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Abstract — Based on the spatial voluntary public goods games, we investigate how loners’ in-
come affects the evolution of cooperation on square lattice. In the voluntary model, loners can
exit the game by holding a small fixed payoff. By introducing a tunable parameter, we make
loners payoff positively related to the synergy factor r. Through Monte Carlo simulations, we
found that a higher loners’ income essentially weakens their own survivability, but strengthens
the competitiveness of cooperators. Through the analysis of the evolution process, we clarify the
reasons as to how low-income loners totally dominate the population. For other results, we have
studied from the perspective of spatial distribution, and found that a higher loners’ payoff leads
to a more intense strategies transition during the loop dominance process. Further, the result
of the strategies transition rate once again shows how the loner’s income affects the evolution of

cooperation.

Copyright © EPLA, 2020

Introduction. — Cooperation plays a very important
role in the development of human society [1-5]. Es-
pecially, the issue of global warming, pollution control,
construction of public facilities puts high demands on the
cooperation of unrelated individuals. However, in this re-
ally common dilemma, cooperative behavior is often dif-
ficult to achieve because of the conflict between personal
interests and collective interests. Specifically, those who
freely ride on the cooperation of others are better than
those who cooperate in payoff, and ultimately, defectors
will completely conquer the cooperators because of the
pursuit of payoff maximization. Thus, how to promote
cooperation among individuals to solve social dilemmas
has become a challenging problem. It is worth mentioning
that the maintenance of cooperation within unrelated indi-
viduals is most frequently studied within the evolutionary
game theory [6-13]. Particularly, the public goods game
(PGG@) seems to be a favorable tool to solve the tragedy
of the commons [14-20].

With the development of the network science, spatial
game model as an extension of game theory attracted

(a) Corresponding author.

much attention [21-25]. Based on the seminal work on
network reciprocity, fruitful mechanisms have been pro-
posed to solve the social dilemma [26]. For example, both
antisocial punishment and pro-social punishment can ef-
fectively improve cooperation [27-30], and a reward also
has been identified as a possible route to promote coopera-
tion [14,31-33]. What is more, related mechanisms include
memory effect [34], preferential selection [35], individual
behavior [36], etc.

In addition to what mentioned above, evidences indicate
that voluntary participation in such public social dilem-
mas may provide a way to break away from the dead-
lock of defection dominant without any other mechanisms
and lead to a rock rock-scissors-paper dynamic with cyclic
dominance [37]. Not only that, these theoretical results
are quickly proved through human experiments [38]. In-
terestingly, when considering the network reciprocity, the
voluntary participation also lead to a persistent willingness
to cooperate by cyclic dominance [16]. In the voluntary
PGGE model, both cooperators and defectors are willing to
participate in PGGs, and cooperators contribute ¢ (cost)
to the common pool while defectors contribute nothing.
The total contribution is equally distributed between all
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Fig. 1: The density of cooperators (left panel), defectors (middle panel), and loners (right panel) in dependence of the synergy
factor 7, for different values of § (see legend). It can be observed that a larger value of § can promote cooperation when r < 4.

The results are obtained for L = 500, K = 0.5.

members (only including cooperators and defectors) of the
group after being multiplied by a synergy factor r. And
loners can escape the dilemma but they only get a small
fixed income ¢ (0 < ¢ < r—1). As mentioned before, these
three strategies can lead to a rock-scissors-paper dynamic
with cyclic dominance [39,40]. Namely, superabundant
cooperators provide a natural environment for the expan-
sion of defectors, the dominant defectors are conductive to
the growth of loners, while the excessive loners are easily
invaded by cooperators.

Along the seminal research above of voluntary PGG,
various secondary mechanisms have been proposed to pro-
mote cooperation [41-46]. However, most of these related
works choose to fix the loner’s payoff as a certain value,
however, there is still a lack of in-depth study on the dif-
ferences in the evolution of cooperation brought by the
different loner’s payoff. Therefore, we designed the model
in this paper to systematically explore the impact of lon-
ers on cooperative behavior. At the same time, in order
to eliminate the inconsistency of the synergy factor r on
the individual’s competitiveness, we set the loner’s payoff
asdx(r—1),and 0 <d <1, tosatisfy 0 <o <r—1. It is
clear that the value of § and the synergy factor r together
determine the payoff of the loner.

In the following, we will firstly present the evolution-
ary voluntary PGG model in the next section, and then
show the numerical simulation results in the third section.
Finally, we summarize our conclusions in the last section.

Model. — We consider a spatial voluntary PGG, where
cooperators, defectors and loners are arranged on a L x L
square lattice and interact with von Neumann neighbor-
hood only. Cooperators contribute ¢ = 1 to the common
pool, while defectors and loners contribute nothing. The
sum of the contributions in each group is multiplied by a
synergy factor r, then it is distributed equally to coopera-
tors and defectors, while loners can get a small fixed payoff
o but cannot share the benefit of public goods. The payoff

of cooperators, defectors, and loners in a given group g can
be expressed as

g "t \Lpoq (1)
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where nf, and n}, denote the number of cooperators and
defectors in the group, and 0 < § < 1 in our paper.

Taking the effect of the network into account, the maxi-
mum number of participants in a group of PGG is G = 5,
and the maximum number of PGG groups that one player
can participate in is also G = 5. Namely the existence of
loners may reduce the number of members of PGG and
the number of PGG groups.

Starting with a random distribution of these three
strategies, Monte Carlo (MC) simulations of the game
comprise the following elementary steps. Firstly, a ran-
domly selected player x accumulates payoff P, by inter-
acting with his G — 1 —ny, partners as a member of all the
PGG group he joins or exits the interaction to get a loner’s
payoff. Next, the randomly selected neighbor player y gets
his payoff P, in the same way. Finally, player y passes his
strategy to player x with the probability

1
W=7 exp[(P; — P,)/K]’

(4)

where K = 0.5 indicates a noise factor, which is the inter-
ference factor that may occur when an individual updates
his strategy. In our simulation, individuals asynchronously
update their strategies, namely, everyone has one averaged
chance to update his strategy.

The fraction of cooperators, defectors and loners was de-
termined within the last 5000 M C' steps of overall 50000.
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Fig. 2: The time evolution of the density of the three strategies
for § = 0.1 (top panel) and 6 = 0.9 (bottom panel). The top
panel represents the case of the all-loners phase for a smaller
value of 9§, and the bottom panel represents the case of the
coexistence of the three strategies for larger values of §. More-
over, in the bottom panel, the three strategies evolve into an
active stationary state, this feature is very much the same as
the characteristic of the rock-paper-scissors game. The results
are obtained for r = 3, L = 500 and K = 0.5.

In order to assure accuracy, all the results were averaged
over 20 independent runs for each set of parameter values.

Results. — Next, we mainly explore the impact of the
loners’ payoff on the evolution of cooperation. From an
intuitive perspective, larger values of ¢ make loners more
aggressive in the competing system. Thus, with the in-
crease of 9, there should be more loners in the stationary
state. However, how loners affect the system still needs a
further analysis of the simulation results.

In fig. 1, from left to right, the stationary frequency of
cooperators, defectors, and loners is shown as a function
of the synergy factor r for different values of §. From
the left and middle panel, we find that the value of d can
significantly affect the frequency of cooperators and defec-
tors only when r < 4. It might seem surprising, but the
answer can be quickly found from the right panel. Specif-
ically, when r > 4, loners lose the ability to survive, and
the parameter § no longer affects the system. Consider-
ing the question of the viability of loners, we are more
concerned about the situation of r < 4.

From the right panel, it can be observed that a smaller
value of 6 (6 = 0.1) leads to a full dominance of loners

for a wide range of r (r < 3.25), while a larger value
of § (6 >0.3) induces a coexistence state of the three
strategies. That is to say, a lower payoff is better for the
competition of loners, which is contrary to our intuitive
analysis. What is more, larger values of ¢ favor the evolu-
tion of cooperation. In short, we found that a larger value
of § is conductive to cooperators, but a smaller value of §
is better for loners.

Then, it is necessary to elucidate why a lower payoff is
better for the loners’ competitive behavior. In fig. 2, we
inspect the time courses of strategies from a random dis-
tribution for different values of § (r = 3). The top panel
indicates the case in which loners finally dominate the sys-
tem when ¢ is small (§ = 0.1), while the bottom panel
indicates the other case in which cooperators, defectors
and loners coexist when ¢ is large (§ = 0.9). From the
top panel, defectors show a strong aggressiveness at the
beginning, while both the frequencies of cooperators and
loners are faced with a rapid decline. With the early exit
of the cooperators, a small number of lucky loners coexist
with defectors, and loners subsequently launch an inva-
sion of defectors until the loner’s complete victory. From
the perspective of payoff, cooperators cannot resist the
aggression of defectors, but as free riders, defectors can-
not exploit anyone in the absence of cooperators. Loners
therefore dominate the population with a smaller value
of §. From the bottom panel, the characteristic of the
three-state cycle appears. In detail, when defectors domi-
nate, the invasion of loners will become more intense, when
loners are dominant, the offensive of cooperators also be-
comes more violent, and when cooperators are dominant,
defectors become stronger. In other words, cooperator is
weaker than defector, defector is weaker than loner, and
loner is weaker than cooperator, and those three strategies
therefore cyclically dominate.

Due to the relationship of the payoff, these three strate-
gies easily induce spontaneously cyclic dominance. How-
ever, the loner’s payoff determines the speed at which they
invade defectors, and the low income of loners will also
lead to the early exit of cooperators, and break the state
of cyclic dominance. The exit of cooperators pave the
way for the invasion of loners, thus, low payoff is helpful
to loner’s competition.

As revealed in fig. 1, larger values of § can significantly
promote cooperation. And we find that larger values of 0
can easily lead to the three-state cycle from fig. 2. These
results imply a potential relationship between the spon-
taneously emerging cyclic dominance and the evolution
of cooperation. Inspired by the relationship, we begin to
study the influence of the parameter § from the perspective
of spatial distribution. Figure 3 shows the evolution snap-
shots of cooperators (blue), defectors (red), loners (yel-
low) on a square lattice from a random distribution for
0 = 0.25 (top row), and § = 0.35 (bottom row), at 0, 90,
150, 50000 M C' steps, respectively. Since the time steps
corresponding to the top and bottom panel are the same,
we can find some similar phenomena from the top and

28002-p3



Kaipeng Hu et al.

Fig. 3: The evolutionary snapshots of the distribution of cooperators (blue), defectors (red), loner (yellow) on a square lattice
at 0, 90, 150, 50000 M C steps from left to right for § = 0.25 (top panel) and 6 = 0.35 (bottom panel). Both in the top and
bottom panel, the messy distributed individuals evolve into vortices and propagating waves. However, the value of § determine
the strength of the strategies transition. The results are obtained for r = 3.2, L = 300 and K = 0.5.

bottom panel. From both top and bottom panel, we can
see the random initial state spontaneously forming into
several small vortices composed of cooperators and defec-
tors distribute in the sea of loners at 90 MC step. As
the source of the propagating waves, the vortices further
expand and eventually evolved into some spiral clusters.
Note that these commonalities are also typical features
of strategic loop dominance which can be easily observed
in the classic rock-paper-scissors game. The evolutionary
snapshots clearly show that the excessive loners support
a natural environment for the competition of cooperators,
and the gradually growing cooperators provide a great en-
vironment for the growth of defectors; afterwards, the su-
perabundant defectors in turn pave the way for loners.

We further analyze the differences between different val-
ues of 0. At 90 MC steps, it is very clear that more vor-
tices appear in the system in the bottom panel, and more
vortices naturally lead to an explosion of cooperators and
defectors, and at 50000 M C' steps the spiral clusters in
the bottom panel seem smaller. In other words, a more
intense cyclic state appears in the system for a larger value
of §, and a stronger strategy conversion crush the clusters
into smaller tatter in the stable state. This implies the
higher value of § promotes cooperation by higher inten-
sity strategies transitions.

The previous analysis revealed that the value of § de-
termines the intensity of cyclic dominance, which in turn
affects the evolution of cooperation and defection. How-
ever, it is still necessary to get some quantitative results
to support these results. In fig. 4, we show the fraction of
three strategies as a function of § in left panel for r = 3
(top panel), and 3.5 (bottom panel). From the left panel,
we can find that with the increase of §, the cooperation
rate has been improved while defection has been inhibited.

In addition, the value of § hardly influences the dentist of
loners especially in the case of r = 3.5 (bottom panel). As
the cyclic aggression and non-cyclic aggression play dif-
ferent important roles for the evolution of strategies, we
therefore present the possible strategies transitions sep-
arately in the middle and right panel. Specifically, the
middle panel and right panel show the strategies transi-
tion rate for cyclic aggression and non-cyclic aggression,
respectively. From the middle panel, we can find that a
larger value of § enhances the strength of cyclic invasion.
Namely, in each M C step of the stable state, as the value
of ¢ increases, the cyclic strategies transition rate signif-
icantly increases. In short, we can find from the middle
panel that larger values of § lead to a stronger cyclic in-
vasion, facilitating the evolution of cooperation. From the
right panel, we can find that, with the increase of §, defec-
tors have more chances of being invaded by cooperators,
loners have less chances to become defectors. This ex-
plains why a larger value of § suppresses the evolution of
defection.

In fig. 5, we inspect the time courses of strategies from
a random distribution for different values of 6 when r = 3
(left panel) and r = 3.5 (right panel). In both panels,
we can see that larger values of ¢ always correspond to
smaller amplitudes of the strategies frequency regardless
of the value of r. Specifically, larger values of § lead to a
more intensive cycle of three strategies, which also makes
the mix of the three strategies more adequate. From the
evolutionary perspective, larger values of § ultimately lead
to smaller amplitudes of the strategies frequency.

Conclusion. — In summary, we systematically inves-
tigate the impact of the loner’s payoff on the evolution
of strategies in voluntary public goods game on a square
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Fig. 4: The left panels represent the frequencies of the three strategies as function of §. The middle panels are the corresponding
strategies transitions of the cyclic invasion, while the right panels are the corresponding strategies transitions of another way
of invasion. The top and bottom panels represent the case of the synergy factor r = 3 and 3.5, respectively. The results are

obtained for L = 500, K = 0.5.
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Fig. 5: The time evolution of the density of the three strategies for » = 3 (left panel) and r = 3.5 (right panel) for different
values of § (see legend). The presented results indicate clearly that larger values of § correspond to a smaller area of closed
orbits regardless of the synergy factor r. The results are obtained for L = 500 and K = 0.5.

lattice. We analyze the different results caused by the
different income of loners. Among them, they mainly in-
clude the case where the loner is totally dominant, the
three strategies coexist in the system, and there is coexis-
tence of cooperators and defectors. In particular, we have
done a relatively detailed analysis of the coexistence of the
three strategies, and found some interesting phenomena.

On the one hand, we find that when loners have lower
fixed payoff, they have opportunities to fully dominate the
population. When the fixed payoff for loners is sufficiently
large, the system will enter a cyclic dominance state due
to the cycle of these three strategies. On the other hand,
we find that a higher loner’s payoff is better for the com-
pletion of cooperators, but not of loners. In other words,
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although the larger value of § makes loners gain more, the
benefits of loners are stolen by cooperators. From the per-
spective of spatial distribution, we find that the promotion
of cooperation is related to the intensity of cyclic invasion,
and this conclusion is also verified from the quantitative
perspective. Namely, when loners have higher returns, the
cooperation rate increases with the higher intensity of the
cyclic invasion.

Similarly to the seminal work of spatial voluntary
PGG [16], our research shows that the introduction of
loners leads to the cyclic dominance of strategies and pro-
motes substantial levels of cooperation where otherwise
defectors dominate. However, through the adjustment of
the original model, we find that the loner’s income can
efficiently affect the evolution of cooperation. Our study
further enriches the voluntary participation game theory,
and may help us to understand the evolution of coopera-
tion in our human society.
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