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Abstract
The ground-state properties, especially the magnetic moments, of odd-A aluminum isotopes have
been studied and well reproduced in covariant density functional theory after considering the
rotational coupling. The present calculations support the rotational structure in the ground state
of odd-A aluminum isotopes, i.e. the ground state +5 2 is built on the intrinsic state 5/2[202]. In
addition, the contribution from the time-odd fields is also discussed.
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1. Introduction

Magnetic moment, as one of the most important observables
of atomic nucleus, provides rich information about nuclear
structure, has attracted a lot of attentions for decades [1–4]
and also challenges the various nuclear models. Among them,
the description of the odd-A nuclei is one of the greatest
successes of the nuclear shell model by Mayer and Jensen. In
this extreme single-particle picture, the even–even core of the
odd-A nuclei is regarded as an inert object and the corresp-
onding magnetic moment is from the unpaired valence
nucleon (valence-nucleon approximation), which leads to the
well-known Schmidt values. Thus the magnetic moment of
odd–even nuclei around doubly magic ones can be repro-
duced well, and the still existing deviations can be further
explained by the meson exchange current (MEC, i.e. the
exchange of a charged meson) and configuration mixing (CM,
or core polarization, i.e. the correlation not included in the
mean-field approximation) [2, 3, 5–9]. Recently, by con-
sidering the configuration mixing and meson exchange cur-
rent corrections, the newly measured magnetic moment of
133Sb [10], 67Ni, 69Cu [11], 49Sc [12] and other odd nuclei
near magic ones [13] have been well reproduced.

In spherical odd-mass nuclei, the addition of an odd
nucleon to an even core generates the configuration mixing,
which can be treated in the perturbation theory. For deformed
odd-A nuclei, the even–even core is not inert, and the
magnetic moment can not be fully understood by the valence-
nucleon approximation. Although the spin of the deformed
odd-A nuclei is in some way determined by the orbit of the
last odd nucleon, the contribution from the core can not be
ignored. Therefore the odd nucleon should be coupled to a
collective nuclear droplet (the core), i.e. a strong coupling
between the collective rotation and intrinsic single particle
motion in the well-deformed nuclei [14]. In such a strong
coupling approximation, the magnetic moment is determined
by the final spin and intrinsic nucleonic motion. Up to now,
the magnetic moments of odd-mass nuclei such as carbon and
neon isotopes have been investigated by using the deformed
Skyrme Hartree–Fock model [15] and deformed axially
symmetric Woods–Saxon potential [16].

On the theoretical side, many successful nuclear structure
models have been developed in the past few decades. How-
ever, the application for nuclear magnetic moments is still not
satisfactory and the theoretical description of nuclear magn-
etic moments has been a long-standing problem [3, 6, 7]. The
covariant density functional theory (CDFT), taking Lorentz
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symmetry into account in a self-consistent way, has received
wide attention due to its successful description of many
nuclear properties in a large number of stable and exotic
nuclei [17–23] and the successful application of its predic-
tions to r-process simulations [24–26]. It includes naturally
the nuclear spin–orbit potential in a covariant way. It can well
reproduce the isotopic shifts of Pb isotopes [27] and explain
naturally the origin of the pseudospin symmetry as the rela-
tivistic symmetry [28] and the spin symmetry in the anti-
nucleon spectrum [29]. Moreover, it can include the nuclear
magnetism self-consistently [30], and provide a consistent
description of currents and time-odd fields, which play an
important role in nuclear magnetic moments [8, 31–35] and
nuclear rotations [36–41].

In particular, by considering the time-odd fields, one-
pion exchange current, first-order and second-order config-
uration mixing effects, the magnetic moments of spherical
odd-A nuclei with doubly closed shell core plus or minus one
nucleon have been well reproduced [9, 32–35]. However, the
present covariant description of nuclear magnetic moment is
mainly restricted to the spherical odd-A nuclei near magic
shell. Although the magnetic moment of deformed odd-A
nucleus 33Mg has also been described by the CDFT [42], the
ground-state spin should be investigated further.

Rotational phenomenon in sd shell of light nuclei has
attracted a lot of attentions, including the rotational bands in
alpha-cluster nuclei [43]. In the middle of the sd shell, odd-
mass nuclei with mass number 19�A�25 are strongly
deformed [14], and their low-lying states form rotational
bands. In particular, the 5/2[202] orbit, the only nilsson orbit
with =p +K 5 2 in the sd shell region, forms the ground-state
band in the A=25 mirror nuclei 25Mg and 25Al. The facts
that ground state spin of odd-A aluminum isotopes, i.e.
23,25,27,29,31,33Al, is +5 2 , and the ab initio shell-model cal-
culations [44] indicate the odd proton occupying the d5/2 orbit
in the ground state together with corresponding nuclear
magnetic moments provides a good opportunity to investigate
the rotational structure in those deformed nuclei.

Based on the above considerations, it is necessary to
study the ground-state magnetic moment of odd-A aluminum
isotopes in deformed CDFT. In section 2, we will briefly
introduce the theoretical framework of CDFT and corresp-
onding formulas for calculating the magnetic moments in the
strong coupling approximation. The calculations are descri-
bed and the results are discussed in section 3. Finally,
section 4 contains a brief summary and a perspective.

2. Framework

Following the finite-range meson-exchange version of the
covariant density functional theory in [22, 45, 46], where
nucleons are described as Dirac particles interacting via the
exchange of the isoscalar meson σ, isoscalar-vector meson ω

and isovector-vector meson ρ as well as photon, the

lagrangian density is adopted as follows
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It should be noted that for the even–even nuclei with
time-reversal symmetry, the space-like components of vector
meson and photon fields, i.e. time-odd fields, vanish and do
not contribute to the energy functional. However, in odd-A
nuclei, the unpaired odd nucleon breaks the time-reversal
invariance, and time-odd fields ( )V r exist. Then the Dirac
equation for nucleon becomes

{ · [ ( )] ( ) [ ( )]}
( )

a b y e y- - + + + =V r r rV M Si ,
2

i i i0

with ( )rS the scalar potential

( ) ( ) ( )s= sr rS g , 3

( )rV0 the usual vector potential, i.e. the time-like component
of vector potential,

( ) ( ) ( ) ( ) ( ) ( )w t r t= + + -w rr r r rV g g e A1 2, 40 0 3 0 3 0

and ( )V r the space-like component of vector potential

( ) ( ) ( )w= wV r rg . 5

( )r r and ( )A r are often not taken into account as they turn
out to be small compared with ( )w r field in light nuclei [47].
In the present paper, the bold types are adopted to indicate
space vectors and arrows for the vectors in isospin space.

The Klein–Gordon equations for scalar meson field σ,
time-like components of vector mesons fields ω0, ρ0 and
electromagnetic fields A0 are the same as in the [45]. The
space-like component of vector meson field w is determined
by

{ } ( )w ww w-D + = -w w
n

njm g c , 62
B 3

with the baryon current ¯ gy y= åj ni i i iB . As the pair corre-
lation is not considered here, the occupation numbers ni take
the value one (zero) for the states below (above) the Fermi
surface. For more details, such as the total energy of the
nucleus after considering the time-odd fields, can be found in
[42] and references therein.

The electromagnetic current operator used to describe the
nuclear magnetic moment is written as [31, 42, 48–50]

ˆ ( ) ¯ ( ) ( ) [ ¯ ( ) ( )] ( )y g y
k

y s y= + ¶m m
n

mnJ x Q x x
M

x x
2

, 7

where the nucleon charge is ( )tº -Q
e

2
1 3 , the antisym-

metric tensor operator is [ ]s g g=mn m ni

2
, , and κ is the free

anomalous gyromagnetic ratio of the nucleon with
κp=1.793 and κn=−1.913 for proton and neutron
respectively.
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In equation (7), the first term gives the Dirac current and
the second term is the so-called anomalous current. The
nuclear dipole magnetic moment, in unit of the nuclear
magneton m = e Mc2N , is given by [35]

∣ ˆ ( )∣ ( )òm
m

= ´ á ñrr j rg s g s a
1

2
d . . . . 8

N

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( )ò ay y ky b yS= ´ ++ +


r r r r r r

Mc

c
Q bd , 8

2

where ˆ ( )j r is the operator of space-like components of the
electromagnetic current in equation (7). The first term in
above equation gives the Dirac magnetic moment, and the
second term gives the anomalous magnetic moment.

Therefore, the nuclear magnetic moment vector operator
in the covariant density functional theory, in unit of μN, is
given by

ˆ ( )m a kbS= ´ +


r
Mc

c
Q . 9

2

For deformed odd-A nuclei, the valence nucleon
approximation is invalid and there is a strong coupling
between the core and the valence nucleon. Therefore, the total
magnetic moment consists of two parts, i.e. the intrinsic
nucleonic motion and the collective rotational motion. In the
axially deformed case with the projection of the momentum
on the nuclear symmetry axis K (contribution from the
intrinsic nucleonic motion) and spin I, the nuclear magnetic
moment can be written as [14]

( ) ( ) ( )m = + -
+

>g I g g
K

I
K

1
, for 1 2 . 10R K R

2

gR is the corresponding effective rotational gyromagnetic
factor, with ~g Z AR . The intrinsic gyromagnetic factor
reads m=g KK intri. and intrinsic magnetic moment mintri. is
obtained from self-consistent CDFT calculations in
equation (8a).

3. Results and discussion

In the present CDFT calculations, both the Dirac equation for
nucleons and the Klein–Gordon equations for mesons are
solved in a isotropic harmonic oscillator basis [51, 52] and a
basis of 14 major oscillator shells is adopted. The oscillator
frequency is given by w = - A410

1 3 MeV. The effective
meson-exchange interaction parameter PK1 [46] is used
throughout the calculation.

The energy curve, i.e. the total energies as a function of
quadrupole deformation, is obtained through the quadrupole
deformation constrained calculation by constraining the mass
quadrupole moment ˆá ñQ2 to a given value q [53],

( ˆ ) ( )á ¢ñ = á ñ + á ñ -H H C Q q
1

2
, 112

2

where á ñH is the total energy and C is the stiffness constant.
The quadrupole deformation parameter β2 is obtained from

the calculated ˆá ñQ2 through

ˆ ˆ ˆ ( )
p

bá ñ = á ñ + á ñ =Q Q Q AR
3

5
, 12p n2 2 2 0

2
2

with =R A1.20
1 3. Both the adiabatic and the configuration-

fixed deformation constrained calculations [45, 54, 55] will be
adopted in the following.

In figure 1(a), the energy curves for 23Al, i.e. the total
energies as a function of the quadrupole deformation para-
meter β2 calculated by adiabatic (shown as open circles) and
configuration-fixed (shown as solid lines) deformation con-
strained CDFT approach with time-odd fields, are presented.
The local minima in the energy curves for each configuration
are represented by stars and labeled as A, B, C, D and E. A is
the ground state and found to be prolate deformed, β2=0.40,
with the total energy of −167.89 MeV, in comparison with
the corresponding data of −168.72 MeV [56]. The deviation
between experimental and theoretical energy is 0.83MeV,
which could be caused by rotational energy correction [58]. It

Figure 1. The total energies (a) and magnetic moments (b) for 23Al
as functions of quadrupole deformation β2 by adiabatic and
configuration-fixed (indicated by open circles and solid lines
respectively) deformation constrained CDFT approach with time-
odd fields using PK1 parameter set. The minima in the energy curves
for different configurations are indicated by stars and marked as A,
B, C, D, and E respectively. In panel (a), the experimental energy
−168.72 MeV [56] (dotted line) is shown for comparison with A. In
panel (b), the experimental magnetic moment μ=3.889μN [57]
(dotted line in (b)) and the Schmidt magnetic moments of
p ps d2 , 11 2 3 2, and p d1 5 2 orbitals (dashed lines) are also shown for
comparison.
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should be noted that the b2 values obtained by Hartree–Fock–
Bogoliubov calculations based on the D1S Gongy effective
nucleon–nucleon interaction is also around 0.4 [59], further
supporting the large deformation in 23Al.

Using equation (8a), the effective electromagnetic cur-
rent gives the intrinsic magnetic moment of valence nucleons
with assigned configurations in figure 1(b). The calculated
magnetic moment for the ground state is 4.96 μN, larger than
the data μ=3.889 μN [57]. It could be seen that the intrinsic
magnetic moment is sensitive to configuration, but to β2, it is
not sensitive for the configurations A and E, and sensitive for
B, C and D. This can be understood by the configuration
mixing of single particle components. For example, the
magnetic moment of configuration A does not change much
with β2, as the odd proton occupies the orbital p5 2[202+]
with third component K= 5/2 and the configuration mixing
is very weak. In comparison, the third component in config-
uration B, i.e. π1/2[211+], is K=1/2, which has a strong
mixing for configurations πd3/2, s1/2 and d5/2, thus the
magnetic moment varies quickly with β2.

The calculated total energies (Etot), excitation energies
(Ex), quadrupole deformation (βcal), valence nucleon config-
uration and intrinsic magnetic moments (μintri.) of 23Al for
different configurations are listed in table 1. For ground state
A, it has prolate deformation, and main component of
corresponding valence nucleon wave function p 5

2
[202+]

belongs to p d1 5 2, while the intrinsic magnetic moment
m4.96 N is close to the Schmidt value m4.79 N of p d1 5 2.

For state B, the unpaired valence nucleon configuration is
p 1

2
[211+] with the main component belonging to p s2 1 2,

and the calculated excitation energy 1.12MeV is also in
reasonable agreement with the corresponding experimental
data 0.550MeV of +1 2 in [60]. For states C, and E, they
have negative quadrupole deformation, and corresponding
configurations are p 1

2
[220+] and p 3

2
[211+]. It could be seen

one pair of neutrons have been broken in state D. In fact, Both
the main components of state C and E are belonging to
p d1 5 2 but with different third components, and the
corresponding excitation energies of states C and E are 2.39
and 4.20MeV, close to the experimental values 2.575 and
3.197MeV.

In order to inspect the evolution of the single-proton level
and corresponding configuration for 23Al, proton single-

particle energies as a function of β2 for the configuration A
and C are shown in figure 2. The states with positive (nega-
tive) parity are marked by solid (dashed) lines, and the
occupied orbitals are labeled by filled circles. The self-con-
sistent CDFT calculation indicates the odd proton is in 5/2
[202] orbital with β2=0.40 for the ground state.

As presented in figure 2, each pair of time reversal
conjugate states is split up into two levels with opposite third
component of angular momentum Ω>0 and W̄ < 0, due to
the broken time reversal invariance by the time-odd fields.
The energy splitting for time reversal conjugate states ranges
from 0.01 to 0.6 MeV, and the larger splitting occurs at the
orbital with larger third component. At β2≈0.48, the level
crossing happens between the 5/2[202] and 1/2[211] orbital.

In table 2, the calculated energy (Ecal), quadrupole
deformation (β2), valence nucleon configuration, intrinsic
magnetic moment (μintri.), and the final magnetic moment
(μtot.) of odd-A Al isotopes in CDFT approach are presented,
in comparison with the corresponding experimental spin,
parity and magnetic moment. Generally speaking, the quad-
rupole deformation of Al isotopes is decreasing as the neutron
number increases except for 29Al. The quadrupole deforma-
tion β2 of 33Al in CDFT calculation is 0.06 and indicates a
good magic shell for N=20. The obtained β2 is also in
agreement with the Hartree–Fock–Bogoliubov calculations
based on the D1S Gongy effective nucleon–nucleon interac-
tion [59]. In fact, the region of deformation around the classic
magic number N=20 is a hot topic, while 33Al located at the
edge of the island of inversion has a transitional character and
is thought to be a key isotope as the transition into the island
of inversion [61] is particularly rapid in the N=20 isotones.
Recently, the measurement of electric quadrupole moment
and corresponding shell model calculation show that a
component of intruder configuration, i.e. two-particle-two-
hole (2p–2h) neutron excitation across N=20, from the sd
orbitals to the fp orbitals, exists in the ground state wave
function [62]. However, the ab initio shell-model calculations
together with phenomenological USDB interaction [63] pre-
sent that the sd model space is able to reproduce correctly the
electromagnetic moments of Al isotopes, including 33Al [44].
Thus the shell structure in 33Al needs more investigation. In
addition, the ab initio shell-model calculations also support
the occupancy of d5/2 proton orbital is approaching 5 [44], in

Table 1. The calculated total energies (Etot), the excitation energies (Ex), the quadrupole deformation parameters (β2), the valence nucleon
configuration, and the intrinsic magnetic moments (μintri.) of

23Al for states A, B, C, D and E, in comparison with the experimental energies
Ex(exp.) [60], and ground-state magnetic moment (μexp.) [57]. The energy is in unit of MeV and the magnetic moment is in μN.

State ( )E Ex tot  β2  Valence nucleon configuration μintri.(μexp.) Ex(exp.)

A (−167.89) 0.40 p 5
2
[202+] ( )d1 5 2

5
2

4.96 (3.889)

B 1.12(−166.77) 0.52 p 1
2
[211+] ( )s2 1 2

1
2

−0.23 0.550

C 2.39(−165.50) −0.26 p 1
2
[220+] ( )d1 5 2

1
2

1.52 (2.575)

D 2.35(−165.54) 0.28 { }[ ] [ ] [ ]p n+ Ä + +202 220 2115
2

1
2

3
2

2.11

( )p nÄd d d1 1 15 2
5
2 5 2

1
2 5 2

3
2

E 4.20(−163.69) −0.18 p 3
2
[211+] ( )d1 5 2

3
2

−0.55 (3.197)
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agreement with the present CDFT calculation as well as the
last unpaired proton occupying the [ ]+5 2 202 orbital. It
should be pointed out that the calculated total energies within
CDFT in 23,25,27,29,31Al are close and also slightly larger than
the experimental values except for 33Al. The case that the
CDFT energies of Al isotopes with N�20 are smaller than
the data is also observed in relativistic continuum Hartree-
Bogoliubov (RCHB) calculations [64].

In figure 3, the magnetic moments of odd-A Al isotopes
in CDFT approach with and without considering the collec-
tive coupling are presented, in comparison with the corresp-
onding experimental data [57]. The intrinsic magnetic
moments are obtained from the CDFT calculations based on
the valence nucleon configuration p d1 5 2 for

23,25,27,29,31,33Al.
It is easy to see that the intrinsic magnetic moments for Al
isotopes are around 5μN, close to the Schmidt value 4.79 μN

of p d1 5 2. After including the coupling of collective rotation
and intrinsic single particle motion within equation (10), the
calculation is greatly improved and the magnetic moments of
Al isotopes are well reproduced, with relative deviation from

Figure 2. Single-proton energy levels of the ground-state configuration A and C in 23Al obtained from configuration-fixed deformation
constrained calculations. Each pair of time reversal conjugate states are split up into two levels with the opposite third component of angular
momentum Ω>0 and W̄ < 0, denoted by black and red lines respectively. The filled circles indicate the corresponding occupations in the
ground state A and state C.

Table 2. The calculated energy ( )Ecal , the quadrupole deformation (β2), valence nucleon configuration, intrinsic magnetic moment (μintri.),
and final magnetic moments (μtot.) of odd-A Al isotopes in CDFT approach, in comparison with the corresponding experimental spin, parity,
energy and magnetic moment.

CDFT Exp.

Nuclei β2 Etot(MeV) Configuration μintri.(μN) μtot.(μN) I π Eexp. μexp.

23Al 0.40 −167.89 [ ]p +5 2 202 4.96 3.92 5/2+ −168.72 3.889(5)
25Al 0.39 −198.01 [ ]p +5 2 202 5.00 3.91 5/2+ −200.52 3.6455(12)
27Al 0.18 −221.26 [ ]p +5 2 202 5.10 3.96 5/2+ −224.95 3.6415069(7)
29Al 0.27 −239.65 [ ]p +5 2 202 5.12 3.96 5/2+ −242.10
31Al 0.17 −253.63 [ ]p +5 2 202 5.16 3.96 5/2+ −255.00 3.830(5)
33Al 0.06 −267.43 [ ]p +5 2 202 5.22 3.99 5/2+ −264.65 4.088(5)

Figure 3. Magnetic moments of odd-A Al isotopes in CDFT
approaches with and without considering the collective motion, in
comparison with the corresponding experimental data [57]. The
results with (red) and without (blue) time-odd fields (TOF) are also
shown.
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the available data of five nuclei is about 5%. Taking 23Al as
an example, the intrinsic magnetic moment is 4.96 μN and the
final magnetic moment with collective motion is 3.92 μN,
excellently reproducing the experimental value 3.889 μN. The
calculated magnetic moments of 25Al and 27Al are 3.91 and
3.96 μN, close to the data 3.646 and 3.642 μN, respectively.
For 31Al and 33Al, the calculated magnetic moment in CDFT
are 3.96 and 3.99 μN, also well reproducing the corresponding
data 3.830 and 4.088 μN, respectively.

Comparing the CDFT results with and without con-
sidering the time-odd fields shown in figure 3, it is found that
the theoretical descriptions are improved after including the
time-odd fields, i.e. the relative deviation from the data of five
nuclei is reduced from 7.6% to 5%. It can be understood that
the self-consistent polarization currents in core will slightly
reduce the intrinsic magnetic moment here and finally bring
the total magnetic moment closer to the data, while the
importance of time-odd fields on nuclear magnetic moments
has been discussed in [31, 47].

In the CDFT calculations, the empirical value =g Z AR
of rigid rotor is adopted and it varies from 0.39 to 0.57 for
23–33Al. Moreover, the collective gyromagnetic factors gR for
25Al and 27Al are 0.52 and 0.48, respectively, close to the
available experimental gyromagnetic factor for even–even
core 24Mg (0.54) and 26Mg (0.50). In [65], the self-consistent
CDFT calculations for the gyromagnetic factor of low-lying
excited states in 24Mg were carried out, and the available
experimental gyromagnetic factor has been reproduced quite
well. Furthermore, the calculated gyromagnetic factors have
been found to be almost the same for the low-lying excited
states with different angular momenta and close to the
empirical value. In fact, even when the collective gyromag-
netic factor gR is increased or decreased by 20%, the final
magnetic moments change slightly. It can be understood that
the collective gyromagnetic factor Z/A is far less than the
intrinsic magnetic moment μintri. as shown in equation (10).

4. Summary and prospective

In summary, the ground-state properties, especially the
magnetic moments of 23,25,27,29,31,33Al have been studied in
CDFT. At first, using the configuration-fixed deformation
constrained calculation, the potential energy, intrinsic magn-
etic moment and single proton energy levels as a function of
quadrupole deformation for 23Al are given. The ground state
of 23Al has been found to be prolate deformed, β2=0.40,
with the odd proton in 5/2[202] orbital and intrinsic magnetic
moment 4.96 μN, which is close to the Schmidt value of
πd5/2. After including the strong coupling of collective
rotation and intrinsic single particle motion, the ground-state
spin and parity +5 2 of odd-A Al isotopes can be understood
and the corresponding magnetic moments are well repro-
duced, with relative deviation from the data of five nuclei
about 5%. In addition, it is found that the theoretical
descriptions are improved after considering the time-odd
fields, i.e. the relative deviation from the data of five nuclei is
reduced from 7.6% to 5%. The above calculations support

that the ground state +5 2 is built on the intrinsic state 5/2
[202] and a rotational structure exists in the ground state of
the odd mass Al isotopes. A further investigation with angular
momentum projection based on our deformed CDFT solution
is to be done in the future, and other forms of energy func-
tionals such as PC-PK1 [66], one of the most accurate density
functionals at present, should be adopted to check whether the
present conclusion depends on the functionals.
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