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Entanglement entropy of an annulus in holographic thermalization®
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Abstract: The thermalization process of the holographic entanglement entropy (HEE) of an annular domain is invest-

igated in the Vaidya-AdS geometry. We determine numerically the Hubeny-Rangamani-Takayanagi (HRT) surface,

which may be a hemi-torus or two disks, depending on the ratio of the inner radius to the outer radius of the annulus.

More importantly, for some fixed ratio of the two radii, the annulus undergoes a phase transition, or a double phase

transition, during thermalization from a hemi-torus to a two-disk configuration, or vice versa. The occurrence of vari-

ous phase transitions is determined by the ratio of the two radii of the annulus. The rate of entanglement growth is

also investigated during the thermal quench. The local maximal rate of entanglement growth occurs in the region with

a double phase transition. Finally, if the quench process is sufficiently slow, which may be controlled by the thick-

ness of the null shell, the region with a double phase transition vanishes.
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1 Introduction

Entanglement entropy, as a vital tool for measuring
the entanglement of quantum systems, has been extens-
ively investigated in recent years. For a strongly coupled
quantum system which is in a pure state, the entangle-
ment entropy between the subsystem A and its comple-
ment A is proportional to the area of the boundary A to
the leading order [1]. In the context of AdS/CFT corres-
pondence [2-4], the Ryu-Takayanagi (RT) formula [5,6]
conjectures that the entanglement entropy can be evalu-
ated as the area of the minimal surface y4 in the bulk
which is homologous to the subregion A on the bound-
ary. Such a surface is also called the RT surface or its co-
variant version, the HRT surface [7]. The RT formula has
been extensively tested in various holographic models
and has been specifically computed for subregions with
variety of shapes [8,9]. In particular, its significant role in
diagnosing the quantum critical phenomena in strongly
coupled systems was disclosed in [10-21].
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Investigating the dynamical behavior of a system re-
sponse, such as entanglement entropy, by perturbing the
system away from the equilibrium state, is crucial for
characterizing the features of a non-equilibrium system.
A simple case is the evolution of a system after the
quench process, which can be realized by turning on an
external source for a short time. As a result, the system is
excited and subsequently equilibrates as it evolves. In the
holographic duality, the thermal quench can be modeled
by the Vaidya-AdS geometry, which describes the col-
lapse of a null shell that initially falls from the boundary
of AdS to the bulk, and eventually forms a Schwarz-
schild-AdS (SAdS) black brane.

The evolution behavior of HEE during the quench
process was previously studied in [22-33] for a subre-
gion with the shape of a strip and a disk. For an annular
subsystem A, a study of the thermalization process is still
lacking. HEE for such a subregion was computed for a
static background in [34,35]. It is interesting to note that
there exist two possible configurations for the HRT sur-
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face. One has a hemi-torus shape [36,37], while the other
has a two-disk shape [38-40]. The precise configuration
the HRT surface depends on the ratio of the inner radius
to the outer radius of the annulus. Moreover, the rate of
entanglement growth is captured by the "entanglement
tsunami" diagram [25,27], which treats the null shell as a
wave entangling the region A with the outside. Since the
growth rate generally depends on the ratio of the two
radii, it is intriguing to study the phase transition of the
HRT surface y 4, as well as the maximal rate of entangle-
ment growth during the holographic quench process.

The paper is organized as follows. In Sec. 2, we intro-
duce the setup for the Vaidya-AdS background. The in-
tegral expressions for the area of the HRT surface are de-
rived for a subregion with the shape of an annulus and in
the pure AdS background. The mutual information across
the annular subsystem A is briefly discussed. In Sec. 3,
we present our numerical results for the time dependence
of HEE during the quench. In addition, various phase
transitions are illustrated in detail. The maximal rate of
entanglement growth in each case and the dependence on
the thickness of the shell are also discussed. Sec. 4 gives
our conclusions and discussion.

2 The Setup

In this section, we first introduce the Vaidya-AdS,
metric, which describes the geometry of a collapsing null
shell falling from the boundary to form an SAdS black
hole. We then derive the expression for the area function-
al of an annular domain A, and show two possible con-
figurations of the HRT surface y4 in the pure AdS, case.
Finally, we discuss the characteristics of the mutual in-
formation across the annulus.

2.1 Vaidya-AdS, background

Consider the Vaidya-AdS, metric in the Eddington-
Finkelstein coordinates

1
ds? = = (—f(v,z)dv2 —2dvdz +dr? + r2d02) , 1
Z

with

M

fv,n)=1-— (1 +tanh i)23,

2 Vo
where we have set the AdS radius Rags = 1. M character-
izes the mass of the black hole, and v labels the thick-
ness of the null shell. In this setup, the coordinate v la-
bels the boundary time ¢ when z — 0. Moreover, in the
limit v — —oo, the metric in (1) approaches

fv,2)=1,

which is the AdS metric, while in the limit v — oo, the
metric approaches

f(vvz) = 1 _MZ3’
which is just the metric of the SAdS spacetime.

2.2 HRT surface y# of an annular domain A

On the boundary, consider a subregion A(r,0) defined
as an annulus with r € [R,R>] and 6 € (0,2x]. Due to the
spherical symmetry, the region A is completely specified
by the radius r. The corresponding area of the extremal
surface y4 anchored at A is described by

z=2z(r), v=w(r)

and reads

R, r
Alyal =2n f N R O R
R, Z

The equations of motion are obtained by extremizing the
area functional (2). It should be noted that as the inner ra-
dius R; — 0, the above area functional reduces to the
functional corresponding to a spherical region A with ra-
dius R; (see [22,25,28]).

Before the thermal quench, the geometry is a pure
AdS, spacetime and the corresponding area functional re-
duces to

R,
Alyal =21 f drZ V1+22. 3)
. Z

The phase transition of the HRT surface in the AdS,
spacetime has been investigated in literature. As the ratio
of the outer radius R; to the inner radius R; approaches
one, the HRT surface is in the hemi-torus phase (Fig.
1(a)). When the inner radius R; is reduced and the ratio
Ry/Ry — 2.4 [35], the configuration of the HRT surface
undergoes a phase transition from the hemi-torus to the
two-disk phase (Fig. 1(c)).

2.3 Mutual information

Mutual information between two disjoint subsystems
B; and B; is defined as

I(B1;B2) =S (B1)+S(B2)-S(B1UBy) > 0. 4)

Specifically, for an annular subregion A of the boundary,
we take 8B; and B, as two disjoints subsystems, located in
r < Ry and r > R, respectively, as shown in Fig. 2(a).

In the holographic setup, when the inner radius R; is
reduced while R, is fixed, the mutual information
between B; and B, decreases monotonically to zero,
which is consistent with the results in [8,34,35]. Further-
more, the HRT surface y 4 , corresponding to the annulus
A , is in the hemi-torus phase for I(By;8;) > 0, while it is
in the two-disk phase for 1(8;;8,) =0 , as shown in Fig.
2(b).

For a general quantum system, mutual information
measures the entanglement and correlations between the
subsystems, and gives an upper bound for the correla-
tions. Therefore, for a system in a pure state, if the HRT
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Fig. 1. (color online) (a) illustrates the extremal surface y# with the hemi-torus shape. (b) is its cross-section after suppressing the ¢
direction. (c) illustrates the extremal surface y# with the two-disk shape, and (d) is its cross-section after suppressing the ¢ direction.
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Fig. 2. (color online) In (a), A represents the subsystem we investigate, while 8, and 8, are two disjoint subsystems separated by A.
In (b), the holographic mutual information ; between B, and B; is plotted for different ratios of the radii R, and R, in the AdS, back-
ground. The phase transition occurs at Ry/R; ~ 2.4.

surface A is in the hemi-torus phase, the d.o.f. of the sub-
system B, are generally entangled with those of the sub-

tanglement entropy between the subsystem A and its
complement, and discussed the mutual information across
system B,. However, if the HRT surface y 4 is in the two- the subsystem A in a pure AdS, spacetime. In the next
disk phase, there is no entanglement between them. section, we investigate the evolution of HEE in the
So far, we derived the integral expressions for the en- Vaidya-AdS, spacetime.
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3 Numerical method

First of all, to get rid of the ultra-violet (UV) diver-
gence at z — 0, we only consider the finite term in (2),
which is

R +R
ARenZA['y&’(]_ 16 2,

©)

where € is the UV cut-off. It is manifest that Age, 1S cut-
off independent. We fix all free parameters, the mass
M =1, the thickness of the shell vg = 0.3, the outer radius
of the annulus R, = 5 and the inner radius R; € [0.5,4.5].

Specifically, the extremal surface y4 is parameter-
ized by

2=Up), r=r(@), v=v), (6)

where ¢ is the polar angle as shown in Fig. 3. Since the
three variables in (6) are not independent, it is necessary
to introduce a constraint equation. In the hemi-torus
phase, the constraint equation is

R1+R
2B)eos@) - (r(9) -~ sin@) =0, O<g<m ()
z
\
{ A\
\ )\
““\ K \
LA L
R, Ri+Ry R,

2
(a)

and the boundary conditions are
20)=z(m) =0, v(0)=v(m)=t, r(0)=R,, r(m)=R].

In the two-disk phase, the constraint equation is

2(¢)cos(@) — r(@)sin(¢) = 0, (o <é< g) )
and the boundary conditions reduce to
2(0) = z'(g) =0, v0)=t, v’(g) =0,

#0) = Ry (or R)), r(g) —0.

The above constraint equations (7) and (8) are imposed
on the area functional (2) by the method of Lagrange
multipliers. The corresponding e¢.0.m. can be numerically
solved by the method of finite differences.

We now present the numerical results for the evolu-
tion of HEE based on the renormalized area Age,. The
time dependence of HEE on the ratio of the two radii
R1/R; is illustrated in Fig. 4(a). It is obvious that the en-
tanglement entropy increases almost linearlyl) with time
in the intermediate stage of the thermal quench and fi-

()

Fig. 3. (color online) The parameterization of the HRT surface. For the HRT surface in the hemi-torus phase, the parameter ¢ is
shown in (a) with 0 < ¢ <#. For the HRT surface in the two-disk phase, the parameter is shown in (b) with 0 < ¢ < 5.
Ri/R=01 Ry/R,=0.
05 k=01
5 — Ri/Ry=03
R1/Ry=0.5 — R1/R,=0.5
0.4 — Ri/Ry=0.7
0 — Ry/R;=0.9
) Ry/R=0.7 03 <
s N =
-5 X
02 :
-10 0.1
Ri/Ry=0.9
0.0 -
-1 0 1 2 3 4 5 6 -1 0 1 2 3 4 5 6 -2 0 2 4 6
t t t

(a)
Fig. 4.

(b)

(c)

(color online) (a) illustrates the evolution of HEE for R, /R, =0.1,0.3,0.5,0.7 and 0.9. (b) illustrates the rate of entanglement

growth in units of length of dA. (c) is the contour plot of HEE during the evolution for different ratios R /R,; lighter color corres-

ponds to larger value of HEE.

1) The linearity is not quite precise here for small Ry /Ry as shown in Fig. 4(b), but in general, the larger the size of the region A is, the more obvious the stage of

linear growth is.

023101-4



Chinese Physics C  Vol. 44, No. 2 (2020) 023101

nally saturates. Moreover, defining the rate of entangle-
ment growth as

_ 1 dARen

" Ri+Ry dt

we find that it always increases with time in the early
stage and eventually decreases to zero at equilibrium, as
shown in Fig. 4(b). In general, the saturation value and
the saturation time increase with the width of the region
A, which is quite a common phenomenon in literature.
As the HRT surface for a wide boundary region A usu-
ally stretches deep into the bulk region, the null shell also
takes a longer time to reach this region during the holo-
graphic quench process. As a consequence, it takes a
longer time to get to saturation. Furthermore, the satura-
tion time approaches a constant as the ratio R; /R, — 0, as
shown in Fig. 4(c). This result indicates that in the region
where R, /R, approaches zero, the HRT surfaces with dif-
ferent R; are in the two-disk phase near saturation. Since
the outer radius R, is fixed, all HRT surfaces which are in
the two-disk phase share the same outer part of the ex-
tremal surface and have the same saturation time.

It should be noted that the evolution of HEE has an ir-
regular saturation when R;/R, = 0.3. This result reveals
that the HRT surface undergoes a phase transition during
the thermal quench. The other results in Fig. 4(a) and 4(b)
demonstrate that the HRT surfaces are always in the same
phase during the quench. We analyze these results in
more detail in the next subsection.

A

3.1 Phase transitions of the HRT surface

In Fig. 5(a), we show the time evolution of HEE for
different inner radii R;. The region marked in red repres-
ents the HRT surface in the hemi-torus phase, while the
region in gray represents the HRT surface in the two-disk

Fig. 5.

phase. In general, the HRT surfaces are in the hemi-torus
phase as the ratio of two radii R; /R, approaches one, oth-
erwise if Ry/R, < 1 the HRT surfaces are in the two-disk
phase. In addition, the critical R;, which may be defined
as the borderline of the two phases, shifts non-monotonic-
ally during the thermal quench, as shown in Fig. 5(b). At
the early stage of the quench, the critical point shifts to-
wards the outer radius R,. After reaching its peak at
t~ 1.80, the critical point decreases monotonically to a
lower level and eventually becomes stable.

The low level of the critical point, at a later time, can
be understood from Fig. 6. In the early stage, a candidate
in the two-disk phase possesses a smaller area and is thus
the HRT surface. As the evolution proceeds, the other
candidate in the hemi-torus phase starts to compete with
the candidate in the two-disk phase and eventually be-
comes the HRT surface in the late stage. Note that in the
late stage, the candidate in the two-disk phase has a thin
bottleneck near R =0 and this will naturally lead to the
candidate in hemi-torus phase becoming the HRT sur-
face. In addition, the larger the ratio R,/R,, the earlier the
thin bottleneck occurs. As a consequence, the phase
transition occurs earlier during the evolution.

It is interesting to note that for a fixed ratio R,/R;, a
phase transition occurs during the thermal quench. Fur-
ther, the times of phase transition depends on the value of
the ratio. Accordingly, the evolution of HEE during the
quench process can be characterized by the following
three distinct types.

e Region with no phase transition

For the ratio R /R, > 0.48, the HRT surface is always
in the hemi-torus phase during the quench process, while
for R|/R; <0.14, the HRT surface is always in the two-
disk phase, as shown in Fig. 7(a). Note that without a
phase transition, the evolution of HEE of an annular do-

R,/R;

(b)
(color online) The evolution of HEE for different R;/R; is shown in (a). The curves in red indicate that the HRT surface is in
the hemi-torus phase, while grey indicates that the HRT surface is in the two-disk phase. (b) is the projection of (a) on the (R,/Rz,1)
plane, which is convenient for identifying the phase for any parameter R, /R, and at any moment.
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main is similar to that of a ball-shaped domain [22,26]
since the evolution curve is always smooth (Fig. 7(d)).
Moreover, a subsystem A with greater R, — R generally
possesses a greater saturation value and longer saturation

Fig. 6. (color online) Two candidates for the HRT surface
anchored on dA are shown for each step of the evolution.
The candidate in the two-disk phase is plotted in red, and
the candidate in the hemi-torus phase in green. Note that the
HRT surface does not exactly lie on the time step, but the
figure is a sufficiently good approximation.

time, as discussed above.

e Region with a single phase transition

In the interval 0.14 < R /R, < 0.42, the HRT surface is
in the two-disk phase in the early stage of evolution, and
then undergoes a phase transition to the hemi-torus phase
which persists until saturation is reached, as shown in
Fig. 7(b). In addition, the critical point decreases almost
linearly with time ¢, and ultimately reaches a global min-
imum which is consistent with the critical point in the
Schwarzschild-AdS geometry.

When the system approaches the critical point, the
first derivative of HEE with respect to time ¢ is discon-
tinuous (Fig. 7(e)). Similarly, both the saturation value
and the saturation time generally increase with R, —R;.
During the evolution, the discontinuity of the derivative
of HEE with respect to time mostly occurs when the
boundary region A is a strip and the width of the strip is
greater than the event horizon. The difference is that
when the boundary A is a strip, the discontinuity occurs
due to the multiple values of the extremal surface
[22,26,29,30], but when the boundary region A is an an-
nulus, the discontinuity occurs due to the phase transition
from the two-disk phase to the hemi-torus phase.

R{/R,
R1/R,

Ri/R,

8
R1/R=0.12 4 Ry/R,=0.43
6 - 3
) A Ry/R;=036
4 S
.-‘}l : 2
g2 s i
A e =
0 /.: 0
Ry/R,=0.7
= A/// 1/R; A
s /£
| 2’
-6
-1 0 1 2 3 4 5 6 -1 0 1 3 4 5 6 -1 0 1 2 3 4 5 6
t t t
(d) ()
Fig. 7. (color online) The shadowed regions in (a), (b) and (c) represent regions with no phase transition, single phase transition and

double phase transition, respectively, during the evolution of HEE with a fixed R;/R,. The curves in grey exhibit the evolution of
HEE in the two-disk phase, while the curves in red exhibit the evolution of HEE in the hemi-torus phase.
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e Region with a double phase transition

In the interval 0.42 < R;/R, < 0.48, there is a peak of
the borderline between the two phases, and therefore in
this region the HRT surface changes phase twice for a
fixed Ry/R;, as shown in Fig. 7(c). In the early stage, the
HRT surface is in the hemi-torus phase, and in the inter-
mediate stage it undergoes a first phase transition from
the hemi-torus phase to the two-disk phase. Eventually,
the HRT surface undergoes a second phase transition to
the original hemi-torus phase, which persists until the
equilibrium is reached.

It is intriguing that when the system approaches the
first critical point (at which the phase changes from the
hemi-torus phase to the two-disk phase), the time derivat-
ive of HEE seems to be continuous, which is different
from the behavior of the system at the second critical
point, as shown in Fig. 7(f). When the HRT surface un-
dergoes the second phase transition, the time derivative of
HEE is discontinuous, which is consistent with the re-
gion with a single phase transition. Furthermore, after
passing through the second critical point, the system does
not reach the equilibrium immediately. This phenomen-
on is in contrast to the strip case, where the discontinuity
only occurs at the equilibrium.

After identifying the three distinct regions of HEE
evolution, we would like to know what is the entangle-
ment growth in these regions, and how different values of
the parameters affect them. In the next two subsections,
we explore the dependence of the rate of entanglement
growth V4 on the ratio of the two radii R, /R, , as well as
the dependence of the evolution of HEE on the thickness
vo of the null shell.

3.2 Maximal rate of entanglement growth V.«

As discussed in [25,27], the rate of linear growth in
the intermediate stage provides a geometric interpreta-
tion of the entanglement growth, since during the thermal
quench a wave propagates inward from the boundary of
A. The region which was covered by the wave is en-
tangled with the region outside A, while the region which
is not yet covered is generally not entangled with the out-
side. Naturally, when the wave covers the whole region
A, saturation occurs. This phenomenon is called "entan-
glement tsunami", and the speed of the tsunami is charac-
terized by the maximal rate of entanglement growth Vi,
during the evolution.

We point out that the dependence of the tsunami
speed Viax on the ratio Ry /R, exhibits a distinct behavior
in regions with different phase transitions, as shown in
Fig. 8. In the region with no phase transition
(R1/Ry <0.14UR|/R; > 0.48), the tsunami speed V.« al-
ways decreases with the ratio R;/R;. In particular, when
the ratio R;/R, — 1, the maximal rate of entanglement
growth V.« decreases to zero. In the region with a single

0.14 0.42
e \\_/f
0.4
g 03
~
0.2
0.1
0.0
0.2 04 048 0.6 0.8
Ri/R,
Fig. 8. (color online) The maximal rate of entanglement

growth Vi, for different ratios of the two radii R, /R», plot-
ted in red. The three dashed lines divide the phase diagram
into three distinct regions, as discussed in Sec. 3.1.

phase transition (0.14 < R;/R; < 0.42), the tsunami speed
Vmax decreases linearly at first, and then increases after
reaching a local minimum. In the region with a double
phase transition (0.42 < R; /R, < 0.48), the speed of entan-
glement tsunami reaches a local maximum. This means
that the wave-front shifts with the rate away from the
boundary dA. Moreover, in a relativistic system, it is nat-
ural to expect that the maximal rate of entanglement
growth is constrained by causality. In our calculations,
the fastest rate of entanglement tsunami occurs at ¢ ~ 0.46,
Vmax = 0.51, which is smaller than the speed of light. The
result is consistent with Refs. [25,27], and exhibits a
global maximal growth rate of the 4-dimensional SAdS in
the limit of a rapid quench.

3.3 Variation of the thickness v, of the null shell

The thickness of the null shell vy also characterizes
the speed of the quench. We define the mass function
m(v) as
m(v) = M(l+tanhl). 9
2 vV

0

For small vy, the mass m(v) of the system increases
rapidly to the final saturation, while for large vy, m(v) in-
creases slowly, as shown in Fig. 9. Therefore, 1/vy char-

m(v)
1.0
0.8 — 1=0.01
= V0=0.3
— 1=0.6
— 1=0.9
\’0:1.2
— \Y
-3 -2 -1 1 2 3

Fig. 9. (color online) The evolution of the mass function
m(v) shows that it increases rapidly for small vo.
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acterizes the speed of the quench process: the larger the
value of 1/vy, the sooner the quench saturates.

In Fig. 10, we plot the evolution of HEE for various
values of the parameter vy. The position of the critical
point near equilibrium is not affected by vo. For larger vy,
the subsystem A takes a longer time to reach equilibrium.

The most prominent feature in Fig. 10 is the change
of size of the region with a double phase transition. For
small vy, the peak of the critical point is very sharp. When
vo increases, the peak of the critical point decreases and
eventually vanishes, such that the region with a double
phase transition finally disappears.

Ry/R;
R{/R,

Ri/R,

Fig. 10.

-4 -2 0 2 4 6 8 10

(c)

(color online) The evolution of HEE for various values of the parameter vy. The red region represents the HRT surface in the

hemi-torus phase, while the grey region represents the HRT surface in the two-disk phase.

4 Conclusions and discussion

We have investigated the holographic thermalization
process of an annular subsystem A on the boundary of
the Vaidya-AdS geometry. Two distinct configurations of
the HRT surface were obtained, the hemi-torus phase and
the two-disk phase. The precise phase of the HRT sur-
face depends on the ratio of the inner radius to the outer
radius of the annulus. In addition, the maximal rate of en-
tanglement growth Vi.x exhibits a distinct behavior for
different ratios of the two radii.

During the thermalization process, the system with a
fixed R|/R, possibly undergoes a phase transition, or a
double phase transition, from a hemi-torus configuration
to a two-disk configuration, or vice versa. The occur-
rence of various phase transitions is determined by the ra-
tio of the two radii of the annulus, and three distinct re-
gions were identified. When the annulus is suffiently
wide, or narrow, the HRT surface y4 is always in the
two-disk phase or the hemi-torus phase, there is no phase
transition during the whole process, and the entangle-
ment tsunami propagates more slowly for a larger ratio
R1{/R;. In the interval 0.14 < R;/R; < 0.42, the phase trans-
ition occurs once during thermalization, and the propaga-
tion of the entanglement tsunami reaches a local minim-
um. It is quite intriguing that there exists a region where

phase transition occurs twice during thermalization. The
HRT surface is in the hemi-torus phase for early times, in
the two-disk phase for intermediate times, and in the
hemi-torus phase for late times. The propagation of the
entanglement tsunami reaches a local maximum, which
means that the entanglement grows fairly quickly in the
region with a double phase transition. Moreover, the loc-
al maximum obtained is consistent with the fastest rate of
entanglement growth in the rapid quench limit, which
means that the rate is constrained by causality. In addi-
tion, the region with a double phase transition becomes
wide for a fast quench, and narrow, or even vanishes, for
slow quenches.

In this paper, we discussed the evolution of HEE fol-
lowing a global quench. It would be interesting to gener-
alize our analysis to the inhomogeneous and anisotropic
cases. Moreover, due to the restrictions of the numerical
method, we only investigated quenches with a thickness
of the null shell vy > 0.3. It would also be worth to invest-
igate the evolution of HEE in the thin shell limit, since
the diagram of entanglement tsunami is more precise than
in the case of a finite thickness vy.

We are very grateful to Li Li, Chao Niu, Qiang Wen
and Cheng-Yong Zhang for helpful discussions and sug-
gestions.
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