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Abstract

This paper is an application to Einstein’s gravity (EG) of the mathematics developed in (Plastino and
Rocca 2018 J. Phys. Commun. 2,115029). We will quantize EG by appeal to the most general
quantization approach, the Schwinger-Feynman variational principle, which is more appropriate and
rigorous that the functional integral method, when we are in the presence of derivative couplingsWe
base our efforts on works by Suraj N. Gupta and Richard P. Feynman so as to undertake the
construction of a Quantum Field Theory (QFT) of Einstein Gravity (EG). We explicitly use the
Einstein Lagrangian elaborated by Gupta (Gupta, Proc. Pys. Soc. A, 65, 161) but choose a new
constraint for the theory that differs from Gupta’s one. In this way, we avoid the problem of lack of
unitarity for the S matrix that afflicts the procedures of Gupta and Feynman. Simultaneously, we
significantly simplify the handling of constraints. This eliminates the need to appeal to ghosts for
guarantying the unitarity of the theory. Our ensuing approach is obviously non-renormalizable.
However, this inconvenience can be overcome by appealing tho the mathematical theory developed
by (Bollini et al Int. ]. of Theor. Phys. 38,2315, Bollini and Rocca Int. J. of Theor. Phys. 43,1909, Bollini
and Rocca Int. J. of Theor. Phys. 43, 59, Bollini et al, Int. ]. of Theor. Phys. 46,3030, Plastino and Rocca
J. Phys. Commun. 2,115029) Such developments were founded in the works of Alexander
Grothendieck (Grothendieck Mem. Amer. Math Soc. 16 and in the theory of Ultradistributions of Jose
Sebastiao e Silva Math. Ann. 136, 38) (also known as Ultrahyperfunctions). Based on these works, we
have constructed a mathematical edifice, in a lapse of about 25 years, that is able to quantize non-
renormalizable Field Theories (FT). Here we specialize this mathematical theory to treat the quantum
field theory of Einsteins’s gravity (EG). Because we are using a Gupta-Feynman inspired EG
Lagrangian, we are able to evade the intricacies of Yang-Mills theories.

1. Introduction

Quantifying Einstein gravity (EG) is still an open problem, a kind of holy grail for quantum field theory (QFT). The
failure of some attempts in this direction have failed because i) they appeal to Rigged Hilber Space (RHS) with
undefined metric, ii) problems of non-unitarity, and also iii) non-renormalizablity issues. Here we quantize EG by
appeal to the most general quantization approach, the Schwinger-Feynman variational principle, which is more
appropriate and rigorous that the functional integral method, when we are in the presence of derivative couplings.
Here we build up an unitary EG’s QFT in the wake of related effort by Suraj N. Gupta [1]. We deviate from
his work by using a different EG-constraint, facing then a problem similar to that posed by Quantum
Electrodynamics (QED). In order to quantize the concomitant non-renormalizable variational problem we
appeal to mathematics developed by Bollini e al [2—6], based upon the theory of Ultradistributions de J.
Sebastiao e Silva (JSS) [7], also known as Ultrahyperfunctions. The above cited mathematics were specifically
devised to quantify non-renormalizable field theories during 25 years, culminating in [6]. We consequently face
atheory similar to QED, endowed with unitarity at all finite orders in the power expansion in G (gravitation
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constant) of the EG Lagrangian. This was attempted without success first by Gupta and then by Feynman, in his
celebrated Acta Physica Polonica paper [8].

Mathematically, quantizing a non-renormalizable field theory is tantamount to suitably defining the
product of two distributions (a product in a ring with zero-divisors in configuration space), an old problem in
functional theory tackled successfully in [2—6].

Remark that, in QFT, the problem of evaluating the product of distributions with coincident point
singularities is related to the asymptotic behavior of loop integrals of propagators.

In references [2—5] it was demonstrated that it is possible to define a general convolution between the
ultradistributions of JSS [7] (Ultrahyperfunctions). This convolution yields another Ultrahyperfunction.
Therefore, we have a product in a ring with zero divisors. Such a ring is the space of distributions of exponential
type, or ultradistributions of exponential type, obtained applying the anti-Fourier transform to the space of
tempered ultradistributions or ultradistributions of exponential type.

We must clarify at this point that the ultrahyperfunctions are the generalization and extension to the
complex plane of the Schwartz tempered distributions and the distributions of exponential type. That is, the
tempered distributions and those of exponential type are a subset of the ultrahyprefunctions.

In our work we do not use counter-terms to get rid of infinities, because our convolutions are always finite.
We do not want counter-terms, since a non-renormalizable theory involves an infinite number of them.

At the same time, we conserve all extant solutions to the problem of running coupling constants and the
renormalization group. The convolution, once obtained, converts configuration space into a ring with zero-
divisors. In it, one has now defined a product between the ring-elements. Thus, any unitary-causal-Lorentz
invariant theory quantized in such a manner becomes predictive. The distinction between renormalizable on
non-renormalizable QFT’s becomes unnecessary now.

With our convolution, that uses Laurent’s expansions in the parameter employed to define it, all finite
constants of the convolutions become completely determined, eliminating arbitrary choices of finite constants.
This is tantamount to eliminating all finite renormalizations of the theory. The independent term in the Laurent
expansion give the convolution value. This translates to configuration space the product-operation in a ring with
divisors of zero.

This paper is organized as follows:

+ section 2 presents preliminary materials.

+ section 3 is devoted to the QFT Lagrangian for EG

+ Insection 4 we quantize the ensuing theory.

+ Insection 5 the graviton’s self-energy is evaluated up to second order.

+ Insection 6 we introduce axions into our picture and deal with the axions-gravitons interaction.
+ Insection 7 we calculate the graviton’s self-energy in the presence of axions.

+ Insection 8 we evaluate, up to second order, the axion’s self-energy.

+ Finally, in section 9, some conclusions are drawn.

2. Preliminary materials

We appeal here to the most general quantification approach, Schwinger-Feynman variational principle [9],
which is able to deal even with high order supersymmetric theories , as exemplified by [10, 11]. Such theories can
not be quantized with the usual Dirac-brackets technique.

We introduce the action for a set of fields defined by

o(x)
Slo(x), 0o, P4 ()] = f L[P4(8), Guby (£), €14, (2.1

0o

where o(x) if a space-like surface passing through the point x. o is that surface at the remote past, at which all
field variations vanish. The Schwinger-Feynman variational principle dictates that

‘Any Hermitian infinitesimal variation & of the action induces a canonical transformation of the vector
space in which the quantum system is defined, and the generator of this transformation is this same
operator 6S’.
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Accordingly, the following equality holds:
opy = i[0S, ¢,]. (2.2)

Thus, for a Poincare transformation we have

68 = a'P, + %aWMW, 2.3)
where the field variation is given by
A~ 1 ~
0¢, = a"P, ¢, + Ea’“’l\/fwd)A. (2.4)
From (2.2) one gathers that
Oudy = il P P4l (2.5)
Specifically,
0oy = i[Po, P4l. (2.6)

This last result will be employed in quantizing EG.

3. The lagrangian of einstein’s QFT
Our EG Lagrangian reads [1]
1 1
L= ?R\/El = D dh, (3.1)

where n"” = diag(1, 1, 1, —1), " = |/|g| g"” The second term in equation (3.1) fixes the gauge. We apply
now the linear approximation

WY = Y 4 kh, (3.2)
where k7 is the gravitation’s constant and ¢ " the graviton field. We write
Lo=L + Ly, (3.3)
where
1 p
L1 = =103, 0°0" = 2029,50°6" + 206,561, (34)
and, up to 2nd order, one has [1]:
1 1 ‘
‘cI = - EK¢XW [Eau(b)\pav(b,\p + 8)\¢pﬂ aﬁgbi\ - 6/\¢H/) 8/\¢1//]]’ (35)
having made use of the constraint
o), = 0. (3.6)
This constraint is required in order to satisfy gauge invariance [12] For the graviton we have then
O¢,, = 0, 3.7)
whose solution is
1 JE) L ab®)
P = 3 f ) iy G0l ® it d*k, (3.8)
2m)2 v 2kg v 2kg
with ko = |k|.

4. The quantization of the theory

We need some definitions. The energy-momentum tensor is
T oL
P v
DOP

Mo — 8L, (4.1)
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and the time-component of the four-momentum is
Py = f TO dx. 4.2)
Using (3.4) we have
1 . .
T = 1008, 0% + 06, 019" — 20,6,60°6" = 20,0,,0/6"
+ 20,0000, + 2009"0j0 1. (4.3)
Consequently,
— 1 E ]; +uv ]z +pv E ]z d3k
= = [ IRy ®at @ + ot @)a, E)1E%: (44
Appeal to (2.6)leads to

[Po, @ ()] = — kot (K)
[Po, a*#* (k)] = koa™ " (k). (4.5)
From thelast relation in (4.5) one gathers that
Rlat @) = = [l (B, a0 @ &) d (46)
The solution of this integral equation is
[ (k), a* P (kD] = [856) + 606018k — k). (4.7)
As customary, the physical state |1)> of the theory is defined via the equation
PhlY > =0. (4.8)
We use now the the usual definition
AR(x = ) = (0| T[4, (x) " (1)]110). (4.9)

The graviton’s propagator then turns out to be

ANx — y) = (2 ;i (898y + 8467 f TS (4.10)
Asa consequence, we can write
= i JRilau®at e ®) + ate @)a, ©16F - B) kK, (4.11)
or
Po = i f |k|[2a* (k") (k) + 6k — KNSk — k') dkdk'. (4.12)
Thus, we obtain
= 2 [ @a ok (1)

where we have used the fact that the product of two deltas with the same argument vanishes [2], i.e.,
6(k — k")6(k — k') = 0. This illustrates the fact that using Ultrahyperfunctions is here equivalent to adopting
the normal order in the definition of the time-component of the four-momentum

= i f k| : [a, (K)a™ (k) + at (K)a,, (k)] : d*k. (4.14)
Now, we must insist on the fact that the physical state should satisfy not only equation (4.8) but also the relation
(see[1])
D"t > =0. (4.15)

The ensuing theory is similar to the QED-one obtained via the quantization approach of Gupta-Bleuler. This
implies that the theory is unitary for any finite perturbative order. In this theory only one type of graviton
emerges, ¢'%, while in Gupta’s approach two kinds of graviton emerge. Obviously, this happens for a non-
interacting theory, as remarked by Gupta.
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4.1. Undesired effects if one does not use our constraint
If we do NOT use the constraint (4.8), we have

f |k|[a+W(k)aW(k) - —a*“(k)a”(k)]cﬁk (4.16)
and, appealing to the Schwinger-Feynman variational principle we find
IKla\(K')
—— f ] { a1 (8) a0 (), @, (R)] — ~a, " (F)[a) (), a}(k)] } &, (4.17)
whose solution is
[ (K), aAKD] = 1,17 + Tyl — M Mpp 18K — K. (4.18)

The above is the customary graviton’s quantification, that leads to a theory whose S matrix in not unitary [1, 8].

5. The self energy of the graviton

To evaluate the graviton’s self-energy (SF) we start with the interaction Hamiltonian ;. Note that the
Lagrangian contains derivative interaction terms.

oLy
H = A%pr — 5.1
= 880¢1u/ ¢ ( )

Atypical term reads
EGulazu3a4(k) = kw]kaz(p - io)il*k(mk(u(p - io)il- (52)

where p = ki + k3 + ki — kg
In v dimensions, the Fourier transform of (5.2) is

f{[kmkaz(p - io)il*ko@km(p - io)il]u}

20-2 2
o (2271')V WV[F(%)] Ny Maza, (x +i0)™

2v—1
+ 2 WVP(Z)P(% + 1)(%1@2%3%4 + Moy XarXan) (X + i0) v~ 1

ey \2
221/ v 2
_(27r)” WVI:F(E + 1)] Koy X XasXa, (X + 10)7V 2 (5.3)

where x = x + x7 + x} — x¢
Anti-transforming the above equation we have

[kmkaz(p - io)_l*ka3ka4(p - 1'0)—1]’/

L[]

14 o
ZIIW(na'laznasm + NayasMoyay + 7]@2()477a1a3)r(—5)(p — i0)
D)0+ 1)
" ITW(nalazk%k% + n<130'4ka1ka2)
e [F(% + 1)]
— 7 F(}/ + 2) (77(}’1(¥2k03k0¢4 + n()¢10¢3ka2ka4 + na](‘k4ka2ka3 _|_ 77(}'3a4k0¢1ka2

v [N
+ n(y2n3k(!|ka4 + na2(1'4k(!’lkaa) F(l - 5)(p —i0)> !

G+

+ im2 kalkazkask(ur(z — Z) — 10): 2 5.4
i T T 2) 2(P i0) (5.4
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5.1. Self-energy evaluation for v = 4
We appeal now to a v-Laurent expansion and retain there the v—4 independent term [6]. Thus, we Laurent-
expand (5.4) around v = 4 and find

[kalkaz(p - iO)_l * ka3ka4(p - iO)_l]y
ﬂ.z

—4

2
- I:Z(na'lazkaskm + nagmkalkﬂz)

=i

1
{;(nalazna3a4 + naza3nala4 + 77a2a477a1a3):02

1
- a(nalazkaskm + 77043044 k(llk(lz + nala3k(¥2ka4 + na1a4k(¥2k(}3
+ ’rlazu3kalka4 + 77&204 kmkaz)]p + kmkazkaakm}

i 46
5'2 (nalaznayu + naza377ala4 + naza4nala3) [ln(p - 10) + Inm +C— E]Pz (5.5)

. . 8
+ z%{(%lazk%ka4 + nasmkalkaz)[ln(p —i0) + Inmt + C — g]
1
- E(nalazkask(\u + na3a4k01kaz + na1a3k(lzk(¥4 + na1a4kﬂzkf¥3 + naza3k01k04
101
+ 77(Lz(¥4k(¥1k0z3)[1n(p —i0) + In7 + 2C — F]}p

ka]kazka;k(u[ln(p —i0) + Inm + C — %] + Z a,(v —4)"}.

n=1

The exact value of the convolution we are interested in, i.e., the left hand side of (5.5), is given by the independent term
in the above expansion, as it is well-known. If the reader is not familiar with this situation, see for instance [6]. We reach

EGalaza3a4(k) = kalkaz(p - io)il*kogk(u(p - i0)71

46
= 512 (na1a2n0304 + naza3nala4 + na2a4na1a3)|:ln(p - 10) + In7 +C— E:Ipz

LT . 8
— 1Z{(namka3ka4 + na3a4kulk(L2)[ln(p —i0) +In7m+ C — g]

1
- a(na,azkaskm + 77a3a4kalkocz + na.a3kazka4 + na,a4kazka3 + 77am3kalka4

101
+ 77042(14kalka3)[ln(p —i0) + Inm + 2C — F]}p
47
kmkazkmkm[ln(p —i0) + Inm + C — %]} (5.6)

We have to deal with 1296 diagrams of this kind.

6. Including axions into the picture

Axions are hypothetical elementary particles postulated by the Peccei-Quinn theory in 1977 to tackle the strong
CP problem in quantum chromodynamics. If they exist and have low enough mass (within a certain range), they
could be of interest as possible components of cold dark matter [13].

We include now a massive scalar field (axions) interacting with the graviton. The Lagrangian becomes

Loy = —RF nwa htedahvs — —[hwaﬂqba & + m*p. (6.1)
We can now recast the Lagrangian in the fashion
Lom = L+ Ly + Livm + Livs (6.2)
where
1
Liv = —E[au¢a”¢ + m*¢?, (6.3)
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so that £y becomes the Lagrangian for the axion-graviton action

1
Ly = —Eﬂ¢wlau¢3u¢-

The new term in the interaction Hamiltonian is

0L
00%

HIM - 8O¢ »CIM-

7. The complete self energy of the graviton

The presence of axions generates a new contribution to the graviton’s self energy

EGM;n‘vs(k) = kukr(p + m? — io)il*kvks(p + m? — 1.0)71.

(6.4)

(6.5)

(7.1)

So as to compute it we appeal to the usual v dimensional integral together with the Feynman-parameters denoted

by the letter x. After a Wick rotation we obtain

kukr(pv - kv)(Ps - ks)
[(k — px)* + al

1
kuk (p + m* —i0)" "k, k(p + m* — i0)""], =i
k(o + m? — i0) ko ko(p 2 — 0, =i [ f

where

a=pix — p*x* + m?

After the variables-change # = k—px we find

fu, x, w, 1, v, S)d"udx
(W + o)

>

1
k,k.(p + m? — i0) Pk, k,(p + m? — i0)" 1], =i
[kuks (p + m? — i0) (p +m? — i0)] ’fof

where
fQu, x, i, 1, v, 8) = w,urp,p(1 — x)? + Uty s — t,usp, p,x(1 — x)
— u,u,ppx(l — x) — u,usp#pvx(l —Xx) — u,uvpﬂpsx(l —X)
+ p,u,prpvpsxz(l - x)Z + uVuSp,u,prxz

After evaluation of the pertinent integrals we arrive at

[kuke (p + m?* — i0) "k, ki(p + m* — i0)~'],
- i("nrkvks + ”v;kukf)myzﬁgr(l — K)

xF(l,l—K,i,—p)+ F(ll KE_L)
22 4m? 22 m?
iy T+ T s + )Fm()(z( B p)
Mr Mys T Ty s T MusTr 2 2’ 4m?
28
l(’r’usk k + W#vk k + nrskltk + nrvk kS)
xF(l - K)F(z 22, —L)
2 2 2 4m?
ik ko k™ j(fK)F( Ki;fL).
2 2 2 4m?

dVkdx,

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)
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7.1. Self-energy evaluation for v = 4
We need again a Laurent’s expansion and face

(koK. (p + m? — i0) Yk, k,(p + m? — i0)"1],

m? 5 1 19p ]
koks + m,k k)| = + ———
4{m (e st )[3 My

= —1

- 2m4(nurnvs + Thv Mrs + nusnrv)

1 1 1 2
L le | _(L)
8 64m?  15\4m?

m
B m(n‘“krk" + nukaks + nrsk/‘kv + nrvkﬂkS)
2 2 2 2 2
Je-m  om kE-m p lkﬂk,kvks}
12 4 30 4m?* 6

m2m?

ks Kk

X l(lnm2 +lnr+C—-1) + lL(lnmz +Inm + C)]
| 3 5 4m?

m2m?

: p
+ i, k ks + 1,k k)~
50 skl

x F(l, 17 fi) + lF(l, 12 fi)
| 2 4m? 7 2 4m?

+ = i2W2m4(77/zrnvs + n/zvnrs + mtsnvr)

x (Inm? + Inm + 1) — l[i _ l(L)]}
21 32 3\ 4m?

27 im* FS . ,
— 1—105 (nurnvs + nuvnrs + nﬂsnw)(él_n’lz) F(l, 5 E; ——2)

; m2m?(k* — m?)
12(4m? + k? — i

0 (U/Lskfkv + %vkrks + nrskaV + 77rvkﬂk5)

2
X l(lnm2 +Inm+ C — l) + l(lnm2 4+ Inm + C)k—
2 4 5 am?

wm?

— i (.kk + n kk 4 kak, + 1,k ks
8(4m2+k2—i0(n’” ) s Tk

2 2 2
xm? (lnm2—|—lnﬂ'—|—C— l)+k_+k_k_
4 6 15 4m?
7T2

2
B il—gq(nuskrkv + nuvk’ks + n"Sk'ukV + ﬂﬁ,k,uks)

2 2 2 \2
x K om F(l, R ) L
21(4m?* + k? — i0) 2 4m? )\ 4m?

2 2
- i;r—zkﬂkrkv ks[(ln m2 + Inm) + k—]

4m? + k? — 0
2 2 2 2
R-m Kk F(1,1,Z; k )

mm

2
ik kg —— — T
30 4m? + k2 — i0 4m?

+ Z a,(v— 4)".

n=0

4m?

A Plastino and M Rocca

(7.7)
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Again, the exact result for our four-dimensional convolution becomes

EGMuvrs(k) = k,ukr(p + mZ - io)il*kka(P + m2 - 1‘0)71
m*r?

= iT(n,u,rkaS + nvsk,ukr)
X [l(lnm2 +Inm+C—-1)+ lL(lnmz +In7 + C)]
3 5 4m?

m2ﬂ.2

, p
+ i,k ks + 1,k k) =
50 sk o

x F(l, 1,z fi) + lF(l, 1,2 fi)
20 4m? 7 2 4m?

+ = i27r2m4(n/zrnvs + npvnrs + n/zsnvr)

2
WLl _L( p )+
8 6 4m? 15\ 4m?

x (Inm?> + Inm + 1) — l[i - l(L)]}
2132 3\ 4m?

2mimt % 9 P
+ IW(U/MUVS + Thaw s + ’r]p,snvr)(m) F(l’ 1, E; T

. mm*(k? — m?)

1
12(4m? + k? — 10

(77/Lskfk1’ + U/kaka + nrsk/lrkV + nrvkﬂkS)

2
><[l(lnm2 +In7m+ C— l) + l(lnm2 +Inm + C)k—]
2 4 5 4m?
m2m?
f————————————— krkv + karks + rsk kv + rvkLkS
"sam® + K — jo (s K il = 1 Kicks)

2 2 g2
x m? (lnm2+ln7r+C—l)+k_+k_k_
4 6 15 4m?

mm?
- IT(nuskrkV + n;u/k’ks + nrsk#kv + nrvk# kS)

2 2 2 \2
X k= m F(l, 2. _L) L
21(4m?* + k2 — i0) 2 4m? )\ 4m?

2 5 k?
— IEkarkyks[(lnm + lnﬂ') — m]
m2m? k? — m? k? 7 k?
—i—%k, k. k,ky—————F| 1,1, =5 —— 7.8
30 N e Lk 0 am? ( 2 4m2) G
We have to deal with 9 diagrams of this kind.
Accordingly, our desired self-energy total is a combination of ¥4, 0,050, (k) a0d Egaa, ayasa, (K)-
8. Self energy of the axion
Here the self-energy is
YEs(k) = (Y + nP Yk ke (p + m? — 0¥ (p — i0)~L (8.1)
In v dimensions one has
k,k
kok.(p + m? — i0)y" ¥ (p — i0)71], = — d’k. 8.2
[k. k. (p ) 4o — i0) ] f(szrmzin)[(pfk)zin] (8.2)
With the Feynman parameters used above we obtain
1 k. k
k,k.(p + m?> — i0)" ¥ (p — i0)"'], = i — T d¥kdx, 8.3
[kvk: (o ) (p — i0)] Lf[(k—px)2+a]2 (83)
where
a=(p> + m?x — p>x% (8.4)
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We evaluate the integral (8.3) and find

[kvkr(p + m2 - 10)_1*(0 - io)_l]y

v—2_%
— e T 7T21“(1 - Z)F(l, -2 % —L)
v 2 22 m?
. v—4_V
| 2ikykym mr(z ~ K)F(l, 2LV, _L), (85)
v+ 2 2 22 m’

8.1. Self-energy evaluation for v = 4
Once again, we Laurent-expand, this time (8.5) around v = 4, encountering

[kvkr(p + mZ - 10)71*(p - io)il]y

2
_ip2d L[k
v—4 2
2
+ M[(1 + li)(lnm2 +Inm+ C— l)
4 3 m? 2
_ (1 + lL):l _ kykr
9 m? 3

+ l(L) 77"’_"12& - kv, F(l, 1, 5; fi)
4\ m? 12 m? 3 m?

+ Y0 an(v — 4"} (8.6)

(lnm2 +Inm+ C— %)

The v-independent term gives the exact convolution result we are looking for:

Evr(k) = kvkr(p + m? — 10)71*(10 - io)il

2
— g2 D" (1 + l—)(lnm2 +Inm+ C — l)
4 3 m? 2

— (1 + ll)] - kvkr(lnm2 +Inm+C— l)

9 m? 3 2

1(p ) n,m* p  kk ( p )
(2 Lo Fl1,1,5 -2 8.7
4(m2 [ 12 m? 3 m? ®.7)

9. Discussion

We have developed above the quantum field theory (QFT) of Eintein’s gravity (EG), that is both unitary and
finite. Our results critically depend on the use of a rather novel constraint the we introduced in defining the EG-
Lagrangian. Laurent expansions were an indispensable tool for us.

In order to quantize the theory we appealed to the variational principle of Schwinger-Feynman’s. This
process leads to just one graviton type ¢'2.

The underlying mathematics used in this effort has been developed by Bollini et al [2—6]. This mathematics is
powerful enough so as to be able to quantize non-renormalizable field theories [2—6].

We have evaluated here in finite and exact fashion, for the first time as far as we know, several quantities:

+ the graviton’s self-energy in the EG-field. This requires full use of the theory of distributions, appealing to the
possibility of creating with them a ring with divisors of zero.

+ theabove self-energy in the added presence of a massive scalar field (axions, for instance). Two types of
diagram ensue: the original ones of the pure EG field plus the ones originated by the addition of a scalar field.

+ Theaxion’s self-energy.

+ Our central results revolve around equations (5.6) and (7.8), corresponding to the graviton’s self-energy,
without and with the added presence of axions. Also, we give the axion’s self-energy.
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