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Abstract.  We study the phase transitions and critical behaviors of the two-
leg dimerized XXZ ladders by extensive Monte Carlo simulations and finite-
size scaling analysis. For the Heisenberg model on the staggered ladder, we 
verify that the phase transition between the two topological phases belongs to 
the four-state Potts universality class; for the XY case (∆ = 0.5), the phase 
diagram is similar to the Heisenberg case, but the critical behavior belongs to 
a new universality class; for the Ising case (∆ = 1.5), we find three topological 
phases, in which one of them has both the topological orders and the local 
magnetic order; the two phase transitions associated with these phases also 
belong to the Ising universality class. On the columnar ladder, we have not 
found any phase transition for all the three cases. Furthermore, we find that 
the magnetic field can also induce phase transitions for both the staggered and 
columnar models, and the topological phases are in certain magnetic plateaux. 
For the staggered model, we study the phase transition associated with the 
plateau of zero magnetization; we find that the critical behavior of the string 
order parameter belongs to the 2D classical Ising model, and the scaling behavior 
of the uniform magnetization is dierent from the Dzhaparidze–Nersesyan–
Pokrovsky–Talapov universality class. For the columnar model, we study the 
phase transition associated with the plateau whose magnetization is half of the 
saturation value, which has fractional quantized Berry phase; in this case, the 
conventional string order parameters are not applicable as order parameters, 
we determine the critical point of this phase transition by the scaling behavior 
of the uniform magnetization which is also dierent from the Dzhaparidze–
Nersesyan–Pokrovsky–Talapov universality class.
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1.  Introduction

In the Landau–Ginzburg theory [1], phase transition is associated with certain type 
of spontaneous symmetry breaking, and the universality class of the continuous trans
ition is determined by the symmetry of order parameter and the dimension of space. 
However, recently several new types of phase transitions which go beyond the Landau 
paradigm have been found, such as the quantum deconfined phase transition [2–5], the 
spin liquid [8], and the topological phase transitions [9].

For the critical behaviors of these new types of phase transitions, the universality 
classes can not be simply speculated from the symmetry, although it is closely related 
to the symmetry. For example, the universality of the phase transition from superfluid 
to spin liquid has an obviously dierent critical exponent η from that of the ordinary 
XY universality class, which is called XY* universality class [10]. This is also the case 
for the topological phase transition, which is not characterized by any type of sym-
metry breaking. The topological phase transition are characterized by the change of 
certain type of topological number, such as the Chern number, the Berry phase [6], or 
the winding number [7]; it is not described by any type of local order parameter but 
certain type of nonlocal topological order. Typical examples can be found in quantum 
Hall states [11], the spin liquid [8], and the Kitaev spin systems [12].

Specifically, in the study of topological phase transitions of one dimensional quantum 
system, the string orders are introduced [13], which is widely used in both integrable 
and nonintegrable systems. For example, the topological phase transitions in cluster 
Ising models [14, 15], the Haldane phase and the related phase transitions in one dimen-
sional bond-alternating Heisenberg chain [16], the spin ladders [18–21], and so forth.

Although the ground state of the uniform Heisenberg chain is the gapless Luttinger 
liquid, however, once the bond alternating is introduced, it becomes the gapped Haldane 
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phase, and the related phase transitions belongs to the Gaussian universality class [16]. 
This indicate that bond alternating may introduce interesting topological phases and 
phase transitions, this is also the case for the Heisenberg ladders. Although the colum-
nar dimerized ladder is always gapped thus no phase transitions [17], however, the gap 
can be closed in the staggered ladder [17], and the phase transition is between two 
types of topological string orders, which belongs to the four-state Potts universality 
class [18, 19]. Once more complicated interactions or magnetic field is introduced the 
topological phase transitions can be more complicated and interesting. For example, the 
ferromagnetic interaction can close the gap of columnar dimerized ladder, and a phase 
transition between the Haldane phase and a dimer phase is found [22]. The magnetic 
field can also induce phase transitions in the Heisenberg ladder, including the uniform 
field [24–26] and staggered field [27]. Specially, the magnetic field may induce magnetic 
plateaus, which may corresponds to fractional quantization of the Berry phase [28].

In this paper, we study the topological phase transitions of the two-leg XXZ ladder 
with bond-alternating by the quantum Monte Carlo simulations and finite-size scal-
ing analysis. For the zero-field case of the staggered ladder, we not only confirm the 
four-state Potts universality class of the topological phase transition of the Heisenberg 
model (∆ = 1), but also find a new universality class for the XY case (∆ = 0.5) and 
several topological transitions which belong to the Ising universality class for the Ising 
case (∆ = 1.5). For the nonzero-field case, we not only confirm the existence of magn
etic plateaus, especially the half saturated plateau (m  =  0.25) in the columnar ladder, 
but also study the critical properties of the phase transitions associated with the phases 
of these plateaus.

2. The model and method

As shown in figure 1, the Hamiltonian of the two-leg XXZ model in a magnetic field is 
written as

H = Jij

L∑
i=1

2∑
j=1

�Si,j · �Si+1,j + J⊥

L∑
i=1

�Si,1 · �Si,2 − h
L∑
i=1

2∑
j=1

Sz
i,j� (1)

where �Si · �Sj = Sx
i S

x
j + Sy

i S
y
j +∆Sz

i S
z
j , and the periodic condition is applied in the leg 

direction, i.e. �SL+1,j = �S1,j. The coupling constant Jij can be J [1 + (−1)i+jδ] for the 

staggered model and J [1 + (−1)iδ] for the columnar model, as shown in figure 1. In this 
paper, we fix J  =  1 and δ = 0.5; J⊥, ∆, and h are tuning parameters.

To simulate the system, we use the stochastic series expansion (SSE) quantum 
Monte Carlo method with the direct loop algorithm [29]. In order to improve the 
eciency, the Suwa–Todo algorithm [30] is adopted, which is an algorithm without 
detailed balance. The combination of the two algorithms enable us to simulate the 
model with large system size that reaches L  =  160, thus enough to extrapolate the 
critical behaviors of the model. The SSE method is a finite-temperature method, but 
our purpose is to study the zero-temperature behaviors of the system, therefore, in the 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


Phase transitions and critical behaviors of XXZ ladders

4https://doi.org/10.1088/1742-5468/ab5705

J. S
tat. M

ech. (2020) 013102

simulations we set T  =  0.5/L; the zero-temperature properties are obtained by taking 
the finite-size scaling, i.e. T → 0 as L → ∞.

The sampled variables include the two types of string order parameters Se and So, 
the local order parameters mu and ms, and the Binder ratios of them

So = 〈So〉, Qo =
〈So〉2

〈S2
o 〉

,� (2)

Se = 〈Se〉, Qe =
〈Se〉2

〈S2
e 〉

,� (3)

mu = 〈Mu〉, Qu =
〈M2

u〉2

〈M4
u〉

,� (4)

ms = 〈Ms〉, Qs =
〈M2

s〉2

〈M4
s〉

,� (5)

where So, Se, Mu, and Ms are defined as

So = − lim
|n−m|→∞

So,z
n · exp

[
iπ

m−1∑
l=n+1

So,z
l

]
· So,z

m ,� (6)

Se = − lim
|n−m|→∞

Se,z
n · exp

[
iπ

m−1∑
l=n+1

Se,z
l

]
· Se,z

m ,� (7)

Mu =
∣∣∣ 1
N

∑
i,j

Sz
i,j

∣∣∣,� (8)

Ms =
∣∣∣ 1
N

∑
i,j

(−1)i+jSz
i,j

∣∣∣,� (9)

with So,z
l = Sz

l,1 + Sz
l,2, S

e,z
l = Sz

l,1 + Sz
l+1,2, and N  =  2L the number of sites of the ladder. 

Because we are simulating the finite system, thus in practice we let the length from n 
to m be L/2.

In order to get the critical exponent, we can use the finite-size scaling theory. In the 
vicinity of the critical point, the Binder ratio satisfies the following form

(b)

(a)

J(1+ δ) J(1− δ)

J⊥

Figure 1.  (a) The staggered model; (b) the columnar model.
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Q = Q0 +
∑
k=1

ak( p− pc)
kLkyt + · · ·+

∑
i=1

biL
yi ,

� (10)

where p  is the tuning parameter, i.e. p  can be J⊥ or h, and pc = J⊥c or hc is the criti-
cal point of the phase transition. y t is the thermal exponent in the renormalization, it 
is related to the critical exponent ν with yt = 1/ν , where ν describes the divergence 
of the correlation length ξ, i.e. ξ ∼ |p− pc|−ν . y i  <  0 is the irrelevant exponent in the 
renormalization, and the corresponding items are the corrections to scaling. Q0, ak and 
bi are unknown parameters.

At the critical point, the order parameters satisfy the following formulas

S = L2[yh−(d+z)](a+ bLyi),� (11)

mu = aLym−(d+z)(a+ bLyi),� (12)

ms = aLys−(d+z)(a+ bLyi),� (13)

where S is the string order parameters Se or So, d is the space dimension of the system, 
in current paper, it is 1. z  =  1 is the dynamical critical exponent of the XXZ model. y h, 
y m, or y s is the magnetic exponent in the renormalization, it is related to the critical 
exponent β with y h, y m, or ys = d+ z − β/ν, where β describes the asymptotic behav-
ior of the order parameters, i.e. S ∼ |p− pc|2β, mu ∼ |p− pc|β, or ms ∼ |p− pc|β; β is 
dierent for dierent order parameter of a given phase transition.

By fitting the data according to equations (10)–(13), we can get the critical point 
and the critical exponent y t, y m, and y h, thus determine the universality class of the 
phase transition.

3. Results

3.1. The cases with no magnetic field

Firstly, we pay attention to the critical behaviors of the Heisenberg case, i.e. ∆ = 1, 
and in the simulations, we set δ = 0.5. This case has ever been studied by the method 
of exact diagonalization [19], however, because the system size is too small, the results 
are not accurate enough. Here, we study it by extensive Monte Carlo method. It is 
confirmed that there is a phase transition between the two topological phases, as shown 
in figure 2, the system is in a topological phase with So order when J⊥ < J⊥c ≈ 1.23 
but Se order when J⊥ > J⊥c. Analytical work [31] based on mean-field method shows 
that the So ordered phase has a winding number Nw  =  1 and the So order phase has a 
winding number Nw  =  0.

The critical point can be located by the Binder ratio Qo or Qe, as shown in figure 3. 
In order to get an accurate estimation of this critical point and also the critical expo-
nent y t, we do extensive simulations in the vicinity of J⊥c, which is in a very small 
range of J⊥; the largest system size reaches L  =  160. The data of Qe is shown in figure 4; 
fitting the data according to equation (10) with Lmin = 24, we get J⊥c = 1.226 53(8) and 
y t  =  1.40(1). The critical point we get coincides with that in [32], which is obtained by 
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the scaling behaviors of the Berry phase and Berry connection based on path-integral 
quantum Monte Carlo simulations. For the critical exponent y t, it should be noted 
that the estimated value has small deviation from the theoretical prediction y t  =  1.5, 
the reason is the logarithmic correction to scaling [33]. In the theoretical prediction 
[18], the universality class of the model belongs to the four-state Potts model, owing to 
the Z2 × Z2 hidden symmetry [31]; the four-state Potts is one of the cases of the con-
formal field theory [34] with central charge c  =  1, the marginal operator in this c  =  1 
space leads to the logarithmic corrections [35] and certain uncertainty in determining 
the universality class, except the Baxter–Wu model [36–38]. In the finite-size scaling 
analysis, if the logarithmic correction is not included, the result of y t generally has some 
deviation from the exact value [32, 33, 39]. One may expect the result can be much 
better if the logarithmic correction is included, however, a meaningful data fitting with 
logarithmic correction need very large system size, which will be very dicult in prac-
tice; for example, in [39] although the system size reaches L  =  256, the error bar is still 
too large. Therefore, in current paper we do not pursue this aspect.

In order to determine the critical exponent y h, we simulate at the estimated critical 
point J⊥c and fitting the data of So and Se (as shown in figure 5) according to equa-
tion (11), the best estimation gives y h  =  1.87(1), this result coincides with the theor
etical result y h  =  1.875.

In summary, for the Heisenberg case with no magnetic field and δ = 0.5, we give 
very accurate result of the critical point J⊥c = 1.226 53(8), and confirm that the phase 
transition is in the universality class of four-state Potts model.

Secondly, by the same way, we simulate the XY case with ∆ = 0.5, in this case the 
phase transition is also between the two types of topological phases, as shown in figure 6. 
Fitting the data according to equation (10), we get the critical point J⊥c = 1.2204(5) 
and the critical exponent y t  =  0.99(2). Furthermore, we simulate at this critical point, 
the data of Se and So are shown in figure 7; fitting the data according to equation (11), 
we get the critical exponent y h  =  1.76(1) from Se and y h  =  1.753(5) from So. From these 
estimated values of critical exponents, we know the phase transition belongs to a new 
universality class that is dierent from the four-state Potts model.

Thirdly, we study the Ising case, with ∆ = 1.5; in this case, the phase diagram is 
much dierent from the Heisenberg case and XY case, as shown in figure 8. There are 
two phase transitions between three ordered phases; when J⊥ < J⊥c1 ≈ 1.0, the system 
has So topological order; when J⊥ > J⊥c2 ≈ 1.4, the system has Se topological order; 
when J⊥c1 < J⊥ < J⊥c2, the system has both So and Se topological orders, and also the 
symmetry breaking order ms. Furthermore, we do extensive simulations in the vicinity 
of the critical points and fit the data according to equation (10), we get J⊥c1 = 1.033(1) 
and y t  =  1.01(2) for the first phase transition, and J⊥c2 = 1.443(1) and y t  =  0.99(2) for 
the second phase transition. In the estimated critical points, we do further simula-
tions and fit the data according to equation (11) or (13); at the critical point J⊥c1, we 
get y h  =  1.87(1) from Se and y s  =  1.872(7) from ms; at the critical point J⊥c2, we get 
y h  =  1.871(8) from So and y s  =  1.88(1) from ms; all of the results are consistent with the 
magnetic exponent of Ising model, which is 15/8. From the estimations of y t, y h, and 
y s, we conclude that the two phase transitions belongs to the Ising universality class.

At last of this section,we summarize the phase transitions and universality classes 
of the two-leg staggered XXZ ladder that we studied in figure 9.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Figure 2.  Order parameters of the Heisenberg model on the staggered ladder, with 
δ = 0.5; the inset is a zoom into the region around the critical point.

Figure 3.  Binder ratio of the Heisenberg model on the staggered ladder, with 
δ = 0.5; the inset is a zoom into the region around the critical point.

Figure 4.  (a) Binder ratio Qe of the Heisenberg model on the staggered ladder, 
with δ = 0.5.
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For the two-leg columnar ladder, the Heisenberg model is always gapped, thus there 
is no phase transitions [17]; for the XY case and Ising case, we have not find any phase 
transition either.

3.2.  In the presence of magnetic field

When the magnetic field is included, phase transition exists in both the staggered 
model and columnar model; some of the phases are in the magnetic plateaux. As shown 
in figure 10, there are two plateaux with mu  =  0 and mu  =  0.5 (saturated magnetiza-
tion) for the staggered Heisenberg model with δ = 0.5 and J⊥ = 0.2. In the figure, it 
is very clear that in phase I, the system has zero magnetization and zero Se but non-
zero So; in phase II, both Se and So are zero. In order to study the critical behaviors 
of the phase transition from I to II, we do extensive simulation in the vicinity of the 
transition point; both the Binder ratios Qo and Qm can give the critical point, which is 
hc  =  1.0606(12), and the critical exponent is y t  =  1.03(4), which coincides with that of 
Ising model. Furthermore, fitting the data of So at the critical point according to equa-
tion (11), we get y h  =  1.87(1), which confirms the Ising universality class of this phase 
transition. Fitting of the data of mu according to equation (12), we get y m  =  1.25(2), 
which is obviously dierent from that of Ising model (i.e. 15/8); this is not strange, 
because in phase II, although the magnetization mu is nonzero, it does not means the 
phase has any symmetry breaking, thus there is no reason to expect y m  =  15/8.

The critical behavior of the field-induced second-order transitions of the uniform 
XXZ chain is described by

(mu −muc)
2 ∼ h2 − h2

c ,� (14)

which is called Dzhaparidze–Nersesyan–Pokrovsky–Talapov universality class [23, 24]. 
In equation (14), muc is the value of the magnetization of the plateau, for the uniform 
chain muc  =  0.5 is the saturated value, and hc = 1 +∆ is the critical value of the field. 
Equation (14) means that as h approaching the critical value hc, |mu −muc| scales as

Figure 5.  Log–log plot of the critical behaviors of the order parameters of Heisenberg 
model on the two-leg staggered ladder, with δ = 0.5 and J⊥ = J⊥c = 1.226 53(8).

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Figure 6.  Binder ratio of the staggered XXZ ladder on the staggered ladder, with 
δ = 0.5 and ∆ = 0.5.

Figure 7.  Log–log plot of the critical behaviors of the order parameters of the 
XXZ model on the staggered ladder, with δ = 0.5 and ∆ = 0.5.

Figure 8.  Order parameters of the staggered XXZ ladder, with δ = 0.5 and ∆ = 1.5.
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|mu −muc| ∼ (h− hc)
1/2,� (15)

this means the critical exponent β = 1/2, thus the renormalization exponent 
ym = 2− β/ν = 1.5. This is dierent from the result of the staggered ladder, we also 
numerically verify this conclusion by the finite-size scaling; as shown in figure 11, the 
slope of the log–log line of the critical value of |mu −muc | versus L for the staggered 
ladder is obviously dierent from that of the uniform Heisenberg chain. Therefore, the 
field-induced second-order phase transition of the staggered ladder does not belong to 
the Dzhaparidze–Nersesyan–Pokrovsky–Talapov universality class. Note that the field-
induced phase transition in the XXZ chain is between a gapless phase and a gapped 
phase, while the field-induced phase transition in the XXZ ladder is between two 
gapped phases, thus the universality classes can be dierent.

Figure 9.  Phase transitions and universality classes of the staggered XXZ ladder, 
with δ = 0.5; the dots are the critical points. The ‘New’ universality of the XY case 
has critical exponents y t  =  1 and yh ≈ 1.75.

Figure 10.  Order parameters of the Heisenberg model on the staggered ladder, 
with δ = 0.5 and J⊥ = 0.2. In phase III, mu  =  0.5 is the saturated magnetization.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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a topological phase transition from the phase I with Se order to phase II. However, 
instead of study the critical behavior of this phase transition, here we pay attention to 
another phase transition, i.e. the phase transition from phase III to phase IV. Phase III 
is in a plateau of magnetization with mu  =  0.25 (half saturation), and this phase is said 
to have a fractional quantization Berry phase, which is π/2 instead of π [28], thus it is 
very interesting to study the critical behavior associated with this phase. However, as 
shown in the figure both the III and IV phases have zero value of Se and So, although 
in phase IV Se and So show much stronger fluctuation than that in phase III, therefore 
Se and So are not applicable to be the order parameters here. However, the value of mu 
shows substantial changes from phase III to phase IV, thus here we use the value of 
mu  −  0.25 as a detector of this phase transition, the critical point and the critical expo-
nent y t can be determined by the corresponding Binder ratio, which are hc  =  2.4076(8) 

Figure 11.  Uniform magnetization of the Heisenberg chain and staggered ladder. 
For the chain, hc = 1 +∆ = 2, muc  =  1; for the staggered ladder, δ = 0.5, J⊥ = 1, 
hc  =  1.0606(12), muc  =  0.

Figure 12.  Order parameters of the Heisenberg model on the columnar ladder, 
with δ = 0.5 and J⊥ = 1. In phase V, mu  =  0.5 is the saturated magnetization; in 
phase III, mu  =  0.25 is the half saturated magnetization.
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and y t  =  0.99(1). We also simulate at the critical point, finite-size scaling analysis of 
mu gives y m  =  1.24(1), this coincides with the result of the aforementioned staggered 
model; it also does not belong to the Dzhaparidze–Nersesyan–Pokrovsky–Talapov uni-
versality class.

4. Conclusion and discussion

In summary, we have studied the phase transitions and critical behaviors of the dimer-
ized XXZ ladders, mainly about the staggered cases. For the Heisenberg model on 
the two-leg staggered ladder, we confirm the four-state Potts universality class of the 
phase transition, which is between two types of topological phases. For the XY case 
(∆ = 0.5), the phase transition is also between the two topological phases, but the 
universality class is a new one that is dierent from the four-state Potts model. For 
the Ising case (∆ = 1.5), the phase transitions are also studied, we find two topological 
phase transitions which belong to the Ising universality class.

We also studied the field-induced phase transitions in both the staggered and colum-
nar models. For the staggered ladder, we find that the critical behavior of the string 
order parameter belongs to the 2D classical Ising model, and the scaling behavior of 
the uniform magnetization is dierent from the Dzhaparidze–Nersesyan–Pokrovsky–
Talapov universality class.

For the columnar model, the conventional string orders are not applicable as the 
order parameters; the critical point is determined by the critical behavior of the uniform 
magnetization which is also dierent from the Dzhaparidze–Nersesyan–Pokrovsky–
Talapov universality class. In this case, it is an interesting question whether we can 
define a topological order parameter like but dierent to the conventional string orders 
So or Se, however, currently we are not clear about what this order parameter is, we 
leave this question for further study.
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