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1.  Introduction

Dipolar Ising models present a rich variety of ordered phases in 
3 dimensions, including ferromagnetic (FM), antiferromagn­
etic (AFM), paramagnetic (PM) and glassy phases according 
to the disorder and frustration stemming from the underlying 
structure and/or dilution or additional short range exchange 
interaction. This diversity results from the long range dipole–
dipole interaction (DDI) whose anisotropy leads to both a fer­
romagnetic and an anti-ferromagnetic couplings and is the 
driving force of the collective effects. Dipolar Ising models 
(DIM) are particularly suitable to model dipolar crystals  
[1, 2]. They are also well adapted to model the magnetic phases 
of single domain magnetic nanoparticles (MNP) assembled 
in densely packed configurations [3, 4] at least in the limit 
of strong uniaxial anisotropy. These latter systems are the 
focus of a large activity in the field of nanoparticle research 
because of their wide range of potential applications and 

because they provide convenient experimental samples for the 
study of nanoscale magnetism. Of particular interest are the 
ensembles of MNP self assembled in superlattices (or supra­
crystals), i.e. ordered crystals made of MNP whith long range 
order [5–10]. When the considered MNP ensemble are made 
of spherical MNP with a sharp size distribution, and coated 
by a non magnetic layer preventing aggregation, the structure 
of the resulting ordered crystal, following mainly the rules of 
hard sphere packing is in general of BCT, FCC or HCP sym­
metry [11]. An important experimental situation is thus that 
of MNP self organized in supracrystals with FCC [5, 6, 9, 10] 
or HCP [8] symmetry. This leads to an ordered lattice with 
close packing symmetry of nanoparticles which, owing to the 
non magnetic coating layer, behave as dipoles undergoing an 
effective anisotropy which drives the dipole moment toward 
the easy axis of magnetization. As a model for MNP assem­
blies, the dipolar Ising model where the direction of the dipoles 
are imposed on the easy axes corresponds strictly speaking 
to the limit of infinite value of the effective magnetocrystal­
line anisotropy energy (MAE) with uniaxial symmetry. Such 
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a limit is reasonable in the light of actual experimental situ­
ations, where one expects typically the MAE of an order of 
magnitude larger than the DDI contribution. We emphasize 
that the MAE being a one-body potential does not couple 
the moments and is to be considered in the framework of the 
blocking process which involves the measuring time [12, 13]. 
Hence the relevant criterion to determine whether the DDI play 
an important role is the ratio of the characteristic DDI tempera­
ture (∼Edd/kB) to the blocking temperature Tb of the dispersed 
system, Edd being the DDI energy per particle taking into 
account the MNP concentration. Strictly speaking the dipolar 
Ising model is to be considered as the infinite measuring time 
or equivalently the Tb → 0 limit. For magnetometry measure­
ments, Tb � Ea/30kB [3, 12], where Ea is the MNP anisotropy 
barrier, leading typically to Td/Tb � 5 which gives sense to 
the dipolar Ising model in such cases. In addition to the well 
ordered lattice, one can also consider in the framework of DIM 
the random close packed structure of hard spheres [14, 15], as 
ensembles of MNP presenting such a structure can be obtained 
experimentally from sintered powders and were analyzed on 
the framework of spin glass behavior [16–18].

Whatever the structure of the MNP ensemble, the high 
temperature magnetic phase is paramagnetic in nature (the 
so-called superparamagnetic regime) and one key question 
remains to determine and to predict the nature of the low 
temperature ordered phase in highly concentrated systems 
where collective effects are expected. The amount of disorder 
is obviously a crucial parameter. When dealing with ordered 
supracrystals, the easy axes distribution, {n̂i}, plays then a 
central role. For a colloidal crystal synthesized in the absence 
of external field, {n̂i} is a random distribution while in the 
case of a synthesis under external field one expects the pos­
sibility to get a textured distribution of easy axes along the 
direction of the field before freezing.

The general experimental finding for the self organized, 
or compact assemblies of MNP in the absence of texturation 
is a spin glass frozen phase which can be understood both 
by the strong anisotropy and the random distribution of easy 
axes. In [19] the easy axes alignment has been obtained in 
a frozen ferrofluid via the external field during the freezing 
of the embedding non magnetic matrix. However, the lack of 
structural order and the low MNP concentration leads also to 
a spin glass state at low temperature.

In order to model the above situations, we must consider 
the easy axis distribution as the relevant parameter control­
ling the amount of disorder in the system. While the onset of 
ordered phase for concentrated dipolar systems free of MAE 
(either FM or AFM) is well documented [20–24], there is a 
lack of knowledge on the influence of the easy axes textura­
tion on both the nature of the ordered phase and the value of 
the corresponding transition temperature. The dipolar Ising 
model with random distribution of Ising axes, the random axes 
dipoles model (RAD) [14, 25], is known to present a spin-glass 
(SG) ordered phase at low temperature. On an other hand, 
the totally oriented dipolar Ising model, parallel axes dipoles 
model (PAD) [26–29] presents a long range ferromagnetic (or 
antiferromagnetic for the simple cubic lattice) phase when 
the concentration of occupied sites takes a value larger than a 

threshold one (xc � 0.65 on the simple cubic lattice). Klopper 
et al [26] have considered a dipolar Ising model on a FCC lat­
tice with a random exchange term as source of disorder. Their 
result is an ordered FM phase for small enough values of the 
random exchange coupling JEA with a strongly JEA dependent 
PM/FM transition temperature. In [15] both the easy axes tex­
ture and particles structure through a random close packed dis­
tribution are considered as sources of disorder.

In this work we investigate, through Monte Carlo simu­
lations, the dipolar Ising model on a perfect FCC lattice with 
textured easy axes distribution which we denote by the textured 
axes dipoles model (TAD). The FCC lattice is chosen first as a 
convenient example for spontaneous dipolar ferromagnetic order 
and, as mentioned above, for its relevance for experimental situ­
ations. Our purpose is to investigate the magnetic phase diagram 
in terms of the variance σ of the polar angles distribution of the 
Ising axes relative to the ẑ axis. The ordered phases in the lim­
iting cases σ = 0 (PAD) and σ → ∞ (RAD) are ferromagnetic 
and spin-glass respectively and we thus focus on the determina­
tion of the value of σ corresponding to the FM/SG line on the 
one hand and on the determination of Tc(σ) along the PM/FM 
and PM/SG lines on the other hand. In case of the ferromagnetic 
ordering at low temperature, we also have to characterize the 
phase according to its long range versus quasi long range order.

The rest of paper is organized as follows. We first describe 
the model in section 2, then we give some indications on the 
Monte Carlo scheme and present the observables we focus 
on. Section 3 is devoted to the analysis of our results and we 
conclude in section 4.

2.  Model

We consider a system of dipoles of moment µ located on the 
sites of a perfect face centered cubic (FCC) lattice, interacting 
through the usual dipole dipole interaction (DDI) and con­
strained to point along the easy axes, n̂i, defined on each lat­
tice site. The distribution of easy axes, {n̂i} is characterized 
by the texturation in the direction ẑ with axial symmetry. To 
this aim, the azimuthal angles are randomly chosen while the 
polar angle {Θi} distribution follow the probability density

p(Θ) = Csin(Θ)
[
exp(−(Θ2/2σ2) + exp(−((π −Θ)2/2σ2))

]
� (1)
where C is a normalization constant and sin(Θ)/2 corresponds 
to the random distribution. The variance σ of this probability 
distribution is to be considered as the disorder control param­
eter of our model as the dilution in the random diluted Ising 
model or the short range random exchange term JEA in the 
dipolar Ising plus random exchange model of [26]. σ = 0 
obviously corresponds to the totally aligned or textured model 
(PAD) while σ → ∞ corresponds to the random distribution 
of the {n̂i} (RAD). Practically we find that the actual limit of 
σ beyond which the random distribution is reached is merely 
σs � π/2. The hamiltonian of the system is given by

βH =
1
2
β

β0
εd

∑
i�=j

sisj
n̂in̂j − 3(n̂ir̂ij)(n̂jr̂ij)

(rij/d)3 with εd = β0
µ0

4π
µ2

d3

� (2a)
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≡ 1
2
β

β0
εd

∑
i�=j

sisj
Dij

(rij/d)3� (2b)

where si = ±1 is the set of Ising variables, related to the 
dipole moments �µi = µsin̂i ≡ µµ̂i, r̂ij is the unit vector car­
ried by the vector joining sites i and j , β = 1/(kBT) is the 
inverse temperature, T0 (1/kBβ0) a characteristic temperature 
of the actual system. For instance T0 can be chosen in such 
a way that εd = 1 and the same model can represent dif­
ferent systems according to T0 = (1/kB)(µ0/4π)µ2/d3. d 
is a unit of length, chosen as the nearest neighbor distance 
between dipoles, here that of the FCC lattice, or alternatively 
the nanoparticle diameter, dp , when the model is applied to a 
MNP ensemble. Concerning the reduced temperature, instead 
of the natural choice T/(T0εd), we take advantage of the 
1/r3 dependence of the DDI and of the properties of the sum 
entering in equation (2), see note5, to introduce the more con­
venient reduced temperature T∗ = T/(T0εd(Φ/Φr)), where Φ 
and Φr  are either the number of occupied sites per unit volume 
and a reference value (here the number of sites per unit volume 
of the FCC lattice) or alternatively the MNP volume fraction 
((N/V)πd3

p/6) and a reference value (for instance, the max­
imum value for hard spheres on a FCC lattice). This reduced 
temperature makes easier the comparison of results of systems 
closely related but presenting different volume fractions and/
or structure, as will be discussed in section 4 when comparing 
the phase diagrams of the FCC lattice and the RCP cases.

The simulation box is a cube with edge along the ẑ direc­
tion and edge length Ls =

√
2Ld  and the total number of 

dipoles is N  =  4L3. The close packed direction of the FCC 
lattice is (1,1,1). We consider periodic boundary conditions 
by repeating the simulation cubic box identically in the 3 
dimensions. The long range DDI interaction is treated through 
the Ewald summation technique [22, 30], with a cut-off 
kc = 10km, km = (2π/Ls), in the sum of reciprocal space and 
the α parameter of the direct sum is chosen either α = 5.80 
or 7.80 [22]. In such conditions the errors introduced by the 
periodic boundary conditions in the framework of the Ewald 
summation technique are known to be very small even at low 
temperature and to vanish in the thermodynamic limit [31]. 
The Ewald sums are performed with the so-called conduc­
tive external conditions [22, 30], i.e. the system is embedded 
in a medium with infinite permeability, µs = ∞, which is a 
way to avoid the demagnetizing effect and thus to simulate 
the intrinsic bulk material properties regardless of the external 
surface and system shape effects. The equivalence between 
simulation results for the system embedded in vacuum, 
µs = 1, or in the infinite permeability medium, µs = ∞ can be 

done through the introduction of an external field and noting 
that the relevant field is either the internal one if µs = ∞ or 
the external one if µs = 1 [32].

2.1.  Simulation method

In order to thermalize in an efficient way our system presenting 
strongly frustrated states, we use parallel tempering algorithm 
[33] (also called tempered Monte Carlo) for our Monte Carlo 
simulations. Such a scheme is widely used in similar systems, 
and we do not enter in the details. The method is based on the 
simultaneous simulation runs of identical replica of a system 
with a given distribution of axes {n̂i} for a set of temperatures 
{T∗

n } with exchange trials of the configurations pertaining to 
different temperatures each NM Metropolis steps according 
to an exchange rule satisfying the detailed balance condition. 
The set of temperatures is chosen in such a way that on the 
first hand it brackets the paramagnetic ordered state transition 
temperature and on an other hand it leads to a satisfying rate 
of exchange between adjacent temperature configurations. 
Our set {T∗

n } is either an arithmetic distribution or an optim­
ized one in order to make the transfer rate between adjacent 
paths as constant as possible in the whole range of {T∗

n }. We 
obtained close behavior for the rate of transfer by using the 
efficient constant entropy increase [34] or the simpler geomet­
rical distribution of temperatures. In the present work we take 
NM  =  10, the number of temperatures is in between 36 and 
60 according to the value of σ and the amplitude of temper­
atures in the set {T∗

n }. The minimum and maximum values 
of the set {T∗

n } depends on σ when dealing with the PM/FM 
line, as does the critical temperature T∗

c  (see (figure 2)). The 
simulations for σ � 0.60 are mainly performed with n  =  60, 
T∗

n ∈ [0.55, 3.50] and an arithmetic distribution.
When necessary, precise interpolation for temperatures 

between the points actually simulated are done through 
reweighting methods [35]. We use t0 Monte Carlo steps (MCS) 
for the thermalization and the averaging is performed over 
the (t0, 2t0) following MCS with t0 = 5 105 for σ ∈ [0, 0.5] 
namely sufficiently away from the FM/SG line and t0 = 106 
otherwise.

We deal with frozen disorder situations where each reali­
zation of the easy axes distribution {n̂i} defines a sample. 
Accordingly, a double averaging process is performed first 
relative to the thermal activation, the Monte Carlo step, and 
second on the whole set of Ns samples. Consequently, the 
mean value of an observable A, results from a double aver­
aging denoted in the following as [〈A〉] where 〈.〉 corresponds 
to the thermal average on the MC sampling for a fixed reali­
zation of the axes distribution and [.] to the average over the 
set of samples considered. The number of samples necessary 
to get an accurate result depends strongly on the value of σ. 
Obviously, for σ = 0, Ns  =  1 should be sufficient for a very 
long MC run in order to get a satisfying average. Practically, 
we find Ns of the order of 300–500 sufficient up to σ = 0.4 
while when σ gets closer to the value corresponding to loca­
tion of the SG/FM line up to Ns = 12 000 realizations are 
necessary.

5 Introducing dr = d(Φr/Φ)
1/3 involving the volume fraction Φ of the 

system ((N/V)πd3/6) and a reference value, Φr  (for instance the maximum 

value for hard spheres on a FCC lattice), (1/N)
∑N

i �=j(1/(rij/dr)
3) = f (N) 

is nearly independent of both the underlying structure and φ. As a 

result (1/N)
∑N

i�=j(sisjDij/(rij/d)3) in equation (2b) is rewritten as 
(Φ/Φr)(1/N)

∑N
i �=j(sisjDij/(rij/dr)

3). Accordingly, (T0εd(Φ/Φr)) is a 
convenient measure of the temperature for this system from which our 
definition of T*, T∗ = T/(T0εd(Φ/Φr)) follows.
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2.2.  Observables

Our main purpose is the determination of the transition 
temperature between the paramagnetic and the ordered phase 
and on the nature of the latter, namely ferromagnetic or spin-
glass, in terms of σ. For the PM/FM transition, we consider 
the spontaneous magnetization

m =
1
N

�����
∑

i

µ̂i

������ (3)

computing its moments, [〈mk〉], k = 1, 2 and 4. We compute 
also the nematic order parameter λ together with the instan­
taneous nematic direction, d̂  which are the largest eigenvalue 
and the corresponding eigenvector respectively of the tensor 
Q̄ = 1

N

∑
i(3µ̂iµ̂i − Ī)/2. Q̄ is the orientational tensor and λ 

the related second rank order parameter of nematic liquids 
theory [36] and widely used in studies of dipolar systems [21, 
22, 37, 38], the value of the latter being expected to range 
from λ = 0 and 1.0 in the random and totally oriented cases 
respectively. Conversely to the true dipolar system, in the 
dipolar Ising model, the µ̂i can be replaced by the n̂i in Q̄ and 
both λ and d̂  become characteristic of the easy axes distribu­
tion of each sample and accordingly are first T*-independent 
and second totally determined by σ in the limit N → ∞ (obvi­
ously λ = 1 for σ = 0, otherwise we get λ � 0 for σ � π/2 
and for instance λ = 0.630 for σ = 0.40). The spontaneous 
magnetization can also be studied in the ordered phase from 
the projected total magnetization on the nematic direction 
[22], which defines

mλ =
1
N

∑
i

µ̂i.d̂.� (4)

Given the axial symmetry along ẑ in the present model, when 
σ � 0.8 we find that the sample to sample fluctuations of d̂  
around ẑ are vanishingly small and mλ is accordingly nearly 
indistinguishable from the z  −  component 〈mz〉 and therefore 
〈mλ〉 and 〈mz〉 play the same role. We compute the the mean 
m1 = [〈|mλ|〉] and the moments mn = [〈mn

λ〉], with n = 2, 4. 
To locate the transition temperature, Tc, as usually done, we 
will use the the finite size scaling (FSS) analysis of the Binder 
cumulant which is defined on the component mλ

Bm =
1
2

(
3 − m4

m2
2

)
.� (5)

From this normalization, Bm → 1 in the long range FM phase 
and Bm → 0 in the limit L → ∞ in the disordered PM phase. 
For the PM/SG transition, we consider the usual overlap order 
parameter

q =
1
N

∑
i

s(1)
i s(2)

i� (6)

where the superscripts (1) and (2) stand for two identical and 
independent replicas of the same sample. From q we calculate 
the mean value [〈|q|〉] and its moments, qk = [〈qk〉] with k  =  2, 
4, and the corresponding Binder cumulant,

Bq =
1
2
(3 − q4

q2
2
).� (7)

Figure 1.  Nematic order parameter, λ (solid symbols) and m2 (open 
symbols) for the dipolar system for σ = 0 and MAE coupling λu 
as indicated. L  =  6. T∗

c  is estimated from the crossing point of the 
Binder cumulant Bm with (L1, L2) = (4, 6).

Figure 2.  Phase diagram T∗
c (σ) determined from the magnetization 

Binder cumulant, Bm, open circles; the overlap SG order parameter 
Binder cumulant Bq, open squares. The SG/FM line is obtained 
from the L dependence of Bm(σ) at fixed T*, triangles. T∗

c  on the 
PM FM line obtained from the maximum of χm for L  =  8 (σ = 0
–0.4) or L  =  7 (σ = 0.5 and 0.6), diamonds and dashed line. 
Lines are guides to the eyes. For comparison, the transition points 
corresponding to the RCP case [15] are displayed as downward 
triangles. The line beyond σ = 0.8 is an interpolation to the value of 
T∗

c  corresponding to the random distribution (RAD), see (table 1).

J. Phys.: Condens. Matter 32 (2020) 135804
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Finally, the magnetic susceptibility, χm and the heat capacity , 
Cv are calculated from the magnetization and the energy fluc­
tuations respectively

χm =
N
T∗

(
m2 − m2

1

)
,

Cv =
1

NT∗2

[
〈H2〉 − 〈H〉2] .

� (8)

3.  Results

We first examine whether a dipolar system with uniaxial 
anisotropy of finite amplitude can be, at least qualitatively, 
represented by the present DIM. For this we note that the 
dipolar system on a FCC lattice with small or vanishing value 
of the uniaxial anisotropy present a PM/FM transition which 
is directly related to the onset of the nematic order measured 
from the tensor Q̄ [22, 37, 38]. Conversely the nematic order 
in the DIM is frozen and determined by the Ising axes dis­
tribution as mentioned in section 2. Therefore, we conclude 
on the Ising-like character of the PM/FM transition when the 
latter becomes uncorrelated from the onset of the nematic 
order. As an example we consider a totally textured system 
(σ = 0). The dipolar system is obtained by replacing in 
the hamiltonian (2) the n̂isi by the moments µ̂i and adding 
the uniaxial magnetocrystalline anisotropy energy (MAE) 
βEa = −(β/β0)εa

∑
i(n̂i. µ̂i)

2, the MAE coupling constant 
being defined by λu = εa/(εdΦ/Φr). We conclude from the 
evolution of λ(T∗) for the dipolar system across the PM/
FM transition shown in (figure 1) that the transition takes an 
Ising character for λu � 20 and is still qualitatively Ising like 
for λu ∈ [10, 20]. This means that when λu � 20, although 
the value of T∗

c  depends on λu the moments remain strongly 
aligned along the easy axes in the paramagnetic phase.

3.1.  Phase diagram

The global phase diagram in the plane (T∗,σ) of our textured 
dipolar Ising model whose determination is our main objec­
tive and is given on (figure 2), separates the three distinctive 
phases PM, FM and SG. The salient features are a strongly σ 
dependent T∗

c (σ) on the PM/FM line, a nearly constant T∗
c (σ) 

on the PM/SG line and a weakly reentrant behavior on the 
FM/SG line. On a qualitative point of view this compares 
with the phase diagrams of 3D Ising models entering in the 
Edwards–Anderson type with isotropic quenched bimodal 

Figure 3.  Left: m1 normalized by ms =
∑

i |niz| in term of (T∗ − T∗
c ) for L  =  7 and different values of σ as indicated. The lines result from 

interpolation by the histogram reweighting method [35]. Right: log–log plot of m1 in terms on N at T*  =  0.55 and different values of σ. 
Solid lines are guides to the eye.

Figure 4.  m1 normalized by ms =
∑

i |niz| in term of T* for different 
system sizes (N  =  4L3) and σ = 0 to 0.4 as indicated. The lines 
result from from interpolation by the histogram reweighting 
method.

J. Phys.: Condens. Matter 32 (2020) 135804
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exchange couplings either on simple cubic lattice [39–41] or 
on FCC lattice restricted to the FM side (non frustrated) [42]. 
The disorder parameter, the variance σ in our TAD model, is 
in the above models the probability p  of anti-ferromagnetic 
bonds, (equivalently probability of ferromagnetic bonds in 
the symmetric case of the simple cubic lattice). An important 
difference with the anisotropic bimodal 3D Ising models [43, 
44] is the strong dependence of Tc on the disorder parameter 
along the PM/SG line in the latter case. The phase diagram we 
get here is also qualitatively comparable to that of the diluted 
dipolar Ising model with parallel axes [28, 45] where the dis­
order parameter is the site dilution (1 − x) or equivalently the 
volume fraction φ when the latter is drawn in terms of our 
T∗ ∝ Φ. Indeed doing this, the strong dependence of T∗

c (Φ) 
on the PM/FM (or PM/AFM for the cubic lattice) remains and 
instead of the linear dependence of Tc on Φ found on the PM/
SG line, T∗

c  is obviously constant. In the following we present 
the details of both the determination of phase separation lines 
and the characterization of the nature of the phases.

3.2.  Ferromagnetic phase

We start from a general overview of the evolution of the fer­
romagnetic (FM) order parameter mλ(T∗) with increasing 
values of the texturation rate σ where the high texturation or 
ordered state corresponds to σ = 0. To compare the behavior 
of m1 with respect to T* with increasing values of σ, we take 
into account that the maximum value of the spontaneous 
magnetization z−component of a given sample is given by 
ms(σ) =

1
N

∑
i |niz| which corresponds to a configuration with 

all the moments up, si  =  +1, instead of ms  =  1 as in the case 
of the PAD model. We thus compare, on (figure 3), m1/ms for 
different values of σ and L  =  7 (N  =  1372 dipoles). As we 
confirm below, no noticeable change occurs in between σ = 0 
and 0.4. The drastic decrease of m1 and the related change in 
the nature of the ordered phase occurs beyond σ = 0.5. This 
qualitative picture is made more complete by looking at the 
system size dependence of the polarization at low temperature 
as can be seen in (figure 3) where m1 at T*  =  0.55 is shown 

Figure 5.  Reduced specific heat in unit of kb in terms of T* for different lattice sizes. Left σ = 0, right σ = 0.4.

Figure 6.  Magnetic susceptibility in terms of T* for different lattice sizes. Left σ = 0, right σ = 0.4.

J. Phys.: Condens. Matter 32 (2020) 135804
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in terms of N for σ ranging from 0.52 to 0.72 and lead us to 
conclude that at least for σ � 0.64 the polarization vanishes 
algebraically in the limit N → ∞, m1 ∼ N−p with p   =  0.13 
for α = 0.64 and 1/3 for α = 0.72. Accordingly a FM state up 
to σ ∼ 0.60 is expected.

Now we focus more precisely on the determination of T∗
c  

along the PM/FM line. Let us start by the small values of σ, as 
we know that at σ = 0, the model orders in a well defined FM 
phase [26, 27]. As seen above the FM phase can be very well 
evidenced by the behavior of the spontaneous magnetization, 
or m1 with respect to the temperature, namely a sharp increase 
of m1 below the critical temperature T∗

c  starting from the 

nearly vanishing value in the paramagnetic phase (see (figure 
4)). In (figure 4) we compare m1/ms for σ � 0.4 and different 
system sizes, L. We clearly get a quite similar behavior for 
all σ � 0.4, the main difference being the value of T∗

c . The 
main features are first a crossing point at a temperature close 
to T∗

c  below (above) which m1 increases (decreases) with L, 
the merging at low temperature of the m1 curves for the whole 
set of L-values meaning that m1 is then system size inde­
pendent and the saturation to m1/ms(σ) = 1 at T∗ → 0. Only 
this latter point seems to be not strictly fulfilled at σ = 0.4. 
The specific heat Cv and the susceptibility χm in terms of T 
are displayed on (figures 5 and 6). An important feature is the 
sharp peak at an effective size dependent T∗

c (L) with moreover 
a clear lambda-shaped curve for Cv. These are indicative of 
a singular behavior of both Cv and χm with the increase of 
L characteristic of the second order PM/FM transition. The 
expected scaling behavior of the values taken by Cv and χm 
at their maxima, say [Cv]

∗ and [χm]
∗, is beyond the scope of 

the present work. Nevertheless the location of these maxima 
define L-dependent pseudo critical temperatures, T∗

c (L, [Cv]
∗) 

and T∗
c (L, [χm]

∗).
Besides this qualitative evidence of a PM/FM transition 

and the L-dependent estimation of Tc through T∗
c (L, [Cv]

∗) and 
T∗

c (L, [χm]
∗), see (figure 2), the precise calculation of T∗

c  and 
characterization of the ordered phase is performed through the 
finite size scaling analysis of the Binder cumulant Bm.

The system considered in the present work are too small to 
provide a determination, or at least an actual check, of the uni­
versality class. Instead, we use the expected scaling behavior 
as a mean to determine both the nature of the transition and 
the value of the corresponding critical temperature, Tc. In the 
vicinity of the PM/FM transition, it is known that the upper 
critical dimension of the uniaxial dipolar Ising model is du  =  3 
and as a result the three dimensional dipolar Ising model con­
sidered here for σ = 0 and beyond for small values of σ must 
fall in the mean field regime at marginal dimensionality. From 
the known results of the renormalization group approach [26, 
46, 47], we have the following relevant scaling relations

Bm = fb(xrg) with xrg = L3/2 ln1/6(L/L0)t + v ln−1/2(L/L0) ; t =
T∗

T∗
c
− 1

χ = L3/2 ln(L/L0) fχ(xrg).�
(9)

As in [47], we first determine L0 in such a way that the max­
imum value of the scaled susceptibility is size independent 
and then determine both T∗

c  and v entering in the definition 
of xrg in such a way that the whole set of fb(xrg) collapse on 
a single curve. We have obtained a quite satisfying collapse 
of data from (9) for σ � 0.45 showing the FM character of 
the transition. In (figures 7 and 8) the result of f b is shown in 
terms of both T* and the scaling variable xrg for σ = 0 and 
0.4. From these curves, where the result of the optimum value 
of T∗

c  is visualized, it is clear that the curves Bm(L, T∗) cross 
around an estimation of T∗

c . However all pairs of curves do not 
cross strictly at the same point, since according to equation (9) 
at T∗ = T∗

c , Bm = fb(v ln−1/2(L/L0)) still depends on L. 
Consequently, the usual way to determine Tc from the crossing 
point of Bm necessitates an interpolation to the L → ∞ limit. 
The same behavior has been obtained by Klopper et al [26]. 

Figure 8.  Same as (figure 7) for σ = 0.4.

Figure 7.  Binder cumulant Bm in terms of both T* and the scaling 
variable xrg via t*(L). t*(L) is a L-independent linear transformation 
of xrg, (xrg − a)b + T∗

c  in order to put xrg and T* on the same scale 
and such that t∗(L = 5) = T∗ . The error bars are smaller than the 
symbol scales.
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Moreover we get a good agreement with the latter for the result 
of T∗

c  in the absence of disorder, namely T∗
c (JEA=0) = 4.459 

in [26] with our definition of T* , noting that T* in [26] is 
related to Φ = π/6, compared to our T∗

c (σ = 0) = 4.410. 
Beyond σ = 0.45, we cannot anymore collapse the set of Bm 
curves according to equation (9), but instead from a critical 
algebraic scaling, Bm(L, T∗) = fb(tL1/ν). The value we get for 
ν  is to be taken with care. Nevertheless it is worth to mention 
that we get ν = 0.70 and 0.693 for σ = 0.50 and 0.52 respec­
tively quite close to that of the randomly diluted Ising model 
universality class (ν = 0.683) [48]. From an interpolation of 
Bm(L, T∗) in terms of 1/L for the lowest temperature studied, 
T*  =  0.55, we still get Bm(L, T∗) → 1 in the limit L → ∞, 
evidencing a FM long range order (LRO), up to σ = 0.60. For 
σ � 0.62 the FM state looses the long range order and trans­
forms in a quasi long range order (QLRO) FM phase. This can 
be deduced from the size dependence of m2, indicative of the 
integral of the two points correlation function [49], displayed 
on (figure 9), in logarithmic scale for σ = 0.40 on the one 
hand and σ = 0.60 and 0.62 on the other hand. Indeed in the 
former case at low temperature m2 is size independent, then 
for larger values of T* and T∗ < T∗

c  m2 increases with N, and 
finally decreases with N when T∗ > T∗

c , in agreement with the 
behavior shown on (figure 4). Conversely when σ increases 
beyond σ = 0.60, the behavior in the ordered FM phase is 
consistent with an algebraic decrease of m2 with respect to 
N whatever T*, as expected in a QLRO FM phase. It is worth 
mentioning that no qualitative change is this decay is observed 
when T* gets smaller than T∗

c . The paramagnetic regime with 
m2 ∝ 1/N  is reached at large T* whatever the value of σ. The 
rise of the QLRO with the increase of σ can be visualized 
from the effective exponent ηeff  [49],

ηeff = 2 − D − ln(m2(L2))− ln(m2(L1))

ln(L2)− ln(L1)
� (10)

where D is the dimension of space and L1, L2 two values of 
the system size. At D  =  3 the long and short range orders 
correspond to ηeff   =  −1 and 2 respectively. The result for σ 
ranging from σ = 0 to 0.62 is shown on (figure 10) in terms of 

Figure 9.  Left: m2 in terms of N for σ = 0.40 and T∗ = 1.31, 2.00, 2.56, 2.96, 3.41, 4.52 from top to bottom. T*  =  2.56 and 2.96 bracket 
the critical temperature T∗

c = 2.90. The dashed lines are both proportional to 1/N, corresponding to the paramagnetic regime, only reached 
at the largest temperature considered. Right: m2 in terms of N for σ = 0.63 and T*  =  0.60, 1.20; 1.40; 1.60 and 3.0 from top to bottom. Also 
included for comparison the case σ = 0.60 for the two extreme temperatures, 0.60 and 3.50. The solid horizontal line indicates the values 
of m2 obtained for σ = 0.60 at T*  =  0.60. Solid lines are guides to the eye. The dashed lines indicates the 1/N decay of the paramagnetic 
regime.

Figure 10.  Effective correlation function exponent, ηeff  
from equation (10) with L = (6, 7) except for σ = 0.4 where 
(L1, L2) = (6, 8).
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(T∗ − T∗
c ): ηeff  reaches the LRO limit for σ � 0.52 and devi­

ates from the latter from σ > 0.60. Furthermore for σ � 0.66, 
Bm(T∗, L) at different L does not present a crossing point in 
T* indicating a lack of FM order suggesting that the system 
orders in a SG phase (see (figure 11)).

3.3.  Spin-glass phase

At a qualitative level, the behavior of Cv both in terms of T* 
and of the system size L provide a simple sketch of the change 
in the nature of the ordered phase when going from the PM/
FM to the PM/SG line. This is shown in (figure 12), giving a 
plot of Cv(T∗) for σ = 0.4 to 0.80 and in each case for L  =  4 

and 7. The shape of the Cv(T∗) curve evolves with σ con­
tinuously from the lambda-like shape with strong finite size 
effects mentioned in section 3.2 for σ ranging between σ = 0 
to 0.4 to a smooth curve with no noticeable finite size depend­
ence and thus no singularity expected in the L → ∞ limit, 
for σ > 0.6. This second type of shape for Cv is a well known 
feature of the PM/SG transition where neither a sharp peak at 
the transition temperature nor size anomaly effect is expected 
[50–52] with instead a broad peak at a value of T* slightly 
larger than T∗

c  as is the case for σ � 0.7 in (figure 12), a result 
confirmed from Monte Carlo simulations [25, 42]. Hence, 
we deduce that the ordered phase becomes a SG one for σ 
greater than a threshold value estimated in between 0.60 and 
0.70 in agreement with the results of section 3.2. Moreover, 
no noticeable change on Cv takes place beyond σ = 0.70 indi­
cating that the transition temperature depends only weakly on 
σ along the PM/SG line, as confirmed on the phase diagram 
of (figure 2). The precise determination of the PM/SG line is 
presented below.

A reliable localization of the multi-critical point, the 
common ending point of the PM/FM, PM/SG, and SG/FM 

Figure 11.  Binder cumulant relative to the overlap order parameter, Bq, left and to the magnetization, Bm, right for σ = 0.70. Inset: 
interpolation in terms of 1/L of Bm(T∗ = 0.55).

Figure 12.  Heat capacity, Cv in terms of T* for σ ranging from 
σ = 0.4 to 0.7 and in each case L  =  4 (solid symbols) and 7 (open 
symbols). For σ = 0.8, only the L  =  7 case is included since it 
hardly differentiates from the σ = 0.7 case.

Table 1.  Values of T∗
c  in terms of σ.

σ T∗
c Ordered phase

0 4.410(1) FM LRO
0.1 4.312(1) —
0.2 3.976(1) —
0.3 3.432(1) —
0.4 2.909(1) —
0.45 2.568(1) —
0.52 2.11(2) —
0.60 1.67(3) —
0.62 1.57(3) FM QLRO

0.70 1.12(4) SG
0.72 1.09(9) —
0.80 1.05(9) —
RAD 0.95(9) —
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lines is σ = 0.66. The criterion to definitely rule out a FM 
phase with QLRO when σ > 0.66 is the absence of crossing 
point between the curves Bm(L, T∗) for different L in the 
whole range of temperature. We can then conclude that Bm 
is a decreasing function of L whatever the temperature. On 
the other hand, the Binder cumulant curves related to the 
overlap order parameter, Bq defined by equation  (7) do pre­
sent a crossing point at T∗

c , the PM/SG transition temperature. 
This scenario is displayed in (figure 11) for σ = 0.7 where 
we include the dependence of Bm in terms of 1/L at the lowest 
temperature from which we expect Bm → 0 in the limit 
L → ∞ at low T*.

We determine the PM/SG transition temperature either 
from the crossing point of Bq or the collapse of data method as 
used in the PM/FM region with the algebraic form of scaling 
for Bq for σ � 0.7 in the vicinity of the scaling region, t  =  0. 

The results are summarized in (table 1) and represented on the 
phase diagram, (figure 2).

An important point concerns the nature of the SG phase 
since, in opposite to the result of the FM phase where a 
non ambiguous LRO is obtained for small values of σ, the 
SG phase presents an apparent QLRO, that can be deduced 
from the decay of q2 in terms of N shown in (figure 13). This 
point has been addressed in the diluted PAD and RAD models  
[14, 28] with the conclusion of a marginal SG phase char­
acterized by q2  =  0 in the N → ∞ limit. We investigate 
this problem having in mind as archetypal models the 2D 
XY model and the 3D bimodal Ising model (3D EAI) pre­
senting a KT transition with a line of critical points below 
Tc and a second order SG transition with a SG order below 
Tc respectively. We characterize the SG phase below T∗

c , by 
using the finite size behavior of Bq(L), q2 and the probability 

Figure 13.  Left: q2 in terms on 1/N for σ = 0.72 and T∗ = 0.55 0.70 0.95 1.20 and 3.0. Solid lines are guides to the eye. The dashed 
line on top corresponds to the fit of q2 in terms of 1/L. The dashed line on bottom corresponds to the 1/N dependence of the paramagnetic 
regime. Right: ηeff  determined from equation (10) with q2 in place of m2 and (L1, L2) = (6, 7). The vertical line indicates T∗

c .

Figure 14.  Left probability distribution P(q) of the overlap order parameter for σ = 0.72 and T*  =  0.55 for different values of L as 
indicated. Right scaling plot of P(q) at T*  =  1.10.
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distribution P(q) of the overlap order parameter. P(q) is char­
acterized by two broad peaks located at ±qM and a plateau 
with a non vanishing value at q  =  0. Beside the values of the 
critical exponents, the features of the EAI spin-glass phase 
are [53, 54] (i) the clear-cut crossing point of the Bq(L) curves 
at T∗

c ; (ii) the non vanishing value of q in the L → ∞ limit, 
while the marginal or KT phase transition is characterized 
by [53, 54] (i) the merging of the Bq(L) curves below T∗

c ; (ii) 
a vanishing value of q in the L → ∞ limit. The point (i) is 
not strictly discriminating since a crossing behavior has been 
obtained in the KT case [55, 56], with however a very small 
splitting of the curves below Tc. A reliable determination of 
the critical exponents, and in particular η, is far beyond the 
scope of this work given the computing efforts necessary for 
this task even on the short range coupling case of the the 3D 
Ising spin glass [56, 57]. The question to answer to discrimi­
nate if the SG is a marginal one (of the Kosterlitz–Thouless 
nature [58]) or a second order one like that of the EAI model, 
is whether q2  =  0 or q2 �= 0 in the N → ∞ limit deep inside 
the SG phase. From our present simulations, we cannot dispel 
completely a finite limiting value for q2 in the L → ∞ limit for 
T* well below T∗

c  the lattice sizes considered being too small. 
Nevertheless, by using the whole set of T∗ � T∗

c , we are lead 
to conclude that only a fit of q2 according to q2 ∼ L−(1+η), 
i.e. with q2(∞) = 0, with a T*-dependent value of η repre­
sent our simulation results. This result for η can be deduced 
from equation (10) with q2 in place of m2, see (figure 13). It is 
worth mentioning that the curve ηeff  is close to that expected 
for the KT transition [49, 59]. Moreover, using the value thus 
obtained for η at T∗

c  we find that the distribution P(q) satisfies 
the scaling: L−(1+η)/2P(q) = fP(qL(1+η)/2), for instance at 
σ = 0.72 (see (figure 14)) a value chosen sufficiently far from 
the multicritical point.

Then for our model, the argument in favor of a second 
order SG phase is the clear-cut crossing point obtained on the 
set of Bq(L), from which in principle one is lead to conclude 
to a well defined transition temperature, T∗

c . However, the SG 
QLRO phase obtained very likely satisfies q2(N → ∞) = 0 
which corresponds to a marginal SG phase as was concluded 
in [14, 28].

3.4.  Ferromagnetic spin-glass line

In this section we focus on the FM/SG line, below the PM 
ordered transition temperature. We exploit the dependence 
with respect to L of the magnetization Binder parameter, Bm 
since it is an increasing or decreasing function of L in the FM 
or SG phases respectively. Therefore we consider at fixed 
values of T* the evolution of Bm in terms of σ as is done in 
[44] in the case of the anisotropic EA bimodal model. The first 
issue to be solved is whether the phase diagram presents reen­
trant behavior, namely if the FM/SG line is strictly vertical 
or not. We have already localized the value of σ at the multi- 
critical point and we are left to determine the slope of the FM/
SG line with respect to T* with sufficient precision to discrim­
inate from the vertical line. This is done by using first the two 
isothermal lines T*  =  0.55 and T*  =  1.0. The result for the 
evolution of Bm(L,σ) is shown on (figure 15) together with 
the crossing points thus determined on the FM/SG line for 
these two temperatures. In spite of the numerical uncertainty, 
we clearly get the inequality σc(T∗ = 0.55) < σc(T∗ = 1.0) 
for the critical values of σ on these isotherms. The other points 
of the FM/SG line on (figure 2) are determined in the same 
way and locate to a good approximation on the straight line 
defined by σc(T∗ = 0.55) and σc(T∗ = 1.0).

According to the results of section  3.2, the FM/SG line 
separates the spin-glass and the FM one. It seems difficult to 
precisely locate from our calculations a clear frontier between 
the true LRO and the QLRO FM regions in the phase diagram, 
but for instance from the behavior of ηeff , see (figure 10) or 
m2 in terms of N, (figure 9), we can roughly locate the QLRO 
FM region between the PM/FM, FM/SG lines and σ � 0.62.

4.  Conclusion

In this work we have determined the phase diagram of the 
textured dipolar Ising model on a well ordered FCC lattice. 
The texturation of the Ising axes is represented by a gaussian 
like probability of their polar angles characterized by the vari­
ance σ which is then the disorder control parameter in the 
system. The determination of the phase diagram is based on 
a finite size scaling analysis of the relevant order parameters 
for either the FM or the SG phase. For σ < 0.66 we get a 
PM/FM transition, with a LRO in the ferromagnetic phase for 
σ � 0.60 while in between σ = 0.60 and the occurrence of 
the SG phase a QLRO phase with ferromagnetic character is 
obtained. In the range of system sizes studied here it seems 
difficult to definitely conclude on the nature of the SG phase, 
but nevertheless and despite of the crossing behavior of the 
curves of the Binder cumulant relative to the overlap order 

Figure 15.  Binder cumulant Bm in terms of σ at fixed temperature 
as indicated on the figures. The vertical lines indicate the 
corresponding SG/FM transition temperatures.
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parameter Bq we are led to believe that it is a marginal spin 
glass phase. This conclusion results from the behavior of q2(N) 
and the resulting T*-dependent ηeff  (see (figure 13)). Finally 
a reentrance around the SG/FM line has been obtained. The 
phase diagram obtained, (figure 2), looks qualitatively like 
those obtained from short range FM/AFM Ising models on 
simple cubic lattice or the FM/AFM Ising model on FCC lat­
tice on the FM side. A common feature is the flat T∗

c  PM/SG 
line in terms of the disorder parameter. Given the complexity 
of the computations involved, it is interesting to note that a 
first rough estimation of the PM/FM line and the location of 
the multicritical point can be obtained from the evolution with 
σ of the finite size behavior of the specific heat Cv or the sus­
ceptibility χm and the FM order parameter m1.

The comparison with the phase diagram of the DIM with a 
RCP structure instead of the well ordered FCC lattice, obtained 
recently [15], is important since it present a great similarity 
when displayed in the (T∗

c ,σ) plane (see (figure 2). Indeed, 
once the average effect of the difference in volume fraction 
is taken into account through our definition of the reduced 
temperature the main difference appears to be a shift of the 
RCP transition lines relative to the FCC ones towards smaller 
values of σ as expected since the RCP structure introduces an 
additional source of disorder. Such a similarity is of course not 
expected for disordered systems at low concentration.

Finally we note that the range of values of σ where the 
LRO FM phase transforms first in the QLRO and then in 
the SG phase (σ ∼ 0.60–0.66) corresponds to the onset of a 
non vanishing population of easy axes with Θ ∼ π/2 from 
equation (1).
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