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Abstract
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Invariably, time-reversal symmetry (TRS) violation in a state of matter is identified with static
magnetism in it. Here, a directional scalar spin chiral order (DSSCO) phase is introduced that
disobeys this basic principle: it breaks TRS but has no density of static moments. It can be
obtained by melting the spin moments in a magnetically ordered phase but retaining residual
broken TRS. Orbital moments are then precluded by the spatial symmetries of the spin
rotation symmetric state. It is allowed in one, two and three dimensions under different
conditions of temperature and disorder. Recently, polar Kerr effect experiments in the
mysterious pseudogap phase of the underdoped cuprates hinted at a strange form of broken
TRS below a temperature Tk, that exhibits a hysteretic ‘memory effect” above Tk and begs
reconciliation with nuclear magnetic resonance (which sees no moments), x-ray diffraction
(which finds charge ordering tendencies) and the Nernst effect (which detects nematicity).
Remarkably, the DSSCO provides a phenomenological route for reconciling all these
observations, and it is conceivable that it onsets at the pseudogap temperature ~ 7. A
six-spin interaction mediated by enhanced fluctuations of velocity asymmetry between left-
and right-movers above the onset of charge ordering in the cuprates is proposed as the driving
force behind DSSCO formation. A testable prediction of the existence of the DSSCO in the
cuprates is a Kerr signal above Tk triggered and trainable by a current driven along one of the

in-plane axes, but not by a current along the other.
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1. Introduction

A quantum phase of matter that spontaneously breaks time-
reversal symmetry (TRS) invariably develops a finite density
of moments. In other words, there exists a set of total angular
momentum operators {J;} such that (G| _.J;|G) is extensive
in its ground state|G). Common examples contain local spin
moments, such as ferromagnets, spin density waves and other
spin textures. More complex ones include orbital moments,
such as loop current phases [1, 2], anomalous Hall states [3,
4], and various chiral topological phases [5—14]. A property
common to all these phases is that TRS is restored as soon as
the moments melt. Thus, the phrases ‘spontaneous violation
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of TRS’ and the ‘formation of local moments’ are often used
interchangeably. Strictly speaking, though, this synonymy is
incorrect because TRS-violation refers to the inequivalence of
forward and backward propagation in time without affecting
spatial symmetries while local moments also disobey spatial
symmetries. A natural question that follows is, can we find
a phase of matter that violates TRS but has no moments?
Such a phase could be pertinent to a long-standing problem
in condensed matter physics—the pseudogap phase of the
cuprate high temperature superconductors—which exhibits a
Kerr effect [15-18], indicating broken TRS, but shows no
signs of magnetism in nuclear magnetic resonance (NMR)
experiments [19].
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In this work, precisely such a phase of matter is intro-
duced, called the directional scalar spin chiral spin order
(DSSCO). The DSSCO can be thought of as a state in
which classical magnetic order has melted due to quantum,
thermal or disorder-driven fluctuations—so spin moments
vanish—but TRS-breaking has survived. Moreover, orbital
moments involving itinerant particles, if any, are forbidden
by the symmetries of the DSSCO. It is captured by an order
parameter of the form y ~ (S; - S, x S3), where Sy, S, and S;
are spins on three sites in a straight line. Thus, it is reminiscent
of some other phases that involve spin chirality, such as those
studied in references [20, 21]. The key difference is that the
chirally correlated spins there lie on the vertices of a triangle.
Hence, they break enough symmetries to permit a moment per-
pendicular to its face, even if the moment on each site vanishes.
In contrast, the corresponding sites in a DSSCO are collinear,
so no such current is possible. The precise conditions in which
the DSSCO can form depends sensitively on the dimensional-
ity of space. In particular, it can exist in one dimension (1D)
at zero temperature (7 = 0) in clean systems, in 2D at 7 # 0
in clean systems, and in 3D at both 7= 0 and T # 0 only in
the presence of weak random field disorder. The 3D DSSCO
respects spin rotation symmetry (SRS) is respected only on
averaging over disorder configurations, and is the one most
relevant to the cuprates. Nonetheless, the term DSSCO will
be used to denote all the phases based on chiral spin ordering
along a preferred direction that break TRS but lack a density
of moments.

One of the most enigmatic phases known in condensed
matter is the pseudogap phase of the underdoped cuprates.
Recently, Kerr effect measurements in this phase showed a
signal below a certain temperature dubbed 7k [15, 18, 22, 23],
strongly suggesting that TRS is broken below it [24, 25]. How-
ever, the symmetries of the phase are distinct from that of an
ordinary magnet. Moreover, NMR Knight shifts—usually an
excellent probe of magnetic order—have not found any mag-
netic moments till date [19]. We will see that the Kerr effect
in the DSSCO in a clever experimental setup has precisely the
same symmetries as that in the cuprates, while the Knight shifts
vanish identically. Remarkably, a different scenario in a tra-
ditional setup permits a route for reconciling several baffling
behaviors experimentally observed in the cuprates: (i) C4 sym-
metry breaking above Tk [26] but below the pseudogap tem-
perature 7™, (ii) coincident onsets of the Kerr effect and charge
ordering tendencies [27-29], (iii) magnetic moments possi-
bly undetectable by NMR [30], and (iv) a hysteretic ‘memory
effect’ on heating beyond Tk [15]. Moreover, we will show that
a particular charge-spin interaction that is likely to be large in
the cuprates can induce the DSSCO. The DSSCO, however,
does not explain the magnetism predicted by neutron scattering
[31-35]. Nonetheless, the phenomenology is rather appealing
as it can capture many different experiments in the cuprates.

2. Directional scalar spin chiral order

Let us first sketch the 1D version of the DSSCO. Consider an
ordering of classical (large ) spins along a chain as shown in
figure 1(a). Here, spins on successive sites are frozen in the

pattern S,.5,S.5,S,S; . . .. Such a pattern of magnetic moments
obviously violates TRS and SRS; in addition, it also breaks all
reflection symmetries. A potential order parameter for it is the
pseudoscalar

1 1
X= 7Y (S 1S x S+ 1) = > () (1)

X X

where L is the chain length. Clearly, x is an Ising order parame-
ter that distinguishes between right-handed (S.S,S.S,S,S; .. .)
and left-handed (S.S,S,5.S,S; . . .) sequences of spins. These
sequences transform into each other under time-reversal
(S — —S) or inversion (x — —x). However, x is invariant
under reflection about any plane containing the chain as well
as under a global rotation of all the spins, so it does not fully
capture the classical order. Let us assume that figure 1(a)
depicts the ground state of a classical, local spin Hamilto-
nian that preserves TRS and SRS and has no disorder. If the
spins were quantum objects instead, fluctuations would imme-
diately restore SRS according to the Mermin—Wagner theorem
[36]. In contrast, TRS and reflection symmetry are discrete
and can hence, remain broken. A closer inspection reveals that
the resultant state breaks TRS and inversion symmetry, but
is invariant under translation and spin rotation. Therefore, it
is faithfully captured by the order parameter x. This state is
defined as the (1D version of) the DSSCO.

How can the DSSCO be extended to higher dimensions?
In 2D, SRS can remain broken at zero temperature (7' = 0),
but is restored by thermal fluctuations at any T # 0 accord-
ing to the Mermin—Wagner theorem. Thus, the 2D DSSCO
is a finite temperature phase and not a true quantum ground
state. A straightforward way to obtain it is to couple identical
chains ferromagnetically in the transverse directions, as shown
in figure 1(b). Both the 1D and the 2D DSSCO are unstable
to infinitesimal random field disorder: Hgs = Z h(r) - S(r),
h(r) = 0, h,(r)h,(x') = h*5,4,0(r —¥’), |h| < all other cou-
pling constants and the overline denotes a configuration aver-
age, because x is an Ising order parameter and d = 2 is the
lower critical dimension of the random field Ising model [37].
In contrast, such disorder is a prerequisite for the 3D general-
ization of the DSSCO. This is because, thermal fluctuations
cannot restore continuous symmetries in 3D, but quenched
weak random fields do, according to the Imry—Ma theorem
[38]. Analogous ideas were discussed recently in the con-
text of incommensurate charge density waves (CDWs), that
break continuous translational and discrete rotational symme-
tries, in the pseudogap phase of the cuprates. The analog of
the DSSCO there was a vestigial nematic phase, in which
chemical potential disorder acts as a random field for charge
density and restores translational symmetry while rotational
symmetry remains broken [39]. The transition temperature for
the phase is finite, so the 3D DSSCO is a quantum ground
state as well as a T # 0 phase. The d-dimensional version of
the DSSCO is thus naturally captured by the generalization
of (1):

1 — D= LSy
Xa =77 S0 =%80) xS +%) = > (X))
©)
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(a)
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Figure 1. Classical magnetic orders which form the DSSCO upon melting in 1D (a) and 2D (b). Stacking identical 2D layers gives the

precursor to the 3D version of the DSSCO.

Table 1. Dimensions in which the DSSCO can exist under various
conditions. 7 is temperature and ‘dirty’ refers to weak random field
disorder.

T=0 T#0
Clean 1D 2D
Dirty 3D 3D

Table 2. Symmetry properties of the DSSCO, chiral-ordered along
X, in various mirror-symmetry breaking fields. M; denotes i — —i
reflection and R? denotes 7 rotation about the i axis. The CDW is
assumed to respect (break) Rf (M, ). Ok is the Kerr angle for
reflection off an xy-surface at normal incidence, and KS denotes the
NMR Knight shift.

TRS M, My, M, R> R? R* 0x KS

z X y
DSSCO only x x v v v x x =0 =0
DSSCO + j, x x v v v x x =0 =0
DSSCO + j X X X v x x x #0 #0
DSSCO+CDW x x x x Vv x x #0 #0

Xa obeys all the symmetries of the underlying lattice except
x — —x reflection. It is easy to check that translation and
reflections symmetries of the lattice prevent equilibrium cur-
rent loops. Therefore, the DSSCO lacks bulk orbital currents as
well as spin moments and consequently, lacks a density of total
angular momentum expectation values. The existence condi-
tions of the DSSCO in various dimensions are summarized in
table 1, and its symmetries in 3D are listed later in table 2.
Section 4 contains a simple toy model that is likely to realize
this phase as its ground state.

3. Experimental detection of the DSSCO

Most experiments that probe static TRS breaking, such as
NMR and elastic neutron scattering, explicitly measure local
moments, so they cannot see the DSSCO. What experiments
can?

As discussed earlier, spin moments are forbidden in the
DSSCO by fundamental properties of continuous symmetries,
while mirror symmetries preclude orbital moments involving
other mobile degrees of freedom such as itinerant electrons, if
present. Unlike spin moments, though, orbital moments only
disobey discrete symmetries of the underlying lattice (in addi-
tion to TRS). Thus, if sufficient mirror symmetries are broken,

for instance, by applying a suitable electric field or driving
a current through the system, current loops will generically
form in the system which can then be picked up by stan-
dard probes of magnetic order. Explicitly, a straightforward
symmetry analysis shows that the electromagnetic response
Lagrangian of the DSSCO contains a term Lep ~ Q -(E x B)
upto coupling constants, where Q o< y is the chiral order-
ing direction, so an external electric field induces a magnetic
response. Thus, a sharp signature of a DSSCO in 2D and 3D
will be the appearance of local moments in the presence of
electric fields or currents.

In 3D, another common experiment can sense the DSSCO
without any other fields for destroying mirror symmetries,
namely, the polar Kerr effect: the rotation of the plane of
polarization of normally incident linearly polarized light upon
reflection. This effect requires vertical mirror symmetries to
be absent and, as long as linear response theory applies, also
needs broken TRS [24, 25, 40]. In addition, either vertical
reflections or time reversal combined with horizontal transla-
tions must not be symmetry operations either. Usually, these
demands are met by bulk ferromagnetic moments perpendic-
ular to the reflection surface. In such systems, the sign of the
effect can be trained by a magnetic field and reverses upon
flipping the sample. In contrast, the DSSCO satisfies these
conditions if the experiment is performed on a low symmetry
surface, such as the (0kl), k # [ surface of a cubic lattice with
chiral ordering of the spins along x. The effect originates from
a net magnetic moment on the surface, whose sign is deter-
mined by the bulk order parameter and the details of the surface
termination'. Thus, it cannot be trained by a magnetic field,
and has the same sign on opposite surfaces if the terminations
are similar. Therefore, it is strikingly different from the Kerr
effect in most other systems.

In 1D, alternate ideas are needed to detect the DSSCO
because current loops are impossible and Kerr experiments are
inapplicable. On the other hand, the excitation spectrum con-
tains gapped states corresponding to domain walls of x, similar
to the domain walls in an Ising antiferromagnet, which are
deconfined only in the 1D [41]. A standard technique for prob-
ing magnetic domain walls is via inelastic neutron scattering.
Neutron spin couples linearly to electron spin, so it creates a
fluctuation in the magnetization (magnon) when it scatters off

I'Note that the appearance of surface moments does not contradict any of the
previous statements about a vanishing density of moments if the sample is
thermodynamically thick.
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a 1D Ising antiferromagnet. The magnon in turn decays into
a pair of domain walls, which leads to the neutron structure
factor exhibiting a characteristic ‘2-particle continuum’ rather
than sharply defined magnon quasiparticles [42, 43]. Similarly,
x has the same symmetries as an ordinary current and cou-
ples linearly to it, so electron diffraction off a 1D DSSCO
should show analogous signatures of domain walls in x. The
details of the experiment, though, are beyond the scope of this
work.

4. Candidate Hamiltonians

For integer spins per unit cell, the Lieb—Schultz—Mattis
theorem places no constraints on the ground state and it is
generically gapped. The gap guarantees short range entan-
glement [44] and therefore amenability to description as a
matrix product state. Equivalently, it can be obtained in prin-
ciple from an Affleck—Kennedy-Lieb—Tasaki type Hamilto-
nian, which consists of a sum of projection operators onto
various spin channels acting on auxiliary spins [45]. However,
it is easier and more illuminating to write a classical Hamil-
tonian that could yield the DSSCO for quantum spins, e.g.,
HID = Hbi + HfH’ where

Hy;

2
D KDY [8() - Sx+ ) 3)
i=1 X
Hy = —J> 8(x)-S(x+3) (4)

represent biquadratic and ferromagnetic interactions along the
chain, respectively, with Kj»,J; > 0. While ferromagnetic
interactions are pervasive in condensed matter literature, repul-
sive biquadratic interactions have been closely studied in the-
ory and experiment in the context of the bilinear—biquadratic
model [46—48]. If the spins are classical (large S), Hy; mutually
orthogonalizes every set of three consecutive spins along x, and
Hy) ensures that this arrangement repeats along the chain, thus
giving rise to the pattern shown in figure 1(a). For small S,
but > 1/2, quantum fluctuations partially melt the order and
yield the DSSCO. Indeed, recent work involving the author
proved the existence of the DSSCO numerically in a spin-1
chain in model related to Hp [49]. In accordance with the
Lieb—Schultz—Mattis theorem, the ground state is expected
to be gapped for general integer spins and gapless for half-
integer spins. Remarkably, the DSSCO would survive the gap-
less excitations. This is because it is an Ising order that is
invariant under spin rotations whereas the gapless excitations
can be viewed as space- and time-dependent rotations of the
spins.

IfS =1/2, [Sr) - S(r’)]2 = const. — S(r) - S(r’)/2 and the
biquadratic term reduces to exchange; hence, the above proce-
dure does not work and one is forced to start with a Hamilto-
nian with a six-spin interaction —g(x — x')x(x)x(x’) to induce
the DSSCO. For example, the modified S = 1/2 Heisenberg
model

Hip = JS()-Skx+ 1) — glx — X)x(x)  (5)

is expected to have a DSSCO ground state either when
g(x —x') is long-ranged or when g(x —x’) is short-ranged
but > J.

In d-dimensions, the discussion before (2) implies that
the corresponding Hamiltonian for § > 1/2 is Hyp = Hyi +
I:IfH + Hf, + Hgs, where

Hy = 22: K> [Sm) - S@r + %)) (6)
i=1 r
Hyp = —J)>_S@r)-S(r+3%) (7
Hip ==Y Jiay S(r)-S(r+4) ®)
OVW in 1D and 2D
Hgis = Z h(r)-S(r) in 3D €)

with J |, > 0 guaranteeing that the spin pattern is identi-
cal on all x-directed chains. The appropriate Hamiltonian for
S = 1/2 is obtained simply by replacing Hy; and Hy by H, /2,
trivially generalized to d-dimensions:

Hyjp = JS@)-S(r+%) — g(r = ¥)x(x(x)  (10)

In the next section, we will elaborate on the phenomeno-
logical connection between the cuprates and the DSSCO
and describe how (10) naturally arises in their pseudogap
phase.

5. Application to the cuprates

Recently, several families of the underdoped cuprates have
been found to exhibit a small polar Kerr effect in the pseudogap
phase below a temperature Tk [15, 18, 22, 23]. Assuming lin-
ear response, the effect indicates broken TRS below Tk [24,
25]. Unlike the effect in ferromagnets and superconducting
vortices, but like that in the DSSCO as discussed earlier, its
sign cannot be trained by a magnetic field and is the same on
opposite surfaces of the sample. These observations imply that
the effect does not stem from ordinary ferromagnetic moments
normal to the copper oxide planes. NMR experiments support
this interpretation, as Knight shift measurements below Tx
have set an upper bound on the size of local magnetic moments
that is two orders of magnitude lower than that expected from
some current proposals of TRS breaking phases [1, 2]. To
complicate matters further, the sign of the effect also shows
a ‘memory effect’, i.e., it is unchanged on heating to temper-
atures well above Tk and cooling back, indicating that some
kind of order exists above Tx but does not produce a Kerr
effect [15]. Nernst effect data support this hypothesis, as they
see the C4 symmetry of the copper-oxide plane broken down
to C, above Tk, but below the pseudogap temperature 7*. Var-
ious x-ray scattering experiments have detected the onset of
incommensurate CDWs at Tx [27-29], which suggests that
the phase that forms above Tk breaks only some of the symme-
tries needed to produce a Kerr effect; the rest are broken by the
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CDW. Finally, transmission experiments on thin films indicate
that the symmetries that are broken by the CDW are vertical
reflections [50]. Below, a phenomenological (but not micro-
scopic) picture involving the DSSCO is presented in which
all the above experimental features can be accommodated and
which thus, may be relevant to the cuprates.

Suppose the DSSCO forms at a high temperature Tp > Tx
with chiral ordering along x, one of the in-plane crystal axes.
Since the cuprates are technically 3D, the formation of the
DSSCO would naively require random fields according to
table 1, which are unlikely to be present in these materials.
However, the interlayer couplings are weak in the cuprates,
and simply 7" > 0 could suffice for practical purposes. In either
case, C4 symmetry about the z-axis is then broken down to
C,, which would give rise to an anisotropic Nernst effect.
However, mirror symmetries about the xy and xz planes, and
the absence of static magnetic moments, will suppress a Kerr
effect and a Knight shift, respectively. Next, suppose incom-
mensurate CDWs that break all mirror symmetries but respect
twofold rotation symmetry about the x or y axis onset at 7.
Such charge orders were discussed recently [51, 52]. Below
Tk, a Kerr signal is allowed by symmetry for reflection off
the xy plane, and is likely to be small because it relies on the
formation of two orders—the DSSCO and the CDW. More-
over, it cannot be trained by a magnetic field and is invari-
ant under flipping the sample. This scenario involving two
phase transitions can also capture the memory effect. Specifi-
cally, the pattern of mirror symmetry breaking by the CDW is
likely determined by lattice defects. These are extremely sta-
ble below the melting temperature of the solid, so the sign of
the Kerr effect will be the same as long as the T < Tp. This
scenario requires Tp 2 300K in underdoped YBa,CuzOg 5, the
temperature upto which the memory effect has been seen [15].
This is somewhat higher than the temperature below which
the Nernst effect saw C, symmetry breaking, 7% ~ 200-250K
[26], but is still within some error bars, so it is not unreason-
able to suppose Tp ~ T*. Below Tk, broken TRS and mirror
symmetry allow magnetic moments to form. However, these
moments will be small, possibly smaller than the NMR res-
olution, because they depend on two orders. A simple test
of the above picture would be a Kerr signal between Tx and
Tp triggered by a current along one of the in-plane axes, but
not along the other (see figure 2(b)). The signal, moreover,
will flip on reversing the current. Table 2 summarizes these
symmetry properties and figure 2(a) shows a plausible phase
diagram.

Equation (10) is likely to naturally arise in the pseudogap
phase as follows. Firstly, nearest-neighbor antiferromagnetic
exchange, J, is well-known to be present in these materials.
Secondly, at T 2, Tk, before the onset of the incommensu-
rate CDW, fluctuations that break reflection symmetries are
expected to be strong. In particular, consider the velocity asym-
metry Aw,(r) which captures the difference in the velocities
of left-movers and right-movers in the x-direction. Av,(r) is
odd under M, and TRS and (Awv,(r)) # 0 in the incommensu-
rate CDW phase since TRS is already broken by the DSSCO.
Denoting the correlation length which quantifies fluctuations

Incident light

disordered

mag.
order

field disorder
(a) (b)

Figure 2. (a) Schematic phase diagram that may be relevant to the
cuprates. The DSSCO forms at 71 and coexists with charge order
below Tk, the Kerr onset temperature. 7p may be ~ T*; see text for
details. At zero disorder, it is not known a priori whether Tk is
higher or lower than the magnetic ordering temperature. (b)
Experimental setup for probing the DSSCO. For chiral ordering
along x, j,(j) would (would not) produce a Kerr effect for reflection
off the xy-surface.

of Av, by &,,, we have (Av,(0)Av(r)) ~ e "/ or equiva-
lently, (Av(@)Av(—q)) ~ 1/(¢* + &, ). Now, an interaction
term allowed by symmetry is

Hes =Ny Avy(n) [Sr—%) - S() x Sr+%)] (1)

Integrating out Av, fluctuations produces the effective six-spin
interaction in (10) with

d2q eiq~r

2
= )\*Ko(”/&;x)

~ N2 S
g(r) P 2

12)

where K, denotes the zeroth modified Bessel function of the
second kind, which diverges as r/&,, — 0 and decays as e "/Gu
for r > &, . Since &, grows and eventually diverges as one
approaches the CDW transition, the range of the six-spin inter-
action grows too, thereby stabilizing the DSSCO. In short, the
DSSCO enables Aw,-fluctuations above an M,-breaking tran-
sition by breaking TRS as well, and the fluctuations return the
favor by producing an interaction that stabilizes the DSSCO.

6. Conclusions

In summary, we have proposed the DSSCO as a novel phase
of matter that violates TRS but has no density of moments,
unlike other TRS-breaking phases known in condensed matter.
It appears when a scalar chiral order of spins partially melts,
leaving behind residual broken TRS but unbroken continuous
SRS. The DSSCO is allowed by the basic rules of quantum
mechanics, and we have proposed candidate parent Hamilto-
nians. Whether the ground state of these Hamiltonians is the
DSSCO is a crucial but challenging question that is beyond the
scope of the current work.

The DSSCO also has crucial implications for cuprate
phenomenology. A phenomenological picture, in which the
DSSCO coexists with a CDW, can be argued to have many
of the features found in Kerr effect, Knight shift, x-ray diffrac-
tion and Nernst effect experiments in the pseudogap phase of
the underdoped cuprates, and can be tested by looking for a
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Kerr signal above Tx on driving a suitable current through
the system. We have also argued that the DSSCO results in
the cuprates from an effective six-spin interaction mediated
by enhanced fluctuations in the velocity asymmetry above the
CDW onset. These fluctuations are expected to be enhanced in
the region above the mirror-symmetry-breaking transition into
the incommensurate CDW. This, in turn, stabilizes the DSSCO
in these materials.
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