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Abstract. The approximation of concrete function classes is the most
common subject in the theory of approximations of functions. An impor-
tant particular case of this is the problem of the Chebyshev centre and
radius. As it turns out, this problem is not only a special case of the
Kolmogorov width problem, but it is also related in a mysterious way
to other important characteristics and results in the theory of functions
and other more general branches of analysis and geometry. The aim of the
present study is to give a survey of the current state of this problem and
to discuss its possible applications.
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Chapter I

Chebyshev centre of a set

In this chapter we shall consider the problem of approximating a set by a class
of sets. In this problem it is not only an evaluation of the approximation that is
important but also a set that best approximates this class (an optimal set). In
particular, for the class of singletons we arrive at the Chebyshev centre problem
and the Chebyshev radius problem. The Chebyshev net problem appears if we
consider the class consisting of nets of cardinality n (n-nets). For the class of all
n-dimensional planes, the problem becomes the Kolmogorov width problem.

We shall be mostly concerned with the Chebyshev centre problem. In this prob-
lem, one searches for a point which best approximates (represents) a given set. Such
a problem is naturally related to the practical situation when optimal estimates are
required, for example, in settings when in a mathematical model a physical process
is represented by some unknown point x in a space X. Suppose that from certain
experiments or observations some estimates (possibly with errors) of a point x are
known (for example, x is known to lie in a set M). The available information is
usually insufficient for precise determination of the point x. In this setting, an
element x̂ which best approximates (represents) the set M is called a Chebyshev
centre of the set M . The Chebyshev centre problem is sometimes called the problem
of best simultaneous approximation. It is clear that in this problem the set M is
necessarily bounded.
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1. Basic definitions and some results

Definition 1.1. For a non-empty bounded subset M of a metric space (X, ϱ), the
quantity diamM = supx,y∈M ϱ(x, y) is called the diameter of M , and

rM := r(M) := inf
{
a ⩾ 0 | x ∈ X, M ⊂ B(x, a)

}
is called the Chebyshev radius of M . A point x0 ∈ X for which M ⊂ B(x0, r(M)) is
called a Chebyshev centre of M . (Here and below, B(x, r) is the ball with centre x
and radius r, and B̊(x, r) is the open ball.)

Thus, a Chebyshev centre of a bounded subset of a normed space is the centre
of a ball of smallest radius containing this set; in other words, a Chebyshev centre is
a point in the space that ‘best approximates’ the entire set. The radius of this ball
is the Chebyshev radius of this set.

In general, a Chebyshev centre is not unique. By Z(M) we denote the set of all
Chebyshev centres1 of a bounded set M . The (set-valued) operator

M 7→ Z(M) (1.1)

is called the Chebyshev-centre map.

Example 1.1. The Chebyshev centre of an acute-angled triangle in the Euclidean
plane R2 is unique and lies at the centre of the circumscribed circle. The Chebyshev
centre of an obtuse-angled triangle in R2 lies at the middle of the largest edge.

Example 1.2. On the plane ℓ∞2 with max-norm, the set of Chebyshev centres of
the set M := {(λ, 0) | |λ| ⩽ 1} is the closed interval {(0, µ) | |µ| ⩽ 1}.

It is clear that the set Z(M) is bounded, closed, and convex (see Proposition 1.1
below); moreover, Z(M) has no interior points.

In some practical cases, the Chebyshev centre problem has to be solved under
constraints on the centres of the balls under consideration (for example, the centres
are frequently supposed to lie in a subspace, or in a more general setting, in a convex
set). This leads to the relative Chebyshev centre problem.

Throughout, X is a real normed linear space.

Definition 1.2. Given a non-empty bounded subset M of X and a non-empty set
Y ⊂ X, the quantity

rY (M) = inf
y∈Y

r(y,M),

where
r(x,M) := inf{r ⩾ 0 |M ⊂ B(x, r)} = sup

y∈M
∥x− y∥,

is called the relative Chebyshev radius (of M with respect to Y ).
The set of relative Chebyshev centres is defined by

ZY (M) := {y ∈ Y | r(y,M) = rY (M)}. (1.2)
1The use of the letter Z is traditional, and comes from the German Zentrum for centre.
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Thus, the set of relative Chebyshev centres ZY (M) consists of the points y in Y
such that any ball of smallest possible radius rY (M) with centre at y contains M .
For Y = X we get the definitions of a Chebyshev centre and the Chebyshev radius.
If M = {y}, then r(x,M) = ∥x− y∥, rY (M) = ρ(y, Y ) is the distance from y to Y ,
and the relative Chebyshev-centre map ZY (M) is the metric projection on Y of the
point y.

It is clear that the set of Chebyshev centres ZY (M) is closed in Y . Moreover,

rY (M) = rY (M), ZY (M) = ZY (M).

The self Chebyshev radius of a set M ,

rM (M) := rscM := inf
x∈M

r(x,M), (1.3)

is a particular case of the relative Chebyshev radius.2 The set of self centres of M is
defined by

Zsc
M (M) := Zsc

M := {x ∈M | r(x,M) = rM (M)}. (1.4)

The following inequalities are clear:

diamM ⩽ 2r(M) ⩽ 2 diamM,

|r(x,M)− r(y,M)| ⩽ ∥x− y∥ ⩽ r(x,M) + r(y,M)
(1.5)

for any set ∅ ̸= M ⊂ X and any x, y ∈ X. Next, if cM ∈ Z(M) and cN ∈ Z(N),
then

∥cM − cN∥ ⩽ r(M) + r(N) + d(M,N), (1.6)

where M,N ⊂ X and d(M,N) := supx∈M ρ(x,N) is the deviation of the set M
from the set N . It is easily checked that these inequalities are sharp. Further, it
can easily be verified that

rM (M) ⩽ diamM ⩽ 2 r(M) (1.7)

for any M ⊂ X.
In general, the sets Z(M) and ZM (M) can be ‘quite large’: one can construct

(see Example 3.1 below) a non-singleton set M such that diam Z(M) = 2r(M) and
diam ZM (M) = diamM .

The following properties follow from the continuity and convexity of the distance
function y 7→ ∥y − x∥:

r(x,M) = r(x,M) = r(x, convM) = r(x, convM), (1.8)

rY (x,M) = rY (x,M) = rY (x, convM) = rY (x, convM),

Z(M) = Z(M) = Z(convM) = Z(convM),

ZY (M) = ZY (M) = ZY (convM) = ZY (convM),

Z(M) = Z(br(M)), where br(M) =
⋂

M⊂Π
Π is a closed span

Π; (1.9)

2The acronym ‘sc’ refers to ‘self centre’.
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here a span is a set N such that [[x, y]] ⊂ N if x, y ∈ N , where [[x, y]] :=
{
z ∈ X |

min{φ(x), φ(y)} ⩽ φ(z) ⩽ max{φ(x), φ(y)} ∀φ ∈ extS∗
}
, and here and below,

extS∗ is the set of extreme points of the unit sphere S∗ of the dual space X∗.
A similar analysis shows that

Z(M) = Z(m(M)), where m(M) =
⋂

M⊂B(y,r)

B(y, r)

(m(M) is the Banach–Mazur hull of a set M). In the (relative) Chebyshev centre
problem one can thus assume without loss of generality thatM is non-empty, closed,
and convex.

It is easily seen that

M ⊂ convM ⊂ convM ⊂ br(M) ⊂ m(M), (1.10)

and in addition,

Z(M) = Z(convM) = Z(convM) = Z(br(M)) = Z(m(M)). (1.11)

For a subspace Y it follows that:

ZY (M + y) = ZY (M) + y, y ∈ Y ; (1.12)
ZY (x, αM) = |α|ZY (x,M); (1.13)

if x0 ∈ Y, then {x0} = ZY (M) ⇐⇒ {0} = ZY (M − x0); (1.14)
if α ⩾ 0, then {0} = ZY (M) ⇐⇒ {0} = ZY (αM). (1.15)

It is clear that

Z(M) =
⋂

x∈M

B(x, r(M)) (1.16)

and

ZV (M) =
⋂

x∈M

B(x, rV (M)) ∩ V (1.17)

for an arbitrary non-empty subset V of X. Taking into account that a closed ball
is a closed bounded span (see [2], § 9,1) and that an intersection of spans is a span,
we get that

Z(M) is a closed bounded span, (1.18)
ZV (M) is the intersection of a closed bounded span with V .

From (1.16) it follows that
m(Z(M)) = Z(M).

The next result is an easy corollary of (1.17).

Proposition 1.1. If Y is a convex set in X and M ⊂ X is a non-empty bounded
set, then the set ZY (M) is convex.
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The relation of Chebyshev centres to spans will be considered in more detail
in § 2.

The width of a set (see the definition after Theorem 4.2) is a natural extension
of the definition of the Chebyshev radius. Unfortunately, here we cannot discuss
this question in more detail.

Another important and useful generalization of the definition of a Chebyshev
centre is the concept of a Chebyshev net of cardinality n (a Chebyshev n-net, a best
n-net) and the related concept of the entropy of a set.

Definition 1.3. Let n ∈ N. By a net of cardinality n we mean any system Nn =
{y1, . . . , yn} of n (not necessarily distinct) points in X, and the covering radius of
a set M ̸= ∅ by a net Nn is defined by

R(M,Nn) := sup
x∈M

min
1⩽i⩽n

∥x− yi∥.

By a Chebyshev (or a best) net of cardinality n for a set M we mean a net
N∗n = {y∗1 , . . . , y∗n} of cardinality n such that R(M,N∗n) = inf R(M,Nn), where the
infimum is taken over all possible nets of cardinality n in X. Thus, R = R(M,N∗n)
is the radius of best covering of the set M by n balls of equal radius R.

Of course, the Chebyshev centre problem (that is, the problem of covering a set
by a ball of smallest possible radius) is a particular case of the Chebyshev n-net
problem.

The phrase ‘best net of cardinality n’ was used in an oral discussion of Kolmo-
gorov’s 1936 paper [100] on widths.

The Chebyshev n-net problem is a fortiori more involved than the Cheby-
shev centre problem even in the Euclidean setting — cf. the well-known spherical
design problem (the problem of best distribution of a finite number of points on
a sphere) [162].

In contrast to the Chebyshev centre problem, a Chebyshev n-net may not be
unique even in a Euclidean space; moreover, some points of this net may lie outside
the closed convex hull of the set under consideration. For some sets, best n-nets
can be found analytically for small n (see [150]).

Note that if a sequence (Mn) of sets converges in the Hausdorff metric to a set M
and if Rn is the best covering radius of Mn, n = 1, 2, . . . , then limRn = R, where
R is the radius of best covering of M .

Another extension of the definition of a Chebyshev centre is the concept of
a Chebyshev point (see [28]).

Definition 1.4. Given a normed linear space X, consider a system of sets {Gα |
α ∈ A} for which the quantity R(y) := supα∈A ρ(y,Gα) is finite for any y ∈ X.
A point y∗ ∈ X for which R(y∗) := infy∈X R(y) is called a Chebyshev point for this
system of sets.

A Chebyshev centre of a set can be looked upon as a Chebyshev point of a system
of singletons. Further, if x∗ ∈ X∗, x∗ ̸= 0, c ∈ R, and H := (x∗)−1(c) = {x ∈ X |
x∗(x) = c} is a closed hyperplane, then for any x ∈ X the distance from x to H
is given by the well-known formula ρ(x,H) = |x∗(x) − c|/∥x∗∥. This observation
shows that the concept of a Chebyshev point of a system of sets is an extension of
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the concept of a Chebyshev point of an (inconsistent) system of linear equations
(see [169]).

Some problems on the existence of a Chebyshev point of a system of hyper-
planes of any cardinality in a finite-dimensional space and on the uniqueness of
a Chebyshev point for a system of balls were solved by Belobrov [28], [31].

As another generalization of a Chebyshev centre, we mention the Steiner point.
In a real Banach space (X, ∥ · ∥), the set of Steiner points for any given n-tuple
{x1, . . . , xn}, n ⩾ 3, of points in X is defined by

Stn(x1, . . . , xn) =
{
s ∈ X

∣∣∣∣ n∑
k=1

∥xk − s∥ = inf
x∈X

n∑
k=1

∥xk − x∥
}
.

Steiner points are also called Fermat points, Lamé points, or medians. The corre-
sponding Steiner map Stn : Xn → X of the space Xn = {(x1, . . . , xn) | xk ∈ X}
with norm ∥(x1, . . . , xn)∥n = ∥x1∥+ · · ·+ ∥xn∥ to X is, in general, set-valued, and
its domain may not be the whole of Xn.

For a Hilbert space X and n = 3, a Steiner point s(x1, x2, x3) exists and is
unique — it lies in the plane spanned by the points x1, x2, x3 and either coincides
with one of these points (if one of the angles in the triangle x1x2x3 is at least 120◦)
or coincides with the Torricelli point (at which each side of the triangle subtends
an angle of 120◦); see [25].

Steiner points need not exist even for three-point subsets M3 of a normed linear
space. The first example of such a space X and a set M3 was constructed by
Garkavi [73] (for other examples, see [153], [20], [124], [38]). Veselý [153] proved
that any non-reflexive Banach space X can be equivalently renormed so that some
triple of points M3 ⊂ X has no Steiner point in the new norm. Kadets [91] proved
this result using a different method. At the same time, in any Banach space X that
is 1-complemented in its second dual (in particular, in any reflexive space, as well
as in any space L1), the set Stn(x1, . . . , xn) is non-empty for any n-tuple of points
xk and any natural number n. Bednov, Borodin, and Chesnokova [25] investigated
the problem of the existence of Lipschitz selections of the Steiner map Stn (which
associates with any n points of a Banach space X the set of their Steiner points) in
dependence on the geometric properties of the unit sphere S of X, the dimension
of X, and the number n.

Below in this chapter we shall be mainly concerned with the Chebyshev centre
problem.

Klee [99] and, independently, Garkavi [71] proved that (some) Chebyshev centre
of any bounded subset M of a space X lies in the closed convex hull of the subset
if and only if X either is a Hilbert space or has dimension at most two. Garkavi
showed that this result also holds if one considers only three-point sets. For any
closed convex bounded subset of a Hilbert space, a Chebyshev centre exists, is
unique, and lies in the subset (Theorem 4.4 below). Garkavi [70] showed that each
bounded subset of a Banach space X has at most one Chebyshev centre if and only
if X is uniformly convex (or uniformly rotund ) in every direction (that is, for each
z ∈ X and any ε > 0, there exists a δ = δ(z, ε) > 0 such that if ∥x1∥ = ∥x2∥ = 1,
x1 − x2 = λz, and ∥x1 + x2∥ > 2 − δ, then |λ| < ε). Belobrov [30] extended this
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condition by considering spaces in which the set of Chebyshev centres of any set
has dimension at most r <∞. Let us dwell on these results in more detail.

We first consider the space Rn: the Chebyshev centre (of a non-empty bounded)
subset of Rn exists, is unique, and lies in the convex hull of the subset; see Theo-
rem 4.4 below.

Theorem 1.1. The Chebyshev radius of a set M ⊂ Rn of diameter ⩽ 2 is bounded
above by

√
2n/(n+ 1). This estimate is attained if and only if the closure of M

contains the vertices of a regular n-dimensional simplex with edge length 2.

Proof. Without loss of generality it can be assumed that the set M is closed
(see (1.8)). By Helly’s classical theorem (see, for example, [128], § 1.10) if, for
any n + 1 points in M , the balls of radius r = r(M) with centres at these points
have non-empty intersection, then the balls of the same radius with centres at all
the points of M also have non-empty intersection. It thus suffices to consider the
case when M consists of at most n + 1 points. Let us show that r = r(M) ⩽
R :=

√
2n/(n+ 1). In Rn, the (unique) Chebyshev centre y lies in the convex hull

of M . In addition, we claim that the point y lies in the convex hull of the set
M0 := {x ∈ M | ∥x − y∥ = r} = M ∩ S(y, r). If this were not so, then it would
be possible to strictly separate the point y and the set M0 by a closed hyperplane.
We drop the perpendicular [y, y0] to this hyperplane. The distance from a point
z ∈ (y, y0] to the set M0 is less than r. Moreover, the distance from y to any point in
the set M \M0 is also less than r. Hence, the interval (y, y0) has a point z at a dis-
tance less than r from M . But this contradicts the choice of r. By Carathéodory’s
theorem, there exist points {xi}m

i=0 ⊂ M0 such that ∥xi − y∥ = r (m ⩽ n), and
there exist numbers {αi}m

i=0 ∈ R+ such that
∑m

i=0 αi = 1 and
∑m

i=0 αixi = y. Note
that aij = ∥xi − xj∥ ⩽ 2 . We can assume without loss of generality that

y = 0 =
m∑

i=0

αixi. (1.19)

By the law of cosines,
a2

ij = 2r2 − 2(xi, xj). (1.20)

Hence, for each j

1− αj =
∑
i ̸=j

αi ⩾
m∑

i=0

αia
2
ij

4
(1.20)
=

r2

2
− 1

2

( m∑
i=0

αixi, xj

)
(1.19)
=

r2

2
.

Summing these equalities over j = 0, . . . ,m and using
∑m

i=0 αi = 1, we obtain

m ⩾
(m+ 1)r2

2
, and hence r ⩽

√
2m
m+ 1

⩽

√
2n
n+ 1

= R.

The case r = R implies that m = n and aij = 2, and so the points {xi}m
i=0 form

the vertices of a regular n-dimensional simplex with edge length 2 . □

As a corollary, the Jung constant of the space Rn (see § 11 below) is

J(Rn) =
√

n

2(n+ 1)
.
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2. Chebyshev centres and spans

A segment [[x, y]] in a normed linear space X is defined as (see [2])

[[x, y]] :=
{
z ∈ X | min{φ(x), φ(y)} ⩽ φ(z) ⩽ max{φ(x), φ(y)} ∀φ ∈ extS∗

}
=

{
z | φ(z) ∈ [φ(x), φ(y)]

}
, (2.1)

where extS∗ is the set of extreme points of the unit sphere S∗ of the dual space X∗.
In fact, if a subset A ⊂ extS∗ is such that A ∪ (−A ) = extS∗, then

[[x, y]] =
{
z ∈ X | f(z) ∈ [f(x), f(y)] ∀ f ∈ A

}
.

For example, for X = C(Q) it is convenient to take the point evaluation functionals
(φ 7→ φ(t)) as A . In this case, for any φ,ψ ∈ C(Q)

[[φ,ψ]] =
{
g ∈ C(Q) | g(t) ∈ [φ(t), ψ(t)] ∀t ∈ Q

}
.

With any set A ⊂ extS∗ for which A ∪ (−A ) = extS∗, one can associate the
linear map c : X → c(X) that takes any x ∈ X to the function c(x) : A → R defined
by x(x∗) = x∗(x) for x∗ ∈ A . Thus, c(X) is the space of continuous functions on A
which are the restrictions to A of the continuous linear functionals from X acting
on X∗. We equip c(X) with the uniform norm:

∥c(x)∥ = sup
x∗∈A

|x(x∗)|.

As a result, the map c : X → c(X) is an isometry. It will be convenient to iden-
tify a point x with its image c(x) and a set E ⊂ X with c(E). Moreover, the
ball B(x,R) is identified with the set b(x,R) := c(B(x,R)). Since B(x,R) :=
{y ∈ X | |x∗(y − x)| ⩽ R for any x∗ ∈ extS∗}, we have

b(x,R) = [[x−R, x+R]]
= {y ∈ X | x(x∗)−R ⩽ y(x∗) ⩽ x(x∗) +R, x∗ ∈ extS∗}
= {y ∈ X | x(x∗)−R ⩽ y(x∗) ⩽ x(x∗) +R, x∗ ∈ A }
= {c(y) | c(x)−R ⩽ c(y) ⩽ c(x) +R}.

The set m(E) :=
⋂

E⊂B(x,R)B(x,R) (the Banach–Mazur hull of the set E) is
identified with the set

m(c(E)) =
⋂

c(E)⊂b(x,R)

b(x,R).

Recall that a set E with ∅ ̸= E ⊂ X is called a span (see [2]) if

[[x, y]] ⊂ E for all x, y ∈ E.

Any closed ball is a closed span.

Definition 2.1. Recall that a function f : X → R∪{+∞} is lower semicontinuous
if it satisfies any one of the following equivalent conditions:

a) the set {x ∈ X | f(x) ⩽ α} is closed in X for any α ∈ R;
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b) the set {x ∈ X | f(x) > α} is open in X for any α ∈ R;
c) the epigraph epi f of f is closed in X × R.
A map F : X → 2Y is said to be lower semicontinuous at a point x0 if, for any

neighbourhood O(y) of any y ∈ F (x0), there exists a neighbourhood O(x0) such
that F (x)∩O(y) ̸= ∅ for any point x ∈ O(x0). As usual, F is lower semicontinuous
on X if it is lower semicontinuous at any point x0 ∈ X.

Remark 2.1. It is well known that if f(t0) is finite, then a function f(t) is lower
semicontinuous at the point t0 if and only if for any ε > 0 there exists a δ > 0 such
that f(t0)− ε < f(t) if |t− t0| < δ, t ∈ [a, b].

Remark 2.2. Vasil’eva (see [152]) showed that a set Π ⊂ C(Q), whereQ is a compact
Hausdorff space, is a non-empty closed span if and only if Π can be written as
a generalized segment

[[f1, f2]] =
{
f ∈ C(Q) | f(t) ∈ [f1(t), f2(t)] ∀t ∈ Q

}
, (2.2)

where f1, f2 : Q → R, f1 ⩽ f2, f1 is upper semicontinuous on Q, and f2 is lower
semicontinuous (in the definition of [[f1, f2]] the functions f1 and f2 need not lie
in C(Q)). By the Katětov–Tong separation theorem for semicontinuous functions
(see, for example, [68]), the set [[f1, f2]] is non-empty in C(Q). Note that the
generalized segment [[f1, f2]] is a singleton if and only if f1 = f2 (in this case f1
and f2 are continuous functions). Vasil’eva also showed that the metric projection
onto a closed span has a continuous 1-Lipschitz selection if and only if the span is
a segment [[f1, f2]] with f1, f2 ∈ C(Q). For some properties of generalized segments
see also [66].

Let V ̸= ∅ and let r := rV (M) be the relative Chebyshev radius of a set M with
respect to V . On A we set

m∗( · ) = sup
y∈M

y( · ) and m∗( · ) = inf
y∈M

y( · ). (2.3)

Here y is regarded as c(y) (that is, as a function on A ), and the functions m∗( · )
and m∗( · ) are lower and upper semicontinuous, respectively. Therefore, Π :=
[[m∗ − r, m∗ + r]] is a generalized segment.

Given x∗ ∈ A , consider the strip

Πx∗ :=
{
x ∈ X | m∗(x∗)− r ⩽ x(x∗) ⩽ m∗(x∗) + r

}
.

It is easily seen that Πx∗ consists precisely of the points x ∈ X such that

M ⊂ {u ∈ X | |x∗(u− x)| ⩽ r} =: Πx∗(x).

Since
⋂

x∗∈A

Πx∗(x) = B(x, r), the following conditions are equivalent:

a) v ∈ ZV (M);
b) v ∈ V ∩Πx∗ for any x∗ ∈ A ;
c) v ∈ V ∩Π, where Π = Πr :=

⋂
x∗∈A Πx∗ .

Thus,
ZV (M) = V ∩Π. (2.4)
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From (2.4) it follows, in particular, that the set ZV (M) of relative Chebyshev centres
is convex for a convex set V ⊂ X (see Proposition 1.1). It is also clear that

diamM, diam Π ⩽ 2r(M).

The set of Chebyshev centres of a bounded set ∅ ̸= M ⊂ X forms the closed
segment

Π :=
{
x ∈ X | m∗( · )− r ⩽ x( · ) ⩽ m∗( · ) + r

}
, (2.5)

where r = r(M) is the Chebyshev radius of M .
Consider the functions

N( · ) := inf
x∈X: m∗−r⩽x

x( · ) and n̄( · ) := sup
x∈X: x⩽m∗+r

x( · ). (2.6)

These functions are upper and lower semicontinuous, respectively. By construction,
m∗( · ) − r ⩽ N( · ) and n̄( · ) ⩽ m∗( · ) + r. Now from (2.5) and (2.6) we have the
equality of generalized segments (cf. (2.2))

Π = [[m∗( · )− r, m∗( · ) + r]] = [[N( · ), n̄( · )]].

If X is a Banach space such that c(X) contains the constants (for example,
X = C(Q)), then replacing x in (2.6) by y−r and y+r, we get thatN( · ) = N( · )−r
and n̄( · ) = n( · ) + r, respectively, where

N( · ) = inf{y( · ) | m∗( · ) ⩽ y( · )}, (2.7)
n( · ) = sup{y( · ) | m∗( · ) ⩾ y( · )}. (2.8)

Hence, if X is such that c(X) contains the constants, then

Π = [[N( · )− r, n( · ) + r]]. (2.9)

Let B be the set of bars (see [2], § 8.4) of the form Π = (x∗)−1[a, b], where
−∞ ⩽ a ⩽ b ⩽ +∞.

Note that the ‘bar hull’

br(M) :=
⋂
{Π ∈ B | Π ⊃M}

coincides with the generalized segment [[m∗( · ), m∗( · )]].
We also note that in the space C(Q)

br(M) = br(M) :=
⋂
{Π | Π ⊃M, Π a closed span}.

Recall that the hull of the set b(x,R) coincides with the generalized segment
[[x( · )−R, x( · ) +R]], and moreover,

m(M) = m(br(M)) =
⋂

br(M)⊂b(x,R)

b(x,R).

Hence, for all x ∈ X and R such that br(M) ⊂ b(x,R) we have

m∗( · ) ⩽ x( · ) +R, m∗( · ) ⩾ x( · )−R,
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and moreover, if X is a Banach space such that c(X) contains the constants, then

[[n( · ), N( · )]] ⊂ b(x,R) provided that br(M) ⊂ b(x,R).

Therefore,
[[n( · ), N( · )]] ⊂ m(br(M)) = m(M).

If Q is a topological space, then by C(Q) we mean the space of continuous
bounded functions on Q with the norm ∥f∥ = supt∈Q |f(t)|. The following result
was established by Tsar’kov [147].

Theorem 2.1. Let X = C(Q), where Q is a normal topological space, and let M be
a non-empty bounded subset of X with a unique Chebyshev centre. Then

m(M) = B(z, r),

where z is the Chebyshev centre of M . Moreover, z = (N( · ) + n( · ))/2.

3. Chebyshev centre in the space C(Q)

In this section we recall and prove some results on the existence of Chebyshev
centres in the space C(Q). Many results here can be proved using the results in § 2
on representation of the set of Chebyshev centres Z( · ) as a closed span.

One of the most general results on the existence of Chebyshev centres was
obtained independently by Amir [4] and Ka-Sing Lau (see also Theorem 6.8 and
Remark 3.2 below).

Theorem 3.1 (Amir and Ka-Sing Lau). Let Q be an arbitrary topological space
and let X be a uniformly convex Banach space. Then any bounded set in the
space C(Q,X) admits a Chebyshev centre.

Let M be a bounded subset of C[a, b]. Consider the functions

m∗(t) := inf
x∈M

x(t), m∗(t) := sup
x∈M

x(t),

n(t) := lim
τ→t

m∗(τ), N(t) := lim
τ→t

m∗(τ).

The following new result is a direct consequence of the equality (2.9) in § 2.
We note that in earlier results the characterization (3.1) of Chebyshev centres was
proved under more stringent constraints on the space Q (paracompactness ([80],
p. 186) and κ-normality [167]).

Theorem 3.2 (Tsar’kov). Each bounded subset M of the space C(Q), where Q is
a normal space, has a Chebyshev centre. The set Z(M) of all Chebyshev centres
of the set M consists precisely of the continuous functions y( · ) that satisfy the
inequality

N(t)− r ⩽ y(t) ⩽ n(t) + r ∀ t ∈ Q, (3.1)

where r = r(M) is the Chebyshev radius of M .
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Remark 3.1. An analogue of Theorem 3.2 for finite Chebyshev n-nets is unknown.
Garkavi (see [70], § 2) showed that in the space C[a, b], each compact setM ⊂ C[a, b]
admits a best net of cardinality n. Keener [96] gave sufficient conditions for the
existence of a Chebyshev net of cardinality n. Garkavi proved that the problem of
the existence of a Chebyshev net of cardinality n for bounded sets in the space c0
has an affirmative solution. His arguments can also be carried over to ℓ∞(Γ)-spaces.
Amir and Mach (see [7]) proved that a best n-net for a bounded set may not exist:
they showed that if a point ω of a compact Hausdorff space Q is a limit point for
two disjoint sequences, then C(Q) contains a bounded set for which no Chebyshev
net of cardinality 2 exists (see also [72]).

Example 3.1. Consider the set M of all continuous functions y on [−1, 1] such
that 0 ⩽ y(t) ⩽ 1 for t > 0, y(0) = 0, and −1 ⩽ y(t) ⩽ 0 for t < 0. It is clear that

m∗(t) =

{
0 for t ⩽ 0,
1 for t > 0

and m∗(t) =

{
−1 for t < 0,

0 for t ⩾ 0.

Thus,

N(t) =

{
0 for t < 0,
1 for t ⩾ 0

and n(t) =

{
−1 for t ⩽ 0,

0 for t > 0.

We have 2r = supt∈[a,b]N(t) − n(t) = 2 = N(0) − n(0), which shows that the
Chebyshev radius rM of the set M is 1. The functions n(t) + rM and N(t) − rM
coincide with m∗(t) and m∗(t), respectively, and now Theorem 3.2 gives us that
the set of all Chebyshev centres of M coincides with M itself. Hence, the set M
thus constructed provides an example of a non-trivial set coinciding with the set
Z(M) of its Chebyshev centres.

For compact sets M , Theorem 3.2 assumes the following more manageable form.

Theorem 3.3. Let M be a compact set in C(Q), where Q is a topological space,
and let r = r(M) be the Chebyshev radius of M . Then the set Z(M) of all Chebyshev
centres of M can be written as

Z(M) =
{
y ∈ C(Q) | m∗(t)− r ⩽ y(t) ⩽ m∗(t) + r

}
̸= ∅,

where m∗(t) = maxx∈M x(t), m∗(t) = minx∈M x(t), and r = ∥m∗ − m∗∥/2. In
particular,

Z(M) = Z(m∗,m∗) := Z({m∗,m
∗}).

Corollary 3.1. In the space C(Q), where Q is a topological space, the Chebyshev-
centre map Z( · ) has a 1-Lipschitz selection on the class of non-empty compact sets
M ⊂ C(Q) with respect to the Hausdorff metric.

As a 1-Lipschitz selection in Corollary 3.1 one can consider the map x 7→
(m∗( · ) +m∗( · ))/2 (see § 2, and also [97]).

Remark 3.2. For vector-valued analogues of Theorems 3.2 and 3.3, see [160], [4],
[167], and also Theorem 6.8 below. For example, Ward [160] established that if
Q is a paracompact Hausdorff space and X is a finite-dimensional space, then
in the space C(Q,X) any bounded set has a Chebyshev centre. A similar result
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also holds in the space C(Q,H), where Q is a normal space and H is a Hilbert
space. Amir [4] (and independently Ka-Sing Lau) extended Ward’s results to the
case when X is a uniformly convex space, Q is an arbitrary topological space,
and C(Q,X) is the space of bounded continuous functions on Q with values in X
(see Theorem 6.8). Zamyatin and Shishkin [167] extended this result by showing
that a Chebyshev centre exists for any bounded subset of C(Q,X), where Q is an
arbitrary topological space and X is a KB-linear space of bounded elements. For
other generalizations, see also [136], [130], and [49].

4. Existence of a Chebyshev centre in normed linear spaces

In this section, we formulate more results on the existence of Chebyshev centres
in normed linear spaces (see, for example, [9], [8], Chap. 27 of [48], § 3 of [70],
pp. 184–187 in [80], [101], [103], [154]–[156]).

Theorem 4.1 (Garkavi). Suppose that the image of a space X under the canonical
embedding in the second dual X∗∗ is norm-1 complemented (that is, there exists
a norm-1 projection of X∗∗ onto X ). Then any non-empty bounded subset of X
has a Chebyshev centre.

In particular, the hypotheses of Theorem 4.1 are satisfied for the L1-spaces
and for the dual spaces (it is well known that the first dual X∗ is always 1-
complemented in the third dual X∗∗∗).

Analogues of Theorem 4.1 and its corollary for dual spaces also hold for
Chebyshev n-nets (see [70], § 2).

We mention another property of dual spaces related to the Chebyshev centre
problem. A set M ⊂ X can be regarded as a subset of the second dual X∗∗.
However, the radius of a smallest ball for M in the space X∗∗ can be smaller than
r(M) = infy∈X supx∈M ∥x − y∥. Nevertheless, if X is a dual space, then these
quantities are equal for any M ⊂ X.

Remark 4.1. The condition of Theorem 4.1 is not necessary for each bounded subset
of the space to have a Chebyshev centre. For example, Garkavi (see § 2 of [70])
showed that in the space c0 any bounded set has a Chebyshev centre. However,
it is well known that c0 is not even complemented in the second dual: there is
not even a bounded projection from ℓ∞ onto c0 (Phillips–Sobczyk theorem). The
spaces c and C[0, 1] are also not complemented in their second duals.

We mention the following simple result.

Theorem 4.2. Suppose that any non-empty bounded set in a space X has a Che-
byshev centre. Then in any 1-complemented affine subspace L ⊂ X any bounded set
has a Chebyshev centre.

The Kolmogorov width of a non-empty bounded set M is defined by

dn(M,X) = inf
L∈Affn(X)

d(M,L),

where Affn(X) is the class of all affine subspaces of dimension ⩽ n in the space X
and

d(M,L) = sup
x∈M

ρ(x, L)
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is the deviation of M from an affine subspace L. For n = 0 the Kolmogorov width
problem becomes the Chebyshev centre problem.

In the study of widths it is not only the values or order estimates for the widths
(quantitative characteristics of the approximation) that are important, but also
the concrete form of extreme subspaces. (A subspace L0 ∈ Affn(X) is said to be
extreme (or best) if d(M,L0) = dn(M,X).)

Theorem 4.3 (Garkavi). Assume that the image of a space X under the canonical
embedding in the second dual X∗∗ is 1-complemented. Then, for any non-empty
bounded set M ⊂ X and any n ∈ N, there exist a Chebyshev net of cardinality n
and an extreme subspace L0 ∈ Affn(X). In particular, this is true for X = Y ∗ .

Theorem 4.4 (Garkavi). A necessary and sufficient condition for each bounded
subset of a Banach space to have a Chebyshev centre lying in its closed convex hull
is that the space either be a Hilbert space or have dimension at most two.

Garkavi [71] gave the following characterization of Hilbert spaces in terms of the
existence of a Chebyshev centre for three-point subsets.

Theorem 4.5 (Garkavi). Let X be a Banach space of dimension at least three. If
any three points of X admit a Chebyshev centre lying in their affine hull, then X
is a Hilbert space.

Theorem 4.6 (Garkavi). Let X be a Banach space and let dimX ⩾ 3. If any three
points of the unit sphere of X can be covered by a ball of radius 1 with centre in
their affine hull, then X is a Hilbert space.

In [8] it was shown that if X is a Hilbert space, Y ⊂ X is a closed convex set,
and K ⊂ X is a compact convex set, then ZY (K) ⊂ PY (K), where PY (K) =
{y ∈ Y | there exists an x ∈ K such that y ∈ PY x}. For a closed convex set K and
Y ⊂ X this conclusion ceases to hold. A corresponding example was constructed
by Beńıtez (cf. [17]): let X = ℓ2, let (en) be the standard basis for ℓ2, and let
Y = spann−1en and K = conv {n(n+ 1)−1en | n ∈ N}. Then

ZY (K) = {0}, 0 /∈ PY K.

In the two-dimensional case Theorem 4.4 can be refined as follows.

Proposition 4.1. a) If any Chebyshev centre of any two points in a Banach space
X (of any dimension) lies on the line passing through these points, then X is
a strictly convex (rotund) space.

b) A two-dimensional space X is strictly convex if and only if any Chebyshev
centre of any bounded set ∅ ̸= M ⊂ X lies in its convex hull.

From the above theorems some characterizations of Hilbert spaces can be derived.

Theorem 4.7 (Garkavi). A Banach space X of dimension ⩾ 3 is a Hilbert space
if and only if:

a) each three points in X admit a Chebyshev centre;
b) for each three linearly independent points of the unit sphere S there exists

a ball of radius < 1 containing these points.
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Given ε > 0 and x∗ ∈ S∗, we set

A(x∗, ε) := {x ∈ S | x∗(x) ⩾ 1− ε},

and we let R(x∗, ε) be the Chebyshev radius of the set A(x∗, ε). Consider the
function

f(ε) := sup
x∗∈S∗

R(x∗, ε).

The following result holds (see [71], and also [17]).

Theorem 4.8 (Garkavi). A necessary and sufficient condition that X be a Hilbert
space is that f(ε) tend strictly monotonically to zero as ε→ 0

Among negative results, we mention the following ones.
Garkavi [69], [70] constructed an example of a Banach space which contains three

points without a Chebyshev centre (see also Veselý [154]). The number three in
this result is smallest possible, because any two points always admit a Chebyshev
centre. For similar results for Chebyshev nets of cardinality n, see [70], § 2, and also
Example 3.1 in [9]. Konyagin [101] showed that any non-reflexive Banach space X
can be (equivalently) renormed so that the resulting space contains a three-point
set without a Chebyshev centre.

The following question is natural. Assume that in a Banach space any finite
(or any compact) set has a Chebyshev centre. Is it true that in such a space any
bounded set has a Chebyshev centre? Veselý [155] answered this question in the
negative for compact sets: he constructed a space of the form3 X = c0(E) in
which all compact sets admit Chebyshev centres, but which contains a bounded set
without a Chebyshev centre. Earlier, Smith and Ward [142] presented an example of
a proximinal hyperplane H in C[0, 1] and a bounded set M ⊂ H without a relative
Chebyshev centre in H. See also Rao [133].

The following example [156], which extends Garkavi’s construction, gives an
example of a set without a Chebyshev centre in a closed hyperplane of c0.

Example 4.1. Let f = (f (i)) ∈ (c0)∗ be a functional with infinite support, and let
f (1) = f (2) = f (3) = 1 and

∑∞
i=1 f

(i) = 1. Then the set M of three points

(−1, 1, 1, 0, 0, . . . ), (1,−1, 1, 0, 0, . . . ), (1, 1,−1, 0, 0, . . . )

lies in the hyperplane f−1(1) and has no Chebyshev centre there.

Veselý [156] also proved the following more general result.

Theorem 4.9. Let f = (f (i)) ∈ (c0)∗ be a functional with infinite support and let
2∥f∥∞ < ∥f∥1 . Then there exist a σ ∈ R and a three-point set M = {u, v, w} ⊂
f−1(σ) which has no Chebyshev centre in f−1(σ).

Another result from [156] is worth pointing out (for a similar result for hyper-
planes in C(Q), see Zamyatin [166]).

3In his example X = c0(E) is the Banach space of null sequences in E with the norm ∥x∥∞ =
max{∥x(n)∥ | n ∈ N}, where E is a three-dimensional Banach space.
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Theorem 4.10. Let f = (f (i)) ∈ (c0)∗ and H = f−1(0). Then the following
conditions are equivalent:

a) f has finite support or 2∥f∥∞ ⩾ ∥f∥1 ;
b) the hyperplane H is proximinal or is norm-1 complemented in c0 ;
c) every non-empty bounded subset of H has a Chebyshev centre in H ;
d) every finite subset of H has a Chebyshev centre in H ;
e) every three-point subset of H has a Chebyshev centre in H .

The next result follows from the Garkavi–Klee characterization of the spaces in
which a Chebyshev centre of a set lies in its convex hull (see p. 781) and from
Belobrov’s [28] results on best net.

Theorem 4.11. Let X be a Banach space. Then the following conditions are equiv-
alent:

a) X is either a two-dimensional space or a Hilbert space;
b) there exists an n ∈ N such that for any non-empty set M ⊂ X there exists

a Chebyshev net of cardinality n lying in the convex hull of M ;
c) for all n ∈ N and any non-empty set M ⊂ X there exists a Chebyshev net of

cardinality n lying in the convex hull of M .

Quasi uniform convexity and existence of a Chebyshev centre. In this
section we extend some of the above theorems on the existence of Chebyshev centres.
Quasi uniformly convex spaces were introduced in 1973 in [44] (see also [157], [9],
and [103]).

Definition 4.1. A Banach space X is said to be quasi uniformly convex (X ∈
(QUC)) if for any ε > 0 there exists a δ > 0 such that for any x ∈ X there exists
a y ∈ B(0, ε) with B(0, 1 + δ) ∩B(x, 1) ⊂ B(y, 1).

We note the following results.

Proposition 4.2 (Veselý [157]). Let X be a Banach space. Then the following
conditions are equivalent:

a) X ∈ (QUC);
b) for any ε > 0 there exists a δ > 0 such that for any x ∈ X and β > 0 there

exists a y ∈ B(0, ε) with B(0, 1 + δ) ∩B(x, 1) ⊂ B(y, 1 + β);
c) there exist sequences of positive numbers (εn) and (δn) such that δn → 0,∑∞
n=1 εn < ∞, and for each n ∈ N and x ∈ X there exists a yn ∈ B(0, εn) with

B(0, 1 + δn) ∩B(x, 1) ⊂ B(yn, 1 + δn).

Proposition 4.3 (see [9], [44]). A Banach space is uniformly convex if and only if
it is both quasi uniformly convex and strictly convex.

Remark 4.2. a) The spaces ℓ∞, c0, c and C[a, b] lie in the class (QUC) (see [44]).
b) If X is uniformly convex, then C(Q,X) ∈ (QUC), where Q is a compact

Hausdorff space (see [9]).
c) If L1(µ) is infinite-dimensional, then L1(µ) /∈ (QUC) (see [9]).

In the following theorem, the existence of a Chebyshev centre was proved in [44],
and its uniform continuity in the Hausdorff semimetric was proved in [9].
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Theorem 4.12. If X ∈ (QUC) is a Banach space, then any non-empty bounded
subset M of X has a Chebyshev centre. Moreover, the Chebyshev-centre map Z( · )
is uniformly continuous in the Hausdorff semimetric on the class of non-empty
subsets of X with uniformly bounded Chebyshev radii.

For further results on the stability of the Chebyshev-centre map in quasi uni-
formly convex spaces, see § 6.1 below.

5. Uniqueness of the Chebyshev centre

The problem of uniqueness of a Chebyshev centre has been studied by Garkavi
[70], M. Golomb, Laurent, and Pham-Dinh-Tuan [106], Rozema and Smith [137],
Lambert and Milman [104], Smith and Ward [142], Amir and Ziegler [10], [11],
Amir [5], Li and Watson [112], Laurent and Pai [105], and Peng and Li [125] (this
list is by no means complete). Belobrov [30] considered spaces in which the set of
Chebyshev centres of any set has dimension at most r <∞.

5.1. Uniqueness of the Chebyshev centre of compact sets. We first con-
sider the problem of uniqueness of a Chebyshev centre for compact sets.

Theorem 5.1 (Garkavi [69], [70]). Each compact set M in a space X has at most
one Chebyshev centre if and only if X is a strictly convex space.

Amir and Ziegler [10] and later Amir [7] extended Theorem 5.1 as follows. First
we need a definition.

Definition 5.1. A space X is said to be strictly convex (rotund ) in any direction in
a convex subset Y of it (X ∈ (RED-Y )) if the unit sphere of X contains no non-de-
generate interval parallel to an interval in Y . This is equivalent to the following
condition: [

∥x∥ = ∥y∥ =
∥∥∥∥x+ y

2

∥∥∥∥ = 1, x− y ∈ Y − Y

]
=⇒ x = y. (5.1)

If Y is a subspace, then for brevity we say that X is strictly convex with respect
to Y instead of saying that X is strictly convex in any direction in Y .

A space X is strictly convex (rotund) if and only if it is strictly convex with
respect to Y = X. If X is strictly convex in any direction in a subspace Y , then
clearly X is strictly convex in any direction in any subspace Z ⊂ Y . In this case,
any subspace X0 with Y ⊂ X0 ⊂ X is strictly convex with respect to any direction
in Y , and in particular, Y is strictly convex. It is also clear that if X is strictly
convex with respect to any 1-dimensional subspace, then X itself is strictly convex.

We recall the following definition.

Definition 5.2. Let x ∈ X and ∅ ̸= M ⊂ X. A point y0 ∈ M is a farthest point
in the set M from the point x if

∥x− y0∥ = sup{∥x− y∥ | y ∈M} = r(x,M).

Theorem 5.2 (Amir [5]). Let X be a normed linear space and let Y ⊂ X be
a convex set. Then the following conditions are equivalent:
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a) X is strictly convex in any direction in Y (that is, the unit sphere S does not
contain a non-trivial interval parallel to some interval in Y );

b) |ZY (K)| ⩽ 1 for any compact set K ⊂ X ;
c) |ZY (K)| ⩽ 1 for any set K ⊂ X such that any y ∈ Y has a farthest point

in K ;
d) |ZY ({x, y})| ⩽ 1 for any x, y ∈ X ;
e) if ∥u∥ = ∥v∥ = ∥u+ v∥/2 and u− v ∈ Y − Y , then u = v ;
f) any closed interval in Y is a Chebyshev set in X .

Definition 5.3. A subspace Y of dimension n in a normed linear space X is called
an interpolating subspace [14] if no non-trivial linear combination of n linearly
independent extreme points of the dual ball B∗ annihilates Y .

This definition is a natural extension of the definition of a Haar (Chebyshev)
subspace.

Theorem 5.3 (Amir [5]). Let Y be an interpolating subspace of a normed linear
space X , and let M ⊂ X be a compact set such that r(M) < rY (M). Then the set
ZY (M) is a singleton.

Remark 5.1. The conclusion of Theorem 5.3 is not true for bounded sets (this was
pointed out in [5], where the following counter-example was constructed disproving
the corresponding erroneous assertion from [104]). Let X = {x ∈ C[−1, 1] | x(0) =
(x(−1) + x(1))/2} (with the Chebyshev norm). We set

y0(t) = t, Y := span y0, M := {x ∈ X | 0 ⩽ x(t) ⩽ 1− |t|}.

Since extB∗ = {±et | 0 < |t| ⩽ 1}, where et(x) := x(t), it follows that Y is an
interpolating subspace, but

r(M) = r(2−1,M) = 2−1 < 1 = rY (M) = r(αy0,M) for |α| ⩽ 1.

Let Q be a topological space and let L be a locally compact topological space.
We denote by C0(L,X) the closed subspace of C(L,X) consisting of all functions x
that vanish at infinity (this means that for any ε > 0 the set {t ∈ L | |x(t)| ⩾ ε} is
compact).

We note the following simple fact.

Proposition 5.1. The space C0(Q) is not strictly convex with respect to any sub-
space of dimension ⩾ 2.

Proposition 5.2. If µ is a measure, then there is no subspace of dimension ⩾ 2 in
L1(µ) with respect to which L1(µ) is strictly convex. If the measure µ is atomless,
then in L1(µ) there is no subspace with respect to which L1(µ) is strictly convex.

Proof of Proposition 5.2. A trivial corollary of Phelps’s characterization of finite-
dimensional Chebyshev subspaces in the space L1(Ω, µ) (see [126]) is that span v is
a Chebyshev subspace if and only if

∫
A
v dµ ̸=

∫
Ω\A v dµ for any measurable set A.

Let Y have dimension ⩾ 2, let v and w be two linearly independent points, and
let A be a fixed set. By the intermediate value theorem, there exist numbers α
and β with α2 + β2 = 1 such that

∫
A
(αv + βw) dµ =

∫
Ω\A(αv + βw) dµ. Hence,
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the 1-dimensional subspace spanned by the vector z = αv+βw is not a Chebyshev
subspace, and therefore the space L1(µ) is not strictly convex with respect to Y by
the implication a)⇒ f) of Theorem 5.2.

If µ is atomless, then the required assertion follows from the following well-known
result: there are no finite-dimensional Chebyshev subspaces in the space L1(µ). □

A similar analysis (see [10]) shows that the space (C[a, b], ∥ · ∥1) of continuous
functions with the L1-norm is not strictly convex with respect to any subspace Y
of finite dimension ⩾ 2.

To conclude this section, we mention another result on uniqueness of relative
Chebyshev centres. We need the following definition.

Definition 5.4. A space X is said to be weakly uniformly convex if the conditions
∥xn∥ ⩽ 1, ∥yn∥ ⩽ 1, ∥xn + yn∥ → 2 imply that xn − yn

w→ 0. For the classical
definition of a uniformly convex space, see, for example, [63].

Theorem 5.4 (Xiao and Zhu [163]). Let X be a Banach space with dimX ⩾ 2,
and let M ̸= ∅ be a convex weakly compact set in X . Assume that one of the
following conditions is satisfied:

a) X is weakly uniformly convex;
b) X is locally uniformly convex and M is compact.
Then Zconv M (M) is a singleton which lies in M .

5.2. Uniqueness of a Chebyshev centre of bounded sets. Following Gar-
kavi, we say that a space X is uniformly convex (or uniformly rotund ) in every
direction (X ∈ (URED)) if, for any z ∈ X and any ε > 0, there exists a δ =
δ(z, ε) > 0 such that if

∥x1∥ = ∥x2∥ = 1, x1 − x2 = λz and ∥x1 + x2∥ > 2− δ,

then |λ| ⩽ ε.
Note that X ∈ (URED) if and only if xn − yn → 0 whenever (xn), (yn) ⊂ S,

∥(xn+yn)/2∥ → 1, and xn−yn ∈ span v for some v ∈ S and all n ∈ N. Equivalently,
X ∈ (URED) if and only if, for any z ∈ S and any bounded sequences (xn), (yn)
such that 2∥xn∥2 + 2∥yn∥2 − ∥xn + yn∥2 → 0 and xn − yn = λnz for some λn, we
have λn → 0 (see [63], p. 456).

The next theorem [69], [70] characterizes the spaces in which each bounded set
has at most one Chebyshev centre.

Theorem 5.5 (Garkavi). A necessary and sufficient condition that each bounded
subset of a Banach space X have at most one Chebyshev centre is that X be uni-
formly convex in every direction (X ∈ (URED)).

Note that the condition X ∈ (URED) is weaker than the condition that X is
a uniformly convex space. Garkavi [69], [70] constructed an example of an (incom-
plete) normed space which is uniformly convex in every direction, but is not an
(incomplete) uniformly convex space.

Let us give some extensions of Theorem 5.5.
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Definition 5.5. Let Y be a convex set in X. A space X is uniformly convex (or
uniformly rotund ) in every direction in Y (X ∈ (URED-Y )) if for any z ̸= 0 with
z ∈ Y − Y and any ε > 0 there exists a δ = δ(z, ε) > 0 such that[

∥x∥ = ∥y∥ = 1, x− y = λz,

∥∥∥∥x+ y

2

∥∥∥∥ > 1− δ

]
=⇒ |λ| < ε. (5.2)

Note that if X ∈ (URED-Y ), then X is strictly convex in every direction in Y .
A number of properties of spaces that are uniformly convex in every direction can
be found in [55].

The next result [10], [7] is a direct extension of Theorem 5.5.

Theorem 5.6. Let Y be a convex subset of a Banach space X . Then the following
conditions are equivalent:

a) |ZY (M)| ⩽ 1 for any bounded set M ⊂ X ;
b) X is uniformly convex in every direction in Y (X ∈ (URED-Y ));
c) if ∥un∥, ∥vn∥ → 1, ∥un + vn∥ → 2, and if un− vn = λnz ̸= 0 for some λn and

z ∈ Y − Y , then λn → 0.

We mention some further results (see also Theorem 6.26 below).

Theorem 5.7 (Amir [4], [9]). A Banach space X is uniformly convex if and only
if, for any non-empty bounded set M ⊂ X , the set Z(M) of Chebyshev centres is
a singleton and the Chebyshev-centre map M 7→ Z(M) is locally uniformly contin-
uous.

Definition 5.6. For a given subspace Y of a Banach space X, an equivalent defi-
nition of X as being uniformly convex in every direction in Y (X ∈ (URED-Y )) is
that

δY (ε) := inf
{

1− ∥x+ y∥
2

∣∣∣∣ ∥x∥ = ∥y∥ = 1, ∥x− y∥ ⩾ ε, x− y ∈ Y
}
> 0 (5.3)

for all ε > 0.

Theorem 5.8 (Amir [4], [9]). Let Y be a subspace of a Banach space X . Then
X ∈ (URED-Y ) if and only if the relative Chebyshev-centre map M 7→ ZY (M) is
single-valued and locally uniformly continuous on the class of bounded subsets of X .

The next theorem is fairly simple. In it M is called a uniquely remotal set if
every x ∈ X has a unique farthest point in M .

Theorem 5.9. Let X be strictly convex and let Y ⊂ X be closed and convex. Then
the set ZY (M) of Chebyshev centres is at most a singleton for any uniquely remotal
set M ⊂ X .

Remark 5.2. In fact, the conclusion of Theorem 5.9 holds if X is strictly convex
(rotund) in every direction in Y (X ∈ (RED-Y )).

To conclude this section, we briefly discuss the problem of uniqueness of the
absolute and relative Chebyshev centres in C(Q).

The subsets of the space C(Q) (Q a complete metric space) with unique Cheby-
shev centre were characterized by Smith and Ward [142] in terms of the behaviour
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of the functions m∗(t) := infx∈M x(t) and m∗(t) := supx∈M x(t). Their result was
extended to not necessarily metrizable spaces Q by Zamyatin and Shishkin ([167],
Theorem 9). In the more convenient language of the Banach–Mazur hull, the result
on the uniqueness of a Chebyshev centre in C(Q) (Q a normal space) is given in
Theorem 2.1.

We recall (see Theorem 5.2) that the single-valuedness of the relative Chebyshev-
centre map ZY ( · ), where Y is a linear subspace, implies that the original space is
strictly convex with respect to Y . As a corollary, in the space C(Q) (Q a compact
Hausdorff space), for any finite-dimensional subspace Y with dimY ⩾ 2 the relative
Chebyshev-centre map ZY ( · ) is not single-valued (see Proposition 5.1). Under
the additional condition r(M) < rY (M), the problem of uniqueness of a relative
Chebyshev centre of M was investigated by Amir [5] for a certain special class of
subspaces Y ⊂ C(Q).

Definition 5.7. A subspace Y = span{y1, . . . , yn} of dimension n of a normed lin-
ear spaceX is said to be strictly interpolating [5] if no non-trivial linear combination
of n linearly independent functionals in the w∗-closure ext w∗B∗ annihilates Y .

Any one of the following conditions is equivalent to the strict interpolation con-
dition [5]:

(i) det[fi(yj)] ̸= 0 for any linearly independent functionals f1, . . . , fn ∈ extB∗;
(ii) for any linearly independent f1, . . . , fn ∈ extB∗ and any scalars c1, . . . , cn,

there exists a unique point y ∈ Y such that fi(y) = ci for each i = 1, . . . , n;
(iii) X∗ = Y ⊥ ⊕ span{f1, . . . , fn} for any linearly independent f1, . . . , fn ∈

extB∗.
It is easily seen that the interpolating subspaces of X are strictly interpolating

if extB∗ is w∗-closed (this is so, for example, in the spaces C(Q), where Q is
a compact topological space, and in L1(µ)) or if extB∗ ∪ {0} is w∗-closed (this
condition is satisfied, for example, in the spaces C0(Q) with locally compact Q).

Theorem 5.10 (Amir [5]). Let Y be a strictly interpolating subspace of a normed
linear space X , and let ∅ ̸= M ⊂ X be a bounded set such that r(M) < rY (M).
Then ZY (M) is a singleton.

Theorem 5.11 (Amir [5]). Let Y be a subspace of a normed space X such that
for any y0 ∈ X , z ∈ X , and ε > 0 there exists a y1 ∈ Y with inf{f(y1) | f ∈
extB∗, |f(z − y0)| > ε} > 0. Let ∅ ̸= M ⊂ X be a bounded set such that
r(M) < rY (M). Then ZY (M) is a singleton.

Remark 5.3. An example of a space X and an infinite-dimensional subspace Y ⊂ X
satisfying the hypotheses of Theorem 5.11 was constructed in [5]:

X = {x ∈ C[−1, 1] | x(0) = 0},
Y = {x ∈ X | x|[0,1] is a polynomial of degree ⩽ n}.

6. Stability of the Chebyshev-centre map

The question of stability of the Chebyshev-centre map Z( · ) in dependence on
the properties of the space X and the set has been extensively studied. We men-
tion Belobrov [27]–[29], Ward [159], Rozema and Smith [137], Bosznay [40], Mach
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[114], [115], Szeptycki and Van Vleck [143], Prolla, Chiacchio, and Roversi [130],
Amir, Mach, and Saatkamp [9], Amir and Mach [8], Beer and Pai [26], Chiacchio,
Prolla, and Roversi [49], Tsar’kov [146], Al’brekht [1], Li and Lopez [111], Balashov
and Polovinkin [128], Baronti and Papini [21], Alvoni and Papini [3], Balashov and
Repovš [18], Balashov and G. E. Ivanov [85], G. E. Ivanov [84], Xiao and Zhu [163],
Druzhinin [59], and Lalithambigai et al. [103]. (This list is by no means complete.)

6.1. Stability of the Chebyshev-centre map in arbitrary normed spaces.
Let M and N be non-empty bounded subsets of a normed linear space X, let
zM ∈ Z(M) and zN ∈ Z(N) be (some) Chebyshev centres of the sets M and N ,
and let z′M ∈ Zsc

M and z′N ∈ Zsc
N be (some) self Chebyshev centres of M and N (see

(1.4)). Here and in what follows, h(M,N) is the Hausdorff distance between sets
M and N .

To begin with, we note that each of the numbers

h(M,N) and ∥zM − zN∥ (or ∥z′M − z′N∥)

can be larger, equal, or smaller than the other number (even if the Chebyshev centre
is unique).

The following simple result holds (see, for example, [26], [21]).

Proposition 6.1. Let M and N be non-empty closed bounded subsets of a normed
linear space X , and let x, y ∈ X . Then

|r(x,M)− r(y,M)| ⩽ ∥x− y∥, (6.1)
|r(x,M)− r(y,N)| ⩽ h(M,N) + ∥x− y∥, (6.2)

|r(M)− r(N)| ⩽ h(M,N). (6.3)

Remark 6.1. An analogue of (6.3) does not hold for self centres Zsc(M) (see [21]).
Indeed, let X = C[0, 1] and 0 < ε < 1/2, and let

M :=
{
f ∈ X | 0 ⩽ f(t) ⩽ 1− ε ∀t ∈ [0, 1], f(0) = 0

}
,

N :=
{
g ∈ X | 2−1 − ε ⩽ g(t) ⩽ 2−1 ∀t ∈ [0, 1], g(0) = 2−1 − ε

}
.

Then rM (M) = 1 − ε and rN (N) = ε, but h(M,N) = 2−1 − ε < 1 − 2ε =
rM (M)− rN (N).

For self centres, there is a weaker estimate (see [21]):

|rM (M)− rN (N)| ⩽ 2h(M,N). (6.4)

Nevertheless, this estimate is sharp: it suffices to let ε → 0 in the example in
Remark 6.1.

We prove (6.4). Let ε > 0. Consider a point bε ∈ N such that r(bε, N) <
rN (N) + ε and choose aε ∈M such that ∥aε − bε∥ < h(M,N) + ε. Using (1.5) and
(6.2), we find that

r(aε,M) ⩽ r(bε, N) + h(M,N) + ∥aε − bε∥ < h(M,N) + r(bε, N) + h(M,N) + ε

< 2h(M,N) + rN (N) + 2ε,

which gives rM (M)− rN (N) ⩽ 2h(M,N). Now (6.4) follows by symmetry.
For self centres, the following analogue of the inequality (1.6) holds (see [21]).
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Proposition 6.2. If z′M ∈ Zsc(M) and z′N ∈ Zsc(N), then

∥z′M − z′N∥2 ⩽
(
h(M,N) + r′M

)(
h(M,N) + r′N

)
, (6.5)

∥z′M − z′N∥ ⩽ h(M,N) +
r′M + r′N

2
. (6.6)

Proof. From (6.1) it follows that

∥z′M − z′N∥ ⩽ r(z′N ,M) ⩽ r(z′N , N) + h(M,N) = r′N + h(M,N).

A similar argument shows that ∥z′N − z′M∥ ⩽ r′M + h(M,N). Now the required
result follows by multiplying the inequalities obtained. □

Remark 6.2. The estimates in Proposition 6.2 are sharp: it suffices to consider the
sets M = {(x, y) | 0 ⩽ x ⩽ 1, |y| ⩽ 1} and N = {(x, y) | −1 ⩽ x ⩽ 0, |y| ⩽ 1} in
the space ℓ∞2 .

6.2. Quasi uniform convexity and stability of the Chebyshev-centre map.
Quasi uniformly convex (QUC) spaces were introduced above (see the end of § 4).
We recall (see Theorem 4.12) that if X is a quasi uniformly convex Banach space
(X ∈ (QUC)), then any non-empty bounded set M ⊂ X admits a Chebyshev
centre, and the Chebyshev-centre map Z( · ) is uniformly continuous on the class of
non-empty subsets of X with uniformly bounded Chebyshev radii.

Below, BH(X) is the semimetric space of all non-empty bounded subsets of
a normed linear space X, equipped with the Hausdorff semimetric. We also require
the following definitions from [157].

Definition 6.1. Given A ∈ BH(X), we set

Zr(A) := {x ∈ X | r(x,A) ⩽ r} ∀r ⩾ r(A),

where r(x,A) := sup{∥x− a∥ | a ∈ A}.

The definitions of a Chebyshev centre and the Chebyshev radius have the fol-
lowing analogues for bounded nets in BH(X).

Definition 6.2. Given a bounded decreasing (with respect to set inclusion) net
A := (Ai)i∈I in BH(X) and x ∈ X, we define

φ(A , x) := lim
i∈I

r(x,Ai) = inf
i∈I

r(x,Ai),

r(A ) := inf
x∈X

φ(A , x) = inf
x∈X

inf
i∈I

r(x,Ai),

Zr(A ) := {x ∈ X | φ(A , x) ⩽ r} ∀r ⩾ r(A ),

Z(A ) := Zr(A )(A ).

The non-negative number r(A ) is called the asymptotic radius of the net A , and
the (possibly empty) set Z(A ) is known as the set of asymptotic centres of A .

We also recall the classical notions of the asymptotic radius and the set of asymp-
totic centres of a sequence.
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Definition 6.3. Given x ∈ X and a bounded sequence (an) in X, we set

ρ((an), x) := lim
n→∞

∥x− an∥, r(an) := inf
x∈X

ρ((an), x),

Zr(an) := {x ∈ X | ρ((an), x) ⩽ r} ∀r ⩾ r(an),

Z(an) := Zr(an)(an).

The non-negative number r(an) is called the asymptotic radius of a sequence (an),
and the (possibly empty) set Z(an) is known as the set of asymptotic centres of
a sequence (an).

Definitions 6.1 and 6.3 are particular cases of Definition 6.2.

Theorem 6.1 (Veselý [157]). Let X be a Banach space. Then the following condi-
tions are equivalent:

a) X ∈ (QUC);
b) for any bounded net A in BH(X) the set Z(A ) is non-empty, and the map

r 7→ Zr(A ) is continuous on [r(A ),∞) and uniformly continuous on the class of
nets with uniformly bounded asymptotic radii;

c) any set A ∈ BH(X) admits a Chebyshev centre, and the map r 7→ Zr(A) is
continuous on [r(A),∞) and uniformly continuous on the class of sets with uni-
formly bounded Chebyshev radii;

d) for any (some) r0 > 0 the map (A, r) 7→ Zr(A) has values in BH(X) and is
uniformly continuous on the set{

(A, r) ∈ BH(X)× (0,∞) | r(A) ⩽ r ⩽ r0
}
;

e) for any (some) r0 > 0 the map Zr0 has values in BH(X) and is uniformly
continuous on the set

{A ∈ BH(X) | r(A) ⩽ r0};

f) for any (some) r0 > 0 the Chebyshev-centre map Z( · ) has non-empty values
and is uniformly continuous on the set

{A ∈ BH(X) | r(A) = r0}.

Any one of the conditions a)–f) implies the following property:
g) any bounded sequence (an) ⊂ X has an asymptotic centre, and the map

r 7→ Zr(an) is continuous on [r(an),∞) and uniformly continuous on the class
of sequences with uniformly bounded asymptotic radii.

Moreover, if X is separable, then the conditions a)–g) are equivalent.

We mention some results regarding the space of bounded vector-valued continu-
ous functions with values in a Banach space X ∈ (QUC) (see [157]).

Definition 6.4. Let Q be a topological space. As before, let C(Q,X) be the space
of all bounded continuous functions x on Q with values in X, equipped with the
norm ∥x∥ = supt∈Q ∥x(t)∥.

The next result from [157] extends the assertion b) in Remark 4.2.
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Theorem 6.2 (Veselý). If X ∈ (QUC) is a Banach space and Q is a topological
space, then C(Q,X) ∈ (QUC).

Definition 6.5. Let Q be a topological space, Q0 ⊂ Q a closed subset, L a locally
compact topological space, and Γ a non-empty set with the discrete topology. We
consider the following spaces:
C(Q,Q0, X) is the closed subspace of C(Q,X) consisting of all functions that

vanish on Q0;
C0(L,X) is the closed subspace of C(L,X) consisting of all functions x that

vanish at infinity (this means that the set {t ∈ L | |x(t)| ⩾ ε} is compact for any
ε > 0);
ℓ∞(Γ, X) := C(Γ, X) and c0(Γ, X) := C0(Γ, X), where Γ is equipped with the

discrete topology.

Theorem 6.3 (Veselý). Let X be a Banach space. Then the following conditions
are equivalent:

a) X ∈ (QUC);
b) C(Q,X) ∈ (QUC) for any topological space Q;
c) C(Q,Q0, X)∈ (QUC) for any topological spaceQ and any closed subsetQ0⊂Q;
d) C0(L,X) ∈ (QUC) for any locally compact space L;
e) c0(Γ, X) ∈ (QUC) for any Γ;
f) ℓ∞(Γ, X) ∈ (QUC) for any Γ.

The next result follows from Theorems 6.1 and 6.3.

Theorem 6.4 (Veselý). Let X ∈ (QUC) be a Banach space and let Y = C(Q,X)
(or Y is any other space in Theorem 6.3). Then the Chebyshev-centre map Z( · ) is
uniformly continuous on the class of sets {A ∈ BH(Y ) | r(A) ⩽ r0} with any given
r0 > 0.

To conclude this section, we mention one sufficient result in [157].

Theorem 6.5 (Veselý). Let X be a finite-dimensional Banach space which is either
polyhedral or two-dimensional. Then X ∈ (QUC), and therefore C(Q,X) ∈ (QUC).

6.3. Stability of the Chebyshev-centre map in finite-dimensional polyhe-
dral spaces. Let Xn be an n-dimensional polyhedral Banach space (that is, the
unit ball of Xn is the convex hull of a finite number of points in Xn). Let K ⊂ Xn

be a convex polyhedral set (that is, K is the intersection of finitely many closed
half-spaces in Xn).

In the polyhedral space Xn the metric projection onto a polyhedral set is globally
Lipschitz continuous (Li [64]) and has a Lipschitz selection (Finzel and Li [65],
Theorem 6.1). In this connection, we also mention the following results. Cline
and, independently, V. I. Berdyshev showed that in ℓ∞n the metric projection onto
a Chebyshev subspace is globally Lipschitz (uniformly continuous) on the entire
space (see, for example, Theorem 2 in [35], [22], and § 5 in [64]). The next theorem
extends these results.

Theorem 6.6 (Tsar’kov [147]). Let V ̸= ∅ be a polyhedral subset of ℓ∞n . Then the
relative Chebyshev-centre map ZV ( · ) is a set-valued Lipschitz map on ℓ∞n .
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Proof. With each set M ⊂ ℓ∞n we associate the pair of vectors m∗ = m∗(M) =
(x1, . . . , xn), m∗ = m∗(M) = (y1, . . . , yn), where

xi := inf{zi | z = (z1, . . . , zn) ∈M}, yi := sup{zi | z = (z1, . . . , zn) ∈M}.

Consider the polyhedral set U = {(x, x) | x ∈ V } in the space ℓ∞2n. According to
Li (see [64]), the metric projection to any polyhedral set is Lipschitz continuous.
As a corollary, the metric projection PU is Lipschitz continuous. It follows that
PU is a Lipschitz map on the set of vectors m(M) := (m∗(M),m∗(M)). Moreover,
any point (x, x) ∈ U which is nearest to the vector m(M) is characterized by the
following property: x ∈ V is a relative Chebyshev centre of the set M with respect
to V . Thus, ZV ( · ) is a Lipschitz continuous map on the set of all bounded subsets
of the space ℓ∞n . □

The following result is a consequence of Theorem 6.6, because any finite-dimen-
sional polyhedral space can be isometrically embedded in ℓ∞N for some N ∈ N,
and since the Steiner-centre map is Lipschitz continuous on the class of bounded
sets (see, for example, Theorem 2.1.2 in [128]). The Lipschitz selection required in
Theorem 6.7 is the composition of the operator ZV ( · ) and the Steiner-centre map.

Theorem 6.7 (Tsar’kov [147]). Let V be a non-empty polyhedral subset of a finite-
dimensional polyhedral Banach space X . Then the relative Chebyshev-centre map

M 7→ ZV (M), ∅ ̸= M ⊂ X,

is globally Lipschitz continuous on X and admits a Lipschitz selection.

Theorem 6.7 implies Druzhinin’s result on the existence of a Lipschitz selection
of the Chebyshev-centre map in a finite-dimensional polyhedral space.

6.4. Stability of the Chebyshev-centre map in C(Q)-spaces. It is known
that the Chebyshev-centre map Z( · ) (which associates with a non-empty bounded
set the set of its Chebyshev centres) is uniformly continuous in some class of spaces
containing the uniformly convex spaces (see § 6.5) and spaces of type C0(Q) (in
particular, the space C(Q), where Q is a compact Hausdorff space); see [28],
[4], [9], [7], [103], and also Theorem 5.7.

The next theorem (see [4], Theorem 2, and [9], Corollary 5.2) is one of the most
general results on the existence and stability of the Chebyshev-centre map in the
spaces C(Q,X).

Theorem 6.8 (Amir and Ka-Sing Lau). Let Q be an arbitrary topological space and
X a uniformly convex Banach space. Then any bounded set in the space C(Q,X)
admits a Chebyshev centre, and the map Z( · ) is uniformly continuous on the class
of non-empty bounded subsets with uniformly bounded diameters.

Proof. Since X is a uniformly convex space, by definition there exists for any ε > 0
a δ(ε) > 0 such that if x, y ∈ S, x∗ ∈ S∗, x∗(y) = 1, and x∗(x) > 1 − δ(ε), then
∥x− y∥ < ε. Note that by Lemma 1 in [4] one can always assume that δ(ε) < ε/2
and δ(ε/2) < ε/4. Let M ⊂ C(Q,X) be a non-empty bounded set. We can assume
without loss of generality that r(M) = 1. For any ε > 0 we choose f0 ∈ C(Q,X)
such that r(f0,M) ⩽ 1 + δ(ε). We assert that there exists a function f1 ∈ C(Q,X)
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such that r(f1,M) ⩽ 1 + δ(ε/2) and ∥f1 − f0∥ ⩽ 2ε. Indeed, consider an arbitrary
function g ∈ C(Q,X) such that r(g,M) ⩽ 1 + δ(ε/2), and define

β(t) =

1, ∥g(t)− f0(t)∥ ⩽ 2ε,
2ε

∥g(t)− f0(t)∥
, ∥g(t)− f0(t)∥ > 2ε

and

f1(t) = f0(t) + β(t)(g(t)− f0(t)).

It is clear that f1 ∈ C(Q,X) and ∥f1 − f0∥ ⩽ 2ε. Moreover, if ∥g − f0∥ > 2ε,
then ∥f1 − f0∥ = 2ε. Consider an arbitrary point a ∈ M . We need to show that
∥f1(t) − a(t)∥ ⩽ 1 + δ(ε/2). This inequality is clear if β(t) = 1, since in this
case f1(t) = g(t), and also if β(t) < 1 and ∥g(t) − a(t)∥ ⩾ ∥f0(t) − a(t)∥, since
in this case f1(t) ∈ [f0(t), g(t)]. Thus, we can always assume that 1 + δ(ε) ⩾
∥f0(t)−a(t)∥ > ∥g(t)−a(t)∥. Setting u := f0(t)−a(t) and v := g(t)−a(t), we have
∥v∥ ⩽ 1+ δ(ε/2) and 1+ δ(ε) ⩾ ∥u∥ > ∥v∥. Let us show that if we move a distance
2ε away from the point u in the direction v, then we fall in the ball B(0, 1+δ(ε/2)).
Since δ(ε) < ε/2 and δ(ε/2) < ε/4, the required result holds for ∥v∥ = 0, and so it
suffices to consider the case ∥v∥ = 1 + δ(ε/2).

In the two-dimensional space spanned by the points 0, u, and v, consider a point z
lying on the sphere S(0, ∥v∥) on the same side as v of the line passing through
0 and u and such that the line uz supports the ball. We extend this line to
a hyperplane H := ψ−1(1) that supports the sphere S(0, ∥v∥) in the space X.
It is clear that ∥ψ∥ = 1/∥v∥. Let φ := ∥v∥ψ, x := u/∥u∥, and y := z/∥z∥. Then
∥φ∥ = φ(y) = 1 = ∥y∥ = ∥x∥ and φ(x) = ∥v∥/∥u∥ ⩾ 1/∥u∥ ⩾ 1/(1 + δ(ε)) >
1 − δ(ε). Since the space is uniformly convex, we then have ∥x − y∥ < ε and
∥u−z∥ < ε+∥u−x∥+∥z−y∥ ⩽ ε+δ(ε)+δ(ε/2) < 2ε, which proves the assertion,
because the distance from u to the ball B(0, ∥v∥) in the direction v is smaller than
the maximum of the distances in the direction x (which is at most δ(ε)) and in the
direction z (which is less than 2ε).

Arguing by induction, we can find an fn+1 such that ∥fn+1 − fn∥ ⩽ 2ε/2n and
r(fn+1,M) ⩽ 1+δ(ε/2n+1). The space C(Q,X) is complete, and hence the Cauchy
sequence (fn) converges to some function f such that

∥f − f0∥ ⩽ 4ε and r(f,M) ⩽ lim r(fn,M) ⩽ 1.

This shows that r(f,M) = 1 and that f is a Chebyshev centre of the set M .
Thus, we have considered a point f0 in the set of Chebyshev near-centres of the

set M , and we have shown that there exists a Chebyshev centre f of M that lies suf-
ficiently close to f0. Hence, taking f0 to be a Chebyshev centre of a set N which is
close to M (in the Hausdorff metric), we get that f0 (a Chebyshev centre of N)
is close to some Chebyshev centre f of M . Therefore, the directed (one-sided)
Hausdorff distance (and hence the Hausdorff distance) between the correspond-
ing sets of Chebyshev centres of these close sets is small. And consequently, the
Chebyshev-centre map Z( · ) is uniformly continuous. □
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Amir [4] also showed that if X = C(Q) and Y is a closed linear sublattice4

of X, then any non-empty bounded set M ⊂ X admits a Chebyshev centre and the
Chebyshev-centre map M 7→ ZY (M) is uniformly continuous on bounded subsets
of the space of non-empty bounded sets in X (cf. Theorem 5.7).

The next result can be proved using Amir’s arguments for the case of C(Q,R).

Theorem 6.9. Let M and N be non-empty bounded subsets of C(Q), where Q is
an arbitrary topological space. Then for any δ ⩾ 0

h(Zδ(M),Zδ(N)) ⩽ 2h(M,N).

Zamyatin and Kadec (see, for example, [167]) proved the result of Theorem 6.9
with Q = [a, b] and δ = 0.

Theorem 6.10 (Tsar’kov). Let Q be a topological space. Then, for any non-empty
closed span Y ⊂ C(Q) and any non-empty bounded set M ⊂ C(Q),

ZY (M) ̸= ∅.

Moreover, for any δ ⩾ 0 and arbitrary non-empty bounded sets M,N ⊂ C(Q),

h(Zδ
Y (M),Zδ

Y (N)) ⩽ 2h(M,N).

Definition 6.6. Let V be a non-empty closed subset of a normed space X, and
let F be a subfamily of the family of all non-empty closed bounded subsets of X.
The triple (X,V,F ) is said to have the property (R1) (see [123]) if the conditions
x ∈ V , M ∈ F , r1 > 0, r2 > 0, V ∩ Or1(M) ̸= ∅ (where Or(M) := {x ∈ X |
ρ(x,M) ⩽ r}), and ρ(x,M) < r1 + r2 imply that

V ∩B(x, r1) ∩ Or2(M) ̸= ∅.

According to Theorem 2.2 of [123], if V is a non-empty closed subset of a Banach
space X, F is a family of non-empty closed bounded subsets of X, and the triple
(X,V,F ) has the property (R1), then

ZV (M) ̸= ∅ for any M ∈ F .

Pai and Nowroji [123] constructed several examples of triples (X,V,F ) with the
property (R1). In particular, they showed that if Q is a compact Hausdorff space,
X = C(Q,R), and V is a closed subalgebra of X, then the triple (X,V,K (X))
(where K (X) is the family of compact subsets of X) has the property (R1). The
following result partially strengthens the Zamyatin–Kadec result on stability of the
Chebyshev-centre map in C[a, b].

Theorem 6.11 (Pai and Nowroji [123]). Let V be a non-empty closed subset of
a normed linear space X , and let the triple (X,V,F ) have the property (R1). Then
the Chebyshev-centre map ZV ( · ) is Lipschitz continuous in the Hausdorff metric:

h(ZV (M),ZV (N)) ⩽ 2h(M,N) (6.7)

for any non-empty closed bounded sets M,N ⊂ X . The constant 2 in (6.7) is best
possible.

4A linear sublattice is a subspace L with the property that f ∈ L ⇒ |f | ∈ L.
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For a similar result in ℓ∞(Γ), see [49].
The next result follows From Michael’s selection theorem and Theorem 6.10.

Corollary 6.1. In C(Q), where Q is a topological space, the Chebyshev-centre
map Z( · ) has a continuous selection.

By using Amir’s results (see Theorem 6.8) it can be shown that in the space
C(Q,X), where Q is a topological space and X is a uniformly convex Banach
space, the Chebyshev-centre map Z( · ) has a continuous selection.

Remark 6.3. In C(Q), where Q is an infinite compact Hausdorff space, the relative
Chebyshev-centre map ZV ( · ), where V is a finite-dimensional Chebyshev subspace
of dimension ⩾ 2, is not Lipschitz continuous (uniformly continuous). This result
is a consequence of the fact that the restriction of the operator ZV ( · ) to single-
tons is the metric projection and since, according to a result of Cline, for any5

finite-dimensional Chebyshev subspace V of dimension ⩾ 2, there exist functions
x, y ∈ C[−1, 1] with ∥x∥ = ∥y∥ = 1 such that ∥x − y∥ < ε but ∥PV x − PV y∥ ⩾ 1.
Cline’s theorem also shows that the metric projection operator P is not uniformly
continuous on the unit ball of the space C(Q). In the particular case of the sub-
spaces Pn generated by the algebraic polynomials of degree ⩽ n with n ⩾ 2 in the
space C[a, b], this result dates back to a construction of S. N. Bernstein. For n = 1
S. B. Stechkin showed that the metric projection operator to the subspace of linear
functions in C[a, b] is not uniformly continuous).

6.5. Stability of the Chebyshev-centre map in Hilbert and uniformly
convex spaces. We first consider the Hilbert space setting. As mentioned above
(see Theorem 4.4 or Lemmas 2.1.1 and 2.1.2 in [128]), for any closed convex bounded
subset of a Hilbert space a Chebyshev centre exists, is unique, and lies in the subset.
By zM we denote the (unique) Chebyshev centre of a bounded subset M of a uni-
formly convex space or a Hilbert space, and we let rM = r(M) be its Chebyshev
radius (see § 11).

The following result is due to Ward [159] and Alvoni and Papini [3].

Proposition 6.3. Let H be a Hilbert space, and let M = {x1, . . . , xn} ⊂ H , N =
{y1, . . . , yn} ⊂ H , ∥xi∥ ⩽ R, ∥yi∥ ⩽ R, and ∥xi − yi∥ ⩽ h, i = 1, . . . , n. Then

∥zM − zN∥ ⩽ 2
√
hR+ h2. (6.8)

Moreover, if rM ⩽ rN , then

∥zM − zN∥ ⩽ h+
√

5h2 + 2hrM + 2hrN . (6.9)

Consider now the case of arbitrary bounded sets. The following result holds (for
compact sets see Theorem 1 in [143], and for the general case see [21], [3]).

Theorem 6.12. Let M and N be non-empty bounded subsets of a Hilbert space,
and let zM and zN be their Chebyshev centres. Then

∥zM − zN∥ ⩽
√

(h(M,N) + rM + rN )h(M,N). (6.10)
5By Mairhuber’s theorem the space C(Q), where Q is a compact metric space, contains a Che-

byshev subspace of any finite dimension n = 2, 3, . . . if and only if Q is homeomorphic to an
infinite closed subset of the closed unit interval [0, 1].
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Remark 6.4. The estimate (6.10) is sharp: there exist pairs of sets (with the same
Chebyshev radius) for which (6.10) becomes an equality. It is clear that equality
in (6.10) is also attained for singletons, but (6.10) ceases to be true in spaces in
which the Chebyshev-centre map is not single-valued.

The following strengthening of (6.10) was obtained in [3] with the use of a tech-
nique in [145].

Theorem 6.13. Let M and N be non-empty bounded subsets of a Hilbert space,
and let zM and zN be their Chebyshev centres. Suppose that rM ⩽ rN . Then

∥zM − zN∥2 ⩽ (rM + h(M,N))2 − r2N . (6.11)

From (6.11) it follows that

∥zM − zN∥ ⩽
√

2h(M,N) rN + h2(M,N) (6.12)

(see [3], Remark 3).

Remark 6.5. The estimate (6.11) can be seen as an estimate for the variation of
the radius when the distance between the centres is known. For example (see [3],
p. 431), if ∥zM − zN∥ ⩾ h(M,N), then r2N ⩽ r2M + 2h(M,N) rM , which implies
that

rM ⩾
√
h2(M,N)− r2N − h(M,N).

Some other estimates for the distance between Chebyshev centres in a Hilbert
space can be found in [128], Theorem 2.1.1, [85], § 5, and [84], Lemma 3.5.3.

Remark 6.6. Examples showing that the estimate (6.10) cannot be significantly im-
proved have been known for a long time (see, for example, [128]). Namely, for any
r > 0 and any ε ∈ (0, r) there exist closed convex sets A1, A2 ⊂ B(0, r) such that

ε = ∥c1 − c2∥ ⩾
√

2rh(A1, A2),

where ci is the Chebyshev centre of the set Ai, i = 1, 2. Indeed, let r > 0 and
ε ∈ (0, r). On the Euclidean plane R2 (with Cartesian coordinates (x(1), x(2)))
consider two sets A1 and A2 defined as follows:

A1 :=
{
x ∈ R2 | 0 ⩽ x(2) ⩽ ε, (x(1))2 + (x(2))2 ⩽ r2

}
and the set A2 is symmetric to the set A1 relative to the line x(2) = ε/2. It is easily
seen that the points c1 = {(0, 0)}, c2 = {(0, ε)} are the Chebyshev centres of A1

and A2, respectively, and that the Hausdorff distance h(A1, A2) =
√
r2 + ε2− r2 is

at most ε2/(2r). As a result,

∥c1 − c2∥ ⩾
√

2rh(A1, A2).

Theorem 6.13 shows that in a Hilbert space the Chebyshev-centre map is Hölder
continuous with exponent 1/2 uniformly on sets of fixed diameter. Simple examples
can be constructed to show that this map is not Lipschitz continuous.

We note the following result (see Proposition 4 in [3], and also Theorem 1 in [58]).
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Proposition 6.4. Let M ⊂ H be a non-empty bounded subset of a Hilbert space
and let z be its Chebyshev centre. Then

r2M + ∥x− z∥2 ⩽ r2(x,M) for any x ∈ X

(here we recall that r(x,M) := inf{r ⩾ 0 |M ⊂ B(x, r)}).

For uniformly convex spaces we mention the following results.

Theorem 6.14 (see [3], [21]). Let M and N be non-empty bounded subsets of a uni-
formly convex space X .

1. If rM ⩽ rN , then

rN ⩽ (rM + h(M,N))
(

1− δ

(
∥zM − zN∥

rM + h(M,N)

))
. (6.13)

2. The following inequality holds:

δ

(
∥zM − zN∥

h(M,N) + min{rM , rN}

)
⩽ 1− max{rM , rN}

min{rM , rN}+ h(M,N)(
⩽

h(M,N)
min{rM , rN}+ h(M,N)

)
. (6.14)

Here and below, δ(ε) is the modulus of convexity of a space (see [63]).
Another variant of (6.14) was established in Lemma 4 in [145].
For Hilbert spaces (for which δ(ε) = 1 −

√
1− ε2/4, 0 ⩽ ε ⩽ 2), Theorem 6.14

gives the estimate

∥zM − zN∥ ⩽ 2
√

(rM + h(M,N))2 − r2N ,

which is weaker than (6.11). The following result [3] strengthens (6.13).

Theorem 6.15 (see [3]). Let M and N be non-empty bounded subsets of a uni-
formly convex space X , and let rM ⩽ rN . Then

rN ⩽ (rM + h(M,N))
(

1− δ

(
∥zM − zN∥+ rM − h(M,N)− rN

rM + h(M,N)

))
. (6.15)

See [158] for analogues of the estimate in Theorem 6.14 and for its sharpness in
p-uniformly convex spaces. We mention another result (see [21]).

Theorem 6.16. Let X be a uniformly convex space and let M and N be bounded
subsets of X . Let c := ∥zM − zN∥, where zM and zN are the Chebyshev centres
of the sets M and N , respectively, and define γ := max{rM + h, rN + h}, where
h := h(M,N). Suppose that 0 ̸= c ⩽ 2γ . Then

γ δ
( c
γ

)
⩽ h (6.16)

and

c ⩽ γ ε
(h
γ

)
. (6.17)
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In Theorem 6.16,

ε(δ) := sup
{
∥x− y∥

∣∣∣∣ ∥x∥ ⩽ 1, ∥y∥ ⩽ 1,
∥x+ y∥

2
⩾ 1− δ

}
is the inverse of the modulus of convexity δ(ε).

Remark 6.7. The estimates in Theorem 6.16 are quite rough in Hilbert spaces.
For example, if ∥zM − zN∥ ⩽ 2h, then equality in (6.17) is impossible (see [21],
Remark 4.2). It is unknown whether the estimates (6.16) and (6.17) are sharp in
the class of uniformly convex spaces.

For Lq-spaces with 1 < q <∞, Prus and Smarzewski (see Theorem 4.1 in [132])
established the following result.

Theorem 6.17. Suppose that for some q ⩾ 2 there exists a positive constant C
such that

δX(ε) ⩾ C εq (0 < ε ⩽ 2).

Let M ⊂ X and ZM = {x} (or Zsc
M = {x}). Then

r(x,M) ⩽ r(y,M)− k∥x− y∥q for any y ∈M,

where the constant k depends only on q and C .

We also mention the following Hilbert space criterion from [3].

Theorem 6.18. Let X be a Banach space. Then the norm on X is Euclidean if
and only if the inequality

∥zM − zN∥2 ⩽ (rM + h(M,N))2 − r2N for rM ⩽ rN (6.18)

is satisfied for any sets M,N ⊂ X that have Chebyshev centres.

6.6. Stability of the self Chebyshev-centre map. The stability problem for
the self Chebyshev-centre map was first examined by Borwein and Keener [39].

Given a non-empty bounded set M , we denote by z′M and r′(M) the self Che-
byshev centre and self Chebyshev radius of M , respectively (see (1.4), (1.3)).

Let M be the class of non-empty closed convex bounded sets with the property
that B̊(z′M , r′M ) ∩ B̊(z′N , r

′
N ) = ∅ for any non-equal M,N ∈ M with Zsc

M = {z′M}
and Zsc

N = {z′N} (here, as before, Zsc
M = {z′M} is the set of self Chebyshev centres

of a set M ; see (1.4)).

Theorem 6.19 (Borwein and Keener [39]). Let X be a Hilbert space and let
M,N ∈ M . Then

∥z′M − z′N∥ ⩽
1 +

√
5

2
h(M,N).

Theorem 6.20 (Borwein and Keener [39]). Let X be a strictly convex space and
let M,N ∈ M . Then

∥z′M − z′N∥ ⩽ c h(M,N), where c ∈
[
1 +

√
5

2
, 2

]
.
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6.7. Upper semicontinuity of the Chebyshev-centre map and the Cheby-
shev near-centre map. Recall that a map F : X → 2Y is upper semicontinuous
at a point x0 if, for any open set V ⊂ Y with F (x0) ⊂ V , there exists a neigh-
bourhood O(x0) such that F (x) ⊂ V for any x ∈ O(x0). A map F is upper
semicontinuous on X if it is upper semicontinuous at any point x0 ∈ X.

Theorem 6.21 (Belobrov [28]). Let X be an Efimov–Stechkin space,6 and let the
sequence of sets Mn ⊂ X converge to a compact set M in the Hausdorff metric.
Then for any ε > 0

ZMn
⊂ Oε(ZM )

for n starting from some N ∈ N.

For extensions of Theorem 6.21, see Theorem 6.23 below.

Remark 6.8. Belobrov [28] also showed that in an Efimov–Stechkin space the set of
Chebyshev centres of a compact set is compact.

Remark 6.9. The relation ZM ⊂ Oε(ZMn
), which is the reverse of the inclusion in

Theorem 6.21, does not hold in general even in finite-dimensional Banach spaces.
In this regard, consider the following example (see [28] and [103], Example 3.2). Let
a1 and a2 be opposite points on a circle O in R3. By h1 and h2 we denote closed
intervals of equal length having midpoints a1 and a2 and being perpendicular to the
plane of the circle O. Let B be the convex hull of O and the intervals h1 and h2.
Consider the sets Mn = {x′n, x′′n}, where x′n and x′′n are opposite points on the
circle O but such that x′n → a1 and x′′n → a2 in the norm of the space with unit
ball B, x′n ̸= a1, x′′n ̸= a2, n = 1, 2, . . . . Each set Mn, n = 1, 2, . . . , has a unique
Chebyshev centre (the centre of the circle O). On the other hand, any point on the
diameter of B parallel to the interval h1 (or h2) is a Chebyshev centre of M .

Definition 6.7. Given δ > 0, a bounded set M ⊂ X, and a non-empty closed
subset V of X, we define the set of relative Chebyshev δ-centres of M by

Zδ
V (M) :=

{
y ∈ V | r(y,M) ⩽ rV (M) + δ

}
. (6.19)

Definition 6.8. Let V ⊂ X be a non-empty closed convex set, and let F ′(X) be
a family of closed bounded subsets of X with non-empty sets of relative Chebyshev
centres: ZV (M) ̸= ∅ for any M ∈ F ′. Following [115] and [103], we say that a pair
(V,F ′) has the property (P1) if for any M ∈ F and any ε > 0 there exists a δ > 0
such that

Zδ
V (M) ⊂ ZV (M) + εB.

The property (P1) was introduced by Mach [115] and further studied in [103].

Remark 6.10. Mach [115] found some pairs (V,F ) with the property (P1). For
example, a pair (V,F ) (where F is the class of closed bounded subsets of X) has
the property (P1) in the following cases:

1) X is a Banach space and V ⊂ X is a finite-dimensional subspace;

6A Banach space X is an Efimov–Stechkin space if, for any xn ∈ S and f ∈ S∗ such that
f(xn) → 1, the sequence (xn) has a convergent subsequence (see [2]). Efimov–Stechkin spaces are
also called reflexive Kadec–Klee spaces.
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2) X = ℓ1 and V is a w∗-closed convex subset of X;
3) X is a uniformly convex space and V is a closed bounded convex subset of X;
4) X is a Lindenstrauss space (that is, a space predual to L1(µ)), V is an M-ideal

in X, and F is the class of non-empty compact sets in X.
It was shown in Theorem 2.5 of [103] that if 7 X ∈ (CLUR), V is a closed convex

bounded subset of X, and F = K (X) is the class of non-empty compact sets in X,
then the pair (V,F ) has the property (P1).

Remark 6.11. Note that the property (P1) does not in general imply the continuity
of the operator ZV ( · ). Finite-dimensional subspaces with metric projection which
is not lower semicontinuous can be constructed in many (even finite-dimensional)
spaces. Let V be such a subspace and let Fp be the class of singletons in X.
According to Remark 6.10, the pair (V,Fp) has the property (P1), but the (relative)
Chebyshev-centre map

{x} 7→ ZV ({x}) = PV (x)

is not continuous.

Mach (see [115], Theorem 5) proved the following result.

Theorem 6.22 (Mach). Let X be a Banach space and let (V,F ) be a pair with
the property (P1). Then the map

M 7−→ ZV (M), M ∈ F ,

is upper semicontinuous in the Hausdorff metric.

The next result (see [103], Theorem 2.3) extends Theorem 6.21.

Theorem 6.23. The following conditions on a Banach space X are equivalent:
a) X is an Efimov–Stechkin space;
b) if V is a non-empty closed convex subset of X and F = K (X) is the class

of non-empty compact sets in X , then the pair (V,F ) has the property (P1).

The relative Chebyshev δ-centre map Zδ
V (see (6.19)) can be shown to have

stronger continuity properties without assumptions on the space structure or on
the properties of the pair (V,F ). The following result holds [147].

Theorem 6.24 (Tsar’kov). If V ̸= ∅ is a closed convex subset of a Banach space X
and δ > 0, then the Chebyshev δr(M)-centre map

M 7→ Zδ r(M)
V (M)

is Lipschitz continuous on the class of non-empty bounded subsets of X .

Corollary 6.2. Let X be a finite-dimensional Banach space, let V ̸= ∅ be a closed
convex bounded subset of X , and let δ > 0. Then the Chebyshev δr(M)-centre map

M 7→ Zδ r(M)
V (M)

has a continuous Lipschitz selection.
7X ∈ (CLUR) if the conditions x, xn ∈ S(X) and ∥x + xn∥/2 → 1 imply that (xk) has a

convergent subsequence.
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The following property (P2) (see [115], [103]), which is stronger than (P1), gives
a sufficient condition for the continuity of the Chebyshev-centre map.

Definition 6.9. Let V ⊂ X be a non-empty closed convex set, and let F (X) be
a family of closed bounded subsets of X with non-empty sets of relative Chebyshev
centres: ZV (M) ̸= ∅ for any M ∈ F . A pair (V,F ) is said to have the property
(P2) if for any ε > 0 there exists a δ > 0 such that

Zδ
V (M) ⊂ ZV (M) + εB (6.20)

for any M ∈ F .

Theorem 6.25 (see [115], [103]). Let V be a closed bounded subset of X , and let
F be a family of non-empty closed bounded subsets of X . Suppose that the pair
(V,F ) has the property (P2). Then the Chebyshev-centre map

M 7→ ZV (M)

is uniformly continuous in the Hausdorff metric on the family F .

The next two results (see [103]) extend Theorems 5.7 and 5.8.

Theorem 6.26. The following conditions on a Banach space X are equivalent:
a) X is uniformly convex;
b) for any subspace V ⊂ X , any number α > 0, and the family F of non-empty

closed bounded sets M ⊂ X with rV (M) ⩽ α, the pair (V,F ) has the property (P2),
and the relative Chebyshev-centre map ZV (M) is single-valued for any M ∈ F ;

c) for any subspace V ⊂ X the relative Chebyshev-centre map M 7→ ZV (M) is
single-valued and uniformly continuous on the class of non-empty bounded subsets
of the space X ;

d) the Chebyshev-centre map M 7→ Z(M) is single-valued and uniformly contin-
uous on the class of non-empty bounded subsets of X .

Theorem 6.27. Let V be a subspace of a Banach space X . Then the following
conditions are equivalent:

a) X is uniformly convex with respect to V (see (5.3));
b) for any α > 0 the pair (V,F ) has the property (P2), where F consists of

all non-empty closed bounded subsets M ⊂ X with rV (M) ⩽ α, and the relative
Chebyshev-centre map ZV (M) is single-valued for any M ∈ F .

The next theorem characterizes the uniformly convex Banach spaces in terms of
the uniform approximative stability of the Chebyshev near-centre map on the class
of sets of Chebyshev radius 1.

Theorem 6.28 (see [103]). The following conditions on a Banach space X are
equivalent:

a) X is uniformly convex;
b) for any ε > 0 there exists a δ > 0 such that

Zδ
V (M) ⊂ ZV (M) + εB

for any closed subspace V ⊂ X and any closed bounded set M ⊂ X with rV (M) = 1.
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Let us briefly discuss the problem of convergence of Chebyshev nets. The fol-
lowing result holds.

Theorem 6.29 (Belobrov). Suppose that a sequence (Mn)∞n=1 of non-empty convex
subsets of a Hilbert space H converges in the Hausdorff metric to a compact set
M ⊂ H . Then there exists a sequence (S∗n)∞n=1 of best N -nets for the sets Mn which
contains a subsequence converging in the Hausdorff metric to some best N -net for
the set M .

Knowing that in a Euclidean space there is no continuous selection from the set
of Chebyshev 2-nets, many who study the properties of Chebyshev nets were sat-
isfied with this state of affairs and did not consider the problem of the existence of
continuous selections from the set of Chebyshev nets. Druzhinin [60] investigated
this problem for various spaces and showed that any selection from the set of Che-
byshev n-nets for n ⩾ 2 is discontinuous in any non-strictly convex Banach space.
In addition, he proved the absence of a Lipschitz selection in an arbitrary Banach
space of dimension ⩾ 2 that has a smooth exposed point on the unit sphere.

6.8. Lipschitz selection of the Chebyshev-centre map. As before, by
BH(X) we denote the class of non-empty bounded subsets of a space X, equipped
with the Hausdorff semimetric. A map φ : BH(X) → X is called a selection of the
Chebyshev-centre map Z( · ) if φ(M) ∈ Z(M) for any M ∈ BH(X). We first give
the following simple result.

Theorem 6.30. In X = ℓ∞(Γ) the Chebyshev radius r(M) of any non-empty
bounded set M ⊂ X is equal to half the diameter of M . Moreover, the Chebyshev-
centre map Z( · ) admits a 1-Lipschitz selection.

Proof. Let M ∈ BH(X). For any t ∈ Γ we set

m(t) :=
1
2

(
inf

x∈M
x(t) + sup

x∈M
x(t)

)
.

It is easily checked that the point m is a Chebyshev centre of M , and

r(M) =
1
2

diamM, diamM = sup
t∈Γ

(
sup
x∈M

x(t)− inf
x∈M

x(t)
)
.

The map φ(M) := m is the required 1-Lipschitz selection. □

The problem of the existence of a Lipschitz selection of the Chebyshev-centre
map has been investigated by Amir ([7], § 6.4), Amir, Mach and Saatkamp ([9], § 4),
Pai and Nowroji [123], Druzhinin [59], and others.

We say that the Chebyshev-centre map Z admits a Lipschitz selection with con-
stant θ if there exists a single-valued operator T which associates with any bounded
set some (single) Chebyshev centre of this set and is such that

∥T (M)− T (N)∥ ⩽ θ · h(M,N)

for some θ > 0 and any non-empty bounded sets M and N , where, as before,
h(M,N) is the Hausdorff distance.
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It was shown above (see Remark 6.6) that in a Hilbert space the (single-valued)
Chebyshev-centre map is not Lipschitz continuous.

Recall that a point s of the unit sphere S of a normed space X is called a smooth
point if the support hyperplane to S at this point is unique; a point s is an
exposed point of the sphere S (or of the unit ball B) if there exists a hyperplane H
supporting B at s such that H ∩B = {s}.

Theorem 6.31 (Druzhinin). If the unit sphere of a Banach space X has a smooth
exposed point, then the Chebyshev-centre map Z( · ) does not have a Lipschitz selec-
tion.

Theorem 6.32 (Druzhinin). If X is a finite-dimensional Banach space, then the
Chebyshev-centre map Z( · ) admits a Lipschitz selection if and only if X is polyhe-
dral.

For the existence of a Lipschitz selection in polyhedral spaces, see also § 6.3.
The problem of existence of a Lipschitz selection of the Chebyshev-centre map

Z( · ) in C(Q), where Q is a compact Hausdorff space, has not been solved in
the general case (cf. Corollary 6.1). However, if the Chebyshev-centre map Z( · )
is restricted to compact sets, then the existence of a Lipschitz selection of the
map Z( · ) is fairly clear. Druzhinin [59] obtained the following partial answer in the
problem of the existence of a Lipschitz selection of the Chebyshev-centre map Z( · ).

Theorem 6.33. Let Q be a compact Hausdorff space with finitely many limit points.
Then in the space C(Q) the Chebyshev-centre map Z( · ) has a Lipschitz selection.

6.9. Discontinuity of the Chebyshev-centre map. For infinite-dimensional
L1-spaces, the Chebyshev-centre map Z( · ) (see (1.1)) is not lower semicontinuous
even on the class of two-point sets (as a consequence, Z( · ) does not have a contin-
uous selection) [7].

It is well known that in a finite-dimensional space X the metric projection onto
a finite-dimensional subspace need not be continuous. Let V be such a subspace.
According to Remark 6.11, the (relative) Chebyshev-centre map

{x} 7→ ZV ({x}) = PV (x)

is not continuous; here we associate with a singleton {x} the set of relative (with
respect to V ) Chebyshev centres. A similar example of a discontinuous single-valued
relative Chebyshev-centre map ZV : X → V can be constructed in any space X
containing a Chebyshev subspace V with discontinuous metric projection (and, in
particular, in ℓ1; see § 2 in [115]).

Note that in a finite-dimensional space the Chebyshev-centre map is always
upper semicontinuous (see Theorem 6.21). One can easily construct an example of
a three-dimensional space in which the Chebyshev-centre map is not lower semicon-
tinuous (see [9], Example 2.5). Let B be the (symmetric) convex hull of the circle
{e1 cos t + e2 sin t | 0 ⩽ t ⩽ 2π} and the closed interval {se1 + e3 | −1 ⩽ s ⩽ 1},
and let ∥ · ∥ be the norm generated by the body B. In other words,

∥∥(x(1), x(2), x(3))
∥∥ =

{√
(x(2))2 + (|x(1)| − |x(3)|)2 + |x(3)|, |x(1)| ⩾ |x(3)|,

|x(2)|+ |x(3)|, |x(1)| ⩽ |x(3)|.
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We have Z({−e1, e1}) = [−e3, e3] and Z({−e1 − ηe2, e1 + ηe2}) = {0} for η ̸= 0,
so the map M 7→ Z(M) is not lower semicontinuous, and thus not continuous (see
also Remark 6.9).

7. Characterization of a Chebyshev centre, a decomposition theorem

We first mention one simple result for Hilbert spaces (see, for example, [8],
Corollary 2.5, [53], Lemma 4, [122], Lemma 2, and [3], Lemma 0).

Theorem 7.1. Let M be a bounded subset of a Hilbert space. Then a point z is
a Chebyshev centre of M if and only if

z ∈
⋂
ε>0

conv {y ∈M | ∥y − z∥ ⩾ r(M)− ε}.

Remark 7.1. A similar characterization also holds in an arbitrary two-dimensional
strictly convex space.

We also mention two more characterizations of the relative Chebyshev centre in
a Hilbert space [17].

Theorem 7.2 (Balaganskii). Let X be a Hilbert space, let Y ⊂ X be a non-empty
closed convex set, let K ⊂ X be a non-empty closed convex bounded set, and let
y ∈ Y and r := r(y,K). Then

1) {y} = ZY (K) ⇐⇒ y ∈ PY (conv (K \B(y, t))) ∀ 0 < t < r ;
2) {y} = ZY (K) ⇐⇒ y ∈ PY (conv (K ∩ S(y, r))).

The following result [127] describes the Chebyshev centres and the Chebyshev
radii in finite-dimensional Banach spaces.

Theorem 7.3 (Pichugov). Let M be a closed convex subset of a finite-dimensional
Banach space of dimension n, and let r(M) = r . Then a point y is a Chebyshev
centre of M (y ∈ Z(M)) if and only if there exists a natural number N ⩽ n + 1
such that:

a) there are points xi in M , i = 1, . . . , N , such that ∥xi − y∥ = r ;
b) there are functionals fi in (Xn)∗ , i = 1, . . . , N , such that

(fi, xi − y) = ∥xi − y∥, ∥fi∥ = 1;

c) there exist numbers αi , i = 1, . . . , n, with
∑n

i=1 αi = 1 and αi ⩾ 0 such that∑N
i=1 αifi = 0.

Proof. The convex function F (x) = max{∥x − z∥ | z ∈ M} has a minimum at
a point y if and only if 0 ∈ ∂F (y). Now the required assertion follows from the
finite-dimensional decomposition theorem (see, for example, [128]). □

8. Chebyshev centres which are not farthest points

The paper [139] considers the problem of when a Chebyshev centre of a bounded
subset of a Banach space can be a farthest point of the subset. Following [139], we
say that a set M is non-trivial if |M | ⩾ 2.
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We first recall the definition of a farthest point of a set.
Let x ∈ X and ∅ ̸= M ⊂ X. A point y0 ∈ M is called a farthest point of M

from the point x if

∥x− y0∥ = sup{∥x− y∥ | y ∈M} = r(x,M);

that is, ∥x − y0∥ ⩾ ∥x − y∥ for any point y ∈ M . The set of all farthest points
in M from a point x (the metric antiprojection, the max-projection) is denoted
by F(x,M):

F(x,M) = {y ∈M | ∥x− y∥ = r(x,M)}.

By FarM we denote the set of all points in M on which the supremum in the
definition of r(x,M) is attained at some x ∈ X; that is,

FarM =
⋃

x∈X

F(x,M).

Baronti and Papini (see Proposition 6.4 above) showed that if M ⊂ H is
a non-empty bounded subset of a Hilbert space and zM is a Chebyshev centre
of M , then

r2M + ∥x− zM∥2 ⩽ r2(x,M) for any x ∈ X.

Hence, in a Hilbert space
r(x,M) > ∥x− zM∥,

which implies that zM /∈ FarM , where zM is the unique Chebyshev centre of
a non-trivial bounded subset M of H.

Remark 8.1. Clearly, if X is not strictly convex, that is, the unit sphere of X
contains a non-trivial interval M , then all points in M lie at distance 1 from the
origin, and hence M = FarM . In particular, the Chebyshev centre (u+ v)/2 of M
belongs to FarM .

This observation led Sain to the following question: in a strictly convex Banach
space can a Chebyshev centre of a bounded non-trivial set be a farthest point of
this set from a point (cf. Remark 8.1)? The answer to this question turns out to
be positive.

Definition 8.1. Following [139], we say that M is a CCF-set if there is a Che-
byshev centre for M lying in FarM .8 Correspondingly, M is an NCCF-set if
M /∈ (CCF).

A space X is said to lie in the class (CCF) if it contains a non-trivial CCF-set;
X lies in (NCCF) ifX ̸∈ (CCF), that is, any non-trivial subset ofX is an NCCF-set.

From Remark 8.1 it follows that if X ∈ (NCCF), then X is strictly convex.
Theorem 8.2 gives the converse: each two-dimensional strictly convex Banach space
lies in the class (NCCF). This ceases to be true if the dimension of the space is
greater than two.

Sain, Kadets, Paul, and Ray [139] characterized the NCCF-spaces as follows. In
the next theorem, rt,z denotes the Chebyshev radius of the set At,z := B ∩B(z, t).

8‘CCF’ is an acronym for ‘a Chebyshev centre lies in Far M ’.
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Theorem 8.1. Let X be a Banach space. Then the following three conditions are
equivalent:

a) X ∈ (NCCF);
b) the inequality rt,z < t holds for any z ∈ S and t ∈ (0, 1];
c) for any ε ∈ (0, 1] there exists a t0 ∈ (0, ε) such that rt,z < t for all z ∈ S and

t ∈ (0, t0].

The next result [139] shows that in the two-dimensional setting the class (NCCF)
coincides with the class of strictly convex Banach spaces. This is not true for
dimension ⩾ 3.

Theorem 8.2. A two-dimensional Banach space X is strictly convex if and only
if any non-trivial bounded set M ⊂ X which contains some Chebyshev centre of M
is an NCCF-set.

Example 8.1 (see [139]). On the space X = (Rn, ∥ · ∥), n ⩾ 3, consider the norm

∥(x(1), x(2), . . . , x(n))∥ =
n∑

i=1

|x(i)|+ 1
2

√√√√ n∑
i=1

|x(i)|2

(such a norm is strictly convex). By Theorem 5.1, a Chebyshev centre of
any bounded set is unique. Let θ := (0, 0, . . . , 0) and let {e1, . . . , en} be the
standard basis for Rn. Consider the set M := {θ, e1, e2, . . . , en}, and define
z = (1, 1, . . . , 1) ∈ Rn. Then Z(M) = {θ}, and θ is a farthest point inM . Using this
example, it can be shown (see [139]) that there exists a finite-dimensional strictly
convex normed space X containing a non-trivial compact convex CCF-subset.

Definition 8.2. A set M is said to be centreable if r(M) = (1/2) diamM .

A similar example with a centreable set can be constructed in any infinite-
dimensional strictly convex space (see [139]). Theorem 8.3 below implies that such
an example cannot be constructed in the finite-dimensional setting.

Theorem 8.3 (see [139]). Let X be a uniformly convex Banach space, and let M
be a non-trivial bounded centreable subset of X containing a Chebyshev centre zM

of it. Then M is an NCCF-set.

Remark 8.2. The uniform convexity condition in Theorem 8.3 cannot be replaced
by the strict convexity condition.

Definition 8.3 (see [139]). Let x ∈ X. A sequence (an) ⊂ M is said to be maxi-
mizing (minimizing) if

∥x− an∥ → r(x,M) (respectively, ∥x− an∥ → ρ(x,M)).

A point x ∈ X is a point of MAX-approximative compactness (a point of MIN-
approximative compactness) of a set ∅ ̸= M ⊂ X if any maximizing (minimizing)
sequence in M contains a subsequence converging to a point in M . A set M is said
to be MAX-approximatively compact (MIN-approximatively compact) if any point x ∈
X is a point of MAX-approximative compactness (MIN-approximative compactness)
for the set M . In these terms, MIN-approximative compactness is the classical
approximative compactness (see [2]).
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Theorem 8.4 (see [139]). Let X be a strictly convex Banach space, and let M ⊂ X
be a non-trivial bounded centreable MAX-approximatively compact set containing
a Chebyshev centre zM of it. Then M is an NCCF-set.

Remark 8.3. The MAX-approximative compactness assumption in Theorem 8.4 can-
not be dropped.

The following characterization of strictly convex spaces follows from Theorem 8.4
and the fact that a closed interval is a centreable MAX-approximatively compact set.

Theorem 8.5 (see [139]). A Banach space X is strictly convex if and only if any
non-trivial bounded centreable MAX-approximatively compact subset M of X con-
taining some Chebyshev centre of it is an NCCF-set.

A space Lp with p ̸= 2 of dimension > 2 lies in the class (CCF). The spaces L1

and L∞ are not strictly convex, and hence by the above they lie in (CCF).
The next result is auxiliary. Let e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1).

Proposition 8.1 (see [139]). For the set A0 = {e1, e2, e3} ⊂ ℓp3 , the set of its
Chebyshev centres is the point xp = (sp, sp, sp), where sp = 1/(1 + 21/(p−1)).

We set Ap = {e1, e2, e3, xp} ⊂ ℓp3 (where xp is the point in the statement of
Proposition 8.1).

Proposition 8.2 (see [139]). For p ∈ (1, 2) ∪ (2,∞) the set Ap is a CCF-set. As
a consequence, ℓp3 ∈ (CCF).

Theorem 8.6 (see [139]). Let (Ω,Σ, µ) be a finite or σ-finite measure space con-
taining a disjoint triple {∆i}3i=1 ⊂ Σ of subsets of finite positive measure. Then

Lp = Lp(Ω,Σ, µ) ∈ (CCF) for any p ∈ (1, 2) ∪ (2,∞).

For further results in this direction, see [138], [121], and [23].

9. Smooth and continuous selections of the Chebyshev near-centre map

Let V ⊂ X be a non-empty convex set, and let ∅ ̸= M ⊂ X, be a bounded set.
Consider the following sets of relative Chebyshev near-centres:

Zε
V (M) := {y ∈ V | r(y,M) ⩽ r(M) + ε},

Z̊ε
V (M) := {y ∈ V | r(y,M) < r(M) + ε}

(the quantities r(y,M) and r(M) were defined in § 1). In the proof of the next
result, Zε(M) := Zε

X(M) and Z̊ε(M) := Z̊ε
X(M) (M ⊂ X).

Theorem 9.1. The map M 7→ Zε(M) admits a continuous selection for any ε > 0.

Proof. Let δ(y) := ε + r(M) − r(y,M). Clearly, δ(y) > 0 for y ∈ Z̊ε(M). We
assert that the map M 7→ Z̊ε(M) is lower semicontinuous. Indeed, if Mn → M
and y ∈ Z̊ε(M), then there exists an N ∈ N such that y ∈ Z̊ε(Mn) for any n ⩾ N .
This shows that the map M 7→ Z̊ε(M) is lower semicontinuous. The sets Z̊ε(M)
and Zε(M) are convex, and hence by Michael’s classical selection theorem (see,
for example, § 2.9 of [128]) the map M 7→ Z̊ε(M) has a continuous selection, being
lower semicontinuous on the metric space of bounded sets with the Hausdorff metric.
Since Z̊ε(M) is a body, the map M 7→ Zε(M) also has a continuous selection. □
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Remark 9.1. If V is a non-empty closed convex set, then the map M 7→ Zε
V (M)

is lower semicontinuous and admits a continuous selection for any ε > 0 (see also
Theorem 6.24 above).

The next result shows that the set of Chebyshev near-centres has a Lipschitz
selection in the space C(Q).

Theorem 9.2. Let X = C(Q), where Q is a compact metric space. Then there
exists a 2-Lipschitz map φ : BH(X) → X such that

M ⊂ B(φ(M),diamM) for any M ∈ BH(X).

Proof. It is known that C(Q) can be isometrically embedded in the space ℓ∞(Q).
By Theorem 6.30, there is a 1-Lipschitz selection ψ of the Chebyshev-centre map in
the space Y = ℓ∞(Q). According to the Lindenstrauss–Kalton theorem (see [92],
Theorem 3.5), there is a 2-Lipschitz retraction π from ℓ∞(Q) onto C(Q), where Q
is a compact metric space. It is easily seen that φ = π ◦ ψ is the required map. □

Tsar’kov [146] investigated the existence of smooth selections of the Chebyshev
near-centre map. Let X be a Banach space. For an arbitrary body M ⊂ X consider
the quantity

q(M) := sup{a ⩾ 0 | B(x, a) ⊂Mr}.

Given τ > 1, we denote by N(X, τ) the metric space of all closed convex bodies
M ⊂ X such that

diamM = 1 and
r(M)
q(M)

⩽ τ.

The space N(X, τ) ⊂ H (X) is equipped with the standard Hausdorff metric.
For metric spaces (X1, ρ1) and (X2, ρ2) and a map φ : X1 → X2, the modulus of

continuity is defined by

ω(φ, δ) := sup
{
ρ2(φ(x), φ(y)) | ρ1(x, y) ⩽ δ

}
, δ ⩾ 0.

Given γ ∈ [0, 1], we let UCγ denote the class of all maps φ : N(X, τ) → X such
that ω(φ, δ) = o(δγ) for δ → 0+.

Theorems 9.3–9.5 are due to Tsar’kov [146]. The following result shows that
better smoothness for a selection of the Chebyshev near-centre map cannot be
achieved if Chebyshev near-centres are considered near the corresponding sets.

Theorem 9.3. LetX be an infinite-dimensional Banach space. Then for any τ > 1
and ε ∈ (1/τ, 1) the class UC1/2 does not contain a map φ : N(X, τ) → X such that

ρ(φ(M),M) < r(M) (1− ε) ∀M ∈ N(X, τ).

We recall (see [63], p. 51) that a Banach space X has type p if there exists
a constant C such that for all x1, . . . , xn ∈ X

1
2n

∑
εi=±1

∥∥∥∥ n∑
i=1

εixi

∥∥∥∥ ⩽ C

( n∑
i=1

∥xi∥p

)1/p

.
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Theorem 9.4. Let X be an infinite-dimensional Banach space of type p > 1. Then
for any τ > 1 the class UC1/2 does not contain a map φ : N(X, τ) → X such that

sup
{
ρ(φ(M),M) |M ∈ N(X, τ)

}
<∞.

The next result establishes a link between smoothness of selections of the Che-
byshev near-centre map and smoothness of operators of non-linear projection onto
a subspace.

Theorem 9.5. Let X be an infinite-dimensional Banach space. Suppose that there
exist numbers τ > 1 and γ ⩾ 1/2 and a map φ ∈ UCγ such that

sup
{
ρ(φ(M),M) |M ∈ N(X, τ)

}
<∞.

Then there exists a subspace L ⊂ X such that no uniformly continuous projection
onto L exists in any uniform neighbourhood of L.

The Steiner centre of a compact convex set M ⊂ Rn is defined as

s(M) =
1
vn

∫
S(0,1)

s(p,M) dp, (9.1)

where vn denotes the volume of the unit ball in Rn (see § 2.1 of [128])), s(p,M) :=
sup{⟨p, x⟩ | x ∈M}, and p ∈ X∗ is a support function of the set M .

The Steiner-centre map s( · ) is Lipschitz continuous in the standard Hausdorff
metric as a function of compact convex sets in Rn, namely:

∥s(A1)− s(A2)∥ ⩽ Lnh(A1, A2), (9.2)

for any compact convex sets A1 and A2 in Rn, where

Ln :=
2√
π

Γ(n/2 + 1)
Γ((n+ 1)/2)

,

and the Lipschitz constant Ln in (9.2) is best possible (see § 2.1 of [128]). We
note that Ln is bounded from above by

√
n and behaves roughly like

√
n with

increasing n. Hence, as the dimension n of the space increases, the Steiner-centre
map cannot be extended as a Lipschitz selection to any infinite-dimensional space
(or even to a Hilbert space). We also note that on the class of compact convex
subsets of Rn one can consider different metrics (not equivalent to the Hausdorff
distance), in which the Steiner-centre map (as a function of compact convex sets)
provides a Lipschitz selection with Lipschitz constant 1 (see Theorem 2.1.3 in [128]).

10. Algorithms and applied problems
connected with Chebyshev centres

The problem of approximation of geometrically complicated shapes M by more
convenient sets (balls of radius r(M) in the Chebyshev centre problem or by sets
of balls of fixed covering radius in the best n-net problem) is a classical problem in
computational geometry [129], and it is interesting both from the theoretical point
of view and in relation to multiple applications to problems of cellular [168] and



Chebyshev centres and Jung constants 819

space communication [75], logistics [43], construction of reachability sets for con-
trol systems [79], and also optimization problems (see [88]) and approximation of
optimal packings [151]. For applications of Chebyshev centres to problems of opti-
mal recovery of linear operators, see [144], [13], [48], [56]. As a recent application
of the Chebyshev centre machinery, we mention the construction of space-filling
designs for computer experiments based on an extension of Lloyd’s clustering algo-
rithm [131]. A Chebyshev centre can also be naturally regarded as a centre of an
information set in control problems with uncertain disturbances and errors in the
state information.

The problem of constructing an approximation of an information set (which char-
acterizes the uncertainty in the evaluation of the state vector from observations) as
a system of linear inequalities was considered in [148]. This choice of the class of
approximating regions and the method of approximation is superior to the vertex
representation in terms of memory space and is better then approximation by ellip-
soids in terms of accuracy. To be able to control an object, one has to know a point
estimate rather than a guaranteed estimate, which leads to the problem of finding
a point estimate from an information set. If a guaranteed state estimate (that is,
an information set) is known, then as a point estimate one can choose a point in
this information set. For a minimax filtration problem, we again choose one point
(a Chebyshev centre of the information set) from the whole set of points.

The problem of constructing a Chebyshev centre of a given finite point set
{a1, . . . , aN} in a finite-dimensional space is a classical optimization problem, for
which many algorithms are available (for a historical survey see [62], and for more
references see [165], and also [41], [140], [82], [150], and [93]). The earliest such
algorithms had been known long before the maturation of the theory of Chebyshev
centres.

Exact algorithms for constructing Chebyshev centres of finite sets are based on
various linear programming methods (see, for instance, [41], [74], [161]); approx-
imate algorithms can deliver (1 + εk)-approximations of a Chebyshev centre as
εk → 0. Exact algorithms depend exponentially on the dimension n of the space,
and hence can be used only for small dimensions (say, for n ≲ 20). Approximate
algorithms can work for large n to produce an (1+ε)-approximation of a Chebyshev
centre with O(Nn/ε) arithmetic operations (see [165], [51]). An efficient algorithm
for finding a conditional Chebyshev centre in the space ℓ1 was constructed in [45].

The problem of finding a Chebyshev centre for a set M is an NP-hard problem,
except for a few simple cases (when M is finite and the metric is Euclidean, when
M is polyhedral in ℓ∞n , or when M ⊂ C is given by two ellipsoids [24]; see [164]).

The problem of approximating objects by subsets of a finite point set was consid-
ered in [108], [109] in the Euclidean plane setting, in [149] for a sphere in a Euclidean
space, and in [94], [95] for a plane with inhomogeneous metric.9

An algorithm constructing best nets of cardinality N in general metric spaces is
given in [93]. In the Euclidean plane setting, the algorithm for finding best N -nets

9The inhomogeneous metric is defined as follows: ρf (a, b) :=
∫
Γ∈Γ(a,b)(f(x, y))−1 dΓ, where

0 < f(x, y) < c is a piecewise-continuous function, and Γ(a, b) is the class of continuous paths
between points a and b. If f ≡ 1, then the metric ρf ( · , · ) is Euclidean. Such metrics appear
in transport and infrastructure logistics problems, for example, in optimal placement of objects
within a fixed number of logistics centres.
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involves a partition of a given set into subsets with the subsequent step of finding
their Chebyshev centres (see [93]); for small N this method is optimal from the
viewpoint of computational operations. For n = 2 and n = 3, numerical algorithms
for constructing best n-nets were developed in [107], [108].

Little is known about the construction of the set of Chebyshev centres in the
non-Euclidean case (although, of course, general optimization arguments can also
be applied to this setting).

We give an algorithm of Botkin and Turova-Botkina [41] for finding the Cheby-
shev centre of a finite set A := {a1, . . . , am} ⊂ Rn. We set

E(x) :=
{
a ∈ A

∣∣∣ ∥x− a∥ = max
w∈A

∥x− w∥
}
.

Let x̂ be the (unique) Chebyshev centre of Z(A) in Rn.

Step 0. Choose an initial point x0 ∈ convA and set k = 0.

Step 1. Find E(xk). If E(xk) = A, then stop (with the answer x̂ = xk), else go
to Step 2.

Step 2. Let yk be the nearest point in convE(xk) to xk. If yk = xk, then stop
(with the answer x̂ = xk), else go to Step 3.

Step 3. Evaluate

αk := min
i∈I−k

∥ai − xk∥2 − d2
max(xk)

2(yk − xk, ai − yk)
,

where I−k := {i | ai ∈ A \ E(xk), (yk − xk, ai − yk) < 0}, and dmax(x) :=
maxa∈A ∥x − a∥ (we formally set αk = +∞ if I−k = ∅). If αk ⩾ 1, then stop
(with the answer x̂ = yk), else go to Step 4.

Step 4. Let xk+1 := xk + αk(yk − xk), k := k + 1. Go to Step 1.

This algorithm includes the non-trivial operation of finding a nearest point in
a polyhedron, and for this the recursive algorithm in [140] can be applied. Note
(see [41]) that the point yk in Step 2 is the Chebyshev centre of the set E(xk).
A similar algorithm for finding the relative Chebyshev centre in Rn can be found
in [82].

One can also mention several algorithms for finding a Chebyshev point (see
Definition 1.4) for a system of sets or hyperplanes. In finite-dimensional spaces
such algorithms were designed by Zukhovitskij [169]; the existence of a Chebyshev
point in an arbitrary Banach space for a finite number of sets was established by
Garkavi.

Chebyshev points proved useful in constructing iteration processes for solving
convex programming problems, for solving inconsistent systems of linear equations,
in the study of dynamical systems, and also in optimal control problems and in prob-
lems of optimal quality and reliability provision for complex systems (see Chap. 5
of [169], [102], [42], [32]).
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Chapter II

The Jung constant

11. Definition of the Jung constant

The Jung constant of a normed linear space X is defined by

J(X) = sup
{

r(M)
diamM

∣∣∣∣ M ⊂ X, diamM < +∞
}
,

where, as above, r(M) = inf{a ⩾ 0 | M ⊂ B(x, a)} is the Chebyshev radius of
a non-empty bounded set M ⊂ X and diamM is the diameter of M .

In other words, the Jung constant of a Banach space is the radius of a smallest
ball that can cover any set of diameter 1. The inverse of the Jung constant is some-
times called the normal structure coefficient of a space. The term ‘Jung constant’
was introduced by Grünbaum in 1959.

Jung constants play an important role in the geometry of Banach spaces. One
should also mention the relation between Jung constants and Jackson inequalities,
in which the best approximation of a function by finite-dimensional subspaces is
estimated in terms of its modulus of continuity.

We first note that for any normed space X

1
2

⩽ J(X) ⩽ 1

(both bounds can be attained).
The first Jung constant was found in 1901 for a finite-dimensional Euclidean

space by Jung himself [90]. Bohnenblust [37] (see also [110], Chap. 2, § 11, and [6])
showed that J(Xn) ⩽ n/(n + 1) for any n-dimensional Banach space Xn and
proved that this inequality is sharp for any n. Leichtweiß (see [110], Chap. 2, § 11)
proved that in an n-dimensional space the equality r(M)/ diamM = n/(n + 1)
holds if M is the vertex set of an n-dimensional simplex Σ and B (the unit ball) is
the difference body Σ + (−1)Σ of Σ.

It is easily shown that J(ℓ∞n ) = 1/2 . For an infinite-dimensional Hilbert spaceH,
Routledge [135] (and later V. I. Berdyshev [34]) established that J(H) = 1/

√
2 .

Further substantial advances in the study of Jung constants were made by Dol’nikov
[57], V. I. Ivanov and Pichugov [127], [83], [86], Manokhin [116], and Ball [19].
The Jung constant for Lp, 1 ⩽ p < ∞, was found by Pichugov [127], [87] and
independently by Ball [19]:

J(Lp) = J(ℓp) = 2−1/r, where r := max
{
p,

p

p− 1

}
, 1 ⩽ p <∞

(for p = 1 it is assumed that p/(p − 1) = ∞). For 0 < p < 1, Pichugov (see [127],
§ 3) showed that J(Lp) = 1. For rearrangement-invariant spaces, some estimates
of the Jung constant were given by Semenov and Franchetti [141]. For example,
they established that if X is a rearrangement-invariant space and X ̸= L∞, then
J(X) ⩾ 1/

√
2 . (Recall that a Banach space X of Lebesgue-measurable functions

on [0, 1] is said to be rearrangement-invariant or symmetric if 1) |x(t)| ⩽ |y(t)| for
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all t ∈ [0, 1] and y ∈ X implies that x ∈ X and ∥x∥ ⩽ ∥y∥; 2) if x(t) and y(t) are
equimeasurable and if y ∈ X then x ∈ X and ∥x∥ = ∥y∥.) Sharp estimates of the
Jung constant for Banach lattices were found in [12]. Some estimates of the Jung
constant in Orlicz spaces can be found in [134].

12. The measure of non-convexity of a space and the Jung constant

Following Gulevich [78], we define

G(X) = sup{η(A) | A ⊂ X, diamA = 1},

where η(A) = ηX(A) is the measure of non-convexity (or the EL-measure of
non-convexity10) of a bounded subset A of X (see [61]), which is defined by

η(A) = sup
x∈convA

inf
y∈A

∥x− y∥.

It is clear that

η(A) = inf
{
r > 0

∣∣∣∣ convA ⊂
⋃
a∈A

B(a, r)
}

= h(A, convA),

where h(A,C) is the Hausdorff distance between sets A and C.
The measure of non-convexity η(A) is defined for any bounded set A.
The following simple properties of the measure of non-convexity η(A) are imme-

diate (see, for example, [118]):
(i) η(A) = 0 if and only if the set A is convex;
(ii) η(αA) = |α|η(A), α ∈ R;
(iii) η(A+ C) ⩽ η(A) + η(C);
(iv) |η(A)− η(C)| ⩽ η(A+ (−C));
(v) η(A) = η(A);
(vi) η(A) ⩽ diamA, where diamA is the diameter of A;
(vii) |η(A)− η(C)| ⩽ 2h(A,C).
The measure of non-convexity is non-monotone in the sense that the inclusion

A ⊂ C does not imply that η(A) ⩽ η(C).
The following results (Theorems 12.1–12.4) are due to Gulevich [78].

Theorem 12.1. For any Banach space X ,

G(X) = J(X).

Theorem 12.2. For any Banach space X ,

J(X) = sup{J(L) | L is a finite-dimensional subspace of X}.

Theorem 12.3. For any Banach space X ,

J(X) = J(X∗∗).
10EL stands for Eisenfeld and Lakshmikantham, who in [61] introduced the measure of

non-convexity η(A) by analogy with the Kuratowski measure of non-compactness.
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In particular, J(X) = sup{r(A) | A ⊂ X is a finite set, diamA = 1} (see [78]).
For the definition of the modulus of convexity δ(ε) of a space in the next theorem
and below, see, for example, [128], § 2.7.

Theorem 12.4. Let X be a Banach space and let δ(ε) be the modulus of convexity
of X . Then J(X) ⩽ t0 , where t0 is the root of the equation t + 2δ(2t − 1) = 1 on
the interval [1/2, 1].

Proof of Theorem 12.4. Consider an arbitrary set A ⊂ X with diamA = 1. We can
assume without loss of generality that 0 ∈ A. The function t 7→ t + 2δ(2t − 1) is
strictly increasing and continuous on the interval [1/2, 1], and hence the equation
t + 2δ(2t − 1) = 1 has a unique root t0 ∈ [1/2, 1]. Assume on the contrary that
η(A) > t0. Then there exist a number t1 (t0 < t1 < η(A)) and a point b ∈ convA
such that A ∩B(b, t1) = ∅. Therefore, for any a ∈ A∥∥∥∥a− b

∥b∥

∥∥∥∥ ⩾

∣∣∣∣ ∥∥∥∥b− b

∥b∥

∥∥∥∥− ∥a− b∥
∣∣∣∣ =

∣∣∥a− b∥+ ∥b∥ − 1
∣∣ ⩾ 2t1 − 1,

because ∥a − b∥ ⩾ t1 and 1 ⩾ ∥b∥ ⩾ t1. Hence,
∥∥a + b/∥b∥

∥∥ ⩽ 2(1 − δ(2t1 − 1)).
Let φ ∈ X∗ be such that φ(b) = ∥b∥ and ∥φ∥ = 1. For any a ∈ A we have

φ(a) = φ

(
a+

b

∥b∥

)
− φ

(
b

∥b∥

)
⩽

∥∥∥∥a+
b

∥b∥

∥∥∥∥− 1

⩽ 1− 2δ(2t1 − 1) ⩽ 1− 2δ(2t0 − 1) = t0,

which gives φ(b) ⩽ t0. But φ(b) = ∥b∥ > t0. This contradiction shows that
η(A) ⩽ t0. By Theorem 12.1, J(X) ⩽ t0. □

Definition 12.1. Following [118], we say that the measure of non-convexity ηX( · )
has the Cantor property if a nested sequence (An)∞n=1 of non-empty closed bounded
(not necessarily convex) subsets of X has non-empty intersection provided that
η(An) → 0. The measure of non-convexity ηX( · ) has the Cantor property in a set
M ⊂ X if any nested sequence (An)∞n=1 of non-empty closed bounded subsets of M
has non-empty intersection provided that η(An) → 0.

Remark 12.1. It is well known that any nested sequence of non-empty closed con-
vex bounded subsets of a reflexive Banach space has non-empty intersection. Gule-
vich [78] (see Theorems 12.5 and 12.6 below) extended this result to the case of not
necessarily convex sets. On the other hand, the following simple example shows that
ηX( · ) does not have the Cantor property in any non-reflexive space X. Indeed, in
any non-reflexive space X one can easily construct a nested sequence of non-empty
closed convex bounded subsets with empty intersection: it suffices to take a func-
tional f ∈ X∗ which does not attain its norm on the unit ball B and to consider
the sets {x ∈ B | f(x) ⩾ 1− 1/n}, n ∈ N.

Theorem 12.5 (Gulevich). Let (An)∞n=1 be a nested sequence of non-empty closed
bounded (not necessarily convex) subsets of a reflexive Banach space. If η(An) → 0
as n→∞, then

⋂∞
n=1An is a non-empty closed convex set.

Theorem 12.6 (Gulevich). For a Banach space X the following conditions are
equivalent:
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a) X is reflexive;
b) the measure of non-convexity ηX( · ) has the Cantor property; that is, any

nested sequence (An)∞n=1 of non-empty closed bounded subsets of X has non-empty
intersection provided that η(An) → 0.

Theorem 12.7 (Marrero [118]). Let X be a Banach space, F a non-empty closed
subset of X , and x0 ∈ X \ F . Let d = ρ(x0, F ) and

Fn[x0, F ] := F ∩
[
x0 +

(
d+

1
n

)
B

]
, n ∈ N.

Then the following conditions are equivalent:
a) X is reflexive (respectively, strictly convex);
b) if F ⊂ X is a non-empty closed set and η(Fn[x0, F ]) → 0 for any x0 /∈ F ,

then F is a set of existence (a set of uniqueness).

The next theorem characterizes the weakly compact subsets of a Banach space
in terms of the Cantor property of the measure of non-convexity of the space.

Theorem 12.8 (Marrero [119]). Let X be a Banach space, let ηX( · ) be the measure
of non-convexity, and let M be a non-empty weakly closed bounded subset of X .
Then the following conditions are equivalent:

a) M is weakly compact;
b) the measure of non-convexity ηX( · ) has the Cantor property in the set convM .

13. The Jung constant and fixed points
of condensing and non-expansive maps

Recall that the self Chebyshev radius of a bounded set M ̸= ∅ is defined by
(see § 1)

rM (M) := inf
y∈M

sup
x∈M

∥x− y∥.

A classical result due to Klee and Garkavi [71] (see Theorem 1 in [99]) asserts that
in a normed linear space X the equality rM (M) = r(M) holds for each convex
bounded subset M ⊂ X if and only if X either is a Euclidean space or dimX = 2.

This remark justifies the consideration of (in addition to the Jung constant J(X)
and the relative Jung constant Js(X) of a space X; see § 17 below) the relative Jung
constant for convex sets11

Jcv(X) := sup
{
rM (M)
diamM

∣∣∣∣ M ⊂ X is convex, 0 < diamM <∞
}
.

It is clear that Jcv(X) ⩾ J(X).
The corresponding definitions of a Banach space with normal structure and the

coefficient of normal structure N(X) of a space are closely related to the Jung
constant of a space.

11Here ‘cv’ is an acronym for ‘convex’.
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Let X be a normed linear space and let ∅ ̸= M ⊂ X be a bounded set. We
define

rcv(M) := rconv MM := inf
y∈conv M

sup
x∈M

∥x− y∥ = inf
y∈conv M

r(y,M)

and

Zcv(M) := {y ∈ convM | r(y,M) = rconv MM},

where, as before, r(x,M) := inf{r ⩾ 0 | M ⊂ B(x, r)} = supy∈M ∥x − y∥. If M is
convex, then we write rM (M) := rcv(M) and

Zcv(M) = ZM (M) := Zsc
M (M) := {x ∈M | r(x,M) = rM (M)}.

We mention several results on the constant Jcv(X). It is known (see § 2 of [6])
that if X is a reflexive space, then

Jcv(X) = sup{rcv(M) |M ⊂ X is finite, diamM = 1}.

It is also known (see [6]) that if X is non-reflexive, then Jcv(X) = 1. Lim
(see [113], [6]) showed that

Jcv(X) = sup {rcv(M) |M ⊂ X is separable and diamM = 1}
= max{Jcv(Y ) | Y is a separable subspace of X}.

Amir [6] proved that if Jcv(X) < 1, then

Jcv(X) = sup{rcv(M) |M ⊂ X is finite and diamM = 1}
= sup{Jcv(Y ) | Y is a finite-dimensional subspace of X}.

Remark 13.1 (see [6]). A similar estimate for the (absolute) Jung constant J(X) in
terms of the Jung constants of subspaces does not hold. For example, any space Y
is a subspace of some spaceX = ℓ∞(Γ), hence J(X) = 1/2, but J(Y ) ∈ [1/2, 1], and
in particular, there exists a Y such that J(Y ) > J(X) = 1/2. A lower estimate for
J(X) in terms of the Chebyshev radii of finite subsets also does not hold. It is known
that J(c0) = 1 (for a proof it suffices to consider the set M = {(−1)nen | n ∈ N}).
However, for any finite set M = {x(1), . . . , x(1)} ⊂ c0 the point

x̄ :=
1
2

(
max

1⩽i⩽n
x(i) − min

1⩽i⩽n
x(i)

)
lies in c0, which gives r(x̄,M) = (1/2) diamM .

We consider another example from [6]. Let Γ be an uncountable set and let X =
{x ∈ ℓ∞(Γ) | the set {γ ∈ Γ | x(γ) ̸= 0} is at most countable}. Thus, X is a closed
subspace of ℓ∞(Γ) and therefore is a Banach space. Any separable subset of X lies
in a subspace of ℓ∞(Γ0), where Γ0 ⊂ Γ is countable and ℓ∞(Γ0) is a subspace of X
isometric to ℓ∞. Recall that J(ℓ∞) = 1/2. On the other hand, Γ = Γ0 ⊔ Γ1, where
Γ1 is uncountable. Let Mi := {x ∈ X | 0 ⩽ x ⩽ χΓi

(x)}, i = 0, 1, where χA( · ) is
the indicator function of a set A, and let M = M0 ∪ (−M1). It is easily seen that
diamM = 1, but r(M) = 1. Hence J(X) = 1.
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Amir [6] found some estimates for J( · ) and Jcv( · ) in ℓp-spaces. For example,

Jcv(ℓpn) ⩾
2−1/p

n

[
(n− 1) + (n− 1)p

]1/p;

J(ℓp) ⩾ 21/p−1, Jcv(ℓp) ⩾ max{21/p−1, 2−1/p}.

We also note the following results. If X is infinite-dimensional, then Jcv(X) ⩾
1/
√

2 , and if dimX ⩽ n, then Jcv(X) ⩽ n/(n+ 1). To formulate another estimate
of Jcv( · ), we need the definition of the modulus of n-convexity of a space X, as
given by F. Sullivan:

δ
(n)
X (ε) := inf

{
1− 1

n+ 1

∥∥∥∥ n∑
i=0

xi

∥∥∥∥ ∣∣∣∣ xi ∈ B(0, 1), i = 0, . . . , n,

voln(x0, . . . , xn) ⩾ ε

}
,

where voln(x1, . . . , xn) is the n-dimensional volume of the convex hull of a finite set
x0, . . . , xn; that is,

voln(x0, . . . , xn) = sup


∣∣∣∣∣∣∣∣

1 . . . 1
f1(x0) . . . f1(xn)
. . . . . . . . . . . . . . . . . . . .
fn(x0) . . . fn(xn)

∣∣∣∣∣∣∣∣ : fi ∈ S∗, i = 1, . . . , n

 .

It is clear that δ(1)X (ε) = δX(ε).
Amir showed that Jcv(X) ⩽ minε max

{
1 − δ

(2)
X (ε), 2ε/3 + 1/2

}
. For X = ℓ2,

Amir’s estimate gives Jcv(ℓ2) ⩽ 0.805 (this estimate is better than Bynum’s esti-
mate Jcv(X) ⩽ 2(1 − δX(1)), which implies that Jcv(ℓ2) ⩽

√
3/2). Note that the

exact value of Jcv(ℓ2) is
√

2/2 . More results on estimates of Jcv( · ) for ℓp-spaces
with p > 2 can be found in [113] and [6].

Some fixed-point results for non-expansive maps can be formulated in terms of
the normal structure of Banach spaces and the coefficient N(X) of normal structure
of a space (N(X) = 1/Jcv(X)).

Definition 13.1. A non-empty closed convex subset M of a Banach space X is
said to be diametral if diamM = rM (M). A Banach space X has normal structure
(weak normal structure) if any non-empty closed bounded (respectively, weakly
compact) convex diametral subset of X is a singleton.

Remark 13.2. The spaces ℓp and Lp(Ω) with 1 < p < ∞ have normal struc-
ture [15]. The space c0 does not have normal structure. Indeed, consider the
set M := conv{en | n ∈ N}, where (en) is the standard basis. We have diamM = 1
and rcv(M) = 1, because lim ∥x− en∥ ⩾ 1 for any x ∈ c0. Since (en) is weakly null,
the set M is weakly compact. Hence, c0 also does not have weak normal structure.
A similar example shows that the space ℓ1 does not have normal structure. Theo-
rem 3.3 of [15] shows that the space ℓ1 (as well as any Banach space with the Schur
property) has weak normal structure.

A map f : X → X is said to be non-expansive if ∥f(x)− f(y)∥ ⩽ ∥x− y∥ for all
x, y ∈ X.
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Theorem 13.1 (Kirk; see [15]). Let X be a Banach space with weak normal struc-
ture, let C be a weakly compact convex subset of X , and let f : C → C be a non-
expansive map. Then f has a fixed point.

Proof. Let B be the family of all non-empty weakly compact convex subsets of C
which are invariant under f . If these sets are partially ordered by inclusion, then
it is easy to check that any net in B has a maximal element. Hence, by Zorn’s
lemma the family B has a minimal element K. We have f(K) ⊂ K, and hence
conv(f(K)) ⊂ K. Thus, conv(f(K)) is a weakly compact subset of K which is
invariant under f . The minimality of K implies that K = conv(f(K)). Since K is
weakly compact and convex, the set ZK(K) is non-empty, being the intersection of
the nested sequence of convex weakly compact sets Zε

M (M) := {y ∈ K | r(y,K) ⩽
rK(K) + ε}. Let x ∈ ZK(K); that is, r(x,K) = rK(K). For any y ∈ K we have
∥f(x)− f(y)∥ ⩽ ∥y − x∥ ⩽ rK(K). Therefore, f(K) is contained in the closed ball
B(f(x), rK(K)), which implies that conv(f(K)) = K ⊂ B(f(x), rK(K)). Con-
sequently, r(f(x),K) ⩽ rK(K), which gives f(x) ∈ ZK(K). Thus, ZK(K) is
a non-empty convex weakly compact subset of K which is invariant under f . From
the minimality of K we have ZK(K) = K. Since X has weak normal structure,
diamK = 0; that is, K is a fixed point of f . □

Theorem 13.1 can be used in establishing the existence of periodic solutions of
differential equations [15].

Another important characteristic of a space is the normal structure coefficient

N(X) := inf
{

diamM

rM (M)

∣∣∣∣ M ⊂ X

}
, (13.1)

where the infimum is taken over all bounded convex subsets M ⊂ X with
diamM > 0. It is clear that 1 ⩽ N(X) ⩽ 2. Unlike the definition of the constant
1/J(X), in (13.1) we consider rM (M) rather than r(M), and the set M is assumed
to be convex. Then N(X) = 1/Jcv(X). For basic properties of the constant N(X)
see the above results on Jcv(X), and also [67].

From the definition it is clear that if N(X) > 1, then X has normal structure
(Example 5 in [15] shows that the converse implication does not hold). Spaces X
with the property N(X) > 1 are called spaces with uniformly normal structure.

Bynum (see Theorem 2.2 in [15]) showed that if δX( · ) is the modulus of convexity
of a Banach space, then N(X) ⩾ 1/(1 − δX(1)). This estimate is not sharp. For
example, for X = ℓ2 we have N(X) =

√
2 , and δℓ2(ε) = 1−

√
1− ε2/4, which gives

the lower estimate 2/
√

3. It is also known that if δ(3/2) > 1/4, then N(X) > 1.
Prus showed that N(X) ⩾ α − (α2 − 4)1/2, where α := inf{ε/2 + 2 − δ(ε) | 1 ⩽
ε ⩽ 3/2}. We remark that N(Lp(Ω)) = min{21−1/p, 21/p} for infinite-dimensional
Lp(Ω,Σ, µ)-spaces, where µ is a σ-finite measure and 1 ⩽ p < ∞. According to
Theorem 2.6 of [15], if X is a Banach space and N(X) > 1, then X is reflexive. But
if X is reflexive, then the infimum in (13.1) can be taken over the convex hulls of
finite subsets of X. We also note the general estimate N(X) ⩽

√
2 , where X is any

infinite-dimensional Banach space.
For non-expansive maps we mention the following result, which is a corollary to

Theorem 13.1: if N(X) > 1, then any non-expansive map of a non-empty closed
convex bounded subset of X has a fixed point.
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For further details see [15] and the references cited there.

The definitions and results that follow below in this section are due to Marrero
[118], [119].

Definition 13.2. For a non-empty closed bounded subset Y of a Banach space X,
we say that a map f : Y → Y has the property (C) if limn→∞ η(Yn) = 0, where
(Yn) is the nested sequence of non-empty closed bounded subsets of Y defined by

Y1 = f(Y ), Yn+1 = f(Yn), n ∈ N (13.2)

(as before, η( · ) is the measure of non-convexity).

Definition 13.3. Let Y be a non-empty bounded subset of a Banach space X.
A map f : Y → Y is said to be δ-condensing if

diam f(M) < diamM

for any set M ⊂ Y such that f(M) ⊂M and diamM > 0.
A map f : Y → Y is said to be η-condensing if

η
(
f(M)

)
< η(M)

for any set M ⊂ Y such that f(M) ⊂M and η(M) > 0.

The following two results extend Ćirić’s fixed-point theorem [50] to the case of
not necessarily convex sets.

Theorem 13.2. Let Y ̸= ∅ be a closed bounded subset of a Banach space X
such that conv Y is weakly compact. Suppose that f : Y → Y is a continuous
η-condensing map with the property (C). Then f has a fixed point.

Theorem 13.3. Let Y ̸= ∅ be a closed bounded subset of a reflexive space X , and
let f : Y → Y be a δ- or η-condensing map with the property (C). Then f has a fixed
point.

Definition 13.4. Let M ⊂ X be a non-empty bounded set. A point x ∈M is said
to be diametral if sup{∥x− y∥ | y ∈M} = diamM . A convex set M is said to have
normal structure if, for any N ⊂ M containing more than one point, there exists
a point x ∈ N which is not a diametral point of N (see also Definition 13.1). Sets
with normal structure were introduced by Brodskii and Milman. For more details
see [76], Chap. 4.

The next result (see [118], [119]) extends Kirk’s fixed-point theorem in [98].

Theorem 13.4. Let Y ̸= ∅ be a closed bounded subset of a reflexive space X or
a non-empty weakly compact subset of a Banach space X . Suppose that Y has
normal structure and that f : Y → Y is a non-expansive map with the property (C).
Then f has a fixed point.
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14. On an approximate solution of the equation f(x) = x

In this section, X is a real Banach space and ∅ ̸= M ⊂ X. Let N(X,M)
(respectively, N(M,M)) be some class of maps from X (from M) to M . We set

β0 = β0(N, X,M) := sup
f∈N(X,M)

inf
x∈X

∥f(x)− x∥, (14.1)

and

β = β(N, X,M) := sup
f∈N(M,M)

inf
x∈M

∥f(x)− x∥. (14.2)

From the definition it follows that β0 ⩽ β. Babenko, Konyagin, and Tsar’kov [16]
found estimates of β and β0 for classes of continuous (respectively, Lipschitz) maps.

I. Let N(X,M) = C(X,M) (N(M,M) = C(M,M)). The Schauder fixed-point
theorem gives us that β0 = 0 (respectively, β = 0) if M is compact (respectively,
if M is convex and compact). According to a result of Dugundji (see, for example,
[77], p. 108), if dimX = ∞, then for M := {x ∈ X | ∥x∥ ⩽ 1} there exists
an f ∈ C(M,M) such that f(x) ̸= x for any x ∈ X (this implies that the unit
sphere of an infinite-dimensional space is contractible to a point). Klee (see [77])
extended this result to the case of convex sets in metrizable locally convex spaces.
The following theorem can be proved by using Dugundji’s fixed-point theorem.

Theorem 14.1 (see [16]). Let X be an infinite-dimensional Banach space and let
M := {x ∈ X | ∥x∥ ⩽ 1}. Then for any ε > 0 there exists an f ∈ C(X,M) such
that

∥f(x)− x∥ > 1− ε ∀x ∈ X

(that is, β0(M) = β(M) = 1).

We set
α0 = α0(X,M) := inf

T⊂X
sup
y∈M

ρ(y, T ),

where T ⊂ X is a finite set of points, ρ(y, T ) := minx∈T ∥y − x∥, and α0 is the
radius of best covering of the set M by balls (the self radius of best covering of M
by balls is

α = α(X,M) := inf
T⊂M

sup
y∈M

ρ(y, T )
)
.

It is clear that α/2 ⩽ α0 ⩽ α. Note that if M = B ⊂ X is the unit ball of an
infinite-dimensional space, then α(B) = α0(B) = 1, and hence by Theorem 14.1,
β0(B) = β(B) = α0(B) = α(B), which shows that the estimate in the next theorem
is sharp.

Theorem 14.2 (see [16]). Let X be a Banach space and let M ⊂ X be a non-empty
convex set. Then β0 ⩽ α0 and β ⩽ α.

In the next theorem we estimate β and β0 from below. Let F (X) be the class
of all non-empty closed subsets of a Banach space X.
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Theorem 14.3 (see [16]). Let X be an infinite-dimensional Banach space and let
M ∈ F (X) be convex. Then:

a) if M is separable, then α0/2 ⩽ β0 , α/3 ⩽ β , β0 ⩽ α0 , and β ⩽ α (the
estimates are attained in the space of bounded sequences);

b) if M is not separable, then α0/4 ⩽ β0 and α/6 ⩽ β .

Sharper estimates can be obtained in the Hilbert space setting (the estimates
are attained on some subset M of a Hilbert space.

Theorem 14.4 (see [16]). Let M ∈ F (H) be convex. Then
√

2
2
α0 =

√
2

2
α ⩽ β ⩽ β0.

II. Let N(X,M) and N(M,M) be the classes of Lipschitz maps with fixed Lip-
schitz constant k ⩾ 0. It is known that if k < 1, then β = β0 = 0 by the Banach
contraction principle. Below we assume that k ⩾ 1.

Theorem 14.5 (see [16]). Let X be a Banach space and let M ∈ F (X) be a convex
set. Then

β0 ⩽
k − 1
k

α0 and β ⩽
k − 1
k

α

(the estimate is attained in X = ℓ∞).

Proof of Theorem 14.5. We fix an arbitrary ε > 0 and choose a finite set of points
T ⊂ X (T ⊂M) such that

ρ(x, T ) ⩽ α0 + ε (respectively ⩽ α+ ε) ∀x ∈M.

Let f ∈ N(X,M) (f ∈ N(M,M)) and let L be the convex hull of T . We define
the map φ : L → M as follows: with each point x ∈ L we associate a point y ∈ X
(y ∈M) such that x+ (k + ε)−1(f(y)− x) = y (such a point exists and is unique,
because ψ(z) = x+ (k + ε)−1(f(z)− x) is a contraction of M). It is easily checked
that φ ∈ C(L,M) and χ := PL ◦ f ◦ φ is an upper semicontinuous map from L to
2L with compact convex values. Hence, by Kakutani’s fixed-point theorem there
exists a point x0 ∈ L such that x0 ∈ χ(x0). Therefore, ∥(f ◦ φ)(x0)∥ ⩽ α0 + ε
(respectively ⩽ α+ ε). By construction

(f ◦ φ)(x0)− x0 = (k + ε)(φ(x0)− x0),
(f ◦ φ)(x0)− φ(x0) = (k + ε− 1)(φ(x0)− x0),

and hence

∥(f ◦ φ)(x0)− φ(x0)∥ ⩽
k + ε− 1
k + ε

∥(f ◦ φ)(x0)− x0∥

⩽
k + ε− 1
k + ε

(α0 + ε)
(

respectively, ⩽
k + ε− 1
k + ε

(α+ ε)
)
.

The theorem follows by letting ε→ 0. □

One more result is worth noting.
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Theorem 14.6 (see [16]). There exists a C > 0 such that

C
k − 1
k

α ⩽ β

for any infinite-dimensional Banach space X and any convex set M ∈ F (X).

A similar estimate also holds in a Hilbert space for α0 and β0.

15. The Jung constant of the space ℓ1
n

The general inequality for the Jung constant in an n-dimensional space implies
that

J(ℓ1n) ⩽
n

n+ 1
.

It can be shown [87] that this becomes an equality if and only if n is a Hadamard
dimension (the definition is given below).

By a Hadamard matrix A of order n we mean a square n × n matrix with all
entries ±1 and with pairwise orthogonal rows; that is, AAT = nE, where E is the
identity matrix and AT is the transpose of A. It is known that if a Hadamard
matrix of order n exists, then n either is a multiple of 4 or equals 1 or 2 (for more
details, see [81]). There is a conjecture that this condition is also sufficient for
the existence of a Hadamard matrix. In particular, Hadamard matrices have been
constructed for any n = 2k and for all n = 4k < 668 (see, for example, [120], [52]).

Theorem 15.1 (Dol’nikov [57]). The inequality

J(ℓ1n) ⩽
n

n+ 1
(15.1)

(which holds for any n-dimensional space) becomes an equality if and only if there
exists a Hadamard matrix of order n+ 1.

The proof of Dol’nikov’s theorem depends essentially on the classical existence
problem for Hadamard matrices.

We also mention some results on the Jung constant for ℓ1n (see [57], [117]).

Theorem 15.2. 1. J(ℓ12m) ⩾ (2m− 1)/(2m).

2. If there exists a Hadamard matrix of order 2m, then J(ℓ12m) =
2m− 1

2m
.

3. Assume that there exists a Hadamard matrix of order n+ 1. Then

J(ℓ1n+1) ⩾
n

n+ 1
, J(ℓ1n+2) ⩾

n

n+ 1
, J(ℓ1n+3) ⩾

n

n+ 1
.

V. I. Ivanov’s conjecture is that if there exists a Hadamard matrix of order n+1,
then J(ℓ1n+1) = J(ℓ1n+2) = J(ℓ1n+3) = n/(n+ 1).

From a result of Dol’nikov (Theorem 2 of [57]) it follows that J(ℓ14) = 3/4. At
present, the value of the Jung constant for the space ℓ15 is not known.
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16. On the relation between the Jung
constant and the Jackson constant

Stechkin and V. I. Berdyshev (see [34], and also [87], Chap. 4, § 5) established
a link between the Jung constant (a geometric characteristic of a space) and the
sharp constant in Jackson’s theorem on best approximation of functions by con-
stants (an approximative characteristic of a space).

Namely, let X be the Banach space of integrable 2π-periodic functions f : R → Y
(Y is a normed linear space) with a norm satisfying the conditions

∥f( · + u)∥X = ∥f( · )∥X , |u| ⩽ π. (16.1)

We assume that X contains the constant functions and that the curve Mf :=
{f( · + t) | |t| ⩽ π} is compact for any function f ∈ X. In particular, the above
properties are satisfied by the uniform norm on the space of continuous 2π-periodic
functions.

Let E0(f) = E0(f)X := inf{∥f( · )− c∥X | c ∈ Y } be the best approximation of
a function f( · ) by constants c ∈ Y , and let ω(f, δ,X) := sup|t|⩽δ ∥f( · +t)−f( · )∥X

be the (first) modulus of continuity of the function f( · ). The Jackson constant is
defined as

K(X) := sup
f∈X

E0(f)X

ω(f, π,X)
.

We also define the Jung constant for the class of compact sets:

J∗(X) := sup
r(M)

diamM
,

where the supremum is taken over all compact sets M ⊂ X. It is clear that J∗(X) ⩽
J(X). In the next theorem, the case Y = R was considered by Stechkin [34].

Theorem 16.1 (Stechkin). Let X be a Banach space of 2π-periodic integrable func-
tions f : R → Y with a norm satisfying the conditions (16.1), and suppose that X
contains the constant functions. Then

K(X) ⩽ J∗(X).

Proof. Let f ∈ X, f ̸= 0. By (16.1), for a function φ ∈ X

∥f(τ + t)− φ(τ)∥ = ∥f(τ − u+ t)− φ(τ − u)∥ u=t= ∥f(τ)− φ(τ − t)∥.

Then

1
2π

∫ π

−π

∥f(τ + t)− φ(τ)∥ dt =
1
2π

∫ π

−π

∥f(τ)− φ(τ − t)∥ dt

⩾
1
2π

∥∥∥∥∫ π

−π

[f(τ)− φ(τ − t)] dt
∥∥∥∥ =

∥∥∥∥ 1
2π

∫ π

−π

f(τ) dt− 1
2π

∫ π

−π

φ(τ − t) dt
∥∥∥∥

=
∥∥∥∥f(τ)− 1

2π

∫ τ+π

τ−π

φ(τ) dτ
∥∥∥∥ =

∥∥∥∥f(τ)− 1
2π

∫ π

π

φ(τ) dτ
∥∥∥∥ ⩾ E0(f),
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and therefore,

r(Mf )X := sup
|t|⩽π

∥f(τ + t)− φ(τ)∥ ⩾
1
2π

∫ π

−π

∥f(τ + t)− φ(τ)∥ dt ⩾ E0(f),

where Mf := {f( · + t) | |t| ⩽ π}. On the other hand,

diamMf = sup
t1,t2

∥f(τ + t1)− f(τ + t2)∥ = sup
|t|⩽π

∥f(τ + t)− f(τ)∥ = ω(f, π,X),

and since Mf is compact, we have
E0(f)

ω(f, π,X)
⩽

r(Mf )
diamMf

⩽ J∗(X). □

The next result follows from Theorem 16.1 and a result due to V. I. Berdy-
shev [33].

Corollary 16.1. In the space Lp[−π, π] with 1 ⩽ p <∞,

max{2(1−p)/p, 2−1/p} ⩽ K(Lp) ⩽ J∗(Lp) ⩽ J(Lp) (16.2)

(and for p = 1, 2 all the inequalities in (16.2) become equalities).

Note that (see [34])

J∗(C[−π, π]) = K(C[−π, π]) =
1
2
, (16.3)

but
J(C[−π, π]) = 1. (16.4)

To prove (16.4) it suffices to consider the following example presented by Stechkin
(see [34]). We let

fk(t) =


1, 0 ⩽ t ⩽

π

2
− 1
k
,

−1,
π

2
+

1
k

⩽ t ⩽ π,

k

(
π

2
− t

)
,

π

2
− 1
k
< t <

π

2
+

1
k
,

(16.5)

and put M = (fk(t))∞k=1. The set M ⊂ C[−π, π] consists of continuous 2π-periodic
functions such that fk(t) = fk(−t) and fk(t + 2π) = fk(t) for k = 1, 2, . . . . It is
easily seen that r(M) = diamM = 1, and hence J(C[−π, π]) = 1. For the compact
set M , the function f0(t) :=

[
maxf∈M f(t) + minf∈M f(t)

]
/2 lies in C[−π, π] and

r(M) = maxf∈M ∥f0(t) − f(t)∥ = (1/2) diamM (see Theorem 3.3), which proves
the equality J∗(C[−π, π]) = 1/2 in (16.3).

It is easily verified that the Jung constant of the space of bounded functions
is 1/2. In general, the Jung constant J(X) is equal to 1/2 on the class of so-called
P1-spaces (see [54]). In particular, J(L∞) = J(ℓ∞) = 1/2. It is also easy to see
that the Jung constants of a space and some subspace of it can be different (for
example, J(c0) = 1).

For more on the relation between the Jung constant and the Jackson constant
in Lp-spaces, see [87].
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17. The relative Jung constant

For a non-empty bounded subset M of X, its self Chebyshev radius is defined
by rM (M) := infy∈M supx∈M ∥x − y∥ (see (1.3)). The relative Jung constant of
a space X is defined by

Js(X) := sup
{
rM (M)
diamM

∣∣∣∣ M ⊂ X, 0 < diamM <∞
}
.

Note that if X is non-reflexive, then Js(X) = 1 (see [6]).
Pichugov (see, for example, [87]) showed that

Js(ℓnp ) ⩽
1

q′√
2

q

√
n

n+ 1
, q = min(p, p′), 1 ⩽ p <∞;

this becomes an equality for p < 2 and for n such that there exists a Hadamard
matrix of order n+1 (p′ and q′ are determined by 1/p+1/p′ = 1 and 1/q+1/q′ = 1,
respectively).

S. V. Berdyshev [36] found the relative Jung constant of the space ℓ∞n , n ∈ N
(there he also described the extremal subsets of ℓ∞n , that is, the sets M with
Js(ℓ∞n ) = rM (M)/diamM).

Theorem 17.1 (S. V. Berdyshev). The following equality holds:

Js(ℓ∞n ) =
n− 1
n

, n ⩾ 2 .

Unlike the case of the Jung constant J(X), Theorem 17.1 gives the precise value
of the relative Jung constant Js(ℓ∞n ) for all n.

We set

γ(X) = sup
rM (M)
r(M)

,

where the supremum is taken over all non-empty closed convex subsets of X. The
constant γ was introduced by Arestov (see [13]) in the study of a problem involving
operator recovery. It is clear that for all sets M ⊂ X

r(M) ⩽ rM (M) ⩽ diamM ⩽ 2r(M).

Hence, in view of (1.5) we get that max{1, Js(X)} ⩽ γ(X) ⩽ 2Js(X).
Klee [99] and, independently, Garkavi [71] (see Theorem 4.4 above) showed that

(some12) Chebyshev centre of any bounded subset of a space X lies in the convex
hull of this set if and only if X is a Hilbert space or if dimX ⩽ 2. In [36] it was
noted that this result implies that either of these two conditions is equivalent to
saying that γ(X) = 1 for the space X.

Corollary 17.1. γ(ℓ∞n ) = 2(n− 1)/n.

This result is a corollary of Theorem 17.1 (see [36]).

12In a Hilbert space the Chebyshev centre of a non-empty bounded set is unique (see § 5).
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18. The Jung constant of a pair of spaces

Let X1 and X2 be normed linear spaces with X2 ⊂ X1, and let M ⊂ X2 be
a bounded set. The Jung constant of M ⊂ X2 ⊂ X1 for the pair of spaces (X1, X2)
is defined by

J(M,X1, X2) =
r(M)X1

diam(M)X2

(see [87]), where r(M)X1 is the Chebyshev radius of M in X1, and diam(M)X2 is
the diameter of M in the space X2. The relative Jung constant of M for a pair of
spaces (X1, X2) is defined by

Js(M,X1, X2) =
rM (M)X1

diam(M)X2

.

By the Jung constant of a pair of spaces (X1, X2) we mean

J(X1, X2) = sup
M⊂X2

J(M,X1, X2) (18.1)

(see [87]), and by the relative Jung constant of a pair of spaces we mean

Js(X1, X2) = sup
M⊂X2

Js(M,X1, X2). (18.2)

It can easily be checked that

r(M)X1 = r(convM)X1 = r(convM)X1 ,

diam(M)X2 = diam(convM)X2 = diam(convM)X2 .

Indeed, if x1, . . . , xn ∈ M , y1, . . . , ym ∈ M , α1 + · · · + αn = 1, αi ⩾ 0, and
β1 + · · ·+ βm = 1, βj ⩾ 0, then∥∥∥∥ n∑

i=1

αixi −
m∑

j=1

βjyj

∥∥∥∥
X2

=
∥∥∥∥ n∑

i=1

m∑
j=1

αiβj(xi − yj)
∥∥∥∥

X2

⩽
n∑

i=1

αi

m∑
j=1

βj max
i,j

∥xi − yj∥ ⩽ diam(M)X2 .

Hence, the set M in (18.1) and (18.2) can be assumed to be closed and convex.
Consider the following class of spaces:

ℓpnk =
{
x = (x(1), . . . , x(n)) | x(i) ∈ Rk, i = 1, . . . , n

}
,

∥x∥p =
(

1
n

n∑
i=1

|x(i)|p
)1/p

=
(

1
n

n∑
i=1

( k∑
s=1

|x(i)
s |2

)p/2)1/p

, 1 ⩽ p <∞,

∥x∥∞ = max
i
|x(i)| = max

i

( k∑
i=1

|x(i)
s |

)1/2

, p = ∞.

Below, q′ is the conjugate exponent of q.
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Theorem 18.1 (see [87], Chap. 4). Let 1 ⩽ p, q ⩽ ∞, n, k ∈ N. Then:

J(ℓpnk, ℓ
q
nk) ⩽

1
21/q′

(
nk

nk + 1

)1/q

if 1 ⩽ p ⩽ q ⩽ 2;

J(ℓpnk, ℓ
q
nk) ⩽

n1/q−1/p

21/q

(
nk

nk + 1

)1/q′

if 2 ⩽ q ⩽ p <∞;

J(ℓ1n, ℓ
q
n) ⩽

1
21/q′

(
n

n+ 1

)1/q

if 1 ⩽ q ⩽ ∞, k = 1;

J(ℓpn, ℓ
∞
n ) =

1
2

if 1 ⩽ p ⩽ ∞, k = 1;

J(ℓ∞n , ℓ
q
n) ⩽

n1/q

2
if 1 ⩽ q ⩽ ∞, k = 1.

Theorem 18.2 (see [87], Chap. 4). Let 1 ⩽ p, q <∞, n, k ∈ N. Then:

Js(ℓ
p
nk, ℓ

q
nk) ⩽

1
21/q′

(
nk

nk + 1

)1/q

if 1 ⩽ p ⩽ q ⩽ 2;

Js(ℓ
p
nk, ℓ

q
nk) ⩽

1
21/q

(
nk

nk + 1

)1/q′

if 2 < q = p <∞;

Js(ℓ
p
nk, ℓ

4
nk) ⩽

(
k

4(k + 1)

)1/4(
nk

nk + 1

)1/4

if 1 ⩽ p ⩽
8(k + 1)
3k + 4

;

Js(ℓ
p
nk, ℓ

4
nk) ⩽

(p− 2)1/2−1/p(k(4− p))1/p−1/4

(2k + 4)1/p−1/4 p1/4

(
nk

nk + 1

)1/4

if
8(k + 1)
3k + 4

⩽ p ⩽ 4;

Js(ℓ
p
nk, ℓ

q
nk) ⩽

1
21/q′

(
n

n+ 1

)1/q

if
3/2 ⩽ p ⩽ 2, q = 3,
1 ⩽ p ⩽ q/2, 2 < q ⩽ 7/2,
1 ⩽ p ⩽ 2, q > 7/2;

Js(ℓ
p
nk, ℓ

q
nk) ⩽

1
21/q′

(
n

n+ 1

)1/q

if

q/2 ⩽ p ⩽ 2q/3, 2 < q ⩽ 3,
q/2 ⩽ p ⩽ 4q/7, 3 < q ⩽ 7/2,
2 ⩽ p ⩽ 4q/7, 7/2 < q ⩽ 4,
2 ⩽ p ⩽ q/2, q > 4.

19. Some remarks on intersections of convex
sets. Connection with the Jung constant

Any closed bounded subset of a finite-dimensional Banach space is compact.
Hence, the intersection of any nested sequence of closed bounded subsets of a finite-
dimensional Banach space is non-empty. The converse also holds (which is an
easy consequence of the characterization of finite-dimensional spaces in terms of
compactness of the unit ball): if the intersection of each sequence of nested closed
bounded sets in a Banach space is non-empty, then this space is finite-dimensional.
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Questions connected with intersections of nested families of closed bounded sub-
sets of infinite-dimensional Banach spaces have been considered by Vakhania, Kar-
tsivadze, Chelidze, Papini, Jachymski, and others (see [47], [89] and the references
given there). An example of a nested sequence of balls with empty intersection can
be constructed in a complete linear metric space. However, according to Vakhania
and Kartsivadze, in a (real or complex) Banach space the intersection of any nested
sequence of closed balls is always non-empty (even in the case when the radii do
not tend to zero).

By an admissible sequence of sets (An) we shall mean a sequence of nested closed
bounded sets A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · in a normed linear space X.

In order to study intersections of sets more general than balls, we recall a defi-
nition from [47], where with any bounded subset of a Banach space one associates
a certain number characterizing (in a sense) the deviation of this set from a ball.

Definition 19.1. Let M be a bounded subset of a Banach space, and let

Rx(M) := sup
y∈M

∥x− y∥ (=: r(x,M)) and rx(M) := inf
y∈X\M

∥x− y∥.

We exclude the trivial case when the set M is empty or is a singleton, and we
consider the quantity

χ(M) := sup
x∈M

rx(M)
Rx(M)

.

It is known (see [46]) that if (An) is an admissible sequence of sets in a Banach
space and if limχ(An) > 1/2, then the sequence (An) has non-empty intersection.
On the other hand, there exists a Banach space X (for example, X = c) such that
for any χ < 1/2 there exists an admissible sequence (An) of closed convex bounded
subsets of X such that χ(An) = χ for n = 1, 2, . . . and

⋂∞
n=1An = ∅ (see [47]). In

the particular case when the space is reflexive and all the closed bounded sets An

in the nested sequence are convex, the intersection
⋂∞

n=1An is always non-empty
regardless of the behaviour of the sequence χ(An). It is also known (see [46]) that
in the spaces ℓp with 1 ⩽ p <∞ the intersection of an admissible sequence (An) is
non-empty if limχ(An) ⩾ 1/(1 + 21/p).

Definition 19.2. A number α ∈ R+ is called a critical value [46] for a Banach
space X (notation: α = cv(X)) if:

a) any admissible sequence (An) has non-empty intersection if limχ(An) > α;
b) for any ε > 0 there exists an admissible sequence (An) such that limχ(An) >

α− ε and
⋂∞

n=1An = ∅.

The values of cv(X) are known for some spaces. In particular, cv(X) ∈ [1/3, 1/2]
and cv(ℓp) = 1/(1 + 21/p) for 1 ⩽ p < ∞ (so that for any α in the interval
(1/3, 1/2) there exists a reflexive space for which α is a critical value). An example of
a reflexive space X with critical value 1/2 was constructed in [47] (X is a subspace
of ℓ1). It is unknown whether there exists a reflexive space with critical value 1/3.



838 A.R. Alimov and I.G. Tsar’kov

A set A is said to be non-trivial if it contains at least two points. For an
admissible sequence consisting of non-trivial sets (An), we define (see [47])

∆(An) := lim
n→∞

r′(An)
diamAn

, where r′(An) := sup
x∈X

rx(An) = sup
x∈An

rx(An).

Definition 19.3. A number α ∈ R+ is said to be CV-critical for X (notation:
α = CV(X)) if:

a) any admissible sequence of non-trivial sets (An) has non-empty intersection
if ∆(An) > α;

b) for any ε > 0 there exists an admissible sequence (An) of non-trivial sets such
that ∆(An) > α− ε and

⋂∞
n=1An = ∅.

Chelidze and Papini [47] showed that for any Banach space X

CV(X) =
cv(X)

1 + cv(X)
,

and thus, CV(X) ∈ [1/4, 1/3].
Following [47], for any closed bounded set A we define

χ(A) =
r′(A)
r(A)

, where r′(A) := sup{rx(A) | x ∈ A}.

It is clear that χ(A) ⩽ χ(A) ⩽ 1 for any A. Moreover, the intersection of an
admissible sequence (An) is non-empty if limχ(An) > 1/2 .

In connection with these questions, we mention a result on the Jung constant
(see [47]).

Theorem 19.1 (Chelidze and Papini). The intersection of an admissible sequence
(An) is non-empty if

limχ(An) >
J(X)

4
.

Consequently, CV(X) ⩽ J(X)/2 and cv(X) ⩽ J(X)/(2− J(X)).
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