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Observation of a ferromagnetic-to-paramagnetic phase transition
in Ce0.65Mg0.35Co3
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PACS 75.30.Kz – Magnetic phase boundaries (including classical and quantum magnetic
transitions, metamagnetism, etc.)

PACS 75.40.Cx – Static properties (order parameter, static susceptibility, heat capacities, critical
exponents, etc.)

PACS 71.20.Eh – Rare earth metals and alloys

Abstract – Ce1−xMgxCo3 are promising candidates for the permanent magnets since they can
show ferromagnetism and large anisotropy by substituting Mg for Ce in a paramagnetic CeCo3

compound. In this work, a room-temperature ferromagnetism with a second-order magnetic phase
transition is observed in the Ce0.65Mg0.35Co3 (CMC) compound prepared by a cold crucible lev-
itation melting method. Based on the DC magnetization data, the critical phenomenon around
the phase transition point (∼308 K) in CMC is investigated and the critical exponents β for
spontaneous magnetization, γ for susceptibility and δ for critical isothermal magnetization are
determined independently by three different data processing techniques including the modified
Arrott plot, Kouvel-Fisher plot, and critical isotherm analysis. It is noteworthy that the magne-
tizations obey the scaling equation, indicating that the critical parameters including Tc, β, γ and
δ are reliable and self-consistent. The calculation of spin interaction with the obtained critical
exponents further suggests a long-range ferromagnetic coupling with J(r) ∼ r−4.622 in CMC.

Copyright c© EPLA, 2020

Introduction. – Permanent magnets are classified
as hard ferromagnetic (FM) materials for their strong
saturation magnetization and high magnetocrystalline
anisotropy energy [1]. Owing to these excellent prop-
erties, permanent magnets are essential to the progress
of advanced science and high technology and they are
in great demand of the markets such as hybrid cars,
air conditioners, smartphones, and medical treatment de-
vices [2,3]. Rare-earth–based FM compounds can achieve
large saturation magnetization because many 4f electrons
are unpaired in rare-earth atoms. Furthermore, they
also exhibit high values of magnetocrystalline anisotropy
energy due to the large spin-orbit coupling of 4f elec-
trons in rare-earth elements, which eventually leads to

(a)E-mail: zmzhang@hdu.edu.cn
(b)E-mail: wangdh@hdu.edu.cn

a high coercivity for maintaining the magnetic stability
against being demagnetized [4]. Therefore, rare-earth–
based permanent magnets, such as SmCo5, Sm2Co17, and
Nd2Fe14B, occupy a large amount of market share. How-
ever, in recent years, both the shortage of low-abundant
rare-earth resources used in permanent magnets and the
increase in their price have made the search for efficient
earth-abundant permanent magnets crucial [5,6].

Recently, the paramagnetic (PM) CeCo3, containing the
most abundant rare-earth element cerium, has been iden-
tified as a promising candidate for a strong permanent
magnet by Mg doping [7]. Although Ce is inexpensive and
can be easily extracted from the other rare-earth materi-
als [8], Ce-based compounds have not been deployed well
because the magnetic moment is lost to some extent after
alloying with other compounds. For example, the Ce atom
of Ce2Fe14B is in a mixed valence state of Ce+3/Ce+4 [9]
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and the magnetic moment of Fe atom is decreased be-
cause Fe 3d orbits are hybridized with Ce 4f electrons [10].
As for pure CeCo3, it only exhibits Pauli PM charac-
teristics even containing so many FM Co atoms in the
system. However, by adding the nonmagnetic element
Mg [11,12], the compounds Ce1−xMgxCo3 (0 < x � 0.467)
can order magnetically with large magnetic anisotropy [7].
In the FM phase, first-principle calculation suggests that
the density of states (DOS) at Fermi level is increased
and the Stoner criterion is fulfilled by Mg alloying, lead-
ing to a FM order in Ce1−xMgxCo3 [13]. On the other
hand, large magnetic anisotropy in the FM phase stems
from the viability of electrons interaction between Co-3d
and Ce-4f orbits [13]. By increasing the Mg content, the
Curie temperature (Tc) of Ce1−xMgxCo3 can be as high
as 450 K and the magnetic anisotropy energy can achieve
2.2 MJ/m3, the same magnitude as Sm2Co17 (4.2 MJ/m3)
and Nd2Fe14B (4.9 MJ/m3) [2], indicating they have the
potential to be sustainable permanent magnets [7].

Although the origin of magnetism and the anisotropy in
the FM phase have been investigated via first-principles
calculation, details of the spin interaction and the range
of exchange are still unclear, which restricts us to gain-
ing the universality class of the magnetic phase transition
in the Mg-doped ferromagnet Ce1−xMgxCo3. As shown in
previous studies, analyzing the critical phenomena around
Tc can provide many information such as the type of mag-
netic phase transition, correlation length, spin dimension,
and exchange decay range [14]. It is commonly known that
the critical behavior can be well described by obtaining a
set of interrelated critical exponents β, γ, and δ [14]. For
a system with the second-order transition, the divergence
of correlation length near the phase transition point, e.g.,
ξ = ξ0|(Tc −T )/Tc|−ν , results in the correlation of all spin
fluctuations, which makes the critical exponents indepen-
dent of microscopic details [15]. Hence, spontaneous mag-
netization Ms(T ) and inverse initial susceptibility χ−1(T )
obey the universal scaling laws [16]. The critical exponents
are defined as follows [16]:

Ms(T ) = M0

(
Tc − T

Tc

)β

= M0t
β (T < Tc), (1)

χ−1(T ) = Γ
(

T − Tc

Tc

)γ

= Γtγ (T > Tc), (2)

M(H) = C(μ0H)
1
δ (T = Tc), (3)

where t = |T−Tc

Tc
| is the reduced temperature; M(H) is

the field-dependent magnetization at Tc; M0, Γ, and C
are the critical amplitudes [14].

To explore the critical behavior of Mg-doped CeCo3
when approaching the FM-PM transition, a systematic
study of the magnetization is carried out. A room-
temperature FM compound Ce0.65Mg0.35Co3 (CMC) is
successfully synthesized by a cold crucible levitation melt-
ing method. Based on the DC magnetization data, the
exponents β, γ, and δ are calculated accurately and the

system tends to exhibit a long-ranged spin interaction.
We further calculate the decaying distance of exchange
coupling based on the obtained critical exponents, which
confirms that there is a long-range interaction in CMC.

Experiment. – CMC was prepared by using a cold
crucible levitation melting method. Ce and Co were firstly
melted in a water-cooled crucible under an argon atmo-
sphere. Then Mg was added to the crucible to allow the
formation of CMC. The ingot was turned over and melted
many times to obtain homogeneity in its chemical compo-
sition. The structure of CMC was characterized by X-ray
diffraction (XRD) with Cu Kα radiation at room tempera-
ture. The measurement of magnetization was carried out
by using a superconducting quantum interferometer de-
vice (Quantum Design SQUID). In order to obtain more
reliable critical exponents of CMC, the isothermal mag-
netization curves were measured at different temperatures
between 230 and 362 K, and the magnetic field was se-
lected between 0 and 5 T. In order to keep the ambient
temperature of the sample stable, a long waiting time was
given before formally measuring each isothermal magne-
tization curve. To accurately calculate the critical expo-
nents in the following sections, the external magnetic field
H was converted into the following form, Hi = H − DM .
The demagnetizing factor D was calculated from the sam-
ple geometry that was a shape of an irregular but almost
spherical polyhedron.

Results and discussions. –

Structure and magnetism. Figure 1 presents the XRD
pattern of CMC. By matching the XRD diffraction peaks
with the available database, the crystal of CMC can be
clearly indexed as a single rhombohedral phase with the
PuNi3-type structure. As shown in the inset of fig. 1, Ce
atoms occupy two nonequivalent sites 3a and 6c; Co atoms
lie on three nonequivalent sites 3b, 6c and 18h; Mg atoms
partially replace Ce atoms at the 6c site [7,11]. Figure 2
illustrates the temperature dependence of magnetization
(left axis) for CMC measured under 0.1 T between 200 and
380 K. An obvious FM-PM transition takes place above
room temperature in the sample. By calculating the max-
imum of |dM

dT |, the Curie temperature is determined as
Tc ≈ 308 K and in agreement with a previous study [7].
A splitting feature between zero-field–cooled (ZFC) and
field-cooled (FC) magnetizations is observed, which illus-
trates that CMC is crystallized in the FM ground state be-
low Tc but exhibits some degrees of FM cluster behavior.
As expected, the adjacent Co atoms show a strong FM ex-
change interaction at the ground state. However, it is also
reported that Ce1−xMgxCo3 prefers an antiparallel mag-
netic moment alignment between Ce and Co atoms [13].
In such a case, the competing couplings of FM and anti-
ferromagnetism (AFM) might lead to FM clusters with a
macroscopic ZFC-FC divergence. For further understand-
ing the nature of the magnetism in CMC, we investigate
the χ−1(T ) based on the ZFC curve using the Curie-Weiss
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Fig. 1: XRD pattern for CMC, the inset is the crystal structure
of CMC.

Fig. 2: The temperature dependence of magnetization for CMC
obtained under 0.1 T (left axis). The inverse susceptibility as
a function of temperature (right axis). The solid line is a linear
fit to data based on Curie-Weiss law.

law. The temperature dependence of inverse susceptibility
χ−1(T ) is shown in fig. 2 (right axis), in which the solid
line is the data fitted by the Curie-Weiss law. The exper-
imental data in the high-temperature region (T > 340 K)
are well fitted by the Curie-Weiss law, exhibiting a typi-
cal PM behavior. Accordingly, by extracting the inverse
of the slope and the intercept at the T -axis, the Curie
constant C and the Weiss constant θ are determined as
17.55 emu · K/mol · Oe and 331.3 K, respectively. Here,
the positive value of θ suggests the predominant FM ex-
change interaction in this system. We can calculate the ef-
fective magnetic moment approximately using the relation

μeff =
√

3kBC
μ2

BnNA
≈ 2.82787 ·

√
C
3 ≈ 6.839 μB, where kB is

the Boltzmann constant, μB is the Bohr magneton, NA is
the Avogadro constant, and n is the number of magnetic
atoms per formula unit. The effective moment is larger
than both the spin moment of Co ions (∼4.90 μB/Co3+)
and total moment of Ce ions (2.54 μB/Ce3+), which also
implies that FM clusters might contribute to the magne-
tization of the sample in the PM state [17]. With decreas-
ing temperature (T < 340 K), the χ−1(T ) data begins to
deviate from the fitting line in the PM state, which fur-
ther suggests that there exists FM clusters or the bound

Fig. 3: (a) Magnetic hysteresis loops measured at 50K, 200 K,
and 300 K. (b) Isothermal magnetization curves at different
temperatures for CMC.

magnetic polarons related to the defects even in the PM
phase of the sample [17–19].

To get more information about the magnetic ground
state in this sample, the magnetic hysteresis loops (M-H
loops) are measured at 50 K, 200 K, and 300 K. As shown
in fig. 3(a), CMC exhibits obvious hysteresis and the coer-
cive field can achieve a value of 0.16 T at 50 K, indicating it
can serve as a potential permanent magnet. It should also
be noted here that the strong pinning ability with a large
coercive field can also contribute to the above ZFC-FC bi-
furcation. The field-dependent isothermal magnetizations
(M-H curves) obtained at various temperatures are shown
in fig. 3(b). A series of typical FM and PM M-H curves
are observed in CMC. With the increase of temperature,
the FM M-H curves gradually transit to PM ones, which
also indicates a transition from FM to PM in the sample.

Arrott plot. To deeply understand the magnetic inter-
action and the FM-PM transition in CMC, we next explore
the critical behavior. According to the Arrott plot based
on the Landau mean-field theory, the behavior of magne-
tization around Tc satisfies the following relationship [20]:

M2 = k

(
μ0H

M

)
+ b

Tc − T

T
. (4)
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Fig. 4: (a) Arrott plots in the form of M2 vs. μ0H/M mea-
sured at different temperatures from 270 to 346 K for CMC.
(b) Modified Arrott plots with β = 0.489 and γ = 1.069.

For characterizing the magnetic phase transition and cal-
culating β, γ, δ and Tc, one can use the M2 vs. μ0H

M plots
based on experimental data [20]. Obviously, if the ferro-
magnet follows the Landau mean-field theory, the M2 vs.
μ0H
M curves around Tc will demonstrate a certain number

of parallel lines. Furthermore, one of the lines goes straight
through the origin of the coordinates at Tc. At this point,
the critical exponents of the system are exactly β = 0.5,
γ = 1, and δ = 3. Additionally, the method can also give
the data of Ms(T ) and χ−1(T ) at different temperatures
by using the intercepts on the M2 axis and μ0H

M axis, re-
spectively [21]. As shown in fig. 4(a), the quasi-straight
lines of M2 vs. μ0H

M are not strictly parallel to each other,
which indicates that the above Arrott plot needs further
modification. However, one can easily determine the phase
transition order: the negative and positive slopes represent
first order and second order, respectively [22]. Here, the
slopes of all curves are greater than zero, which implies
that the magnetic phase transition in CMC belongs to the
second-order system.

Since the M2 vs. μ0H
M relations are not strictly parallel

lines, a modified Arrott plot can be alternatively applied
to characterize the second-order phase transition system,
which is given by [23]

M1/β = k

(
μ0H

M

)1/γ

+ b
Tc − T

T
. (5)

Fig. 5: Temperature dependence of the spontaneous magneti-
zation Ms (left axis) and inverse initial susceptibility χ−1 (right
axis) which are obtained from the high-field extrapolation of
modified Arrott plots.

We use a self-consistent method to calculate β and γ [15].
Firstly, the high field data of the Arrott plots are extrap-
olated linearly, and the intersection points of the M2 and
μ0H
M axes yield the starting data of Ms(T ) and χ(T ), which

are used to calculate β and γ based on eq. (1) and eq. (2),
respectively. Using these critical exponents, the modified
Arrott M1/β vs. (μ0H

M )1/γ curves are plotted. By lin-
early extrapolating the high-field data to the axis, a new
set of temperature-dependent spontaneous magnetization
and susceptibility is obtained, which yields new values of
β and γ [24]. The above fitting method is iterated sev-
eral times until a pair of stable exponents β and γ are
generated. Follow this method, we obtain a series of par-
allel lines at high fields around Tc as shown in fig. 4(b),
where β = 0.489 and γ = 1.069. Of course, we also ob-
serve a slight bending of the data in the low field, which
is the average result of domains magnetized in different
directions. Figure 5 presents the final temperature de-
pendence of Ms(T ) and χ−1(T ), which gives β = 0.4872,
T −

c = 307.62 K, and γ = 1.0681, T +
c = 307.98 K according

to eq. (1) and eq. (2), respectively. Based on the values of
T +

c and T −
c , the critical temperature is then calculated as

Tc = T −
c +T+

c

2 = 307.80 K.
Kouvel-Fisher plot. We can also use another method

developed by Kouvel and Fisher (KF) to determine β and
γ more accurately [25]. According to the KF method, data
can be processed by the following two equations:

Ms(T )
(

dMs(T )
dT

)−1

=
T − T −

c

β
, (6)

χ−1(T )
(

dχ−1(T )
dT

)−1

=
T − T +

c

γ
. (7)

The critical exponents near the Curie point are
considered as temperature-independent values, both
Ms(T )(dMs(T )

dT )−1 and χ−1(T )(dχ−1(T )
dT )−1 have a linear

relationship with temperature. Thus, by fitting their lin-
ear lines around Tc, we can get the values of β and γ from
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Fig. 6: Kouvel-Fisher plot of spontaneous magnetization Ms

(left axis) and inverse initial susceptibility χ−1 (right axis) for
CMC.

the inverse slopes of the two lines. In addition, the KF
method does not require an a priori value of the critical
temperature, as long as the intercept of the two fitting
lines on the T axis can be obtained. By using Ms(T ) and
χ−1(T ) from the modified Arrott plot, the KF plots are
shown in fig. 6. Based on the fitted solid lines, the crit-
ical parameters for CMC are determined as β = 0.4912
and γ = 1.0831 with Tc = T −

c +T+
c

2 = 307.89 K by the
KF method. It is shown that these values of β, γ and
Tc agree well with those derived from the modified Arrott
plot, suggesting that they are self-consistent.

Critical isotherm analysis. According to the Widom
scaling theory [16], the third exponent δ can be deter-
mined by analyzing the isothermal magnetization curve
measured at critical temperature Tc. From the above
analysis, the critical temperature of the system is ∼308 K.
Here, we choose the critical isothermal magnetization data
at 308 K for plotting the lnM vs. ln μ0H curve, as shown
in fig. 7. By fitting the data of lnM vs. ln μ0H linearly,
the value of δ is obtained as 3.186 from the inverse of the
slope following eq. (3). On the other hand, we can also
use the Widom scaling relation δ = 1 + γ

β [26] to calcu-
late δ. By using the obtained values of β and γ, the third
critical exponent is determined as δ = 3.192 and δ = 3.205
for the modified Arrott plots and KF method, respectively.
The calculated results of the Widom scaling relation agree
well with those of the critical isotherm analysis, which in-
directly suggests that the estimated exponents and Tc for
CMC using modified Arrott plots and the KF method are
reliable and intrinsic.

Scaling equation of state. For further verifying the re-
liability of the critical parameters including β, γ, δ and Tc,
we check whether the magnetic data satisfy the following
equation:

m = f±(h), (8)

where f+(h) and f−(h) are two different analytical func-
tions; m = t−βM(H, t) is the scaled magnetization; h =
t−(β+γ)H is the scaled field [18]. Here, the positive sign

Fig. 7: Critical isotherm of M vs. H at Tc of 308 K. The inset
shows the same on the ln-ln scale and the straight line is the
linear fit following eq. (3).

Fig. 8: The scaled magnetization is plotted as a function of the
scaled field following eq. (8). The plot shows that all the data
fall onto one branch curve for T < Tc and the other for T > Tc.

and negative sign represent a temperature higher and
lower than the Curie temperature, respectively. Appar-
ently, if there is a true scale relationship and the critical
parameters obtained are accurate, then all magnetic data
will converge to two curves, one is the data below the crit-
ical point, the other is the data above the critical point.
By using the relevant experimental data and critical pa-
rameters, the universal scaling curve m vs. h is obtained
in fig. 8. Obviously, the scaling M-H data are distributed
on only two different curves for a temperature higher and
lower than the Curie temperature, respectively. This phe-
nomenon shows that the interaction at the critical region
is properly renormalized according to the scaling equation
of state [18], which also implies that the critical parame-
ters are accurate within the experimental error range.

Spin interaction. The estimated critical exponents of
CMC are listed in table 1, in which the data from dif-
ferent methods and a few data from different theoretical
models in the literature are compared [27]. It is shown
that the obtained exponents are close to the Landau mean-
field theory, indicating that the FM interaction in CMC
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Table 1: Comparison of the critical parameters of
Ce0.65Mg0.35Co3 with different theoretical models.

Technique β γ δ Tc

Modified Arrot plot 0.4872 1.0681 3.192∗ 307.80
Kouvel-Fisher plot 0.4912 1.0831 3.205∗ 307.89
Critical isotherm 3.186 308

Mean field [27] 0.500 1.00 3.00 \
3D Heisenberg [27] 0.365 1.386 4.80 \
3D Ising [27] 0.325 1.241 4.82 \

∗Calculated from the Widom scaling relation δ = 1 + γ/β.

is long-ranged. However, we can also see that β and γ
deviate slightly from the theoretical values. In addition,
if there are many competing couplings or disorders in a
magnetic system, the exponents will exhibit some system-
atic trends or critical crossover phenomena near the phase
transition point [28]. In view of this, it is vital to obtain
the following temperature-dependent effective exponents:

βeff(t) =
d lnMs(t)

d ln t
, γeff(t) =

d lnχ−1(t)
d ln t

. (9)

As shown in fig. 9, both βeff(t) and γeff(t) are basically
nonmonotonic, implying that critical exponents do not be-
long to any known universality class, including 3D Ising
class, 3D Heisenberg class, and mean-field class [24]. This
nonmonotonic change probably originates from the com-
peting interactions of the FM exchange between adjacent
Co atoms and the AFM exchange between Ce and Co
atoms, which is consistent with the splitting phenomenon
between ZFC and FC curves. Nevertheless, since the cor-
relation length near the critical point is divergent and
the critical exponents are independent of microscopic de-
tails [15], our obtained critical exponents are intrinsic.

According to the theory of renormalization group (RG),
the long-range attraction decays as J(r) ∼ r−(d+σ), where
r and d denote the distance and the dimension of space, re-
spectively [14]. The constant σ in the long-ranged system
satisfies the following formula [14]:

γ = 1 +
4
d

n + 2
n + 8

Δσ +
8(n + 2)(n − 4)

d2(n + 8)2

×
[
1 +

2G(d
2 )(7n + 20)

(n − 4)n + 8

]
Δσ2, (10)

where Δσ = (σ− d
2 ), G(d

2 ) = 3− 1
4 (d

2 )2, and n is the dimen-
sion of spin. The equation is applicable to d

2 ≤ σ ≤ 2 [29].
When the dimension of space d is 3, the long-range inter-
action then decays as J(r) ∼ r−(3+σ) with the constant
σ between 1.5 and 2. In such a case, J(r) is somewhere
between r−4.5 and r−5 and the value of σ governs the uni-
versality classes with different sets of exponents. If σ is less
than 1.5, the Landau mean-field theory can be used to de-
scribe magnetic behavior and J(r) decreases more slowly

Fig. 9: Effective exponents βeff below Tc and γeff above Tc as
a function of the reduced temperature t in CMC.

than ∼r−4.5, leading to a longer exchange range [29]. If σ
exceeds 2, the conditions for the 3D isotropic Heisenberg
model are satisfied, expecting that J(r) decays sharply
faster than ∼r−5 and the exchange range is thereby short-
ened [29]. Herein, σ = 1.622 is obtained reasonably ac-
cording to eq. (10) with the value of γ, and J(r) thereby
decays as ∼r−4.622 in CMC. It is noticed that the obtained
σ belongs to the long-range interaction and J(r) is close to
the Landau mean-field theory. In fact, first-principle cal-
culation suggests that DOS at the Fermi level is governed
by the Co 3d orbits in Ce2/3Mg1/3Co3 [13]. However, all
the d orbits are hybridized with adjacent atoms, resulting
in band broadening at the Fermi level [13]. Therefore, the
3d electrons of Co atoms exhibit some degree of itiner-
ancy. Moreover, it is reported that the Rhodes-Wolfarth
ratio (RWR) can be applied to distinguish between itiner-
ant magnetism and localized magnetism, e.g., RWR = 1,
the electrons are localized; RWR > 1, there exists the itin-
erant FM in the sample [30]. Based on the Rhodes and
Wolfarth theory [30], RWR is defined as μC/μS , where
μC and μS are related to the number of moving carri-
ers and saturation magnetization, respectively. For CMC,
by using the previously obtained μeff , the value of μC

can be determined from μ2
eff = μC(μC + 2), which yields

μC = 5.91μB. The saturation magnetic moment per Co
atom μS of CMC is about ∼0.68 μB. Therefore, the RWR
is calculated as 8.69, suggesting an itinerant character of
spin interaction with long-range J(r) in the Mg-doped
CeCo3 system.

Conclusion. – In summary, we observe a second-
order FM-PM transition in CMC. The FM order in this
compound is induced by Mg doping into the Ce site of
the Pauli paramagnet CeCo3. The critical phenomenon
around Tc of 308 K in CMC is systematically studied.
By using reliable data processing methods, including
the Arrott plot (modified), KF technique, and critical
isotherm method, the critical exponent β for sponta-
neous magnetization, γ for susceptibility and δ for critical
isothermal magnetization are obtained accurately. More
importantly, these self-consistent critical exponents satisfy
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the scaling equation of the state well, suggesting that they
are reliable within the experimental error range. It is also
observed that the spin decay range of the system has the
form J(r) ∼ r−4.622, confirming a long-ranged coupling in
the itinerant FM compound CMC. The magnetic phase
transition in Mg-doped CeCo3 may also be used in mag-
netoresistance, magnetic sensors and other fields.
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