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Abstract
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Whether or not the thermodynamic entropy is equal to the entanglement entropy of an
eigenstate is of fundamental interest, and is closely related to the eigenstate thermalization
hypothesis (ETH). However, this has never been exploited as a diagnostic tool in many-body-
localized (MBL) systems. In this work, we perform this diagnostic test on a clean interacting
system (subjected to a static electric field) that exhibits three distinct phases: integrable,
non-integrable ergodic and non-integrable MBL. We find that in the non-integrable phase, the
equivalence between the thermodynamic entropy and the entanglement entropy of individual
eigenstates holds. In sharp contrast, in the integrable and non-integrable MBL phases, the
entanglement entropy shows large eigenstate-to-eigenstate fluctuations, and differs from the
thermodynamic entropy. Thus the non-integrable MBL phase violates ETH similar to an
integrable system; however, a key difference is that the magnitude of the entanglement entropy
in the MBL phase is significantly smaller than in the integrable phase, where the entanglement
entropy is of the same order of magnitude as in the non-integrable phase, but with a lot of
eigenstate-to-eigenstate fluctuations. Quench dynamics from an initial CDW state
independently supports the validity of the ETH in the ergodic phase and its violation in the

MBL phase.

Keywords: many-body-localized (MBL), entanglement entropy, eigenstate thermalization

hypothesis (ETH), integrable systems
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1. Introduction

The question of how an isolated many-body system thermal-
izes has a long history. In the classical domain, thermaliza-
tion of an isolated system in the limit of long times is gov-
erned by Boltzmann’s ergodic hypothesis [1-3]. It states that
classical chaotic systems, uniformly sample all the available
micro-states at a given energy, in the long time limit. However,
this hypothesis cannot be generalized directly to the quantum
domain as in the long time limit the expectation value of an
observable retains the initial memory of the system, and is
thus unable to sample all the eigenstates of the system. Experi-
mental advancement [4—6] in recent times has created a strong
demand for a close understanding of thermalization in isolated
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quantum systems and led to a flurry of theoretical activity
[7-16].

Thermodynamic entropy in the context of classical sta-
tistical mechanics is by its very nature an extensive quan-
tity [1-3]. In quantum systems, entanglement entropy of
individual eigenstates brings in a rich additional dimension.
Discussions of the extensivity or the lack thereof of entan-
glement entropy have abounded [17-22] in recent times.
The celebrated area law [23-25] which asserts that the
ground state entanglement entropy scales with subsystem
as the surface area of the subsystem, has been a central
topic around which many of these studies have been carried
out. However, the relationship between entanglement entropy
and thermodynamic entropy has only been scantily covered
[26]. In this letter, we demonstrate, with the aid of a spe-
cific example, that a systematic study of this relationship

© 2020 IOP Publishing Ltd  Printed in the UK
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is an illuminating diagnostic for a class of quantum phase
transitions.

For an isolated quantum system it has been argued that
the route to thermalization is described by the eigenstate
thermalization hypothesis (ETH) [6, 27-30]. The ETH states
that expectation values of operators in the eigenstates of the
Hamiltonian are identical to their thermal values, in the ther-
modynamic limit. The measurement of any local observable
in these systems gives the same expectation values for nearby
energies. A closely related, but completely independent feature
analogous to the ETH, is the question of whether the ther-
modynamic entropy of a subsystem obtained from the micro-
canonical reduced density matrix with a fixed energy Ej is
equal to the entanglement entropy calculated from the energy
eigenstate of the system with the same energy Ey [26, 31].

The phenomenon of many-body-localization (MBL)
[32-36] in which interactions fail to destroy Anderson local-
ization (caused by random disorder) has created considerable
excitement. The MBL phase is believed to exhibit properties
similar to those of integrable systems [37—43]. In particular,
although the ETH criterion is known to be satisfied by generic,
non-integrable systems [8, 14, 44—50], a violation of the ETH
is expected for integrable, and therefore MBL systems
[7, 11, 26, 51]. The expectation value of any local observable
in these systems fluctuates wildly for nearby eigenstates.
Integrable systems are exactly solvable and have an extensive
number of local conserved currents [52], which do not evolve
in the course of time and hence prevent the system from
thermalization. Similarly, MBL systems have conserved
quasi-local integrals of motion which help to retain the
memory of the initial state [40—43].

Most MBL systems have in-built disorder [35, 53, 54].
Recent work [55, 56] has proposed that a stable MBL-like
phase may be obtained in a clean (disorderless) interacting sys-
tem subjected to an electric field and a confining/disordered
potential. The additional potential turns out to be essential as in
its absence, the MBL phase cannot be obtained [55-58]. This
many-body system is known to exhibit a rich phase diagram.
In the absence of both electric field and curvature term, this
model is integrable, while a finite value of either of these exter-
nal potentials breaks the integrability. Further in the region
of broken integrability it shows a transition from the ergodic
to the MBL phase on varying the strength of the electric
field. Thus it provides a good test bed to characterize various
phases: integrable, non-integrable ergodic and non-integrable
MBL phases. As opposed to a standard disordered system, a
clean system could potentially be realized experimentally with
greater ease, while still using the already available methods
[59-63].

In this article, we demonstrate the profitability of a study of
the relationship between thermodynamic entropy and entan-
glement entropy to characterize various phases. Although our
technique is, in principle, more general, we concentrate on
the concrete case of the above disorder-free model. We find
that for a small subsystem, the entanglement entropy of each
eigenstate matches with the thermodynamic entropy, provided
the system is tuned in the non-integrable ergodic phase and
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Figure 1. A schematic representation of the model with our main
findings. In the non-integrable ergodic phase, the entanglement
entropy matches with the thermodynamic entropy, while in the
integrable and non-integrable MBL phases, it differs from the
thermodynamic entropy. In the non-integrable MBL phase, the
magnitude of the entanglement entropy is significantly smaller. The
arrow represents the direction of increasing field strength. The inset
shows the mean level-spacing ratio (averaged over different values
of «) as a function of the field strength. The other parameters are:
L =16,V = 1.0 and filling factor = 0.5.

satisfies the ETH criterion. However in the integrable and non-
integrable MBL phases, the entanglement entropy shows large
fluctuations for nearby eigenstates, and also differs from the
thermodynamic entropy (figure 1 provides a schematic of these
results). The difference between the thermodynamic entropy
and the entanglement entropy increases on varying the strength
of the electric field due to the strong localization from the
electric field which leads to a smaller entanglement entropy.
Further tests are done from an alternative perspective by study-
ing the dynamics of average particle number in the subsystem.
In the long time limit, the saturation value of the observable
in the non-integrable ergodic phase matches with the results
predicted by the diagonal ensemble and the micro-canonical
ensemble, while in the non-integrable MBL phase the satu-
ration value matches with the diagonal ensemble result but
differs from the micro-canonical ensemble result.

2. Model Hamiltonian

We consider a clean, spinless fermionic Hamiltonian with L
sites [55]:

L2 L-1 1
H=-7Y (clejpi+clcp—F j(”j - 2)
j=0 J=0

L—-1 j2 1 L-2 1
j=0 =

1
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where ¢, ¢ are fermionic operators, F is the linear electric
field, « is the curvature term and V is the nearest neighbor
interaction. The curvature term (which has a factor of Ll—z) pro-
vides a slight non-linearity in the overall onsite potential, and
helps break degeneracies [55]. The lattice constant is kept at
unity and natural units (/ = A = e = 1) are adopted for all the
calculations. In the non-interacting limit (V = 0) with o = 0,
the above Hamiltonian yields the Wannier—Stark ladder char-
acterized by an equispaced energy spectrum proportional to
the electric field strength, and where all the single particle
eigenstates are localized [64, 65]. Furthermore, the dynamics
governed by this Hamiltonian gives rise to oscillatory behavior
which is known as Bloch oscillations [66—70]. When interac-
tions are included, the model is integrable in the absence of
both the static field and the curvature term (F = 0, & = 0). The
integrability is broken by a non-zero value of either the field
F or the curvature . When the field F is varied while keeping
« fixed at a non-zero value, the system undergoes a transition
from a delocalized (ergodic) phase at small field strengths to
the MBL phase [55, 56] at large field strengths. The inset of
figure 6 carries a plot of the mean level spacing ratio [71] (aver-
aged over the curvature parameter «) as a function of the field,
indicating a change of statistics [72] from Wigner—Dyson to
Poisson.

3. ETH and thermodynamic entropy

For an isolated quantum system described by a Hamiltonian
H, the time evolution of any initial state is given by

[W(0) = e MY0) = cre M n), 2)

where ¢, and |n) are the eigenvalues and the eigenstates of the
Hamiltonian respectively. The information of the initial state
is encoded into the coefficients c,. For any operator O the
expectation value after any time 7 is given by

(O@) = (OO (). 3)

Using equation (2), this simplifies to

(OW) = |ealOu + > chen € O, (@)

n m#n

where O,,, are the matrix elements of the operator O in
the eigenbasis of the Hamiltonian H. It can be seen from
equation (4) that in the long time limit ( — c0), generically (in
the absence of degeneracy) the second term goes to zero and
the expectation value of the observable saturates to the value
predicted by the diagonal ensemble:

(O(t = 00)) = (Ope) = > _ [cal* O (5)

Hence the system retains the memory of the initial state
through the coefficients c¢,, and does not follow the ergodic
hypothesis.

Thermalization in isolated quantum many body systems
happens via the mechanism of ETH, which implicitly involves

the assumption that the diagonal elements of the operator
@) change slowly with the eigenstates. Specifically, the off-
diagonal elements O,,,, and the difference in the neighboring
diagonal elements: O, 11,,+1 — O, , are exponentially small in
N, with A being the system size. With this assumption, the
diagonal ensemble result (equation (5)) saturates to a constant
value as the matrix elements O, are effectively constant over
a given energy window.

Now considering the micro-canonical ensemble, the aver-
age value of the same observable can be written as

Nitates

; L S~ o, ©)

O =
< ME> Nytates

n=1

where Ngues 1S the number of states in a given energy shell.
Imposing the assumption of ETH, this also saturates to a con-
stant value. Thus in the long time limit, the system thermalizes
and the observable saturates to a thermal value predicted by the
micro-canonical ensemble [6, 48, 49].

Under these conditions the expectation value of the operator
O in the energy eigenstate characterized by the density matrix
pe = |E)(E| is the same as the micro-canonical average of the
same operator:

Tr(peO) = Tr(pmicro.£O), (7)

where the micro-canonical density matrix is defined as

|E)(E], (8)

1
Pmicro,Ey = N.
Eg<E<Eg+AE

states

where Ngy,es 1S the number of states available in the energy
window AE. For a composite system (A + B) characterized
by the density matrix p, the entanglement entropy of a sub-
system A is defined as: Sgy = —Tr(palnps), where py =
Trpp, is the reduced density matrix of the subsystem A taken
after tracing out the degrees of freedom of the other sub-
system B. On the other hand, the thermodynamic entropy
from a micro-canonical ensemble is defined as: Siermo =
—Tr(PmicrolNPmicro)- The criterion of ETH is extended [26, 31]
by asking whether the entanglement entropy of a small subsys-
tem taken out of a large system in an eigenstate with energy
Ey is equal to the thermodynamic entropy computed from
the micro-canonical density matrix (equation (8)) with the
same energy Ey. Positing an ETH-like equation where ppicro
is replaced by ps we ask if the condition

Sthermo = — Tr(pa In pa) = — Tr(pamicro In PA,micro) 9)

holds. Here, p4 micro 18 the reduced density matrix correspond-
ing to the micro-canonical density matrix py;cro ((equation (8)).
For the subsystem A, this can be calculated by tracing out
the degrees of freedom of the remaining part: pa micro =
TrB(pmicro)-

Although the above criterion is analogous to the stan-
dard ETH one (equation (7)) the logarithmic factor Inp, is
not an observable quantity, thus making it an independent
characteristic of thermalization. The appendix carries a short
demonstration of the extensivity of thermodynamic entropy.
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Figure 2. The entanglement entropy of each energy eigenstate and the corresponding thermodynamic entropy. (a) Integrable phase (F = 0,
«a = 0): the entropy of nearby eigenstates fluctuates wildly with a finite difference between average entropy and the micro-canonical
average. (b)—(d) Non-integrable phase: with « = 1.0 and F = 0.4, 1.5, and 3.0 respectively. We obtain agreement between the entanglement
entropy with its corresponding thermodynamic entropy in the ergodic phase (F = 0.4) satisfying ETH while the ETH is violated on
increasing the value of field strength (going into the MBL phase). The other parameters are: L = 16, V = 1.0 filling factor = 0.5, and

subsystem size m = 4.

4. Results and discussion

4.1. Statics

The model considered contains three regimes of interest: the
integrable phase, the non-integrable ergodic phase and the non-
integrable MBL phase. We employ numerical exact diago-
nalization of the model (equation (1)) for a system size upto
L = 16 with the filling factor set to half filling. We also take
the subsystem A to consist of the first m sites out of the L sites.
We test the equivalence of the thermodynamic entropy and
entanglement entropy (equation (9)) in these distinct phases.
We compute the entanglement entropy for a small subsystem
(m = 4) for all the eigenstates and plot it in figure 2. The ther-
modynamic entropy for all the eigenstates is also plotted by
considering the micro-canonical density matrix (equation (8)),
followed by tracing out the degrees of freedom of the comple-
ment of the subsystem. Since the energy spectrum fans out as
a function of the electric field strength, we average the den-
sity matrix over Nyues = 100 nearest-neighbor eigenstates to
compute the thermodynamic entropy. Furthermore, the aver-
age entanglement entropy S, (average of the entanglement
entropy of 100 nearby eigenstates) is also plotted in the same
figure.

In the integrable case (F,a = 0), the thermodynamic
entropy differs from the entanglement entropy with the lat-
ter having a lot of fluctuations. However, for the parameters
in the ergodic phase, nice agreement is found between the

1.4
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Figure 3. The difference between the thermodynamic entropy and
the average entropy as a function of energy. Only the central part of
the spectrum (£ € [—10 : 10]) is shown for various values of the
field strength. In the ergodic phase the difference is almost zero
while in the MBL phase the difference is much larger. The other
parameters are: L = 16, « = 1.0, V = 1.0 filling factor = 0.5, and
subsystem size m = 4.

thermodynamic entropy and entanglement entropy, which sig-
nifies the validity of ETH in this phase. When the system is
tuned on the border (F = 1.5), the entanglement entropy also
shows fluctuations due to a mixture of both volume law and
area law scaling states. This in-between phase has been called
the ‘S-phase’ [73]. For the parameters in the MBL region, the
entanglement entropy shows wild fluctuations and the ther-
modynamic entropy is also different from the entanglement
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Figure 4. (a) Difference between the thermodynamic entropy and the average entropy (average carried out over 100 nearest eigenstates in
both cases) as a function of energy for different subsystem sizes in the ergodic phase(F¥ = 0.2). A better thermalization can be seen for
smaller subsystem sizes. (b) and (c) The finite size scaling of the difference of thermodynamic and average entropy (for a single eigenstate
located at the middle of spectrum) as a function of the subsystem size in both ergodic and MBL phases. The other parameters are:

L =16, = 1.0,V = 1.0 filling factor = 0.5.

entropy, which suggests the breakdown of ETH in the MBL
phase. It is interesting to note that even though both inte-
grable and non-integrable MBL phases violate the ETH, the
magnitude of entanglement is considerably lower in the latter,
due to the underlying localization. It is useful to consider the
difference between thermodynamic entropy and the average
entanglement entropy:

AS — Sthermo - Savg ) (10)

Slhermo

The difference between the thermodynamic entropy and the
entanglement entropy (AS) increases on increasing the elec-
tric field strength. The entropy for a part of the spectrum
(E € [-10:10]) is plotted in figure 3 for various values of the
field strengths. In the ergodic phase the difference is close to
zero signifying the validity of ETH while a finite difference in
the MBL phase shows the violation of ETH.

Finally, we test the equivalence of thermodynamic entropy
and entanglement entropy on varying the subsystem size. For
each eigenstate, figure 4 shows the difference between these
two for various values of subsystem size. It can be seen that
for smaller subsystems the difference tends to zero, hence the
smaller the subsystem the better is the thermalization [74, 75].
The other two figures in figure 4 show the finite size scaling of
this difference but for a single eigenstate located at the center
of the spectrum. It can be seen that for a smaller fraction m/L
the difference goes to zero and thus shows the validity of ETH
for these fractions. On the other hand, in the MBL phase, this
difference is found to increase on increasing the system size as
well as the subsystem sizes.

4.2. Quench dynamics

A complementary understanding of the distinction between
the various phases is afforded by a study of the long time
behavior of the system under time evolution. As evident from
equation (4), the dynamics of any observable has two parts:
the first part is the same as the result predicted by the diagonal
ensemble while the second part gives the fluctuations around it.
In the long time limit, the observable, in general, equilibrates
to the diagonal ensemble value. However this does not imply
the thermalization of the observable. An observable is said

il N Il

100

1000
t

Figure 5. Quench dynamics: in the non-integrable ergodic phase
(F = 0.6), the long time saturation value of the average number of
particles in the subsystem matches with those of the diagonal
ensemble and the micro-canonical ensemble. In the non-integrable
MBL phase (F = 3.0) on the other hand, the saturation value
matches with the result of the diagonal ensemble while it differs
from that of the micro-canonical ensemble. The inset shows the
normalized difference between the diagonal ensemble result and the
micro-canonical ensemble result as a function of field strength for
the same initial state. The value is close to zero in the non-integrable
ergodic phase while a finite difference is obtained in the
non-integrable MBL phase. The other parameters are:

L =16, = 1.0,V = 1.0 filling factor = 0.5, and subsystem size
m=4.

to thermalize if the result of the diagonal ensemble matches
with the result predicted by any thermal ensemble such as
micro-canonical or canonical.

We consider the average number of particles in the sub-
system [76]: O = > N, where N; = cjc,- is the number
operator at site i. The initial state is taken as a charge den-
sity wave state (where all the even sites are occupied and odd
sites are empty), and the dynamics is governed by the final
Hamiltonian (equation (1)). The prescription for obtaining the
micro-canonical density matrix is as follows. We first calcu-
late the average energy of the initial state: Ejp = (100|H|1)0).
Next we obtain the eigenstate closest to this energy. By taking
100 nearest neighbor eigenstates around the obtained state, we
then construct the micro-canonical density matrix.

We present data for the dynamics of the above observ-
able in figure 5, comparing against the values predicted by the
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Figure 6. Surface plot of the level statistics as a function of both
field strength () and the interaction strength (V). The other
parameters are: L = 16, a = 1.0.

diagonal and micro-canonical ensembles. In the ergodic phase,
the long time limit of the expectation value of the observable is
in agreement with that predicted by both the diagonal ensem-
ble and the micro-canonical ensemble, which in turn implies
thermalization and the validity of ETH in this phase. On the
other hand, in the MBL phase the saturation value is the same
as predicted by the diagonal ensemble but it differs from the
micro-canonical ensemble result suggesting the lack of ther-
malization in the MBL phase. To study the difference between
the diagonal and micro-canonical ensemble results, we define
the following normalized difference:

|NpE — Nyl
| Nn|

where Npg and Ny are the expectation values of the observ-
able @, calculated from the diagonal ensemble and micro-
canonical ensemble respectively. The inset shows the nor-
malized difference AN (equation (11)) as a function of
electric field strength for the same initial state. The value
is close to zero in the non-integrable ergodic phase while
a finite difference is obtained in the non-integrable MBL
phase.

AN = , (11)

4.3. Variation of interaction strength

The nature of the phase obtained also depends on the interac-
tion strength. Figure 6 shows the surface plot of the average
level spacing as a function of both field strength and interac-
tion strength for a fixed value of the curvature term (o = 1.0).
It can be seen that on increasing the interaction strength, the
ergodic region extends, thus we expect the equivalence of the
entanglement entropy and the thermodynamic entropy to hold
in this extended region.

5. Summary and conclusions

To summarize, we test the validity of ETH in an interacting
system subjected to a static electric field. For small electric
field strength this model shows ergodic behavior while for suf-
ficiently strong electric field it exhibits MBL. In the limit of
zero electric field and curvature strength, the model is inte-
grable. We find that in the ergodic phase, the entanglement

entropy of the states following a volume law of scaling matches
with the corresponding thermodynamic entropy thus satisfy-
ing the ETH criterion, while in the MBL phase, the entan-
glement entropy fluctuates wildly from eigenstate to eigen-
state, and also differs from the thermodynamic entropy. Since
the MBL phase possesses low entanglement, a clear distinc-
tion is obtained between the integrable and the MBL phase
from the point of view of the ETH. As reported earlier [26],
a striking distinction between integrable and non-integrable
systems is the presence of large eigenstate-to-eigenstate fluc-
tuations in the expectation value of any observable in the
integrable case. In support of the argument that the MBL
phase is similar to integrable systems, we find that indeed,
the MBL phase is also characterized by large flucutations in
entanglement entropy across adjacent eigenstates. However,
in contrast to the integrable phase, the magnitude of entan-
glement is significantly lower in the MBL phase. Moreover,
the difference between the average entropy and the thermo-
dynamic entropy increases on going deep into the localized
phase.

We further verify the above arguments from a dynami-
cal perspective by studying the dynamics of average number
of particles in the subsystem starting from a charge density
wave type of initial state. We find that in the ergodic phase
the saturation value obtained from the dynamics, the result
predicted by the diagonal ensemble as well as the micro-
canonical ensemble result match with each other, implying
that the system thermalizes in the long time limit. In the
MBL phase on the other hand, the saturation value matches
with the result predicted by the diagonal ensemble, but dif-
fers from that predicted by the micro-canonical ensemble.
This signifies the lack of thermalization or ETH in the MBL
phase.
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Appendix A. Scaling of entanglement entropy and
thermodynamic entropy

In this appendix, we show the scaling of entanglement entropy
and thermodynamic entropy of two random states from the
middle of the spectrum as a function of subsystem size. In the
ergodic phase (F' = 0.2), both the entropies match with each
other and follow a volume law scaling, while in the MBL phase
(F = 3.0), only the thermodynamic entropy shows a volume
law scaling (figure Al).
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Figure A1. The scaling of entanglement entropy and thermodynamic entropy as a function of subsystem size for two different eigenvectors
in the middle of the spectrum (randomly choosen to be states with eigen-indices k = 4000, and k = 6000 respectively). In the ergodic phase
(F = 0.2), both follow volume law scaling (left). The thermodynamic entropy is shifted by an amount 0.5 to make it distinguishable. In the
MBL phase (F = 3.0), only the thermodynamic entropy shows a volume law scaling (right). The other parameters are: L = 16, = 1.0 and

V=1.0.
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