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Derivations on Murray–von Neumann algebras

A. F. Ber, K. K. Kudaybergenov, and F.A. Sykochev

For a given algebra A , a linear operator D : A → A is called a derivation if D
satisfies the Leibniz rule, that is, D(xy) = D(x)y + xD(y) for all x, y ∈ A . Each
element a ∈ A implements a derivation ad(a) on A defined by ad(a)(x) = [a, x] =
ax− xa, x ∈ A . Such derivations are said to be inner.

Let H be a Hilbert space, let B(H) be the ∗-algebra of all bounded linear oper-
ators on H, and let M be a von Neumann algebra, that is, a weakly closed unital
∗-subalgebra of B(H) (for details see [11]).

A densely defined closed linear operator x : dom(x) → H (here the domain
dom(x) of x is a linear subspace of H) is said to be affiliated with M if yx ⊂ xy
for all y in the commutant M ′ of the algebra M .

Denote the set of all projections in M by P (M ). Recall that two projections
e, f ∈ P (M ) are said to be equivalent if there exists an element u ∈ M such that
u∗u = e and uu∗ = f . A projection p ∈ M is said to be finite if the conditions
q ⩽ p and q ∼ p imply that q = p. A linear operator x affiliated with M is said
to be measurable with respect to M if χ(λ,+∞)(|x|) is a finite projection for some
λ > 0. (Here χ(λ,+∞)(|x|) is the spectral projection of |x| corresponding to the
interval (λ, +∞)). We denote the set of all measurable operators by S(M ).

Let x, y ∈ S(M ). It is well known that x + y and xy are densely-defined and
preclosed operators. Moreover, the closures of x + y, xy, and x∗ are also in S(M ).
The closures of x + y and xy are called the strong sum and strong product, respec-
tively. When equipped with these operations, S(M ) becomes a unital ∗-algebra
over C (see [12] and [15]). It is clear that M is a ∗-subalgebra of S(M ). In the case
when M is a finite von Neumann algebra, S(M ) is referred to as the Murray-von
Neumann algebra associated with M [9].

The hypothesis that all derivations of the algebra S(M ) associated with a von
Neumann algebra M of type II are inner was first conjectured by Ayupov (see [2]
and [3]). As Kadison and Liu noted in [10], pp. 210–211 (see also [9], p. 2090), for
type II1 algebras “the complete cohomological result would say that each derivation
of S(M ) is inner. . . . The authors strongly feel that this is true; but it is still open”.
In this paper we announce the complete solution of this cohomological problem for
type II1 von Neumann algebras M .

Theorem 1. Let M be a type II1 von Neumann algebra, and let S(M ) be the
Murray-von Neumann algebra of all operators affiliated with M . Then any deriva-
tion of S(M ) is inner.

In fact, we prove that any derivation of S(M ) is continuous in the topology
of convergence in measure on S(M ), and then we use known results from [4], [5],
and [7] giving us that any derivation of S(M ) which is continuous in this topology
is necessarily inner.
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When M is an arbitrary von Neumann algebra, Sankaran [14] and Yeadon [16]
introduced the algebra LS(M ) of locally measurable operators affiliated with M ,
with the operations of strong sum and strong multiplication. An operator x affil-
iated with M is said to be locally measurable (with respect to M ) if there is
a sequence {zn}∞n=0 ⊂ Z(M ) of projections in the centre Z(M ) of M such that
zn ↑ 1, zn(H) ⊂ dom(x), and xzn ∈ S(M ) for all n ⩾ 0.

Using Theorem 1 and results from [1], [6], and [7], we obtain a necessary and
sufficient condition for the existence of a non-inner derivation of the algebras S(M )
and LS(M ). This result provides a complete answer to the problem posed by
Ayupov in [2] and an adaptation of the celebrated Kadison–Sakai theorem [8], [13]
to algebras of unbounded operators.

Corollary 2. Let M be an arbitrary von Neumann algebra. Then the following
assertions are equivalent:

(a) any derivation of LS(M ) (of S(M )) is inner;
(b) a type Ifin direct summand of M is atomic.

In other words, the algebra S(M ) (or LS(M )) admits non-inner derivations if
and only if the type Ifin direct summand of M is non-trivial and non-atomic.

The authors thank J. Huang, G. Levitina, and D. Zanin for a detailed check of
the results presented above and for useful comments.
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