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Abstract. The gravitational wave (GW) background produced at the cosmological chiral
phase transition in a conformal extension of the standard model is studied. To obtain the
bounce solution of coupled field equations we implement an iterative method. We find that
the corresponding O(3) symmetric Euclidean action S3 divided by the temperature T has
a simple behavior near the critical temperature TC : S3/T ∝ (1 − T/TC)−γ , which is sub-
sequently used to determine the transition’s inverse duration β normalized to the Hubble
parameter H. It turns out that β/H & 103, implying that the sound wave period τsw

as an active GW source, too, can be much shorter than the Hubble time. We therefore
compute τswH and use it as the reduction factor for the sound wave contribution. The
signal-to-noise ratio (SNR) for Deci-Hertz Interferometer Gravitational Wave Observatory
(DECIGO) and Big Bang Observer (BBO) is evaluated, with the result: SNRDECIGO . 1.2
and SNRBBO . 12.0 for five years observation, from which we conclude that the GW signal
predicted by the model in the optimistic case could be detected at BBO.
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1 Introduction

One of the central questions in particle physics today is: How to go beyond the standard
model (SM), see, e.g., [1]. Indeed many theoretical suggestions have been made since ever [2].
The fact that the Higgs mass term is the only dimensionful parameter in the SM and the
theory is perturbative — no Landau pole below the Planck scale [3–6] — may be regarded as
a hint of how to go beyond the SM [1]. Even before the SM was proposed, John Wheeler [7]
wished to remove all the dimensionful parameters from the fundamental equations. If we
start with a theory, which at the classical level contains no dimensionful parameter such as
mass parameter at all, an energy scale has to be generated by quantum effects. A quantum
generation of the Higgs mass term from “nothing” would be along the line of John Wheeler’s
thought. There are two known mechanisms of “scalegenesis”: One is the Coleman-Weinberg
mechanism [8] that is based on improved perturbation theory and works thanks to scale
anomaly [9, 10]. The other one is the dynamical scale symmetry breaking by strong dynamics
in nonabelian gauge theories, e.g., Quantum Chromodynamics (QCD). We recall that about
99 % of the energy portion of the ordinary matter in the Universe — baryon — is generated
by the nonperturbative effect in QCD [11], dynamical chiral symmetry breaking [12–14].
Several realistic models using the strong dynamics have been suggested in [15–20]: It has
been found that not only the Higgs mass term, but also the dark matter mass [15–17, 19–22],
contributing to 27 % of the total energy of the Universe [23], as well as the Planck mass [24]
can be generated by dynamical scale symmetry breaking.

At finite temperature the real QCD does not undergo a phase transition (PT), rather
a continuous change of crossover type [25]. However, for sufficiently small current quark
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masses, the system can undergo a first-order PT [26–29], and such a situation can be realized
in hidden sector models [17, 30, 31] (see also [32] and references therein), in which dynamical
breaking of scale symmetry takes place at energies higher than the SM scale. If the coupling
of the hidden sector to the SM is very small, a chief signal from the hidden sector is the
gravitational wave (GW) background produced at a first-order PT in a certain epoch of the
Universe [33], see e.g. refs. [34, 35] for reviews.1 This has been even more the case since the
GWs have been detected on the earth [42–44].

In this paper we consider the model [21, 22], in which a robust energy scale, created
by the chiral symmetry breaking in a strongly interacting QCD-like hidden sector, transmits
via a SM singlet real scalar mediator S to the SM sector and generates the Higgs mass term
to trigger electroweak (EW) symmetry breaking. We are particularly interested in the GW
background produced at the cosmological chiral PT of the model.2 The present work is an
extension of ref. [31], where a few benchmark points in the parameter space have been chosen
to study the GW background spectrum. We have decided to extend the analysis of ref. [31]
from the following reasons:

a) The GW energy density depends strongly on the ratio of the duration time τPT = 1/β
of the first-order PT to the Hubble time 1/H, i.e., (β/H)−1 [33, 58–60]. Using effective
field theories it has been shown [61] that, in contrast to the commonly assumed value
of β/H ∼ O(102) [33, 62] (see also [34]), it is of order 104 in QCD like theories if the
coupling to the SM is neglected, i.e., in the absence of the mediator S. This means
a large suppression of the GW energy density. Here we will systematically look for a
parameter space with smaller β/H, which leads to larger GW energy densities.

b) It turns out that the influence of the mediator S is an important factor to decrease
β/H; the quartic self-coupling of S, λS , should be of order 10−3, which is much smaller
than the Higgs self-coupling λH ∼ O(10−1). Consequently, the mass of S denoted
by mS can become comparable with — or even smaller than — the Higgs mass mh,
and consequently the mixing of the Higgs h and S is no longer negligible, i.e., subject
to the LHC constraint (see e.g. refs. [63, 64]). We will here take into account this
LHC constraint.

c) To compute β/H one has to solve classical equations of motion and obtain the so-
called bounce solution that describes a bubble appearing during a first-order PT [65].
In the model in question there are two fields that are involved in the problem, σ for the
chiral condensate and S, so that we have to deal with a system of coupled differential
equations. In ref. [31] we have employed a (modified) path-deformation method [66] to
solve them. However, it has turned out that this method suffers from a large uncertainty
and does not yield trustful results. Here we will employ another iterative method to
realize a faster convergence of the iterative process.

d) The sound wave contribution to the GW spectrum will be the most dominant con-
tribution in the model we will consider. A large β/H means a short duration of the
first-order cosmological PT and hence a short sound wave period τsw compared with
1/H. However, the formula for the sound wave contribution to the GW spectrum has

1The crossover transition in the real QCD can influence the spectrum of the inflationary GW [36–41]. The
frequency band of the damped GWs is what has been predicted by Witten [33].

2The GWs produced during a cosmological first-oder PT in classically scale invariant models have been
recently studied in refs. [45–57].
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been derived from the numerical simulations for which a long-lasting source of the GW,
i.e., τswH > 1, is assumed [67]. If τswH < 1, the sound wave is an active GW source
only for a period shorter than the Hubble time. The above-mentioned formula therefore
overestimates the sound wave contribution. Following refs. [68, 69] along with ref. [70],
we calculate τswH and use it as the reduction factor for the sound wave contribution.

e) The signal-to-noise ratio (SNR) is an important measure to evaluate the detectability
of the GW background of the model [71]. We will calculate the SNR for Deci-Hertz
Interferometer Gravitational Wave Observatory (DECIGO) [72–74] and Big Bang Ob-
server (BBO) [75–77].

In section 2 we outline the basic feature of the model; dynamical generation of the Higgs
mass term, mass spectrum, the LHC constraint of the Higgs-S mixing, and dark matter (DM).
Since the hidden sector of the model is strongly interacting, we use an effective theory for
the dynamical chiral symmetry breaking — the Nambu-Jona-Lasinio (NJL) model [12–14]
— as in refs. [17, 21, 22, 31], where our approximation method, the self-consistent mean-field
approximation (SCMF) of refs. [78, 79], is also briefly elucidated in this section.

After a short review on the chiral PT in the hidden sector of the model we present, in
section 3, our iterative method to obtain the bounce solution. We narrow the parameter space
with smaller β/H. Two benchmark points are chosen for an orientation of the parameter
space that we consider. In section 4 we discuss the GW spectrum. The above-mentioned
reduction factor τswH for the sound wave contribution is computed in this section. We
then calculate the SNR to evaluate the detectability of the GW signal at DECIGO and
BBO. We also compare the GW spectrum for two chosen benchmark points with the power-
law integrated sensitivity [71] of DECIGO and BBO. Section 5 is devoted to summary
and conclusion.

2 The model

We consider a classically scale invariant extension of the SM studied in refs. [21, 22]. The
model consists of a hidden SU(nc)H gauge sector coupled to the SM sector via a real singlet
scalar S. The hidden sector Lagrangian LH of the total Lagrangian LT = LH + LSM+S of
the model is given as

LH = −1

2
Tr F 2 + Tr ψ̄(iγµ∂µ + gHγ

µGµ + g′QγµBµ − yS)ψ , (2.1)

where Gµ is the gauge field for the hidden QCD, Bµ is the U(1)Y gauge field,

Bµ = cos θWAµ − sin θWZµ , g′ = e/ cos θW , (2.2)

and the hidden vector-like fermions ψi (i = 1, . . . , nf ) belong to the fundamental represen-
tation of SU(nc)H . The y is an nf × nf Yukawa coupling matrix which can be taken as
a diagonal matrix without loss of generality, i.e. y = diag.(y1, . . . , ynf

). Here the diagonal
entries yi are assumed to be positive. The LSM+S part contains the SM gauge and Yukawa
interactions along with the scalar potential

VSM+S = λH(H†H)2 +
1

4
λSS

4 − 1

2
λHSS

2(H†H) , (2.3)
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where the portal coupling λHS is assumed to be positive, and HT = (H+, (h + iG0)
√

2) is
the SM Higgs doublet field with H+ and G0 as the would-be Nambu-Goldstone (NG) fields.
The (tree-level) stability condition for the scalar potential is given by

λH > 0, λS > 0, 2
√
λHλS − λHS > 0 . (2.4)

Following refs. [17, 21, 22] we consider nf = nc = 3. In this case, the hidden chiral
symmetry SU(3)L × SU(3)R is dynamically broken to its diagonal subgroup SU(3)V by the
nonzero chiral condensate

〈
ψ̄ψ
〉
, which implies the existence of 8 NG bosons. At the same

time of the dynamical chiral symmetry breaking, the singlet scalar field S acquires a nonzero
vacuum expectation value (VEV) due to the Yukawa interaction −ySψ̄ψ in LH, generating
an explicit-chiral-symmetry-breaking mass term. Consequently, the NG bosons acquire their
masses and can become DM candidates due to the remnant unbroken flavor group SU(3)V (or
its subgroup, depending on the choice of yi) that can stabilise them. Finally, with the nonzero
vS = 〈S〉, the EW symmetry breaking is triggered by the Higgs mass term +1

2λHSv
2
SH
†H.

2.1 Nambu–Jona-Lasinio description

In order to analyze the strongly interacting hidden sector, we replace the Lagrangian LH (2.1)
by the NJL Lagrangian that serves as an effective Lagrangian for the dynamical chiral sym-
metry breaking [12–14]:

LNJL = Tr ψ̄(iγµ∂µ + g′QγµBµ − yS)ψ + 2G Tr Φ†Φ +GD (det Φ + h.c.) , (2.5)

where

Φij = ψ̄i(1− γ5)ψj =
1

2

8∑
a=0

λaji [ ψ̄λa(1− γ5)ψ ] , (2.6)

and λa(a = 1, . . . , 8) are the Gell-Mann matrices with λ0 =
√

2/3 1. The dimensionful
parameters G and GD have canonical dimensions of −2 and −5, respectively. In order to
deal with the nonrenormalizable Lagrangian (2.5) we work in the SCMF approximation of
refs. [78, 79]. The mean fields σi (i = 1, 2, 3) and φa (a = 0, . . . , 8) are defined in the
“Bardeen-Cooper-Schrieffer” vacuum as

σi = −4G
〈
ψ̄iψi

〉
, φa = −2iG

〈
ψ̄iγ5λ

aψi
〉
, (2.7)

where the CP-even mean fields corresponding to the non-diagonal elements of 〈ψ̄iψj〉 are
suppressed, because they do not play any role for our purpose. Splitting the NJL Lagrangian
LNJL into two parts as LNJL = LMFA + LI where LI is normal ordered (i.e., 〈0|LI |0〉 = 0),
we find the Lagrangian in the SCMF approximation LMFA in the SU(3)V limit as3

LMFA = Tr ψ̄(i/∂ −M + g′QγµBµ)ψ − iTr ψ̄γ5φψ −
1

8G

(
3σ2 + 2

8∑
a=1

φaφa

)

+
GD
8G2

(
−Tr ψ̄φ2ψ +

8∑
a=1

φaφaTr ψ̄ψ + iσTr ψ̄γ5φψ +
σ3

2G
+

σ

2G

8∑
a=1

(φa)
2

)
(2.8)

3The mean-field Lagrangian LMFA in the case of broken SU(3)V can be found in ref. [22].
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with φ =
∑8

a=1 φaλ
a and σ = σ1 = σ2 = σ3. Here φ0 has been suppressed and the

constituent fermion mass M is given by

M(S, σ) = σ + yS − GD
8G2

σ2 ,where y = y1 = y2 = y3 . (2.9)

The one-loop effective potential obtained from LMFA (2.8) can be obtained by integrating
out the hidden fermions:

VNJL(S, σ) =
3

8G
σ2 − GD

16G3
σ3 − 3ncI0(M,ΛH) . (2.10)

Here the function I0 is given by

I0(M,Λ) =
1

16π2

[
Λ4 ln

(
1 +

M2

Λ2

)
−M4 ln

(
1 +

Λ2

M2

)
+ Λ2M2

]
(2.11)

with a four-dimensional momentum cutoff Λ, where we denote the cutoff in the hidden sector
by ΛH . For a certain interval of the dimensionless parameters G1/2ΛH and (−GD)1/5ΛH
we have 〈σ〉 6= 0 and 〈S〉 6= 0 [17, 21, 22]. It is then meant that the dynamics of the
hidden sector creates a nonvanishing chiral condensate

〈
0|ψ̄iψi|0

〉
6= 0. One can see that the

potential VNJL(S, σ) is asymmetric in σ owing to the last term in the NJL Lagrangian (2.5)
and also from the constituent mass M (2.9), which is the reason that the chiral PT at finite
temperature can become of first order. It is noted that the mean fields σ and φa are non-
propagating classical fields at the tree level. Therefore, their kinetic terms are generated by
integrating out the hidden fermions at the one-loop level, which will be seen in section 2.2
where two point functions are calculated.

The NJL parameters for the hidden QCD sector are obtained by scaling-up the values
of G,GD and the cutoff Λ from QCD hadron physics. Following refs. [17, 21, 22] we assume
that the dimensionless combinations

G1/2ΛH = 1.82 , (−GD)1/5ΛH = 2.29 , (2.12)

which are satisfied for the real-world hadrons, remain unchanged for a higher scale of ΛH .
Therefore, the free parameters of the (effective) model are: λH , λS , λHS and ΛH . Once these
parameters are fixed, the VEVs of σ , S and h can be obtained through the minimization
of the scalar potential VSM+S + VNJL where we choose these parameters so as to satisfy
mh = 125 GeV and 〈h〉 = 246 GeV.

2.2 Mass spectrum

Once the VEVs of σ, S and h are obtained, the scalar mass spectrum can be calculated
from the corresponding two point functions at one-loop in which the hidden fermions are
circulating. The CP even scalars h, S and σ mix with each other. The two point functions
at the one-loop level ΓAB(A,B = h, S, σ) in the SU(3)V flavor symmetry limit are given by

Γhh(p2) = p2 − 3λH 〈h〉2 +
1

2
λHS 〈S〉2 , ΓhS = λHS 〈h〉 〈S〉 , Γhσ = 0 ,

ΓSS(p2) = p2 − 3λS 〈S〉2 +
1

2
λHS 〈h〉2 − y23ncIϕ2(p2,M,ΛH) , (2.13)

ΓSσ(p2) = −y
(

1− GD 〈σ〉
4G2

)
3ncIϕ2(p2,M,ΛH) , (2.14)

Γσσ(p2) = − 3

4G
+

3GD 〈σ〉
8G3

−
(

1− GD 〈σ〉
4G2

)2

3ncIϕ2(p2,M,ΛH) +
GD
G2

3ncIV (M,ΛH) .
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Here the loop functions are defined as

Iϕ2(p2,M,Λ) =

∫
Λ

d4k

i(2π)4

Tr(/k + /p+M)(/k +M)

((k + p)2 −M2)(k2 −M2)
, (2.15)

IV (M,Λ) =

∫
Λ

d4k

i(2π)4

M

(k2 −M2)
= − 1

16π2
M

[
Λ2 −M2 ln

(
1 +

Λ2

M2

)]
. (2.16)

The flavor eigenstates (h, S, σ) and the mass eigenstates hi (i = 1, 2, 3) are related by h
S
σ

 =

 ξ
(1)
h ξ

(2)
h ξ

(3)
h

ξ
(1)
S ξ

(2)
S ξ

(3)
S

ξ
(1)
σ ξ

(2)
σ ξ

(3)
σ


 h1

h2

h3

 . (2.17)

The squared masses m2
hi

are determined by the zeros of the two point functions at the one-

loop level, i.e. ΓAB(m2
hi

)ξ
(i)
B = 0.

In this model the DM candidates are the NG bosons in the hidden sector which are
CP-odd scalars φa in eq. (2.7), i.e. the dark mesons. The two point function at the one-loop
level for the DM candidate is (in the SU(3)V flavor symmetry limit)

ΓDM(p2) = − 1

2G
+
GD 〈σ〉

8G3
+

(
1− GD 〈σ〉

8G2

)2

2ncIφ2(p2,M,ΛH) +
GD
G2

ncIV (M,ΛH) ,

(2.18)

where the loop function Iφ2(p2,M,Λ) is given by

Iφ2(p2,M,Λ) =

∫
Λ

d4k

i(2π)4

Tr(/k − /p+M)γ5(/k +M)γ5

((k − p)2 −M2)(k2 −M2)
. (2.19)

The mass of the DM is obtained from ΓDM(m2
DM) = 0.

2.3 LHC constraint on λHS

The size of the portal coupling λHS controls the h−S mixing. Since in the parameter space
we will consider the Yukawa coupling y is small, i.e. of order 10−3 (see eq. (4.12)), the mixing
ΓSσ (2.14) is also small, so that we will neglect it in the following discussions. (We will also
neglect the last term of ΓSS (2.13), because it is proportional to y2.) Therefore, the h − S
mixing can be written as (

h1

h2

)
=

(
cos θ sin θ
− sin θ cos θ

) (
h
S

)
(2.20)

with (cos θ , − sin θ , 0) ' (ξ
(1)
h , ξ

(2)
h , ξ

(3)
h ) which is defined in eq. (2.17). Here we identify

h1 with the SM Higgs having mass mh ' 0.125 TeV, i.e., mh = mh1 and mS = mh2 . The
h− S mixing is constrained by LHC data (see e.g. refs. [63, 64] and references thererin). In
the left panel of figure 1 we plot | sin θ| versus mS and in the right panel mS (purple) and
mDM (green) versus λHS both at λS = 0.001. We vary λHS between 0.0001 and 0.018 and y
between 0.001 and 0.00172. (Why we consider y in this interval will be explained in section 3.)
As we see from the left panel, there are two branches; mS < mh and mS > mh, and on each
branch there exist a (blue) region, I and II, that is allowed by LHC. The band of mDM
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Figure 1. Left: | sin θ| vesus mS at λS = 0.001, where we vary λHS between 0.0001 and 0.018 and y
between 0.001 and 0.00172. There are two branches; mS < mh and mS > mh, and on each branch
there exist a (blue) region (I and II) that is allowed by LHC. Two benchmark points we consider
are marked by BP1 (purple) and BP2 (green). Right: mS (purple) and mDM (green) vesus λHS at
λS = 0.001.

in the right panel can be seen, because it sensitively depends on y, while mS is insensitive
against y. From each allowed region we choose a representative point, BP1 and BP2, to get
an orientation in the parameter space, especially when discussing the GW spectrum later on:

BP1 : λS = 0.001 , λHS = 0.00485 , y = 0.00172 , λH = 0.1238 , ΛH = 4.322 TeV ,

BP2 : λS = 0.001 , λHS = 0.00230 , y = 0.00170 , λH = 0.1325 , ΛH = 6.606 TeV . (2.21)

2.4 Dark matter

Due to the vector-like flavor symmetry (i.e. SU(3)V or its subgroup), the dark mesons are
good DM candidates. As we see from figure 1, the mass of the real singlet mS is smaller than
the DM mass mDM, so that the DM can annihilate into two Ss in principle. However, this
annihilation cross section is negligibly small because it is ∝ y4 . 10−11 in the parameter space
of interest. To explain the observed value for the relic DM abundance in this circumstance,
we assume a hierarchy in the Yukawa couplings: y1 = y2 < y3 (which breaks SU(3)V down
to SU(2)V ×U(1) explicitly), where y3 should not differ very much from y2 [22]. Under this

assumption, the dark mesons fall into three categories, π̃ =
{
π̃±, π̃0

}
, K̃ =

{
K̃±, K̃0, ¯̃K0

}
and η̃. Here the dark mesons are given like the real-world mesons:

π̃± ≡ (φ1 ∓ iφ2)/
√

2 , π̃0 ≡ φ3 ,

K̃± ≡ (φ4 ∓ iφ5)/
√

2 , K̃0( ¯̃K0) ≡ (φ6 + (−)iφ7)/
√

2 , η̃8 ≡ φ8 , (2.22)

where η̃8 will mix with η̃0 to form the mass eigenstates η̃ and η̃′. The states in the same
category have the same mass, mπ̃0 = mπ̃±(≡ mπ̃) and mK̃± = mK̃0 = m ¯̃K0(≡ mK̃), with
mπ̃ < mK̃ < mη̃, where the differences among mπ̃, mK̃ and mη̃ are small because of the
small difference between y1 = y2 and y3. The heavier state η̃ is an unstable NG boson
which can mainly decay into two γs. On the other hand, the π̃ and K̃ are stable due to the
SU(2)V flavor symmetry and become the DM. Since the mass difference among π̃, K̃ and η̃
are small, the DM annihilation into a pair of heavier DMs and/or η̃s, which are kinematically
forbidden at zero temperature, can become operative. In ref. [22] it has been shown that the
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Figure 2. The total DM relic abundance Ωh2 with the U(1)Y hypercharge Q = 1/3 vesus y3, where
we have fixed other parameters at the benchmark point BP1 defined in eq. (2.21).

inverse conversion π̃π̃, K̃K̃ → η̃η̃ → γγγγ can play a significant role to make the DM relic
abundance realistic. This mechanism works only if the SU(3)V falvor symmetry is broken
into its subgroup.4

In figure 2 we show the total DM relic abundance Ωh2 = Ωπh
2 + ΩKh

2 with the U(1)Y
hypercharge Q = 1/3 as a function of y3, where the other parameters are chosen for the
benchmark point BP1 defined in eq. (2.21), and h is the dimensionless Hubble parameter.
We see from this figure that the DM relic abundance at y3 ' 0.0024 can coincide with the
experimentally observed value [23].5

3 Chiral phase transition and bounce solution

3.1 Effective potential and chiral phase transition

The EW and chiral PTs in our model (2.1) have been studied in refs. [17, 31] in some detail.
For a phenomenologically viable region of the parameter space, the EW PT occurs — with
decreasing temperature — after the chiral PT takes place in a hidden sector. Therefore, the
VEV of h vanishes during the chiral PT, so that we set 〈h〉 = 0 in investigating the chiral
PT. Accordingly, we analyze the following scalar potential at finite temperature:

VEFF(S, σ, T ) = V h→0
SM+S(S) + VNJL(S, σ) + VCW(S) + VFTB(S, T ) + VFTF(S, σ, T ) , (3.1)

where VSM+S and VNJL(S, σ) are given in eqs. (2.3) and (2.10), respectively,

VCW(S) =
m4
S(S)

64π2

[
ln(S2/〈S〉2)− 1/2

]
, (3.2)

VFTB(S, T ) =
T 4

2π2

[
JB(MS(S)/T )− JB(|λS/4− λHS/6|1/2)

]
, (3.3)

4In the model considered in ref. [31] the flavor group SU(3)V is unbroken and the hidden fermions have no
coupling with the U(1)Y gauge boson.

5Though the portal coupling λHS is very small ∼ 10−3, the singlet scalar S decays via the h − S mixing
into the SM particles much before Big Bang Nucleosynthesis (BBN): Γ(S → SM particles)/H ' sin2 θ Γ(h→
SM particles)/H ∼ sin2 θ × 1022 at T = 1 MeV.
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VFTF(S, σ, T ) = −6nc
T 4

π2
[JF (M(S, σ)/T )− JF (0)] , (3.4)

M2
S = m2

S(S) +

(
λS
4
− λHS

6

)
T 2 with m2

S(S) = 3λSS
2 , (3.5)

and M(S, σ) is given in (2.9). The thermal functions are

JF/B(u) =

∫ ∞
0

dxx2 ln
(

1± e−
√
x2+u2

)
=
∞∑
j=1

(∓1)(1+j)(u2/j2)K2(j u) , (3.6)

where K2(j u) is the modified Bessel function of the second kind of order two, and we will
truncate the sum at j = 10.6 In VFTB(S, T ) and VFTF(S, σ, T ) we have subtracted the
(temperature-dependent) constant terms such that VFTB(0, T ) = VFTF(0, 0, T ) = 0. We first
note that the role of the singlet scalar S becomes more important for smaller λS . To see this,
we will consider VNJL(S, σ) for small y:

VNJL(S, σ) = VNJL(0, σ)−
3ncΛ

2
Hσ

4π2
yS +O((yS)2) . (3.7)

Since, neglecting the portal coupling λHS , the scalar potential VSM+S becomes λH(H†H)2 +
(1/4)λSS

4, we find

v3
S = 〈S〉3 '

3ncΛ
2
Hvσ

4π2

(
y

λS

)
. (3.8)

Therefore, the deviation from the pure NJL model (i.e. without the singlet scalar S) is
larger for smaller λS and larger y. The above feature remains at finite temperature, as we
can see from figure 3, where we show vS/vσ against λS at the critical temperature TC for
y = 0.001 , λHS = 0.7 In figure 4 we plot vσ/T (blue) and vS/T (red) as a function of T/ΛH
for λS = 0.005, λHS = 0 and y = 0.001 (upper left panel) and 0.007 (upper right panel),
respectively. We see that the chiral PT is no longer a strong first-order PT at y = 0.007.
The lower panels show the case for λS = 0.001, λHS = 0 and y = 0.00172 (left) and 0.0045
(right).

3.2 Bounce solution

One of the main quantities in discussing the stochastic GW background produced by a first-
order PT in the expanding Universe is the duration time of the first-order PT, τpt = β−1,
which should be compared with the inverse rate of the expansion H−1 [33, 58–60]. In fact

6The error of the approximate function JF (B)(u; jmax) with the truncation at j = jmax is ∆JF (B) =∣∣ JF (B)(u)− JF (B)(u; jmax)
∣∣. For jmax = 10, ∆JF < 5 × 10−5 and ∆JB < 3 × 10−4 are satisfied. So, with

jmax = 10, the error in ∆(VEFF/T
4) is less than 10−4. Since we are interested in the behavior of VEFF near the

critical temperature TC , we obtain ∆(VEFF/Λ
4
H) < 10−8 because TC/ΛH ∼ 0.1. This accuracy is sufficient

for our purpose.
7The absolute scale of the hidden sector (i.e. ΛH) can be anything when the hidden sector has no coupling

with the SM sector. This happens, for instance, when λHS is set equal to zero. Nevertheless, dimensionless
quantities have their meaning. As we see from eqs. (2.3) and (3.1) the λHS dependence of the effective
potential is very small if 〈h〉 = 0: It enters only in the thermal mass of S as one can see in eq. (3.5).
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Figure 3. vS/vσ at the critical temperature TC against λS . We see that the smaller λS is, the larger
the ratio vS/vσ becomes, which means more deviation from the pure NJL (i.e. without the singlet
scalar S).
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Figure 4. Upper (lower) left: vσ/T (blue) and vS/T (red) against T/ΛH for λS =
0.005 (0.001), λHS = 0, y = 0.001 (0.00172), showing a strong first-order PT. Upper (lower) right:
The same with y = 0.007 (0.0045), showing a transition of cross-over type.
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the GW energy density increases — depending on the nature of its source — linearly or even
quadratically with (β/H)−1 (see eqs. (4.21), (4.24) and (4.27)), while its peak frequency
increases linearly with β/H (see eqs. (4.23), (4.26) and (4.29)). In ref. [61] it has been found
that β/H is of order 104 in the pure NJL model, so that ΩGW, the spectral GW energy
density normalized to the critical energy density, is considerably suppressed. Therefore, we
consider here a parameter space in which the deviation from the pure NJL model is large.
From the discussion of section 3.1 we can infer that the area with small λS and large y is
an optimistic parameter space, where y should not be too large for a strong first-order chiral
PT to be realized. It turns out that λS ∼ O(10−3) is an optimistic magnitude for λS , and in
the following discussions we concentrate on the parameter space with λS = 0.001.

To obtain β/H we have to compute the value of the corresponding O(3) symmetric
Euclidean action S3 [65]. The mean field σ, introduced as an auxiliary field at the tree level
in the mean-field approximation, is a driving force for the chiral PT. As it has been discussed
in section 2.2 the mean field σ can be promoted to a propagating quantum field at one loop,
which also applies at finite temperature. The kinetic term for σ at finite temperature has
been correctly computed in ref. [61]. Quoting the result of ref. [61], the O(3) symmetric
action S3 can be written as

S3(T ) = 4π

∫
drr2

[
Z−1
σ (S, σ, T )

2

(
dσ

dr

)2

+
1

2

(
dS

dr

)2

+ VEFF(S, σ, T )

]
, (3.9)

where r is the radial coordinate of the 3-dimensional space, and VEFF(S, σ, T ) is given in
eq. (3.1). Zσ(S, σ, T ) is the wave function renormalization “constant” at finite tempera-
ture [61]:

Z−1
σ (σ, S, T ) =

ncnf
2π2

[
1− GD

4G2
σ

]2

×
{
−

Λ2
H

4(Λ2
H +M2)

+
1

4
ln(1 + Λ2

H/M
2) +

Λ4
H

8(Λ2
H +M2)2

−
Λ4
H(Λ2

H + 3M2)

6(Λ2
H +M2)3

+

∫ ∞
0

dxx2

[
−1 + eω/T (1 + ω/T )

(1 + eω/T )2(ω/T )3
− (M/T )2 3 + eω/T (6 + 3ω/T − (ω/T )2)

4(1 + eω/T )3(ω/T )5

−(M/T )2 e
2ω/T (3 + 3ω/T + (ω/T )2)

4(1 + eω/T )3(ω/T )5

+(M/T )4 15 + eω/T (45 + 15ω/T − 6(ω/T )2 + (ω/T )3) + e2ω/T (45 + 30ω/T − 4(ω/T )2)

6(1 + eω/T )4(ω/T )7

+(M/T )4 e
3ω/T (15 + 15ω/T + 6(ω/T )2) + (ω/T )3)

6(1 + eω/T )4(ω/T )7

]}
, (3.10)

where
ω/T = [x2 + (M/T )2]1/2 , (3.11)

and M is given in eq. (2.9).
The equations of motion for the action (3.9) read

d2σ

dr2
+

2

r

dσ

dr
+

1

2

∂ lnZ−1
σ (S, σ, T )

∂σ

(
dσ

dr

)2

= Zσ(S, σ, T )
∂VEFF(S, σ, T )

∂σ
, (3.12)

d2S

dr2
+

2

r

dS

dr
− 1

2

∂Z−1
σ (S, σ, T )

∂S

(
dσ

dr

)2

=
∂VEFF(S, σ, T )

∂S
, (3.13)
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and the boundary conditions for the bounce solution are given by [65]

dσ

dr

∣∣∣∣
r=0

= 0 ,
dS

dr

∣∣∣∣
r=0

= 0 , lim
r→∞

σ(r) = 0 , lim
r→∞

S(r) = 0 . (3.14)

The bounce solution describes a bubble, where r = 0 is the center of the bubble, inside
of which the chiral symmetry is broken. The bubble however has no sharp boundary, but
σ(r) and S(r) at r ' rw drop sharply from a finite value to a small value (see figure 5)
so that rw can be understood as the position of the bubble wall: We may say in a less
precise way that inside of the wall the chiral symmetry is broken and in the outside of
the wall it is unbroken. In the one-dimensional case, in which there exists only one scalar
degree of freedom as an order parameter, we can obtain a bounce solution by using the so-
called overshooting/undershooting method [80]. However, this is an extremely cumbersome
method in a multi-dimensional case, because a set of certain initial conditions have to be
simultaneously fine tuned. An appropriate method is the path deformation method [66].
But to minimize the problem associated with the complicated structure of the wave function
renormalization (3.10), we here use another iterative method, which we will describe below.

One round of the calculation consists of two steps. At the first step in the nth round,
we solve the differential equation (3.12) for σ(r) with S(r) = S(n−1)(r), where S(n−1)(r) is

obtained in the (n − 1)th round. The solution is denoted by σ(n)(r). At the second step in

the nth round, we solve the differential equation (3.13) for S(r) with σ(r) = σ(n)(r) to obtain

S(n)(r). Then, using σ(n)(r) and S(n)(r) we compute S3/T in the nth round and denote
it by (S3/T )(n). Since each step is a one-dimensional problem, we apply the overshoot-
ing/undershooting method. Of course, there is no mathematical warranty that the iterative
process converges: It depends strongly on S(0) that is needed to carry out the first step in
the first round, i.e., to obtain σ(1)(r). Here we assume that S(0) is a function of σ and choose
it as a straight line linking the origin of the field space (σ = S = 0) and the position (vσ, vS)
of the minimum of VEFF(S, σ, T < TC):

S(0)(σ) =
vS
vσ
σ . (3.15)

In the upper (lower) left panel of figure 5, we show σ(n)(r) and S(n)(r) with n = 1 (blue),
2 (red), 3 (black) for λS = 0.003 (0.001) , λHS = 0 , y = 0.001 (0.00172) , TC/ΛH =
0.0796 (0.0843), T/ΛH = 0.0769 (0.0798). We find also

(S3/T )(1) = 144.4 (153.5) , (S3/T )(2) = 140.9 (140.0) ,

(S3/T )(3) = 141.5 (144.7) , (S3/T )(4) = 140.8 (142.2) . (3.16)

So, the convergence of the iterative process, described above, is quite fast. We have calculated
S3/T for several values of x = T/TC in the second round and found that S3/T for x < 1 can
be nicely fitted with a simple function [61, 62]

S3

T
(x) = b (1− x)−γ . (3.17)

This is shown in the upper (lower) right panel of figure 5 for λS=0.003 (0.001) , λHS =0 ,
y=0.001 (0.00172). The blue dotted line is the function (3.17) with b =0.1833 (2.232) and
γ=1.961 (1.418).
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Figure 5. Upper (lower) left: The bounce solutions σ(n)(r) and S(n)(r) for n = 1 (blue), 2 (red)
and 3 (black), where we have used the parameters: λS = 0.003 (0.001) , λHS = 0 , y =
0.001 (0.00172) , TC/ΛH = 0.0796 (0.0843) , T/ΛH = 0.0769 (0.0798). Upper (lower) right: S3/T (in
the second round) against x = T/TC with the same λS , λHS and y as in the upper (lower) left panel.
The black points are obtained by applying our iterative method, while the blue dotted line is the
fitting function defined in eq. (3.17) with b = 0.1833 (2.232) and γ = 1.961 (1.418).

There is a limitation of our iterative method. As we have discussed in section 3.1, the
chiral PT turns into a cross-over type for large y. We have found that our iterative process
does not converge for large y even much before the chiral PT turns into a cross-over type.
The reason is that a new local minimum, other than the true and false minima, develops
near the origin σ = S = 0. The bounce solution passes near the new local minimum to
arrive at the origin, as one can see in figure 6. The depth of the new local minimum becomes
deeper and deeper with an increasing value of y, and around a certain value of y the new
local minimum starts to affect the iterative method in such a way that the iterative process
does not converge. At the moment we are not able to find a bounce solution beyond this
value of y.

4 Gravitational wave spectrum

There are three production mechanisms of the stochastic GW background at a strong first-
order PT: Bubbles are nucleated and grow, and then the collisions of the bubble walls take
place, producing a GW background [58–60, 81–83]. We denote by Ωϕ its contribution to
the total GW spectrum ΩGW. After the bubble-wall collisions sound waves surrounding the
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Figure 6. The contour plot of the effective potential VEFF(S, σ, T )/Λ4
H at T/TC = 0.945 for λS =

0.001, λHS = 0, y = 0.00172. The true minimum is located in the upper right corner. A shallow local
minimum can be seen on the left side. The red curve is the bounce solution with S3/T ' 141.

bubble walls [67, 84–87] and magnetohydrodynamic (MHD) turbulence [88–94] in the plasma
become the source of the GW background. Their contributions to ΩGW are denoted by Ωsw

and Ωturb, respectively:

ΩGW(f)h2 = [ Ωϕ(f) + Ωsw(f) + Ωturb(f) ]h2, (4.1)

where h is the dimensionless Hubble parameter, and f is the frequency of the GW at present.
To calculate ΩGW for a given model we first have to find out the nucleation temperature
Tn. Then we compute the duration time of the first-order PT at T = Tn and the released
vacuum energy density at T = Tn. The released vacuum energy is indeed the source for the
GW energy density, but only its part is effectively used as the source. The corresponding
efficiency is expressed by the efficiency coefficients that again depend on the released vacuum
energy density. In the following we start by computing T = Tn.

4.1 Nucleation temperature Tn

The cosmological tunneling process is quantum mechanical transition from a false vacuum
sate to the true vacuum state in the expanding Universe and has been studied in refs. [33,
62, 65, 95, 96]. The probability of the decay rate of the false vacuum per unit volume per
unit time at a finite temperature T is given by [65]

Γ(T ) ' T 4

(
S3

2πT

)3/2

exp(−S3/T ) , (4.2)

where S3 is the three dimensional Euclidean action and is given in eq. (3.9) for our model.
The first-order PT proceeds via the tunneling process in the expanding Universe, in which the
bubbles of the true vacuum are nucleated. Since after each tunneling process we have one bub-
ble nucleation, Γ(T ) is also the nucleation rate of the bubbles. The nucleation temperature
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Tn is defined as the temperature, at which one bubble for Hubble time and Hubble volume
is nucleated, i.e., Γ(Tn)/H(Tn)4 = 1, which leads to the approximate expression [33, 62]

S3(Tn)

Tn
' 2 ln

(
90

g∗π2

M2
Pl

T 2
n

)
, (4.3)

where we have ignored the slowly varying factor (S3/(2πT ))3/2 on the r.h.s. of eq. (4.2), g∗
is the relativistic degrees of freedom in the Universe at T = Tn, and MPl = 2.435× 1018 GeV
is the reduced Planck mass. Then the nucleated bubbles expand and collide. Note that the
absolute scale of Tn (and also TC) depends crucially on λHS and y, because in the absence
of both couplings the scale in the hidden sector can be anything; no information about the
energy scale in the SM sector, e.g. mh ' 0.125 TeV, can be transferred to the hidden sector.

4.2 Duration of the phase transition

The temperature T and time t in the expanding Universe is related through

dT

dt
= −H(t)T . (4.4)

The nucleation time tn is the time, at which the temperature T is equal to the nucleation
temperature Tn. Since the nucleation time tn is now defined, we can compute the duration
of the phase transition. To this end, we consider the four-dimensional Euclidean action
SE(t) = S3(T )/T and expand it around tn:

SE(t) = SE(tn)− β∆t+O((∆t)2) , (4.5)

where ∆t = (t− tn) > 0. Then the nucleation rate for t ∼ tn can be written as

Γ(T ) ' Γ(Tn)eβ∆t. (4.6)

Clearly, the larger 1/β is, the longer is the time for which Γ(T ) stays close to Γ(Tn). Therefore,
β−1 is the duration time and can be computed from [58–60]

β = −dSE
dt

∣∣∣∣
t=tn

=
1

Γ

dΓ

dt

∣∣∣∣
t=tn

= H(tn)Tn
d

dT

(
S3

T

) ∣∣∣∣
T=Tn

, (4.7)

where eqs. (4.2) and (4.4) are used. This means that we need to compute the derivative
of S3/T , which is a cumbersome task in the presence of many scalar fields involved in the
bounce equation like in our case. To overcome this problem we use the fact that S3/T can be
well approximated by the fitting function defined in eq. (3.17). Since b and γ are independent
of x = T/TC , we determine them from the actual calculation of S3/T for some x and obtain
β/H from

β/H = T
d

dT
b(1− T/TC)−γ

∣∣∣∣
T=Tn

= bγxn(1− xn)−1−γ , where xn = Tn/TC . (4.8)

The quantities, b and γ, do not depend very much on λHS , because not only they are
dimensionless, but also λHS enters into the chiral PT only through the thermal mass of S
as one can see in eq. (3.5). In contrast to this, they and hence β/H depend considerably on
y, because it is the origin of the explicit breaking of the chiral symmetry. In figure 7 (left)
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Figure 7. Left: β/H against the Yukawa coupling y for λS = 0.001 and λHS = 0, which should
be compared with βNJL/H = 1.4 × 104 [61] (the value without the singlet scalar S). In contrast to
β/H, α differs only slightly from the pure NJL value: g∗α ' 3.8, where it is about 3.2 in the pure
NJL case [61]. Beyond y & 0.00172 (for λS = 0.001), the local minimum on the left side in figure 6
becomes deeper in such a way that the iterative process in solving the coupled differential equations
given in (3.12) and (3.13) do not converge, and consequently our method can not be applied. This
area in the parameter space is indicated by “inaccessible”. Right: The y-dependence of Tn/TC for
λS = 0.001 and λHS = 0.

we show β/H for several values of y with λS and λHS fixed at 0.001 and 0, respectively.
Since β/H ' 1.4× 104 in the pure NJL model [61], we see from figure 7 that the larger y is,
the more deviation from the pure NJL model we can expect. The right panel shows the y-
dependence of Tn/TC for λS = 0.001 and λHS = 0, from which we see that in contrast to β/H
the value of Tn/TC does not change very much as y changes.8 For y & 0.00172 our iterative
method breaks down (as it is explained in section 3.2), so that we stop at y = 0.00172 for
this example.

4.3 Released vacuum energy

As we see from figure 7, β/H is large ∼ 103. Therefore, the scalar contribution Ωϕ to
the GW spectrum, being proportional to (β/H)−2, is much more suppressed than the other
contributions Ωsw and Ωturb, because they are proportional to (β/H)−1 (see eqs. (4.21), (4.24)
and (4.27)). Furthermore, as we will see, the turbulence contribution Ωturb is suppressed,
compared with Ωsw, because the relevant GW frequency f is much larger than hn, the Hubble
parameter at Tn, which is red-shifted today. Therefore, we here focus on the sound-wave
contribution and follow the treatment of ref. [70]. It should be noted that the definition of
α in ref. [70] is not the ratio of the latent heat released at the PT to the radiation energy
of the Universe. Instead, they use the trace of the energy momentum tensor of the plasma,
leading to

α =
1

ρrad(Tn)

(
∆V (Tn)− 1

4
T
∂∆V (T )

∂T

∣∣∣∣
T=Tn

)
, (4.9)

where ∆V (T ) = VEFF(0, 0, T ) − VEFF(〈S〉, 〈σ〉, T ), and ρrad(T ) = π2g∗T
4/30. According to

ref. [70], if the speed of the wall ξw is larger than ξJ , we may identify the vacuum energy den-

8β/H computed in ref. [31] does not seem to approach the pure NJL value, ∼ 104, as the Yukawa coupling
y goes to zero (see, e.g, the result for the case C in TABLE I and II; y = 1.07× 10−4 but β/H = 7.15× 102.)
Therefore, we suspect that the modified path deformation method of ref. [31] to obtain the bounce solution
of a coupled system fails to yield trustful results.
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sity, which enters into the definition of α, with the vacuum energy density outside of the bub-
ble (as we have already done so above), where ξJ is the wall speed for the Jouguet detonation

ξJ =

√
α(2 + 3α) + 1√

3(1 + α)
. (4.10)

Correspondingly, g∗ in ρrad is the relativistic degrees of freedom in the symmetry phase,
which is not necessarily the same as that at the GW production. So, in our case

g∗ = 106.75 + 1 + 8× 2 +
7

8
× 3× 3× 2× 2 = 155.25 . (4.11)

When calculating the GW spectrum later on, we will be considering an optimistic pa-
rameter space given by

λS = 0.001 , λHS ∈ [0.0001, 0.018] , y ∈ [0.0008, 0.00172] . (4.12)

In this parameter space, α does not change very much:

0.0242 . α . 0.0250 . (4.13)

4.4 Reduction of the sound-wave contribution

As we mentioned above, the sound-wave contribution Ωsw will be the most dominant one
in our model. The formula for Ωswh

2 (see eq. (4.24)) has been derived from the numerical
simulations for which a long-lasting source of the GW, i.e., τswH > 1, is assumed [67], where

τsw ' (8π)1/3 ξw
Ūfβ

(4.14)

is the duration of the sound-wave period, Ūf is the root-mean four-velocity of the plasma,
and ξw stands for the speed of the wall (β is defined in eq. (4.8)). That is, τswH ∝ (β/H)−1,
so that τswH > 1 is unlikely satisfied in our model, because β/H & O(103). In refs. [68, 69]
it has been suggested, for the case that τswH < 1, to use this quantity as a reduction factor
for Ωsw to take into account the fact that the sound wave is an active GW source only for a
period shorter than the Hubble time. Here we follow ref. [68] along with ref. [70] to calculate
τsw and consider throughout the case of detonations of the plasma motion.

The root-mean four-velocity Ūf can be calculated from [70]

Ū2
f =

3

ξ3
w

∫ ξw

cs

dξ
ξ2v2(ξ)

1− v2(ξ)
, (4.15)

where v(ξ) is the velocity profile of the plasma in the frame of the bubble center, and cs is
the speed of sound in the plasma (we assume here cs = 1/

√
3). The velocity profile v(ξ)

satisfies the first-order differential equation [70]

v

ξ
=

1

2

(
1− v ξ
1− v2

)(
µ2(ξ, v)

c2
s

− 1

)
dv

dξ
, where µ(ξ, v) =

ξ − v
1− ξv

. (4.16)

To solve the differential equation (4.16) uniquely, we use v(ξw) as an initial value, i.e., the
plasma speed just behind the wall. Since we focus on the detonations, the plasma in front
of the wall is at rest in the bubble center frame, i.e., v+ = ξw, where v+ is the speed of the
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Figure 8. The reduction factor τswH for Ωsw against the wall speed ξw ≥ ξJ ' 0.691 for α = 0.0245
and β/H = 5× 103, where τsw is defined in (4.14).

plasma in front of the wall in the wall frame (ξw is the speed of the wall in the bubble center
frame). Therefore, the speed of the plasma just behind the wall in the wall frame, denoted
by v−, can be obtained by the Lorentz transformation

− v− =
v(ξw)− ξw
1− ξwv(ξw)

. (4.17)

(The minus sign is introduced, because the plasma velocity in the wall frame has the opposite
direction compared with the wall velocity in the bubble center frame.) Eq. (4.17) can be used
to obtain

v(ξw) =
v+ − v−
1− v+v−

with v+ = ξw , (4.18)

where v± are constrained by the matching equations between the plasma sates in front of
and behind the wall:

ξw = v+ =
1

1 + α

(v−
2

+
1

6v−

)
+

{(
v−
2

+
1

6v−

)2

+ α2 +
2

3
α− 1

3

}1/2
 . (4.19)

So, we obtain v− from eq. (4.19) for a given set of ξw and α and insert it into the r.h.s.
of eq. (4.18) to obtain the initial value v(ξw). Since the minimum value of v− is cs for the
detonations to be realized [70], we find that the minimum value of ξw is just the Jouguet
speed ξJ defined in eq. (4.10). To obtain an idea on the size of τswH, we show τswH in figure 8
as a function of ξw (≥ ξJ) for α = 0.0245 and β/H = 5 × 103. As we see from figure 8, the
reduction factor for Ωsw is of order 10−2 in our model.

4.5 Gravitational wave spectrum

Now we are in position to present the GW spectrum ΩGW of our model. As we have argued,
the area (4.12) is an optimistic choice of the parameter space, and we expect that ΩGW will
be smaller in other regions of the parameter space. The relativistic degrees of freedom in
the expanding Universe enters in the following expressions. It is the relativistic degrees of
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freedom g′∗ at the time, at which the GW background is produced. Therefore, g′∗ varies with
the time, because the tunneling process takes place for a finite period of time. It is certainly
not g∗ that is the one in the symmetric phase (4.11) and has been used for the computation
of α in eq. (4.9). In the following we assume that g′∗ can be approximated by the relativistic
degrees of freedom in the broken phase:

g′∗ = 106.75 + 8 + 1 + 1 , (4.20)

where 8 comes from the NG bosons, and 1 is from σ as well as from S.
Numerical simulations and analytic estimates [58–60, 67, 81–94, 97] of the individual

contributions to ΩGW lead to the following formula:

• Scalar field contribution Ωϕ [83]:

h2 Ωϕ(f) = 1.67× 10−5(β/H)−2

(
κϕα

1 + α

)2(100

g′∗

)1/3( 0.11ξ3
w

0.42 + ξ2
w

)
Sϕ(f), (4.21)

where

Sϕ(f) =
3.8(f/fϕ)2.8

1 + 2.8(f/fϕ)3.8
(4.22)

with the peak frequency

fϕ = 16.5× 10−6(β/H)

(
0.62

1.8− 0.1ξw + ξ2
w

)(
Tn

100 GeV

)(
g′∗

100

)1/6

Hz. (4.23)

• Sound-wave contribution Ωsw [84, 85]:

h2 Ωsw(f) = (τswH) 2.65× 10−6 (β/H)−1

(
κswα

1 + α

)2(100

g′∗

)1/3

ξwSsw(f), (4.24)

where

Ssw(f) = (f/fsw)3

(
7

4 + 3(f/fsw)2

)7/2

(4.25)

with the peak frequency

fsw = 1.9× 10−5ξ−1
w (β/H)

(
Tn

100 GeV

)(
g′∗

100

)1/6

Hz. (4.26)

According to refs. [68, 69], the reduction factor τswH (calculated in section 4.4) is
multiplied in eq. (4.24).

• MHD turbulence contribution Ωturb [93]:

h2 Ωturb(f) = (1− τswH) 3.35× 10−4 (β/H)−1

(
κswα

1 + α

) 3
2
(

100

g′∗

)1/3

ξwSturb(f),

(4.27)
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where

Sturb(f) =
(f/fturb)3

[1 + (f/fturb)]
11
3 (1 + 8πf/hn)

(4.28)

with the peak frequency

fturb = 2.7× 10−5ξ−1
w β̃

(
Tn

100 GeV

)(
g′∗

100

)1/6

Hz , (4.29)

and

hn = 16.5× 10−6

(
Tn

100 GeV

)(
g′∗

100

)1/6

Hz , (4.30)

which is the value (redshifted to today) of the Hubble parameter at the production of
the GW. We have introduced the enhancement factor (1−τswH) in eq. (4.27) and used
the same efficiency coefficient as for the sound-wave contribution [69].

As we have mentioned in various places and we can see now from eq. (4.21), the scalar
contribution Ωϕ is, due to β/H ∼ 103, about 2 orders of magnitude smaller than Ωsw.
Furthermore, the case at hand corresponds to a nonrunaway scenario, in which the fric-
tion between the bubbles in the surrounding plasma prevents the acceleration of the bubble
expansion [70, 98]. To see this, we estimate α∞ according to ref. [70]:

α∞ '
30

24π2g∗T 2
n

[
1

2
nfncM

2(〈S〉, 〈σ〉) +M2
S(〈S〉)

]
∈ (0.078, 0.098) (4.31)

for the parameter space (4.12), where M(S, σ) and MS(S) are given in eqs. (2.9) and (3.5),
respectively. Therefore, α∞ < α ' 0.024 (see (4.13)), so that we have a nonrunaway sce-
nario [70] and ignore the scalar contribution (4.21) in the following discussion.

We use the efficient coefficient κsw given in ref. [70] for Ωsw and also for Ωturb:

κsw(ξw & ξJ) '
χ3
J (ξJ/ξw)5/2 κCκD

(χ3
J − χ3

w) ξ
5/2
J κC + χ3

wκD
, (4.32)

where

χJ = ξJ − 1 , χw = ξw − 1 ,

κC '
α1/2

0.135 + 0.981/2 + α
, κD '

α

0.73 + 0.083α1/2 + α
, (4.33)

and ξJ is given in eq. (4.10). Although Ωsw is reduced by the reduction factor τswH and
Ωturb is enhanced by (1 − τswH) and also by the identification κturb = κsw, the turbulence
contribution Ωturb is about one order of magnitude smaller than Ωsw, because fturb/hn ∼
β/H ∼ 103 that is in the denominator of eq. (4.28); (fturb/hn)−1/(τswH) ∼ 0.1.

As we see from eq. (4.26) the scale of the GW frequency is fixed by the nucleation
temperature Tn. Note that the absolute scale of the critical temperature TC and hence Tn is
fixed through the coupling with the SM sector, i.e., λHS and y. In the left panel of figure 9
we show TC [TeV] and fsw [Hz] against λHS . Obviously, the smaller λHS is, the larger is ΛH
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Figure 9. Left: The critical temperature TC [TeV] (purple) and the peak frequency of the sound-
wave contribution fsw [Hz] (green) against λHS . The area I and II are allowed by LHC (see figure 1).
Right: SNRBBO against λHS with five years observation. The SNRBBO (5 yrs) of the benchmark
points, BP1(purple star) and BP2 (green star), are also plotted.

(the scale of the hidden sector), and consequently higher TC and fsw. The band of fsw is
wider than that of TC , because β/H depends on y (see figure 7) more than TC does. As we
also see from this figure that the GW frequencies in our model are & 0.3 Hz, which can be
covered by DECIGO [72–74] and BBO [75–77].

We calculate the SNR according to ref. [71],

SNR =

√
2tobs

∫ fmax

fmin

df

[
ΩGW(f)h2

Ωnoise(f)h2

]2

, (4.34)

where tobs stands for the duration of an observation in seconds, and (fmin, fmax) is the
frequency range of a given experiment. The quantity Ωnoise(f)h2 represents the effective
strain noise power spectral density for a given detector network, expressed as energy density
parameter [99]. For the space-based observatories mentioned above, we adopt the strain noise
power spectral densities from refs. [100–102]. (We use the sky-averaged sensitivity [101].) The
result,9 SNR against λHS for BBO, is shown in the right panel of figure 9,10 where we assume
that tobs = 5 years and the speed of the wall ξw is equal to the Jouguet speed ξJ given in
eq. (4.10). The SNRBBO (5 yrs) of the benchmark points, BP1 and BP2 defined in (2.21),
are 11.8 and 5.7, respectively, while for DECIGO we find SNRDECIGO (5 yrs) = 1.1 and 0.5,
respectively. Therefore, there is a good chance that the GW signals of our model can be
detected by BBO, where the area I and II are allowed by LHC (see figure 1).

In the left panel of figure 10 we present the GW spectra for BP1 (purple) and BP2
(green) with ξw = ξJ , which should be compared with the power-law-integrated sensitiv-
ity [71] of BBO (red dashed curve) and DECIGO (blue dashed curve), where we assume
that the threshold SNR is 5 (ρthr = 5) with five years observation for both detectors. Since
a part of the spectral curves for BP1 and BP2 runs over the sensitivity curve of BBO, we
see once again that their signals could be detected at BBO, while for DECIGO it would be
very difficult. For comparison we also present the GW spectra (dotted purple and green

9The SNR is computed including the turbulence contribution.
10The effect of unresolvable astrophysical foregrounds from black hole, neutron star and white dwarf mergers

on the signal significance are ignored.
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Figure 10. Left: The GW spectrum for the benchmark points BP1 (purple), BP2 (green) and the
power-law-integrated sensitivity of BBO (red dashed curve) as well as DECIGO (blue dashed curve),
where we assume that the threshold SNR is 5 (ρthr = 5) with five years observation for both detectors.
The GW spectrum is computed including the turbulence contribution, which is about one order of
magnitude smaller than that of the sound-wave contribution. The dotted purple and green lines
present, respectively, the GW spectrum of BP1 and BP2, for which the reduction factor τswH due to
the short sound-wave period is ignored. Right: The ξw dependence of SNRBBO (5 yrs). The Jouguet
speed ξJ is the minimum speed of ξw for detonations. At this speed the SNR becomes maximal.

lines), which we obtain without the reduction factor τswH. We see a difference of 2 orders of
magnitude, whose origin is nothing but τswH ∼ 10−2.

As the last task we consider the dependence of the wall speed ξw, because we have
assumed so far that it is equal to the Jouguet speed ξJ . In the right panel of figure 10 we
show the ξw dependence of SNRBBO (5 yrs). In fact, SNRBBO (5 yrs) assumes the maximal
value at ξw = ξJ , which follows from the fact that the reduction factor τswH decreases as ξw
increases (see figure 8). But there is still a sufficient range in the parameter space, in which
the detectability threshold is exceeded.

5 Summary and conclusion

In this paper we have studied the stochastic GW background produced at the cosmological
chiral PT in a conformal extension of the SM [21, 22] and extended the analysis of ref. [31]. In
particular, we have re-calculated β/H, because β/H in ref. [31] does not approach the pure
NJL value, ∼ 104, as the Yukawa coupling y decreases and for this reason we have suspected
that the modified path deformation method of ref. [31] to obtain the bounce solution of a
coupled system fails to yield trustful results.

Therefore, we have adopted an iterative method (with a reasonable convergence prop-
erty) and found that S3/T can be fitted with a simple function (3.17). Using this fitting
function for the determination of β/H we have obtained β/H ' (4 − 9) × 103 in the op-
timistic parameter space. We also have found that the benchmark point values of β/H
presented in ref. [31] are about one order of magnitude smaller than those calculated by
using the new method.

There are, in the SU(3)V flavor symmetry limit, five independent parameters, λH , λS ,
λHS , y and gH (or the hidden sector scale ΛH), where effectively two of them are used to
obtain mh = 125 GeV and 〈h〉 = 246 GeV. We have systematically narrowed the parameter
space, giving smaller values of β/H than that of the pure NJL model and hence larger (di-
mensionless) spectral GW energy density ΩGW. Obviously, ΩGW will be smaller in other
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regions of the parameter space. In this optimistic parameter space (with λS ∼ 10−3) the
singlet scalar S can become as light as the Higgs h, and therefore we have taken into account
the LHC constraint on their mixing: There are two allowed regions for λS = 0.001 that are
denoted by I (for mS < mh) and II (for mS > mh). We remark that for this optimistic
parameter space in the SU(3)V flavor symmetry limit no realistic DM relic abundance can
be obtained because the resonant condition (mS ' 2mDM) in the s-channel of the DM anni-
hilation can not be realized [17]. (In the model studied in ref. [31] the flavor group SU(3)V is
unbroken and the hidden fermions have no U(1)Y charge.) This is why we have considered
the model with a finite U(1)Y charge for the hidden fermions and have explicitly broken
SU(3)V down to SU(2)V ×U(1) to apply the mechanism of ref. [22] to obtain a realistic DM
relic abundance. But for the analyses of the GW background spectrum we have considered
the SU(3)V limit, because it is only marginally broken and we would have had to deal with
three variables (instead of two) to find a bounce solution.

The fact, β/H ' (4 − 9) × 103, implies a short duration time of the first-order chiral
PT, much shorter than the Hubble time, and consequently a short sound wave period τsw

as an active GW source; τswH ∼ 10−2. Then following refs. [68, 69] we have used τswH as
the reduction factor for the sound wave contribution Ωsw, which is nevertheless the most
dominant contribution to ΩGW. We have evaluated the SNR for DECIGO and BBO and
found that SNRDECIGO . 1.2 and SNRBBO . 12.0 with five years observation, from which
we conclude that the GW signal predicted by the model in the optimistic case could be
detected at BBO.11

At last we recall that the results obtained by using effective theory methods to study the
GWs produced at a first-order PT in strong-interacting QCD-like theories agree with each
other only qualitatively [61] and for a more precise determination of the GWs we need first-
principle calculations (like lattice simulations) which may become available in future [104].
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