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Abstract. The mathematics of optimal control of quantum systems is of
great interest in connection with fundamental problems of physics as well as
with existing and prospective applications to quantum technologies. One
important problem is the development of methods for constructing con-
trols for quantum systems. One of the commonly used methods is the
Krotov method, which was initially proposed outside of quantum control
theory in articles by Krotov and Feldman (1978, 1983). This method was
used to develop a novel approach to finding optimal controls for quan-
tum systems in [64] (Tannor, Kazakov, and Orlov, 1992), [65] (Somlói,
Kazakov, and Tannor, 1993), and in many other works by various sci-
entists. Our survey discusses mathematical aspects of this method for
optimal control of closed quantum systems. It outlines various modifica-
tions with different forms of the improvement function (for example, linear
or linear-quadratic), different constraints on the control spectrum and on
the admissible states of the quantum system, different regularisers, and
so on. The survey describes applications of the Krotov method to control-
ling molecular dynamics and Bose–Einstein condensates, and to quantum
gate generation. This method is compared with the GRAPE (GRadient
Ascent Pulse Engineering) method, the CRAB (Chopped Random-Basis)
method, and the Zhu–Rabitz and Maday–Turinici methods.
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1. Introduction

Optimal control theory considers optimal control problems (OCPs) for dynami-
cal systems described by ordinary differential equations (ODEs), partial differential
equations (PDEs), and so on. The theory began to develop in the middle of the 20th
century, starting from such fundamental results as the Pontryagin maximum prin-
ciple developed by Pontryagin, Boltyansky, Gamkrelidze and Mishchenko (see [1])
and the Bellman optimality principle [2]. Optimal control theory is now one of
the leading areas of mathematics, with numerous applications in flight dynamics,
robotics, economics, quantum technologies, and so on.

One area of application for optimal control theory is quantum control: an
advanced interdisciplinary direction devoted to the control of quantum systems,
that is, of individual electrons, atoms, molecules, and photons. Control is imple-
mented by shaped laser pulses, modulating electromagnetic radiation, using a non-
equilibrium reservoir, or other effects. Modern technologies allow one to produce
laser pulses of ultra-short duration on the order of femtoseconds (10−15 sec) and
attoseconds (10−18 sec). The great interest in mathematical problems of quan-
tum control is connected with progress in experiments on the manipulation of
quantum systems. In 1997, the Nobel Prize in Physics was awarded to S. Chu,
C. Cohen-Tannoudji, and W. Phillips “for development of methods to cool and trap
atoms with laser light”.1 In 2001, the Nobel Prize in Physics was awarded to E. Cor-
nell, W. Ketterle, and C. Wieman, who in 1995 made Bose–Einstein condensate in
their laboratories.2 In 2012, the Nobel Prize in Physics was awarded to S. Haroche
and D. Wineland “for ground-breaking experimental methods that enable measur-
ing and manipulation of individual quantum systems”.3 In 2018, the Nobel Prize in
Physics was awarded “for ground-breaking inventions in the field of laser physics”
to A. Ashkin “for the optical tweezers and their application to biological systems”
and to G. Mourou and D. Strickland “for their method of generating high-intensity,
ultra-short optical pulses”.4

The mathematics of quantum control has been actively studied since the 1980s.
Quantum control is important for existing and prospective technologies, including:
control of atomic and molecular dynamics (for example, laser cooling of molecules);
manipulation of Bose–Einstein condensate; implementation of quantum comput-
ing (for example, for optimal generation of qubits and quantum gates); design of
atomic chips; laser-assisted isotope separation; laser chemistry; nuclear magnetic
resonance; dynamic nuclear polarisation; magnetic resonance imaging, and so on.
The theoretical and experimental results on quantum control are summarised in the
books and surveys by: Butkovskiy and Samoilenko (1984) [3]; Krasnov, Shaparev,
and Shkedov (1989) [4]; Rice and Zhao (2000) [5]; Bandrauk, Delfour, and Le Bris
(editors,2003) [6]; D’Alessandro (2003) [7]; Shapiro and Brumer (2003) [8]; Tannor
(2007) [9]; Letokhov (2007) [10]; D’Alessandro (2007) [11]; Fradkov (2007) [12];
Brif, Chakrabarti, and Rabitz (2010) [13]; Dong and Petersen (2010) [14]; Wise-
man and Milburn (2010) [15]; Altafini and Ticozzi (2012) [16]; Bonnard and Sugny
(2012) [17]; Gough (2012) [18]; Cong (2014) [19]; Dong, Wu, Yuan, Li, and Tarn

1https://www.nobelprize.org/prizes/physics/1997/summary/
2https://www.nobelprize.org/prizes/physics/2001/summary/
3https://www.nobelprize.org/prizes/physics/2012/summary/
4https://www.nobelprize.org/prizes/physics/2018/summary/

https://www.nobelprize.org/prizes/physics/1997/summary/
https://www.nobelprize.org/prizes/physics/2001/summary/
https://www.nobelprize.org/prizes/physics/2012/summary/
https://www.nobelprize.org/prizes/physics/2018/summary/
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(2015) [20]; Glaser, Boscain, Calarco, Koch, Köckenberger, Kosloff, Kuprov, Luy,
Schirmer, Schulte-Herbrüggen, Sugny, and Wilhelm (2015) [21]; Koch (2016) [22];
Borz̀ı, Ciaramella, and Sprengel (2017) [23].

The optimal control of quantum systems includes program control, where the
control function depends on the time, and feedback control, where the control
function depends on the time and the measured system’s state. The article [24]
considers quantum control for discretely observable quantum systems which evolve
between observations according to the Schrödinger equation. The article [25] con-
tains the theory of real-time feedback control for physical models of quantum
optics. For the construction of program quantum control, various methods are
used: reduction to finite-dimensional optimisation followed by the use of probabilis-
tic global search algorithms, for example, evolutionary genetic algorithms [26], [27]
and dual annealing [28]; the Pontryagin maximum principle and geometric con-
trol (for example, for minimal-time quantum control) [29]–[37]; gradient flows [38];
GRAPE [39], [40] and CRAB [41]; the Zhu–Rabitz [42] and the Maday–Turinici [43]
methods; dynamic programming [44], [45]; time-parallelised algorithms [46]; the
speed-gradient method [47], [48]; the Ho–Rabitz TBQCP (Two-point Boundary-
value Quantum Control Paradigm) method [49]; the gradient-projection method
[28], [50]. Machine learning is also used in research on quantum systems and tech-
nologies: reinforcement learning is applied to construct quantum controls [51], [52];
auto-encoders are applied to reduce the dimensionality of data describing quantum
dynamics [53]; the restricted Boltzmann machine is used for quantum tomogra-
phy [54], [55]. Quantum machine learning is also considered [56].

One commonly used method for constructing program controls for quantum
systems is the Krotov5 method. This method was initially proposed outside of
quantum control by Krotov and Feldman [57], [58] (1978, 1983) based on the
Krotov optimality principle [59], [60] and was further developed by Konnov and
Krotov [61] (1999). An example involving control of an open quantum system
(that is, one interacting with the environment) was analysed by Kazakov and Kro-
tov in 1987 [62] (see also [63]). A crucial step in its application to quantum control
was made in 1992–1993, when Tannor and his coauthors used the first-order Kro-
tov method to develop a general approach for finding optimal controls for quan-
tum systems [64], [65]. In 2002, the second-order Krotov method [58], [61] was
adapted by Sklarz and Tannor for optimal control of a Bose–Einstein condensate,
whose dynamics is defined in terms of a controlled Gross–Pitaevskii equation [66].
In 2008, Palao, Kosloff, and Koch developed the method of optimal control in the
problem of reaching a target in a certain subspace of a Hilbert space while avoid-
ing population transfer to other subspaces [67]. With various modifications and

5Vadim Fedorovich Krotov (1932–2015) was a well-known researcher, an Honoured Scientist of
the Russian Federation and an author of fundamental results in optimal control theory. In 1962 he
defended his Ph.D. thesis “A new method of variational calculus and some of its applications” at
the Steklov Mathematical Institute of the USSR Academy of Sciences, and in 1963 he defended his
D.Sc. thesis “Some new methods of variational calculus and their application to flight dynamics”
at the Moscow Aviation Institute. He was the head of departments in the Moscow Aviation
Technological Institute and the Moscow Institute of Economics and Statistics. In 1982–2015 he
worked in the Institute of Control Sciences of the Russian Academy of Sciences (ICS RAS) as the
head of Laboratory 45, which now bears his name. The website of ICS RAS has a page devoted
to V. F. Krotov: http://www.ipu.ru/node/32378 (in Russian).

http://www.ipu.ru/node/32378


Krotov method for optimal control of closed quantum systems 855

with account taken of specific details of quantum optimal control problems, the
Krotov method was applied to: manipulation of atomic and molecular dynamics
([9], [19], [43], [67]–[78]); generation of qubits states, quantum gates, quantum net-
works ([79]–[96]); manipulation of a Bose–Einstein condensate ([40], [66], [97], [98]);
nuclear magnetic resonance, dynamic nuclear polarisation, and magnetic resonance
imaging ([99]–[101]). The research group of Koch and her coauthors has developed
program tools in Fortran and Python ([102], [103]) that include implementations
of both the first- and the second-order Krotov methods and that also involve con-
straints on quantum states and the control spectrum.

There are many dissertations on quantum optimal control which use the iterative
Krotov method. These include, for example: the dissertation [104] by Reich (2015)
on the foundations of quantum optimal control for open quantum systems; the
dissertation [79] by Goerz (2015) on the optimisation of robust quantum gates for
open quantum systems; and the dissertation [97] by Jäger (2015) on optimal control
of a Bose–Einstein condensate.

This survey outlines mathematical results and applications of the Krotov method
to closed (that is, not interacting with the environment) quantum systems evolving
under a coherent control in the perturbed part of the Hamiltonian. Open quantum
systems will be considered elsewhere. The survey does not claim to be a complete
overview of all modifications of the method for quantum systems, and only basic
results are given. We use the term ‘Krotov method’ following the tradition estab-
lished in quantum optimal control. At the same time, the publications [57] and [58]
(Krotov and Feldman) and [61] (Konnov and Krotov) were in co-authorship, and
this may be reflected in the name of the method.

The structure of the survey is as follows. Section 2 provides formulations of OCPs
for closed quantum systems. It also includes a brief discussion of controllability and
control landscapes for such systems. Section 3 is devoted to the Krotov method for
OCPs with real-valued states. Section 4 discusses the first-order Krotov method
and the Zhu–Rabitz and Madey–Turinici methods for systems governed by the
Schrödinger equation and the Liouville–von Neumann equation. Section 5 consid-
ers the generation of target unitary transformations and control of ensembles of
quantum states. Section 6 discusses applications of the Krotov and GRAPE meth-
ods to the manipulation of a Bose–Einstein condensate whose dynamics is governed
by the controlled Gross–Pitaevskii equation. Section 7 (Conclusions) summarises
the survey.

2. Classes of optimal control problems for closed quantum systems

In this section we consider formulations of optimal control problems for closed
quantum systems. A formulation of an optimal control problem involves setting
a dynamical equation, a space of controls, a cost functional to be minimised, and
constraints on the controls and admissible states of the system.

Each quantum system is associated with some Hilbert space H : for example,
H = Cn and H = L2(Ω; C), respectively, for a system with n states and for
a quantum particle moving in a domain Ω ⊆ Rd. Pure states of the system are
unit-norm vectors ψ ∈ H , ∥ψ∥2 = 1. Some models consider the Hilbert space
L2(Ω; CM ), Ω ⊆ Rq; a state is a vector function ψ = (ψ1, . . . , ψM ). Most general
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states of a quantum system are described by density matrices. A density matrix
is a self-adjoint trace-class operator ρ acting in H which satisfies the conditions
ρ ⩾ 0 and Tr ρ = 1.

The dynamics of the system state in the absence of controls is determined by
a free-system Hamiltonian H0(t), which is a self-adjoint operator acting in H .
The norm of the state is a dynamical invariant: ∥ψ(t)∥2H = 1. In the case of an
electron in Ω ⊂ R3 this means that the probability of detecting an electron in the
domain Ω at any time t is 1. For a qubit, n = 2 and ψ(t) = α(t)|0⟩+ β(t)|1⟩ ∈ C2

(here |0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)
in the Dirac notation), and |α(t)|2 + |β(t)|2 = 1,

which implies that ∥ψ(t)∥2C2 = 1. The value of |α(t)|2 is the probability of finding
the system in the pure state |0⟩, and the value of |β(t)|2 is the probability of
finding the system in the system in the pure state |1⟩. We consider m controls, so
that the interaction with the control ul (l = 1, . . . ,m) is described by a self-adjoint
interaction Hamiltonian Hl. An observableO of the system is a self-adjoint operator
acting in H . If the system is in a pure state ψ, then the mean observed value
of O is ⟨O⟩ = ⟨ψ,Oψ⟩. If the system is in the state with density matrix ρ, then
⟨O⟩ = Tr(ρO).

2.1. Schrödinger equation with controlled Hamiltonian and cost criteria.
Based on [3], [11], and [23], in particular, we formulate the following definition.

Definition 2.1. A system with Hilbert space H and governed by the Schrödinger
equation with a linearly controlled Hamiltonian H is a quantum system whose state
ψ(t) ∈ H satisfies the equation

dψ(t)
dt

= − i

ℏ
H[u(t)]ψ(t), ψ(0) = ψ0, (2.1)

where

H[u(t)] = H0 +
m∑
l=1

Hlul(t), (2.2)

u ∈ U = PC([0, T ];Q), Q ⊆ Rm. (2.3)

The initial state ψ0 ∈ H and the final moment of time T are fixed; ℏ is the
Planck constant; u(t) = (ul(t))l=1,...,m is a vector control function; U is the class of
admissible controls; Q is a convex set; the Hamiltonian H is a self-adjoint operator
acting in the Hilbert space H ; the operator H0 is the unperturbed part of H; the
operator Hl characterises the interaction of the quantum system with the external
control ul(t).

As the class of admissible controls U , we will consider the space PC([0, T ];Q)
of piecewise continuous functions. The time T can be of the order of femtoseconds,
picoseconds, and so on.

The following theorem is a corollary of Carathéodory’s theorem on the exis-
tence and uniqueness of the solution of a differential equation with discontinuous
right-hand side.
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Theorem 2.1. Let H = Cn . If u ∈ L1([0, T ];Q), then the solution of (2.1) exists
in the class of absolutely continuous functions on the interval [0, T ] and is unique.

Since PC([0, T ];Q) ⊂ L1([0, T ];Q), for H = Cn the solution of (2.1) exists and
is unique for each piecewise continuous control u.

Definition 2.2. The process v = (ψ(t), u(t) | t ∈ [0, T ]) is said to be admissible if
it satisfies the conditions (2.1)–(2.3).

We denote by D the set of all admissible processes.

Remark 2.1. In the general case the control u can be a complex-valued function ([9],
[64], [105]). In what follows we consider real-valued controls as specified in (2.3). In
the general case, the Hamiltonian H can depend non-linearly on the control u [106].
Below we consider only the linear case, because it is commonly used.

Definition 2.3. For the system (2.1)–(2.3), the following OCP is referred to as the
problem of maximising the mean ⟨O⟩ = ⟨ψ(T ), Oψ(T )⟩ for a Hermitian operator O:

J(v) = FO(ψ(T )) + λu

∫ T

0

∥u(t)∥2

S(t)
dt

+ λψ

∫ T

0

⟨ψ(t), D(t)ψ(t)⟩ dt→ min
v∈D

, J : D → R, (2.4)

where the cost criterion contains the terminant FO = −⟨O⟩ and the param-
eters λu ⩾ 0 and λψ ⩽ 0, the operator D(t) (t ∈ [0, T ]) is self-adjoint and
positive-semidefinite, and S is some shape function.

For the first term on the right-hand side of (2.4) we can consider the condition
O ⩾ 0, which is essential for successive improvements of controls for OCPs of the
type (2.1)–(2.4) with λψ = 0 using the methods given in [64] (Tannor, Kazakov,
and Orlov, 1992), [42] (Zhu and Rabitz, 1998), and [43] (Maday and Turinici, 2003).

The second term on the right-hand side of (2.4) can be regarded as a condition
for energy minimisation, which is important for avoiding non-physical coherent-
control values, or as a possibility for simplifying the application of optimisation
methods. This term can change the original OCP significantly by affecting the
value of the terminant F (ψ(T )), which is why adjustment of λu is necessary. Along
with S(t) ≡ 1 ([42], [64], [65], [107], [108]), a non-constant function S can be used
to ensure a smooth turn-on of the laser field at time t = 0 and a smooth turn-off at
time t = T . Examples include S(t) = sin2(πt/T ) (Sundermann and de Vivie-Riedle
[109], 1999), S(t) = exp[−32(t/T−1/2)2] (Palao, Kosloff, and Koch [67], p. 5, 2008),
and so on.

The third term with the operator D(t) allows one to specify forbidden or allowed
subspaces of H [67]. If the operator D(t) is positive-semidefinite, then it describes
an allowed subspace. The role of this term was discussed in [67] in detail. The
requirement λψ ⩽ 0 is chosen by taking into account a special condition for a non-
decreasing cost functional using the first-order Krotov method considered in Sec-
tion 4.

Constraints of the type ∫ T

0

u2(t) dt {=,⩽} E
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(E is some given value) or, in the complex-valued case, of the type∫ T

0

u(t)u∗(t) dt {=,⩽} E

(see [62], [105], [108]) can also be used. In this survey we do not consider such
constraints.

Along with FO, one considers terminants with a given target state ψtarget ∈ H
(see, for example, [3] and [110]):

Fψtarget = 1− |⟨ψ(T ), ψtarget⟩|2 (2.5)

and
Fψtarget = 1− Re⟨ψ(T ), ψtarget⟩ =

1
2
∥ψ(T )− ψtarget∥2. (2.6)

Minimising (2.5) means maximising the probability that the final state ψ(T ) ∈ H
is the target state ψtarget.

With respect to FO(ψ(T )) in (2.4), the terminant (2.5) represents a particular
case, where O = Ptarget is the projection on the target state ψtarget. For M = 1
and x ∈ R3 one can, for example, take ψtarget to be a sum of Gaussian functions
(see [74], p. 6):

ψtarget(x) = A

[
exp

(
−

3∑
j=1

αj(xj − xαj )2
)

+ exp
(
−

3∑
j=1

βj(xj − xβj )
2

)]
,

with αj , βj > 0. The following term (see [110], p. 4), which sets a condition on
the trajectory over the entire time range, is sometimes also considered in the cost
functional J :

Fψtarget(t) =
1
2

∫ T

0

∥ψ(t)− ψtarget(t)∥2 dt = T −
∫ T

0

Re⟨ψtarget(t), ψ(t)⟩ dt.

Definition 2.4. For the OCP (2.1)–(2.4), an admissible process v∗ is a solution if
this process provides the global minimum J(v∗) = minv∈D J(v) of the cost func-
tional J .

In some cases an OCP for the Schrödinger equation in an infinite-dimensional
Hilbert space can be reduced to an approximate OCP for a finite-dimensional
system, and for the latter OCP one can consider the corresponding OCP with
real-valued states. The articles [77] and [111] consider the equation

i
∂ψ(θ, t)
∂t

=
(
− ∂2

∂θ2
+ u(t) cos θ

)
ψ(θ, t), ψ(0) = ψ0, θ ∈ Ω,

describing rotation of a planar molecule, and the following approximate OCP:

dz(t)
dt

=
(
A+ u(t)B

)
z(t), z(0) = z0, z(t) ∈ Cn, (2.7)

J(z, u) = |z2(T )|2 → min . (2.8)

Here θ is the angle between the polarisation direction and the molecular axis, Ω is
a one-dimensional torus, A and B are n×n matrices obtained in approximation by
the Galerkin method, and n = 22.
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2.2. Liouville–von Neumann equation with control and cost criteria. The
evolution of the density matrix of a closed quantum system under a control is
described by the Liouville–von Neumann equation with controlled Hamiltonian:

dρ

dt
= − i

ℏ
[
H[u(t)], ρ

]
, ρ(0) = ρ0, (2.9)

where [ · , · ] is the commutator ([A,B] = AB −BA) and the initial density matrix
ρ0 is given.

If a quantum system is open, that is, is interacting with the environment (a reser-
voir), then the evolution of the density matrix ρ(t) under the influence of a coherent
control will not be unitary and can be described by the equation

dρ

dt
= − i

ℏ
[
H[u(t)], ρ

]
+ L (ρ), ρ(0) = ρ0, (2.10)

where the dissipator L (ρ) can have, for example, the Gorini–Kossakowski–Sudar-
shan–Lindblad form

L (ρ) =
∑
k

γk

(
AkρA

†
k −

1
2
{A†kAk, ρ}

)
.

Here the Ak are the Lindblad operators which model different dissipation channels,
{ · , · } is the anticommutator ({A,B} = AB + BA), and the γk ⩾ 0 are parame-
ters. If L (ρ) ≡ 0, then the equation (2.10) becomes the Liouville–von Neumann
equation (2.9).

Definition 2.5. For the system (2.9), the problem of maximisation of the mean

⟨ρtarget⟩ = Tr
(
ρ(T )ρtarget

)
(see [3] and [110]) among the final density matrix ρ(T ) and the target density matrix
ρtarget is defined by the following condition:

J(v) = Fρtarget(ρ(T )) + λu

∫ T

0

∥u(t)∥2

S(t)
dt+ λρ

∫ T

0

Tr
(
ρ(t)D(t)

)
dt→ min

v∈D
, (2.11)

where the terminant Fρtarget is equal to −⟨ρtarget⟩, v = (ρ, u), λu ⩾ 0 and λρ ⩽ 0
are parameters, and the operator D(t) is self-adjoint and positive-semidefinite.

2.3. Cost criteria for unitary transformations and for the ensemble of
solutions of the Schrödinger equation. Potential applications of quantum
technologies include quantum computations, which could significantly increase the
speed of solution of complex problems such as factorising a large number or search-
ing in an unsorted database [112]–[115]. Basic objects in quantum computation
include the qubit (quantum bit), which is a two-state quantum system, and the
quantum gate, which is an elementary operation transforming input states of one
or more qubits into certain output states.

Mathematically, a quantum gate is a unitary matrix W (see the monographs
[115]–[117]). For example, the Hadamard gate is the following one-qubit (n = 2)
unitary matrix:

WH =
1√
2

(
1 1
1 −1

)
.
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Two-qubit gates (n = 22) include, for example, gates such as the controlled NOT
(CNOT), the quantum Fourier transform (QFT), the controlled phase gate
(CPHASE), and the BGATE:

WCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , WQFT =
1
2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 ,

WCPHASE =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , WBGATE =



cos
π

8
0 0 i sin

π

8
0 cos

3π
8

i sin
3π
8

0

0 i sin
3π
8

cos
3π
8

0

i sin
π

8
0 0 cos

π

8


.

Examples of three-qubit gates are the Toffoli gate and the Fredkin gate.
Implementation of a quantum gate W in a quantum processor means realisation

of a suitable controlled physical process (see, for example, [80] and [81]) which
produces the evolution of the system to the unitary matrix W .

Definition 2.6. The operator U(t) satisfying the Cauchy problem

dU(t)
dt

= − i

ℏ

(
H0 +

m∑
l=1

Hlul(t)
)
U(t), U(0) = I, (2.12)

is called the unitary evolution operator of a quantum system with Hilbert space H
and with control u(t) = (u1(t), . . . , um(t)), where Hl (l = 0, . . . ,m) are Hermitian
operators and I is the identity operator.

In analogy to Theorem 2.1 (see also Lemma 2.1 in [118], p. 315), the solution of
(2.12) exists, is an absolutely continuous matrix function, and is unique for controls
in L1([0, T ];Q).

We have ψ(t) = U(t)ψ0. The evolution of the density matrix is given by

ρ(t) = U(t)ρ0U
†(t). (2.13)

The density matrix ρ(t) satisfies the Liouville–von Neumann equation (2.9). From
(2.13) it follows that

1
2
∥ρ(T )− ρtarget∥2 = C − Tr(ρtarget ρ(T )),

where C =
1
2

Tr ρ2
0 +

1
2

Tr ρ2
target. For trajectory optimisation the following func-

tional is used (see [110], p. 4):

1
2

∫ T

0

∥ρ(t)− ρtarget(t)∥2 dt = CT −
∫ T

0

Tr
(
ρtarget(t)ρ(t)

)
dt.
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Definition 2.7. The OCP for the unitary operator U(t) is the problem of min-
imising the cost functional

JX(v) = FX(U(T )) + λu

∫ T

0

∥u(t)∥2

S(t)
dt, λu ⩾ 0, v = (U, ρ), (2.14)

for the system (2.12), where the terminant FX , X ∈ {W,O,A}, is defined in one
of the following ways:

FW (U(T )) = − 1
n2
|Tr(W †U(T ))|2, (2.15)

FO(U(T )) = −Tr(Oρ(T )) = −Tr(OU(T )ρ0U
†(T )), (2.16)

FA(U(T )) = −Re[Tr(A†ρ(T ))] = −Re[Tr(A†U(T )ρ0U
†(T ))], (2.17)

FA(U(T )) = −|Tr(A†ρ(T ))|2 = −|Tr(A†U(T )ρ0U
†(T ))|2; (2.18)

here W is unitary, O is self-adjoint, A is a non-self-adjoint operator, and S is some
shape function.

Problems of this kind are considered, for example, in connection with nuclear
magnetic resonance, magnetic resonance imaging, dynamic nuclear polarisation [99],
[100], and quantum gate generation (see [119] and [120], for example).

The definition below follows [67], [76], [81], [86], [88]–[91], and [104].

Definition 2.8. The ensemble of solutions of the Schrödinger equation is a set
of states {ψj(t) | t ∈ [0, T ], j = 1, . . . , n} whose jth element is the solution of
the Schrödinger equation (2.1) with controlled Hamiltonian (2.2), where ψ = ψj ,
ψ0 = ψj,0, the initial states {ψj,0 | j = 1, . . . , n} are prescribed, and the control u
is the same for all j = 1, . . . , n.

Instead of a unitary transformation U(t) we can consider the corresponding
ensemble of solutions of the Schrödinger equation, because

ψj(T ) = U(T )ψ0,j , ψtarget,j = Wψ0,j and j = 1, . . . , n,

where W is a target unitary transformation. For the ensemble of solutions, one
can consider the corresponding OCP for controlled simultaneous transitions of the
system from the set of initial states ψ0,j to the set of target states ψtarget,j , j =
1, . . . , n.

Definition 2.9. The following problem is called an OCP for an ensemble of solu-
tions of the Schrödinger equation:

dψj(t)
dt

= − i

ℏ
H[u(t)]ψj(t), ψj(0) = ψ0,j , j = 1, . . . , n, (2.19)

J(v) = F
(
{ψj(T )}j=1,...,n

)
+ λψ

∫ T

0

n∑
j=1

⟨ψj(t), D(t)ψj(t)⟩ dt→ min, (2.20)

where v =
(
{ψj}j=1,...,n, u

)
is the control process, the terminant F is defined on

the set of final states of the ensemble of solutions, λψ ⩽ 0 is a parameter, and the
operator D(t) (t ∈ [0, T ]) is self-adjoint and positive-semidefinite.
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The specific details of an OCP (2.19), (2.20) may differ ([67], [76], [81], [88]–[91],
[104]). The articles [80], [81] (Palao and Kosloff, 2002, 2003) consider control of
lithium and sodium molecules with two electronic states (ground and excited). The
first n = 2q levels of the ground state are regarded as registers for q qubits, and the
goal is to find a control u which provides the realisation of the target gate W . The
article [80] considers OCPs for implementing the quantum gates WH and WQFT

by realising simultaneous transitions between electronic surfaces for solutions ψj of
the Schrödinger equation. The goal is to minimise the terminant

F (U(T )) = − 1
n2
|Tr{W †U(T )Pn}|2 = − 1

n2

n∑
j=1

n∑
j′=1

⟨j|W †U(T )|j⟩⟨j′|U(T )†W |j′⟩,

where Pn is the projection onto the subspace where the unitary transformation W
is considered.

The theory of quantum gates uses the Cartan decomposition on the SU(4) group,
the Weyl chamber, and local invariants related to the equivalence classes [79],
[88], [93] (Calarco, Koch, Müller, Reich, Vala, and others). The Cartan decom-
position for a two-qubit operator U ∈ SU(4) is

U = k1Ak2, where A = exp
(
i

2
(c1σx ⊗ σx + c2σy ⊗ σy + c3σz ⊗ σz)

)
(2.21)

(see [88]). Here σx, σy, σz are the Pauli matrices, k1, k2 ∈ SU(2)⊗ SU(2) are local
operations, and the real numbers c1, c2, c3 are coordinates in the Weyl chamber.
WCNOT can be represented by (2.21) as

WCNOT = (I⊗WH)WCPHASE(I⊗WH),

where I is the identity matrix [79]. WCNOT and WCPHASE differ from each other
only by local operations. Hence, they are locally equivalent (WCNOT ∼WCPHASE)
and belong to the same equivalence class [WCNOT], which corresponds to the point
(c1, c2, c3) = (π/2, 0, 0) in the Weyl chamber. The equivalence classes are connected
with local invariants that can be written using the following representation of U
via the Bell basis [88]:

g1 =
1
16

Re{(Tr m̂)2}, g2 =
1
16

Im{(Tr m̂)2}, g3 =
1
4
[(Tr m̂)2 − Tr m̂2],

where

m̂ = U†BUB , UB = BUB†, B =
1
2


1 0 0 i
0 i 1 0
0 i −1 0
1 0 0 −i

 .

The papers [79], [88], and [93] consider OCPs where the cost functional is formulated
in terms of distances in the space of coordinates (c1, c2, c3) or in the space of local
invariants (g1, g2, g3) for a given target gate Wtarget. The terminant [88]

FLI =
3∑
i=1

(∆gi)2 + 1− 1
n

Tr{Un(T )U†n(T )},

∆gi = |gi(Wtarget)− gi(Un(T ))|,

(2.22)
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is considered, where Un(T ) = PnU(T )Pn is the result of projecting onto a subspace.
The explicit form of (2.22) in terms of {ψj(T )}nj=1 is a polynomial of degree eight.
The corresponding optimisation results [89] are described in Section 5.

2.4. Gross–Pitaevskii equation and optimal control of Bose–Einstein con-
densates. The linear Schrödinger equation is often suitable for describing quan-
tum systems, but in some situations non-linear equations appear, such as the
Gross–Pitaevskii equation proposed by Gross and Pitaevskii in 1961. This equa-
tion describes the dynamics of a Bose–Einstein condensate, which is important both
from the theoretical point of view and for creation of new technologies, for example,
atomic chips [121]. Modelling of the controlled dynamics of a Bose–Einstein con-
densate is performed using the Gross–Pitaevskii equation with control ([23], [40],
[66], [97], [98], [121]–[126]).

Definition 2.10. The equation

∂ψ(x, t)
∂t

= − i

ℏ
(
K + V (x, u(t)) + κ|ψ(x, t)|2

)
ψ(x, t) (2.23)

with initial condition ψ(x, 0) = ψ0(x) is called the Gross–Pitaevskii equation with
control u ∈ U in the potential (see, for example, [23], p. 336). Here x ∈ Ω ⊆ Rd,

ψ( · , t) ∈ L2(Ω; C), K = − ℏ2

2m
∇2 is the kinetic-energy operator, m is the atomic

mass, V (x, u(t)) is the controlled potential, κ is a coefficient (for example, κ =
U0(Na − 1) [40] where Na is the number of atoms and U0 is the strength of inter-
action between atoms for one-dimensional x), and the class U is defined in (2.3).

For brevity we will write ψ(t) to mean ψ( · , t).
Authors use potentials of various forms ([23], [40], [66], [97], [98], [121]–[126]).

In [66] (Sklarz and Tannor, 2002) the Gross–Pitaevskii equation (2.23) was consid-
ered with the following potential for one-dimensional x:

V (t, x, u(t)) = u(t)x2 + s(t)V0 cos2(kx). (2.24)

Here the control u characterises the strength of the trap potential, V0 characterises
the lattice intensity, s(t) is the function governing the switching-on of the field,
and k is the laser field wavenumber. The wavepackets represent quantum bits for
quantum information. Initially, the Bose–Einstein condensate is located in the
ground state of the potential. The OCP is considered with the condition

J(v) = ⟨ψ(T ), (cos θ(T ))2ψ(T )⟩ − ⟨ψ(T ), cos θ(T )ψ(T )⟩2 → min, (2.25)

where θ(T ) = θ( · , T ) is the phase of the wavepacket at time T , cos θ =
1
2
ψ + ψ∗

|ψ|
=

Reψ
|ψ|

, and v = (ψ, u).

In [122] the following potentials for one-dimensional x were considered:

V (x, u(t)) =
1
2
(
x− u(t)x0

)2
, (2.26)
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and

V (x, u(t)) =


1
2

(
|x| − u(t)

d

2

)2

, |x| > u(t)
d

4
,

1
2

(
(u(t))2

8
− x2

)
, |x| ⩽ u(t)

d

4
.

(2.27)

In [98], [121], and [123] the following polynomial potential for one-dimensional x
was used:

V (t, x, u(t)) = p2

(
x− u(t)

)2 + p4

(
x− u(t)

)4 + p6

(
x− u(t)

)6
. (2.28)

Here the control u defines the motion along the axis Ox to shake the condensate,
and the numbers p2, p4, and p6 are fitting parameters. The condensate is initially
prepared in the ground state V (x, 0, u(0)) with interacting bosons, and ψtarget is
set to be the first excited state for V .

The common goal of control is to maximise the probability |⟨ψtarget, ψ(T )⟩L2 |2
of a transition to the target state ψtarget. This control goal is described by the
terminants (2.5) and (2.6) for (2.23). Sometimes, together with the GRAPE method
([39], [40]), which will be described in Section 6, the following H1-regulariser is
included in the cost functional for smoothing of the control:

λdu

∫ T

0

(u̇(t))2 dt, λdu > 0. (2.29)

For (2.23), consider the general cost functional to be minimised:

J(v) = F (ψ(T )) + λu

∫ T

0

∥u(t)∥2

S(t)
dt+ λdu

∫ T

0

(u̇(t))2 dt→ min, (2.30)

where F is defined, for example, using (2.5), λu, λdu ⩾ 0 are parameters, and S is
a shape function.

A rigorous formulation of the optimal control problem for the Gross–Pitaevskii
equation with the potential V (x, u) = U(x) + u(t)Ṽ (x), where U and Ṽ are given
and u(t) is the control, is provided in [124]. In this formulation the potential V
is in the space W 1,∞(Rd) of Lipschitz functions, and the potential U satisfies the
conditions

U ∈ C∞(Rd)

and
∂kU ∈ L∞(Rd)

for any multi-index k such that |k| > 2. The initial state ψ0(x) belongs to the
subspace

Υ = {ψ ∈ H1(Rd) : xψ ∈ L2(Rd)}.

The cost functional has the form

J(ψ, u) = ⟨ψ(T, · ), Aψ(T, · )⟩L2(Rd)

+
∫ T

0

(u̇(t))2
[
γ1

( ∫
Rd

Ṽ (x)|ψ(x, t)|2 dx
)2

+ γ2

]
dt,
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where T > 0, γ1 ⩾ 0, γ2 > 0, and A : Υ → L2(Rd) is an operator acting in L2(Rd)
which is essentially self-adjoint (and possibly unbounded). The integral terms in the
cost functional are introduced to avoid highly oscillating control. For this control
problem, the well-posedness and existence of an optimal control were proved.

2.5. Controllability of closed quantum systems. The problem of construct-
ing optimal quantum controls is closely related to the ideas behind and crite-
ria for controllability of quantum systems as discussed, for example, in the arti-
cles [127]–[134] and the monographs [11] and [23]. Before starting to search for
an optimal control, it is desirable to know whether such a control exists at all.
The answer to this question is given by the controllability criteria, which are well
known for closed quantum systems. Below we will give the basic concepts and
results without details.

For closed systems one fundamental notion is the concept of projective state
controllability or equivalent state controllability.

Definition 2.11. A quantum system (2.1)–(2.3) with states ψ(t) ∈ Cn is said to
be projective state controllable if for any initial state ψ0 and final equivalence class

[ψtarget] := {eiϕψtarget : ϕ ∈ [0, 2π)}

with some ψtarget there exist a T > 0 and a control u ∈ U such that the system
can be moved from ψ0 to [ψtarget] in time T .

Also important is the notion of controllability on the special unitary group.

Definition 2.12. A system (2.12) describing the evolution of a unitary operator
U(t) ∈ Cn×n is said to be controllable on the group SU(n) if for any unitary operator
W ∈ SU(n) there exist a time T > 0 and a control u ∈ U such that W = eiϕU(T ),
where ϕ ∈ [0, 2π) is some phase.

The analysis of controllability of quantum systems, including the systems (2.1)–
(2.3), is crucial for quantum control, since the presence or absence of controllability
determines the solvability of an OCP. For example, the terminant Fψtarget (2.5)
determines the probability for a system state transfer on the sphere over the time T .
Realisation of this transfer between arbitrary initial and target states is impossible
for uncontrollable systems.

The control criteria are based on the analysis of the Lie algebra L generated by
all possible commutators of the operators H0,H1, . . . ,Hm. Without loss of gener-
ality we can set TrHi = 0 for i = 0, . . . ,m. Indeed, the dynamics of a system with
operators having non-zero traces will differ from the dynamics with the operators
Hi − TrHi/n by a physically unessential phase factor. One consequence of the
analysis in [118] is the following theorem [135], [136].

Theorem 2.2. Let H = Cn . The system (2.12) is projective state controllable if
and only if the Lie algebra Lie{−iH0, . . . ,−iHm} generated by all commutators of
the operators −iH0, . . . ,−iHm is isomorphic to the Lie algebra sp(n/2) or su(n)
when n is even, and to the Lie algebra su(n) when n is odd.

Verification of the controllability for a particular quantum system is one of the
basic problems coming before the search for optimal controls. Projective state con-
trollability of the system (2.1)–(2.3) means that there exists a time T and a control
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u ∈ U such that Fψtarget = 0 (exact controllability). For some sets Q and some
values of T , the system may not be controllable. On the other hand, we can look for
Q and T such that Fψtarget(ψ(T )) = 0 and some additional condition is satisfied,
for example, one can require that T takes the minimum possible value.

2.6. Landscapes of control problems for closed quantum systems. The
goal of applying numerical methods to quantum control problems is to find globally
optimal controls, those that, for a minimisation problem, deliver a global minimum
to the cost functional. If all the minima of the cost functional were global, then the
most natural numerical methods for finding optimal controls would be methods of
gradient type. If the system is controllable, but the landscape is replete with traps
(that is, local but not global minima), then stochastic algorithms (for example,
genetic algorithms) would be an appropriate choice in order to step around or out
of such traps. Therefore, a theoretical analysis of minima of the cost functionals
is important when choosing an appropriate numerical strategy for finding optimal
controls. Here we briefly outline some results on this topic.

The problem of analysing extrema of cost functionals for quantum systems was
posed in [137] (Rabitz, Hsieh, and Rosenthal, 2004), where the conjecture was
made that all the minima of cost functionals are global (that is, control landscapes
are free of traps). Since then, gradient-based methods have frequently been found
to give good results in quantum-control numerical simulations and experiments.
A large number of simulations have shown that even though the landscapes for
optimal control problems may contain singular critical points and traps, the condi-
tions necessary to produce such points are sufficiently stringent that many control
landscapes may lack traps [138], [139].

A considerable effort has been made to understand the effectiveness of gradient-
based optimal control simulations. However, despite this, the trap-free assumption
has been rigorously proven only for quantum systems with n = 2 levels (Theo-
rem 2.3) [119], [120] (Pechen and Il’in, 2012, 2014) and for the problem of control-
ling the passage of a quantum particle through a one-dimensional potential bar-
rier (Theorem 2.4) [140] (Pechen and Tannor, 2014). For dimension greater than
two, systems with trapping properties have been found [141] (Pechen and Tannor,
2011), [142] (de Fouquieres and Schirmer, 2013). Numerical evidence for trap-free
behaviour in various cases was emphasised in [143] (Rabitz, Ho, Long, Wu, and
Brif, 2012).

Let λu = 0 in (2.14). Then the cost functional is JX(u) = FX(U(T )), where the
terminant FX : SU(n) → R is a function on the special unitary group and U(T ) is
the solution of the Schrödinger equation at time T for the control u. For example,
for (2.15) one has

FW (U) = − 1
n2
|Tr(W †U)|2.

Definition 2.13. The graph of the functional JX(u) is called the control landscape
of the control problem. The control u is called a trap if it gives a local but not
a global minimum for JX(u).

For single-qubit gates ([119], [120], [144], [145]) let us consider control landscapes
for systems of the form (2.12) with U(t) ∈ C2×2, scalar control (m = 1), and cost
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functionals JO and JW , which describe the mean value of an observable and the
realisation of a single-qubit gate. The main result is the following theorem [120].

Theorem 2.3. For the system (2.12) with H = C2 and a scalar control (m = 1)
let the operators H0 , H1 and the time T be such that [H0,H1] ̸= 0 and

T ⩾
π

∥H0 − TrH0/2 + u0(H1 − TrH1/2)∥
,

where

u0 :=
−Tr(H0) Tr(H1) + 2 Tr(H0H1)

(TrH1)2 − 2 TrH2
1

.

Then all the minima of the cost functionals

JO(u) = ⟨O⟩T = Tr{U(T )ρ0U
†(T )O} and JW (u) = −1

4
|Tr(W †U(T ))|2

are global minima for any Hermitian observable O , any unitary operator W , and
any density matrix ρ0 .

The problem of controlling the tunneling of a quantum particle through a poten-
tial barrier is described by the stationary Schrödinger equation(

− d2

dx2
+ V (x)

)
Ψ(x) = EΨ(x), E ∈ R.

The potential V (x) is assumed to have compact support (V (x) = 0 if |x| > a for
some a > 0). The solution that has the following asymptotics is considered:

Ψ(x) =

{
ei
√
E x +AEe

−i
√
E x, x < −a,

BEe
i
√
E x, x > a.

This solution describes a particle falling from the left on the potential, being
reflected from the potential barrier with probability |AE |2, and passing to the right
through the barrier with probability TE(V ) = |BE |2. The potential is regarded as
the control. The transmission coefficient TE(V ) is the cost functional that is to be
maximised. The main result is the following theorem [140].

Theorem 2.4. All the extrema of the transmission coefficient TE(V ) = |BE |2 are
global maxima corresponding to the value TE(V ) = 1 (complete tunneling).

Thus, the absence of traps for quantum systems is proved for two-dimensional
and infinite-dimensional Hilbert spaces. In the general case of an arbitrary dimen-
sion, the problem remains open. As a result, it is important to develop effective
methods for obtaining optimal controls for quantum systems of any dimension.

3. Krotov method for systems with states in Rn

3.1. Optimal control problems and the Krotov Lagrangian. Consider the
following class of OCPs with real-valued states.
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Definition 3.1. The following problem is called an OCP with free final state for
a dynamical system defined by an ODE with a control:

dy(t)
dt

= f(t, y(t), u(t)), y(0) = y0, (3.1)

u ∈ U = PC([0, T ];Q), Q ⊆ Rm, (3.2)

J(v) = F (y(T )) +
∫ T

0

f0(t, y(t), u(t)) dt→ inf
v∈D

, v = (y, u), (3.3)

where y is a continuous, piecewise differentiable function and D is the set of admis-
sible processes v = (y, u). The state y0 and the time T are fixed. For F , f0, and f
the following conditions are traditional:

1) the vector function f(t, y, u) = (f1(t, y, u), . . . , fn(t, y, u)) and the scalar func-
tion f0(t, y, u), together with their partial derivatives with respect to y and u, are
defined and continuous on the set of variables (t, y, u) ∈ [0, T ] × Rn × Q, and the
vector function f satisfies a Lipschitz condition with respect to y, that is,

∥f(t, y + ∆y, u)∥ ⩽ L∥∆y∥ ∀u ∈ Q, t ∈ [0, T ];

2) the function F (y) is continuously differentiable on Rn.
As is known (see [146], for example), for any control u ∈ U the Cauchy prob-

lem (3.1) has a unique solution y in the class of piecewise differentiable functions.
Continuous differentiability of f0 and f with respect to u is also necessary for
further considerations.

Definition 3.2. A solution of the problem (3.1)–(3.3) is understood to be a min-
imising sequence, that is, a sequence of processes {v(k)}k⩾0 in D that satisfies the
relation

lim
k→∞

J(v(k)) = inf
v∈D

J(v).

If there is an element v ∈ D such that J(v) = minv∈D J(v), then the process v and
the control u are said to be (globally) optimal.

Definition 3.3. For the problem (3.1)–(3.3) consider a process v(k) ∈ D (k ⩾ 0
is the iteration number). The determination of a process v(k+1) ∈ D for which
J(v(k+1)) < J(v(k)) is called an improvement of v(k). A sequence {v(k)}Kk=0 ⊂ D
such that J(v(k+1)) < J(v(k)) for k = 0, . . . ,K is called an improving sequence.

In the early 1960s Krotov introduced the concept of the generalised Lagrangian
(later called the Krotov Lagrangian) and formulated sufficient conditions for opti-
mality [59], [60].

Definition 3.4. For the problem (3.1)–(3.3), the Krotov Lagrangian is the func-
tional

Lφ(v) = Gφ(y(T ))−
∫ T

0

Rφ(t, y(t), u(t)) dt, v ∈ E , (3.4)

where E is an extension of the set D ,

Gφ(y(T )) = F (y(T )) + φ(T, y(T ))− φ(0, y(0)), (3.5)

Rφ(t, y, u) =
〈
∂φ(t, y)
∂y

, f(t, y, u)
〉
− f0(t, y, u) +

∂φ(t, y)
∂t

. (3.6)
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Here φ belongs to the set Φ of functions each of which has continuous partial
derivatives for all t and y except possibly at a finite number of values of t on [0, T ].

As is known ([59], [60]), Lφ(v) ≡ J(v) on D for any φ ∈ Φ, and thus L(v) can
be considered as a special representation of J(v). The partial derivatives of φ(t, y)
with respect to y are Lagrange multipliers. The function R defined in (3.6) can be
written as

Rφ(t, y, u) = H

(
t,
∂φ(t, y)
∂y

, y, u

)
+
∂φ(t, y)
∂t

,

where

H(t, q, y, u) = ⟨q, f(t, y, u)⟩ − f0(t, y, u)

is the Pontryagin function, y ∈ Rn, and u ∈ Q ⊆ Rm.
The following problem is called an OCP for a bilinear system with regularisation

with respect to the control (see [147], for instance):

dy(t)
dt

=
(
A(t) +

m∑
j=1

uj(t)Bj(t)
)
y(t), y(0) = y0, (3.7)

J(v) = F (y(T )) + λu

∫ T

0

m∑
j=1

u2
j (t) dt→ inf

v∈D
, λu ⩾ 0, (3.8)

where the control u belongs to the class U defined in (3.2).
The problem (2.1)–(2.4) with states ψ(t) ∈ Cn can be described by the corres-

ponding OCP with states y(t) ∈ R2n if the vector y(t) represents both the real and
the imaginary parts of a complex-valued ψ(t):

yj(t) = Reψj(t) and yn+j(t) = Imψj(t) for j = 1, . . . , n.

For example, the problem (3.7), (3.8) with F (y(T )) = −⟨y(T ),My(T )⟩, M ⩾ 0,
can describe certain quantum OCPs. The terminant F (y(T )) = −⟨y(T ),My(T )⟩
is bounded below due to the invariant

∥y(t)∥2R2n = ∥ψ(t)∥2Cn = 1.

3.2. Krotov method in the general form. For the problem (3.1)–(3.3), con-
sider the iterative process with v(k) = (y(k), u(k)) and v(k+1) = (y(k+1), u(k+1))
the input and output admissible processes, respectively, at the kth iteration of the
method.
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1. Compute the function φ(k) ∈ Φ which satisfies the conditions6

Gφ
(k)

(y(k)(T )) = max
y∈Rn

Gφ
(k)

(y), (3.9)

Rφ
(k)

(t, y(k)(t), u(k)(t)) = min
y∈Rn

Rφ
(k)

(t, y, u(k)(t)), t ∈ [0, T ). (3.10)

2. Find the solution y(k+1) of the Cauchy problem

dy(k+1)(t)
dt

= f
(
t, y(k+1)(t), ũ(k)(t, y(k+1)(t))

)
, y(k+1)(0) = y0, (3.11)

and find the control u(k+1) defined by

u(k+1)(t) = ũ(k)(t, y(k+1)(t)) := arg max
u∈Q

Rφ
(k)(

t, y(k+1)(t), u
)
, t ∈ [0, T ].

(3.12)

Theorem 3.1. For the problem (3.1)–(3.3), the method (3.9)–(3.12) provides
a sequence of processes {v(k)} ⊂ D such that J(v(k+1)) ⩽ J(v(k)). Moreover, if∫ T

0

max
u∈Q

Rφ
(k)

(t, y(k)(t), u) dt ̸=
∫ T

0

Rφ
(k)

(t, y(k)(t), u(k)(t)) dt, (3.13)

then {v(k)} is an improving sequence.

Proof. Following [58], to prove the theorem consider the increment J(v(k)) − J(v)
for a given process v(k) ∈ D , an arbitrary process v ∈ D , and φ ∈ Φ:

J(v(k))− J(v) = Lφ(v(k))− Lφ(v) = Gφ(y(k)(T ))−Gφ(y(T ))

+
∫ T

0

(
Rφ(t, y(t), u(t))−Rφ(t, y(k)(t), u(k)(t))

)
dt. (3.14)

To satisfy the inequality J(v(k)) ⩾ J(v) for v ∈ D it is enough to find a function
φ = φ(k) ∈ Φ such that its values φ(k)(t, y(k)(t)) and φ(k)(t, y(t)) on [0, T ] satisfy

Gφ
(k)

(y(k)(T ))−Gφ
(k)

(y(T )) ⩾ 0, (3.15)

Rφ
(k)

(t, y(t), u(t))−Rφ
(k)

(t, y(k)(t), u(k)(t)) ⩾ 0, (3.16)

6Here

Rφ(k)
(t, y(k)(t), u(k)(t)) =

〈
∂φ(k)(t, y(k)(t))

∂y
, f(t, y(k)(t), u(k)(t))

〉
− f0(t, y(k)(t), u(k)(t)) +

∂φ(k)(t, y(k)(t))

∂t
,

where
∂φ(k)(t, y(k)(t))

∂y
=

∂φ(k)(t, y)

∂y

∣∣∣∣
y=y(k)(t)

and
∂φ(k)(t, y(k)(t))

∂t
=

∂φ(k)(t, y)

∂t

∣∣∣∣
y=y(k)(t)

. In

this survey, for brevity we use notation like
∂φ(k)(t, y(k)(t))

∂y
instead of

∂φ(k)(t, y)

∂y

∣∣∣∣
y=y(k)(t)

.
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and for J(v(k)) > J(v) it is sufficient to have strict inequality in (3.16) on some
subset of [0, T ] of positive measure. Splitting the left-hand side of (3.16) into the
sum of two partial increments, we obtain the following conditions:

Rφ
(k)

(t, y(t), u(t))−Rφ
(k)

(t, y(t), u(k)(t)) ⩾ 0, (3.17)

Rφ
(k)

(t, y(t), u(k)(t))−Rφ
(k)

(t, y(k)(t), u(k)(t)) ⩾ 0. (3.18)

To compute φ(k), consider the conditions (3.9) and (3.10) obtained from (3.15)
and (3.18). Because of (3.17), for each t we consider the condition

Rφ
(k)

(t, y(t), u(t)) = max
u∈Q

Rφ
(k)

(t, y(t), u),

which leads to the formula (3.12), where the process v = (y, u) satisfying the above
conditions is denoted by

v(k+1) = (y(k+1), u(k+1)).

Thus, to find the function y(k+1) we integrate the system (3.11) derived from (3.1),
where u(t) = ũ(k)(t, y(k+1)(t)). Because of possible discontinuities of ũ(k)(t, y) with
respect to y, integration of (3.11) is in general carried out using the theory of
ODEs with discontinuous right-hand side [148]. We suppose that there is a triple
(φ(k), y(k+1), u(k+1)) satisfying (3.10)–(3.11). Then the process v(k+1) gives either
J(v(k+1)) < J(v(k)) (an improvement) or J(v(k+1)) = J(v(k)). If (3.13) is not
satisfied, then J(v(k+1)) = J(v(k)). □

Solving the sequence of improvement problems via (3.9)–(3.12), we obtain a con-
trol sequence:

u(0) → u(1) → · · · → u(k) → · · · → u(K).

Consider the problem (3.7), (3.8). The Pontryagin function is

H(t, q, y, u) =
〈
q,A(t) +

m∑
j=1

ujBj(t)
〉
− λu

m∑
j=1

u2
j , q =

∂φ

∂y
(t, y).

Let m = 1, Q = [a, b], and λu = 0. In this case, the Pontryagin function is linear
in u and the function ũ(k) defined in (3.12) is

ũ(k)(t, y) =


a, g(k)(t, y) < 0,
u

(k)
sing(t, y) ∈ [a, b], g(k)(t, y) = 0,
b, g(k)(t, y) > 0,

(3.19)

where

g(k)(t, y) =
〈
∂φ(k)(t, y)

∂y
,B(t)y

〉
is called the switching function, and the subscript ‘sing’ means ‘singular’. Substitut-
ing (3.19) into (3.7), we obtain a system of ODEs which is in general discontinuous
with respect to y. Therefore, the conditions for the existence and uniqueness of the
solution of the Cauchy problem are violated [148].
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Further, consider m = 1, Q = [a, b], and λu > 0. The function ũ(k) has the
following form:

ũ(k)(t, y) =


a, u

(k)
st (t, y) < a,

u
(k)
st (t, y), u

(k)
st (t, y) ∈ [a, b],

b, u
(k)
st (t, y) > b,

(3.20)

where u(k)
st (t, y) is a stationary point obtained from the condition ∂H/∂u = 0 for

the Pontryagin function, and the subscript ‘st’ means ‘stationary point’. The func-
tion (3.20) is continuous with respect to y.

3.3. Krotov method with linear-quadratic function φ. Based on the arti-
cles [58] and [61], we describe the second-order Krotov method (φ(t, y) is taken in
the class of linear-quadratic functions) for the problem (3.1)–(3.3).

Definition 3.5. The function φ(t, y) is said to be linear-quadratic if it has the
form

φ(t, y) = ⟨p(t), y⟩+
1
2
〈
y − y(k)(t),Σ(t)(y − y(k)(t))

〉
(3.21)

with some continuous, piecewise differentiable vector function p = (p1, . . . , pn) and
the matrix function Σ = (Σi,j)i,j=1,...,n.

According to [61] we have the following result.

Lemma 3.1. Consider the problem (3.1)–(3.3). Suppose that:
1) for the functions F (y) and f0(t, y, u) there exist constants K,M < ∞ such

that for all y ∈ Rn with ∥y∥ ⩾ M

F (y) ⩽ K∥y∥2, f0(t, y, u) ⩽ K∥y∥2 ∀ (t, u) ∈ [0, T ]×Q;

2) for the function f(t, y, u) there exist K,M < ∞ such that for all (t, y, u) ∈
[0, T ]× Rn ×Q with ∥y∥ ⩾ M

f(t, y, u) ⩽ K∥y∥;

3) for the Jacobi matrix of f = (f1, . . . , fn) there exists an A <∞ such that for
all (t, y, u) ∈ [0, T ]×Rn ×Q ∥∥∥∥∂fi(t, y, u)∂yj

∥∥∥∥ ⩽ A,

where ∥ · ∥ is the matrix norm.
Then for the process v(k) = (y(k), u(k)) ∈ D there is a solution φ(k)(t, y) of the

problem (3.9), (3.10) in the form (3.21), where the function p = p(k) is defined as
the solution of the Cauchy problem

dp(k)(t)
dt

= −∂H
∂y

(t, p(k)(t), y(k)(t), u(k)(t)),

p(k)(T ) = −∂F

∂y
(y(k)(T ))

(3.22)
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(the system is integrated ‘from right to left’), and the matrix function Σ = Σ(k) is
defined by

Σ(k)(t) =
(
α(eγ(T−t) − 1) + β

)
In, (3.23)

where the values α, β < 0 and γ > 0 are given and In is the identity matrix.

For the problem (3.1)–(3.3), consider the following iterative process, where v(k) =
(y(k), u(k)) and v(k+1) = (y(k+1), u(k+1)) are the input and output admissible pro-
cesses, respectively, at the kth iteration of the method.

1. Consider a linear-quadratic function φ(k) with Σ(k) defined by (3.23) for
some values of α, β < 0 and γ > 0, and find p(k) as the solution of the
Cauchy problem (3.22).

2. Find the solution y(k+1) of the Cauchy problem (3.11). Find the control
u(k+1) defined by

u(k+1)(t) = ũ(k)(t, y(k+1)(t))

:= arg max
u∈Q

H
(
t, p(k)(t) + Σ(k)(t)(y(k+1)(t)− y(k)(t)), y(k+1)(t), u

)
. (3.24)

Theorem 3.2. For the problem (3.1)–(3.3) let the conditions 1)–3) in Lemma 3.1
be satisfied. Then the method (3.11), (3.21)–(3.24) provides a sequence of processes
{v(k)} ⊂ D such that J(v(k+1)) ⩽ J(v(k)). Moreover, if∫ T

0

max
u∈Q

H(t, p(k)(t), y(k)(t), u) dt ̸=
∫ T

0

H(t, p(k)(t), y(k)(t), u(k)(t)) dt, (3.25)

then {v(k)} is an improving sequence.

If for some selected values α, β < 0 and γ > 0 there is no improvement, then one
has to adjust these parameters by decreasing α and β and increasing γ (it is also
possible to change only one of these parameters), and then, without changing the
iteration index, calculate the output process v(k+1) for the updated values of these
parameters [61]. If several re-selections of parameters do not give an improvement,
then we stop the iterations.

In (3.9), (3.10) we take the global minimum and maximum. Nevertheless, in
order to simplify the general Krotov method, it was proposed to use the first- and
second-order necessary conditions for local extrema in (3.9), (3.10) [58]. Consider
the equations

Rφ
(k)

y (t, y(k), u(k)(t)) = 0, Gφ
(k)

y (y(k)(T )) = 0,

which lead to the equation (3.22). Note that (3.22) is the conjugate system known
in the theory of the Pontryagin maximum principle [1]. Thus, we have shown how
to obtain the function p(k) specified in (3.21).

To obtain Σ(k) consider the relations

d2Rφ
(k)

(t, y(k)(t), u(k)(t)) = ⟨∆y,Rφ
(k)

yy (t, y(k)(t), u(k)(t))∆y⟩ ⩾ 0, (3.26)

d2Gφ
(k)

(y(k)(T )) = ⟨∆y(T ), Gφ
(k)

yy (y(k)(T ))⟩ ⩽ 0 (3.27)
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with the corresponding matrices

Rφ
(k)

yy (t, y(k)(t), u(k)(t)) = diag{δ1(t), . . . , δn(t)},

Gφ
(k)

yy (y(k)(T )) = diag{α1, . . . , αn},

where δj(t) ⩾ 0 and αj ⩽ 0, j = 1, . . . , n. Based on (3.26), (3.27), we have the
following Cauchy problem for the function Σ(k):

dΣ(k)
i,j (t)
dt

=
∂2f0(t, y(k)(t), u(k)(t))

∂yi ∂yj
−

n∑
l=1

[
Σ(k)
l,i

∂fl(t, y(k)(t), u(k)(t))
∂yj

+ Σ(k)
l,j

∂fl(t, y(k)(t), u(k)(t))
∂yi

+ pl(t)
∂2fl(t, y(k)(t), u(k)(t))

∂yi ∂yj

]
+

{
0, i ̸= j,

δi(t) > 0, i = j,
(3.28)

Σ(k)
i,j (T ) = −∂

2F (y(k)(T ))
∂yi ∂yj

−

{
0, i ̸= j,

αi > 0, i = j,
(3.29)

where i, j = 1, . . . , n.
For the problem (3.1)–(3.3) one uses the following iterative procedure, where

v(k) = (y(k), u(k)) and v(k+1) = (y(k+1), u(k+1)) are the input and output admissible
processes, respectively, at the kth iteration.

1. Define the linear-quadratic function φ(k) by finding the functions p(k) and
Σ(k) as the solutions of the Cauchy problems (3.22) and (3.28), (3.29) with
fixed δi(t) and αi (i = 1, . . . , n ), respectively.

2. Find the solution y(k+1) of the Cauchy problem (3.11). Find the control
u(k+1) defined by (3.24).

The following theorem is formulated like the theorem in [58].

Theorem 3.3. For the problem (3.1)–(3.3) let the conditions 1)–3) in Lemma 3.1
be satisfied. Then the method (3.11), (3.21), (3.22), (3.24), (3.28), (3.29) provides
a sequence of processes {v(k)} ⊂ D such that J(v(k+1)) ⩽ J(v(k)). Moreover,
if (3.25) is satisfied, then {v(k)} is an improving sequence.

Remark 3.1. If the process v(k) satisfies the Pontryagin maximum principle, then
the Krotov method does not improve (see [149], p. 64) this process, including in the
case when v(k) is not optimal.

In (3.28) and (3.29) we need the functions δi(t) and the parameters αi (i =
1, . . . , n ) to regulate improvement. The constructions (3.22), (3.28), (3.29) are
obtained using the necessary conditions for local extrema, so the role of δi(t)
and αi is to compensate as much as possible for the absence of a search for a global
extremum. As noted in [58] and [61], if there is no improvement for the selected
δi(t) and αi (i = 1, . . . , n ), then (without changing the index k) we need to increase
δi(t) > 0, decrease αi < 0, and find the corresponding process v(k+1). Taking into
account the symmetry Σi,j(t) = Σj,i(t), we must consider n(n+ 1)/2 equations in
(3.28), (3.29).
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3.4. Krotov method for bilinear systems.

Lemma 3.2. For the problem (3.7), (3.8) with F (y(T )) = −⟨y(T ),My(T )⟩,
M ⩾ 0, the conjugate system (3.22), considered on some process v(k) ∈ D , has the
form

dp(k)(t)
dt

= −
(
AT(t) +

m∑
l=1

BT
l u

(k)
l (t)

)
p(k)(t), p(k)(T ) = 2My(k)(T ). (3.30)

Lemma 3.3. In the problem (3.7), (3.8) let

λu > 0 and Q = [a1, b1]× · · · × [am, bm].

Then for (3.12) with a linear-quadratic function φ(k)(t, y) of the form (3.21) one
has

ũ
(k)
l (t, y) =


al, u

(k)
l,st(t, y) < al,

u
(k)
l,st(t, y), u

(k)
l,st(t, y) ∈ [al, bl],

bl, u
(k)
l,st(t, y) > bl,

u
(k)
l,st(t, y) =

⟨p(k)(t) + Σ(k)(t)∆y,Bl(t)y⟩
2λu

, l = 1, . . . ,m,

where the function p(k) satisfies (3.30), and Σ(k) is defined by (3.23) or by (3.28),
(3.29). Here the ũl(t, y) are continuous with respect to y .

Let φ(k) be considered in the class of linear functions:

φ(k)(t, y) = ⟨p(k)(t), y⟩.

This choice corresponds to the first-order Krotov method. For the maximisation
problem (3.9), where

Gφ
(k)

(y(T )) = −⟨y(T ),My(T )⟩+ ⟨p(k)(T ), T ⟩ − ⟨p(k)(0), x0⟩,

the condition M ⩾ 0 is important since it provides a concave function F (y(T )).
Consider two cases for λu: λu = 0 and λu > 0. The following lemma holds

([147], [150], [151]).

Lemma 3.4. In the problem (3.7), (3.8) let m = 1 and Q = [a, b]. Then for (3.12)
with the linear function φ(k)(t, y) = ⟨p(k)(t), y⟩ one has:

(a) if λu = 0, then the function ũ(k)(t, y) is defined by (3.19), where

u
(k)
sing(t, y) = u(k)(t) +

⟨p(k)(t),
(
A(t)B(t)−B(t)A(t)− dB(t)/dt

)
y
〉

⟨p(k)(t), (B(t))2y⟩
; (3.31)

(b) if λu > 0, then the function ũ(k)(t, y) is defined by (3.20), where

u
(k)
st (t, y) =

⟨p(k)(t), By⟩
2λu

. (3.32)

In contrast to the case λu = 0, for λu > 0 the function ũ(k)(t, y) is continuous
with respect to y. The formula (3.31) is obtained by differentiating the switch-
ing function g(k)(t, y) = ⟨p(k)(t), By⟩. The function (3.32) is obtained from the
condition ∂H/∂u = 0.
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4. First-order Krotov method for controlling quantum systems
governed by the Schrödinger and Liouville–von Neumann equations

After [62] (Krotov and Kazakov, 1987) and [63] (Krotov, 1989), the next impor-
tant contribution to adaptation of the Krotov method for optimal quantum control
was in [64] (Tannor, Kazakov, and Orlov, 1992) and [65] (Somlói, Kazakov, and
Tannor, 1993), which contain an application of the first-order Krotov method (with
linear function φ) to optimisation of controls for quantum systems governed by the
Schrödinger equation. Based on these and subsequent publications, this section
outlines theoretical and numerical results on applications of the first-order Krotov
method to quantum systems governed by the Schrödinger and Liouville–von Neu-
mann equations.

4.1. Krotov method for the Schrödinger equation. Let us consider the OCP
(2.1)–(2.4). The Pontryagin function for this problem is

H(t, q, ψ, u) = 2 Re
〈
q,− i

ℏ
H[u]ψ

〉
H

− λψ⟨ψ,D(t)ψ⟩H − λu∥u∥2

S(t)
, (4.1)

where ψ, q ∈ H and u ∈ Q ⊆ Rm. By analogy with (3.14), the Krotov Lagrangian
with linear function φ(t, ψ) = 2Re⟨χ(t), ψ⟩ for this problem is the functional

Lφ(v) = Gφ(ψ(T ))−
∫ T

0

Rφ(t, ψ(t), u(t)) dt, v = (ψ, u), (4.2)

where

Gφ = −⟨ψ(T ), Oψ(T )⟩+ 2 Re⟨χ(T ), ψ(T )⟩ − 2 Re⟨χ(0), ψ(0)⟩, (4.3)

Rφ = 2Re
[〈
χ(t),− i

ℏ
H[u]ψ

〉
+

〈
dχ(t)
dt

, ψ

〉]
− λψ⟨ψ,D(t)ψ⟩ − λu∥u∥2

S(t)
. (4.4)

Consider the operators O ⩾ 0 and D(t) ⩾ 0. By analogy with (3.4)–(3.6) and
relying on [64], we write down the first-order Krotov method. Consider the fol-
lowing iterative procedure, where v(k) = (ψ(k), u(k)) and v(k+1) = (ψ(k+1), u(k+1))
are the input and output admissible processes, respectively, at the kth iteration of
the method.

1. Compute the solution χ(k) of the Cauchy problem

dχ(k)(t)
dt

= − i

ℏ
H[u(k)(t)]χ(k)(t) + λψD(t)ψ(k)(t),

χ(k)(T ) = Oψ(k)(T ) (4.5)

(the system is integrated ‘from right to left’).
2. Find the solution ψ(k+1) of the Cauchy problem

dψ(k+1)(t)
dt

= − i

ℏ
H[ũ(k)(t, ψ(k+1)(t))]ψ(k+1)(t), ψ(k+1)(0) = ψ0. (4.6)

Find the control u(k+1) defined by

u(k+1)(t) = ũ(k)(t, ψ(k+1)(t)) := arg max
u∈Q

H(t, χ(k)(t), ψ(k+1)(t), u). (4.7)
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By analogy with the proof of Theorem 3.1, one can prove the following theorem.

Theorem 4.1. For the problem (2.1)–(2.4) with operators O ⩾ 0 and D(t) ⩾ 0 and
coefficient λψ ⩽ 0, the method (4.5)–(4.7) provides a sequence of processes v(k) ∈ D
such that J(v(k+1)) ⩽ J(v(k)). Moreover, if∫ T

0

max
u∈Q

H
(
t, χ(k)(t), ψ(k)(t), u

)
dt ̸=

∫ T

0

H
(
t, χ(k)(t), ψ(k)(t), u(k)(t)

)
dt,

then {v(k)} is an improving sequence.

Remark 4.1. Realisation of the Krotov method depends on whether there is a reg-

ulariser λu
∫ T

0

∥u(t)∥2

S(t)
dt in (2.4) (λu > 0), or not (λu = 0). For illustration, let

Q = [a1, b1]× · · · × [am, bm] in the problem (2.1)–(2.4).
If λu = 0, then for (4.7) consider the function ũ(k)(t, ψ) defined by the formula

ũ
(k)
l (t, ψ) =


al, g

(k)
l (t, ψ) < 0,

u
(k)
l,sing(t, ψ) ∈ [al, bl], g

(k)
l (t, ψ) = 0,

bl, g
(k)
l (t, ψ) > 0,

where

g
(k)
l (t, ψ) = 2 Re

〈
χ(k)(t),− i

ℏ
Hlψ

〉
=

2
ℏ

Im⟨χ(k)(t),Hlψ⟩, l = 1, . . . ,m,

are the components of the switching function. In the case m = 1 Krotov’s arti-
cles [107] and [108] give a formula for u(k)

sing(t, ψ).
If λu > 0, then for (4.7) the function ũ(k)(t, ψ) is defined by

ũ
(k)
l (t, ψ) =


al, u

(k)
l,st(t, ψ) < al,

u
(k)
l,st(t, ψ), u

(k)
l,st(t, ψ) ∈ [al, bl],

bl, u
(k)
l,st(t, ψ) > bl,

(4.8)

where the functions

u
(k)
l,st(t, ψ) =

S(t)
ℏλu

Im⟨χ(k)(t),Hlψ⟩, l = 1, . . . ,m, (4.9)

are obtained from the condition ∂H/∂u = 0.

In the early 1990s the first-order Krotov method, which relates to the conditions
λu > 0 and S(t) ≡ 1 in (2.4), was considered in [64] (Tannor, Kazakov, and Orlov,
1992) and [65] (Somlói, Kazakov, and Tannor, 1993), and further in the books [60],
pp. 253–259 (Krotov, 1996) and [9], § 16.2.2 (Tannor, 2007). In [107] and [108]
(Krotov, 2008, 2009) both the cases λu = 0 and λu > 0 were analysed. If λu > 0,
then a trade-off between minimisation of F and regularisation is important.
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Another version of the Krotov method is obtained with the following regulariser.
Consider the cost functional J(v) with λu = 0 in (2.4) and the following regularised
cost functional to be minimised:

J̃(v, v(k)) = J(v) + Γ(γu, v, v(k)) → min, (4.10)

Γ(γu, v, v(k)) = γu

∫ T

0

∥u(t)− u(k)(t)∥2

S(t)
dt, γu > 0. (4.11)

The modified cost functional J̃(v, v(k)) is different for each iteration of the Krotov
method, because this functional depends on the current approximation v(k).

Lemma 4.1. Suppose that a process v̂ ∈ D improves a given process v(k) ∈ D for
the regularised functional (4.10), (4.11), that is,

J̃(v̂, v(k)) < J̃(v(k), v(k)) = J(v(k)).

Then the process v̂ also improves v(k) for the initial functional J , that is,

J(v̂) < J(v(k)).

Proof. To prove this lemma, we will argue by contradiction, that is, suppose that
the relations

J(v̂) ⩾ J(v(k)) and J̃(v̂, v(k)) < J̃(v(k), v(k)) = J(v(k)) (4.12)

are satisfied simultaneously. Substituting v̂ into (4.10) and (4.11), we have

J̃(v̂, v(k)) = J(v̂) + ĉ,

where ĉ = Γ(γu, v̂, v(k)) and J(v̂) = J̃ (k)(v̂)−ĉ. It is clear that ĉ > 0 if û(t) ̸≡ u(k)(t).
Based on the assumptions (4.12), we obtain

J(v̂) = J̃(v̂, v(k))− ĉ ⩾ J(v(k)) > J̃(v̂, v(k)).

Thus, we get that J̃(v̂, v(k))− ĉ > J̃(v̂, v(k)), that is, ĉ < 0. The latter contradicts
the fact that ĉ > 0 if û(t) ̸≡ u(k)(t). If û(t) ≡ u(k)(t), then there is no improvement
for v(k) in relation to J̃ . We conclude that J(v̂) < J(v(k)). □

In the problem (2.1)–(2.4) let

Q = [a1, b1]× · · · × [am, bm] and λu = 0.

Consider the problem of improving the process v(k) ∈ D . Using (4.10) and (4.11),
one obtains the corresponding version of the Krotov method, where the formula
(4.8) is used, and the components of the vector u(k)

st (t, ψ) are defined not by (4.9),
but as follows:

u
(k)
l,st(t, ψ) = u

(k)
l (t) +

S(t)
ℏγu

Im⟨χ(k)(t),Hlψ⟩, l = 1, . . . ,m, γu > 0.
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This formula is obtained from the condition

∂H

∂ul
= 2Re

〈
χ(k)(t),− i

ℏ
Hlψ

〉
−

2γu(ul − u
(k)
l (t))

S(t)
= 0.

The Krotov method with (4.10) is used to solve OCPs for systems governed by
the Schrödinger equation, for example, in [71] (Koch, Palao, Kosloff, and Masnou-
Seeuws, 2004). In [66] (Sklarz and Tannor, 2002) the Krotov method combined
with such a regulariser was used for an OCP with the Gross–Pitaevskii equation,
which will be discussed later in this survey. The first- and second-order versions
of the Krotov method have been used in combination with this regularisation in
a number of papers since 2002, including, for example, [22], [67], [73], [74], [78], [89],
and [94].

The functional (4.10), (4.11) is designed to regulate the distance to the current
approximation u(k). Such regularisation is used in the theory of optimal control;
see, for example, [146], p. 61 (Srochko, 2000).

4.2. Krotov method for the Liouville–von Neumann equation. The Kro-
tov method has been applied to the solution of OCPs for open quantum systems,
including for systems of the form (2.10) ([22], [70], [79], [92], [93], [95], [104]). The
Liouville–von Neumann equation (2.9) with a controlled Hamiltonian follows from
(2.10) for the dissipator L (ρ) ≡ 0.

Consider the problem (2.3), (2.9), (2.11) with λu = 0 and λρ > 0. The conjugate
system has the form

dσ(k)(t)
dt

= − i

ℏ
[
H[u(k)(t)], σ(k)(t)

]
− λρD(t), σ(k)(T ) = ρtarget. (4.13)

We briefly describe the application of the first-order Krotov method to this problem.
Consider the following iterative process, where v(k) = (ρ(k), u(k)) and v(k+1) =
(ρ(k+1), u(k+1)) are the input and output admissible processes, respectively, at the
kth iteration of the method.

1. Compute the solution σ(k) of the Cauchy problem (4.13).
2. Find the solution ρ(k+1) of the Cauchy problem

dρ(k+1)(t)
dt

= − i

ℏ
[
H[ũ(k)(t, ρ(k+1)(t))], ρ(k+1)(t)

]
, ρ(k+1)(0) = ρ0. (4.14)

Find the control u(k+1) defined by the formula

u
(k+1)
l (t) = ũ

(k)
l (t, ρ(k+1)(t))

:=


al, u

(k)
l,st(t, ρ

(k+1)(t)) < al,

bl, u
(k)
l,st(t, ρ

(k+1)(t)) > bl,

u
(k)
l,st(t, ρ

(k+1)(t)), u
(k)
l,st(t, ρ

(k+1)(t)) ∈ [al, bl],

(4.15)
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where

u
(k)
l,st(t, ρ

(k+1)(t))

= u
(k)
l (t) +

S(t)
γuℏ

Im
(
Tr

{
σ(k)(t)

(
Hlρ

(k+1)(t)− ρ(k+1)(t)Hl

)})
, (4.16)

l = 1, . . . ,m and γu > 0.

Theorem 4.2. For the problem (2.3), (2.9), (2.11) with λu = 0 and λρ > 0,
the method (4.13)–(4.16) provides a sequence of processes {v(k)} ⊂ D such that
J(v(k+1)) ⩽ J(v(k)). Moreover, if∫ T

0

max
u∈Q

H
(
t, σ(k)(t), ρ(k)(t), u

)
dt ̸=

∫ T

0

H
(
t, σ(k)(t), ρ(k)(t), u(k)(t)

)
dt,

then {v(k)} is an improving sequence.

4.3. Zhu–Rabitz and Maday–Turinici methods. Their connections with
the first-order Krotov method. Consider the OCP (2.1)–(2.4) with

O ⩾ 0, m = 1, Q = R, λu > 0, S(t) ≡ 1, λψ = 0,

and the Hamiltonian H = H0 − µu(t), where µ is the dipole moment operator.
Taking into account the specifics of this OCP, the authors of [42] (Zhu and Rabitz,
1998) proposed a method for non-local improvements which we call the Zhu–Rabitz
method.

The Pontryagin function for this problem is

H(t, χ, ψ, u) = 2Re
〈
χ,− i

ℏ
H[u]ψ

〉
− λuu

2.

Because H is quadratic in u, the condition ∂H/∂u = 0 gives

ũ(t, χ, ψ) = − 1
λuℏ

Im⟨χ,µψ⟩. (4.17)

Consider the following iterative process, where v(k) = (ψ(k), u(k)) and v(k+1) =
(ψ(k+1), u(k+1)) are the input and output admissible processes, respectively, at the
kth iteration.

1. Compute the function χ(k+1) solving the Cauchy problem

dχ(k+1)(t)
dt

= − i

ℏ
(
H0 − µũ(t, χ(k+1)(t), ψ(k)(t))

)
χ(k+1)(t), (4.18)

χ(k+1)(T ) = Oψ(k)(T ), (4.19)

obtained by substituting ũ(t, χ(k+1)(t), ψ(k)(t)) into the conjugate system
(4.5) in place of u(k)(t) for λψ = 0.

2. Find the function ψ(k+1) which satisfies the Cauchy problem

dψ(k+1)(t)
dt

= − i

ℏ
(
H0 − µũ(t, χ(k+1)(t), ψ(k+1)(t))

)
ψ(k+1)(t), (4.20)

ψ(k+1)(0) = ψ0. (4.21)
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Using the formula (4.17), find the control u(k+1) as

u(k+1)(t) = ũ
(
t, χ(k+1)(t), ψ(k+1)(t)

)
:= − 1

λuℏ
Im⟨χ(k+1)(t),µψ(k+1)(t)⟩. (4.22)

Theorem 4.3. In the problem (2.1)–(2.4), let O ⩾ 0, m = 1, Q = R, λu > 0,
S(t) ≡ 1, λψ = 0, and H = H0 − µu(t). The Zhu–Rabitz method (4.17)–(4.22)
gives a process v(k+1) = (ψ(k+1), u(k+1)) ∈ D such that J(v(k+1)) ⩽ J(v(k)).

The Zhu–Rabitz method (4.17)–(4.22) was presented in [42], where numerical
results were also presented showing that this method gives good improvements,
and that J(v) is improved more quickly in the first few iterations than in subse-
quent iterations. In [109] (Sundermann and de Vivie-Riedle, 1999) the Zhu–Rabitz
method was applied with the shape function S(t) = sin2(πt/T ).

In [43] (Maday and Turinici, 2003) a general method was proposed which includes
as particular cases the first-order Krotov method and the Zhu–Rabitz method. We
will call it the Maday–Turinici method. It works as follows.

Fix two parameters: δ, η ∈ [0, 2].
1. Find the solution ψ(k+1) of the Cauchy problem

dψ(k+1)(t)
dt

= − i

ℏ
H[ũ(t, ψ(k+1)(t); δ)]ψ(k+1)(t), ψ(k+1)(0) = ψ0. (4.23)

Find the control u(k+1) defined by

u(k+1)(t) = ũ(t, ψ(k+1)(t); δ)

:= (1− δ)u(k)(t)− δ

λuℏ
Im⟨χ(k)(t),µψ(k+1)(t)⟩, (4.24)

where the functions u(k) and χ(k) are from the previous iteration.
2. Find the function χ(k+1) as the solution of the Cauchy problem

dχ(k+1)(t)
dt

= − i

ℏ
H[ũ(t, χ(k+1)(t); η)]χ(k+1)(t),

χ(k+1)(T ) = Oψ(k+1)(T ),
(4.25)

where

ũ(t, χ(k+1); η) := (1− η)ũ(t, ψ(k+1)(t); δ)

− η

λuℏ
Im⟨χ(k+1),µψ(k+1)(t)⟩. (4.26)

Theorem 4.4. In the problem (2.1)–(2.4), let O ⩾ 0, m = 1, Q = R, λu > 0,
S(t) ≡ 1, λψ = 0, and H = H0 − µu(t). Then for any η, δ ∈ [0, 2] the Maday–
Turinici method (4.23)–(4.26) gives J(v(k+1)) ⩽ J(v(k)).

The parameters (δ, η) in the Maday–Turinici method (4.23)–(4.26) should be
chosen correctly. The choice (δ, η) = (1, 0) determines a version of the first-order
Krotov method, and the choice (δ, η) = (1, 1) leads to the Zhu–Rabitz method.
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As noted in [43], the Maday–Turinici method can be better than the first-order
Krotov method or the Zhu–Rabitz method. The Maday–Turinici method was also
developed in the case where a controlled evolution of the density matrix is consid-
ered [152] (Ohtsuki, Turinici, and Rabitz, 2004).

Both the Zhu–Rabitz and the Maday–Turinici methods exploit the regulariser
λu

∫ T
0

(u(t))2 dt, λu > 0, in the cost functional. This regulariser implies that the
Pontryagin function is quadratic in u, which is convenient for maximising it. On
other hand, if the original cost functional J has no term of type λu

∫ T
0

(u(t))2 dt, then
a trade-off between minimising the terminal and integral parts of J is important.

4.4. Krotov method and other methods in numerical experiments for
the controlled Schrödinger and Liouville–von Neumann equations. Based
on a number of publications since the early 1990s, we outline applications of the
first-order Krotov method and other methods to the problem (2.1)–(2.4) with ψ(t) ∈
L2 or ψ(t) ∈ Cn. For the OCP under consideration, gradient methods such as
steepest-descent and conjugate-gradient methods have been used in the control
space for a long time [68], [153].

Definition 4.1. The following iterative method is called the steepest-descent
method in the problem (2.1)–(2.4):

u(k)(t;β) = u(k)(t) + β
∂H

∂u

(
t, χ(k)(t), ψ(k)(t), u(k)(t)

)
, β > 0, (4.27)

u(k+1)(t) = u(k)(t;β = β̂), β̂ = arg min
β>0

J
(
ψ(k)( · ;β), u(k)( · ;β)

)
, (4.28)

where (ψ(k), u(k)) is a given process that is to be improved, H(t, χ, ψ, u) is the
Pontryagin function (4.1), and ψ(k)(·;β) is the solution of the Cauchy problem (2.1)
with the control u(k)( · ;β).

In the steepest-descent method, the complexity of a single iteration is essentially
determined by a multiple integration of the Schrödinger equation for a family of
controls {u(k)( · ;β), β > 0}, which is necessary in order to find the value β̂ that
provides a variation of the control with the greatest possible decrease of J in this
iteration.

In addition to (2.1)–(2.4), one can specify spectral constraints on the control. For
such a problem a modified steepest-descent method was developed in [153] (Gross,
Neuhauser, and Rabitz, 1992), where, in contrast to (4.27), the following formula
with the Fourier transformation is used:

u(k+1)(t;β) = u(k)(t)

+
β

2π

∫ ∞

−∞

[ ∫ T

0

∂H

∂u

(
t, χ(k)(t), ψ(k)(t), u(k)(t)

)
e−iωt dt

]
g(ω)eiωt dω,

with β > 0 and

g(ω) =

{
1, ωmin ⩽ |ω| ⩽ ωmax,

0, |ω| < ωmin, |ω| > ωmax.
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In [154] (2009), this modification of the steepest-descent method was adapted for
solution of an OCP for the Liouville–von Neumann equation (2.9).

The article [65] (Somlói, Kazakov, and Tannor, 1993) used the first-order Krotov
method for OCPs (2.1)–(2.4) with λu > 0, S(t) ≡ 1, and λψ = 0 to model controlled
dissociation of an iodine molecule I2 by the Schrödinger equation (2.1) with M = 2
(two electronic states):

dψ(t)
dt

= − i

ℏ

(
Hgr −µu(t)

−µu(t) Hex

)
ψ(t), ψ(0) = ψ0, ψ = (ψgr, ψex)T.

The operators Hgr and Hex and the functions ψgr and ψex describe the ground and
excited electronic states, µ means equal dipole operators between the two electronic
states of the iodine molecule (in the general case different dipole operators µgr,ex

and µex,gr are considered), and each electronic state has a Morse-type potential

Vj = De,j{1− exp[−βj(r − re,j)]}2

for certain values of the parameters. Here De,j is the dissociation energy, r is the
nuclear distance between two atoms, re,j is the equilibrium nuclear distance, and j ∈
{gr, ex}. It was shown that the Krotov method: (a) can provide macro-steps com-
pared with local improvements produced by the steepest-descent method; (b) does
not involve the expensive operation of finding the variational parameter; (c) can
improve J at a lower computational cost than the steepest-descent method. Fig-
ures 4 and 6 in [65], p. 92, show the dependence of the maximised probability of
dissociation on the number of Cauchy problems solved (graphs are plotted for up
to 20 Cauchy problems) and demonstrate the advantage of the Krotov method over
the gradient method. The first few iterations of the first-order Krotov method give
the main contribution and then the rate of change of the values of J decreases (a tar-
get population of 99% at time T is obtained). The Husimi transform was applied
for the analysis of the optimised control in the joint time-frequency domain.

The paper [68] (Szakács, Amstrup, Gross, Kosloff, Rabitz, and Lörincz, 1994)
considers the Schrödinger equation for two electronic states for modelling con-
trolled blocking of the molecular bond for caesium iodide (CsI). The first-order
Krotov method is used together with the Fletcher–Reeves form of the conjugate-
gradient method in a function space: first with the Krotov method, and then with
a switch to the Fletcher–Reeves method, starting with the result of the Krotov
method.

In [42] (Zhu and Rabitz, 1998) the problem (2.1)–(2.4) was considered with the
Hilbert space H = L2(R), the observable

O(x) = (γ0

√
π ) exp(−γ2

0(x− x′)2),

S(t) ≡ 1, m = 1, Q = R and λψ = 0. The aim was to localise the wavepacket at
a given location x′ (its value was taken equal to 2.5) according to the operator O,
with the Morse potential

V (x) = D0(e−β(x−x0) − 1)2 −D0

of the O–H bond, where D0, β, and x0 have certain numerical values. Numerical
results show that the Zhu–Rabitz method in the first few iterations converges to
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about 80% of its converged value. The article [43] (Maday and Turinici, 2003)
considers the same OCP for two values of x′ (2.5 and 1.821) and presents compar-
ative results computed for three cases of the Madey–Turinici method. The pairs
(δ, η) = (1, 1) and (δ, η) = (1, 0) in the method represent the Zhu–Rabitz method
and the first-order Krotov method, respectively. The third case is (δ, η) = (2, 0).
Figures 2 and 3 in [43] show the first 10 iterations of computations for both values
of x′. According to these figures, the case (δ, η) = (1, 0) is slower than or almost
the same speed as the case (δ, η) = (2, 0), and both these cases are better than the
case (δ, η) = (1, 1).

In [69] (Sola, Santamaria, and Tannor, 1998), an OCP for the Schrödinger equa-
tion with the Morse potential and with several energy levels was considered, and
multi-photon excitations were investigated. Figure 1 in [69] shows the comparative
results and the better performance of the first-order Krotov method (the first 40
iterations were considered) versus three gradient methods, including the conjugate-
gradient method, in the problem of maximising the probability of selecting the
target state.

In [49] (Ho and Rabitz, 2010) the problem of maximising the mean

⟨OT ⟩ = ⟨ψ(T ), OTψ(T )⟩

with respect to the Schrödinger equation was considered and the TBQCP method
was proposed. For the target observable OT an explicit time-dependent positive-
semidefinite Hermitian operator O(t) was considered which is a dynamical invariant
(that is, the total derivative dO(t)/dt is equal to zero) and satisfies the condition
O(T ) = OT . For a certain OCP connected with the Morse potential, Figs. 2
and 4–7 in [49] show that the Ho–Rabitz TBQCP method converges faster than the
first-order Krotov method.

The paper [67] (Palao, Kosloff, and Koch, 2008) considers the problem (2.1)–(2.4)
with λψ ⩾ 0 for a model of vibrations in a rubidium molecule Rb2, where three
electronic states are taken. The goal is to transfer population initially at level v = 0
of the electronic ground state, to level v = 1 of the same electronic state at time T ,
by means of Raman-like transitions involving levels in the 1Σ+

u excited state, but
without populating levels in the upper electronic state 1Πg at any time. Figure 2
in [67] shows the values of the maximised normalised cost functional Jnorm and
the average population in the allowed subspace IP , as functions of the number of
iterations both with and without this state constraint. In both cases, the first-order
Krotov method, which uses the regularisation (4.10), gives a population transfer
greater than 99.9%. However, as shown in Figs. 2 and 3 in [67], here the state
constraint must be used to avoid populating a forbidden subspace, and the Krotov
method successfully solves the problem with this constraint. The cost of using
the constraint is a significant increase in the number of iterations of the Krotov
method required in comparison with the case without the constraint: 500 versus 17
iterations.

The paper [75] (Kumar, Malinovskaya, and Malinovsky, 2011) considers the
Schrödinger equation which describes a three-level Λ-system controlled by a pump
field and a Stokes field. The paper presents a comparison of the results computed
using the first-order Krotov method, the Zhu–Rabitz method, and the conjugate-
gradient method working in the function space for two OCPs: first, for a complete
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population transfer, and second, to maximise the coherence between two given
energy levels (the first and the third). The paper shows that all the three methods
are able to find solutions of these OCPs, including for the cases with λψ > 0 (state
constraints).

Now we consider results on quantum control which were determined by solv-
ing OCPs with real-valued states which represent the real and imaginary parts of
a complex-valued ψ(t).

The papers [111] (Boussäıd, Caponigro, and Chambrion, 2012) and [77] (Trush-
kova, 2013) consider the Schrödinger equation with states in L2(Ω; C) describing
the rotation of a planar molecule, and an approximate system with states in Cn,
n = 22. This leads to an OCP (2.7), (2.8) with real-valued states y(t) ∈ R44, where

yj(t) = Re zj(t) and y2j(t) = Im zj(t), j = 1, . . . , n.

For this OCP the paper [77] uses the Krotov method with φ(k)(t, y) obtained from
the discrete analogue of the Cauchy problem

H

(
t,
∂φ(k)(t, y)

∂y
, y, u(k)(t)

)
+
∂φ(k)(t, y)

∂t
= 0, φ(k)(T, y) = −F (y),

considered in [155] (Trushkova, 2011). The control is restricted by the condition
|u(t)| ⩽ 1/3 in accordance with the operation arg maxu in (3.12). Based on the data
in [77], Fig. 1 shows the logarithmic dependence of J on the number of iterations.
For the initial iteration J = 2, for the fourth iteration J ≈ 1.6 · 10−5, and for the
tenth iteration J ≈ 5.1 · 10−6.

Figure 1. Illustration of the Krotov method in the OCP for rotation of
a molecule.

In [151] (Krotov, Morzhin, and Trushkova, 2013), a method which incorporates
the first-order Krotov method was proposed for the problem (3.7), (3.8) with

F (y(T )) = −⟨y(T ),My(T )⟩, M ⩾ 0

(and also for a more general class of OCPs). The idea was to consider a generalised
OCP which allows pulse control and a discontinuous state function y(t). The pulse
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control combines the usual piecewise continuous control function u(t) and pulse
actions used at certain instants of time. At each such time the system’s trajectory is
described in the state space Rn using some special dynamical system. By matching
the solution y(t) of the initial system, which is integrated between the times of the
pulse actions, with the solutions of the special system, which is considered at these
times, we obtain a trajectory which is continuous in the state space. Successive
improvements of the control are constructed for the generalised OCP. After solving
this OCP, its solution can be approximated by processes which are admissible in
the initial OCP. Numerical results are provided for an OCP for a quantum system
defined by the Schrödinger equation (2.1) with the Landau–Zener Hamiltonian and
states ψ(t) ∈ C2. For this OCP, its equivalent problem with states y(t) ∈ R4 is
considered. Table 4 in [151] shows a fast decrease in the cost functional in the
generalised OCP.

5. Krotov method for controlling unitary dynamics
and ensembles of solutions of the Schrödinger equation

5.1. Second-order Krotov method with constraints on quantum states.
In [66] (Sklarz and Tannor, 2002) and [89] (Reich, Ndong, and Koch, 2012) the
second-order Krotov method, which uses (3.23) to define Σ(k), was developed for
OCPs for quantum systems, including for modelling the control of the dynamics of
a Bose–Einstein condensate.

Consider the problem (2.19), (2.20), (2.3) (control of the ensemble of solutions of
the Schrödinger equation) for λψ ⩾ 0 without spectral constraints. The Pontryagin
function for the regularised cost functional J̃(v, v(k)) (4.10), (4.11) is

H(t, {qj}, {ψj}, u) = −2 Re
n∑
j=1

〈
qj ,

i

ℏ
H[u]ψj

〉
− γu∥u− u(k)(t)∥2

S(t)
,

where ψj , qj ∈ H . We describe the method based on [89] (Reich, Ndong, and
Koch, 2012) and [90] (Goerz, Gualdi, Reich, Koch, Motzoi, Whaley, Vala, Müller,
Montangero, and Calarco, 2015).

Consider the set of n conjugate systems

dχ
(k)
j (t)
dt

= − i

ℏ
H[u(k)(t)]χ(k)

j (t) + λψD(t)ψ(k)
j (t), (5.1)

χ
(k)
j (T ) = − ∂

∂ψj
F

(
{ψ(k)

j (T )}j=1,...,n

)
, j = 1, . . . , n. (5.2)

For the problem (2.20), (2.19), (2.3), consider the following iterative procedure,
where v(k) =

(
{ψ(k)

j }, u(k)
)

and v(k+1) =
(
{ψ(k+1)

j }, u(k+1)
)

are the input and
output admissible processes, respectively, at the kth iteration of the method.

1. Compute the solutions χ(k)
j , j = 1, . . . , n, of the n Cauchy problems (5.1),

(5.2).
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2. Find the solutions ψ(k+1)
j , j = 1, . . . , n, of the n Cauchy problems

dψ
(k+1)
j (t)
dt

= − i

ℏ
H

[
ũ(k)

(
t, {ψ(k+1)

j (t)}j=1,...,n

)]
ψ

(k+1)
j (t),

ψ
(k+1)
j (0) = ψj,0.

(5.3)

Find the control u(k+1) defined by

u(k+1)(t) = ũ(k)
(
t, {ψ(k+1)

j (t)}j=1,...,n

)
:= arg max

u∈Q
H

(
t,

{
χ

(k)
j (t) +

1
2
Σ(k)(t)

(
ψ

(k+1)
j (t)− ψ

(k)
j (t)

)}
,

{ψ(k+1)
j (t)}j=1,...,n, u

)
,

(5.4)

where the function Σ(k) is defined in (3.23) with some α, β < 0 and γ > 0.

Theorem 5.1. For the OCP (2.20), (2.19), (2.3) consider the problem of improving
the process v(k) =

(
{ψ(k)

j }j=1,...,n, u
)
∈ D . Then the method (5.1)–(5.4) provides

a process v(k+1) such that J(v(k+1)) ⩽ J(v(k)).

The article [89] (Reich, Ndong, and Koch, 2012) provides numerical results
obtained from the second-order Krotov method for an OCP with the terminant
F

(
{ψj(T )}j=1,...,n

)
(2.22) which is a polynomial of the eighth degree with respect

to the ψj (see [88], pp. 7–8). As shown in Fig. 1 in [89], the efficiency of the Krotov
method depends substantially on γu.

5.2. Krotov method with constraints on the control spectrum. It can
happen that the control spectrum contains components which are not desirable
for practical implementation. Following [76] (Palao, Reich, and Koch, 2013), we
describe a modification of the Krotov method for the problem (2.19), (2.20), (2.3)
with λψ = 0, Q = R, and spectral constraints on the control.

At the kth iteration, consider the process v(k) ∈ D and the following functional
which takes into account both the regulariser (4.10), (4.11) and the frequencies ωm,
m = 1, . . . ,M , for which filtration is carried out:

Jspec(v; v(k)) =
∫ T

0

[
γu

(u(t)− u(k)(t))2

S(t)

+
1
2π

∫ T

0

(
u(t)− u(k)(t)

)
K(t− t′)

(
u(t′)− u(k)(t′)

)
dt′

]
dt. (5.5)

Here the Gaussian kernel has the form

K(t− t′) =
M∑
m=1

λspec,m

√
2πσ2

m cos[ωm(t− t′)] exp
[
−σ

2
l (t− t′)2

2

]
. (5.6)

The values of γu and the quantities λspec,m and σm (m = 1, . . . ,M) are given, and
S(t) is some shape function.
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Setting t = t′, we have

K(0) =
M∑
m=1

λspec,m

√
2πσ2

m .

The Fourier transform of K(t− t′) is

K(ω) =
M∑
m=1

λspec,m

2

[
exp

(
− (ω − ωm)2

2σ2
m

)
+ exp

(
− (ω + ωm)2

2σ2
m

)]
.

Let the Hamiltonian H be linear in u. Consider the following iterative formula:7

u(k+1)(t) = ũ(k)
(
t, {ψ(k+1)

j (t), j = 1, . . . , n}
)

:= u(k)(t) +
S(t)
γuℏ

Im
[ n∑
j=1

〈
χ

(k)
j (t),

∂H
∂u

ψ
(k+1)
j

〉

+
1
2

n∑
j=1

〈(
ψ

(k+1)
j (t)− ψ

(k)
j (t)

)
,Σ(k)(t)

∂H
∂u

(
ψ

(k+1)
j (t)− ψ

(k)
j (t)

)〉]

−
M∑
m=1

λspec,mS(t)
2πγu

√
2πσ2

m

∫ T

0

cos[ωm(t− t′)]

× exp
[
−σ

2
m(t− t′)2

2

](
u(t′)− u(k)(t′)

)
dt′, k ⩾ 0, (5.7)

where, at the kth iteration, u(k) and u(k+1) are the current and the next approx-
imations, respectively, ψ(k+1)

j , j = 1, . . . , n, are the solutions of the Cauchy prob-
lems (2.19) with the control

u(t) = ũ(k)
(
t, {ψ(k+1)

j (t), j = 1, . . . , n}
)
,

and χ
(k)
j , j = 1, . . . , n, are the solutions of the Cauchy problems (5.1), (5.2) with

λψ = 0.
Due to the linearity of H[u] with respect to u, (5.7) can be represented as a Fred-

holm integral equation for the increment ∆u = u(k+1) − u(k):

∆u(t) = I(t) + β

∫ T

0

K (t, t′)∆u(t′) dt′, (5.8)

7In (5.7) there is a minus sign before the last summand, in contrast to the corresponding
formulae (8), (11) in [76]. At the same time, the kernel K(t − t′) in the formula (6b) in [76]
contains a minus sign before the summation sign, which is absent in (5.6). Thus, these minus
signs compensate each other.
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where

I(t) =
S(t)
γuℏ

Im
[ n∑
j=1

〈
χ

(k)
j (t),

∂H
∂u

ψ
(k+1)
j (t)

〉

+
1
2

n∑
j=1

〈(
ψ

(k+1)
j (t)− ψ

(k)
j (t)

)
,Σ(k)(t)

∂H
∂u

(
ψ

(k+1)
j (t)− ψ

(k)
j (t)

)〉]
,

(5.9)

K (t, t′) = −
L∑
l=1

λspec,lS(t)
2πγu

√
2πσ2

l cos[ωl(t− t′)] exp
[
−σ

2
l (t− t′)2

2

]
. (5.10)

The formula (5.9) includes the unknown functions ψ(k+1)
j , j = 1, . . . , n, correspond-

ing to the desired control u(k+1) for which the spectral constraints are given. In [76]
the following approach for solving (5.8)–(5.10) was proposed:

1) set the function Σ(k) ≡ 0;
2) find an improving process

v̂(k+1) =
(
{ψ̂(k+1)

j }nj=1, û
(k+1)

)
for the current process v(k) without spectral constraints on the control
(in (5.6) set all λspec,l = 0);

3) substitute the computed functions ψ̂(k+1)
j , j = 1, . . . , n, into (5.9) in place of

the unknown functions ψ(k+1)
j , j = 1, . . . , n, to obtain an approximation Î

for I;
4) solve the equation

∆u(t) = Î(t) + β

∫ T

0

K (t, t′)∆u(t′) dt′ (5.11)

using the degenerate-kernel method from the theory of integral equations
[156] as described in [76], p. 3.

The need to solve the Fredholm equation (5.8) or its simplified form (5.11) com-
plicates each iteration of the Krotov method.

5.3. Maday–Turinici and Krotov methods with modified quality crite-
ria and smoothing of the control. In [99], [100] (Maximov, Nielsen, Salomon,
Tošner, and Turinici, 2008, 2010), and also in [110] (Schirmer and de Fouquieres,
2011), the Maday–Turinici method was applied to the OCP (2.3), (2.12), (2.14),
for the generation of a target unitary operator.

It is not correct to use the first-order Krotov method or the Maday–Turinici
method for every terminant (2.15)–(2.18). Generalising the regularised terminant
as proposed in [99], we consider the following regularised cost functional to be
minimised:

J̃X(U, u;M) = FX(U(T ))− Tr{U†(T )MU(T )}+ λu

∫ T

0

∥u(t)∥2

S(t)
dt, (5.12)

where M ⩾ 0 is some symmetric matrix with real entries.
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In (5.12), consider

FO(U(T )) = −Tr{OU(T )ρ0U
†(T )}

defined by (2.16), and Q = Rm. Based on [99], we describe the kth iteration of the
Maday–Turinici method using (5.12). Let δ, η ∈ [0, 2].

1. Compute the solution U (k+1) of the Cauchy problem

dU (k+1)(t)
dt

= − i

ℏ
H[ũ(t, B(k)(t); δ)]U (k+1)(t), U (k+1)(0) = I. (5.13)

Find the control u(k+1) defined by the formula

u
(k+1)
l (t) = ũl(t, U (k+1)(t); δ)

:= (1− δ)u(k)
l (t) +

δ

λuℏ
Im

〈
B(k)(t),HlU

(k+1)(t)
〉
, (5.14)

where l = 1, . . . ,m and the functions u(k)
l and B(k) are from the previous

iteration.
2. Find the function B(k+1) as the solution of the Cauchy problem

dB(k+1)(t)
dt

= − i

ℏ
H[ũ(t, B(k+1)(t); η)]B(k+1)(t), (5.15)

B(k+1)(T ) = OU (k+1)(T )ρ0 + U (k+1)(T )M, (5.16)

where

ũl(t, B(k+1); η) := (1− η)ũl(t, U (k+1)(t); δ)

+
η

λuℏ
Im

〈
B(k+1),HlU

(k+1)(t)
〉
, l = 1, . . . ,m. (5.17)

In [100] only the case (δ, η) = (1, 0) was considered, where M = κI, κ > 0. This
case corresponds to the first-order Krotov method with regularisations with respect
to u and U(T ). In addition, smoothing for the computed improving control u(k+1)

was proposed. The vector function u(k+1)
smooth( · ;α) with the components

u
(k+1)
smooth,l( · ;α) = (1− α)u(k+1)

l + αF
(
u

(k+1)
l

)
, l = 1, . . . ,m,

was constructed for some α ∈ [0, 1], where F is a frequency filter, for example,
with direct and inverse Fourier transformations. Suppose that u(k+1) for α = 0
provides an improvement. Then starting from α = 1 and decreasing α, one can
search for a smoothed control which also gives an improvement for (U (k), u(k)). This
modification is called the smooth Krotov method (using the terminology in [100]).
Searching for a suitable α ∈ [0, 1] increases the complexity of each iteration.

5.4. Applications to numerical experiments for controlling unitary dyn-
amics. The articles [67], [76], [80], [81], and [88]–[91] consider OCPs for ensembles
of solutions {ψj(t), j = 1, . . . , n} of the Schrödinger equation using the first- and
second-order Krotov methods, including constraints on the states {ψj(t)} and on
the control spectrum.

As noted in [81] (Palao and Kosloff, 2003), there are important questions:
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(a) on the existence of a solution to a problem of type (2.19), (2.20), (2.3)
taking into account the feasibility of the computed controls in practice and
the scalability with increasing n;

(b) on the complexity of computations for finding such a control.
In [89], pp. 7, 8 (Reich, Ndong, and Koch, 2012), Fig. 1 illustrates the first 40 iter-

ations of the first- and second-order versions of the Krotov method which were
applied to an OCP with terminant being a polynomial of the eighth degree with
respect to {ψj}. The iterative process is sensitive to γu in the regularisation of
type (4.10), (4.11) and also to the specification of Σ(k) in (3.23). In particular,
for γu = 0.133 the first-order Krotov method computes fast improvements in the
first two iterations, but after that the method gives degraded values of F . For
the same γu, 40 iterations of the second-order Krotov method give values of the
terminant equal to only about 0.01. For γu = 0.4, both the first- and second-order
versions of the Krotov method show sufficiently good results: the terminant reaches
nearly 10−5. This indicates the importance of using the second-order Krotov
method together with an appropriate γu for such non-linear terminants.

In [91] (Goerz, Whaley, and Koch, 2015) a multistage optimisation scheme was
discussed where in the first stage a reduction of an OCP to the problem of minimis-
ing the corresponding function F̃ is performed, and after that the solution of the
parametrised problem is taken as an initial approximation for the Krotov method.

Consider control parametrisation using trigonometric functions. In addition to
the Krotov method, the articles [90], [91], and [93] use an approach based, first,
on considering controls in some class of trigonometric functions parametrised by
a certain parameter set, and second, on reducing an OCP to minimisation of the
corresponding function F̃ of these parameters. The CRAB method [41] uses the fol-
lowing parametrisation:

u(t) = uguess(t)
(

1 + S(t)
N∑
j=1

(
aj sin(ωjt) + bj cos(ωjt)

))
, (5.18)

where uguess(t) is some initial approximation. This formula uses the Fourier basis
to reflect the physical nature of the control. The corresponding objective func-
tion is F̃ (aj , bj , ωj | j = 1, . . . , N ). To reduce the dimension of the problem, it
was proposed to consider ωj = 2πj(1 + rj)/T , where rj ∈ [−0.5, 0.5] is a ran-
dom number chosen with the uniform distribution. In [90], [91], and [93], the
Nelder–Mead method was applied to minimise the objective function. The Krotov
method requires differentiability of F , but the approach with reduction of an OCP
to the problem of minimising the corresponding function F̃ by the Nelder–Mead
method does not require one to find the gradient ∇F̃ .

Use of (5.18) narrows the search space in an OCP. However, an appropriate
parametrisation can be useful for obtaining analytical formulae for the control,
which can then be improved using the Krotov method. As noted in [91], in the
case of a non-linear terminant F it is possible to have a situation when the Krotov
method, considered for some given initial approximation, encounters a ‘plateau’
and is insufficiently effective in the sense that even several thousand iterations
can give insufficient results. In this case some pre-optimisation is useful, with
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reduction of the OCP to a corresponding finite-dimensional optimisation followed
by an application of the Nelder–Mead method.

In [67] (Palao, Kosloff, and Koch, 2008) and [76] (Palao, Reich, and Koch,
2013) the Krotov method is used with constraints on the states {ψj(t)} and on the
spectrum of u taken into account. The quantum Fourier transform (WQFT gate)
based on a unitary transformation in the model with three electronic states for the
molecule Rb2 is considered. The constraint on states reflects the fact that the upper
electronic state 1Πg) is forbidden. Optimisation of the control for a unitary transfor-
mation under state constraints is successfully attained using the first-order Krotov
method. Figure 6 in [67] shows that 50 iterations of the method are not sufficient to
avoid populating a forbidden subspace, but 500 iterations of the method do provide
almost zero population in the forbidden subspace throughout the course of time.
State constraints lead to inhomogeneous equations (5.1), and in this connection we
note the article [157] (Ndong, Tal-Ezer, Kosloff, and Koch, 2009) on a Chebychev
propagator for such equations. The effectiveness of the Krotov method (5.5)–(5.11),
which provides improvements of the control with filtration of its spectrum, is illus-
trated in [76].

A modification of the Krotov method was used to estimate the time and gate
complexity of the generation of multi-qubit unitary operators [85] (Koike and Oku-
daira, 2010). For the target operators, the unitary operator WQFT realising the
N -qubit quantum Fourier transform and a certain unitary operator Wf which does
not have any apparent symmetry were considered. The operator WQFT has a poly-
nomial gate complexity, and by construction, Wf is expected to have exponential
complexity. The quality FW is defined by (2.15), where W = WQFT or W = Wf .
The modified Krotov scheme was implemented to obtain solutions with regard to
optimisation of both quality and time for quantum calculations. As a result, the
time complexity for WQFT was found to be linear in the number of qubits, while
the time complexity for Wf was exponential.

The article [99] (Maximov, Tošner, and Nielsen, 2008) describes a method incor-
porating the Maday–Turinici method and regularisation for U(T ) (see (5.12)–(5.17)
with M = κI and κ > 0), and applications of this method to OCPs connected with
nuclear magnetic resonance and dynamic nuclear polarisation. Various values of
the parameters δ, η ∈ [0, 2] were used. For a model of two-spin Hermitian coher-
ence transfer, Fig. 4 in [99] illustrates the results of this method for the same initial
approximation u(0) and different δ, η ∈ [0, 2]. This figure shows how many itera-
tions are needed to produce a change in the cost functional of less than 10−4. Very
similar results can be achieved in 40–50 iterations for certain pairs (δ, η), and in
100–200 iterations for certain other pairs, and so on. For example, for (δ, η) = (1, 0),
which corresponds to a version of the Krotov method, the number of iterations is 60.
For a model of coherence transfer, Fig. 13 in [99] shows that increasing the num-
ber of spins gives a faster increase in the processor time for GRAPE than for the
Maday–Turinici method combined with the regularised terminant. In the case of
five spins, the difference in complexity amounts to a factor of 3.8. However, note
that the effectiveness of the Maday–Turinici method depends on the parameters
λu, δ, η, and also on κ.
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6. Second-order Krotov method for controlling a Bose–Einstein
condensate governed by the Gross–Pitaevskii equation

6.1. Non-linear dynamics and the second-order Krotov method. In the
problem (2.1)–(2.4) the dynamical equation (Schrödinger equation) is linear with
respect to ψ, and the terminant F is defined for a positive-semidefinite operator O.
As noted in Section 4, under these conditions one can use the Krotov method with
the linear function

φ(t, ψ) = 2Re⟨χ(t), ψ⟩,

the Zhu–Rabitz method, and the Maday–Turinici method. In the problem (2.23),
(2.3), (2.30) the dynamical equation (Gross–Pitaevskii equation) is non-linear with
respect to ψ. Therefore, the second-order Krotov method with linear-quadratic
function φ is needed.

In [66] (Sklarz and Tannor, 2002), an important step was taken: the second-order
Krotov method was extended to OCPs with a controlled Gross–Pitaevskii equation.
The article [40] (Jäger, Reich, Goerz, Koch, and Hohenester, 2014) is also devoted
to applying the Krotov method to optimisation of controls for a Bose–Einstein
condensate.

Consider OCPs for the Gross–Pitaevskii equation (2.23) together with the cost
functional J(v) given in (2.30) with λu = 0 and λdu = 0. For each iteration of the
Krotov method, the regularised cost functional J̃(v, v(k)) given in (4.10) is used.
The Pontryagin function is

H(t, q, ψ, u) = 2 Re
〈
q,− i

ℏ
(
K + V ( · , u) + κ|ψ|2

)
ψ

〉
− γu

∥u− u(k)(t)∥2

S(t)
, (6.1)

where q, ψ ∈ H , u ∈ Q, and λu > 0. We give the following definition by analogy
with Definition 3.5 (the formula (3.21)).

Definition 6.1. The function φ(t, ψ) is said to be linear-quadratic if it has the
form

φ(t, ψ) = ⟨χ(t), ψ⟩L2 + ⟨ψ, χ(t)⟩L2

+
1
2
〈
ψ − ψ(k)(t),Σ(t)(ψ − ψ(k)(t))

〉
L2 , (6.2)

where ψ(k) is the solution of the Cauchy problem (2.23) for u = u(k), and χ and Σ
are certain continuous functions.

For the OCP (2.23), (2.3), (2.30) with Q = R, λu = 0, and λdu = 0, consider
the problem of improving the process v(k) = (ψ(k), u(k)) ∈ D according to the
regularised cost functional J̃(v, v(k)) (4.10), (4.11). Based on [40] and [66], we
formulate the following iterative process, where v(k) = (ψ(k), u(k)) and v(k+1) =
(ψ(k+1), u(k+1)) are the input and output admissible processes, respectively, at the
kth iteration of the method.

1. Compute the matrix function Σ(k)(t) according to the formula (3.21) for
some values of α, β < 0 and γ > 0, and find the solution χ(k) of the Cauchy
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problem

dχ(k)(t)
dt

= − i

ℏ
(
K + V [u(k)(t)] + 2κ|ψ(k)(t)|2

)
χ(k)(t) + iκ

(
ψ(k)(t)

)2
χ∗(k)(t),

(6.3)

χ(k)(T ) = − ∂F

∂ψ∗(T )
(ψ(k)(T )). (6.4)

2. Find the control u(k+1) by the formula

u(k+1)(t) = u(k)(t) +
S(t)
γuℏ

Im
[〈
χ(k)(t),

∂V

∂u

∣∣∣∣
u(k+1)(t)

ψ(k+1)(t)
〉

+
1
2

〈
ψ(k+1)(t)− ψ(k)(t),Σ(k)(t)

∂V

∂u

∣∣∣∣
u(k+1)(t)

ψ(k+1)(t)
〉]
,

(6.5)

where the function ψ(k+1) is the solution of the Cauchy problem (2.23) with
control u = u(k+1).

Theorem 6.1. For the OCP (2.23), (2.3), (2.30) with Q = R, λu = 0, and λdu = 0
the method (6.2)–(6.5) using the regularisation (4.10), (4.11) with γu > 0 gives
J(v(k+1)) ⩽ J(v(k)).

Remark 6.1. The formulae (2.24), (2.26)–(2.28) describe essentially different poten-
tials in the Gross–Pitaevskii equation. The potential (2.24) is linear in u. Unlike in
(2.24), the control in the potential (2.28) enters in polynomial form. The formula
(6.5) is obtained from the condition

∂

∂u
H

(
t, χ(k)(t) +

1
2
Σ(k)(t)ψ(k+1)(t), ψ(k+1)(t), u

)
= 0,

where H is defined by (6.1). If V depends linearly on u, then the right-hand side
of (6.5) does not contain u(k+1)(t), that is, u(k+1) is easily computed using the
formula (6.5). If V depends non-linearly on u(k+1), then the complexity of (6.5) is
completely different from that in the linear case.

In [66] it was noted that the function Σ(k) can either be computed as the solu-
tion of a special Cauchy problem (by analogy with [58]) or be specified in accor-
dance with (3.23). Computations involving the Krotov method with the regular-
isation (4.10), (4.11) were carried out. In [40] the function Σ(k) is determined
by (3.23). In [97], p. 34, (Jäger, 2015) it is noted that the Krotov method with
linear-quadratic φ(k) depends principally on the values of α, β, and γ in (3.23). As
discussed in [66], p. 5, one can start from Σ(0) ≡ 0, decreasing α and β subsequently
and increasing γ. If (6.5) does not provide an improvement of the process v(k), then
we have to adjust α, β, and γ and repeat the computations.

In [40] and other publications, the regularisation (4.10), (4.11) with parameter γu
is an important tool. In [97], p. 86, this parameter is called the ‘step’ in the context
of the Krotov method.
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For (2.25), the transversality condition (6.4) has the form

χ(k)(T ) = −Reψ(k)(T ) +
1
2
|ψ(k)(T )|⟨cos θ(k)(T )⟩

(
ψ(k)(T )
ψ∗(k)(T )

+ 3
)

(see [66]). The transversality condition for the terminant Fψtarget(ψ(T )) (2.5) is

χ(k)(T ) = ⟨ψtarget, ψ
(k)(T )⟩ψtarget. (6.6)

In [40] the terminant (2.5) was considered, and the conjugate system was given for
the function p(t) = iχ(t). The condition (6.6) has the form

p(k)(T ) = i⟨ψtarget, ψ
(k)(T )⟩ψtarget.

For OCPs where V depends on u non-linearly, the following simplifications for
(6.5) were proposed in [40]:

(a) consider Σ(k) ≡ 0 (in [40], p. 8, there is a description of how to solve the
equation derived from (6.5) for such a variant of the Krotov method);

(b) use (∂V/∂u)
∣∣
u(k)(t)

instead of (∂V/∂u)
∣∣
u(k+1)(t)

.
Taking both simplifications into account, instead of (6.5) consider the formula

u(k+1)(t) ≈ u(k)(t) +
S(t)
γuℏ

Im
〈
χ(k)(t),

∂V

∂u

∣∣∣∣
u(k)(t)

ψ(k+1)(t)
〉
. (6.7)

This formula was then applied, with the remark that for sufficiently small val-
ues of the parameter κ > 0 in the Gross–Pitaevskii equation the control u varies
moderately from one iteration to another. Judging from the computational results
described in [40], the Krotov method in the simplified version with (6.7) was suc-
cessful. The non-linearity of V in u complicates the application of the method to
the control of Bose–Einstein condensates.

6.2. Krotov and GRAPE methods in numerical experiments for control-
ling Bose–Einstein condensates. We briefly explain the GRAPE method [39]
(Khaneja, Reiss, Kehlet, Schulte-Herbrüggen, and Glaser, 2005), which is often
used to solve OCPs for quantum systems. In this method:

1) the control u : [0, T ] 7→ R is represented as a piecewise constant function

u(t) = cj , t ∈ [tj , tj+1), tj = j
T

N
, j = 0, . . . , N, (6.8)

where cj ∈ R, the control is c = [c0, . . . , cN ], and ∆t = T/N is the discreti-
sation step;

2) the OCP is reformulated as the problem of minimising some function F̃ (c).
Then gradient optimisation methods can be used. GRAPE is also used [158], [40]

in combination with the BFGS (Broyden–Fletcher–Goldfarb–Shanno) method.
For the OCP with linear potential (2.24) and the condition (2.25), the article [66]

(Sklarz and Tannor, 2002) shows the results of the second-order Krotov method,
which uses (3.23) to compute the function Σ(k). As shown in Fig. 3 in [66], the
solution was found in almost 30 iterations with successive improvements. Figure 4
in [66] represents the phase θ(T ) relating to the optimised control.
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In [40] (Jäger, Reich, Goerz, Koch, and Hohenester, 2014) two OCPs were con-
sidered for the Gross–Pitaevskii equation for Bose–Einstein condensates. In the
first OCP the goal was to realise a splitting of the Bose–Einstein condensate at
time T in such a way that the wavefunction at time T should correspond to the
ground state of the two-well potential. The second OCP is for shaking the con-
densate, where, for the anharmonic single-well potential V (x − u(t)), the goal is
to move the condensate from the ground state V , which is the state of the system
at time t = 0, to the first excited state. The OCP for splitting a Bose–Einstein
condensate was solved independently by:

(a) applying the Krotov method in its simplified version using (6.7);
(b) applying the GRAPE-BFGS method with H1-regularisation (2.29).
Figure 1 (b, c) in [40] presents the density n(x, t) = |ψ(x, t)|2 in the ‘space–time’

plane, and shows that splitting of the Bose–Einstein condensate into two parts
is achieved. Figure 2 in [40] shows that the Krotov method using (6.7) gives
successive improvements whose effectiveness depends on the parameter κ in the
Gross–Pitaevskii equation. For κ = π/2 the Krotov method using (6.7) is faster
than GRAPE-BFGS-H1 in terms of the number of Cauchy problems solved: with
use of the Krotov method a value of the terminant F < 10−4 was obtained, and the
complexity equates to solving 100 Cauchy problems. As seen in Fig. 4 in [40], for
the OCP with shaking of the Bose–Einstein condensate, the situation is as follows:

(a) solving this OCP turned out to be significantly more difficult (hundreds of
Cauchy problems) than solving the OCP for splitting the condensate;

(b) the Krotov method using (6.7) for the problem of shaking a Bose–Einstein
condensate yields consistent improvements, and for κ = 2π it shows much
better efficiency than GRAPE-BFGS-H1.

Thus, the first-order Krotov method using (6.7) in the above OCP can be suc-
cessful for some values of the parameters κ and γu.

7. Conclusions

Starting from its development in the late 1970s, quantum control has become
a large interdisciplinary area of great importance for science and technology now
and in the future. Quantum control exploits methods from diverse areas of math-
ematics (for example, differential equations, optimal control, functional analysis,
group theory, differential geometry, finite-dimensional optimisation, algebra), and
has multiple applications to physics and chemistry (control of molecular dynamics,
nuclear magnetic resonance, laser chemistry, and so on), quantum computing, and
information theory [3]–[23].

The formulation of a control problem for a quantum system involves determining
a suitable mathematical model of the controlled system and a cost functional subject
to maximisation or minimisation. A mathematical model should effectively describe
the controlled dynamics of a physical quantum system. The modelling should
involve description of the space of quantum states of the system and their controlled
evolution equation, which can be the Schrödinger equation or the Liouville–von
Neumann equation for a closed quantum system with a dynamics that is linear
with respect to the quantum state, or the non-linear Gross–Pitaevskii equation for
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the wavefunction of a Bose–Einstein condensate, a master equation with a control
for an open quantum system.

The cost functional to be minimised includes a terminant F which represents
the control goal, along with additional integral terms used to set constraints on the
control or on the admissible states, or to improve the quality of the optimisation
methods. The terminant for the problem of maximising the mean target observ-
able O of the quantum system at a finite moment of time T has the form

F = −⟨ψ(T ), Oψ(T )⟩,

the terminant for the problem of minimising the distance to the target state has
the form

F = ∥ψ(T )− ψtarget∥2,

and so on. The cost functional can include integral terms

λu

∫ T

0

∥u(t)∥2

S(t)
dt and λψ

∫ T

0

⟨ψ(t), D(t)ψ(t)⟩ dt

to restrict the control and the quantum states, respectively. Along with the integral
constraint on u, a pointwise constraint u(t) ∈ Q ⊂ Rm can be used. Moreover, one
can consider the (in)equality∫ T

0

∥u(t)∥2 dt {=,⩽} E.

The final moment of time T is either fixed or free.
Success in finding a quantum optimal control depends on both the skill with

which the optimisation model is formulated and the skill with which the optimi-
sation methods are applied. For solving OCPs for quantum systems the following
optimisation methods are used:

(a) methods which operate in the function space of the control, in particu-
lar, methods based on the Pontryagin maximum principle and the Krotov
method;

(b) methods based on reducing an OCP to a finite-dimensional optimisation
problem via some parametrisation of the control (for example, GRAPE uses
piecewise constant functions, and CRAB uses trigonometric functions);

(c) hybrid methods (for example, a combination of reduction to a finite-dimen-
sional optimisation problem and the Krotov method).

The efficiency of the solution of an OCP depends, in particular, on the quality
of the numerical solution of ODEs and PDEs.

The Krotov method has been widely used for quantum control. This method
has been applied to the control of molecular dynamics, the realisation of quantum
gates, the control of Bose–Einstein condensates, the control of nuclear magnetic
resonance, and so on.

The efficiency of the Krotov method depends on the specifics of an OCP, on
how the improving function φ(k) and the regularisers are defined, and also on the
adjustments of the method’s parameters. For example, if the potential V depends
non-linearly on u(t) in the Gross–Pitaevskii equation (see Section 6), then use of
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the Krotov method is more difficult than in the linear case. The function φ(k) can
be linear or linear-quadratic with respect to the quantum state. If the function Σ(k)

is defined using (3.23), then the parameters α, β < 0 and γ > 0 must be adjusted
for improvement of the control.

The Krotov method is one of the non-local improvement methods, which, in con-
trast to local improvement methods (for example, steepest descent method, condi-
tional gradient method, and so on), are not limited to small control variations and
do not contain a costly procedure for finding the best parametrised variation. In
[64] and [65] (Tannor, Kazakov, Orlov, and Somlói, early 1990s), the Krotov method
with a linear function φ(k) was applied to the OCP (2.1)–(2.4) with λψ = 0, and it
was shown that this gives macro-steps for control improvements, and also that the
Krotov method can be faster than the steepest-descent method. The Ho–Rabitz
TBQCP method [49] can be faster than the first-order Krotov method.

In a number of publications, including [66], [89], and [91], the Krotov method
was used with a linear-quadratic function φ(k) with Σ(k) defined by (3.23). At
the same time, in [58] (Krotov and Feldman, 1983) the function Σ(k) was defined
as the solution of some special Cauchy problem (3.28), (3.29). In [66] (Sklarz
and Tannor), both methods for determining Σ(k) were mentioned, although their
computations used the method involving (3.23). As was noted in [61], for an OCP
outside of quantum control the method with (3.28), (3.29) is more cost expensive
than the version with (3.23), but the latter variant can be less effective. Thus, for
quantum OCPs a comparison of the efficiency of the two methods is important.

Closed quantum systems describe real quantum systems only approximately,
because in practice there is often an unavoidable influence of the external environ-
ment. The Krotov method has also been successfully applied to OCPs for open
quantum systems ([22], [62], [70], [79], [92]–[96], [104]). This area of research is of
great practical interest and must be investigated separately elsewhere.
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[65] J. Somlói, V.A. Kazakov, and D. J. Tannor, “Controlled dissociation of I2 via
optical transitions between the X and B electronic states”, Chem. Phys. 172:1
(1993), 85–98.

[66] S. E. Sklarz and D. J. Tannor, “Loading a Bose–Einstein condensate onto
an optical lattice: an application of optimal control theory to the nonlinear
Schrödinger equation”, Phys. Rev. A 66:5 (2002), 053619, 9 pp.

[67] J. P. Palao, R. Kosloff, and C. P. Koch, “Protecting coherence in optimal control
theory: state-dependent constraint approach”, Phys. Rev. A 77:6 (2008), 063412,
11 pp.
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