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Abstract
Transport of electrons at high electric fields is investigated in intrinsic three-dimensional Dirac
semimetal cadmium arsenide, considering the scattering of electrons from acoustic and optical
phonons. Screening and hot phonon effect are taken in to account. Expressions for the hot
electron mobility μ and power loss P are obtained as a function of electron temperature Te.
The dependence of drift velocity vd on electric field E and electron density ne has been studied.
Hot phonon effect is found to set in the saturation of vd at relatively low E and to significantly
degrade its magnitude. The drift velocity is found to saturate at a value vds ∼ 107 cm s−1 and it
is weakly dependent on ne. A large saturation current density ∼ 106 A cm−2 is
predicted.

Keywords: three-dimensional Dirac semimetal, electron–phonon interaction, drift velocity and
current density saturation

1. Introduction

Three-dimensional Dirac semimetal (3DDS) cadmium
arsenide, a 3D analog of graphene, is one of the most emer-
gent class of materials in current condensed matter physics
(for review see references [1, 2]). Interest in the study of
electronic properties of 3DDS cadmium arsenide (Cd3As2)
was initiated by its theoretical prediction [3], and experimental
realization [4–8]. The linear band dispersion with gapless
feature has led massless Dirac fermions in this material to
exhibit many unusual transport phenomena such as quantum
oscillations [9, 10], ultrahigh mobility [8, 10, 11] and giant
magnetoresistance [8, 11, 12]. Moreover, recently quantum
Hall effect has been observed in films of Dirac semimetal
Cd3As2 [13, 14].

Very large mobilities > ∼107 cm2 V−1 s−1 have been
reported in 3DDS Cd3As2 at low-temperature ∼ 5 K [8, 10].
Resistivity measurements as a function of temperature T have
shown metallic behavior with the residual resistivity as low as
11.6 nΩ cm at T < 6 K [10]. Such ultra-large (small) mobilities
(resistivities) are attributed to the suppressed back scattering
of high-velocity massless Dirac fermions. In a sample with

impurities, the residual mobility has been found to be
∼2 × 105 cm2 V−1 s−1 at T ∼ 2.6 K and it decreases
with increasing temperature, reaching finally a value of
∼2 × 104 cm2 V−1 s−1 at room temperature [15]. Some recent
experiments have also shown room temperature mobility
> ∼104 cm2 V−1 s−1 [16, 17]. In addition, in 3DDS Cd3As2,
the electron density ne is ultra-large (∼1018 to 1020 cm−3)
[7, 15, 18, 19], exceeding the electron densities in traditional
semiconductors. The behavior of temperature dependence of
the resistivity/mobility was inferred to be due to the impurity
scattering at low-temperature and phonon scattering at higher
temperature.

There have been a few theoretical investigations of the
transport properties in 3DDS Cd3As2, that consider the scat-
tering by short-range disorder and charged impurities, using
the Boltzmann transport equation [20, 21]. Very recently,
we have given a theory of the phonon-limited mobility of
high density Dirac fermions in 3DDS Cd3As2 considering
the electron scattering by acoustic and optical phonons in the
quasi-elastic approximation [22]. Experimental results of the
mobility have been quantitatively explained by applying this
theory.
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The above mentioned transport studies have been made in
the low electric field. In the high electric field, hot electron
cooling as a function of electron temperature has been theo-
retically investigated [23–25]. However, there have been no
reports, either experimentally or theoretically, giving the elec-
tron drift velocity vd dependence of electric field E in the high
field region where vd tends to saturate. In the Drude model, the
current density is given by j = neevd. Realization and control
of saturation drift velocity vds/current density js is an impor-
tant design measure for the device applications of field effect
transistors (FETs) at high electric field. FETs for analog and
radiofrequency (RF) applications ideally operate in the satura-
tion limit. By virtue of the excellent carrier mobility at room
temperature and large ne, the 3DDS Cd3As2 is expected to give
rise to a large saturation current density. Thus, Cd3As2 can be
considered as a potential candidate in high efficiency RF and
analog devices.

Very recently, the two-dimensional Dirac fermions have
been realized in films of Cd3As2 [13, 26, 27]. FETs using
Cd3As2 film of thickness 30 nm as the channel material are
demonstrated [27]. These FETs have shown extremely high
current densities and low contact resistances and are very
promising for future high-speed electronics and RF applica-
tions.

In view of the above observations, an understanding of the
velocity-field characteristics in 3DDS Cd3As2 is very essen-
tial. These characteristics have been extensively studied in
bulk semiconductors [28–30], low-dimensional semiconduc-
tors [31] and graphene [32–37]. In the present work we have
conducted a study of drift velocity and current density behav-
ior as a function of electric field and electron density in
3DDS Cd3As2. The hot electron mobility and energy balance
equations are employed to explore this behavior. Since the
nearly intrinsic samples have been realized for T > ∼5 K
[8, 10], we have considered phonons as the only scattering
channel.

The theory of hot electron intrinsic mobility is developed
for the first time in 3DDS by including the hot phonon effect
and screening. It is presented, along with the hot electron
power loss equations, in section 2. Using these equations, the
velocity-field curves are obtained by numerical solution. The
results and discussion are presented in section 3. Finally, our
findings are summarised in section 4.

2. Analytical model for high field transport in
three-dimensional Dirac semimetal

We consider Dirac fermions in a disorder free 3DDS Cd3As2

with a large electron density so that the Fermi energy EF

is well above the Dirac points. The electron energy disper-
sion is linear, i.e., Ek = �vFk, and the density of states is
D(Ek) = gEk

2/[2π2(�vF)3], where vF is the Fermi velocity, k is
the 3D wave vector, and g= gsgv, with gs (gv) denoting the spin
(valley) degeneracy of the electron. We assume that the elec-
tronic dispersion is isotropic [4, 21–23], although it has been
found by some authors to be anisotropic [3, 7, 8]. In an applied
electric field E, electrons gain energy and momentum, and,
in the steady state, they establish their electron temperature

Te (>T, the lattice temperature) and drift velocity vd, by los-
ing extra energy and momentum to the lattice (phonons). The
electrons are assumed to obey the hot-electron Fermi–Dirac
(F–D) distribution f o(Ek) = {exp[(Ek − EF)/kBTe] + 1}−1.
The three parameters Te, vd and the hot electron mobility
μ = vd/E give a full description of the 3D Dirac electrons in
non-equilibrium.

We assume that electrons interact with the intrinsic acous-
tic phonons (ap) and optical phonons (op). Since we consider a
Cd3As2 with large ne ∼ (1018 to 1020 cm−3), the electron scat-
tering by both ap and op is assumed to be quasi-elastic, noting
that the optical phonon energy ∼ 25 meV [38] is considerably
smaller than the EF. Hence, we can obtain the phonon-limited
hot electron intrinsic mobilityμ using the semi-classical Boltz-
mann transport equation solved in the relaxation time approx-
imation. The mobility, thus obtained, will be a function of Te.
In the steady state, the energy balance equation is given by
eEvd = P, where eEvd is the power gained by electron from
the field E and P = 〈dEk/dt〉el–ph is the power loss per electron
to the lattice by electron–phonon (el–ph) interaction. P can be
calculated by the standard technique [25, 28] and it is a func-
tion of Te. Combining the equation for drift velocity vd = μE
and eEvd = P, an expression relating Te to E can be obtained.
Hence, vd vs E curves are deduced.

2.1. Phonon-limited hot electron mobility μ

From the Boltzmann transport equation technique, using the
relaxation time approximation, an expression for the mobility
is given by [22]

μi = σi/nee, (1)

with electrical conductivity σi = e2K0i, where

K0i =
v2

F

3

∫
dEkD(Ek)τi(Ek)

(
−∂ fo(Ek)

∂Ek

)
, (1a)

and i = ap and op. For EF � kBTe, expression for the mobility
takes the simple form μi = [evF

2D(EF)τ i(EF)]/3ne.
Considering the electron interaction with the intrinsic

phonons of energy �ωq and wave vector q, the energy-
dependent hot electron momentum relaxation time τ (Ek) for
the scattering due to phonons, following reference [22], is
shown to be

1
τ (Ek)

=

(
V

2π�(�vF)3

)
[1 − fo(Ek)]−1

∫ π

0
dθ (1 − cos θ)]

× sin θ
|C(q)|2

ε2(q)

{
Nq

(
Ek +�ωq

)2 [
1− fo

(
Ek +�ωq

)]
+

(
Nq + 1

) (
Ek −�ωq

)2 [
1− fo(Ek − �ωq)

]
θ(x)

}
,

(2)

where V is the volume of the crystal, θ is the angle between the
initial state k and final state k′,|C(q)|2 is the electron–phonon
matrix element, ε(q) is the screening function, Nq is the
phonon distribution function, and θ(x) is the step function
with x = (Ek − �ωq). We take the temperature independent
screening function ε(q) = [1 + (qTF/q)2] in the Thomas–Fermi
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approximation, where qTF = [4πe2D(EF)/εs]1/2 is the
Thomas–Fermi wave vector [21]. This is valid for Te � TF,
where TF is the Fermi temperature. In the following, we
obtain the hot electron momentum relaxation time due to the
scattering by acoustic and optical phonons.

2.1.1. Hot electron momentum relaxation time due to acous-
tic phonon scattering. The electron scattering by the lon-
gitudinal acoustic phonons is taken to be via deformation
potential coupling. The corresponding interaction matrix ele-
ment is given by |C(q)|2 = [(D2

�ωq)/(2ρmVvs
2)](1 + cos θ)/2

[21, 23], where D is the acoustic deformation potential con-
stant, ρm is the mass density, ωq = vsq, and vs is the veloc-
ity of acoustic phonon. Assuming the acoustic phonons to be
in thermal equilibrium with the lattice, Nq is given by the
Bose distribution Nq(T) = {exp[(�ωq)/kBT] − 1}−1 at lat-
tice temperature T. Using the quasi-elastic approximation, the
relaxation time τ ap(Ek) for the acoustic phonon scattering is
given by

1
τap(Ek)

=
D2vF

8πρmv2
s (�vs)4E2

k(kBTe)

∫ 2�vsk

0
d(�ωq)

(�ωq)5

ε2(q)

×
[

1 −
(

�ωq

Ek

)2( vF

2vs

)2
]

[Nq(T) + 1]Nq(Te)

×
{

exp

[(
�ωq

kB

)(
1
Te

− 1
T

)]
+ 1

}
. (3)

We obtain the simple analytical forms of τ ap(Ek) in spe-
cial cases of very low temperature i.e. Bloch–Grüneisen (BG)
regime, T � TBG, and high temperature i.e. equipartition (EP)
regime, T > TBG. The Bloch–Grüneisen temperature TBG

is defined by kBTBG = 2�vskF, where kF is the Fermi wave
vector.

(a) Very low temperature: in the BG regime, q → 0 as
T → 0, �ωq ≈ kBT, and �ωq � kBTe. We set k = kF

(the Fermi wave vector), Ek = EF and ε(q) ≈ (qTF/q)2.
Then, the momentum relaxation time in the BG regime is
given by

1
τap−BG(EF)

=
9!D2(hvF)

8πρmvs(�vs)5E2
F(�vsqTF)4

×
[

(kBTe)10 + (kBT)10

kBTe

]
(4a)

with screening, and

1
τap−BG(EF)

=
15D2(hvF)

πρmvs(�vs)5E2
F

[
(kBTe)6 + (kBT)6

kBTe

]
(4b)

without screening.
Thus, in 3DDS, for Te � T, we find that

τap−BG (EF) ∼ T−9
e and T−5

e , (4c)

respectively, for the screened and unscreened el–ph inter-
action. This Te dependence is same as in the conventional

degenerate 3D semiconductor [39] and it is manifes-
tation of the 3D nature of acoustic phonons, noting
that screening is taken to be independent of tempera-
ture. Correspondingly, the acoustic phonon limited BG
regime hot electron mobility gives the following Te

dependence

μap−BG ∼ T−9
e

(
T−5

e

)
, with (without) screening. (4d)

It is to be noted that for the low field case, Te = T, and
equations (4a)–(4d) reduce to those in reference [22].
We also find that ne dependence of hot electron μap-BG is
given by

μap−BG ∼ n5/3
e

(
n1/3

e

)
, with (without) screening. (4e)

It is the same as found for low field case in reference [22].
(b) High temperature: in the EP regime, �ωq � kBT, kBTe,

equation (3) simplifies to

1
τap−EP(Ek)

=
D2vF(kBT)

8πρmv2
s (�vs)4E2

k

∫ 2�vsk

0
d(�ωq)

(�ωq)3

ε2(q)

×
[

1 −
(

�ωq

Ek

)2( vF

2vs

)2
]

×
[

2 +
�ωq

kB

(
1
Te

− 1
T

)]
. (5a)

For unscreened el–ap coupling, it may be approximated
to give a simple form

1
τap−EP(Ek)

=
D2vF(kBT)E2

k

3πρmv2
s (�vs)4

(5b)

which is independent of Te. Interestingly, in the EP
regime, for Ek = EF, the τ ap-EP(EF) and the correspond-
ing mobility μap-EP are the same as in the low field case
[22]. Consequently, T and ne dependence ofμap-EP are also
same as that found for zero field case i.e.

μap−EP ∼ T−1 and n−1
e . (5c)

2.1.2. Hot electron momentum relaxation time due to opti-
cal phonon scattering. We consider the electron–polar opti-
cal phonon interaction via Fröhlich interaction and the cor-
responding matrix element is given by |C(q)|2 = (C0/q2)
(1 + cos θ)/2, where C0 = (2πe2

�ω0ε
′)/V , �ωq = �ω0 is the

optical phonon energy, ε′ = (ε∞−1 − εs
−1), and ε∞ (εs) is

the high-frequency (static) dielectric constant. In high elec-
tric field, the optical phonon distribution will deviate from its
thermal equilibrium value Nq(T) and it is given by the hot
phonon distribution function Nqhp [25]. Assuming the scatter-
ing to be quasi-elastic, the momentum relaxation time due to
optical phonons, taking account of the hot phonon effect and
screening, is found to be

3
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1
τop(Ek)

=
e2

�ω0ε
′

2�2vF

(
�ω0

kBTe

)∫ π

0
dθ sin θ

(
1 + cos θ

2

)

×

⎧⎪⎪⎨
⎪⎪⎩

Nq+ph[Nq(Te) + 1]
(
1 + (�ω0/Ek)

]
ε2(q+)

+
[Nq–ph + 1]Nq(Te)[1 −

(
�ω0/Ek ]θ(x)

ε2(q−)

⎫⎪⎪⎬
⎪⎪⎭ ,

(6)

where

q2
+ = (1/�vF)2

[
2E2

k + 2Ek�ωo + (�ωo)2

− 2Ek(Ek + �ωo) cos θ]
(6a)

and
q2
− = (1/�vF)2

[
2E2

k − 2Ek�ωo + (�ωo)2

− 2Ek(Ek − �ωo) cos θ] .
(6b)

In equation (6), Nq+ph and Nq−ph are the hot phonon distribution
functions with q= q+ and q= q−, respectively, considering the
screening of el–op interaction.

The hot electron mobility due to ap and op scattering
can be obtained by using the respective relaxation times
(i.e. equations (3) and (6)) in equation (1). The resultant
phonon-limited hot electron mobility is given by μ = [(1/μap)
+ (1/μop)]−1.

From the equation vd = μE, the momentum balance
equation can be obtained as eE = (evd/μ) = Q, where eE is the
force on an electron due to electric field E. The substitution
of phonon-limited hot electron mobility μ, on rhs, gives the
momentum loss rate Q due to phonons. Conventionally, Q is
obtained by finding the average momentum loss rate 〈d�k/dt〉
to the lattice using the displaced hot electron F–D distribution
[28, 40, 41].

2.2. Hot electron power loss P

The hot electron power loss due to the intrinsic acoustic and
optical phonons has been investigated by us in detail [24, 25].
For the of sake completeness, their final results are given here.
The power loss due to acoustic phonons, with screened el–ap
interaction, is given by

Pap = − gD2

8π3ρ�7nev4
Fv4

s

∫ ∞

0
dEk

∫ (�ωq)max

0
d(�ωq)(�ωq)3

× (Ek + �ωq)2

ε2(q)
|F(Ek, Eq)|2[Nq(Te) − Nq(T)]

× [ f0(Ek) − f0(Ek + �ωq)]. (7)

Taking account of the hot phonon effect and screening of el–op
interaction, the power loss due to optical phonons is shown
to be

Pop =
g(�ω0)2e2ε′

2π2�ne(�vF)4

∫ ∞

0
dEkEk

∫ Equ

0
dEq

|F(Ek, Eq)|2

Eqε2(q)

× [(Nqhp + 1) e−(�ω0/kBTe) − Nqhp]

× f0(Ek)[1 − f0(Ek + �ω0)] |Ek + �ω0| , (8)

where

|F(Ek, Eq)|2 = (1/2){1+ [(Ek
2 − Eq

2) + (Ek + �ω0)2]

× [2Ek(Ek + �ω0)]−1} (8a)

and Equ = (2Ek + �ω0)/2. The equation (8) is obtained from our
work [25] by combining equations (16) and (6) (in reference
[25]) and substituting for |g(q)|2 = [(2πe2

�ω0ε
′)/Vq2].The

total power loss is given by P = Pap + Pop. The energy balance
equation is obtained as eEvd = P.

It should be noted that the method adopted here to obtain vd

as a function of E is analytical, unlike other numerical methods
[29, 32, 36, 37].

3. Results and discussion

In the previous section, the expressions for the hot electron
mobility μ (hence for the drift velocity vd) and the energy
balance form the two transcendental equations. We numeri-
cally solve these coupled equations for a chosen Te to obtain
velocity-field curves for the 3DDS Cd3As2. The material
parameters used are: vF = 1 × 108 cm s−1 [21–23, 42],
vs = 2.3 × 105 cm s−1, ρm = 7.0 g cm−3, ε∞ = 12, εs = 36,
and g = 4. A reasonable value of D = 20 eV [22, 43] and a
typical value of �ω0 = 25 meV [22, 38] are chosen. Through-
out the discussion, n0 = 1 × 1018 cm−3 is used. We note
that in the nearly intrinsic experimental samples ne ∼ 1–10n0

[8, 10]. The reasonable values of hot phonon relaxation time
τ p = 1 and 5 ps are used in the demonstration. These values
of τ p are of the order which have been experimentally shown
[44] and used in theoretical calculations [37, 45] for graphene.
Also, in III–V semiconductors τ p is of the order of a few
ps [40].

In order to analyze the vd vs E characteristics, we need to
understand the Te dependence on E, because P and μ are deter-
mined by Te. A representative Te vs E behavior is depicted in
figure 1(a) for ne = n0 and 5n0, T = 4.2 K and τ p = 0 ps.
It has been found that, with increasing E, Te deviates from T
and sets increasing rapidly at about E = 0.03 (0.1) V cm−1

for ne = n0 (5n0). In this low field region electrons dissipate
their energy by emission of acoustic phonons whose energy
is much less than the electron energy and Te keeps increasing
with electric field E. For E > ∼0.2 and 0.6 V cm−1, respec-
tively, for ne = n0 and 5n0, the rate of increase of Te slows
down. This is the region where electron–optical phonon scat-
tering plays the dominant role as an energy dissipation chan-
nel. At still higher fields (E > ∼0.1 kV cm−1), even emission
of optical phonons may be less effective in limiting Te. Sim-
ilar observation is made in bulk InSb semiconductor whose
optical phonon energy is 24.4 meV [46], closer to the one con-
sidered in the present work. In addition, Te is found to have a
strong (weak) dependence on ne at low (large) E. The strong
ne dependence at low field may be attributed to the ne depen-
dence of μap and Pap. In figure 1(b), Te vs E is shown for
ne = n0 for different τ p. In the low field region, where ap scat-
tering is dominant, Te is independent of τ p. The hot phonon
effect is found to enhance Te, moderately, in the high field
region. This is because, the number of hot phonons increases

4
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Figure 1. The electron temperature Te as a function of electric field
E, at T = 4.2 K. (a) For ne = n0 and 5n0 and τ p = 0 ps and (b) for
ne = n0 and τ p = 0, 1 and 5 ps.

with increasing Te. This increased number of hot phonons can
be described by the Bose distribution Nq(Tph), with effective
hot phonon temperature Tph being T < Tph < Te. The dif-
ference Te − Tph decreases with increasing τ p, and reduces
the electron energy loss. Consequently, Te is enhanced for
larger τ p.

In figure 2, the drift velocity vd is plotted as a function of
E, at T = 4.2 K, for ne = n0 and τ p = 0, 1 and 5 ps. The
behavior is, as conventionally found, linear at very low field
and becomes sub-linear for higher field. Finally, for further
increase of E, vd saturates or tends to saturate. This behav-
ior is found to be the same for all τ p. The saturation/ near
saturation drift velocity has been found to be of the order of
107 cm s−1. It is nearly the same as found in graphene
[32, 34, 35], bulk silicon [47] and some of the 3D com-
pound semiconductors [29]. The nonlinear behavior is gen-
erally attributed to the enhanced el–ph scattering with the
increasing field. We may also explain the high field behav-
ior using the energy and momentum balance equations. These
equations imply that the drift velocity is given by P/Q. In order
to understand the saturation/near saturation of vd, we have to
know the dependence of P and Q on Te. At higher Te (i.e.
strong E), P has been found to increase rapidly with Te [25],
and hence with E. This is due to the enhanced scattering by
optical phonons at high fields. Similar behavior is expected
with Q. This rapid increase of momentum and energy loss rates
results in saturation/near saturation of vd.

Figure 2. The electron drift velocity vd as a function of electric field
E, at T = 4.2 K, for electron density ne = n0 and phonon relaxation
time τ p = 0, 1 and 5 ps.

Figure 3. The electron drift velocity vd as a function of electric field
E, at T = 4.2 K, for electron densities ne = 1, 3 and 5n0 and phonon
relaxation time τ p = 1 ps.

The hot phonon effect can be captured, in figure 2, by com-
paring the vd vs E curve of τ p = 0 ps with those of τ p = 1 and
5 ps. It is important to note that the effect of hot phonons is
two-fold. It advances the saturation of vd to occur at relatively
low field ∼102 V cm−1. In addition, the hot phonon effect
significantly degrades vds. For example, at E = 1.5 kV cm−1,
for τ p = 0, 1 and 5 ps, the vds are, respectively, found to be 5.0,
1.6 and 1.2 × 107 cm s−1. The reduction in vds is by a factor
of 3.1 (4.2) for τ p = 1 (5) ps. The degradation of vd and vds

may be attributed to the fact that the hot phonon population
increases with increasing Te [26] or E which increases scatter-
ing by phonons and results into reduction in vd and vds. It is
to be noted that the degradation of vds is also clearly seen in
graphene [37].

With a view to see the effect of electron density on satura-
tion velocity, the vd vs E curves are presented in figure 3 for
ne = n0, 3n0 and 5n0 taking τ p = 1 ps. It is found that vd is
smaller for larger ne. However, the difference in magnitude is
small.

We have examined the saturation velocity vds dependence
on ne, taken in range 1–10n0. The vds values are taken at E =
1.5 kV cm−1 for T = 4.2 K and τ p = 1 ps. The plot of vds as
a function of ne is shown in figure 4 for τ p = 1 ps. Expressing

5
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Figure 4. The electron saturation drift velocity vds as a function of
electron density ne, at T = 4.2 K and electric field E = 1.5 kV cm−1

for phonon relaxation time τ p = 1 ps.

Figure 5. The electron drift velocity vd as a function of electric field
E, at T = 4.2 K, for electron density ne = 1 and 5n0 and phonon
relaxation time τ p = 0 and 1 ps.

vds α ne
p, we obtain p = −0.2. It indicates that vds has a weak

dependence on ne. Similar observation was made in graphene
[32, 34, 36]. Moreover,we have also found that the effect of hot
phonons, in degrading vds, is smaller for larger ne (see figure 5).
For example, at E = 1.5 kV cm−1, for τ p = 1 ps, vds reduces
by a factor of about 3.1 and 2.7, respectively, for ne = n0

and 5n0.
In order to analyze the effect of lattice temperature on the

drift velocity, vd vs E is depicted in figure 6 for lattice tem-
peratures T = 4.2, 77, 150 and 300 K, with ne = n0 and
τ p = 1 ps. All the curves exhibit the same behavior. For a cho-
sen E, the vd values are smaller for larger T. It may be attributed
to the fact that, at larger T, more phonons are excited causing
more scattering and reducing the vd. At E = 1.5 kV cm−1, the
values of vds are about 1.6, 1.54, 1.38 and 1.00 × 107 cm s−1,
respectively, for T = 4.2, 77, 150 and 300 K. Besides, it is
noticed that the saturation of vd sets in at a higher field for
larger T.

The effect of screening is brought out in figure 7, by plot-
ting vd as a function of E with and without screening of el–ph
interaction. The curves are shown for ne = n0 and τ p = 1 ps
at T = 4.2 K. It is found that, screening enhances vd. This is
expected as the screening effectively reduces the strength of

Figure 6. The electron drift velocity vd as a function of electric field
E, at T = 4.2, 77, 150 and 300 K for electron density ne = n0 and
phonon relaxation time τ p = 1 ps.

Figure 7. The electron drift velocity vd as a function of electric field
E, with and without screening, at T = 4.2 K, for ne = n0 and
τ p = 1 ps.

el–ph coupling and hence the scattering of electrons. In the
saturation region, screening is found to enhance vd by about
20%.

In the following, we have discussed the current density
dependence on E and ne. In the literature [34, 35], Drude
model, j = neevd is used to study the current density. Accept-
ing this model, the behavior of j as a function of E will be
the same as that of vd vs E. Then, saturation of current density
also occurs at low fields of the order 102 V cm−1. We have esti-
mated saturation current density js using js = neevds. For ne =
1 × 1018 cm−3 and τ p = 1 ps, the vds is about 1.6× 107 cm s−1

at E = 1.5 kV cm−1. Then, at this value of E, we get a large sat-
uration current density js = 2.56× 106 A cm−2. This is about 3
orders of magnitude greater than that found in conventional 3D
semiconductors [29]. The ne dependence of js can be expressed
as js ∼ ne

p+1. With p nearly equal to −0.2, js increases almost
linearly with increasing ne. In graphene also, js has exhibited
the same electron density dependence [34]. The large value of
js in 3DDS Cd3As2 is because of the large ne, which is about
2–3 orders of magnitude greater than that in the conventional
3D semiconductors [29]. In graphene, js is few tens of A cm−1

[36, 37].
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We would like to point out that, at high bias, the current
density is usually described by the ‘saturated current density
model’ j = neeμE/{1 + (μE/vds)} [36], which is modification
of Drude model. Then, the current density, in the high field
region, estimated using this relation, is smaller by a factor
r = {1 + (μE/vds)} than the one estimated from Drude model.
In the saturation region, r = 2. Even with this model, js will be
of the order of 106 A cm−2.

The degradation of vds, due to the hot phonon effect, can
be inhibited by reducing the phonon relaxation time τ p. In
graphene, it has been shown that the hot phonon effect can be
diminished by ‘isotopic disorder engineering’ and there by vds

can be enhanced [37]. This has been achieved by introducing
isotropic disorder in the sample.

We point out that, while disorder/impurity scattering deter-
mines the low field mobility at low temperature [21, 22], the
saturation of vd has been attributed to the scattering by optical
phonons. Consequently, the saturation of velocity and hence
the current density are apparently not affected by impurity
in nearly intrinsic samples with very small residual resistiv-
ity ∼ 10 nΩ cm [8, 10]. The ne in intrinsic/nearly intrinsic
samples might be due to unintentional background impurities.
The density of such impurities could be different in differ-
ent samples and varying in an unknown manner. However,
in samples with residual resistivity ∼ 10 μΩ cm [9, 16–18],
vd may degrade due to impurity scattering, even in satura-
tion region, but marginally as found in graphene [35]. The
effect of impurity scattering can be taken in to account in our
calculation by taking the resultant hot electron mobility as
μ= [(1/μap) + (1/μop) + (1/μim)]−1, where μim is the hot elec-
tron mobility due to impurity scattering. In graphene, it is also
found that as sample quality improves the saturation will occur
at lower field [35].

In graphene, it has been shown that larger the acoustic
deformation potential coupling constant D, larger is the vd

and vds [32]. This is because, scattering by acoustic phonons
is dominant up to ∼200 K as the optical phonon scatter-
ing becomes important above this temperature due to the
large optical phonon energy (∼190 meV). In Dirac semimetal
Cd3As2, a variation of D may affect vds to a small extent as the
optical phonon scattering becomes dominant for temperatures
>∼40–50 K [22] and the saturation of drift velocity occurs at
relatively higher temperature.

Although the predicted current density in the present work
is very large, while applying 3DDS Cd3As2 in FETs, it is
required to address the off current density, as on/off ratio of
the current is important. It is possible that, due to zero band
gap, the intrinsic (thermally generated) carrier density could be
large, as in bulk gapless semiconductors HgTe [48] and HgSe
[49], which may lead to a large off current density and reduced
on/off current ratio. The room temperature on/off current ratio
is 4 in zero gap monolayer graphene, and about 100 in finite
gap bilayer graphene [50]. The problem of large off current
density may be overcome in Cd3As2 by creating a band gap
by some means, for e.g. by forming a film of few tens of nm
thickness [27].

We would like to remark that, in the present investiga-
tion, el–op interaction via Fröhlich coupling with one optical

phonon branch of energy 25 meV is considered, although there
can be numerous optical branches. A good discussion of this
choice is given in our earlier work [22]. This is also evinced
in the phonon mediated hot electron cooling of photoexcited
carriers via pump-probe measurements [38].

4. Summary

Theoretically, the drift velocity vd dependence on electric
field E is investigated in an intrinsic three-dimensional Dirac
semimetal Cd3As2. The hot electron mobility and energy
balance equations are obtained, considering the electron
scattering by acoustic and optical phonons with the screened
interactions. The saturation velocity vds ∼ 107 cm s−1 has
been found at relatively small electric field (∼102 V cm−1).
The effects of hot phonons and electron density ne on vd and
vds are explored. The hot phonon effect has a strong impact
on vds. It sets in the saturation velocity at low electric field
and significantly degrades vds. Furthermore, vds has a weak
dependence on electron density. The effect of screening is
found to enhance vd moderately. A saturation current density
js ∼ 106 A cm−2 is predicted. This large js is attributed to the
large vds and ne in this material. In addition, in the process of
developing hot electron mobility, we have obtained the power
laws for Te and ne dependence of μ in the Bloch–Grüneisen
and equipartition regimes. Our theoretical predictions
may be tested as and when the experimental results are
available.
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