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Abstract – In this study, the minimum amount of work needed to drive a thermodynamic system
from one initial distribution to another in a given time duration is discussed. Equivalently, for
given amount of work, the minimum time duration required to complete such a transition is
obtained. Results show that the minimum amount of work is used to achieve the following three
objectives, to increase the internal energy of the system, to decrease the system entropy, to change
the mean position of the system, and with other nonzero part dissipated into environment. To
illustrate the results, an example with explicit solutions is presented.
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Introduction. – An essential difference between equi-
librium and nonequilibrium systems is that the latter usu-
ally changes with time or requires extra energy to keep
it in a steady state. Nonequilibrium systems are crucial
in nature. For example, the human body is always main-
tained in a nonequilibrium steady state with the aid of
ubiquitous molecular machines, including motor proteins
(kinesin, dynein, and myosin) [1,2], DNA and RNA poly-
merase and ribosomes [3], with energy stored in adenosine
triphosphate, or with the difference in the chemical po-
tential of ions [4–6]. Macroscopically, motor vehicles can
run steadily with the power provided by engines. While in
mesoscopic scale, most of nonequilibrium systems are usu-
ally driven by molecular machines, which can be regarded
as stochastic heat engines. Heat engine can work cycli-
cally and extract work from the difference of temperature
between two heat baths [7–10], where part of the heat Qh

extracted from the hot heat bath with temperature Th is
translated into work W , and the rest Qc = Qh − W flows
into the cold heat bath with temperature Tc < Th.

According to the second law of thermodynamics,
Qc/Tc − Qh/Th ≥ 0, which indicates that the thermo-
dynamic efficiency η = W/Qh = 1 − Qc/Qh ≤ ηC , with
ηC := 1−Tc/Th being the Carnot efficiency obtained firstly
by Carnot two centuries ago [11]. Carnot efficiency ηC

can only be attained through a quasi static (reversible)
process, with work duration t being infinite and power
W/t vanishing. Efficiency η < ηC when work duration t

is finite due to nontrivial energy dissipation. A previous
study presented a method to optimise the performance of
heat engines, including their power and efficiency, by re-
ducing energy dissipation [12]. Using the same idea, this
study discusses the inverse problem, that is, for a given
work duration t, we determine how much work is required
to drive a thermodynamic system from one distribution
(state) to another and identity the optimal protocols.

This problem is crucial in nonequilibrium thermody-
namics and was addressed recently in [13–20]. In [13,14],
for examples of over-damped and under-damped Langevin
dynamics, exact optimal protocols for perturbing the po-
sition and spring constant are derived. In [15,16], lower
bound of dissipation is obtained generally within the the-
oretical framework of Langevin stochastic processes and
using the method of Monge-Kantorovich optimal mass
transport. In [17], the metric structure controlling the
dissipation of finite time transformations within the linear
response regime was discussed generally. In [18], it is found
that energy dissipation can be written as a functional
that depends only on the correlation time and fluctua-
tions of the generalised force. In [19], finite time protocols
that optimise the compromise between the standard devi-
ation and mean of dissipated work were numerically de-
termined for two canonical examples of driven mesoscopic
systems. In [20], a trade-off inequality between the speed
of the state transformation and the entropy production
was obtained.
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Generally, during a driving process, external work is
usually employed to perform the following: 1) increase the
internal energy of the system, 2) decrease the system en-
tropy (or equivalently, change the landscape of system dis-
tribution), 3) translate the mean center of the system, and
4) dissipate into environment. The work dissipation will
always be nonzero as long as there are entropy difference
or mean center difference during the driving process, and
the driving is not a quasi-static process. The main aim of
this study is to find the optimal driving protocols, with
which the work dissipation reaches its minimum.

Optimal driving between two distributions. – Ac-
cording to the first law of thermodynamics, Ė = Q̇ + Ẇ ,
where E is the internal energy of the system, Q is the
heat picked up by the system and W is the work done to
the system. Let ρ(x, τ) be the probability density to find
the system at position (state) x at time τ , and V (x, τ)
be the time-dependent external potential. For simplicity,
variable x is assumed to lie in the interval [0, L]. Under
the assumption that the dynamics is Markovian, the in-
ternal energy E, heat flow Q̇, input power Ẇ , and system
entropy S(τ) can be written as follows:

E(τ) =
∫ L

0 V (x, τ)ρ(x, τ)dx,

Q̇(τ) =
∫ L

0 ρ̇(x, τ)V (x, τ)dx,

Ẇ (τ) =
∫ L

0 ρ(x, τ)V̇ (x, τ)dx,

S(τ) = −kB

∫ L

0 ρ(x, τ) ln ρ(x, τ)dx,

(1)

where kB is the Boltzmann constant. The time evolu-
tion of ρ(x, τ) satisfies the following Fokker-Planck equa-
tion [12,21,22]:

ρ̇(x, τ) = −j′(x, τ) = (μρ(x, τ)V ′(x, τ) + Dρ′(x, τ))′. (2)

Here, D is the diffusion constant; μ is the motility that
satisfies kBTμ = D, with T being the absolute tempera-
ture; and j is the flux of probability density, which can be
written as j(x, τ) = ρ(x, τ)v(x, τ), with v(x, τ) being the
instantaneous velocity [23]. In this study, the dots indi-
cate time derivatives, and the primes indicate derivatives
according to the variable x.

During time 0 ≤ τ ≤ t, the heat Q(t) flowing into the
system is (see eqs. (1), (2))

Q(t) =
∫ t

0
Q̇(τ)dτ =

∫ t

0

∫ L

0
ρ̇(x, τ)V (x, τ)dxdτ

= −
∫ t

0

∫ L

0
j′(x, τ)V (x, τ)dxdτ

=
∫ t

0

∫ L

0
j(x, τ)V ′(x, τ)dxdτ

= −
∫ t

0

∫ L

0
ξj(x, τ)[v(x, τ) + D(ln ρ(x, τ))′]dxdτ

= −kBT

∫ t

0

∫ L

0
j(x, τ)(ln ρ(x, τ))′dxdτ

−
∫ t

0

∫ L

0
ξρ(x, τ)v2(x, τ)dxdτ

=: TΔS(t) − Wdiss(t), (3)

where ξ = 1/μ is the drag coefficient, ΔS(t) = S(t)−S(0)
is the change in entropy, and dissipation Wdiss(t) is given
as follows [12,21,24]:

Wdiss(t) =
∫ t

0

∫ L

0
ξρ(x, τ)v2(x, τ)dxdτ

=
∫ t

0

∫ L

0
ξḟ2(x, τ)/f ′(x, τ)dxdτ, (4)

with f(x, τ) =
∫ x

0 ρ(z, τ)dz being the distribution func-
tion. Note that, by the definition of total entropy produc-
tion ΔStot(t) = −Q(t)/T +ΔS(t), we can easily find from
eq. (3) that Wdiss(t) = TΔStot(t). So Wdiss(t) is actually
the work dissipated into environment to increase entropy
of the system [12,25,26].

According to eq. (2), the distribution function f(x, τ)
satisfies

ḟ(x, τ) + v(x, τ)f ′(x, τ) = 0. (5)

The same as in [12], the variation of Wdiss(t) according
to the distribution function f(x, t) is as follows:

δWdiss =
∫ t

0

∫ L

0
2ξ

[
ḟ

f ′ ∂x

(
ḟ

f ′

)
− ∂τ

(
ḟ

f ′

)]
δfdxdτ,

(6)
where δf is an arbitrary variation of f(x, τ), which

satisfies δf(0, τ) = δf(L, τ) = δf(x, 0) = δf(x, t) = 0.
Since δWdiss = 0 at the minimum of Wdiss for any varia-
tion δf , eq. (6) indicates (ḟ /f ′)∂x(ḟ /f ′) − ∂τ (ḟ /f ′) = 0
for the optimal distribution function f(x, τ) = f∗(x, τ).
Due to eq. (5), ḟ /f ′ = −v. Therefore, ∂τv(x, τ) +
v(x, τ)∂xv(x, τ) = 0. This means that, for the optimal
distribution function f∗(x, τ), the slope v∗(x, τ) of its
characteristic curves satisfies dv∗(x, τ)/dτ ≡ 0. There-
fore, the characteristic curves of eq. (5) are all straight
lines when dissipation Wdiss(t) reaches its lower bound
W ∗

diss(t). Note, this result can also be obtained by the
method presented in [15,16]. This finding indicates that,
lower bound W ∗

diss(t) is attained when the characteristic
curve of eq. (5), which starts from z at time τ = 0, is

x(z, τ) = z + (Γ(z) − z)τ/t, (7)

where Γ(z) is a map from interval [0, L] to [0, L] and sat-
isfies f(Γ(z), t) = f(z, 0). The definition of character-
istic curve means that, along any characteristic curves,
df(x(z, τ), τ)/dτ = 0, therefore f(x(z, τ), τ) = f(z, 0) for
any 0 ≤ z ≤ L and 0 ≤ τ ≤ t, for details see [12].

For convenience, let ρ0(x) := ρ(x, 0), ρ1(x) := ρ(x, t),
f0(x) := f(x, 0), f1(x) := f(x, t). For given probabil-
ity densities ρ0(x) and ρ1(x), when dissipation Wdiss(t)
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attains its lower bound W ∗
diss(t), the characteristic curve

of the distribution function f(x, τ) is given by eq. (7),
where Γ(z) is determined by ρ0(x) and ρ1(x) (or by f0(x)
and f1(x) equivalently). Thus, the distribution function
f(x, τ) for any time 0 ≤ τ ≤ t and 0 ≤ x ≤ L can be
obtained. In fact, f(x, τ) = f0(z), with z determined by
x(z, τ) = x. Consequently, the probability density ρ(x, τ)
can be obtained by ρ(x, τ) = f ′(x, τ). The optimal poten-
tial V ∗(x, τ), which determines the thermodynamic pro-
cess, can be derived with eq. (2), for detailed formulations,
see [12].

This study uses the potential V (x, τ) as a protocol to
reduce dissipation Wdiss(t) and make it as low as possible.
For detailed analysis and concrete examples, see [12,24].
In brief, for any given probability densities ρ0(x) and
ρ1(x), and duration t, we can select one specific potential
V ∗(x, τ), with which dissipation Wdiss(t) reaches its lower
bound W ∗

diss(t). From eqs. (4), (7) and the definition of
the characteristic curve, the lower bound of dissipation
W ∗

diss(t) can be obtained as follows [12]:

W ∗
diss(t) =

∫ t

0

∫ L

0
ξρ(x, τ)v2(x, τ)dxdτ

=
∫ t

0

∫ L

0
ξρ(x(z, τ), τ)v2(x(z, τ), τ)x′(z, τ)dzdτ

=
∫ t

0

∫ L

0
ξf ′(x(z, τ), τ)x′(z, τ)

(
Γ(z) − z

t

)2

dzdτ

=
∫ t

0

∫ L

0
ξf ′(z, 0)

(
Γ(z) − z

t

)2

dzdτ

=
∫ t

0

∫ L

0
ξρ0(z)

(
Γ(z) − z

t

)2

dzdτ

=
ξ

t

∫ L

0
ρ0(z)(Γ(z) − z)2dz. (8)

According to the first law of thermodynamics, the mini-
mum amount of work required to drive the system from
probability density ρ0(x) to ρ1(x) in duration t is

W ∗(t) = ΔE − Q(t) = ΔE − TΔS + W ∗
diss(t), (9)

where ΔE is the change in internal energy, ΔS is the in-
crease in entropy and W ∗

diss(t) is the lower bound of dissi-
pation (total entropy production [12]). Equations (8), (9)
show that for given work input W , the minimum of time
duration t needed to drive the system from density ρ0(x)
to ρ1(x) is

t∗(W ) =
ξ
∫ L

0 ρ0(z)(Γ(z) − z)2dz

W − ΔE + TΔS
. (10)

Obviously, t∗(W ) decreases with work input W and
change in entropy ΔS but increases with ΔE and fric-
tion ξ. Notably, ΔE and ΔS may not be positive. There-
fore, work input W may be negative, which is the case of
heat engines.

Generally, the work W required to complete the transi-
tion of a thermodynamic system from density ρ0(x) to den-
sity ρ1(x) in duration t is not less than W ∗(t), W ≥ W ∗(t).
Combined with eqs. (8), (9), this implies that

W−ΔE+TΔS ≥ ξ

(∫ L

0
ρ0(z)(Γ(z) − z)2dz

)/
t. (11)

This can be regarded as an uncertainty principle as in
quantum theory [27].

One may need to point out that the lower bound of
dissipation W ∗

diss(t) changes with t like 1/t is because,
in our theoretical framework, the friction is assumed to
be proportional to velocity. Generally, if the friction is
ξvσ, then the lower bound of dissipation, denoted by
W ∗

diss(t; σ), will change with t like 1/tσ. Actually, by the
same process as above, it can be shown that W ∗

diss(t; σ) =
ξ(

∫ L

0 ρ0(z)(Γ(z) − z)σ+1dz)/tσ.

Causes of dissipation. – To show detailed composi-
tions of dissipation W ∗

diss(t), we denote

c0 :=
∫ L

0
zρ0(z)dz, c1 :=

∫ L

0
zρ1(z)dz, (12)

and Δc := c1 − c0. Here, c0 and c1 are mean centers
of the system at time τ = 0 and τ = t, respectively,
and Δc is the change in the mean system position dur-
ing the whole driven process. By definition, f0(z) =
f1(Γ(z)). It indicates that ρ0(z) = ρ1(Γ(z))Γ′(z) and
ρ1(z) = ρ0(Γ−1(z))/Γ′(Γ−1(z)). Thus,

c1 =
∫ L

0
zρ1(z)dz =

∫ L

0
zρ0(Γ−1(z))/Γ′(Γ−1(z))dz

=
∫ L

0
Γ(z)ρ0(z)dz, (13)

where the last equality is obtained by a variable change
z = Γ(y). By eqs. (12), (13),

Δc = c1 − c0 =
∫ L

0
(Γ(z) − z)ρ0(z)dz.

From the definition of characteristic curve x(z, τ),
which satisfies f0(z) = f(x(z, τ), τ) for any τ ≥ 0,
we obtain ρ0(z) = ρ(x(z, τ), τ)x′(z, τ) and ρ(z, τ) =
ρ0(x−1(z, τ))/x′(x−1(z, τ), τ). The instantaneous veloc-
ity v(z, τ) at position z and at time τ equals the slope of
the characteristic curve through point (z, τ), from eq. (7),
v(z, τ) = [Γ(x−1(z, τ))−x−1(z, τ)]/t. Therefore, the mean
flux of probability at time τ is

J(τ) :=
∫ L

0
j(z, τ)dz =

∫ L

0
ρ(z, τ)v(z, τ)dz

=
∫ L

0

ρ0(x−1(z, τ))
x′(x−1(z, τ), τ)

Γ(x−1(z, τ)) − x−1(z, τ)
t

dz

=
1
t

∫ L

0
(Γ(y) − y)ρ0(y)dy =

Δc

t
. (14)
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Equation (14) indicates that with the optimal potential
V ∗(x, τ), the probability flux J(τ) ≡ J := Δc/t is con-
stant, and Δc =

∫ t

0 J(τ)dτ = Jt. According to Schwartz
inequality,

(Jt)2 = (Δc)2 =

[∫ L

0
ρ
1/2
0 (z)ρ1/2

0 (z)(Γ(z) − z)dz

]2

dz

≤
∫ L

0
ρ0(z)(Γ(z) − z)2dz =

tW ∗
diss(t)
ξ

,

which means ξJ2t = ξ(Δc)2/t ≤ W ∗
diss(t), or equivalently

DW ∗
diss(t)

J2t
≥ kBT.

This is a special case of thermodynamic uncertainty re-
lations, as obtained in [28–31]. Intuitively, ξ(Δc)2/t =
ξJ2t = (ξJt)J = (ξV̄ )J is the mechanical part of W ∗

diss(t),
which is needed to drive the system from mean position c0

to mean position c1. Here V̄ :=
∫ t

0

∫ L

0 ρ(z, τ)v(z, τ)dzdτ =∫ t

0 J(τ)dτ = Jt is the mean translocation velocity of the
whole driving process. In the following, we denote

W ∗
mech(t) := ξJ2t =

ξ(Δc)2

t
. (15)

From the discussions above,
∫ L

0 (z − c0)ρ0(z)dz =∫ L

0 (Γ(z)−c1)ρ0(z)dz = 0. Hence, dissipation W ∗
diss(t) can

be decomposed into the following two parts (see eq. (8)):

W ∗
diss(t) = W ∗

therm(t) + W ∗
mech(t), (16)

where the thermal part is given by

W ∗
therm(t) =

ξ

t

∫ L

0
ρ0(z)[Γ(z) − z − Δc]2dz

=
ξ

t

∫ L

0
ρ0(z)[(Γ(z) − c1) − (z − c0)]2dz

=
ξ

t
(δ2

0 + δ2
1 − 2δcov), (17)

with

δ0 :=

(∫ L

0
ρ0(z)(z − c0)2dz

)1/2

,

δ1 :=

(∫ L

0
ρ0(z)(Γ(z) − c1)2dz

)1/2

=

(∫ L

0
ρ1(z)(z − c1)2dz

)1/2

,

δcov :=
∫ L

0
ρ0(z)(z − c0)(Γ(z) − c1)dz

=
∫ L

0
ρ1(z)(Γ−1(z) − c0)(z − c1)dz.

(18)

According to the Schwartz inequality, δcov ≤ δ0δ1. So
W ∗

therm(t) ≥ (δ1 − δ0)2ξ/t ≥ 0. Meanwhile, W ∗
therm(t) = 0

only if Γ(z) = z + Δc = z + c1 − c0, which is equivalent to
ρ0(z) = f ′

0(z) = f ′
1(Γ(z))Γ′(x) = ρ1(Γ(z)) = ρ1(z + Δc).

Hence, the thermal part of dissipation W ∗
therm(t) vanishes

only when the final density ρ1(z) of the system is just
the translation of the initial density ρ0(z). For such spe-
cial cases, W ∗

diss(t) = W ∗
mech(t) = ξ(Δc)2/t, dissipation

is only due to the mechanical translation of the system.
Evidently, W ∗

mech(t) = 0 only when there is no mechan-
ical translation Δc = c1 − c0 = 0, or no friction ξ = 0,
or duration t → ∞. The thermal part of the dissipa-
tion W ∗

therm(t) is the minimum amount of energy used to
change the landscape of the system distribution.

The thermal part of dissipation can be rewritten as
follows:

W ∗
therm(t) = W 0

therm(t) − 2δcovξ/t, (19)

where we denote W 0
therm(t) := (δ2

0 + δ2
1)ξ/t. Thus, from

eq. (16),

W ∗
diss(t) = W ∗

mech(t) + W 0
therm(t) − 2δcovξ/t

=: W 0
diss(t) − 2δcovξ/t. (20)

It can be shown that

W 0
therm(t) = (δ2

0 + δ2
1)ξ/t

=
ξ

t

∫ L

0

∫ L

0
ρ0(z)ρ1(w)[(w−c1)−(z−c0)]2dzdw

=
ξ

t

∫ L

0

∫ L

0
ρ0(z)ρ1(w)(w − z − Δc)2dzdw,

(21)

and

W 0
diss(t) = W 0

therm(t) + W ∗
mech(t)

=
ξ

t

(∫ L

0

∫ L

0
ρ0(z)ρ1(w)(w−z−Δc)2dzdw+(Δc)2

)

=
ξ

t

∫ L

0

∫ L

0
ρ0(z)ρ1(w)(w − z)2dzdw

=
∫ t

0

∫ L

0

∫ L

0
ξρ0(z)ρ1(w)

(
w − z

t

)2

dzdwdτ.

(22)

The last term in eq. (22) indicates that W 0
diss(t) is the

minimum of work dissipation if the transition from den-
sity ρ0(x) to density ρ1(x) is completely random, where
the system at any initial state (position) has the same
probability density ρ1(w) to finally reach state (position)
w, but with the optimal transition trajectory (see eq. (8)).
By contrast, W ∗

diss(t) is the minimum of work dissipation
corresponding to the optimal cases, where the system at
initial state (position) x reaches the final state (position)
Γ(x) definitely, also with the optimal transition trajectory
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(see eq. (8)). The meaning of W 0
therm(t) given in eq. (21)

is similar to that of W 0
diss(t), but with the deduction of

the mechanical part W ∗
mech(t).

Showing that W ∗
diss(t) ≤ W 0

diss(t) is equivalent to
showing that W ∗

therm(t) ≤ W 0
therm(t). With eq. (19),

it is equivalent to showing that δcov ≥ 0. By def-
inition, c0 =

∫ L

0 zρ0(z)dz and c1 =
∫ L

0 zρ1(z)dz =∫ L

0 Γ(z)ρ0(z)dz. Hence, δcov can be reformulated as δcov =∫ L

0 zΓ(z)ρ0(z)dz − c0c1 (see eq. (18)). Therefore,

δcov =
∫ L

0
zΓ(z)ρ0(z)dz − c0c1

=
1
2

(∫ L

0

∫ L

0
zΓ(z)ρ0(z)ρ0(w)dwdz

+
∫ L

0

∫ L

0
wΓ(w)ρ0(w)ρ0(z)dwdz

−
∫ L

0

∫ L

0
zΓ(w)ρ0(z)ρ0(w)dwdz

−
∫ L

0

∫ L

0
wΓ(z)ρ0(w)ρ0(z)dwdz

)

=
1
2

∫ L

0

∫ L

0
(z − w)[Γ(z) − Γ(w)]ρ0(z)ρ0(w)dwdz

≥ 0, (23)

where the last inequality is due to the fact that Γ(x) is an
increasing function of x, Γ′(x) = ρ0(x)/ρ1(Γ(x)) ≥ 0.

Finally, we remark that the definition of Γ(x) is straight
forward if both ρ0(x) and ρ1(x) are greater than zero for
almost everywhere in the interval [0, L]. For general cases
where either ρ0(x) or ρ1(x), or both of them are equal to
zero in one or several subintervals of [0, L], the definition
of Γ(x) is not unique; nevertheless, all the analyses and
results given in this study still hold, and function Γ(x)
can always be constructed as an increasing function.

Although this study assumes that variable x lies in the
interval [0, L], the same results can be obtained for any
other types of domain, such as [0, ∞), (−∞, ∞), [a, b] for
any a < b, or any other domains composed of multiple
subintervals. Similar to [12], the influence of interval scale
L can be analysed by rescaling the probability ρ0/1(x) into
the interval [0, 1].

Illustrative example. – To illustrate the results ob-
tained above, we present an example with an explicit
solution (see also [12] for more examples). Let L = 1, driv-
ing period t = 1, the initial probability density ρ0(x) =
1/(2

√
x), and the final probability density ρ1(x) = 1.

Then from the relation ρ0(x) = ρ1(Γ(x))Γ′(x), we can
obtain the map Γ(x) =

√
x. Below we will calculate work

dissipations of the optimal driving process from proba-
bility density ρ0(x) to probability density ρ1(x) in time
t = 1.

From eq. (7), the characteristic curve of eq. (5), which
starts from z at time τ = 0, is

x(z, τ) = z + (
√

z − z)τ,
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Fig. 1: The optimal potential V ∗(x, τ ) (dashed lines with right
axes) and probability density ρ(x, τ ) (solid lines with left axes)
as an illustrative example, with time τ = 0, 1/3, 2/3, 1, re-
spectively. See eqs. (24), (26) for explicit expressions of ρ(x, τ )
and V ∗(x, τ ) (with C(τ ) ≡ 0 in calculations). The values of
parameters used in calculations are L = 1, t = 1 and ξ = 1,
kBT = 1.

with which the probability ρ(z, τ) at any time τ can be
obtained as follows:

ρ(z, τ) =
ρ0(x−1(z, τ))

x′(x−1(z, τ), τ)
=

1√
τ2 + 4(1 − τ)z

. (24)

For further details, see [12]. By eq. (2), the potential

V (x, τ) =
∫ x

0

ξ
∫ z

0 ∂τρ(y, τ)dy − kBT∂zρ(z, τ)
ρ(z, τ)

dz + C(τ).

(25)
It can be shown that, for the optimal driving process, the
potential is as follows:

V ∗(x, τ) = ξ

[
1
2
(1 − τ)y2 −

(
2
3

− τ

)
y

3
2 − τ

2
y

]∣∣∣∣
y=Γ−1

τ (x)

+ kBT ln
√

τ2 + 4(1 − τ)x + C(τ), (26)

where Γ−1
τ (x) = [(

√
τ2 + 4(1 − τ)x − τ)/(2(1 − τ))]2 is

the inverse of characteristic curve x(z, τ) given in eq. (7).
In this example, we assume C(τ) ≡ 0 for simplicity. See
fig. 1 for plots of potential V ∗(x, τ) and probability density
ρ(x, τ) with time τ = 0, 1/3, /2/3, 1, respectively.

It can be easily shown that

V ∗(x, 0) = ξ

(
1
2
x2 − 2

3
x

3
2

)
+ kBT ln 2

√
x,

V ∗(x, 1) = ξ

(
1
3
x3 − 1

2
x2

)
. (27)
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Fig. 2: The change over time of the system entropy S(τ ) :=
−kB

∫ L

0 ρ(x, τ ) ln ρ(x, τ )dx, mean internal energy E(τ ) :=
∫ L

0 V (x, τ )ρ(x, τ )dx, mean center c(τ ) :=
∫ L

0 xρ(x, τ )dx,
and the cumulation value of work dissipation W ∗

diss(τ ) :=∫ τ

0

∫ L

0 ξρ0(z)([x(z, τ ) − z]/τ )2dzdτ for the illustrative exam-
ple. Note, from eqs. (7), (8), W ∗

diss(τ ) can be reformulated
as W ∗

diss(τ ) = τξ
∫ L

0 ρ0(z)[Γ(z) − z]2dz/t2 = τW ∗
diss/t. Mean-

while, from ρ(z, τ ) = ρ0(x−1(z, τ ))/x′(x−1(z, τ ), τ ), c(τ ) can
be reformulated as c(τ ) = c0 +(c1 −c0)τ/t (this can be verified
directly by the explicit expression of ρ(x, τ ) given in eq. (24)).

Therefore,

E(0) =
∫ 1

0
V ∗(x, 0)ρ0(x)dx = (ln 2 − 1)kBT − ξ

15
,

E(1) =
∫ 1

0
V ∗(x, 1)ρ1(x)dx = − ξ

12
,

S(0) = −kB

∫ 1

0
ρ0(x) ln ρ0(x)dx = (ln 2 − 1)kB,

S(1) = −kB

∫ 1

0
ρ1(x) ln ρ1(x)dx = 0. (28)

So, the change in internal energy is ΔE = E(1) − E(0) =
(1 − ln 2)kBT − ξ/60, and the change in entropy is ΔS =
S(1) − S(0) = (1 − ln 2)kB . The dissipation W ∗

diss(t) for
this example is

W ∗
diss(t = 1) = ξ

∫ 1

0
ρ0(z)[Γ(z) − z]2dz =

ξ

30
. (29)

The mean center c0 =
∫ 1
0 zρ0(z)dz = 1/3, and c1 =∫ 1

0 zρ1(z)dz = 1/2. Thus, Δc = c1 − c0 = 1/6, and
the mechanical part of the dissipation W ∗

mech(t = 1) =
ξ(Δc)2/t = ξ/36. The thermal part of the dissipation
W ∗

therm(t = 1) = W ∗
diss(t = 1) − W ∗

mech(t = 1) = ξ/180.
Meanwhile, it can be easily shown that δ2

0 = 4/45, δ2
1 =

1/12, so W 0
therm(t = 1) = ξ(δ2

0 + δ2
1)/t = 31ξ/180. Obvi-

ously, W 0
therm(t = 1) is much larger than the thermal part

of the dissipation W ∗
therm(t = 1).

Finally, the minimum work needed to drive the system
from probability density ρ0(x) to probability density ρ1(x)

in duration t = 1 is (see eq. (9))

W ∗(t = 1) = ΔE − TΔS + W ∗
diss(t = 1) =

ξ

60
. (30)

So the minimum work required to drive the system from
probability density ρ0(x) to probability density ρ1(x) in
duration t = 1 is ξ/60. It can be easily shown that
the minimum work required to drive the system inversely,
i.e., from probability density ρ1(x) to probability den-
sity ρ0(x) in duration t = 1, is ξ/20, in which the min-
imum dissipation W ∗

diss(t = 1) is the same, W ∗
diss(t = 1) =

ξ
∫ 1
0 ρ1(z)[Γ−1(z) − z]2dz = ξ/30, while the change in

E − TS is ΔE − TΔS = ξ/60.
To show more details about this illustrative example,

the change over time of system entropy S(τ), mean in-
ternal energy E(τ), mean center c(τ) :=

∫ L

0 xρ(x, τ)dx,
and the cumulation value of work dissipation W ∗

diss(τ) :=∫ τ

0

∫ L

0 ξρ0(z)([x(z, τ) − z]/τ)2dzdτ are displayed in fig. 2.
Calculation results show that both c(τ) and W ∗

diss(τ)
change linearly with time τ . This indicates that, for the
optimal driving process between two given distributions,
the translocation velocity of mean system center and the
rate of work dissipation (or the total entropy production
rate) are always constants.

Summary. – The lower bound of work needed to drive
a thermodynamic system between two distributions is dis-
cussed in this study. During the driving process, part of
the work is used (output) to increase (decrease) the inter-
nal energy, a part is used (output) to decrease (increase)
the system entropy, and the rest is dissipated during the
change in landscape of system probability density and the
translation of system mean position. Amongst these, dissi-
pation can be optimised to its minimum, which is propor-
tional to the drag coefficient and inversely proportional to
the driving duration. Roughly speaking, the lower bound
of dissipation depends on mean values and variances of
the initial and final distributions of the system and on
their covariance. For a given work input, the minimum
time required to complete the driving process is also ob-
tained. It decreases with the work input and change in the
system entropy but increases with the friction coefficient
and change in the system internal energy. As pointed out
previously similar results about the lower bound of dissi-
pation have been obtained already in [15,16]. The main
difference between the method used in this study and the
one in [15,16] is that, in this study, the lower bound is ob-
tained by the method of characteristics and variation, and
within the framework of Fokker-Planck equation. More-
over, in this study, causes of dissipation are also discussed
in details.

∗ ∗ ∗
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