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Abstract.  We statistically examine long time sequences of Brownian motion 
for a nonequilibrium version of the Rayleigh piston model and confirm that the 
third cumulant of a long-time displacement for the nonequilibrium Brownian 
motion linearly increases with the observation time interval. We identify a 
multiplicative Langevin equation that can reproduce the cumulants of the long-
time displacement up to at least the third order, as well as its mean, variance 
and skewness. The identified Langevin equation involves a velocity-dependent 
friction coecient that breaks the time-reversibility and may act as a generator 
of the directionality. Our method to find the Langevin equation is not specific 
to the Rayleigh piston model but may be applied to a general time sequence in 
various fields.
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1.  Introduction

Brownian motion refers to random fluctuating phenomena ubiquitously observed in 
nature. Typically, it is observed as trajectories of molecules, colloidal particles, biomo-
tors in cells, agents in active matter, stars within galaxies, interfaces, market prices 
and so on [1–8]. These dynamics are often described by the Langevin equation. Once 
we obtain the equation, we can predict unknown properties and propose experimental 
methods to estimate previously unmeasured quantities from the theoretical point of 
view. Indeed, the stochastic energetics [9, 10] based on the Langevin equation was 
developed to analyze the Brownian motion of molecular machines and enables us to 
approach their design principles. For example, a nonequilibrium equality [11] revealed 
that a rotary motor protein dissipates free energy at almost 100% through its rotational 
motion [12], but a processive motor protein wastes in parts other than the translational 
motion [13]. Thus, the Langevin equation forms the basis of theoretical investigations 
that are inseparable from developments of experimental techniques.

The identification of the Langevin equation  in equilibrium is well-established 
because its form is strictly restricted by the fluctuation-dissipation theorem [14, 15]. 
Conventionally, nonequilibrium Brownian motion has been described by adding terms 
representing nonequilibrium eects to the Langevin equations  for the equilibrium 
Brownian motion. However, these expressions with the fluctuation-dissipation theorem 
are not justified out of equilibrium [9]. The important problem here is that general 
principles of identifying the Langevin equation are not known. Indeed, there are many 
examples of nonequilibrium Brownian motion that have not been described by the 
Langevin equations.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Thus, our aim in this paper is to obtain a Langevin equation to reproduce the statis-
tical properties of nonequilibrium Brownian motion, particularly directional Brownian 
motion exhibiting a finite velocity on average. We focus on higher cumulants of long-
time displacement in the nonequilibrium Brownian motion and find that they work as a 
discriminator to identify the Langevin equation. To demonstrate, we adopt a standard 
model, called the Rayleigh piston, which is used to derive the equilibrium Langevin 
equation from the microscopic dynamics of a large number of degrees of freedom [16, 
17]. Its nonequilibrium version is presented in textbooks and has been studied during 
the past few decades [18–33]. We numerically identify a multiplicative Langevin equa-
tion  (13) that reproduces the cumulants of long-time displacement of this nonequi-
librium Brownian motion at least up to the third order. The multiplicative Langevin 
equation  contains a linearly velocity-dependent friction coecient, which can never 
appear in equilibrium.

The paper is organized as follows. In section 2, we explain the setup of the Rayleigh 
piston model. In section 3, we define the cumulants of the long-time displacement and 
confirm that the third cumulant linearly increases with the observation time interval. 
In section 4, we identify the Langevin equation that can reproduce the cumulants up to 
at least the third order. In section 5, we explain the relation between the original model 
and the identified Langevin equation, and then, we numerically estimate the scaling 
form of the cumulants in section 6. In section 7, we examine the dynamics of the stalled 
state and confirm that the property of the third cumulant is not aected. The final sec-
tion is devoted to a brief summary and some concluding remarks.

2. Setup to generate nonequilibrium Brownian motion

We consider the experimental setup schematically shown in figure 1(a). A rigid piston 
of mass M is freely movable in one direction inside an infinite cylinder of cross-sectional 
area S. Its position and velocity are denoted by X and V , respectively. The piston 
separates the cylinder into two regions filled with ideal gas particles of mass m � M . 
The pressure p  is equal on both sides, whereas the temperature on the left side, TL, 
is dierent from that on the right side, TR. Suppose, without loss of generality, that 
TL < TR. For a later purpose, we define

T =
√
TLTR,� (1)

δ =
TR − TL

T
.� (2)

Assuming that the particles are in equilibrium before colliding with the piston and 
that they collide elastically and instantaneously with the piston only once, we model 
the collisions between the piston and gas particles by random events with a collision 
rate of

λ(v,V ) =
pS

kBTL

(v − V )θ(v − V ) fL
eq(v) +

pS

kBTR

(V − v)θ(V − v) fR
eq(v)� (3)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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with

fL/R
eq (v) =

√
m

2πkBTL/R

exp

(
−mv2

2kBTL/R

)
,� (4)

where v is the velocity of a colliding particle, kB is the Boltzmann constant, f
L/R
eq (v) 

is the Maxwell distribution, and θ(·) is the Heaviside step function. The coecients 
p/kBTL/R are equivalent to the number densities of the particles. Using the laws of the 
conservation of energy and momentum, the transition probability per unit time from 
V  to V ′, W (V ′|V ), is given by

W (V ′|V ) = λ(v,V )
dv

dV ′� (5)

with

v =
M +m

2m
V ′ − M −m

2m
V .� (6)

Then, noting that Ẋ = V , the time evolution of the probability density of X and V  at 
time t, P (X,V , t), is governed by the following master-Boltzmann equation:

∂P (X,V , t)

∂t
= −V

∂P (X,V , t)

∂X
+

∫
dV ′W (V |V ′)P (X,V ′, t)

−
∫

dV ′W (V ′|V )P (X,V , t).
�

(7)

Using the Gillespie algorithm [34], we numerically obtain statistically correct trajec-
tories of the master-Boltzmann equation (7) without any approximations. Typical time 
sequences of X are demonstrated in figure 1(b).

Figure 1.  (a) Schematic illustration of the Rayleigh piston driven by a temperature 
dierence. (b) Typical time sequences of the Brownian motion generated from (7). 
M  =  10, m  =  0.01, p   =  10, kBTL = 6.2 and kBTR = 16.2.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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3. Cumulants of the displacement as observables

As is done in typical experiments, we observe periodically the position X numerically 
produced from (7) with setting the interval of two successive observations as t. We are 
interested in the long-time properties of the directional Brownian motion but not in 
the instantaneous velocity V . Rather, we concentrate on the displacement of X in the 
interval t,

∆Xt ≡ X(t0 + t)−X(t0).� (8)
The long-time fluctuations of the Brownian motion are fully characterized by cumu-
lants 〈(∆Xt)

n〉c; more concretely,

〈∆Xt〉c = 〈∆Xt〉,� (9)

〈(∆Xt)
2〉c = 〈(∆Xt − 〈∆Xt〉)2〉,� (10)

〈(∆Xt)
3〉c = 〈(∆Xt − 〈∆Xt〉)3〉� (11)

for n = 1, 2, 3. Here t0-dependence can be ignored in the statistics for steady states. 〈·〉 
indicates a sample average and/or an average over t0. The skewness is defined from 
these cumulants as 〈(∆Xt)

3〉c/(〈(∆Xt)
2〉c)3/2.

These cumulants depend on the observation interval t. For usual Brownian motion, 
the first or second cumulant is expected to increase linearly with the interval t for 
suciently large t. When the probability density of ∆Xt/t satisfies the large deviation 
property, 〈(∆Xt)

n〉c = O(t) as t → ∞, except when 〈(∆Xt)
n〉c = 0 [35]. We then focus 

on the growth rate of the nth cumulant

sn ≡ lim
t→∞

〈(∆Xt)
n〉c

t
,� (12)

where s1 and s2/2  are the mean velocity and the diusion constant for Brownian 
motion, respectively. In real time sequences, we determine sn as the slope of cumulants 
around a finite value of t such as t � tr or typically t � 10tr, where tr is a characteristic 
relaxation time.

We demonstrate that the growth rate s3 for the third cumulant can be finite in non-
equilibrium Brownian motion. Figure 2 shows a linear increase in the third cumulant 
as a function of t for the time sequences of X produced by (7). We obtain s3 �= 0 out 
of equilibrium, TL �= TR, and s3  =  0 at equilibrium, TL = TR. Thus, the third cumulant 
〈(∆Xt)

3〉c is never neglected for the nonequilibrium Brownian motion even in the limit 
of sparse observation t → ∞.

4. Eective Langevin equation

Hereafter, we focus on whether or not the nonequilibrium Brownian motion is described 
by a certain eective model. The third cumulant works as a discriminator to determine 
the validity of various candidate models of the long-time behavior. For instance, a stan-
dard Langevin equation for a particle under a constant force f  with a constant friction 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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coecient, γẊ = f +
√
2γkBTξ(t), gives s3  =  0 for any f ; therefore, it is not appropriate 

as an eective model. The multiplicative Langevin equation with γ(X) might become 

the next candidate, but this does not satisfy the translational invariance with respect to 

X. An underdamped Langevin equation for V = Ẋ, i.e. MV̇ = f − γV +
√
2γkBTξ(t), 

with the mass M of the object, also shows s3  =  0.
The nonvanishing third cumulant, s3 �= 0, does not imply the absence of the eective 

model. For the directional Brownian motion generated from (7), we identify the mul-
tiplicative Langevin equation that reproduces the cumulants of the long-time displace-
ment up to at least the third order. The equation is written as

MV̇ = −γ(V )V +
√

2γ(V )kBT · ξ(t),� (13)

γ(V ) = γ0(1− γ1V )� (14)
where the constants γ0, γ1, and T are determined by the system parameters. The sym-
bol · denotes the Itô product, and ξ is Gaussian white noise with zero mean and unit 
variance. At the top of figure 3, the growth rate s3 of the third cumulant obtained 
from the numerical integration of the eective Langevin equation (13) using the Euler–
Murayama method is plotted parallel to s3 obtained from the original Brownian motion 
of the Rayleigh piston (7). The points of the two figures coincide with each other within 
the statistical error. The values of s1 and s2 are also consistent between (7) and (13), as 
shown at the bottom of figure 3. Thus, we conclude that the multiplicative Langevin 
equation (13) can be employed as an eective model for (7) reproducing the long-time 
statistical properties.

In the long time sequence generated from (7), we determine the parameters as

γ0 = 2φ−1pS

√
m

kBT
,� (15)

Figure 2.  Third cumulant of the displacement ∆Xt as a function of the observation 
interval t. The parameters of (7) are M  =  10, m  =  0.01, p   =  10 and kBT = 10 for 
δ = 0, 0.5, and 1.0. The three lines are linear fittings to the data for δ = 0, 0.5, and 
1.0, respectively.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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γ1 = δpS
m

γ0kBT
� (16)

with

φ =

√
π

8

2
√
T√

TL +
√
TR

,� (17)

according to the argument in section 5. The method to deduce the Langevin equa-
tion (13) for general Brownian motion from the time sequence is discussed in section 8.

5. Relation between (7) and (13)

Let us introduce a nondimensional small parameter

ε ≡
√

m

M
� 1.� (18)

Using the Kramers–Moyal expansion and a perturbation expansion in powers of ε for 
(7), we have [22, 36]

Figure 3.  Coincidence of s1, s2 and s3 for the time sequence generated from 
equation  (7) with those for the time sequence generated from the Langevin 
equation  (13). Each dotted line corresponds to equations  (31), (32) or (33), i.e. 
s3 = 1.5α3δ with α3 = φ3(kBT/pS)

2
√
kBT/m, s1 = 0.5α1δ with α1 = φm/M

√
kBT/m, 

or s2 = α2 with α2 = φkBT/pS
√
kBT/m. The parameters (M ,m, p,T ) are given in 

the top-left section of the figure, whereas 0 � δ � 1.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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∂P

∂t
= −V

∂P

∂X
+

∂

∂V

(
γ(V )V

M
P

)
+

γ0kBT

M2

∂2P

∂V 2
+

2ε2δpSkBT

M2

∂3P

∂V 3
+O(ε3),

�

(19)

which is explained in the appendix. Here, γ0 and γ1 are given by (15) and (16), 
respectively. T =

√
TLTR corresponds to the kinetic temperature of the piston, i.e. 

M〈V 2〉c = kB
√
TLTR +O(ε2) [21, 22].

Ignoring the contribution of O(ε2) by noting that both γ0 and γ1 are of O(ε), (19) 
corresponds to a Langevin equation

MV̇ = −γ0V +
√

2γ0kBTξ(t),� (20)

which cannot reproduce the directional motion and s1  =  0. Thus, we cannot ignore the 
O(ε2) terms. Including the contribution of O(ε2), (19) becomes similar to the Fokker–
Planck equation but still contains the third derivative term, which implies that the 
eective dynamics for the nonequilibrium Brownian motion of (7) is not straightfor-
wardly concluded from the Kramers–Moyal expansion.

Suppose that (19) is transformed into

∂P

∂t
= −V

∂P

∂X
+

∂

∂V

(
γ(V )V

M
P

)
+

kBT

M

∂2

∂V 2

(
γ(V )

M
P

)
+O(ε3)� (21)

by coarse-graining in time. The expression (21) is consistent with the multiplicative 
Langevin (13). Although we do not know the procedure to derive (21), we know it is 
appropriate from the numerical examination shown in figure 3. The Langevin-like equa-
tion derived in [37] is not compared with (21) because the statistical properties of the 
noise are not obvious.

6. Scaling form for the cumulants

Hereafter, we explain a scaling form for the cumulants that plays a central role in 
identifying the eective Langevin equation (13) for any parameter value in ε � 1. We 
introduce the rescaled dimensionless variables

τ ≡ t

tr
,� (22)

V ≡ V

Vth

,� (23)

X ≡ X

Vthtr
� (24)

to summarize the numerical experiments. The variables satisfy V = dX /dτ . Here, 

tr = M/γ0 from (20), Vth ≡
√
kBT/M  is the eective thermal velocity and Vthtr is the 

characteristic length scale. The probability density of X and V  at τ , P(X ,V , τ), is 
given by

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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P(X ,V , τ) = P (X,V , t)
dX

dX
dV

dV
.� (25)

Then, using these new variables, (19) is rewritten as

∂P
∂τ

= −V ∂P
∂X

+
∂

∂V

(
(1− εg1V)VP

)
+

∂2P
∂V2

+ 2ε}1
∂3P
∂V3

+O(ε2)� (26)

with

g1 =

√
π

8

[(
TR

TL

) 1
4

−
(
TL

TR

) 1
4

]
,� (27)

as derived in the appendix. Here, g1 �
√
π/32δ for 0 � δ � 1.

We first simulate (7) for (M ,m,T , p,S) = (10, 0.01, 10, 10, 1) and 0 � δ � 1, and deter-
mine the scaled version of growth rates 〈(∆Xτ )

n〉c/τ as a function of g1 for suciently 
long τ . Numerical fitting by the least-squares method gives estimates for n = 1, 2, 3 as

〈∆Xτ 〉c
τ

= (1.002± 0.009)εg1,� (28)

〈(∆Xτ )
2〉c

τ
= 2.0006± 0.0005,� (29)

〈(∆Xτ )
3〉c

τ
= (12.02± 0.06)εg1� (30)

with asymptotic standard errors. Rewriting the above fits in dimensional forms, we 
have estimates of

s1 =
〈∆Xt〉

t
=

φ

2

√
kBT

m

m

M
δ,� (31)

s2 =
〈(∆Xt)

2〉c
t

= φ

√
kBT

m

kBT

pS
,� (32)

s3 =
〈(∆Xt)

3〉c
t

=
3φ3

2

√
kBT

m

(
kBT

pS

)2

δ,� (33)

where t � tr. Next, we change the parameters M, m, p , TL and TR and simulate (7) 
while keeping S  =  1 without loss of generality. We plot the numerical results of the 
growth rates s1, s2 and s3 in figure 3. It is remarkable that all the data are collapsed 
in each line corresponding to (31) and (32) or (33) for 0.032 � ε � 0.141 and 0 � δ � 1. 
Thus, we can determine the value of the growth rates sn for any parameter value. Note 
that (28)–(30) depend on only ε and g1, consistent with the parameters included in 
(26), without O(ε2) errors. This confirms that the contribution of O(ε2) in (26) does not 
aect the Brownian motion for ε � 1.

From (31)–(33), we obtain the mean displacement as of O(tδ), the variance of the dis-
placement as O(t) and the skewness of the displacement as O(t−1/2δ). Thus, the skewness 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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vanishes in the long-time limit t → ∞, and then the displacement of the Brownian 
motion may be considered to obey a Gaussian distribution. However, we cannot draw the 
Langevin equation (13) starting from the Gaussian distribution. This indicates that the 
third cumulant is superior to skewness in examining the long-time dynamics.

7. Nonequilibrium Brownian motion without directionality

Here, we compare the Langevin equation (13) with the general form of the Langevin 
equation in equilibrium systems. In an equilibrium system, when the stationary distri-
bution of V  is

P (V ) =

√
M

2πkBT
exp

(
−MV 2

2kBT

)
,� (34)

a multiplicative Langevin equation for V  is generally given by

MV̇ = −γeq(V )V +
√

2γeq(V )kBT � ξ(t),� (35)

where � denotes the anti-Itô product. The nonlinear friction coecient γeq(V ) is limited 
to the time-symmetric form, i.e. γeq(V ) = γeq(−V ), when the detailed balance condition 
or time-reversibility is imposed [38, 39]. To compare the Langevin equation (13) with 
the standard form (35), we change the product of (13) from Itô to anti-Itô. We obtain

MV̇ = ε2δpS − γ(V )V +
√
2γ(V )kBT � ξ(t),� (36)

which is essentially dierent from the standard form (35) in two aspects: the constant 
force term ε2δpS and the time-irreversibility of the friction coecient, γ(V ) �= γ(−V ).

0

0 0
0

8

71

0.1

−0.1

0 2 × 106

0

7500

−7500

(∆
X

t
)3

c/
t

α3δδ

∆Xt

X

Figure 4.  The dynamics of the piston under the stall force −ε2δpS. M  =  10, 
m  =  0.01, p   =  10, kBT = 10 and 0 � δ � 1. (a) Time sequences of the piston when 
δ = 1.0. (b) 〈∆Xt〉 for the observation interval t  =  100. (c) 〈(∆Xt)

3〉c/t as a function 
of α3δ. The line is 〈(∆Xt)

3〉c/t = 1.5α3δ.
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We notice that the eective Langevin equation looks similar to (35) when a drift 
term −ε2δpS is added. Correspondingly, the piston with a constant force −ε2δpS 
exhibits rather typical Brownian motion without the mean displacement, as shown in 
figure 4(a). The statistical average in figure 4(b) indicates 〈V 〉 = 0, as expected. In this 
sense, ε2δpS in (36) may be regarded as a force generated by the temperature dierence. 
Even in the stalled state with 〈V 〉 = 0, the dynamics of the piston are not equivalent to 
Brownian motion satisfying detailed balance, as the third cumulant 〈(∆Xt)

3〉c is scaled 
in the same manner as in (33); see figure 4(c). This non-Gaussian nature is due to the 
time-asymmetric friction coecient γ(V ) �= γ(−V ).

8. Concluding remarks

We have proposed a new principle to identify the Langevin equation describing non-
equilibrium Brownian motion by focusing on the statistical properties of long-time 
displacement. To demonstrate our new principle, we have studied the nonequilib-
rium version of the Rayleigh piston model (7) and have identified the Langevin equa-
tion (13) that can reproduce the cumulants up to at least the third order. The identified 
Langevin equation involves the velocity-dependent friction coecient γ(V ) �= γ(−V ), 
which breaks the time-reversibility. This leads to a breaking of the detailed balance and 
the non-Gaussian nature of the Brownian motion; moreover, it leads to the divergence 
of the entropy production defined by a log ratio of the weight for a trajectory and its 
time reverse. Thus, (13) can reproduce the long-time fluctuations, but we need another 
viewpoint to investigate the thermodynamic properties of (7).

Our results show that the nonequilibrium Rayleigh piston provides a good model for 
theoretical statistical mechanics because of the following two reasons: first, our numer
ical study ensures that the nonequilibrium Rayleigh piston is described by the Langevin 
equation at a coarse-grained scale. Second, the expression of the Langevin equation (13) 
is not straightforwardly deduced from the equilibrium expression. The newly found 
Langevin equation contains a friction coecient that is completely dierent from the 
friction coecient in equilibrium systems and that has not been considered in previous 
studies. Our expression stimulates theoretical studies to derive the Langevin equa-
tion  and moreover opens the discussion to determine a standard form for nonequi-
librium Brownian motion. At present, even the growth rate of the higher cumulants 
is dicult to determine. In the Nosé–Hoover equation of motion with non-constant 
friction coecients, higher cumulants of the velocity fluctuations have been calculated 
[40]. By examining this example, we may find a systematic method for calculating 
higher cumulants under general nonequilibrium setups.

Before ending this paper, we make some remarks. Our method may be applied to a 
general time sequence and may then stimulate various fields such as colloidal particles, 
biomotors in cells, agents in active matter, stars within galaxies, interfaces, market 
prices and so on. We emphasize that the experimental trial does not have an associated 
cost: it does not require expensive equipment of high time resolution and memorizes 
only the long time sequences. We wonder if a mechanism, i.e. the time asymmetry of the 
friction coecient generating an apparent force, occurs in a large variety of directional 
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Brownian motion in nature. We hope that the present experimental analysis is relevant 
to the time series of various cases of directional Brownian motion. The most important 
point is to determine the dependence of the third cumulant for the displacement as a 
function of the observation time interval. Once we obtain this dependence, the friction 
coecients may be deduced heuristically. In what follows, we try to propose a scheme 
to deduce the friction coecients and Langevin equations. Suppose that M and T are 
known from other experiments. First, we assume the form of the Langevin equation as

MV̇ = f − γ0(1− γ1V )V +
√

2γ0(1− γ1V )kBT · ξ(t),� (37)

that is, we assume that a fluctuation-dissipation-like theorem holds even in nonequi-
librium. In (37), we adopted the Itô product without loss of generality, as the change 
in the product generates only a constant force absorbed into f . Next, we calculate 
the cumulants of the displacement for a time interval t by solving (37) analytically or 
numerically for various γ1 and f  and denote the cumulants as 〈(∆Xt)

n〉γ1,fc , specifying γ1 
and f  in (37). Finally, we obtain simultaneous equations for γ1 and f  such that

lim
t→∞

〈(∆Xt)
n〉γ1,fc

t
= sn, (n = 1, 2, 3)� (38)

where sn denotes the growth rates of the nth cumulant in (12) determined from the 
experimental time sequence. By solving these equations, we arrive at estimates for γ1 
and f . If the simultaneous equations (38) do not have a solution, the time sequence may 
not be explained by (13) or (37) but belongs to another statistical category. We believe 
that our findings will lead to a fundamental change in the standard form of nonequi-
librium Brownian motion.
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Appendix. Derivations of (19) and (26)

Applying the Kramers–Moyal expansion to the master-Boltzmann equation  (7), we 
obtain

∂P (X,V , t)

∂t
=− V

∂P

∂X

+
∞∑
k=1

(−1)k

k!

∂k

∂V k

(
2m

M +m

)k ∫ ∞

−∞
dvλ(v,V )(v − V )kP (X,V , t).

�

(A.1)

By rescaling the variables according to (22)–(24) as t → τ , X → X , and V → V , (A.1) 
is rewritten in dimensionless form as
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∂P(X ,V , τ)
∂τ

= −V ∂P
∂X

+
1

4

1

A+ A−1

∞∑
k=1

(−1)k

k!

∂k

∂Vk

(
2ε2

1 + ε2

)k ∫ ∞

−∞
dṽ λ̃(ṽ,V)(ṽ − V)kP(X ,V , τ),

�

(A.2)
where

λ̃(ṽ,V) := A−3(ṽ − V)θ(ṽ − V)e
−ε2

2
ṽ2

A2 + A3(V − ṽ)θ(V − ṽ)e
−ε2

2
A2ṽ2� (A.3)

and

A ≡
(
TL

TR

) 1
4

.� (A.4)

We further transform the integral of (A.2) as
∫ ∞

−∞
dṽ λ̃(ṽ,V)(ṽ − V)k =

∫ ∞

−∞
du

{
Ak−1(u− A−1V)k+1θ(u− A−1V)

−A1−k(u− AV)k+1θ(AV − u)
}
e

−ε2

2
u2

.

�

(A.5)

Applying the perturbative expansion in ε and performing the integration, we have
(

2ε2

1 + ε2

)k ∫
dṽλ̃(ṽ,V)(ṽ − V)k = O(εk−2)� (A.6)

for k � 2. The explicit forms for 1 � k � 3 are calculated as
(

2ε2

1 + ε2

)∫
dṽ λ̃(ṽ,V)(ṽ − V) = −4(A+ A−1)V −

√
2π(A2 − A−2)V2ε+O(ε2),

� (A.7)(
2ε2

1 + ε2

)2 ∫
dṽ λ̃(ṽ,V)(ṽ − V)2 = 8(A+ A−1) +O(ε2),� (A.8)

(
2ε2

1 + ε2

)3 ∫
dṽ λ̃(ṽ,V)(ṽ − V)3 = 12

√
2π(A2 − A−2)ε+O(ε2).� (A.9)

Substituting these evaluations into (A.2), we obtain (26), that is

∂P(X ,V , τ)
∂τ

= −V ∂P
∂X

+
∂

∂V

[
1−

√
π

8

{(
TR

TL

) 1
4

−
(
TL

TR

) 1
4

}
εV

]
VP(X ,V , τ)

+
∂2

∂V2
P(X ,V , τ)

+ 2

√
π

8

{(
TR

TL

) 1
4

−
(
TL

TR

) 1
4

}
ε
∂3

∂V3
P (X ,V , τ) +O(ε2).

�

(A.10)

The transformation of (A.10) into the dimensional form leads to (19).
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