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Circle problem and the spectrum of
the Laplace operator on closed 2-manifolds

D. A. Popov

Abstract. In this survey the circle problem is treated in the broad sense,
as the problem of the asymptotic properties of the quantity P(xz), the
remainder term in the circle problem. A survey of recent results in this
direction is presented. The main focus is on the behaviour of P(z) on
short intervals. Several conjectures on the local behaviour of P(x) which
lead to a solution of the circle problem are presented. A strong universality
conjecture is stated which links the behaviour of P(z) with the behaviour
of the second term in Weyl’s formula for the Laplace operator on a closed
Riemannian 2-manifold with integrable geodesic flow.
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1. Introduction

The (Gauss) circle problem is one of the most well-known problems in analytic
number theory. Here is its statement.
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Let R(x) be the number of integer points in the disc with radius \/z, and let P(x)
be defined by
R(z) = mx + P(x). (L.1)

The circle problem is to establish the estimate
P(z) = O(z'/**%) Ve>0 (z — 00). (1.2)

Since

R(z) = Z r(n), (1.3)

n<e

where r(n) is the number of representations of n as a sum of squares of two inte-
gers, the circle problem belongs to the list of problems on the behaviour of sums
of arithmetic functions. Another, no less well-known, problem in this list is the
(Dirichlet) divisor problem, which is to establish the estimate

A(z) = O(z/*), (1.4)
where A(x) is defined by
Y d(n) = z(logz + 2y — 1) + A(), (1.5)

with d(n) the number of divisors of n.
The circle problem, the divisor problem, and the problem of the asymptotic
behaviour of the quantity E(T") defined by

[ G)

where ((-) is the Riemann zeta function, are test problems verifying whether
methods for estimating trigonometric sums are efficient. These methods lead to
non-trivial estimates of the form

2
T

dt = T'log o + 2y -1)T+ E(T), (1.6)
7T

Pa) = 0(a"+), A(x) = 0@"*), B(T)=01")  (0< %) (1.7)
The history of the gradual improvement of these estimates can be learned from our
references. In §3.1 we present the most recent results in this direction.

We note that after reducing the above three problems to estimates for trigono-
metric sums, the results obtained in one of them can easily be carried over to the
other two.

As in a number of recent papers, this survey treats the circle problem in the
broad sense, as the problem of the asymptotic properties of P(z).

A survey of new results on the properties of A(z) and E(T) was presented in [1],
where the focus was on the moments of these quantities.

One of our aims here is to present some relatively new results on the behaviour
of P(x) on short intervals (we say that an interval I(T) C [T,2T] is short if its
length |I(T)| satisfies |I(T)| < T?*%, A < 1) and to state a number of conjectures
on the local behaviour of P(z). Among these are, for instance, Jutila’s conjecture



Circle problem and the spectrum of the Laplace operator 911

(see (4.32)) and the following result (see the end of §4). Suppose that r(n) # 0
and |P(n)] < Cn'/*, and let 2 = n be a local maximum point of |P(x)|. If
|P(x)| < B|P(n)| (where B < 1) for |z — n| < Cn'/?7¢, then |P(n)| = O(n!/**).
Note that our assumption about the behaviour of P(x) means that, in a neigh-
bourhood of a maximum, P(z) behaves like a random walk starting from P(n) at
time n.

Among P(x), A(z), and E(T) the quantity P(z) is distinguished by its possible
interpretation as the second term in Weyl’s formula for the Laplace operator on
a flat torus. This lets us consider the properties of P(x) in the context of the
theory of quantum chaos [2], [3]. Some of the central objects under investigation
in this theory are the statistical properties of the discrete spectra {\; > 0} of the
Laplace operator on closed Riemannian 2-manifolds. The conjecture of universality
stated in the theory of quantum chaos asserts that the statistical properties of the
spectra {\;} on short intervals (z < \; < 4+ O(x'/?¢) depend only on whether
the geodesic flow is integrable; if it is, then the eigenvalues on a short interval must
have a Poisson distribution. Note that even for a flat torus, when \; = e + m?
(e,m € Z), this has not yet been proved. A stronger conjecture can also be made:
if the geodesic flow is integrable, then on short intervals the second term in Weyl’s
formula behaves like P(z). In this case the results in §§3-6 become conjectures
about the behaviour of the second term in Weyl’s formula.

At the end of §7 we briefly mention the corresponding questions in the case of
a non-integrable geodesic flow. In this case, the role of the circle problem (in the uni-
versality conjecture) can presumably be taken on by the problem of the behaviour
of the second term in Weyl’s formula for the Riemann surface I'\ H, where H is the
upper half-plane with the Poincaré metric and T" is the strictly hyperbolic group
corresponding to a generic point in the Teichmiiller space.

We devote §§2-6 to the properties of the quantity P(x), giving no proofs but
only presenting references to the corresponding works. While the results there have
been stated for E(T') or A(z), we present only the corresponding result for P(x).
The connections between P(z) and the spectral properties of the Laplace operator
are discussed in §7.

Throughout what follows, € > 0 is a quantity which can be taken to be arbitrarily
small, and C' denotes absolute constants whose values can be specified.

2. Starting formulae
By Definition (1.1)
P(z) = Z r(n) —nx, (2.1)

o<nge

where r(n) is the number of representations of n as a sum of two squares.
Thus, P(x) is a piecewise linear function with discontinuities of the first kind for
reK={n2>0, r(n) #0}:

P(ng) — P(ng — 0) =7(ng), ne € K.

PO (z) = —m, xz ¢ K. 22)
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The following two formulae were proved in [4] and [5]:
=-8 Z VT —32)+0(1), (2.3)
ISy/=/2

) ) )

d<\/z

Here 1 1
w(l‘):x—[x]—iz{l‘}—g-

Although the best known estimates of the form (1.7) have been obtained using (2.3)
and (2.4), the truncated Voronoi formula is better suited for an analysis of the
properties of P(x).

For x ¢ K Voronoi’s formula has the form

P(z)=2'* )" @ J1 (27 ), (2.5)

= Vi
where J,(-) is the Bessel function. Vornoi [6] discovered the formula (2.5) in 1904,
and it was proved by Hardy [7] in 1915. A proof of (2.5) strictly in the framework

of real analysis was given in [8] (where it was called Hardy’s identity).
The regularized Voronoi formula

o0 oo

> rnhaln) =7 Y- r(m) [ gte)em it 26)

n=0 n=0

which holds for each smooth, sufficiently rapidly decaying function g(-), follows
from the two-dimensional Poisson formula. Formally, we obtain (2.5) from (2.6) by
taking

n <,

1,
9(n) = {07 n> .

The generating Dirichlet series for r(n) has the form

> 1) ag(o)bis ). whese Lis ) = 27)

and x4(-) is the primitive Dirichlet character modulo 4. We obtain the truncated
Voronoi formula

P(z) = Py(z) + AN P(z), (2.8)
21/4 (i T
Py(z) = R Z E—Q cos (27T Jjx + 4>, (2.9)
1ISSN

x1/2+s
AnpPla) < o) (N + T2, (2.10)
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from (2.7), using Perron’s formula [9]. The estimate (2.10) can be refined:

L1/2 )
AnP(z) < C{7(N)log N + —7(x)logx |. 2.11
wP(a) < O (r()tog N + £ vl o )
Here we have used that
log
r(n) <7(n), where r(x):eXp<logng)’ x > ny, (2.12)

and
log,, x = log . ..log x.
——
k times

The precise formula for
Py(x) = / P(t)dt (2.13)
0

is called Landau’s formula (see [8]) and has the form
T j -

All the results below (with the exception of the ones in §3.1) were obtained using
the truncated Voronoi formula and Landau’s formula.

3. Classical results

3.1. Estimates of the form P(x) = O(z?%¢). The conjectural estimate (1.2)
is the content of the circle problem and has not yet been proved.

For an appropriate choice of N, the formulae (2.8)—(2.10) yield (1.7) with # =1/3.
All the estimates with § < 1/3 have been derived from non-trivial estimates of
trigonometric sums (see [5]). By 1942, developments of methods of van der Corput
had led to proofs of (1.7) for # = 13/40 = 0.3250. Further progress was connected
with a new method proposed in [10] for estimating trigonometric sums. With its
use, the estimate (1.7) was established in [11] for

7
§= - =0318181.... 3.1
59 (3.1)

The Bombieri-Iwaniec method produces the best known results for sums of the
form ) <n<an ¥(f(n)). Its applications to the problem of estimating the number
of integer points inside a contour are the subject of the book [12]. In [13] the
estimate (1.7) was proved for

23
0 =_— =0.3151... 3.2
= , (32)
and in [14] it was proved for
131
= =0.3149. (3.3)

416
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It was proposed in [15] to modify one step in the application of the complicated
Bombieri-Iwaniec method, thus enabling the authors to prove (1.7) for

517
0= {55 = 031371 (3.4)

So far, this is the best result. On the other hand, it was mentioned in [13] that
6 =5/16 = 0.3125 marks perhaps a bound below which the method will not work.

3.2. Q-theorems. ()-theorems answer, in particular, the question of how accurate
the conjectural estimate (1.2) can be. Roughly speaking, they show that we cannot
take e = 0 in (1.2).

Recall that the relation P(x) = Q(f(z)) means that there exists a sequence
x — oo such that |P(xzg)| > Cf(zx) (k = ko). The first Q-theorems were proved
by Hardy in 1916, and then subsequently improved many times (see [16] and [17]).
It was shown in [18] that

P(z) = Q(m1/4(log z) /4 (log, x)3(21/3_1)/4(10g3 x)_5/8). (3.5)

This is apparently the best result obtained so far.

3.3. Moments. We will use the following notation for moments:

T T
mk(T):/O P*(z) dz, mk(T):/O |P(x)[* da. (3.6)

It was shown in [19] that

mp(T) = O(THTF/4+e) for k< Ay, Ag= %5. (3.7)

This result uses an estimate obtained in [19] for the number of large deviations.
Let
1< <ae<---<axrp<T,
vi—a| >V (i#7), P>V (V=T)
Then
R < CTe(TV =3 4+ T/4y—12), (3.8)
For k > 35/4 it was shown in [19] that

Wk(T) — O(T(35k+38)/108+5). (39)

By another method, based on the existence of a distribution function for P(z)
(see §5), it was proved in [20] that the limits

lim 7~V () (k<9),
Toee (3.10)
lim 7~ Y1) (k=1,3,5,7,9)

T—o00
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exist. In contrast to [19], the estimates (1.7) with 6 = 7/22 (see (3.1)) were used,
leading to a proof of (3.10) for my(T) with k < Ag =28/3=19.33....

We note that if (3.7) holds for all k, then (1.2) also holds.

For k < 9 formulae of the form

mi(T) = A TR L O(T /A0 6, >0, (3.11)
have also been obtained. It was shown in [21] that
ma(T) = AsT3/% + O(T(log T)?), (3.12)
1 X r%(n)
where  A; = o ;W =1.6939.... .

This result was slightly improved in [22|, where it was shown that we can replace
O(T(log T)?) by O(T (log T)?/? log, T') on the right-hand side of (3.12). For k = 3,4
the formula (3.11) was obtained in [23], and for & = 5,6,7, 8,9 it was proved in [24].

4. Behaviour of P(x) on short intervals

Everywhere below we assume that x € [T, 2T).

4.1. Local moments. We start by considering the local moments

T+H T+H
my(H,T) = / P*(z)dz, m(H,T) = / |P(z)|*de, H<T. (4.1)
T T
It was proved in [25] that
. mk(Ha T) _ k _
TIEZI;OW = 1+Z Ak, k—2,374, (42)
provided that
T2 100 T T3/4+e
Togﬂo, k=2 o —— =0, k=34 (4.3)
as T'— oo. Conditions on k and H = H(T) ensuring that the limit
. mk (Hv T)
A R (44)

exists were considered in [26] under the assumption that |P(z)| < z°*t¢. Tt was
shown there that the limit (4.4) exists if H > T* and

k< min{ll, 85 },

43 -1
) b ) (4.5)
where A\ > 3 + maX{O, (k—2) (ﬁ - 4) }
If k is an odd integer, then the same conditions (4.5) ensure that the limit
H,T
lim M (4.6)

T—o0 HTk/4
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exists. Setting § = 131/416 (see (3.3)), we deduce that the limit (4.4) exists for
k < 9.7, and the limit (4.6) exists for k = 1,3,5,7,9, provided that

1 27
H>T" = -2)— 4,
> T7, A > 5 + maX{O, (k )416}’ (4.7)
and in particular, A > 0.5649 (k = 3) and A > 0.6298 (k = 4). In addition, it was
shown in [26] that if (1.2) holds, then the limit (4.4) exists for all £ > 0, and the
limit (4.6) exists for all odd k. It was proved in [27] that for some & > 0 we have

ms(H,T) = Ag[(T+H)7/4 —T7/4](1 +O(Tﬂs)) (T7/12+5 <H

ma(H,T) = A[(T + H)* = T?|(1 + O(T™°)) (T34 < B
This is much weaker than (4.7), but estimates of the form P(x) = O(x%+¢) were
not used in establishing this result. In [28] the problem of estimating |P(n)| for

T—H < n < T+ H was considered under the assumption that estimates are known
for the quantity

1 n+H
F, HT)=— P(x)|?P dx. 4.
s 1) = 5 [P ds (19)
It was shown there that
_ 1/(p+1
|P(n)| < C,(HF(n)E,) "™, (4.10)
provided that
F, < Cp(H7(n))” and |P(n)| < CHF(n). (4.11)
In particular, if for H < Cn®*T¢ we have
F, < Cn, (4.12)
then
|P(n)| < Cnlath)/o+e, (4.13)

For o = 1/2 this leads to the estimate |P(n)| < Cn3/1*¢  which is better than all
the known estimates (see §3.1).
In [26] a local version of (3.8) was proved: if

T<z <ax9<--<azp<T+H, TV? « H< T,
then under the same assumptions as for (3.8), we have
R < T(TV™3 + HT'/4y—12), (4.14)

With use of this estimate it was shown there that for 2 < k < 11 and |P(z)| < z7+¢
with 8 > 1/4 we have

T+H
/ |P(z)|F doe < HT®/4Fe 4 TiF+Ak=2)+e (4.15)
T
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4.2. The difference P(x + U) — P(xz). A precise formula for the quantity

T+H
/ A +U) — A@@)] da

T

was obtained in [29]. Repeating the arguments there and using the truncated
Voronoi formula and (2.11), we obtain a precise formula for the quantity

T+H

Q= Q(T, H,U) = / (P(z+U) — P(a)]? da (4.16)
T
under the conditions
o(T) < U <TY?o(T) and H<T  (p(T)=7(T)logT). (4.17)
This formula has the form
Q= Qo+ AQ, (4.18)
where
1 7"2(”) e 1/2 inU~/n/ 2
Q=55 > W/T a2 |emUvniTt 12 dy (4.19)
n<T/(2U)
and
T
AQ < UY?H <log % )@(T) + T*(T). (4.20)
If U < T2, then
T
Qo <UHlog g, (4.21)
and thus for ST
T
UH log = > TeXT), U<TY? (4.22)
we have the sharp two-sided estimate
T T T
Q =< HU log g, that is, C1HU log g <Q < CyHUlog g (4.23)
In particular, this yields
T /2
Pz +U)—-P(x) = Q<U10g \UF> . (4.24)

This was noted in [30], where it was shown that for H = T it follows from (4.18)
that

Q= TU<A1 logg —|—A2> + AQ,
VT

. (4.25)
/2
AQ < UNWT +UY?H (log U> + To*(T).
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Apart from [29], some important results were obtained in [31]. It was shown
there, for instance, that

2T
max (E(t +v) — B(t)) dt < TU(log T)> (U < T'?),

T vU

The estimate

2T
max |A(z +v) — A(z)[*dz < TU(log T)® (U < TV?) (4.26)
T v<

can be proved in a similar way (see [32]). Following [32], we deduce that
2T
max | P(z +v) - P(z)|?de < TU(ogT)® (U< TY?). (4.27)
T S

The power of logT in (4.27) is lower than in (4.26) because

Z r2(n) ~ xlogz, (4.28)
n<
whereas
Z d*(n) ~ z(log x)®. (4.29)
n<x

Following [32], assume now that

T+H
/ max [P(z +v) — P(x)]*dx < HUT® (4.30)
T S
with the conditions
T°<U<TY?  TY2«<HKT, and HU > T'e. (4.31)

Then (see [32]) if (4.30) holds for H < T'/?>%¢ then |P(T)| = O(TY/**¢). In [32]
the estimate (4.30) was proved for H > T3/,
The asymptotic equalities (4.23) and (4.24) allow us to conjecture that

Pz 4+U)— P(z) < UY?T® for T <z <2 (U< TY?7%). (4.32)

This is called Jutila’s conjecture and is the strongest assertion made so far about
the local behaviour of P(x). Jutila’s conjecture means that in the neighbourhood
|z—n| < U of n the quantity P(x) behaves like a random walk starting from P(n) at
time n. A solution of the circle problem is a consequence of (4.32). Some estimates
for |P(x + U) — P(x)| weaker than (4.32) were obtained in [32]. In particular, it
was proved there that

|P(z4U) — P(z)] <. /4504 (1< U < 2?/?),

4.33
|P(SC+U) fP(I)‘ <. :172/9+EU1/3 (1 < U<« :172/3). ( )
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In the conclusion of this subsection we present several results from [28]. Let n €
[T — H,T+ H] and H< T. Then

n+H
P(n) = ﬁ/ (P(n) — P(z)) dx + ApgP(n), (4.34)
¢, \f H <
ApP(n Yo (4.35)
Cr H H=>or 2m \/ﬁ

This is a simple consequence of Landau’s formula (2.14). Thus,
AgP(n) < nt/**e for H > TY/%*¢ (4.36)

and therefore |P(n)| < Cn'/4te if

n+H
/ |P(n) — P(z)|?de < Hn'/?*s  (H > nl/?7%). (4.37)
Assume that
|P(x) — P(n)| < B|P(n)|, B <1, (4.38)
if )
|t —n|<H and H < n%¢, 0<a< 7 (4.39)

Then it follows from (4.34) that
|P(n)| < ni=e)/2+e, (4.40)
The same estimate holds if

1—
[P(e) = Pn)| < n***HY,  fay <. (4.41)

Let n be a local maximum point of |P(z)| and assume that |P(n)| > Cn'/4. We call
this a broad maximum if (4.38) holds for |z — n| < n'/275. Tt follows from (4.40)
that if a mazimum is broad, then |P(z)| < O(x'/**%) for |z —n| < n'/?7¢.

5. Distribution of values

It was shown in [20] that the function
P(t?)

F(t) = =77 (5.1)

has a distribution function with density p(£). This means that for an arbitrary
probability density function h on [0, 1] and any continuous function g we have

i 7 [ Tg(F(t))h(}) a= [ g (52)

T—o0 — oo
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The uniform distribution of o = t? corresponds to h(s) = 2s, and for each interval
I = [a,b] we have

TlLr{l)oTlu{x € 0,7, 1;1(;”4) e]} :/abp(g) de, (5.3)

where u{A} is the Lebesgue measure of a set A.

It was shown in [20] that p(-) can be continued analytically to an entire function
that decreases more rapidly than any power function on the real axis. This result
was refined in [33]. Consider the quantities

D= [ pe)de and D)= {fﬁ“; W sy G
It was shown in [33] that
D(u) < exp(—|u[*~%) Ve > 0. (5.5)

This was improved in [34], where it was shown that

) < D(u) < exp (—01 (1o|1gL|:)a>’

s

u
(log u)°

(- 50

o= 3213 —1).

It was observed in [26] that in (5.3) the interval of change of  can be taken to be
short and

M T

b
u{x €T, T+Y(T), ];1(74) € I} = / p(€) de (5.7)
for all Y(T') > T*.

6. Change of sign and the behaviour of P(x) on a long interval [T, 2T

It was shown in [8] that for any 7 > 1 each of the two inequalities
+ P(z) > Cyz'/* (6.1)

is solvable on the interval 7 < x < 74 Ca4/7 . (Here and below the assertion is that
such constants C7 and Cs exist.) This also follows from later, more general results
in [31], [35], and [36]. In particular, it was proved in [31] that if |f(x)| < Cyx!'/4,
then P(z) + f(z) changes sign on the interval [T, T + Cyv/T]. Thus, any interval
[T, T + Co\/T| contains points 21,29 € [T, T + Co\/T] such that

P(Z‘l) > C’lx?[/{ P(J?Q) < —Cll‘é/4 (Z‘i S [T, QT]) (62)
The main result on the behaviour of P(z) on an interval [T, 2T follows from [31]

(see also [32]). In fact, the quantity E(T) was considered in [31], and A(z) was
considered in [32]. Using the methods from these papers, we can show that there
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exists a g > 0 (which can be explicitly found) such that for any 6 < Jy the
interval [T, 2T contains disjoint subintervals

U = [zt 2 + 01(6)TY?(Qog T) ) (6.3)
such that
P(z) > 0z'/* (e US) and P(z) < —dzY/* (zeU]). (6.4)
Furthermore,
p{VE} = Co(9)T,  where VE = | JUZ, (6.5)

and if x,x +v € Ugf, then
1 3
SP@)] < [P +0)] < S|P()) (6.6)
Using (4.40), we get that
|P(z)| < Cz'/%*e, zeV=Vtuv-, (6.7)

and under the assumption that the mazimum points of |P(x)| lie in V, we have
P(x) = O(TY/**¢) for x € [T,2T).

Note that we cannot conclude from this result that the intervals UF alternate
on [T,2T], and the existence of large narrow maxima of |P(z)| in the complement
of V' cannot be ruled out.

7. P(z) and the universality conjecture

The universality conjecture, when it is valid, enables one to use results on P(x)
in a much more general framework. Let M([g] be a closed Riemannian 2-manifold.
With the Riemannian metric ¢ we can canonically associate the Laplace operator
A = Alg]. This operator is negative definite and has a purely discrete spectrum {\; }
(Ap; + Xipi = 0,0 = Xg < A1 < Ay < -++). If N(MJ[g])(x) is the distribution
function for the eigenvalues, namely,

N(Mlg))(z) = #{i | \i <}, (7.1)

then by Weyl’s formula

N(MIa(@) = Sl 1 AN (M [g]) ),

7

AN([M]g])(z) = O(="/?).

(7.2)

Here |M]| is the area of M with respect to the measure induced by g. Let M be
the torus T? = [—n, 71]? with the flat metric go. Then \; = n =1?>+m? (I,m € Z),
r(n) is the multiplicity of the eigenvalue n, and

AN (M(g))(z) = P(x). (7.3)
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The theory of quantum chaos studies the statistical properties of the sequence {\;}
(see [2], [3], [37]).

The universality conjecture was formulated in the framework of this theory. It
states that for generic metrics g the behaviour of AN (M|g])(z) on short intervals

(T, T + CT'/?) depends only on whether or not the geodesic flow I';[g] of the

~ 4
metric g is integrable [37]. If it is, then the normalized eigenvalues \; = ﬁ)\i

have a Poisson distribution, but if it is ergodic (non-integrable) then the \; are
distributed in accordance with the Gaussian Orthogonal Ensemble (GOE) [38].
It particular, the asymptotic equalities

7! /T (AN(M[g))(z + U) — AN(M[g))(2))* da

U, T';[g] is integrable, (7.4)
logU, T[g] is ergodic

(T — o0, U< VT),

follow from the universality conjecture (see [2] and [3]). If a flat torus is a typical
representative of M[g] in the ‘integrable class’ of the universality conjecture, then
the quantity AN (M|g])(z) must behave like P(xz) on short intervals. In particular,
the equality (4.25) must hold:

[T 2 VT
T 1/T (AN (Mg +U) = AN(M[g])(x))” dx ~ AU log “— + AsU -

(T — o0, U< VT).

For integrable geodesic flows the quantity AN(M|g])(x) has been investigated in
two cases:

1) the metrics of surfaces of revolution in R? [39];

2) Liouville metrics on T? [40], [41].
In both cases it has been proved that

AN(MIg))(z) = O@'/?). (7.6)
(Here we mean generic metrics: for instance, there exist Liouville metrics on T?
satisfying certain Diophantine conditions such that AN (M|[g])(z) = Q(x'/2~¢) for
these metrics; see [42].)

It was shown in [39]-[41] that in these two cases the quantities AN (M[g])(t?) x
t=1/2 have distribution functions with the same properties as we indicated in § 5 in
the case of P(t?)t~1/2.

In conclusion we add a few words about the non-integrable case. On the one
hand, for a generic metric there is a conjecture that

AN (M(g))(z) = O(z%) (7.7)

(see [40]). On the other hand, there are no examples where it has been shown that
the power can be reduced, that is, where an estimate

AN(Mlg)(a) = 0#*),  p< 3, (78)
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holds. In particular, this is not known for Riemann surfaces M = T'\H (where T is
a generic strictly hyperbolic group and H is the upper half-plane with the Poincaré
metric). We note that Selberg (see [43]) indicated an infinite series of groups I'

such that
21/4

AN =0( ) Gr=T\m). (79)

However, these groups do not correspond to generic points in the Teichmiiller space.

log x

The author acknowledges help and useful comments by M. A. Korolev, who also
pointed out the paper [15].
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