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Abstract. In the paper a new method for studying the properties of deformable bodies with 
coatings is developed. We considered two models of the foundation: a homogeneous elastic 
layer with clamped lower edge and a two-layer packet containing a flat rigid inclusion located 
in the plane of the substrate elastic properties. We used the method of eigenfunctions in the 
study of the problem concerning steady-state oscillations of a deformable material with a 
cracked coating. For a foundation that does not contain defects, we described a method for the 
determination of main parameters characterizing the stress-strain state of a structure with a 
cracked coating composed of two long plates. We considered a continuous coating for the 
model of defective foundation. In the course of our study we obtained the relations for 
determining the characteristics of the stress-strain state of coating/substrate systems as well as 
presented an example of the application of the method for studying edge effects near the 
junction boundaries of a composite coating. 

1.  Introduction 
The widespread use of composite materials in engineering practice, which often have coatings, 
requires consideration of the specific features of their mechanical behavior. In the study of the stress-
strain state of bodies with composite coatings, the development of mathematical methods that 
sufficiently describe surface phenomena and edge effects near the junction boundaries of the coating 
plates and shells is a particularly relevant problem. Nowadays, direct numerical methods are widely 
used [1–4, etc.], however, their application in case of extended bodies causes difficulties due to the 
unlimited nature of the region covered by the perturbation. 

The paper presents a method for studying the properties of deformable bodies with coatings. We 
considered two models of the foundation: a homogeneous elastic layer with a clamped lower edge and 
a two-layer packet containing a flat rigid inclusion located in the plane of the substrate elastic 
properties differentiation. For a foundation that does not contain defects, we described a method for 
the determination of main parameters characterizing the stress-strain state of a structure with a cracked 
coating composed of two long plates. We considered a continuous coating for the model of defective 
foundation. 

Often in various applications the problems associated with the study of a particular mode of 
oscillation in the system emerge. The purpose of the study is the solution of three-dimensional 
problems on steady-state oscillations of extended, deformable media with coating. For the steady-state 
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oscillations with a given frequency  , the dependence on time of all unknown and given functions of 
the problem is described by a factor  exp i t  . Coating elements are modeled by Kirchhoff plates 
with parameters averaged over thickness [5, 6]. The middle plane of the coating is located in the x1Ox2 
plane of the Cartesian coordinate system, the Ox3 axis is directed upwards. Oscillations of Kirchhoff 
thin plates that are in ideal contact with a deformable foundation are described by a linearized system 
of differential equations for the displacements of the middle surface [5]. The harmonic load specified 
on the surface of the coating / foundation system is considered as a source of oscillations. The paper 
proposes algorithms for solving the problems on elastic bodies with coatings using factorization 
methods. 

2.  The problem of oscillations of the cracked coating on an elastic foundation  
We are investigating the vibration of a coating / foundation system driven by a localized surface force. 
The composite coating consists of two plates occupying half-planes with a crack at the interface, along 
which the Ox2 axis is directed (figure 1).  
 

 
 
 
 
 
 
 
 
 
 
Figure 1. The structure of an elastic medium with a composite coating under the influence of localized 

surface load 
After the separation of the time factor, the equations of plate’s displacement [5] take the form 

        1 2 1 2 1 2 1 2, , , ,j j j j jx x x x x x x x   R u E g b , 1 jx  , 2 Rx  . (1) 

In (1) for the j-th plate, the elements of matrix differential operators  1 2,j x x R   1, 2j   are 

given as: 
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 , j  – density, j  – Poisson's ratio, jE  – Young's 

modulus, jh  – thickness,  1 2 3, ,j j j ju u uu  – the displacement amplitude vector of the middle plane, 

which is a function of coordinates  1 2,x x ;  5 5 5diag , ,j j j j  E    ,  j jkgg  describes the effect 

on the plate from the side of the foundation; 5j j j b t ,  j jktt , 1,3k   – vector of surface load; 

 1 1 1:0x x     ,  2 1 1: 0x x     . 
On the surface of the foundation (an elastic layer of thickness H with a rigidly fixed lower 

boundary), the amplitudes of displacements u and stresses g are related by equation 
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         
1 2

1 2 1 2 1 2 1 1 2 2 1 22

1, ,0 , , ,0 exp i d d
4

x x x x   u K G
 

       


, (2) 

where 3

, 1nm n m
K


K  – the Green matrix of the foundation, which has a clear representation and 

depends on the elastic parameters of the layer, its thickness and vibration frequency; 2VG g , 2V  – 
two-dimensional Fourier transform integral operator. The form of Green matrices K for various elastic 
media and methods for their construction are presented in [7, etc.]. The estimated steady-state nature 
of the foundation vibrations requires the fulfillment of conditions ensuring the uniqueness of the 
solution. In the work we use the principle of limiting absorption [7] to determine the position of the 
contours 1 , 2  in the complex plane. 

The formulation of the problem is complemented by boundary conditions in the area of contact 
between the components of the composite coating ( 1 0x  , 2x    ) to describe various types of 
interaction between them 

          1 1 2 1 2 2 1 2 2 2 20 0x , x ,x x , x ,x x     L u L u f , (3) 

where the forms of differential operators  1 2j x , x L   1,2j   and the function f are given. 
Full adhesion of the coating to the elastic foundation is considered 

   1 2 1 2j x ,x x ,xu u ,    1 2 1 2j x ,x x ,xg g , 1 jx  , 2 Rx  . 

In the work [8], a method for solving the described problem, based on the transformation of its 
differential operator, is demonstrated. Such an approach is not the only possible one. 

The geometry of the problem and the use of the linear theory of elasticity for the system allows us 
to use the integral Fourier transform (in relation to variable 2x ) for solving the problem, reducing (1) 
to the system of ordinary differential equations (ODE) for Fourier transform images with the 
parameter 2  

        1 2 1 2 1 2 1 2j j j j jx , i x , x , x ,   R u E g b    , 1 jx  , 2 R ,  (4) 

where 1 2j , . 
When constructing general solutions of a system of homogeneous ODEs, one should choose those 

that are limited in the right  1j   and left  2j   half-planes and meet the requirements of the 

principle of limiting absorption     j j
k kmv v . As a result, having performed the Fourier transform in 

relation to 1x , we arrive at the following representation for the integral characteristics of the plates 
displacements 

               
4

1
1 2 1 2 1 2 1 2 2 1 2

1
, , , , ,j

j j j j j jk k
k

i i C




       U R E G B V           . (5) 

Denoting by  1V   the operator the Fourier transform in relation to variable 1x  can be written in 

the form        1 1 2V ,j j
k k xV v  . Here, the superscript of the symbol «  » corresponds to the value 

1j   (right plate), the subscript to 2j   (left plate) and defines a vector function that is regular above 
(+) and below (–) the contour 1 . 

The boundary conditions for the joining of the coating and the foundation (3) in two-dimensional 
Fourier symbols are written as 

      1 2 1 1 2 2 1 2, , , U U U      ,      1 2 1 1 2 2 1 2, , , G G G      , (6) 
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2Vj jG g , 2Vj jU u . 

From the relations for jU  (5) and the conditions at the boundary of the coating and the foundation 

(6), we can obtain the functional-matrix equation with respect to  1 1 2 1, G G  ,  2 1 2 2, G G   
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j
i i  R    

positioned above the contour 1  (with respect to the variable 1 ) are denoted by  1 2lq  , those 

positioned below the contour 1  –  2 2lq  ,      1
1 2 1 2 1 2, , ,j j ji i      K K R E      . 

Equation (7) is reduced to the system of loaded Wiener – Hopf equations [9, 10] solved by the 
factorization method. After substituting the obtained relations for jG  in (5), the expressions for the 

Fourier transformants of displacement amplitudes will contain unknown  2lkC  , 1,2l  , 1,4k  , 
determined from the boundary conditions specified at the interface of the plates (3). The inverse 
Fourier transform is performed numerically using matrix function K  approximation. 

The described approach is used for a simplified model. A solution is constructed for the scalar case 
of vertical oscillations of a plate system on an elastic layer with a clamped lower boundary. A focused 
source of external influences is described by a function    0

13 1 1 exp it A x x t    , 0
1 1x  . 

Representations (5) for the integral characteristics of the displacements in this case take the form 
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Relations (8) are used for numerical modeling of the system oscillations under the condition of 
constant properties in the direction of the axis 2Ox (figures 2, 3).  
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Figure 2. Real parts of the surface displacement amplitudes for more rigid foundation 

At the junction of the plates of equal thickness, the bending moments are equal to zero 
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 
2

212 1
j j

j
j

E h
D 


, 0,5k  . Figure 2 

shows the graphs of the real parts of the surface displacement amplitudes for the 2,5  and given 
model dimensionless characteristics of the base: 1 064, , 1 579, , 0,25 . The frequency is 
determined by the formula 2 2 2 1a    , where   is the density of the foundation,   is the 
modulus of displacement, a – the characteristic linear dimension, 0 5x  . For plates, the following 
characteristics are accepted: 1 2 1   , 1 2 0,125   . The foundation material is more rigid than 
the material of the right plate. Figure 3 corresponds to the case when the substrate material is less rigid 
than the material of the right plate: 0 67, , 0,125 . The boundary conditions and values of other 
parameters are as before. 

Calculations were carried out for different ratios of plate rigidity: 2 1 0,2   at the top, 
2 1 1   in the middle, 2 1 5   at the bottom. 
The calculations illustrate the dependence of the wave process on the surface of the structure under 

consideration from the properties of the foundation, parameters of the plates and the nature of their 
interaction at the interface. Test calculations for the ideal contact of the plates and their properties 
coinciding with the properties of the substrate, correspond to the surface wave pattern for an elastic 
strip. In addition, the numerical results are in agreement with those obtained by another method (based 
on the transformation of the problem differential operator) presented in [8]. 
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Figure 3. Real parts of the surface displacement amplitudes for less rigid foundation 

3.  The problem of oscillations of the cracked coating on an elastic foundation  
We also consider the problem of steady-state harmonic oscillations of a two-layer packet bounded by 
planes bounded by the planes 3 0x  , 3x H  . Layers are considered homogeneous and infinitely 
extended. The properties of each of the foundation layers are characterized by the elastic constants j , 

j  and material density j   1,2j  . The motion of the elastic foundation points is described by the 

displacement amplitude vector  j jnuu   1,3n 
 
satisfying the homogeneous system of Lame 

equations. The lower boundary of the package is rigidly clamped 1 0u . In the plane of separation of 
the layers ( 3 1x h  ) there is an inclusion occupying the area 1 , stresses  1 1 2 1 0x ,x , h     , 

 1 1n
    act on the surfaces, and the displacements are determined by vectors  1 1 2 1 0x ,x , h   u u . 

In the inclusion area 1 , equal displacements are set on both faces, 3 1x h  : 1 1
 u u ,  1 2 1,x x  . 

Outside the inclusion area in the interface plane displacements and stresses are continuous, 

 
 

1 2 1

1 1

1 1 2 1

0, , ,

, , .

x x

x x
 



   


 


 

Here, the stress-jump on the inclusion is indicated by 1
 . This type of defect can be attributed to 

the vibration-strength «viruses» of class 1 [11]. 
To construct the relations that connect displacements and stresses on the surface of a foundation 

with a defect, a generalization of the integral approach is used – the differential factorization method 
[7], which allows to take into account the mutual influence of the physic and mechanical and 
geometric parameters of the problem. The advantage of this approach is its close connection with the 
method of integral transformations in structures with parallel flat boundaries. The technique of 
representing the integral characteristics of displacements and stresses for multilayer media with 
inclusions and cracks is described in [11, 12, etc.], as a result of its application, we arrive at a system 
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of functional-matrix equations for Fourier transforms of stresses  2 2 1 2 2V , T    , displacements 

 2 1 2V ,j j
 U u   and stress-jump in the inclusion area     

1

* *
1 1 1 2 1 1 2 2 1 2, exp i d dx x x x x x



 T   : 

11 1 11 2 1
*   R T W T U , 3 1x h  , 

21 1 22 2 2
*   R T K T U , 3 0x  . 

Here, the elements of the matrixes 11R , 11W , 21R , 22K  depend on the frequency , the geometric 
and physicomechanical characteristics of the elastic layers and the Fourier transform parameters [13]. 

The relations for the amplitudes of the surface displacements will take the form 

     
1 2

*
2 1 2 21 1 22 2 1 1 2 2 1 22

1, ,0 exp i d d
4

x x x x       u R T K T
 

   


. (9) 

If the plate-coating is coupled with a deformable foundation, i.e.    1 2 2 1 2 0x ,x x ,x ,u u , 

   1 2 2 1 2, , ,0x x x xg  , by substituting the integral representation of the displacements of the 
foundation surface (9) into the equations of motion for the coating, we obtain 

         
1 2

1 2 22 1 2 1 2 1 1 2 2 1 22

1 , , , exp i d d
4

i i x x       R K E G
 

         


 

      
1 2

*
1 2 21 1 1 1 2 2 1 2 1 22

1 i , i exp i d d ,
4

x x x x       R R T b
 

     


. 

The obtained representations allow us to construct a system of integral equations of the considered 
problem for 1

*  and g  

   11 1 1 12 1R*  g uK K , 3 0x  ,  1 2 1x ,x  ; 

   21 1 1 22 R* g bK + K , 3 0x  ,  1 2, Rx x  . 

Here we use the notation 

     1 1 2 2 1 2 1 2, , d djk x x


   q k q     K , 

      
1 2

1 2 1 2 1 1 2 2 1 22

1, , exp i d d
4jk jkx x x x   k K

 

     


, , 1, 2j k  , 

11 11K R , 12 11K W ,  21 1 2 21i i,  K R R  ,    22 1 2 22 1 2i i, ,   K R K E    . 

Thus, for a foundation with a rigid inclusion type defect, the application of the differential 
factorization method algorithm necessitates solving a system of integral equations of the first kind 
connecting displacements at the interface of the layers and in the contact plane of the coating and the 
substrate with a jump of stresses in the inclusion area whose solutions for particular cases of defects 
areas can be constructed using factorization [14] and variational iteration [15] methods. 

4.  Conclusion 
In this paper we considered two models of the base: a homogeneous elastic layer with a clamped lower 
edge and a two-layer packet containing a flat rigid inclusion in the interface plane. We used the 
method of eigenfunctions and factorization method in the study of the problem concerning steady-state 
oscillations of a deformable material with a cracked coating. The proposed approach allows us to 
study the influence of the properties of the plates and the base, as well as the different contact 
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conditions of the coating elements on the characteristics of the stress-strain state of the system under 
consideration. For defective base considered a continuous extended coating. 

The application of the theory of vibration-strength «viruses» [6] allows us to construct a Green 
matrix for a substrate with multiple inclusions located in parallel planes. The relevance of the research 
is determined by the need to build and develop mathematical models to describe wave processes in 
structures and materials with coatings. Their results can be applied for studying the interaction of 
geological structures, as well as the processes of vibration of structural elements of engineering 
constructions. 
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