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Abstract.  We consider the steady states of a driven inelastic Maxwell 
gas consisting of two types of particles with scalar velocities. Motivated by 
experiments on bilayers where only one layer is driven, we focus on the case 
when only one of the two types of particles are driven externally, with the other 
species receiving energy only through inter-particle collision. The velocity v of 
a particle that is driven is modified to −rwv + η, where rw parameterises the 
dissipation upon the driving and the noise η is taken from a fixed distribution. 
We characterize the statistics for small velocities by computing exactly the mean 
energies of the two species, based on the simplifying feature that the correlation 
functions are seen to form a closed set of equations. The asymptotic behaviour 
of the velocity distribution for large speeds is determined for both components 
through a combination of exact analysis for a range of parameters or obtained 
numerically to a high degree of accuracy from an analysis of the large moments 
of velocity. We show that the tails of the velocity distribution for both types of 
particles have similar behaviour, even though they are driven dierently. For 
dissipative driving (rw  <  1), the tails of the steady state velocity distribution 
show non-universal features and depend strongly on the noise distribution. On 
the other hand, the tails of the velocity distribution are exponential for diusive 
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driving (rw  =  1) when the noise distribution decays faster than exponential.

Keywords: stochastic particle dynamics, gases dynamics, kinetic theory of 
gases and liquids, exact results
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1.  Introduction

One of the main features that makes granular matter dierent from equilibrium many 
particle systems is their inelastic collisional interaction. Along with many intriguing 
phenomena exhibited by granular matter such as jamming, phase segregation, cluster-
ing, and others [1–5], the dissipative interactions give rise to non-trivial characteristics 
even in its simplest variant, namely granular gas. Granular gases are dilute collections 
of particles that move ballistically and interact via inelastic binary collisions. One of 
the central questions is the nature of the velocity distribution, in particular is it uni-
versal and if yes, what is it? 

When isolated, the granular gas cools through dissipative collisions. The total energy 
decays in time t as a power law t−θ, where θ = 2 in the initial homogeneous regime [6], 
and θ = 2d/(d+ 2) in the later inhomogeneous regime when particles cluster together 
[3, 7–14]. For generic initial velocities, the time dependent velocity distribution P (v, t), 
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at large times, has a universal tail, lnP (v, t) ∝ −v2/θt, for large speeds v [9, 10, 13], in 
both the homogeneous as well as the inhomogeneous regimes.

When driven by external input of energy, the granular gas approaches a time inde-
pendent steady state at large times. The steady state velocity distribution P (v) generi-
cally has a stretched exponential form P (v) ∼ exp(−avβ) for large speeds v, where a 
is a constant. Though determining the value of the exponent β has been the subject 
of many studies, the results are still not conclusive. Among the dierent systems that 
have been studied, the monodispersed gas, consisting of only one type of particle, is the 
best studied. For this case, a number of experiments [15–22] and simulations [23–26] 
conclude that the exponent β is approximately 1.5, and universal in the sense that it 
does not dier for a wide range of densities and driving parameters. Theoretically, the 
Boltzmann equation, that assumes molecular chaos such that spatial correlations may 
be ignored, and where driving is phenomenologically modelled by a diusive term—as 
when the system is in contact with a heat bath—predicts β = 3/2 [27]. At the same 
time there are several other experiments which predicted a wide range of values for β 
instead of a universal form [28–37]. Numerical studies [23, 38–44] of models of driven 
systems have also obtained estimates of β that are dierent from 1.5. Intermediate 
power law behaviour were also found in the case of extremal driving [44], wherein large 
momentum is imparted with small rate to single particles. In recent work [45, 46], 
we have analysed simple models within the molecular chaos assumption, where noise 
is modelled microscopically as a discrete process, as is expected in an experiment. In 
these models the rate of collision is proportional to a power of the relative velocity. We 
showed that there are two universal regimes. One in which the velocity distribution 
decays as an exponential with logarithmic corrections, and other in which it decays as 
a Gaussian with logarithmic corrections. In addition to these universal distributions, 
there are choices for the noise distribution for which the velocity distribution is non-
universal in the sense that the tail of the distribution depends strongly on the tails of 
the noise distribution [45, 46].

The nature of steady state velocity distributions in binary gases, consisting of two 
dierent types of constituent particles, is less explored. Steady states of binary gases 
have been studied using one of two kinds of driving: one, in which both types of par-
ticles are driven [47–53] and the other where only particles of one type are driven [33, 
37, 54–57]. When both types of particles are driven, the steady state velocity statistics 
has been analysed mostly within numerical and analytical studies. A notable feature 
seen in these studies have been the overpopulation near the tails of the distribution 
when compared to a Gaussian [49, 53, 58, 59]. In particular, Monte Carlo study of a 
two dimensional system of hard sphere binary gas has observed non-Maxwellian statis-
tics near the tails for both bulk forcing as well as boundary driving with gravity, with 
lighter particles having broader tails [58]. However, molecular dynamics study of a two 
dimensional granular gas driven vertically, showed very similar velocity distributions 
in the horizontal direction for both the species [59]. The velocity distribution depends 
on the nature of driving also. Event driven simulation of a poly-dispersed system in 
three dimensions with momentum conserving, species independent driving [53] show 
overpopulation of the tails for constant force driving, in contrast with under population 
for constant energy or constant velocity driving.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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The scenario where only a type of particle is driven has been studied in experiments 
and simulations. Experiments typically employ quasi-two-dimensional system of bilay-
ers where the bottom layer is driven and the top layer gains energy through collisions 
with the bottom layer [33, 37, 54–56]. The experiments typically find the velocity 
distribution to deviate from Maxwellian for the lower set of particles, but observe a 
Gaussian form for the upper layer for a large range of parameters, along with decreased 
correlations among top-layer particles [33, 37, 54, 55]. This observation was further 
supported by the demonstration that the velocity distribution of a single monomer 
above a vibrating bed of dimers is close to Gaussian [56]. Numerical simulations of the 
above experimental set up observe a deviation from Gaussian as the density or mass of 
the top layer particles are increased [57], indicating the possibility that the Gaussian 
form for the top layer particles arises from more number of randomizing inter-layer 
collisions than intra-layer collisions.

Analytical studies of driven binary systems, when only one component is driven, is 
lacking. The tails of velocity distributions are best studied analytically, as experimental 
or numerical data typically suer from poorly sampled tails. One of the simplest mod-
els of driven granular systems that is amenable to analysis is the Maxwell model [49, 
60–71] where the rates of collision between particles are assumed to be independent of 
their relative velocity. While this simplification is not consistent with ballistic gases, 
where the collision rates are proportional to the relative velocity, some of the qualita-
tive results obtained in the Maxwell limit can be carried over to the more general case. 
For binary gases, where both components are driven, analysis of simple Maxwell type 
models in the presence of random forcing along with viscous drag shows that the dis-
tribution near the tails is Gaussian [49].

In this paper, we formulate a Maxwell type model for binary gases in one dimension 
where only one component is driven and analyse the tails of the velocity distribution 
for both components for dierent kinds of driving schemes. There are in general two 
types of driving: dissipative in which during each driving event, some amount of the 
velocity is dissipated with additive noise, or diusive driving where the small noise 
limit corresponds to a diusive term in the Boltzmann equation. In addition, distribu-
tion of noise is also variable, as the noise does not arise as a sum of many stochastic 
events, but rather usually is the result of a single discrete collision with a wall. We 
analyse the tails for a generic driving scheme and identify universal regimes, where the 
tail is independent of the noise, and non-universal regimes where the tails are mostly 
determined by the noise. In particular, we show that the exponent β characterising the 
stretched exponential decay of the velocity distributions are the same for both comp
onents, though only one component is driven.

The remainder of the paper is organised as follows. Section 2 contains a precise 
definition of the model and detailed justifications for the particular form of driving 
that is used. In section 3, we show that the equations for the time evolution of two-
point velocity-velocity correlation functions do not involve higher order correlations. 
This allows an exact calculation of the mean steady state energies of the two comp
onents. The temporal dependence of the correlations are studied through Monte Carlo 
simulations. Section 4 contains an exact analysis, based on characteristic functions, of 
the tails of the velocity distribution for diusive driving. In section 5, we determine 
the tails of the velocity distribution for general driving based on an exact numerical 
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analysis of the asymptotic behaviour of large moments of the velocity. The method is 
compared with the exact results from diusive driving for benchmarking. In section 6, 
we determine the tails of the velocity distribution by analysing the Boltzmann equa-
tion with driving modelled by a diusive term. These results are compared with the 
exact results to determine its validity. Section 7 contains a summary of results and a 
detailed discussion of their implications.

2. The model

Consider a granular gas composed of two types of constituent particles A and B of 
mass mA and mB respectively. The number of particles of type A and B are NA and NB 
respectively with NA +NB = N . Particle i, where i = 1, . . . ,N  and type k, k ∈ {A,B}, 
is characterised by a scalar velocity vi,k. These velocities evolve in time through binary 
collisions and external driving. A pair of particles of type k and l, where k, l ∈ {A,B}, 
collide with rate λkl/N . The factor 1/N in the collision rates ensures that the total rate 
of collisions between Nk[Nk − 1]/2 pairs of similar type of particles and that between 
NANB pairs of dierent type of particles are proportional to the system size N. During 
a collision, momentum is conserved, but energy is dissipated. Let vi,k and vj,l denote the 

pre-collision velocities and v′i,k, v
′
j,l denote the post-collision velocities. Then

v′i,k = vi,k − (1 + rkl)
ml

mk +ml

(vi,k − vj,l),

v′j,l = vj,l + (1 + rkl)
mk

mk +ml

(vi,k − vj,l), k, l = A,B,
� (1)

where rkl ∈ [0, 1] is the coecient of restitution for the collision, and mk and ml are 
the masses. There are three coecients of restitution: rAA, rBB, and rAB depending on 
whether the pair of colliding particles are of type AA, BB, or AB. It is convenient to 
define

αkl =
1 + rkl

2
, k, l = A,B,� (2)

where 1/2 � αkl � 1.
In addition to collisions, the system evolves through external driving. Each A par-

ticle is driven at a rate λd. During such an event, the velocity of the driven particle is 
modified according to

v′i,A = −rwvi,A + η, −1 < rw � 1, i = 1, 2, . . . ,NA,� (3)

where rw ∈ (−1, 1] is a parameter and η is noise drawn from a fixed distribution φ(η). 
There is no compelling reason for φ(η) to be Gaussian. We assume a generic normalized 
stretched exponential distribution for the noise η:

φ(η) =
γc1/γ

2Γ(γ−1)
exp(−c|η|γ), c, γ > 0,� (4)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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where Γ is the gamma function. The distribution φ(η) is characterised by the exponent 
γ with γ = 2 corresponding to a Gaussian distribution and γ = 1 corresponding to an 
exponential distribution. Note that the limit rw  =  −1 corresponds to random accelera-
tion, when the momentum of the centre of mass performs a random walk, and hence 
the system does not reach a steady state.

Particles of type B are not driven. Rather, they gain energy through collisions with 
A particles. This mimics the experiments on bilayer systems [54], where the particles 
in the bottom layer are driven through collisions with a vibrating wall (similar to A 
particles), while the particles in the top layer gain energy by collision with the particles 
of bottom layer (like B particles).

In the model, the spatial degrees of freedom have been neglected. This corresponds 
to the well-mixed limit where the spatial correlations between particles are ignored. 
In addition, we have assumed that the collision rates are independent of the relative 
velocity of the colliding particles. This corresponds to the so called Maxwell limit. A 
more realistic collision kernel would be one where collision rates are proportional to 
the magnitude of the relative velocity, corresponding to ballistic motion. However, the 
Maxwell gas is more amenable to exact analysis than models with more complicated 
collision kernels. In this paper, we therefore restrict ourselves to this case.

The form of driving that has been used (see equation (3)) has several motivations. 
First is that the system is driven into a steady state (see section 3 for more details) for 
rw �= −1 unlike the case of random acceleration (rw  =  −1) where steady state does not 
exist.

Second, the form of driving may be motivated from modelling collisions of A type 
particles with a wall. If the wall is massive and the particle-wall collision times are 
assumed to be random, then equation (3) can be derived, where the parameter rw is 
identified with coecient of restitution of the particle-wall collisions. In this interpreta-
tion, rw ∈ [0, 1] [69].

Third, in the limit rw  =  1, the diusive term that is usually used to model driving 
in kinetic theory result can be realised [46]. This may be argued as follows. Let Pk(v, t), 
where k = A,B, denote the probability that a randomly chosen particle of type k has 
velocity v at time t. Its time evolution is given by:

d

dt
Pk(v, t) =

λkk(Nk − 1)

N

∫ ∫
dv1dv2Pk(v1, t)Pk(v2, t)δ[(1− αkk)v1 + αkkv2 − v]

+
λkk̄Nk̄

N

∫ ∫
dv1dv2Pk(v1, t)Pk̄(v2, t)δ[(1−Xk̄)v1 +Xk̄v2 − v]− λkk(Nk − 1)

N
Pk(v, t)

− λkk̄Nk̄

N
Pk(v, t) + δk,Aλd

[
−Pk(v, t) +

∫ ∫
dηdv1φ(η)Pk(v1, t)δ[−rwv1 + η − v]

]
,

�

(5)

where

k̄ =

{
B, if k = A,

A, if k = B,� (6)

and

Xk = αABµk where µk =
2mk

mA +mB

, k = A,B,� (7)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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with µk ∈ (0, 2) and αAB is defined in equation (2). While writing equation (5), we have 
used the product measure for the joint distribution P (v1, v2) = P (v1)P (v2) due to lack 
of correlation between velocities of dierent particles. This follows from the fact that 
pairs of particle collide at random (also see section 3 where it is shown that two-point 
correlations vanish). The first two terms on the right hand side of equation (5) describe 
gain terms due to collisions with like and unlike particles respectively. The third and 
fourth terms describe the loss terms due to collisions with like and unlike particles 
respectively. The fifth term describe the loss and gain terms due to driving of A type 
particles. We now focus on the fifth term that arises from driving. Denoting it by ID, 
we obtain

ID = −λdPA(v, t) + λd

∫ ∫
dηdv1φ(η)PA(v1, t)δ[−rwv1 + η − v].

� (8)
Integrating over v1 and setting rw  =  1, we get

ID = −λdPA(v, t) + λd

∫
dηφ(η)PA(v − η, t), rw = 1,� (9)

where we have used the fact that P (v, t) has the symmetry P (v, t) = P (−v, t). Taylor 
expanding the integrand about η = 0 and then integrating over η, equation (9) reduces 
to

ID =
λd

2
〈η2〉φ

∂2

∂v2
PA(v, t) + higher order terms in η� (10)

where 〈. . .〉φ denotes averaging over the noise distribution. If the higher order terms 
are ignored, then the driving term ID reduces to the diusive term that is often used to 
model input of energy in kinetic theory [27]. It is not a priori clear when this trunca-
tion is valid. Since our model includes this limit, we will be able to test the regime of 
validity of this truncation.

3. Calculation of two point correlations

In the section, we study two point velocity correlation functions. Further, considering 
the steady state values of the correlations, we illustrate the absence of correlations in 
the thermodynamic limit (N → ∞) for the binary gas. Consider the dierent two point 
correlation functions:

ΣA
1 (t) =

1

NA

NA∑
i=1

〈v2i,A(t)〉, ΣB
1 (t) =

1

NB

NB∑
i=1

〈v2i,B(t)〉,

ΣAB
2 (t) =

1

NANB

NA∑
i=1

NB∑
j=1

〈vi,A(t)vj,B(t)〉, ΣAA
2 (t) =

1

NA(NA − 1)

NA∑
i=1

NA∑
j=1
j �=i

〈vi,A(t)vj,A(t)〉,

ΣBB
2 (t) =

1

NB(NB − 1)

NB∑
i=1

NB∑
j=1
j �=i

〈vi,B(t)vj,B(t)〉.

� (11)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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The subscript ‘2’ denotes that the correlations are between two dierent particles while 
the correlation functions with subscript ‘1’ measure the mean energy.

From the stochastic rules of evolution (1) and (3), the time evolution of the correla-
tion functions can be obtained. They do not depend on higher order correlations, but 
instead form a closed set of equations that may be written compactly in matrix form as

dΣ(t)

dt
= RΣ(t) + C,

� (12)
where

Σ(t) =
[
ΣA

1 (t), ΣB
1 (t), ΣAB

2 (t), ΣAA
2 (t), ΣBB

2 (t)
]T

,
� (13)

C =
[
λd σ2, 0, 0, 0, 0

]T
,

� (14)
where σ2 ≡ 〈η2〉φ and the matrix R is given by



R2B−R1A−R3B−Rd R2B −2R2B +R3B 2R1A 0

R2A R2A−R1B−R3A −2R2A +R3A 0 −R1B
R3A

2NA
−R4

R3B

2NB
−R4

4R4+R3B−R3A

2
−R3A

2NA
+ R3A

2
−R3B

2NB
+ R3B

2
R1A

NA−1
0 R3B

R1A

1−NA
−R3B− Rd

1−rw
0

0 R1B

NB−1
R3B 0 2R1B

NB−1
−R3B



.

� (15)
The constants R1k,R2k,R3k,R4,Rd are functions of the collision and driving rates as 
well as the coecient of restitutions and are given by:

R1k =
λkkαkk(1− αkk)(Nk − 1)

N
, R2k =

λABNkX
2
k

N
,

R3k =
2R2k

Xk

, R4 =
λABXAXB

N
,

Rd = λd(1− r2w).

�

(16)

We solve for the steady state values of these velocity correlation functions by set-
ting the time derivatives in equation (12) to zero. In the thermodynamic limit N → ∞, 
with NA → ∞ and NB → ∞ such that

NA = νAN , NB = νBN , νA + νB = 1,� (17)
νA and νB being the fraction of A and B type particles respectively, the solutions are 
given by

ΣA
1 =

λdσ
2

λd(1− r2w) + 2νAλAAαAA(1− αAA) + λABνBXB(2−XB)−X2
AX

2
BνAνBλ

2
ABQ

,� (18)

ΣB
1 = ΣA

1 λABνAX
2
AQ,� (19)

ΣAB
2 = ΣAA

2 = ΣBB
2 = 0,� (20)

where

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Q =
1

(2−XA)XAνAλAB + 2αBBλBBνB(1− αBB)
.� (21)

These results show that the values of the mean kinetic energy for both types of particles 
are finite and that all two point correlations involving two dierent particles are zero. 
The latter justifies the molecular chaos assumption, where joint probability distribu-
tions are split into product of single-point distributions.

While the steady state values of the correlations can be determined exactly, the 
approach to steady state cannot be determined analytically. We study the time evolution 
using Monte Carlo simulations, as well as direct numerical integration of equation (12) 
using Euler method. This acts as an additional check for the analytical calculations.

We briefly describe the Monte Carlo algorithm. Given a configuration of velocities 
at a time t, the system is evolved as follows. At the next time step, one of these events 
can occur: collisions between AA, BB, or AB particles, or driving of A particles. The 
probabilities of these four events are λAANA(NA − 1)/(2NR), λBBNB(NB − 1)/(2NR), 
λABNANB/(NR), and λdNA/R, respectively, where

R =
λAANA(NA − 1)

2N
+

λBBNB(NB − 1)

2N
+

λABNANB

N
+ λdNA.� (22)

If one of the first three events were chosen, then a pair of appropriate particles are cho-
sen at random. If the fourth event is chosen, then an A particle is chosen at random. 
After updating the velocities of the particles, time is incremented by 1/R.

Initially, all particles are taken to be at rest. The time evolution of the two point 
correlations Σ2 for N  =  100 are shown on figure 1(a). The data for both Monte Carlo 
simulations and numerical integration of equation  (12) coincide. The correlations 
increase with time and saturate at large times to a value dierent from zero, in appar-
ent contradiction to the result obtained in equation (20). To show that these correla-
tions vanish in the thermodynamic limit, we do finite size scaling. The data for ΣBB

2  
for 3 dierent N are shown in figure 1(b). The steady state value decreases with N. The 
data for dierent N collapse onto a single curve when scaled as

Σ2(N , t) =
1

N
g(t),� (23)

where the scaling function g(t) is a constant for large argument. Thus, for large N, the 
correlations Σ2 decrease to zero as 1/N, consistent with equation (20). Figure 2 shows 
the temporal dependence of the average energies Σ1 obtained from both Monte Carlo 
simulations as well as numerical integration of equation  (12) for two dierent sets 
of parameters. The numerically obtained steady state values are compared with the 
analytical results (equations (18) and (19)). The steady state Σ1 obtained from exact 
analysis is in agreement with Monte Carlo results. We now show that though B par-
ticles receive energy only through collisions with A, there is no order relation between 
the mean energies of A and B particles. From equation (19), it is easy to derive that 
ΣB

1 � ΣA
1  whenever

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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XA �
1

2
+

√
1

4
+

αBBλBBνB(1− αBB)

λABνA
,� (24)

with XA as in equation (7). In figure 2, we show results of simulations with choice of 
parameters such that ΣA

1 > ΣB
1  (figure 2(a)) or ΣB

1 > ΣA
1  (figure 2(b)), consistent with 

equation (24).

4. Analysis of the velocity distribution using characteristic function (rw  =  1)

When rw  =  1, we show that the asymptotic behaviour of the velocity distributions can 
be determined analytically using characteristic functions. The characteristic functions 
for the velocity distributions are defined as

Zk(q) ≡ 〈e−iqv〉 =
∫ +∞

−∞
Pk(v)e

−iqvdv, k = A,B,� (25)

where the subscript k refers to either A or B type particles. Multiplying equation (5) by 
e−iqv and integrating over v, we obtain

Zk(q) =
νkλkkZk[(1− αkk)q]Zk(qαkk) + λkk̄νk̄Zk[(1−Xk̄)q]Zk̄(qXk̄)

νkλkk + λkk̄νk̄ + δkAλd[1− f(q)]
,� (26)

where

f(q) ≡ 〈exp(−iqη)〉η� (27)
is the characteristic function for the noise distribution and k̄ is as defined in equa-
tion (6). The form for f(q) depends on the parameter γ (see equation (4)).

Figure 1.  (a) The variation of the correlations ΣAA
2 , ΣBB

2  and ΣAB
2  with time t for 

parameter values rAB  =  0.7, rAA = rBB = rw = 0.5, mA  =  2 and mB  =  1. The noise 
distribution φ(η) is a normal distribution. The data points are from Monte Carlo 
simulations while the solid lines represent results from numerical integration of 
equation (12). (b) Monte Carlo data for the temporal dependence of ΣBB

2  for three 
dierent N, the total number of particles. Inset: the data for dierent N collapse 
onto a single curve when scaled as in equation (23).

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Solving for ZA(q) and ZB(q) from equation (26), we obtain

ZA(q) =
νAλAAZA

[(
1− αAA

)
q
]
ZA

(
αAAq

)
+ νBλABZA

[(
1− µBαAB

)
q
]
ZB

(
µBαABq

)

νAλAA + νBλAB + λd

(
1− f(q)

) ,� (28)

ZB(q) =
νBλBBZB

[(
1− αBB

)
q
]
ZB

(
αBBq

)
+ νAλABZB

[(
1− µAαAB

)
q
]
ZA

(
µAαABq

)
νBλBB + νAλAB

.� (29)

Equations (28) and (29) are recursive in nature, and express the values of the functions 
for a given value of q in terms of smaller q. Since the value for small q is known from 
the exact calculation of the second moment, the value of the characteristic function 
can in principle be calculated. However, in practice there are limitations in determining 
numerically the tails using this method [71].

The tails of the distribution can be obtained analytically by determining the singu-
larities of the characteristic functions. On iterating equation (28) with respect to q, it is 
clear that ZA(q) can be expressed as an infinite product. Since the denominator in the 
right hand side of equation (28) involves a simple pole in the complex q space, the terms 
in the infinite product representation of ZA(q) will correspond to a family of simple 
poles of which the one closest to the origin, q∗A determines the asymptotic behaviour 
of the velocity distribution. On the other hand, ZB does not have any singular contrib
ution from the denominator on the right hand side of equation (29), and thus the lead-
ing singular behaviour of ZB is that of ZA(αABµAq). This provides a relation between 
q∗A and the dominant pole of ZB(q), denoted as q∗B, as

q∗B =
q∗A

µAαAB

.� (30)

Figure 2.  Variation of the mean energies ΣA
1  and ΣB

1  with time t. The data points 
are from Monte Carlo simulations, the solid lines represent results from numerical 
integration of equation (12), and the dashed lines denote the analytical results for 
the respective steady state values in equations (18) and (19). The noise distribution 
φ(η) is a normal distribution. (a) The data for parameter values rAB  =  0.4, 
rAA = rBB = rw = 0.5, mA  =  2 and mB  =  1 illustrating the scenario when ΣA

1 > ΣB
1 . 

(b) The data for parameter values rAB  =  0.7, rAA  =  0.4, rBB  =  1, rw  =  0.5, mA  =  2 
and mB  =  1 for which equation  (24) is satisfied, illustrating the scenario when 
ΣB

1 > ΣA
1 .

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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The asymptotic tail of the distribution then decays exponentially as:

Pk(v) ∼ e−|v|/v∗k , v∗k = 1/q∗k, k = A,B.� (31)

The expression for q∗A depends on the specific values of the parameters, which we 
analyse now. If in equation (28), all the arguments of Zk on the right hand side are 
smaller than q, the dominant pole is given by equating the denominator to zero:

νAλAA + λABνB + λd[1− f(q)] = 0, αAA < 1.� (32)
On the other hand when any of the arguments of ZA on the right side of equation (28) 
is equal to q, which happens when αAA = 1, then the equation satisfied by the pole is 
modified to (see appendix A for a derivation)

νBλAB + λd[1− f(q)] = 0, αAA = 1.� (33)
One may also find a situation when the right hand side of equation (28) has an argu-
ment which is greater than q for example when 1 < µkαAB < 2 (note that µk can take 
values between (0, 2)). However, one can show that the pole arising from these terms 
happen to be further away from the pole obtained from equation (32), making the for-
mer ones irrelevant (see appendix A for a detailed discussion).

The above analysis presents two dierent kinds of behaviour which can be realised 
in two dierent domains of the parameter space, one when αAA < 1, and another when 
αAA = 1. We present the details of the analysis in appendix A. While q∗k can be numer
ically determined for any γ, it takes on a simple form when γ = 1 (exponential) or γ = 2 
(Gaussian):

q∗A =




c
√

νAλAA+νBλAB

νAλAA+νBλAB+λd
, αAA < 1, γ = 1,√

−4c ln
[

λd

νAλAA+νBλAB+λd

]
, αAA < 1, γ = 2,

� (34)

and

q∗A =




c
√

νBλAB

νBλAB+λd
, αAA = 1, γ = 1,√

−4c ln
[

λd

νBλAB+λd

]
, αAA = 1, γ = 2.

� (35)

The above analysis is valid only if all singularities of f(q), the characteristic func-
tion of the noise distribution, is larger in magnitude than q∗A. This is clearly true for 
γ > 1. For γ = 1, the noise distribution is exponential and hence f(q) has a simple pole 
at c, but it can be checked from equations (34) and (35) that q∗A < c. When γ < 1, f(q) 
has a singular behaviour at q  =  0, and hence the singularity of ZA(q) and ZB(q) will be 

identical to that of f(q). Hence, we conclude that if lnPk(v) = −ak|v|βk + . . ., then

βk = min[γ, 1], rw = 1, k = A,B.� (36)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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For γ � 1, we check whether there is any order relation between v∗A and v∗B. From 
equation (30), it is clear that v∗A = v∗B only for µAαAB = 1 or equivalently rAB = mB/mA 
(using equations (2) and (7)). For other choices of parameters, both v∗A > v∗B and v∗B > v∗A 
can be realised, with v∗B > v∗A for rAB > mB/mA.

The above analysis also implies that the asymptotic behaviour of the velocity distri-
bution of A and B type particles is independent of the coecient of restitution rBB for 
rw  =  1. Since rBB does not appear in equations (32) and (33) for the poles, q∗A is indepen-
dent of rBB. Since the relation between q∗B and q∗A (see equation (30)) does not involve 
rBB, q∗B is also independent of rBB. Thus, for the tails of the distribution, one could have 
ignored all interactions among B particles.

5. Moment analysis

The analysis based on characteristic functions in section 4 works only for rw  =  1. For 
rw �= 1, we determine the tails of the distribution by analysing the asymptotic behav-
iour of large moments of velocity. The binary Maxwell gas model, it turns out, allows 
for an exact numerical evaluation of the moments of the velocities. We outline the 
calculation below.

Let

Mk
2n ≡ 〈v2nk 〉 =

∫ +∞

−∞
dv v2nPk(v), k = A, B,� (37)

be the 2nth moment of the velocity distribution. The relation satisfied by the moments 
can be obtained by multiplying equation (5) with v2n and integrating over all velocities. 
In the steady state, by setting the time derivative to zero, we obtain
[
λkkνk

(
1− (1− αkk)

2n − α2n
k

)
+ λkk̄νk̄

(
1− (1−Xk̄)

2n
)
+ δkAλd(1− r2nw )

]
〈Mk

2n〉

− λkk̄νk̄X
2n
k̄ 〈M k̄

2n〉 = λkkνk

n−1∑
l=1

(
2n

2l

)
(1− αkk)

2n−2lα2l
k 〈Mk

2n−2l〉〈Mk
2l〉

+ δkAλd

n−1∑
l=0

(
2n

2l

)
r2lw 〈Mk

2l〉N2n−2l + λkk̄νk̄

n−1∑
l=1

(
2n

2l

)
(1−Xk̄)

2n−2lX2l
k̄ 〈M

k
2n−2l〉〈M k̄

2l〉,

�

(38)

where k̄ is as defined in equation (6), and

N2n = 〈η2n〉 = c
−2n
γ

Γ(2n+1
γ

)

Γ(γ−1)
,� (39)

is the 2nth moment of the noise distribution. The moments thus satisfy a set of recur-
rence relations where M2n depends on moments of lower order. Clearly, MA

0 = MB
0 = 1. 

Also, we know MA
2 = ΣA

1  and MB
2 = ΣB

1  from equations (18) and (19). Thus, by knowing 
these moments, we can generate all the higher moments.

The asymptotic behaviour of velocity distribution functions can be determined by 
analysing the asymptotic behaviour of the ratios of large moments. We assume that the 
velocity distribution of A and B particles is asymptotically a stretched exponential, i.e.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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lnPk(v) = −ak|v|βk +Ψk(|v|), ak, βk > 0, k = A,B,� (40)

where the subleading correction Ψk(|v|) satisfies |v|−βkΨk(|v|) → 0 for large v. For such 
a stretched exponential distribution, the 2nth moment can be obtained using saddle 
point approximation for large n, and has the form [46]

Mk
2n ∼ n

1
βk

√
n

( 2n

akβk

)−2n
βk e

Ψ
[(

2n
akβk

)1/βk
]
, k = A, B.� (41)

The ratio of consecutive moments is then given by

∆n,k ≡
Mk

2n

Mk
2n−2

=
( 2n

akβk

)2/βk
(
1 +O(n−1)

)
, k = A, B.� (42)

It is clear from equation (42) that the ratio of large moments ∆n,k depend only on the 
leading asymptotic behaviour of the velocity distribution and thus provides a tool for 
probing the tails of the distribution.

The parameters βk and ak (defined in equation (40)) can be determined from ∆n,k 
(equation (42)) for 2 consecutive values of n as

βk(n) =
2 ln(n+ 1/n)

ln(∆n+1,k/∆n,k)
,� (43)

ak(n) =
2n

βk(∆n,k)βk/2
.� (44)

The asymptotic βk and ak are obtained by extrapolating βk(n) and ak(n) to large n. 
We illustrate the procedure that we follow through an example. The dependence of 
parameters βk and ak on n is shown in figures 3(a) and (b) respectively for typical val-
ues of parameters. Clearly, they converge to their asymptotic value as 1/n. Knowing 
the approach to the asymptotic value, the asymptotic value can be determined to high 
accuracy. We now use this approach to obtain the asymptotic behaviour of the velocity 
distributions for the cases of dissipative and diusive driving.

5.1. Dissipative driving (rw  <  1)

In this subsection, we discuss the results for dissipative driving when rw  <  1. Figures 4 
and 5 show the results for βk and ak for rw  =  1/2 and various choices of other param
eters. In figure 4(a), the dependence of βA and βB on γ, the exponent characterising the 
noise distribution (see equation (43)) is shown. It is clear that βA = βB = γ, irrespective 
of whether γ < 1 or γ � 1, i.e.

βk = γ, rw < 1, k = A,B.� (45)
We conclude that the velocity distribution is non-universal.

In section 4, we showed that for rw  =  1, the prefactors aA = aB for the special case 
rAB = mB/mA, and aA = aB = c for γ < 1. We check whether similar results hold for 
rw  <  1. Figure 4(b) shows the variation of the prefactors aA and aB with γ for the spe-
cial case rAB = mB/mA, when rw  =  1/2. Clearly, aA = aB for all choices of γ. Also, 
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for γ < 1, aA = aB as for diusive driving. We, thus conclude that for the special case 
rAB = mB/mA and rw  <  1, the asymptotic behaviour of the velocity distributions of 
both the components are identical.

We now determine the prefactor ak for other choices of parameters rAB �= mB/mA. 
Figure 5 shows the dependence of aA and aB on γ for rw  =  1/2 and dierent choices of 
other parameters. It is clear that aA > aB for rAB > mB/mA (see figure 5(a)) and vice 
versa (see figure 5(b)).

Though we have presented results for only rw  =  1/2, the results are similar for other 
choices of rw. Thus, for rw  <  1, both the components of the binary mixture have the 
same βk = γ , the prefactors ak could be dierent and has no particular order relation. 
The velocity distribution is nonuniversal.

5.2. Diusive driving (rw  =  1)

In this subsection, we discuss the results, using moment analysis, for diusive driving 
when rw  =  1. While we analysed this special case using characteristic functions, the 
analysis was not rigorous, and the numerical results will act as further confirmation. 
At the same time, the matching of the results obtained from both methods will act as 
a benchmark for the numerical moment-analysis method.

Figures 6 and 7 show the results for βk and ak for rw  =  1 and various choices 
of other parameters. In figure  6(a), the dependence of βA and βB on γ, the expo-
nent characterising the noise distribution (see equation (43)) is shown. It is clear that 
βA = βB = min[γ, 1], consistent with the analytical result in equation (36).

In section  4, we showed that for rw  =  1, the prefactors aA = aB for the special 
case rAB = mB/mA, and aA = aB = c for γ < 1. Figure 6(b) shows the variation of the 
prefactors aA and aB with γ for the special case rAB = mB/mA, when rw  =  1. Clearly, 
aA = aB for all choices of γ. Also, for γ < 1, aA = aB = c. In addition, the numerically 
obtained values for aA and aB coincide with that from the exact calculations (shown in 
solid lines in figure 6(b)).

Figure 3.  Variation of (a) the exponent βA(n) and (b) the prefactor aA(n), obtained 
numerically using equations  (43) and (44), with n−1 for the cases of dissipative 
(rw  <  1) and diusive (rw  =  1) driving. The parameters for the noise distribution 
was chosen to be γ = 2 and c  =  3 (see equation (4)), while the other parameters 
are rAB = rAA = rBB = 0.5, mA  =  2 and mB  =  1. βA(n) and aA(n) converge to their 
asymptotic value as 1/n.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Figure 7 shows the dependence of aA and aB on γ for rw  =  1 and dierent choices of 
other parameters. It is clear that aA > aB for rAB > mB/mA (see figure 7(a)) and vice 
versa (see figure 7(b)). Also, the numerically obtained values coincide with the analyti-
cal results (shown in solid lines in figure 7)

Thus, for diusive driving, both the components of the binary mixture show similar 
asymptotic behaviour for the parameter rAB = mB/mA as βA = βB and aA = aB. For 
other choices of the parameter rAB, βA = βB but aA �= aB. So, in that case, velocity dis-
tribution of one of the components of the binary mixture decays slower in comparison 
to the other. Moreover, the asymptotic velocity distribution is independent on the noise 
distribution as βA = βB = 1 provided the noise distribution φ(η) decays faster than 
exponential and hence the velocity distribution is universal.

Figure 4.  Variation of (a) the exponents βk and (b) the prefactors ak, characterising 
the asymptotic behaviour of velocity distribution, with γ, the exponent characterising 
the noise distribution (see equation (43)) for rw  =  1/2, corresponding to dissipative 
driving. The other common parameters are c  =  3, mA  =  2 and mB  =  1. In (a), the 
data are for dierent choices of the coecients of restitution rAA, rBB and rAB, 
while for (b) the data are for the special case rAB = mB/mA. The dashed straight 
line corresponds to c  =  3.

Figure 5.  Variation of the prefactor ak with γ, the exponent characterising the 
noise distribution (see equation  (44)) for rw  =  1/2, corresponding to dissipative 
driving. The other common parameters are c  =  3, mA  =  2 and mB  =  1. The dashed 
straight line corresponds to c  =  3. (a) Variation of ak with γ for rAB  =  0.7 such that 
rAB > mB/mA. (b) Variation of ak with γ for rAB  =  0.4 such that rAB < mB/mA.
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6. Analysis of tail of distribution for diusive driving

In this section, we derive the asymptotic behaviour of the velocity distributions when 

the driving is modelled by a phenomenological diusive term, D ∂2P
∂v2  as in equation (10), 

as is customarily done in kinetic theory of dilute inelastic gases. We use this form 
of driving in equation  (5) to analyse the tail of the velocity distributions. Consider 
first PA(v), the velocity distribution of A particles. Its time evolution is as given in 
equation (5) with k  =  A. It can be shown that the gain terms arising from collisions 
with other particles are sub-dominant compared to the corresponding loss terms [27]. 
Dropping these terms, in the steady state, equation (5) takes the form

0 ≈ − (λAAνA + λABνB)PA(v) +D
d2

dv2
PA(v).� (46)

By making the ansatz PA(v) ∼ exp(−a|v|α) for large |v| in equation  (46), we obtain 
α = 1 (see [27] for more details), or equivalently PA(v) ∼ exp(−a|v|).

For B type particles, there is no diusive term arising from driving as B particles 
are not driven externally. Therefore, we cannot drop the gain term arising from col
lision with A type particles in equation (5). Dropping the sub-dominant gain term aris-
ing from B type particles, equation (5) takes the form

0 ≈ − (λBBνB + λABνA)PB(v) + λABνA

∫ ∞

−∞
dv1PA(v1)PB

(v −XAv1
1−XA

)
.� (47)

We assume that PB(v) has the asymptotic form PB(v) ∼ exp(−b|v|β). Using 
PA(v) ∼ exp(−a|v|), equation (47) simplifies to

Figure 6.  Variation of (a) the exponents βk and (b) the prefactors ak, characterising 
the asymptotic behaviour of velocity distribution, with γ, the exponent 
characterising the noise distribution (see equation (43)) for rw  =  1, corresponding 
to diusive driving. The other common parameters are c  =  3, mA  =  2 and mB  =  1. 
In (a), the data are for dierent choices of the coecients of restitution rAA, rBB 
and rAB, while for (b) the data are for the special case rAB = mB/mA. The dashed 
straight line corresponds to c  =  3. The data for aA and aB fall on top of each other 
for a given choice of rAA and rAB. The solid lines in (b) are the exact solutions 
obtained by solving equations (32) and (33).
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PB(v) ∼
∫

dv1e
−a|v1|e

−b
∣∣∣ v−XAv1

1−XA

∣∣∣β
.� (48)

Substituting v1 = xv, v � 1, we obtain

e−bvβ ∼
∫

dxe
−a|x|v− bvβ |1−XAx|β

|1−XA|β .� (49)

We now analyse equation (49) for the cases β < 1, β > 1 and β = 1. When β < 1, 
the integrand on the right hand side of equation (49) is maximised at x  =  0. Then we 
obtain exp[−bvβ] ∼ exp[−bvβ/|1−XA|β]. A self consistent solution is possible only if 
XA  =  0, but from equation (7) we know that XA  >  0. Hence, there exists no solution for 
β < 1. Now, consider β > 1. In this case the right hand side of equation (49) is maxi-
mised at x  =  1/XA. Then we obtain exp[−bvβ] ∼ exp[−axv], giving β = 1, in contradic-
tion to our assumption that β > 1. Hence, there exists no solution for β > 1. For β = 1, 
it is easy to see the integrand on the right hand side of equation (49) can be evaluated 
by a saddle point integration. This will lead to a self-consistent equation obeyed by b. 
Thus, we conclude that β = 1 for B particles also.

To summarise, if the driving is modelled by a diusive term, then kinetic theory 
predicts that the asymptotic behaviour of the velocity distribution of both A and B 
particles are universal and exponential.

7. Summary and discussion

In this paper, we studied an inelastic driven one dimensional Maxwell gas consisting 
of two components. Only one of the two components is driven externally, while the 
other component receives energy through inter-particle collisions. The well-mixed limit 
is assumed such that spatial correlations were ignored. The main aim of the paper 

Figure 7.  Variation of the prefactor ak with γ, the exponent characterising the 
noise distribution (see equation (44)) for rw  =  1, corresponding to diusive driving. 
The other common parameters are c  =  3, mA  =  2 and mB  =  1. The solid lines are 
the exact solutions obtained by solving equation  (32) and the dashed straight 
line corresponds to c  =  3. (a) Variation of ak with γ for rAB  =  0.7 such that 
rAB > mB/mA. (b) Variation of ak with γ for rAB  =  0.4 such that rAB < mB/mA.
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was to determine the steady state velocity distribution P (v) for both the components. 
The behaviour for small velocities is captured by lower order moments of the veloc-
ity. The second moment of the velocity, as well as the dierent two point correlations, 
were determined exactly. This was possible because the equations for the two point 
correlations form a closed set. We showed that for suitable choice of parameters, the 
mean granular temperature of either component could be larger, even though only one 
component is driven. We also showed that two point correlations involving dierent 
particle types vanish in the thermodynamic limit.

The asymptotic behaviour of the tails of P (v), characterised by lnP (v) = −a|v|β + . . . 
for large |v|, was determined either exactly for certain ranges of parameters, or through 
numerical analysis of the ratio of consecutive large moments of the velocity. The latter 
was possible because a given moment can be calculated, to any desired accuracy, if all 
moments of lower order are known, allowing a recursive calculation to be implemented. 
The results depend on the details of driving, which we had implemented as follows: 
when a particle with velocity v is driven, its velocity is modified to −rwv + η, where the 
noise η is chosen from a stretched exponential distribution φ(η) that has the asymp-
totic behaviour lnφ(η) ∝ −|η|γ for large η. For diusive driving (rw  =  1), we showed, 
using characteristic functions, that β = min[1, γ] for both components, implying that 
the tails are universal for γ > 1. For inelastic driving (rw  <  1), we show that β = γ for 
both components, implying that the distributions are always non-universal. The con-
stant a is dierent for the two components in both cases of driving, and depending on 
the values of coecients of restitution, could be larger for either component. We show 
that only when rAB = mB/mA, then the constant a is same for both components, and 
the asymptotic behaviour of both components become identical. One also observes 
that the distribution for A and B particles for the case of diusive driving (rw  =  1) are 
independent of the parameter rBB. It is because the equations characterising the poles 
for A and B particles are independent of the parameter rBB. This observation indicates 
that the steady state velocity distribution is independent of the interparticle collisions 
amongst the B particles.

The results that we have obtained are compared with the results from Boltzmann 
equation where the driving term is modelled by a diusive term, as is usually done in 
kinetic theory. The Boltzmann equation predicts that the velocity distribution for both 
components should have an exponential distribution, irrespective of noise distribution. 
These results coincide with the detailed results for our model only for the case γ � 1 
and rw  =  1. Thus, the truncation of the driving term in the Boltzmann equation to 
lowest order in η gives the correct result only in restricted regimes. However, even this 
restricted equivalence between microscopic models for driving and Boltzmann equa-
tion with diusive driving may not hold for more realistic collision kernels where the 
collision rates are proportional to the relative velocity [45, 46].

In experiments on bilayers, where only the bottom layer is driven, it has been 
observed that the data for the velocity distribution for the bottom layer are consistent 
with β ≈ 1.5, while that for the top layer is consistent with β ≈ 2. These are in contra-
diction to the fact that in the Maxwell model studied in this paper, β for the velocity 
distributions of both components are the same. However, one can also consider a par
ticular limit in which the driving rate λd becomes large when compared to the collision 
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rates, where the driving may be generically described as an Ornstein Uhlenbeck process 
for any noise distribution φ(η) with finite second moment (see appendix B for detailed 
analysis). For a binary gas with both components driven by an Ornstein Uhlenbeck 
process, the velocity distributions for both the components has been shown to follow 
Gaussian statistics [49]. We find that the velocity distribution remains Gaussian for 
both the components even when only one of the components are driven as in bilayer 
system. We also note that it is highly unlikely that the velocity distribution of B 
particles will decay with a larger β , i.e. βB > βA. This is because there is always a 
contribution to the tails coming from B particles that have just undergone a velocity 
transferring collision with an A particle.

In the Maxwell model considered in the paper, we have assumed that the collision 
rate of a pair of particles is independent of the relative velocity. For ballistic transport, 
the collision rate is proportional to the relative velocity. For mono dispersed gases, 
an analysis with this more realistic kernel shows that β remains the same, though for 
rw  =  1, there are additional logarithmic corrections to the exponential decay [45, 46]. 
We expect these results to generalise to the driven binary gas also, such that β , as 
obtained in this paper, is not modified. Showing this more rigorous is a promising area 
for future study.

A significant simplification is restricting the model to one dimension. In this case, 
all collisions are head on. For mono-dispersed gases, the possibility of glancing collisions 
in two and higher dimensions introduces another universal regime for the velocity dis-
tribution which is a Gaussian distribution with logarithmic corrections [45]. We thus, 
expect that the velocity distributions for the binary gas also becomes near Gaussian in 
two and higher dimensions.

The spatial correlations that have been ignored in our calculations can be studied 
only through large scale simulations. However, conventional simulations sample only 
the typical velocities making it dicult to sample the tails. Biased simulations which 
give extra weight to rare events might overcome this diculty. We are currently work-
ing on such numerical approaches.

Appendix A. Analysis of the tails of the velocity distribution when rw  =  1

In this appendix, we discuss in detail how to obtain the tails of velocity distribution 
for the case of rw  =  1, as given in equations  (31) and (35), (30), using characteristic 
functions. For rw  =  1 the characteristic function of the velocity distribution Zk(q) (see 
equation (25)) with k = A,B satisfy

ZA(q) =
νAλAAZA

[(
1− αAA

)
q
]
ZA

(
αAAq

)
+ νBλABZA

[(
1− µBαAB

)
q
]
ZB

(
µBαABq

)

νAλAA + νBλAB + λd

(
1− f(q)

) ,� (A.1)

ZB(q) =
νBλBBZB

[(
1− αBB

)
q
]
ZB

(
αBBq

)
+ νAλABZB

[(
1− µAαAB

)
q
]
ZA

(
µAαABq

)
νBλBB + νAλAB

,� (A.2)

which are the same as in equations (28) and (29) respectively. As discussed in section 4, 
the tails of the velocity distribution are determined by the pole in Zk(q) closest to the 
origin defined as q∗k. Then, Pk(v) ∼ e−q∗k|v| for large |v|. In what follows we first consider 
the case αAA < 1 and then αAA = 1 to evaluate q∗k for each case.
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A.1. αAA < 1

In this case, given µBαAB < 1, all the arguments of ZA and ZB on the right side of equa-
tion (A.1) are less than q and hence the pole closest to the origin for ZA, i.e. q∗A is given 
by equating its denominator to zero as

νAλAA + λABνB + λd[1− f(q∗A)] = 0.� (A.3)
All other poles are larger in magnitude than q∗A that satisfies equation (A.3).

For general f(q∗A), equation  (A.3) has to be solved numerically. But, when the 
noise distribution is a Gaussian (γ = 2) or exponential (γ = 1), then f(q) is e−q2/4c and 
c2/(c2 + q2) respectively. In this case q∗A has a simple form:

q∗A =




c
√

νAλAA+νBλAB

νAλAA+νBλAB+λd
, γ = 1,√

−4c ln
[

λd

νAλAA+νBλAB+λd

]
, γ = 2,

� (A.4)

as displayed in equation (34).
Now, we look for the pole of ZB in equation (A.2). The expression for ZB in equa-

tion (A.2) itself does not have any singularity but the pole arises from the dependence 
of ZB(q) on ZA(αABµAq) which is obtained using equation (A.1) as

[νAλAA + λABνB + λd[1− f(αABµAq)]]ZA(µAαABq) = νAλAAZA

[(
1− αAA

)
αABµAq)

]

× ZA

(
αAAαABµAq

)
+ λABνBZA

[(
1− µBαAB

)
αABµAq

]
ZB

(
α2
ABµAµBq

)
.

� (A.5)

As all the arguments of ZA and ZB on the right side of equation (A.5) are less than the 
argument of ZA on the left side, the poles originating from the latter terms will be fur-
ther away from the origin compared to the one obtained by equating the denominator 
of equation (A.5) to zero. This results in the relation satisfied by q∗B as:

νAλAA + λABνB + λd[1− f(αABµAq)] = 0, q = q∗B,� (A.6)
and using equation (A.4), q∗B follows the form:

q∗B =
q∗A

µAαAB

.� (A.7)

However, for 1 < µkαAB < 2, the argument of ZB on the right hand side of equa-
tion (A.1) becomes larger than q and the pole closest to the origin may arise from this 
term. We compute ZB(µBαABq) from equation (A.2), and has the form

(νAλAB + νBλBB)ZB(µBαABq) = νBλBBZB

[(
1− αBB

)
µBαABq

]
ZB

(
αBBαABµBq

)

+ νAλABZB

[(
1− αABµA

)
µBαABq

]
ZA

(
α2
ABµAµBq

)
.

� (A.8)

Equation (A.8) shows that the pole arises from the further dependence of ZB on ZA (see 
equation  (A.1)). Since, the argument of ZA, i.e. α2

ABµAµBq < q, the pole originating 
from the term ZB(µBαABq) is further away from the origin in comparison to the one 
obtained by equating the denominator of equation (A.1) to zero. Hence, the closest pole 
to the origin for ZA, i.e. q∗A follows equation (A.4).
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Now, the poles of ZB (equation (A.2)) for 1 < µkαAB < 2 arises from its depend
ence on ZA(αABµAq) (equation (A.5)). Here, it can be shown that the terms αAA, 
(µAαAB − 1) and α2

ABµAµB present in the arguments of ZA and ZB on the right side of 
equation (A.5) are less than unity and hence make the arguments of ZA smaller on the 
right side when compared to that on the left side. Thus the poles originating from the 
latter terms present will be further away from the origin compared to the one obtained 
by equating the denominator of equation (A.5) to zero. Thus, the pole of ZB for this 
case follows equation (A.7).

For the special case of αBB = 1, equation (A.2) takes the form

(νAλAB)ZB(q) = νAλABZB

[(
1− αABµA

)
q
]
ZA

(
αABµAq

)
,� (A.9)

whereas equation (A.1) remains the same. Since the pole of ZB appears from its depend
ence on ZA and the argument of ZA in equation (A.9) is the same as in equation (A.2), 
this case is similar to the one analysed by considering generic range of αBB. Thus, the 
poles in this case are also obtained by solving equations (A.3) and (A.6).

A.2. αAA = 1

Next we consider the case αAA = 1. For this case, equation (A.1) takes the form

ZA(q) =
λABνBZA

[(
1− µBαAB

)
q
]
ZB

(
µBαABq

)

νBλAB + λd

(
1− f(q)

) ,� (A.10)

and the expression for ZB remains the same as given in equation (A.2). Here, we follow 
the same reasoning as for the case of αAA < 1 to find the closest poles to the origin 

as the arguments of Z ′
js, j = A, B on the right side of equations (A.2) and (A.10) are 

still the same. Now the pole is dierent from the previous case αAA < 1, as the source 
of singularity, i.e. the denominator of equation (A.10), is now modified. The poles are 
obtained by equating the denominator of equation (A.10) to zero, i.e.

νBλAB + λd[1− f(q)] = 0,� (A.11)
and results in the form for q∗A:

q∗A =




c
√

νBλAB

νBλAB+λd
, γ = 1,√

−4c ln
[

λd

νBλAB+λd

]
, γ = 2,

� (A.12)

with qB given as in equation (A.7).
For the special case of αBB = 1, equation (A.2) takes the form as given in equa-

tion (A.9) whereas equation (A.10) remains the same. One can follow the same analy-
sis as described for generic range of αBB to show that the poles in this case are also 
obtained by solving equation (A.11).

Appendix B. Limiting case of large driving

In this appendix, we examine the limit when the driving rate is large. For the driv-
ing studied in the paper (see equation (3)), for noise distributions with finite second 
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moment σ2, one can show that in the limit with λd → ∞, σ2 → 0, and rw → −1, keeping 
λd[(1 + rw)] = Γ and λdσ

2/2 = D, the driving approaches an Ornstein–Uhlenbeck driv-
ing where the change in velocity of the particles due to driving is eectively described 
by ∂v/∂t = Γv + ξ, where ξ is an eective noise with 〈ξ2〉 = 2D [70]. The tails of the 
velocity distributions for a binary Maxwell gas with both the components driven by 
Ornstein–Uhlenbeck driving have been shown to be Gaussian [49]. In the following, we 
present an analysis of a binary Maxwell gas with Ornstein–Uhlenbeck driving that acts 
only on one species of particles, and show that the velocity distribution for both the 
particles have Gaussian tails.

We consider the limit of large driving in equation (5) to analyse the tail of the veloc-
ity distributions. Consider first PA(v), the velocity distribution of A particles. Its time 
evolution is as given in equation (5) with k  =  A. As discussed in section 6, it can be 
shown that the gain terms in equation (5) arising from collisions with other particles 
are sub-dominant compared to the corresponding loss terms [27]. Dropping these terms 
and taking the limit of large driving, in the steady state, equation (5) takes the form

0 ≈ − (λAAνA + λABνB)PA(v) +D
d2

dv2
PA(v) + Γ

d

dv
[vPA(v)].� (B.1)

By making the ansatz PA(v) ∼ exp(−a|v|α) for large |v| in equation (B.1), we obtain 
α = 2 (see [27] for more details), or equivalently PA(v) ∼ exp(−av2).

For B type particles, there is no diusive term arising from external driving, as B 
particles are not driven externally. Therefore, we cannot ignore the gain term arising 
from collision with A type particles in equation (5). Dropping the sub-dominant gain 
term arising from B type particles, equation (5) takes the form

0 ≈ − (λBBνB + λABνA)PB(v) + λABνA

∫ ∞

−∞
dv1PA(v1)PB

(v −XAv1
1−XA

)
.� (B.2)

We assume that PB(v) has the asymptotic form PB(v) ∼ exp(−b|v|β). Using 
PA(v) ∼ exp(−av2), equation (B.2) simplifies to

PB(v) ∼
∫

dv1e
−av21e

−b
∣∣∣ v−XAv1

1−XA

∣∣∣β
.� (B.3)

Substituting v1 = xv, v � 1, we obtain

e−bvβ ∼
∫

dxe
−ax2v2− bvβ |1−XAx|β

|1−XA|β .� (B.4)

We analyse equation (B.4) for the cases β < 2, β > 2 and β = 2. When β < 2, the 
integrand on the right hand side of equation (B.4) is maximised at x  =  0. Then we obtain 
exp[−bvβ] ∼ exp[−bvβ/|1−XA|β]. A self consistent solution is possible only if XA  =  0, 
but from equation (7) we know that XA  >  0. Hence, there exists no solution for β < 2. 
Now, consider β > 2. In this case the right hand side of equation (B.4) is maximised at 
x  =  1/XA. Then we obtain exp[−bvβ] ∼ exp[−ax2v2], giving β = 2, in contradiction to 
our assumption that β > 2. Hence, there exists no solution for β > 2. For β = 2, it is 
easy to see the integrand on the right hand side of equation (B.4) can be evaluated by a 
saddle point integration. This will lead to a self-consistent equation obeyed by b. Thus, 
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we conclude that β = 2 for B particles or equivalently PB(v) ∼ exp(−bv2). Therefore, 
the tails of the velocity distributions of both the components are Gaussian.
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