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1 Introduction

Cosmic inflation solves the horizon, flatness, and monopole problems of the Big Bang cos-
mology by postulating a quasi-exponential (i.e. quasi-de Sitter (dS)) accelerated expansion
period. The quantum fluctuations in the quasi-de Sitter spacetime are squeezed after exiting
the horizon, and they become classic fluctuations. In this way, inflation also provides the
seeds of large scale structure of the universe. The predictions of vanilla single-field slow-roll
inflation such as adiabatic, Gaussian, almost scale-invariant perturbations are so far consis-
tent with the precise observations of the cosmic microwave background (CMB) [1]. We do
not yet know, however, the detailed properties such as the inflationary energy scale and the
canonical inflaton field range which is traversed during inflation.

Compared to the observational status of inflation, its theoretical ground remains less
established. For example, it is known to be difficult to construct a dS spacetime in Superstring
Theory. In particular, a conjecture to prohibit dS was recently proposed [2] and subsequently
refined [3–8]. It requires

|∇V | ≥ cV or min (∇i∇jV ) ≤ −c′V, (1.1)

where c, c′ > 0 are some universal constants of order unity, and we use the reduced Planck
unit. The conjecture is one of the Swampland conjectures [9, 10]: a field theory which
cannot be consistently coupled to a quantum theory of gravity is said to belong to the
Swampland (rather than the Landscape of Superstring Theory). It was soon pointed out
that the Swampland dS conjecture is in tension with the inflationary interpretation of the
CMB data depending on the numerical factors in the conjecture [6, 11–17].

There is also the Swampland distance conjecture [10]. The statement is as follows:
when the field moves longer than the Planck distance, ∆φ� 1, there appear towers of light
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particles whose masses scale as m ∼ e−c
′′′∆φ where c′′′ is an O(1) constant, which would

modify the effective field theory. Thus, it effectively requires

∆φ < c′′, (1.2)

where ∆φ is the field distance, and c′′ is another O(1) constant. Applied to the inflaton, this
can forbid large-field models of inflation.

Recently, Bedroya and Vafa proposed the Trans-Planckian Censorship Conjecture
(TCC) [18, 19]: if a theory has a mode which has initially a sub-Planckian wavelength
and afterwards exits the Hubble horizon, the theory belongs to the Swampland. This is a
change of viewpoint on the trans-Planckian problem of inflation [20–25], which itself has been
known for a while. The TCC may seem to lack theoretical supports at first sight, but it has
nontrivial relations, for instance, with other Swampland conjectures, energy conditions, and
the scrambling time [18]. The TCC puts an upper bound on the e-folding number for a given
inflationary energy, thus forbidding a complete dS, in a similar spirit with the dS conjecture
(see also refs. [4, 26–29]). Another consequence of the TCC is an upper bound on the infla-
tionary energy scale V 1/4 < 6.9×108 GeV and the flatness of the potential ε < 1.3×10−32 [19].
Since typical (polynomial) large-field models predict a much larger energy scale along with
a large tensor-to-scalar ratio r = 16ε, the TCC seems to imply small-field inflation, which is
consistent with the distance conjecture. See refs. [30–38] for other discussions on the TCC.

In this paper, we discuss what kinds of a small-field inflation potentials are consistent
both with the TCC and the CMB data. We do not assume the de Sitter conjecture because
it seems too strong a constraint in the field space except for the asymptotic region (We come
back to this point in the final section). Differently from the other Swampland conjectures,
the TCC gives indirect constraints on the parameters in the Lagrangian through a direct
constraint on the e-folding number for any physically possible initial conditions, so we will
explore further consequences of the conjecture. After a brief review on the TCC in section 2,
we discuss the viability of typical inflation models particularly focusing on a model whose
potential has a limited flat region and monotonically increases in the region relevant for
inflation. Two main conclusions drawn from section 3 is that we expect a sizable negative
running spectral index and that the maximally possible total e-folding number is typically
twice or more compared with that required to explain the CMB fluctuations. A summary
and discussions are given in section 4. In appendix A, we consider an initial condition
not discussed in the main text. Appendix B generalizes the analyses in section 3.3. The
maximum e-folding number for thermal inflation and its relation to the TCC are discussed
in appendix C.

2 Trans-Planckian Censorship Conjecture

Here, we review the TCC. Quantitatively, it is given by

Ntotal < log

(
MP

Hf

)
, (2.1)

where Ntotal = ln(af/ai) is the total e-folding number in a given period, H = ȧ/a is the
Hubble variable, MP = 1 is the reduced Planck mass, and the subscripts i and f denote the
initial and final time. For applications to inflationary cosmology, we often regard Ntotal as
the total e-folding number of inflation and Hf as the Hubble parameter during inflation, or
more precisely that at the end of inflation Hinf.

– 2 –



J
C
A
P
0
1
(
2
0
2
0
)
0
0
8

The above inequality is an upper bound on Ntotal, but there is a lower bound on Ntotal

which requires successful inflation. Namely, there is the condition that the mode whose length
is the current horizon size must be within the Hubble horizon at some time during inflation:

Ntotal > Nhor, (2.2)

with

H−1
0 = eNhor

(
90H2

inf

g∗(TR)π2T 4
R

) 1
3(1+w)

(
g∗,s(TR)

g∗,s(T0)

) 1
3
(
TR

T0

)
H−1

inf , (2.3)

where for simplicity we neglect the time dependence of Hinf; g∗(T ) and g∗,s(T ) are the effective
relativistic degrees of freedom for energy density and entropy density, respectively; w is the
equation-of-state parameter during reheating, which we take as a constant, and TR and T0

are the reheating temperature and the current temperature.
The condition on V that there is some window for Ntotal opening between these

inequalities is

V

3H0

(
g∗(TR)π2T 4

R

30V

) 1
3+3w

(
g∗,s(T0)

g∗,s(TR)

) 1
3 T0

TR
≤ 1. (2.4)

In particular, for the matter-dominated era w = 0 before reheating (realized by coherent
oscillation of inflaton),

V < (6.9× 108 GeV)4

(
TR

2.8× 108 GeV

)− 1
2
(
g∗(TR)

106.75

)− 1
2
(
g∗,s(TR)

106.75

) 1
2

, (2.5)

where we have used H0 = 67.27km/s/Mpc [39] and T0 = 2.725K [40]. These bounds translate
to the upper bound on the slow-roll parameter ε = (1/2)(V ′/V )2,

ε < 1.3× 10−32

(
TR

2.8× 108 GeV

)− 1
2
(
g∗(TR)

106.75

)− 1
2
(
g∗,s(TR)

106.75

) 1
2

, (2.6)

where this representative value corresponds to the upper bound on the tensor-to-scalar ratio
r = 16ε < 2.1× 10−31. More general choices of w or multiple stages of inflation were studied
in refs. [33, 35, 36].

Later, we will introduce relations between Ntotal and NCMB. The latter is defined as the
e-folding number between the horizon exit of the CMB modes and the end of inflation. The
CMB scale is defined as the pivot scale k∗ = 0.05 Mpc−1 [1], so its relation to the horizon
scale is given by

Nhor −NCMB = log
k∗
H0
≈ 5.4. (2.7)

3 TCC and the shape of inflaton potential

Let us discuss the possible shape of the inflaton potential. Because the TCC has to be
satisfied for any initial conditions [18], an immediate consequence is that we cannot have a
plateau-type potential. In particular, the small α limit of α-attractor models of inflation [41–
50], which can easily realize a tiny tensor-to-scalar ratio r ∝ α, is forbidden unless the shift
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symmetry of inflaton is broken. This is because if the inflaton’s initial value is on top of the
plateau with a negligible velocity, it easily exceeds the e-folding number allowed by TCC.

The remaining possibility for the small-field inflation with a tiny ε is either the hilltop-
inflation type [51–53] or the inflection-point-inflation type [54–58]. In the case of hilltop
inflation, the condition for eternal inflation was studied in ref. [59] by assuming a simple
constant-plus-monomial potential, V = V0(1− (φ/µ)p) with p even. It was shown that there
always exists an initial condition for the eternal inflation to be induced around the top of the
potential under the condition that µ is chosen to fit ns ' 0.96. Of course, eternal inflation
is inconsistent with the TCC. It is remarkable that almost all (if not all) the universality
classes of inflation [60–63] are incompatible with the TCC.

Below, we consider inflaton potentials which have a limited flat region and an inflection
point in two complementary approaches. In section 3.1, we take a “model-independent”
phenomenological description in which we expand the inflaton potential as Taylor series
around the CMB scale. In this approach, it is clear that the total e-fold can be as twice as
one necessary for the CMB as long as the expansion approach itself is meaningful. Also, a
qualitative argument shows a need for a sizable cubic term, which corresponds to a sizable
negative running spectral index. Some O(1) uncertainties are unavoidable in this approach,
and we move to a more concrete approach in sections 3.2 and 3.3. We will see that analyses
in such concrete setups support our two main claims: a sizable negative running spectral
index and an O(100%) tighter lower bound on the maximally possible e-folding number (as
we vary the initial conditions).

3.1 Expansion around the CMB scale

Let us expand the inflaton potential around the CMB pivot scale, φ = φCMB + ϕ,

V = V0

(
1 +
√

2ε0ϕ+
1

2
η0ϕ

2 +
1

3
µϕ3 + . . .

)
, (3.1)

where we shifted the coordinate origin so that ϕ = 0 corresponds to the CMB scale, V0 <
6.4×10−39 and ε0 < 1.3×10−32 satisfy the TCC constraint, and η0 ' −0.02 is the value of the
second slow-roll parameter η = V ′′/V which fits the spectral index ns = 1−6ε+ 2η ' 1 + 2η,
whose observational value is ns = 0.9649 ± 0.0042 (68% confidence level (CL); Planck 2018
TT,TE,EE+lowE+lensing) [1]. Our convention is that inflation starts from a positive ϕ and
it rolls down in the negative direction. Here, we do not aim to explain the values of the
slow-roll parameters ε0 and η0 at the pivot scale. They appear in the coefficients just by
construction in this phenomenological description. As mentioned above, the pure quadratic
potential leads to eternal inflation, so the TCC necessitates the higher-order terms.

First, let us simply assume that the higher-order terms are negligible until the point
where the linear and quadratic terms become comparable. (We will shortly see that we have
to loosen this assumption.) When we compare two terms, we compare their contributions to
the slope (first derivative) of the potential,

V ′ = V0

(√
2ε0 + η0ϕ+ µϕ2 + . . .

)
, (3.2)

since the slow-roll parameter ε(ϕ) is the relevant quantity. In this case, the field range where
the linear approximation is valid in this description is

∆ϕ ' 2×
√

2ε0
|η0|

' 100
√

2ε0 < 2× 10−14, (3.3)
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where 2 has been multiplied to take into account both ϕ > 0 and ϕ < 0 regions. This factor
2 is trivial in this example, but we emphasize that it is expected model-independently as long
as the expansion around the CMB point makes sense. In this range, the slope is dominated
by the linear term. The possible e-folding number during slow-roll in this whole range is
estimated as

∆ϕ

∂ϕ/∂N
' 2

|η0|
' 100, (3.4)

where we have used ∂ϕ/∂N = V ′/V =
√

2ε0. This is typically larger than the TCC bound
and marginally larger than that even if we take the minimally allowed inflation energy con-
sistent with Big-Bang nucleosynthesis.

Of course, it is a nontrivial question of how to realize such a maximum possible slow-
roll, which is essentially the initial condition problem of small-field inflation models. This
is a separate issue distinguished from the TCC. However unnatural the initial condition is,
it needs to be consistent with the TCC condition. Therefore, finding one possible e-folding
number in a model gives rise to a lower bound on the maximum possible total e-folding
number Nmax

total = max
initial conditions

Ntotal (while the total number is upper bounded by the TCC).

To fix the above problem, we need to have a somewhat larger cubic term with a positive
µ. This makes the slopes in both ϕ > 0 and ϕ < 0 regions steeper. If the sign is opposite,
there is still a hilltop in the ϕ > 0 region, and also the ϕ < 0 region is flatter, increasing
the e-folding number. On the other hand, if the cubic term is suppressed by some reasons
and the quartic term dominates over the cubic term, it is not efficient to make it consistent
with the TCC. For example, V0λϕ

4 in the potential with λ > 0 makes the slope flatter in
the ϕ < 0 region, and λ < 0 does not eliminate the hilltop in the ϕ > 0 region. In principle,
one could rely on higher odd-order terms like φ5 or φ7, but in which case one has to explain
why all the lower order terms are suppressed. Thus, in simple generic cases, a positive cubic
term is necessary.

Just before the ϕ reaches the point where the linear and cubic term contributions are
comparable, the order of magnitude of ε is still same as that at the CMB scale. Therefore,
we assume that all higher-order terms conspire to add up and end inflation quickly after
they become comparable. This corresponds to a conservative estimate on the amount of
e-folding. In this regime, our expansion approach completely breaks down. Still, working
with the linear term before going into such a dangerous regime is a self-consistent working
assumption [19].

To satisfy ∆ϕ
∂ϕ/∂N = Ntotal for a given e-folding number Ntotal, we take

µ ' 4√
2ε0N2

total

. (3.5)

Here, the notation Ntotal implies that we assume that inflation ends soon after the cubic term
(and other higher-order terms) become relevant and the linear approximation breaks down,
as discussed in the previous paragraph. In this case, the total e-folding number is nothing
but twice as the e-folding experienced during inflation in ϕ < 0 region,

Ntotal ' 2NCMB. (3.6)

Note that the cubic term is related not only to Ntotal but also to the running spectral
index. The third slow-roll parameter ξ2 = V ′V ′′′/V 2 is evaluated as ξ2 = 2

√
2ε0µ. The
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running of the spectral index αs = 16εη − 24ε2 − 2ξ2 is negative,

αs ' −4
√

2ε0µ ' −
16

N2
total

. (3.7)

The Planck 2018 TT,TE,EE+lowE+lensing constraint is αs = −0.0045 ± 0.0067 at 68%
CL [1]. This gives an approximate constraint on Ntotal as follows,

Ntotal & 38. (3.8)

The future prospect of the precision of αs measurement is 3× 10−4 [64]. If the central value
is unchanged, the constraint becomes Ntotal > 58. In this case, the upper bounds on the

inflation scale and the tensor-to-scalar ratio become V
1/4

inf < O(106) GeV and r < O(10−42),
respectively.

Note that the above discussion neglects O(1) coefficients for the estimation of µ, whose
uncertainty exponentially propagates to the upper bound on V and r. Nevertheless, this
analysis implies that, for a given inflation model, one has to be careful about the constraint
from the running of the spectral index.1

In fact, we will see that stronger bounds on αs are obtained, and longer total e-folding
numbers (Ntotal > 2NCMB) are obtained, in the following subsections. The main reason for
such a difference is due to the fact that we assumed in this subsection that inflation ends
when higher-order terms become comparable to the linear term, but the slow-roll conditions
can be maintained for a while after this point in the inflation models studied below. In this
sense, the estimates in this subsection can be regarded as conservative.

3.2 Concrete model analysis 1: renormalizable quartic potential

To discuss the implications of the TCC more concretely, let us consider an example model.
We begin with the renormalizable (quartic) potential

V =
1

2
m2φ2 − 1

3
µφ3 +

1

4
λφ4. (3.9)

We required that the cosmological constant vanishes at the vacuum φ = 0, i.e. V (φ = 0) = 0.
We exchange the parameters (m2, µ, λ) to a different set (φ0, ∆, λ): m2 ≡ λ(φ2

0 + ∆2) and
µ ≡ 2λφ0, which will be useful below. We take φ0 > 0 as a convention. This parametrization
is designed so that the first derivative of the potential has the form

V ′ =λφ
(
(φ− φ0)2 + ∆2

)
. (3.10)

That is, the slope vanishes at φ = 0 and φ = φ0 in the limit ∆ = 0. The point φ = φ0 is also
an inflection point in the limit ∆ = 0. The model in this limit is known as the renormalizable
inflection point inflation model [67–69]. The small parameter ∆ is introduced to tune the
shape of the potential. Note that eternal (or at least very long) inflation can occur at φ = φ0

in the absence of ∆, so we definitely need a nonzero ∆.
For our analyses, it is convenient to redefine the origin of the field, φ = ϕ + φ0, and

make the field ϕ and the mass dimensional parameter ∆ dimensionless:

ϕ = φ̃φ0, ∆ = ∆̃φ0. (3.11)

1In [65], it was pointed out that the present bound on the running spectral index is sufficient to prevent
eternal inflation. The relation between the short e-folding number and the running spectral index was also
discussed in ref. [66].
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Variables with a tilde are dimensionless. The potential now reads

V =
λφ4

0

12

(
1 + φ̃

)2 (
1− 2φ̃+ 3φ̃2 + 6∆̃2

)
. (3.12)

By construction, inflation occurs at a region close to φ̃ = 0 (φ = φ0), and ∆̃ is also
introduced as a tiny parameter. Therefore, we self-consistently assume |φ̃| � 1 during
inflation and ∆̃� 1.

First, let us discuss the e-folding number. Using the slow-roll formula,

1√
2ε

=
φ0(1 + φ̃)(1− 2φ̃+ 3φ̃2 + 6∆̃2)

12(φ̃2 + ∆̃2)
. (3.13)

Note that the dominant contribution to the e-folding number comes from the region where φ̃ is
at most comparable to ∆̃ so that the denominator gets suppressed. As anticipated above, for
such a region, it is a good approximation to take |φ̃| � 1, which gives 1/

√
2ε ' φ0/12(φ̃2+∆̃2).

Using this, the e-folding number is obtained as

N =

[
φ2

0 arctan(φ̃/∆̃)

12∆̃

]φ̃=φ̃begin

φ̃=φ̃end

. (3.14)

Note that arctan(x) grows linearly as x from arctan(0) = 0, quickly reaches a half of maximum

value at x = 1 as arctan(1) = π/4, and then saturates soon, e.g. arctan(10)
limx→∞ arctan(x) = 93%, and

finally asymptote to the final value limx→∞ arctan(x) = π/2. This means that the substantial
e-folding number comes only from the region around φ̃ . O(∆̃). The asymptotic value of
the total available e-folding number in the slow-roll region is

Ntotal =
πφ2

0

12∆̃
, (3.15)

where we have considered both φ̃ < 0 and φ̃ > 0 regions. Inverting this, one obtains
∆̃ = πφ2

0/12Ntotal.

Next, we consider the second slow-roll parameter η to explain the spectral index ns. At
the CMB scale, η can be approximated as

η =
12(2φ̃+ 3φ̃2 + ∆̃2)

φ2
0(1 + φ̃)2(1− 2φ̃+ 3φ̃2 + 6∆̃2)

' 24φ̃

φ2
0

, (3.16)

where we assumed 1 � |φ̃| � ∆̃2 at the CMB scale. Numerically, this assumption is well
satisfied in the parameter region of our interests. For a given input value of η, one obtains
the field value at the CMB scale as φ̃ = ηφ2

0/24.

The first slow-roll parameter at the CMB scale can be fit by φ0 by solving

ε '
φ6

0(η2N2
total + 4π2)2

4608N4
total

, (3.17)

where we have used ∆̃ = πφ2
0/12Ntotal and φ̃ = ηφ2

0/24.
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Finally, the relation between NCMB and Ntotal can be found by solving

NCMB =
Ntotal

2
− φ2

0

12∆̃
arctan

(
|φ̃|
∆̃

)

=
Ntotal

2

(
1− 2

π
arctan

(
|η|Ntotal

2π

))
. (3.18)

We also calculate the running spectral index αs. Using the same approximation as above
valid at the CMB scale, we have the third slow-roll parameter

ξ2 =
288(1 + 3φ̃)(φ̃2 + ∆̃2)

φ4
0(1 + φ̃)3(1− 2φ̃+ 3φ̃2 + 6∆̃2)

' η2

2
+

2π2

N2
total

, (3.19)

where the term proportional to η2 is numerically subdominant, and this gives

αs ' −
4π2

N2
total

. (3.20)

For the consistency check of |φ̃| � ∆̃2, we take the ratio

|φ̃|
∆̃2

=
6|η|N2

total

π2φ2
0

, (3.21)

where η is evaluated at the CMB scale. This is large because the model is a small-field model
φ0 � 1, so the above assumption is self-consistent.

For a given inflationary energy scale Vinf, NCMB is determined from the requirement
to solve the horizon problem under an assumption of reheating history. Using NCMB and
the ns data, we can deduce the total available e-folding number in the slow-roll region Ntotal

from eq. (3.18). This gives a lower bound on the maximum total e-folding number Nmax
total =

max
initial conditions

Ntotal. Such a constraint is shown in figure 1. For degrees of freedom, we

assume that of the Standard Model and used the tabulated data given by ref. [70].
In the figure, we also draw the potential lower bound on Nmax

total assuming that the lower
bounds on αs are obtained as -0.005, -0.010, -0.015, and -0.020, corresponding to the solid,
dashed, dot-dashed, and dotted magenta lines, respectively. The lines are horizontal since
αs and Ntotal are in one-to-one correspondence as in eq. (3.20). The relation is insensitive
to the inflation energy scale or NCMB because the running is essentially contributed by the
cubic term around the inflection point, i.e. the dependence on φ̃ = φ̃(NCMB) shows up in
subdominant terms. If we take αs & −0.004, there is no allowed region. Thus, the TCC puts
an upper bound on the value of the running spectral index in this model,

αs . −4.0× 10−3. (3.22)

Because of the possible additional e-folding number (the additional e-folds here refers
to the number of e-folds before the CMB scale mode exists the horizon), the upper bounds
on the inflation energy and the tensor-to-scalar ratio become tighter

V
1/4

inf <3.0× 104 GeV, r <7.2× 10−49, (3.23)

where the instantaneous reheating is assumed. If we consider a matter-dominated era ending

with the reheating temperature TR = 4 MeV [71–73], the constraints become V
1/4

inf < 8.7 ×
105 GeV and r < 5.1× 10−43.
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Figure 1. Constraints on the maximum total e-folding number Nmax
total as a function of the the

inflationary energy scale V
1/4
inf . The purple shaded region is excluded from the TCC constraint, (2.1).

The blue shaded region is excluded by the horizon problem, (2.2), (Solid: the highest possible TR =
(30Vinf/π

2g∗(TR))1/4; dashed: the lowest possible TR = 4 MeV). The green region is excluded by the
additional e-folding number (e-folds before the CMB scale mode exits the horizon) discussed in this
paper under the condition that ns is consistent with the Planck data [see eq. (3.18)] (Solid: the highest
possible TR = (30Vinf/π

2g∗(TR))1/4; dashed: the lowest possible TR = 4 MeV). The intersection of
the purple line and the green line gives eq. (3.23). The solid, dashed, dot-dashed, and dotted magenta
lines are lower bounds on Nmax

total when the lower bound on αs is given as -0.005, -0.010, -0.015, and
-0.020, respectively [see eq. (3.20)].

3.3 Concrete model analysis 2: α-attractor with broken shift symmetry

To reproduce the tiny ε, the α-attractor [41–50] may be a good starting point. Of course, it
is a plateau type model, so the shift symmetry of the inflaton must be broken, such that the
plateau has only a finite field range not to conflict with the TCC. For this type of model, the
asymptotic (φ�

√
3α/2) behavior of the potential is generically

V = V0

∑
n≥0

(
cne
−n

√
2
3α
φ

+ dnε
n
bre

n
√

2
3α
φ
)
, (3.24)

where α > 0 is a parameter, cm and dn are dimensionless coefficients of order unity, and
εbr � 1 is a symmetry breaking parameter, whose smallness is technically natural [74].
Without the breaking terms (εbr = 0), the prediction of the α-attractor is given by

r =
12α

N2
, ns − 1 =− 2

N
, αs =− 2

N2
. (3.25)

One can see that r becomes arbitrarily small in the limit α → 0. Also, in the limit εbr = 0,
eq. (3.24) can be viewed as an expansion around φ→∞ where the shift symmetry becomes
better and better. Quantum consistency of such a potential is shown in ref. [75]. This
expansion can also be interpreted as a power series expansion of the potential in the defining
frame (before field redefinition) of α-attractor models. On top of such a potential, we added
technically natural breaking terms, which is a power series with respect to εbr.

– 9 –



J
C
A
P
0
1
(
2
0
2
0
)
0
0
8

Let us consider the potential

V = V0

(
1− (1 + εbr)e

−
√

2
3α
φ

+ εbre

√
2
3α
φ
)2

, (3.26)

where εbr(> 0) in the second term is just to ensure V (φ = 0) = 0 is the minimum. The last
term is responsible for the exponential rising of the potential which breaks the plateau. This
kind of rising of the potential (and the power suppression of the curvature perturbations at
low multipoles) has been discussed in the literature in various contexts; see e.g. refs. [76–79].
The above form of the potential sets the global property of the potential, e.g. there are no
local minima. For our purposes to analyze inflationary quantities, we can safely neglect the
higher-order terms. Thus, we work with

V =V0

(
1− 2e−λφ + 2εbre

λφ
)
, (3.27)

which keeps the leading terms in the expansion in eq. (3.24) and matches eq. (3.26). We also
introduced a new parameter λ ≡

√
2/3α (� 1) for a shorthand notation.

The slow-roll parameters are

ε = 2λ2
(
e−λφ + εbre

λφ
)2
, (3.28)

η = 2λ2
(
−e−λφ + εbre

λφ
)
, (3.29)

ξ2 = 4λ4
(
e−λφ + εbre

λφ
)2
. (3.30)

where we neglected terms higher-oder in e−λφ and in εbre
λφ. The e-folding number in the

slow-roll regime is

N =

[
arctan[

√
εbre

λφ]

2
√
εbrλ2

]φ=φ

φ=φend

, (3.31)

where φend is determined by η = −1, where slow-roll formulas become invalid. In our setup,
ε is still much smaller than unity when this happens, but the e-folds between the end of
slow-roll and the end of inflation (the inflation could persist without satisfying the slow-roll
conditions) is small because of the rapidly increasing inflaton velocity. The above e-folding
expression reduces to eλφ/(2λ2) in the limit of εbr → 0.

To discuss the maximum total e-folding number, imagine that the upper-end value of
φ in eq. (3.31) is increased. When φ becomes sufficiently large that the correction term
becomes relevant, it becomes hard to earn additional e-folding numbers. As φ goes further,
the validity of slow-roll ends at some point φ = φbegin where η = 1. We can extend the slow-
roll analysis up to this point, so we consider the total e-folding number Ntotal from this point
to the point where (slow-roll) inflation ends. One may consider different initial conditions
such that φ moves from much further point in the field space where slow-roll is not possible
but inflation is still possible (for example ε� 1 and η � 1), but the inflaton will gain a large
velocity in this region, and it will quickly pass the flat region which can support slow-roll
dynamics. (We consider another initial condition in appendix A in which inflaton first rolls
up the potential and then rolls down, but the e-folding number during the rolling-up phase
turns out to be small. The analyses in this appendix also implies that the e-folds available
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from such a fast motion is limited.) Therefore, we do not consider such initial conditions.
We consider an initial condition in which φ begins to slow-roll the potential from φ = φbegin,
passes through the CMB point φCMB, and reaches φend. As already mentioned in section 3.1,
how to realize such an initial condition (the initial condition problem of small-field inflation
in general) is a separate issue. We utilize the fact that Ntotal in any initial condition, however
unnatural it is, gives a lower bound on Nmax

total = max
initial conditions

Ntotal.

It is useful to define a combination

c ≡4εbrλ
4N2

CMB, (3.32)

which characterizes the size of the correction at the CMB scale. Using this, the total e-folding
number can be expressed as

Ntotal =
NCMB√

c

(
arctan

[
NCMB√

c

]
− arctan

[ √
c

NCMB

])
. (3.33)

The second term is approximately unity because of arctanx = x+O(x3). Thus, the total e-
folding number can be written in terms of NCMB and c. Now, a key fact is that if we assume
too large a value of c to shorten the total e-folding number, it strongly affects the CMB
observables such as ns and αs because it modifies the shape of the potential significantly at
the CMB scale.

To obtain the dependence of inflationary observables on c, we need to invert the rela-
tion (3.31) between N and φ. In our analysis, we do this recursively by the perturbation
method with respect to c, and we retain up to the second order c2. The results are

λ2e−λφCMB =
1

2NCMB

(
1− c

3
− c2

45
+O(c3)

)
, (3.34)

λ2εbre
λφCMB =

1

2NCMB

(
c+

c2

3
+O(c3)

)
. (3.35)

Using these pieces, we can calculate inflationary observables.

r =
12α

N2
CMB

(
1 +

4c

3
+

16c2

15
+O(c3)

)
, (3.36)

ns − 1 = − 2

NCMB

(
1− 4c

3
− 16c2

45
+O(c3)

)
, (3.37)

αs = − 2

N2
CMB

(
1 +

4c

3
+

16c2

15
+O(c3)

)
. (3.38)

For a given inflationary energy scale Vinf, NCMB is fixed under the assumed reheating
history. We assume the instantaneous reheating as discussed in section 4. From the upper
bound on ns = 0.9649± 0.0042 [1], we obtain an upper bound on the correction parameter c.
This gives a lower bound on Nmax

total. This strengthens the upper bounds on the inflationary
energy scale and on the tensor-to-scalar ratio.

V
1/4

inf < 7.0× 103 GeV, r < 2.2× 10−51. (3.39)

The allowed range of the total e-folding number is shown in figure 2. We also see that the
running spectral index is upper bounded as

αs . −4× 10−3, (3.40)
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Figure 2. Constraints on the maximum total e-folding number Nmax
total as a function of the the

inflationary energy scale V
1/4
inf . The purple shaded region is excluded from the TCC constraint, (2.1).

The blue shaded region is excluded by the horizon problem, (2.2), (Solid: the highest possible TR =
(30Vinf/π

2g∗(TR))1/4; dashed: the lowest possible TR = 4 MeV). The green region is excluded by the
additional e-folding number discussed in this paper (under the condition that ns is consistent with
the Planck data) [see eqs. (3.33) and (3.37)]. The intersection of the purple line and the green line
gives eq. (3.39). The solid, dashed, dot-dashed, and dotted magenta lines are the lower bounds on
Nmax

total when the lower bound on αs is given as - 0.005, -0.0075, -0.010, and -0.0125, respectively [see
eqs. (3.33) and (3.38)]. The instantaneous reheating is assumed for the green line and magenta lines.

to be consistent with the TCC. If we obtain a lower bound like αs & −4 × 10−3 from
observations, the almost all parameter space for Nmax

total is excluded.

It is interesting to note that the c dependence of ns and αs are opposite. For the low
energy scale inflation with a small NCMB (the left side of the figure), we need a sizable amount
of the correction c to fit ns. This means that the rising effect of the potential shape is sizable,
so the bound on Ntotal from ns (green shade) is weak. On the other hand, the absolute value
of αs becomes too large unless we take a small c. The small c corresponds to a wide range of
the plateau, which lets Ntotal become large. This is the reason why the magenta lines sharply
rise at the left side of figure 2. For higher energy scale with a larger NCMB (the right side of
the figure), ns can be explained without the correction c, so the allowed range of c is small
corresponding to a large Ntotal (The height of the green shade becoming larger). Meanwhile,
the constraint on c from αs becomes weaker, so the gain Ntotal −NCMB becomes smaller for
magenta lines.

It is also worth noting in which part of the figure the perturbative treatment with
respect to c is better. As discussed in the previous paragraph, c is smaller in the high energy
side on the green line, but it is so in the low energy side on the magenta lines. Therefore,
the convergence of the perturbative series in c is better in the high energy inflation side
for ns (green line), while it is better in the low energy inflation side for αs (magenta lines).
The vertical distance between these lines and the blue solid line (more precisely, the ratio
Ntotal/NCMB ∼ 1/

√
c) can be regarded as a measure of convergence of the perturbation series

(see eq. (3.33)).

One way to relax the above severe constraint is to assume that the correction term has
a higher exponent, εbre

+nλφ with n > 1. This is studied in appendix B.
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The analysis made in this subsection is based on a particular model or expansion, but
we expect similar results for any inflation model which satisfies the following conditions:

• The inflaton potential (including the technically-natural shift-symmetry-breaking
terms) is controlled by a systematic expansion.

• The first nonvanishing symmetry breaking term is not a very high order term (corre-
sponding to n = O(1)).

• The dominant contribution to the e-folding number comes from the most flat part of
the potential which is at the CMB scale or behind it φflattest & φCMB(> φend).

When the third condition is not satisfied, our argument for Ntotal & 2NCMB is not applicable.
Even in this case, however, one should make sure that an initial condition with φ ' φflattest

and a negligible velocity does not lead to too long an e-folding number.

4 Summary and discussion

We have discussed the implications of the TCC on the shape of the inflation potential focusing
on single-field slow-roll models. In the first “model-independent” approach, we have expanded
the inflaton potential around the CMB pivot scale and argued that a sizable cubic term would
be required to be consistent with the TCC. This leads to a potentially strong lower bound
on the e-folding number NCMB. Unfortunately, there is at least O(1) uncertainty for the
estimation of the cubic term since we do not know where exactly higher-order terms conspire
to sum up to end inflation.

For a more concrete discussion, we have taken a second approach in which we have
considered the concrete models: the renormalizable quartic potential and the α-attractor
models of inflation with a shift symmetry broken in a controlled fashion. Our analysis shows
that, for such smooth and flat potentials, the e-folding number dominantly increases around
(both before and after) the CMB pivot scale, which implies the total e-folding number must
be at least doubled, Ntotal & 2NCMB. This strengthens the constraints of the TCC on the
energy scale of inflation.

Although there is an allowed region in figures 1 and 2, there remain theoretical questions.
How can one protect the accidental flatness of the polynomial potential in section 3.2 from
the radiative corrections? For the radiative stability, the α-attractor studied in section 3.3 is
more advantageous. However, we do not know what the physical interpretation or particle
physics realization of the tiny α would be. Is the ultraviolet completion of the model possible?
For example, the values derived in the maximal supergravity and M/String Theory in ref. [80]
are 3α = 1, 2, . . . , 7. It is then unclear whether or not the tiny value of α, which might look
ad hoc, belongs to the Landscape rather than the Swampland.

A small α also introduces a strong coupling around the vacuum |φ| .
√
α although it is

weakly coupled during inflation. Thus, it is difficult to make a prediction on the (p)reheating
dynamics, but it is tempting to think the reheating completes quickly by such strong interac-
tions with itself and with other fields. Our assumption of instantaneous reheating is partially
motivated by this strong coupling phenomenon.

Let us also briefly discuss the hybrid inflation [81] where the single-field inflation tra-
jectory ends with the instability of water-fall fields. This mechanism is efficient to quickly
end inflation, so some of the constraints discussed in this paper such as that on the running
spectral index can be circumvented. We could also impose a water-fall instability at the top
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of the hilltop inflaton trajectory for the eternal or very long inflation not to occur. Still, it
is a nontrivial challenge to suppress quantum corrections from loops of water-fall fields to
obtain a tiny slow-roll parameter.

Although the main concern in this paper is the TCC, we briefly discuss other Swampland
conjectures too. There has been accumulating evidence on the difficulties to realize dS
spacetime in the asymptotic region of the moduli space. The most nontrivial point of the dS
conjecture appears when one extends such observations to all the regions of the field space.
Suppose now that the constraints (1.1) indeed applies to the small-field inflaton potential.
The first inequality of (1.1) is in sharp contradiction with one of the consequences of the
TCC, ε . O(10−51) (see inequalities (3.23) and (3.39)). At the CMB scale, the value of η
leads to |c′| < 1.965 × 10−2. More importantly, however, our discussion implies that there
should be an (approximate) inflection point where V ′′ vanishes. Because of the smallness
of η, we do not expect a rapid increase of ε, so both inequalities are violated around the
inflection point unless there is another unstable direction in the field space as discussed in
the previous paragraph. If this is taken seriously, one should consider models beyond the
single-field slow-roll inflation.

On the other hand, the TCC is consistent with the distance conjecture (1.2). The
estimate in ref. [19] already showed that the typical field distance during inflation is about
|∆φ| < 10−13. In our examples, the maximum of ∆φ during inflation is of order 10−22 and
10−26 in sections 3.2 and 3.3, respectively.

One good aspect of our findings is that the TCC can be tested by the future precise
measurements of αs with precision 3 × 10−4 [64]. Also, our new upper bounds on the infla-
tionary energy scale, which is around 10 TeV, might imply possibilities that the physics of
inflation is related to the hierarchy problem of the Higgs mass and accessible by the colliders.

Acknowledgments
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IBS under the project code, IBS-R018-D1.

A Additional e-folding from rolling up the potential

In this appendix, we consider a reversed trajectory of single-field slow-roll inflation, and
estimate the number of the additional e-folding Nup. Even though such an initial condition
may not be necessarily natural, we have to consider such an initial condition to study the
TCC since the TCC is a requirement for all physically possible initial conditions [18].

During the roll-up phase, the slope term in the equation of motion is negligible compared
to the acceleration and the Hubble friction.

φ̈+ 3Hφ̇ ' 0. (A.1)

This is the so-called ultra-slow-roll (USR) regime of inflation [82–85]. The kinetic energy of
inflaton is sufficiently large so that the slope of the potential is negligible, but it can still be
much smaller than the potential energy. This condition is 1

2 φ̇(0)2 < V , where t = 0 is the
beginning of the USR phase. The above equation of motion is integrated to give

φ(t) = − φ̇(0)

3H
e−3Ht + φ(∞). (A.2)

We regard approximately H and V as constants, and Ht = Nup follows.
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For simplicity, we approximate it as the USR regime from t = 0 to t = tturn and the
slow-roll regime after t = tturn. The USR regime ends because the acceleration term and the
slope term become comparable, |φ̈(tturn)| ∼ V ′ = V

√
2εturn. This gives

|φ̇(0)| =
√

2εturnV

3H
e3Nup . (A.3)

We impose two conditions on the above quantity. The first one is the condition that the
initial kinetic energy must be smaller than the potential, as already mentioned. This means

Nup <
1

6
ln

3

εturn
. (A.4)

The second constraint is that the field range ∆φ is limited for a given inflation model poten-
tial. This condition is

Nup ≤
1

3
ln

3∆φ√
2ε
. (A.5)

Combining them together,

Nup ≤ min

[
1

3
ln

3∆φ√
2ε
,

1

6
ln

3

εturn

]
. (A.6)

Typically, ∆φ '
√

2εN up to an O(1) factor or logarithmic correction with respect to
N for a flat potential. For example, if the potential is a constant plus a small linear slope
as in eq. (3.1), this is true. Also for the exponential expansion in eqs. (3.24) or (3.26), it
holds up to logarithmic corrections provided that the symmetry breaking term is not yet
relevant at the turning point. In such cases, the first term in the min bracket is given by
1
3 ln(3N). Namely,

Nup . min

[
1

3
ln(3N),

1

6
ln

3

εturn

]
. (A.7)

If we substitute N = NCMB, the maximum e-folding during the rolling-up stage is of order
unity, Nup . O(1). We conclude that it is unlikely that a large number of e-folding number
is realized during the rolling-up motion.

B Shift symmetry breaking by a higher-order term

In the main text, we consider the lowest possible order breaking term eλφ. It is possible that
this term is absent or coefficients are negligible, and the dominant effects of shift symmetry
breaking are due to a higher-order term enλφ where n is an integer. In fact, such a higher-
order term can have less impact on the CMB scale but it can rise more quickly to shorten
the field range where the slow roll is possible.

In this appendix, we consider the potential V = V0(1 − e−λφ + εbre
nλφ)2, which sets

the global property (e.g. no local minima). For our purposes for inflationary analyses, it can
safely be approximated as

V = V0

(
1− 2e−λφ + 2εbre

nλφ
)
, (B.1)

where again λ =
√

2/3α� 1. Namely, we neglect higher-order terms in e−λφ and εbre
nλφ.
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The slow roll parameters are

ε = 2λ2
(
e−λφ + nεbre

nλφ
)2
, (B.2)

η = 2λ2
(
−e−λφ + n2εbre

nλφ
)
, (B.3)

ξ2 = 4λ4
(
e−λφ + nεbre

nλφ
)(

e−λφ + n3εbre
nλφ
)
. (B.4)

The e-folding number N is calculated as

N =
eλφ

2λ2 2F1

[
1,

1

n+ 1
;
n+ 2

n+ 1
;−εbrne

(n+1)λφ

]
− 2F1

[
1,

1

n+ 1
;
n+ 2

n+ 1
;− c

Nn+1
CMB

]
, (B.5)

where 2F1(a, b; c; z) is the hypergeometric function, and we defined

c ≡ nεbrλ
2(n+1)(2NCMB)n+1, (B.6)

as a parameter combination controlling the magnitude of the correction by symmetry break-
ing terms. In eq. (B.5), it is assumed that inflation ends quickly after the slow-roll ends,
|η| = 1. If we set n = 1, eq. (B.5) reduces to eq. (3.31). Also, 2F1 becomes unity in the limit
εbr → 0. Similarly, the e-folding number along the whole available slow-roll region (ε, |η| ≤ 1)
is given by

Ntotal =NCMB

(
NCMB

nc

) 1
n

2F1

[
1,

1

n+ 1
;
n+ 2

n+ 1
;−c

(
NCMB

nc

)n+1
n

]

− 2F1

[
1,

1

n+ 1
;
n+ 2

n+ 1
;− c

Nn+1
CMB

]
. (B.7)

Thus, the total e-folding number along the whole available slow-roll region is written in terms
of the e-folding number at the CMB scale and the correction parameter c, which is determined
once εbr and λ (equivalently α) are fixed.

We invert the relation between N and φ to evaluate the inflationary observables at the
CMB scale. To this end, we recursively solve it by the perturbation method. The results are

λ2e−λφCMB =
1

2NCMB

(
1− c

n+ 2
− (n2 + n− 1)c2

(n+ 2)2(2n+ 3)
+O(c3)

)
, (B.8)

λ2εbre
nλφCMB =

1

2NCMB

(
c+

nc2

n+ 2
+O(c3)

)
. (B.9)

One can use these formulas to evaluate quantities such as ns and αs.
The constraints on the allowed range of Nmax

total are shown in figure 3. From the intersec-
tion of the TCC constraint (purple line) and the additional possible e-folding number (green
line) which respects ns, we obtain an upper bound on the inflation energy scale and the
tensor-to-scalar ratio

V
1/4

inf <


7.0× 103 GeV (n = 1)

1.3× 104 GeV (n = 2)

3.5× 104 GeV (n = 3)

, r <


2.2× 10−51 (n = 1)

2.6× 10−50 (n = 2)

1.4× 10−48 (n = 3)

. (B.10)

.
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(b) n = 3

Figure 3. Same as figure 2, but for n = 2 and 3, where n is the power of the shift symmetry breaking
term εbre

nλφ.

C The maximum e-folding for thermal inflation

In this independent appendix, we discuss the possible e-folding number, NTI, in which infla-
tion is only driven by interactions between the scalar field and the background plasma but
not by the scalar potential at zero temperature (thermal inflation [86]).

If the interactions are fast enough, the Universe can be described by the thermal field
theory with a temperature T . For the length scale ` > 1/T , the finite temperature effective
potential of φ, VT (φ), is good enough to describe the evolution of φ. As an example, VT (φ)
can be expanded as

VT (φ) = V0 +
1

2
(λT 2 −m2)φ2 + · · · , (C.1)

around the origin. Here λ > 0 denotes the contribution of the couplings between φ and
the background plasma, while −m2 < 0, so that the origin is unstable at zero temperature.
At high temperatures, φ is trapped at the origin by thermal mass terms, so it provides a
constant energy density, V0. Assuming that the thermal inflation (ρtot ' V0) starts at T = Ti
(ρr . V0) and finishes at T = Tf , the total e-folding number is given by

NTI = ln
af
ai

= ln
Ti
Tf
. (C.2)

Before evaluating it from the model, one can provide an upper bound on NTI by the
following argument. As the inflation continues, the mean free path between collisions, `fr ∼
1/T , in the thermal plasma is exponentially increasing as `fr(t) = eHt/Ti. If `fr(t) can be
larger than the Hubble horizon, 1/H, the assumption of thermal equilibrium is no longer
valid. Because the relaxation time becomes longer than the age of the Universe, the plasma
does not give a meaningful effect for the evolution of φ. Instead of using eq. (C.1), we should
calculate the evolution of φ mostly by the zero temperature scalar potential. Therefore the
thermal inflation must end before `fr(t) = 1/H, which leads to the bound on NTI as2

NTI < ln
Ti
H
. (C.3)

2Thermal equilibrium may be maintained for a timescale larger than 1/H because of Gibbons-Hawking
radiation T ∼ H/2π [87]. However, the thermal mass is too small to stabilize φ at the origin, and it will be
destabilized within a Hubble time mainly due to the zero temperature potential. Thus, our conclusion is not
changed.
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In the present example, the curvature of the potential changes its sign at Tf ' m. Our
starting point of this appendix is that the inflation is only driven by thermal interactions,

i.e. m� H ∼ V 1/2
0 /MP, so the bound (C.3) is satisfied. Note that this inequality is confirmed

without substituting the value of Ti, which is given by Ti ' V 1/4
0 in thermal inflation.

Here, we can find an interesting analogy between the arguments for inequalities (2.1)
and (C.3). As 1/MP is the minimum length scale for which the quantum field theory (QFT)
with weakly coupled gravity is valid, 1/Ti is also the minimum length scale for which the
thermal dynamic treatment is valid when the inflation starts. In both cases, 1/H plays
the role of the causal horizon. A difference is that when inflation is driven by thermal
interactions, we know the microscopic theory for ` < 1/T : non-equilibrium QFT, so we can
calculate the evolution of the scalar field and understand why thermal inflation should end
before NTI = lnTi/H. On the other hand, for the TCC case, we do not know the correct
underlying theory for ` < 1/MP, which means that we cannot figure out the true origin of
the inflation and why the inflation should end before N = lnMP/H. The TCC is just a
conjecture at this moment.
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