A: Math. Theor. 53 (2020) 164001
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σt = 〈Vart
r(x)〉 and εt = 〈Vart

l(x)〉 ,� (14)

by writing

σt(ρt
l) = Ψ((ρt

l)
−1)

εt(ρt
r) =

∆

N
Tr

[(
Σ2 +∆ρt

rIN
)−1

]
= ∆SΣ2(−∆ρt

r)
� (15)

where IN is the identity matrix of size N, and we recognize the Stieltjes transform 
SΣ2(t) = 1

N Tr
[(
Σ2 − tIN

)−1
]
.

Though this transform, we see that the performance depends crucially on the distribution 
of eigenvalues. Let us now go back on the noiseless limit when ∆ → 0 and analyze how the 
universality shows up. Consider again the Stieltjes transform: out of the n singular values of 
the n × n matrix ΦTΦ, we shall have (1 − α)n of them to be zero (assuming α < 1) while 
the rest are positive (since m  <  n). In this case, the limit r → 0 of the Stieltjes transform will 
behave as SX(r) ≈ −(1 − α)/r  so that

lim
∆→0

ε(ρt
r) =

1 − α

ρt
r

.

Again, we see that all the complicated dependence on the spectrum of the matrix Φ has been 
eliminated. This is a direct, alternative, proof that VAMP will also yield universal results in the 
zero noise limit for the Bayesian reconstruction. Given that VAMP has the same fixed point 
as the replica mutual information [13, 25], this argument applies to the replica prediction for 
the MMSE as well.

5.  Structured matrices

We now move to very structured matrices, in order to test the universality as well as the qual-
ity and the prediction of the state evolution out of its comfort zone. In order to do so, we have 
considered different matrix ensembles:

5.1. Tested ensembled of matrices

5.1.1.  Discrete cosine transform matrices.  The first ensemble we consider consists in Fourier-
like matrices. An n × n discrete cosine transform (DCT) matrix Y is defined by:

Yjk =

√
2
n
εk cos

(
π(2j + 1)k

2n

)
,� (16)

where j, k ∈ [[0, n − 1]], ε0 = 1/
√

2, εi = 1 for i = 1, ..., n − 1. We used a sub-sampled version 
of these matrices in which we picked some rows randomly.

5.1.2.  Hadamard matrices.  A natural variant of DCT is given by the Hadamard matrices. H 
is an n × n Hadamard matrix if its entries are ±1 and its rows are pairwise orthogonal, i.e. 
HHT = nIn. For every integer k, there exists a Hadamard matrix Hk of size 2k. These can be 
created with Sylvester’s construction: let H be a Hadamard matrix of order n. Then the parti-
tioned matrix

[
H H
H −H

]

A Abbara et alJ. Phys. A: Math. Theor. 53 (2020) 164001
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is a Hadamard matrix of order 2n.

5.1.3.  Random features maps.  Finally, we wanted to consider here random features maps 
(RFM) as encountered in nonlinear regression problems. In such settings, a random features 
matrix Φ = f (WX) is obtained from the raw data matrix X by means of a random projection 
matrix W and a pointwise nonlinear activation f . Kernel regression models, nonlinear in the 
original data X, can then be approximately but efficiently solved by the linear estimation prob-
lem (1), with an appropriate choice for f  and the W-distribution [34]. Such matrices, that can 
be seen as the output of a neuron with random weights, have been investigated in particular in 
the context of neural networks [7, 8]. Indeed, in neural networks configurations with random 
weights play an important role as they define the initial loss landscape. They are also funda-
mental in the random kitchen sinks algorithm in machine learning [34] and it is thus of interest 
to test our understanding of linear reconstructions with AMP and VAMP in this case.

In what follows we will test random features matrices where both W and X are random 
Gaussian i.i.d. matrices.

5.2.  Numerical results

We provide the codes used to generate the data on github in the repository http://sphinxteam/
Universality-CS-2019. To generate figures 1 and 2, we ran VAMP 50 times on 50 × 50 points 
spanning the (α,ρ)-space, and computed the average mean-squared error (MSE) between 
the signal x∗ and the reconstructed configuration x. The MSE is represented with a color 
bar (white means perfect reconstruction). For a DCT and a Hadamard matrix, we observe a 

Figure 1.  Phase diagram for a DCT matrix (width n  =  1000) in the Bayes-optimal 
case. The averaged MSE on 50 executions of VAMP is represented by a color-code, 
displaying a phase transition that matches the theoretical Bayes line for Gaussian i.i.d. 
matrices (black line). Some finite-size effects can be seen.
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phase transition in the Bayes-optimal case that matches the theoretical transition for Gaussian 
i.i.d. matrices. We also ran VAMP for the �1-reconstruction problem. Averaging on 20 execu-
tions (or 50 for small α where finite-size effects are more important), we recover again a 
phase transition matching the theoretical Donoho–Tanner line for Gaussian i.i.d. matrices [3]. 
Besides, we compared the MSE obtained by VAMP at each point of the phase diagram for 
different matrices. In figures 3 and 4, we plot the MSE averaged on 20 executions for ρ  fixed 
and α ranging between 0 and 1. We get the same error in reconstruction for all matrices, fol-
lowing the MSE for Gaussian i.i.d. matrix for ρ = 0.25, 0.5 and 0.75. We also checked that 
AMP, provided one uses the trick equation (7), reproduce these results as well: indeed the two 
algorithms returned extremely similar results.

5.3.  Discussion

Figures of the previous section perfectly illustrate our main point: the universality in noise-
less compressed sensing is not limited to the �1-type reconstruction as in [3, 4], but extends to 
other quantities and estimators, such as the hard-phase line in Bayesian reconstruction, and 
the MMSE. Besides, it is not limited to random orthogonal matrices, but empirically extends 
to Fourier-type matrices and to the random features maps currently studied in machine learn-
ing. It is an open question to extend the proof of state evolution to these challenging matrices. 
However, all matrices do not share the same properties of phase transitions and MMSE. Let us 
have a look at two examples of structured matrices that do not seem to follow these universal 
phase transitions.

Figure 2.  Phase diagram in the �1-reconstruction case obtained by averaging on 20 
to 50 executions on VAMP. The dots indicate the phase transitions for Gaussian i.i.d., 
DCT (width n  =  2000), Hadamard matrices (n  =  4096); and random feature matrices 
Φ = f (WX) with f = ReLu (ReLu(x) = 0 if x � 0, x if x  >  0), f = sign, f = tanh 
(W and X are Gaussian i.i.d. of size αn × n and n × n with n  =  2000). They match the 
theoretical Donoho–Tanner transition for Gaussian i.i.d. matrices (black line).

A Abbara et alJ. Phys. A: Math. Theor. 53 (2020) 164001
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Figure 3.  Mean-squared error for ρ = 0.25, 0.5 and 0.75 (bottom to up curves) in 
the Bayes-optimal case averaged on 20 executions of VAMP for Gaussian i.i.d, DCT, 
Hadamard, random features matrices Φ = f (WX) with f = ReLu, f = sign, f = tanh 
(W and X are Gaussian i.i.d of size αn × n and n × n) . The width is n  =  2000 for all 
matrices.

Figure 4.  Mean-squared error for ρ = 0.25, 0.5 and 0.75 (bottom to up curves) in the 
�1-reconstruction case averaged on 20 executions of VAMP for Gaussian i.i.d, DCT, 
Hadamard, random features matrices Φ = f (WX) with f = ReLu, f = sign, f = tanh 
(W and X are Gaussian i.i.d of size αn × n and n × n). The width is n  =  2000 for all 
matrices.

A Abbara et alJ. Phys. A: Math. Theor. 53 (2020) 164001
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	 •	� Haar wavelet matrices

Haar wavelet matrices can be defined recursively by:

W2 =

[
1 1
1 −1

]
and W2k =

[
Hk ⊗ [1,−1]

Ik ⊗ [1, 1]

]

where Ik is the identity matrix of size k and ⊗ is the Kronecker product. In the easy phase of 
compressed sensing, both in the Bayes-optimal setting and the �1-recovery case, where VAMP 
applied to Gaussian i.i.d. matrices (as well as Hadamard, DCT, random features matrices) per-
fectly reconstructs the signal; it fails to do so when applied to a Haar wavelet matrix. VAMP 
will then converge to a fixed point with a non-zero MMSE, as seen in figures 5 and 6. In fact, 
VAMP seems to always fail in reconstructing the signal for a Haar wavelet matrix: the MMSE 
converges to a finite quantity, but never to zero. Hence we do not observe the same phase 
transitions for VAMP applied to a Haar wavelet matrix.

	 •	� Gaussian correlated matrices

Let T(c) be the Toeplitz matrix defined as T(c)ab = c|a−b|. As in [35], we consider struc-
tured matrices which satisfy the following property: if M is a m × n matrix, its elements have 
covariance

E[MiaMjb] =
1
m

CijDab� (17)

Figure 5.  Mean-squared error at each iteration of VAMP in a Bayes-optimal setting, 
for ρ = 0.3, α = 0.7 (in the easy phase of compressed sensing, i.e. below the ‘Bayesian 
hard-phase’ line) . VAMP is applied to a Gaussian i.i.d, a DCT, correlated Gaussian 
(width n  =  2000); Hadamard and Haar wavelet matrices (width n  =  2048). The MSE 
for the Haar wavelet matrix converges to a finite value but does not go to zero as for 
the other matrices. The MSE for a Gaussian correlated matrix converges for small 
correlation c  =  0.15 and diverges for larger correlation c  =  0.8.

A Abbara et alJ. Phys. A: Math. Theor. 53 (2020) 164001



12

where all Daa  =  1. Such a matrix can be obtained, for instance, by multiplying a m × n 
Gaussian i.i.d. matrix G by a n × n Toeplitz matrix T(

√
c). In our simulations, we thus used 

matrices

M(c) =
1√
m

GT(
√

c)� (18)

for different values of c. Running VAMP in the Bayes-optimal case with parameters (α, ρ) 
in the easy phase of compressed sensing, we find that it converges and perfectly reconstructs 
the signal for c small enough (c  =  0.15), but fails to converge and has a diverging MSE when 
c is larger (c  =  0.8), as seen in figure 5. In the �1-recovery setting, still in the easy phase of 
compressed sensing, VAMP fails to converge to a fixed reconstructed vector x̂ both for c very 
small (c  =  0.001) or large (c  =  0.8). However, the MSE stays very close to a small non-zero 
value, which can be seen in figure 6. After a large number of iterations, VAMP keeps return-
ing a vector very close to the original signal, but does not manage to reconstruct it. The final 
MSE’s approximate value also depends on c: the larger the correlations are, the larger the 
MSE is. In [35], the authors study such correlated matrices in the very sparse regime when α 
is close to zero, and show that the theoretical phase transition for �1-recovery depends on c.

Investigating the behaviour of these matrices in the non-sparse regime is an interesting 
direction of research. For now, it is clear that VAMP used on Haar wavelet matrices and 
Gaussian correlated matrices does not display the same phase transitions as Gaussian i.i.d., 
DCT, Hadamard and Random features matrices. It would be interesting to find a good criterion 

Figure 6.  Mean-squared error at each iteration of VAMP in the case of �1-recovery, 
for ρ = 0.3, α = 0.8 (in the easy phase of compressed sensing, below the Donoho–
Tanner line). VAMP is applied to a Gaussian i.i.d, a DCT, correlated Gaussian (width 
n  =  2000); Hadamard and Haar wavelet matrices (width n  =  2048). The MSE for the 
Haar wavelet matrix converges to a finite value but does not go to zero. The MSE for 
Gaussian correlated matrices does not effectively converge, but stays very close to a 
small non-zero value, as seen in the zoomed-in second subplot.

A Abbara et alJ. Phys. A: Math. Theor. 53 (2020) 164001
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to identify which matrices satisfy this universality and which do not; this is something that we 
are yet unable to predict in advance.
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