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Abstract – The unusually low value of the ratio B4/2 = B(E2; 4+
1 → 2+

1 )/B(E2; 2+
1 → 0+

1 ) along
the yrast band is described in the interacting boson model-1. Two three-body interactions with
SU (3) symmetry are additionally introduced into the usual Hamiltonian describing the transitional
behaviors from the spherical vibration to the ellipsoidal rotation. In the SU (3) limit, the energy of
the 4+ state in the irrep (2N−8, 4) can be lower than the one of the 4+ state in the irrep (2N, 0),
which causes the anomaly.

Copyright c© EPLA, 2020

Introduction. – The interacting boson model (IBM)
presents an algebraic description of the nuclear structure,
in which the nucleon pair is regarded as a boson [1]. In the
simplest case (IBM-1), proton pair and neutron pair in an
even-even nucleus are not distinguished and the total bo-
son number N is conserved. Many collective properties of
nuclei can be well described by this model with up to two-
body interactions. Experience shows that, if the nucleus
moves away from the closed-shell configuration, collectiv-
ity emerges and gradually dominates the behaviors of the
low-lying levels.

Recently, a cluster of a few extremely neutron-deficient
nuclei 168Os (N = 8) [2], 166W (N = 9) [3], 172Pt
(N = 8) [4] and 170Os (N =9) [5] are experimentally found
to have an unpredictably small ratio of reduced transition
probabilities B4/2 = B(E2; 4+

1 → 2+
1 )/B(E2; 2+

1 → 0+
1 ).

This small ratio has also been found in other nuclei
away from closed shell, such as 50Cr (N = 3) [6], 48Cr
(N = 4) [6], 74Zn (N = 4) [7], 72Zn (N = 5) [7], 114Te
(N = 7) [8,9] and 114Xe (N = 7) [10]. These experimen-
tal results are very surprising. In a standard collective
model, such as the geometrical collective model or IBM,
the B(E2) values increase with spin along the yrast band,
so the ratio B4/2 is strictly larger than unity. For an ideal
rotor, this quantity is 1.43 (Alaga rule), while for a har-
monic vibrator, it is 2. Although this value can become
a little smaller in the IBM, it still cannot be less than 1.
Despite a lot of attempts to calculate the small value of
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B4/2, such as large-scale shell models and state-of-the-art
beyond-mean-field models, this anomaly cannot be repro-
duced so far in a convincing way [5].

One possible explanation for this anomaly is that these
neutron-deficient nuclei follow seniority symmetry [11].
This pairing-correlation dominating behavior is usually
expected to be found near magic neutron or proton num-
bers. An interesting study on the transition from non-
collective seniority-like excitations to collective modes is
performed with 206Po (N = 4) and 204Po (N = 5) re-
cently [12]. In ref. [4] great efforts have been made
to explain the B4/2 anomaly with a seniority-conserving
structure, but there are no definite results for the large
model spaces involved. Furthermore, it is shown that
the values of B(E2; 2+

1 → 0+
1 ) of these nuclei can be

very well reproduced with existing theories. The value
of B(E2; 2+

1 → 0+
1 ) is a key observable for understand-

ing the emergence of collectivity [12] and the quantum
phase transition of the shapes of atomic nuclei [13]. The
B(E2; 2+

1 → 0+
1 ) values of the 168Os, 166W, 172Pt and

170Os are, respectively, 74(13) W.u., 150(9) W.u., 49(11)
W.u. and 97(8) W.u., which are all larger than the value
40.60(20) W.u. of the typical γ-soft nucleus 196Pt [14].
These results mean that the 2+

1 states of these nuclei
should be collective excitations. The experimental dis-
crepancy on the small B4/2 is merely determined by the
value of the B(E2; 4+

1 → 2+
1 ) [5], which is nearly 4 times

smaller than the theoretical value. If the 0+
1 state and the

2+
1 state belong to a different collective mode than the 4+

1
state, a small ratio B4/2 is possible.
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In this paper we insist that the low-lying states of these
nuclei are collective, and try to resolve this B4/2 puz-
zle within the framework of the IBM-1. If two three-
body interactions, the SU (3) third-order Casimir operator
and [L̂ × Q̂ × L̂](0) (Q is the quadrupole operator in the
SU (3) limit and L is the angular momentum operator),
are additionally introduced into the conventional Hamil-
tonian, it is found that this abnormally small ratio B4/2
can be successfully reproduced. The two SU (3) three-
body symmetry-conserving operators have been discussed
in refs. [15–20] as one of the extensions of the IBM-1. We
illustrate this result with the nucleus 170Os for an exam-
ple. The reasons for this small B4/2 are also clarified. In
the SU (3) limit, the energy of the 4+ state in the irrep
(2N−8, 4) can be lower than the one of the 4+ state in
the irrep (2N, 0), which is the cause of the anomaly.

Hamiltonian and numerical results. – In the IBM-
1, three dynamical symmetry limits exist: the U(5) limit
presents quadrupole vibrations around a spherical nucleus,
the SU (3) limit describes an ellipsoidal nucleus having
rotational structure, and the O(6) limit shows a γ-soft
triaxial rotation. These nuclei having a small B4/2 value
locate a transitional region from spherical vibration to pro-
late rotation [2–5], so the d-boson number operator in the
U(5) limit Ĉ1[U(5)] = n̂d, the SU (3) second-order Casimir
operator Ĉ2[SU(3)] and the rotational invariant operator
Ĉ2[SO(3)] = L̂2 should be considered in the Hamiltonian.
However, the three terms are not enough to reproduce the
anomalous result. If we insist that the small B4/2 ratio
is also a collective phenomenon, the only possible solution
is that higher-order interactions should be additionally in-
troduced into the description.

Two three-body interactions conserving SU (3) symme-
try are explored in this paper. One is the SU (3) third-
order Casimir operator Ĉ3[SU(3)], and another is the O(3)
scalar shift operator Ω̂ = [L̂ × Q̂ × L̂]0. These terms have
been already discussed in detail in refs. [15,16], but the
SU (3) third-order invariant term is ignored for actual sim-
ulation. In a recent study, it is shown that a combination
of the SU (3) second-order and third-order Casimir oper-
ators can describe the quantum phase transition from the
prolate to the oblate shapes [19], in which analytically
solvable description can be obtained.

The Hamiltonian used in this paper is

H = αn̂d + βĈ2[SU(3)] + γĈ3[SU(3)] + δΩ̂ + ζL̂2, (1)

where α, β, γ, δ, ζ are five parameters used for fitting.
We take the nucleus 170Os (N = 9) for an example [5]
to describe the small B4/2 value for these nuclei 168Os,
166W, 172Pt and 170Os have similar level structures and
B(E2) features. The numerical results are performed
based on our SU (3) basis diagonalization program [21].
The Hamiltonian (1) is diagonalized under the U(6) ⊃
SU(3) ⊃ SO(3) basis spanned by |N(λ, μ)χL〉, where χ
is the branching multiplicity occurring in the reduction of
SU(3) ↓ SO(3). The basis vectors are orthonormal, so the

Table 1: The experimental and numerical results for the energy
E2+

1
of the first 2+ state, the energy E4+

1
of the first 4+ state,

the energy E6+
1

of the first 6+ state, the energy E8+
1

of the first

8+ state, the energy E10+
1

of the first 10+ state, the reduced

transitional probabilities B(E2; 2+
1 → 0+

1 ), B(E2; 4+
1 → 2+

1 )
and the ratio B4/2 for 170Os. The effective charge e = 0.149 eb.
The experimental values are adopted from refs. [5,22].

Expt. Present results

E2+
1
(keV) 286.70(14) 283.05

E4+
1
(keV) 749.90(20) 729.79

E6+
1
(keV) 1325.42(24) 1228.43

E8+
1
(keV) 1945.8(4) 1946.20

E10+
1
(keV) 2545.2(5) 3114.18

B(E2; 2+
1 → 0+

1 )(e2b2) 0.54+0.05
−0.05 0.540

B(E2; 4+
1 → 2+

1 )(e2b2) 0.21+0.07
−0.04 0.204

B4/2 0.38(11) 0.378

eigenstates of (1) can be expressed as

|N, Lξ; α, β, γ, δ, ζ〉
=

∑

(λ,μ)χ

C
Lξ

(λ,μ)χ(α, β, γ, δ, ζ)|N(λ, μ)χL〉, (2)

where ξ is an additional quantum number distinguishing
different eigenstates with the same angular momentum
L and C

Lξ

(λ,μ)χ(α, β, γ, δ, ζ) is the corresponding expansion
coefficient.

Some key points for fitting the five parameters will be
mentioned in the discussion part. In table 1 we list the
experimental and numerical results for the energies of the
2+
1 , 4+

1 , 6+
1 , 8+

1 , 10+
1 states and the B4/2 value for 170Os,

where α = 302.40 keV, β = −30.09 keV, γ = 3.79 keV,
δ = −10.38 keV, ζ = 18.66 keV. It is shown that the
energies of the 2+

1 , 4+
1 , 6+

1 , 8+
1 , 10+

1 states in the yrast band
and the unusually small value B4/2 can be reproduced very
well in the IBM-1 with higher-order interactions.

Discussions. – Now we reveal the reasons for this B4/2
anomaly. The four parameters β, γ, δ, ζ in front of the
four SU (3)-conserving operators are fixed, and the pa-
rameter α for the U(5) limit operator changes from 0 keV
to 600 keV. The evolution of the energies of the 0+

1 , 2+
1 ,

4+
1 , 0+

2 , 2+
2 and 4+

2 states as a function of α are plotted
in fig. 1. In the parameter regions, the Hamiltonian gives
a γ-soft-like spectrum. The energies of the 2+

2 state and
the 0+

2 state are lower than the one of the 4+
1 state, which

is similar to anharmonic vibrations in a spherical nucleus.
The nuclei having low value B4/2 are also located in such
a γ-soft area which is adjacent to the spherical nucleus [5].
The fitting results are in line with expectations very well.

The evolution of the B(E2) values of the B(E2; 2+
1 →

0+
1 ), B(E2; 4+

1 → 2+
1 ) and B(E2; 4+

2 → 2+
1 ) are plotted in
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Fig. 1: The evolution of the energies of the 0+
1 , 2+

1 , 4+
1 , 0+

2 , 2+
2

and 4+
2 states as a function of α from 0 keV to 600 keV, here

β = −30.09 keV, γ = 3.79 keV, δ = −10.38 keV, ζ = 18.66 keV.

Fig. 2: The evolution of the B(E2) values of the B(E2; 2+
1 →

0+
1 ) (solid blue line), B(E2; 4+

1 → 2+
1 ) (dashed red line) and

B(E2; 4+
2 → 2+

1 ) (dotted green line) as a function of α from
0 keV to 600 keV, here β = −30.9 keV, γ = 3.79 keV, δ =
−10.38 keV, ζ = 18.66 keV.

fig. 2. The B(E2) operator is chosen as

T̂ (E2) = eQ̂, (3)

where e is the boson effective charge, which is usually
used in IBM-1 [1,21]. The B(E2) values seem very differ-
ent from the results obtained from previous γ-soft spectra
from the U(5) limit to the O(6) limit. The values of the
B(E2; 2+

1 → 0+
1 ) are normal (solid blue line). When α be-

comes larger, the value decreases gradually, which is con-
sistent with our experience. The values (α ≤ 300 keV) of
the B(E2; 4+

1 → 2+
1 ) (dashed red line) are much smaller

than the ones of the B(E2; 2+
1 → 0+

1 ) which is exactly
what we want to get. When α = 0, that is in the SU (3)
limit, the value of the B(E2; 4+

1 → 2+
1 ) is exactly zero,

which means this transition is forbidden. The behaviors

Fig. 3: The spectra of the SU (3) limit with additional two
three-body interactions, here α = 0keV, β = −30.09 keV, γ =
3.79 keV, δ = −10.38 keV, ζ = 18.66 keV.

of the values of the B(E2; 4+
2 → 2+

1 ) are also presented
(dotted green line). In fig. 2, it is clear that there is
a crossover point for the two evolutional lines of the
B(E2; 4+

1 → 2+
1 ) and B(E2; 4+

2 → 2+
1 ). This means 4+

1
state and 4+

2 state are mixed when α = 302.40 keV.
When α = 0, the left four interactions are SU (3) sym-

metry conserving, which cannot break the SU (3) symme-
try, so the states in this limit can be labeled with the
SU (3) irrep (λ, μ). Based on the results in ref. [15], the
energies of the low-lying states can be directly obtained.
These analytical results are the same as our numerical
calculation, which can be easily checked. In fig. 3, the
low-lying spectra of the SU (3) limit with additional two
three-body interactions are shown. It is easily seen that
the energy of the 4+ state belonging to the irrep (10, 4)
is lower than the one of the 4+ state in the irrep (18, 0).
Thus the transition between the 4+

1 state and 2+
1 state is

forbidden. The states belonging to different irreps (λ, μ) in
the SU (3) second-order and third-order Casimir operators
are degenerate. The energies of the 0+ states are decided
by the two SU (3) Casimir operators. The three-body
interaction [L̂ × Q̂ × L̂](0) and the L̂2 interaction can-
not change the energies of the 0+ states. Thus the ro-
tational ground-state band for the irrep (18, 0) and other
band structures in different irreps are generated by the
[L̂ × Q̂ × L̂](0) and L̂2 interactions.

When the U(5) term is added, fig. 4 predicts the partial
low-lying spectra for 170Os in the IBM-1 with additional
two three-body interactions and table 2 presents some pre-
dicted partial absolute B(E2) values for E2 transitions
from Li state to Lf state. This spectra resemble the ones
of a γ-soft nucleus, but the B(E2) modes are very dif-
ferent. The value of the B(E2; 0+

2 → 2+
1 ) is very small.

Of particular importance, the absolute BE(2) values along
the yrast line really decreases with spin as expected, which
further verifies the rationality of this theory. Recently the
spectra with γ-soft feature having odd B(E2) values have

52001-p3



Tao Wang

Fig. 4: Predicted partial low-lying spectra for 170Os in the
IBM-1 with additional two three-body interactions, here α =
302.40 keV, β = −30.09 keV, γ = 3.79 keV, δ = −10.38 keV,
ζ = 18.66 keV.

Table 2: Predicted partial absolute B(E2) values in e2b2 for
E2 transitions from Li state to Lf state for 170Os when α =
302.40 keV, β = −30.09 keV, γ = 3.79 keV, δ = −10.38 keV,
ζ = 18.66 keV with effective charge e = 0.149 eb.

Li Lf Present results

2+
1 0+

1 0.540
4+
1 2+

1 0.204
6+
1 4+

1 0.185
8+
1 6+

1 0.120
10+

1 8+
1 0.065

2+
2 2+

1 0.558
0+
2 2+

1 0.017
4+
2 2+

1 0.462

attracted much attention [23]. We expect these results can
be verified with future experiments.

The fitting process of the parameters needs further ex-
planation. We start to determine the parameters from the
SU (3) second-order Casimir operator and the L̂2 inter-
action, which shows a typical ellipsoidal rotational spec-
tra [1]. Then the SU (3) third-order Casimir operator is
considered [15,19]. This interaction can reduce the en-
ergies of the 0+ excited states and the rotational bands.
Next, the [L̂ × Q̂ × L̂](0) interaction is added, which can
make the energy of the 4+ state belonging to the irrep
(2N − 8, 4) lower than the one of the 4+ state in the irrep
(2N, 0). However, it is also noticed that the energies of the
6+
1 , 8+

1 , 10+
1 states are lower than the one of the 4+

1 state.
Subsequently, the U(5) interaction is followed. Through
observing the B4/2 value and the level ratio E4+

1
/E2+

1
, the

four parameters can be preliminarily confirmed. At last,
the L̂2 interaction is again considered to determine the
energies of the levels along the yrast band. Final results

Fig. 5: The evolution of the B(E2) values of the B(E2; 2+
1 →

0+
1 ) (solid blue line) and B(E2; 4+

1 → 2+
1 ) (dashed red line) as

a function of γ from 2.5 keV to 4.0 keV, here α = 302.40 keV,
β = −30.09 keV, δ = −10.38 keV, ζ = 18.66 keV.

Fig. 6: The evolution of the B(E2) values of the B(E2; 2+
1 →

0+
1 ) (solid blue line) and B(E2; 4+

1 → 2+
1 ) (dashed red line) as

a function of δ from 0 keV to −15 keV, here α = 302.40 keV,
β = −30.09 keV, γ = 3.79 keV, ζ = 18.66 keV.

need to be adjusted and validated repeatedly until they
match the experimental data.

The B4/2 anomaly occurs in a special parameter region.
The evolution of the B(E2) values of the B(E2; 2+

1 → 0+
1 )

and B(E2; 4+
1 → 2+

1 ) as a function of γ from 2.5 keV to
4 keV are plotted in fig. 5. It can be seen that even the
γ value becomes a little smaller, such as γ = 3.40 keV,
the anomaly disappears. This result may be contrary to
our experience for the two three-body interactions are also
large. In previous calculation, the higher-order interac-
tions are not so important for the Hamiltonian with up to
two-body interactions can also give the main results ob-
served experimentally. Similar situations also hold for the
δ and β parameters, see fig. 6 and fig. 7.
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Fig. 7: The evolution of the B(E2) values of the B(E2; 2+
1 →

0+
1 ) (solid blue line) and B(E2; 4+

1 → 2+
1 ) (dashed red line) as

a function of β from −20 keV to −40 keV, here α = 302.40 keV,
γ = 3.79 keV, δ = −10.38 keV, ζ = 18.66 keV.

We expect the small B4/2 value can be also reproduced
in the shell model with adding appropriate three-body in-
teractions. The microscopic shell model foundation of the
IBM is still under investigation, and the reason of the
emergence of the three-body interactions is out of our
knowledge. It is essential to investigate the small value
B4/2 in the IBM-2, in which the proton pair and the neu-
tron pair are treated separately. IBM-2 has a direct cor-
respondence to the shell model. If we can confirm the
function of the two three-body interactions in the IBM-2,
some clues of the three-body interactions added in the
shell model may be obtained. Another method to con-
struct the three-body interactions is to explore the SU (3)
shell model [24,25]. Similar to our approach, the low 4+

1
state having forbidden transition to the 2+

1 state may be
generated [20].

It should be noticed that the abruptly decreasing of the
B(E2) values can also occur for the B(E2; 6+

1 → 4+
1 )

or even the B(E2; 2+
1 → 0+

1 ) for appropriate parame-
ters. The small value B(E2; 6+

1 → 4+
1 ) compared to the

value B(E2; 4+
1 → 2+

1 ) can be found in 72Zn (N = 5).
The previous value is 134+57

−31 e2fm4 and the latter one is
361+57

−47 e2fm4 [7]. For 70,72,74Zn, our theory may provide a
self-consistent result, this will be discussed in future work.
An experimental measurement of the value B(E2; 6+

1 →
4+
1 ) in 168W (N = 10) is highly anticipated [3].

Conclusions. – In this paper, the B(E2) anomaly
within the yrast band is resolved in the collective frame-
work of the IBM-1. Two SU (3)-conserving three-body
interactions are additionally introduced into the conven-
tional Hamiltonian describing the transitional behaviors
from the spherical vibration to the ellipsoidal rotation.
A γ-soft-like spectra is generated with the small B4/2
value. These results are very different from our common

experience, just like the experimental anomaly is contrary
to our expectation. In the IBM-1, this is the only con-
vincing way to reproduce the anomalous small B4/2 value,
thus we believe that the three-body interactions may be
more important than we thought before, which should be
a necessary ingredient to describe the collective nature of
nuclei. A complete study in the IBM-2 to discuss the B4/2
anomaly will be done in future work, and a similar realiza-
tion of our work in the shell model, especially the SU (3)
shell model is highly expected.
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