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Selecting a dense weakly lacunary subsystem
in a bounded orthonormal system

B.S. Kashin and I. V. Limonova

Let ® = {¢x}72, be an orthonormal system of functions (0.n.s.), on a probability
space (X, p). It is called a p-lacunary system (p > 2) or an S),-system if for some

constant K the following inequality holds for any polynomial P = Zszl QK PK:
1P|, < K|P||L, (1)

(see [1] and [2] for details). The following result was stated in [1] with a reference
to Banach [3].

Theorem A. Ifp > 2 and an o.n.s. ® = {@x}72, satisfies
lerlle, <C, k=1,2,..., (2)

then there exists an infinite subset A of the natural numbers such that {og}ren is
an Sp-system.

Analogues of Theorem A for an o.n.s. whose elements are uniformly bounded in
the norm of an Orlicz space Ly, where the N-function ¥(¢) increases slower than
any power [¢|P with p > 2 as |t| — oo, are due to Balykbaev [4], [5]. In particular,
it was shown in [5] that the analogue of Theorem A holds for the Orlicz spaces Ly,
with log®

dlt) = 28 I
og® (e +1/[t])

The natural question of the maximum density of Sp-subsystems in a given o.n.s.
(that is, of the density of the sequence A in Theorem A) proved to be quite com-
plicated. Even for the trigonometric system it had remained open until the break-
through paper [6], where Bourgain established the following result.

a > 0. (3)

Theorem B. Ifp > 2 and ® = {p;}Y_,| is an o.n.s. such that
lorll., < M, k=1,2,...,N, (4)

then there exists a set A C (N) such that |A| = N?/P and (1) holds for K = K (M, p)
for any polynomial P =3, _\ ar@k.

(Here and below, (N) :={1,2,..., N} and |A] is the cardinality of a finite set A.
We also set @5 = {pr}rea.) Note that for quantitative results like Theorem B,
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some conditions in addition to the necessary condition (2) must be imposed on the
original system ®, such as (4) (see [6] for details).

Let A C (N) and let Sy be the operator acting by Sa({ax frea) = D _pcp arr ().
It is clear that for the set A in Theorem B we have

1Sa: 19(A) — LP(X)|| < |A[Y2 - K (M, p). ()

In this paper we establish analogues of (5) for Orlicz spaces Ly, (see (3)) in the
case of an arbitrary o.n.s. with uniformly bounded elements. Of course, in this case
the guaranteed density of A is greater than in Theorem B. The proof of our results
here is based on a modification of Bourgain’s method in [6]. As in that paper, we
average over all subsystems ® with given cardinality. However, for the Orlicz space
corresponding to the function (3) one cannot expect that a random subsystem
with cardinality > N/(log N)? (where 8 is an arbitrarily large constant) will be
1q-lacunary. Thus, it is natural to search for subsystems ®, with an analogue of
the property (5), which is weaker than being p-lacunary.

Let N € Nand 6 € (0,1), and let {£(w)}Y; be a set of independent random
variables (selectors) on a probability space (2,v) such that &(w) = 0 or 1 and
E¢;, =dfor 1 <i< N. Alsolet Aw,N) ={i € (N): &(w) =1} for w € Q.

Theorem 1. Fiz o > 0 and p > 0 and let ® = {or}_, be an arbitrary o.n.s.
with the property (4). Then with probability greater than 1 — N—10 the random set
A = A(w, N) generated by the system of random variables {&(w)}X., with E¢; =

d = [log(N +3)] 77 for 1 < i < N satisfies the inequality

1Sa: 1°(8) = Ly, (X)]| < K(M, a, p)| Al (log(N +3)]/>#/4 4 1), (6)

Corollary 1. For § = [log(N + 3)]72* the operator Sy - |A|~/? is bounded from
[°(A) to Ly, (X) with probability close to 1.

For an o.n.s. ® = {¢,}_, consider the operator S} taking the majorant of the
partial sums, which acts on {ax} by the formula

Zaksﬁk
k=1

It is well known (see [2]) that a system ® being lacunary is useful in the analysis of
convergence almost everywhere of orthogonal series, because this property enables
one to improve estimates for the norm of S3. The following theorem is proved using
results close to Theorem 1.

Se({ar}) (@

w)

Theorem 2. For p > 4 and an arbitrary o.n.s. ® = {¢p}2_, with the property (4),
there exists a set A C (N) with cardinality |A| > N[log(N + 3)]~? such that

155, 2 1°(A) — LX(X)[| < O(M, p)|A'/2. (7)

Remark 1. For p > 4 the estimate (7) holds for most subsets of (V) with cardinality
of order Nlog(N + 3)]"

Remark 2. For p < 2 the assertion of Theorem 2 does not hold.
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