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A magnetically controlled tunable acoustic super-resolution lens
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Abstract – Acoustic artificial structures have attracted much attention in recent decades due to
their unique acoustic handling characteristics. The lightweight, easy-to-design feature and low cost
of the thin-film acoustic artificial structure make it a great advantage in achieving super-resolution
imaging and device miniaturization. However, since the film-type lens achieves super-resolution
only at the resonance frequency, the frequency band in which it operates is greatly limited. In
this work, considering the complexity of the vibration problem of the additional mass film, we
propose a simple zero-mass method to design the operating frequency of the film-type prism. After
that, a magnetic-field-controlled thin-film acoustic super-prism with a size of only six percent of
the wavelength at working frequency is designed. Subsequently, based on the mechanism of
magnetically induced stress, it achieves the super-resolution imaging within a frequency range
from 350 Hz to 700 Hz. It provides a new idea for the design of an acoustic super-prism, and
potential applications can be expected in acoustic imaging.
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Introduction. – With the deepening of the research
on the acoustic properties of composite materials and
structures, it has been found that acoustic metamate-
rials have different properties from the materials of na-
ture, and these structures are collectively referred to
as acoustic artificial structures [1–3]. Acoustic artifi-
cial structures have attracted people’s attention for their
unique acoustic control characteristics in the past decade.
The most attractive properties of acoustic metamaterials
are band gap characteristics [4], defect state characteris-
tics [5], negative refraction phenomena [6,7], acoustic hy-
perlens [8], acoustic rectifier [9,10], acoustic cloak [11–13],
etc. Among them, super-resolution lenses of acoustic
waves have important application prospects of the fields
of medical ultrasonic testing and structural health moni-
toring, the limitations on resolution because the effects of
diffraction have presented a significant barrier to gener-
ating and observing small features with acoustic waves.
Many structures have been proposed to overcome this
limit such as film material [8,14–18] and phased acoustic
aperture [19–22].
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Since super-resolution lenses utilizing the Fabry-Perot
resonance require that the thickness of the structure must
be an integer multiple of half a wavelength, this causes
the structure to become larger. Therefore, due to its local
resonance characteristics, thin-film acoustic metamateri-
als have attracted attention in achieving super-resolution
imaging and device miniaturization. In 2011, Zhou et al.
proposed a super-resolution lens model with anisotropic
equivalent mass. When there is zero mass along the wave
propagation direction, the evanescent wave can be ampli-
fied. It can be verified by numerical simulation that it can
break through the diffraction limit [16]. Further, they con-
structed a super-resolution lens with a paper membrane
and an aluminum waveguide [17]. In 2015, Gu et al. de-
signed a trapezoidal film-type super-resolution lens. When
zero mass is used, the phase velocity is close to infinity. In
this way, the deflection of acoustic wave in ultrasonic wave
is realized, and the resolution is improved [18]. As we men-
tioned before, the membrane-type super-resolution lens
has a super-resolution function only near the resonance
frequency. It is a problem that most resonant acoustic
metamaterials have the disadvantage of narrow operating
frequency bands.
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In this letter, we propose a simple design method for
the equivalent zero-mass frequency of thin-film acoustic
metamaterials. A super-resolution lens is designed based
on this method. It achieves λ/4.7 super-resolution effects
that break the diffraction limit. It has a dimension along
the wave propagation direction that is only three percent
of the wavelength of the resonant frequency. Then, based
on the mechanism of magnetically induced stress [23–25],
a low-frequency wide-band adjustable film-type super-
resolution lens with a frequency adjustment range of
350 Hz is verified theoretically and experimentally.

Method. – The governing equation for thin-film meta-
materials can be expressed as [23]

−ρ1ω
2η1 − T∇2η1 = Δp,

−πR2
2ω

2ρ2η2 =
∫∫

ΔpdS2 − F. (1)

The first equation is the vibration equation of a circular
elastic film under acoustic loading. The surface density of
the elastic film is ρ1, and the out-of-plane vibration dis-
placement is η1 under the action of the tension T . Because
of the axial symmetry of the structure and the compressive
load, the movement of the center mass can be described
by the translational displacement η2. Assuming that the
areal density of the center mass is ρ2, the film provides
a restoring force F for the central mass. In the absence
of load, the eigenvalue problem can be solved by solving
the transcendental equation with the boundary condition
that the outer diameter of the film is fixed, and the center
mass and the film junction displacement are continuous.
Consequently, the boundary conditions are expressed as

η1(R1) = 0,

η1(R2) = η2 (R2) .
(2)

Regardless of the non-axisymmetric modes, the general
solution of the annulus membrane vibration is

η1(r) = AJ0(kr) + BY0(kr), (3)

where A and B are arbitrary constants; J0 and Y0 are
Bessel functions of the first and second kind of order 0,
respectively; k, defined as 2πf/c, is the wave number in
the annular membrane.

To more easily discuss the effect of structural parame-
ters on the resonant frequency, we introduce a dimension-
less parameter: α = R2/R1, which represents the ratio of
the center mass to the radius of the film, β = ρ2/ρ1, which
represents the ratio of the center mass to the areal density
of the film, and λ = kR1, indicating a dimensionless wave
vector. The relation between axisymmetric eigenfrequen-
cies and the quantity can be calculated as: fi = cλi/2πR1,
where c =

√
T/ρ1 represents the wave velocity of the elas-

tic membrane.
The eigenvalue equation is obtained:

Y0(λ)J0(αλ) − J0(λ)Y0(αλ) =
2

αβλ
[Y0(λ)J1(αλ) − J0(λ)Y1(αλ)]. (4)

(α2β)−0.5

λ 1

Fig. 1: (a) The first, (b) the second, (c) the third axisymmet-
ric eigenmodes of the membrane-type acoustic metamaterial.
(d) The relation of the first eigenfrequency and the mass with
different radius ratio.

By numerically solving the eigenvalue equation, we can
obtain a series of discrete eigenvectors corresponding to
the resonant frequencies of each order. The first three
order eigenmodes of thin-film acoustic metamaterials are
shown in fig. 1.

It can be seen from eq. (4) that the dimensionless eigen-
vectors are only related to the parameters α and β. First,
we study the effects of the parameters α and β on the
first-order resonance frequency. We assume that the cen-
tral iron piece is a concentrated mass and that the film
acts like a spring, the square of the resonant frequency of
the structure should decrease as the mass increase. Af-
ter conversion to a dimensionless parameter, the mass of
the center iron relative to the mass of the film can be ex-
pressed as α2β, and the first-order dimensionless quantity
is expressed as λ1. Under the premise of ensuring that the
elastic film does not change, the first-order dimensionless
eigenvector should satisfy the increase of the center mass:
λ1∞(α2β)−0.5. In order to verify the relationship, we cal-
culate the theoretical solution of the central mass and the
first-order dimensionless wave vector, as shown in fig. 1(d),
in the case of different inner and outer diameter ratios.
The dotted line is used as an auxiliary line to help deter-
mine whether there is a linear relationship. It can be seen
that it is reasonable to simplify the first-order resonant
state of the membrane structure, and the equivalent stiff-
ness of the thin-film structure are determined only by the
properties of the elastic film. Therefore, we consider that
the first-order dimensionless eigenvectors λ1 and α and β
have the form as eq. (5a) below. As shown in fig. 1(d),
the values of parameters A1 and A2 are determined to be
0.978 and 0.020, respectively, by parameter fitting.

Second, for the high-order resonance mode, it can be
equivalent to the eigenvalue problem of the annular film
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Fig. 2: (a) Transmission coefficients and equivalent mass den-
sity of super-resolved acoustic lens cells. The inset shows the
unit cell and the experimental measurement device (Brüel &
Kjær type-4206-T). (c) Experimental verification of the zero-
mass frequency design formula.

with inner and outer simply supported boundary con-
ditions, since the center mass is almost immobile, that
is, the case where the right end of eq. (4) is zero. It
is concluded that the higher-order eigenvectors with the
center-attached mass film structure are independent of
the surface density of the central mass. By approximat-
ing formula using the Bessel equation (5b), the eigen-
value equation of the ring membrane can be simplified
to sin(λ−αλ) = 0. The solution to the high-order dimen-
sionless eigenvector can be expressed as eq. (5c),

λ1 = A1(α
√

β)−1 + A2, (5a)

Jn ≈
√

2
πλ cos

(
λ − nπ

2
− π

4

)
,

Yn ≈
√

2
πλ sin

(
λ − nπ

2
− π

4

)
,

(5b)

λi =
(i − 1)π
1 − α

, i ≥ 2. (5c)

Results and discussion. – In order to verify the accu-
racy of the equivalent zero-mass frequency design formula,
we design a corresponding verification experiment. The
first-order zero-mass frequency is designed to be 350 Hz.
An elastic film with a radius of 20 mm, a thickness of
0.075 mm and the estimated initial tension of 216 N/m is
attached to the aluminum ring. The radius and thick-
ness of the round iron in the center of the film are 3 mm
and 1 mm, respectively. Using the acoustic impedance
technique, the transmission coefficient of the cell and

Fig. 3: (a) Two-dimensional sound field scanning experimental
platform. The inset shows a 3D printed hyper-prism structure.
(b) 350 Hz and (c) 400 Hz measurements of transmitted sound
intensity distributions. (d), (e): distribution of the transmit-
ted sound intensity in finite element simulations of 350 Hz and
400 Hz.

Fig. 4: Simulation results of the line distribution of normalized
pressure amplitudes behind the lens, when two loudspeakers
separated by 210 mm are placed in front of the lens.

the equivalent mass density of the film-type acoustic
metamaterial can be measured, as shown in fig. 2(a). It
can be seen that the experimentally measured structure
has a resonant frequency of 328 Hz, corresponding to an
equivalent zero mass, as indicated by the dashed line. In
addition, the mass of the center rigid body can be changed
by changing the number of irons. By changing the radius
of the iron, the variation in the first two orders for zero-
mass frequency is measured, as shown in fig. 2(b). The
experimental results agree well with the theoretical design
values. As the ratio of the radius increases, the stiffness
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Fig. 5: (a) Magnetic force regulation range for zero-mass frequency. The inset shows the super-resolution effect of different
frequencies under different magnetic controls. (b) 700 Hz measurements of transmitted sound intensity distributions. (c) Dis-
tribution of transmitted sound intensity in finite element simulations of 700 Hz.

of the center mass becomes larger, which makes the res-
onant frequency decrease. For the high-order resonance
frequency, as the inner diameter of the ring film gradually
increases, the rigidity of the structure increases, and the
resonance frequency shifts upward.

As shown in fig. 3, we process a long strip structure with
a circular cavity with a total length of 300 mm through the
3D printing technique. A clamp that holds the permanent
magnet and fixed it in the super-resolution prism is de-
signed. The magnetic force is controlled by adjusting the
distance between the magnet and the center iron piece.
Each hole in the fixture has a radius and depth of 10 mm,
30 mm, respectively, and a spacing of 30 mm between adja-
cent holes. The designed film-type metamaterial is pasted
in the middle of the circular hole. The total thickness of
the lens is about 60 mm. The two-dimensional acoustic
field scanning platform is used to measure the transmit-
ted sound field. The relevant sound pressure measuring
devices we use are the microphone (Prestige MPA416) and
the acquisition card (NI 9234). The acoustic lens is placed
in the middle of a two-dimensional sound field having an
area of 1000 mm2 and surrounded by a sound absorbing
material having a thickness of 150 mm. Two-point sound
sources are arranged at the incident end, which is 2 mm
away from the lens, and the distance between the two
sound sources is 210 mm. We set up two microphones
mounted on the electric table behind the lens, and the
area that can be measured is 500 ∗ 100 mm2, which im-
proves the efficiency of the experiment.

As shown in fig. 3(b) and fig. 3(d), when the frequency is
close to zero-mass frequency (350 Hz), the presence of two
point sources can be observed. It should be noted that due
to the preparation of the film sample, the zero-mass fre-
quency of the superlens is slightly different from the zero-
mass frequency of the single-cell film. The diffraction limit

is broken due to a point source spacing of λ/4.7. When the
frequency deviates from the zero-mass frequency (400 Hz),
the existence of two-point sources cannot be resolved, as
shown in fig. 3(c) and fig. 3(e).

To further illustrate the resolution of the lens, we ex-
tract the sound pressure distribution along the line in the
finite element results for comparison. It is clear from fig. 4
that with the lens it is possible to distinguish the position
of the two-point sources, whereas without the structure it
is impossible to do so.

Further, when there is a magnetic field, the relationship
between magnetic force and zero-mass frequency can be
obtained by finite element simulation, as shown in fig. 5(a).
The wide-band regulation effect of magnetic force on the
first-order resonance frequency of the film has been ex-
plained in other works [23,25]. It is worth noting that the
magnetic force can significantly change the stress state of
the membrane, resulting in broadband effects. The greater
the magnetic force, the greater the stiffness of the struc-
ture and the higher the resonant frequency. When the
magnet slowly approaches the center of the iron piece,
the attractive force caused by the magnetic field is esti-
mated to be about 68 kPa. Not only 400 Hz can be dis-
tinguished, 700 Hz can still distinguish two sources, as
shown in fig. 5(b). In addition, we use the commercial soft-
ware package COMSOL Multiphysics to verify the zero-
mass frequency in the design, enabling super-resolution
imaging. By comparing the experimental results with the
finite element results, it is further verified that the mag-
netic acoustic superlens can widen the operating frequency
band.

Conclusion. – In summary, we propose a zero-mass
design method for the membrane structure to simplify
the solution of the membrane. Based on this method,
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a super-resolution lens with a resolution of λ/4.7 is de-
signed and verified by experiments. Furthermore, a con-
tinuous tunable acoustic lens is realized by using the de-
sign of magnetic stress enhancement of the thin-film struc-
ture. The problem of the narrowness of the film-type
acoustic metamaterial is solved to some extent. The struc-
ture is light and simple, and is easy to prepare. It not only
provides a feasible idea for the multifunctional design of
acoustic devices but also offers the potential for wide ap-
plicability in extending beyond the traditional diffraction
limits of acoustic imaging.
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