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BRIEF COMMUNICATIONS

Dirichlet problem for the Yang–Mills equations

A. G. Sergeev and A. B. Sukhov

This paper was motivated by Donaldson’s paper [2] on the Yang–Mills equa-
tions on complex manifolds. He proved there the existence of a unique solution
of the Dirichlet problem for Yang–Mills fields on a Hermitian vector bundle over
a Kähler manifold with smooth boundary. One consequence of this result is a the-
orem on extending CR-structures on a Hermitian vector bundle over the boundary
of a strictly pseudoconvex domain with smooth boundary in the interior of the
domain, to a connection associated with a Hermitian Yang–Mills metric. In [2]
this was proved in dimension 2. We show that Donaldson’s result holds in each
dimension (as was conjectured in [2]).

Let E be a holomorphic vector bundle over a complex manifold Z and let H be
a fibrewise Hermitian metric on E. It is known that there exists a unique unitary
connection on E that is compatible with the complex structure. Let FH denote its
curvature. Fix a local holomorphic trivialization of E by sections (sj). In it H is
given by a Hermitian matrix with entries Hij = (si, sj)H . Then the connection has
the matrix H−1∂H, and its curvature is given by

FH = ∂(H−1∂H) = H−1(∂∂H − ∂HH−1∂H).

Let Ωp,q(Z) denote the space of smooth (p, q)-forms on Z. Assume in addition
that Z is endowed with a Kähler metric; let ω be its Kähler form. We define
a contraction Λ: Ω1,1(Z) → Ω0,0(Z) by Λ(θ) = (ω, θ), where (ω, θ) denotes the
(pointwise) scalar product on Ω1,1(Z).

By definition the Hermitian Yang–Mills tensor of the metric H on E is iΛFH ,
and the corresponding Yang–Mills equation has the form

iΛFH = 0. (1)

Its solutions are called Hermitian Yang–Mills metrics. Equation (1) is a non-linear
partial differential equation of the second order with principal part equal to the
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Laplacian ∆. More precisely, on a Kähler manifold the Laplacian is given by ∆ =
2∂∗∂ = 2iΛ∂∂, so that we can write (1) as

HiΛ∂(H−1∂H) =
1
2
∆H − iΛ∂HH−1∂H = 0.

In this note we consider the case when Z is the interior of a compact Kähler
manifold Z with smooth boundary, and the Kähler form ω on Z extends to a smooth
non-degenerate form on Z. We also assume that the holomorphic bundle E extends
smoothly to the boundary. It was proved in [2] that if f is a Hermitian metric on
the restriction of E to ∂Z, then there exists a unique metric H on E such that
H = f over ∂Z and (1) holds on Z.

This can be seen as a solution of the Dirichlet problem for the Yang–Mills
equation (1). As a consequence, we have a theorem on extension of CR-structures.
(We refer the reader to [1] for a thorough presentation of the geometry of
CR-structures.)

Let J denote the complex structure on Z which is smooth up to the boundary ∂Z.
Let V = T (∂Z) ∩ JT (∂Z) be the complex tangent bundle over ∂Z and let ∂b

be the tangential Cauchy–Riemann operator induced on ∂Z by the structure J .
A CR-structure on E over ∂Z is given by an operator

∂
E

b : Γ(E) → Γ(E ⊗C V 0,1)

such that ∂
E

b (fs) = ∂b(f)s + f∂
E

b (s), where s is a smooth section of E and f is
a smooth function on ∂Z.

The following theorem is our main result here.

Theorem 1. The CR-structure ∂
E

b over ∂Z extends to a connection on the vector
bundle E over Z associated with a Hermitian Yang–Mills metric if and only if the
operator ∂

E

b is holomorphically trivial, which means that there exists a trivialization
of E in which ∂

E

b is a sum of several copies of ∂b .

As in [2], Theorem 1 is a consequence of the fact that the Dirichlet problem for
the Yang–Mills equation (1) is solvable. The proof of this fact in [2] was based
on a version of the Oka–Grauert principle for manifolds with boundary that takes
into account the smoothness up to the boundary. The indicated version was estab-
lished in [2] for dimension 2, but here we use the proof in [3] of this version of the
Oka–Grauert principle which is valid in any dimension (see also [4]).
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