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Minimal embeddings of integrable
processes in a Brownian motion

A. A. Gushchin and M. A. Urusov

Let X = (Xs)s⩾0 be a right-continuous random process with limits from the
left. We say that X is embedded in a Brownian motion if, on some probability
space with a filtration F, there exist a standard F-Brownian motion B = (Bt)t⩾0,
B0 = 0, and a time-change (Ts)s⩾0 (called an embedding), that is, a family of almost
surely finite F-stopping times Ts with right-continuous non-decreasing trajectories
s ⇝ Ts such that Law(Xs; s ⩾ 0) = Law(BTs ; s ⩾ 0). Recall that an almost
surely finite F-stopping time T is said to be minimal if the conditions that S is an
F-stopping time, S ⩽ T , and Law(BS) = Law(BT ) imply that S = T almost surely.
By a minimal embedding we mean a time-change (Ts)s⩾0 for which all F-stopping
times Ts are minimal.

It is known that a minimal embedding exists if X is a martingale (Theorem 11
in Monroe’s paper [4]) or if X is a submartingale that is bounded above and has
EX0 ⩾ 0 (Theorem 3.4 in [3]). The purpose of the present note is to characterize
all integrable processes X (that is, processes satisfying E|Xs| < ∞ for all s ⩾ 0)
that are right-continuous with limits from the left and have a minimal embedding
in a Brownian motion.

Theorem. Let X = (Xs)s⩾0 be a right-continuous process and let E|Xs| < ∞ for
all s ⩾ 0. Then there is a minimal embedding of the process X in a Brownian
motion if and only if X is a submartingale with EX0 ⩾ 0 or a supermartingale with
EX0 ⩽ 0.

The proof makes essential use of the minimality criteria for stopping times (see
Theorem 3 in [4] and Theorem 5 in [1]). In particular, let B = (Bt)t⩾0 be an
F-Brownian motion and let T be an F-stopping time, P(T < ∞) = 1. Then the
following conditions are equivalent: (i) E|BT | < ∞, EBT ⩾ 0, and T is mimimal;
(ii) the family {B+

S } is uniformly integrable, where S is an arbitrary F-stopping
time such that S ⩽ T ; (iii) E|BT | < ∞ and EBT∧Hc ⩽ EBT for any c > 0, where
Hc = inf{t : Bt > c} (cf. the condition (iv) in Theorem 5 of [1]).

The necessity follows from the implication (i)⇒ (ii) (note that (ii) is equivalent
to saying that (Bt∧T )t⩾0 is a closed submartingale). The proof of existence of a min-
imal embedding for the submartingale X follows the scheme of the proof of Theo-
rem 11 in [4]. In the first step, we construct a minimal embedding for the submartin-
gale X = (Xn)n=0,1,..., X0 = 0, with discrete time (with arbitrary B and F = (Ft)).
Setting T0 = 0, we assume that we have already constructed minimal T1, . . . , Tn

such that µ = Law(BT1 , . . . , BTn
) = Law(X1, . . . , Xn). Let νx(dy), x ∈ Rn, be the

regular conditional distribution P(Xn+1 −Xn ∈ dy | (X1, . . . , Xn) = x). Without
loss of generality we assume that, for all x, the measure νx is integrable and has
non-negative mean value.
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By the strong Markov property, the process B̃t = BTn+t − BTn
is a Brownian

motion relative to the filtration F̃ = (FTn+t); in particular, this process is indepen-
dent of the σ-algebra FTn

. For each x ∈ Rn, we construct the Skorokhod embedding
for νx (by this we mean a minimal F̃-stopping time Sx such that Law(B̃Sx

) = νx).
Our purpose is to define Tn+1 to be Tn + S, where S = S(BT1 ,...,BTn ). For this pur-
pose, Sx should depend ‘measurably’ on x. The required properties are satisfied,
for example, in a variant of the Chacon–Walsh construction in Theorem 11 of [2]
(in this construction, the sequence {vn} should be the same for all x). Then the
conditional distribution B̃S given (BT1 , . . . , BTn

) = x is νx. We claim that Tn+1 is
a minimal stopping time. For an arbitrary c > 0, we set R = (Tn ∨ Hc) ∧ Tn+1

and R̃ = R − Tn. By (ii) and the definition of R, the condition (ii) is satis-
fied not only for T = Tn, but also for T = R. Hence EBR ⩾ 0. On the
other hand, EB̃Sx

⩾ EB̃R̃∧Sx
for any x ∈ Rn since Sx is minimal. Therefore,

EB̃S =
∫

EB̃Sx
µ(dx) ⩾

∫
EB̃R̃∧Sx

µ(dx) = EB̃R̃; that is, EBTn+1 ⩾ EBR.
The second step of the proof is to pass from discrete to continuous time. We

give only the key points. Let Xn
s = X2−n⌊2ns⌋. Next, embeddings will be regarded

as measures on the canonical space of trajectories corresponding to the pair of
processes consisting of a Brownian motion and a time-change, the filtration being
the smallest one with respect to which the first process is adapted and the sec-
ond consists of stopping times. We thus get the embedding Qn corresponding
to the embedding for Xn constructed in the first step. The tightness condition,
which guarantees the existence of a subsequence converging to some measure Q
(then with respect to Q the canonical processes embed X), and the minimality
of the embedding constructed are verified as in the proof of Theorem 11 in [4], in
which the two-sided Doob inequality should be replaced by the one-sided inequality
and the absolute values should be replaced by the positive parts (see (ii) and (iii)).

To conclude, we note that, in general, minimal embeddings no longer exist
when we drop the condition that the random variables Xt be integrable. Con-
sider the following example. Let (Xn)n=0,1,... be a Markov chain with set of states
{0,±1,±2,±4, . . . ,±2n, . . . } and transition probabilities P(X1 = ±1 | X0 = 0) =
1/2, P(X1 = 0 | X0 = 2n) = P(X1 = 2n+1 | X0 = 2n) = 1/2, and P(X1 = 0 |
X0 = −2n) = P(X1 = −2n+1 | X0 = −2n) = 1/2, n = 0, 1, . . . . This chain has the
invariant distribution P(X0 = 0) = 1/3 and P(X0 = ±2n) = 2−n/6, n = 0, 1, . . . .
The process (Xn) is a generalized martingale (see [5]), that is, a discrete-time local
martingale. However, Law(Xn) does not depend on n, and hence even the pair
(X0, X1) cannot be realized by minimal stopping times.

The authors are grateful to D. A. Korshunov for providing the idea of this
example.
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