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Abstract. Predicting the influence of climate variations on crop yield demands an appropriate 
model. In this study, Fuzzy logic based crop yield estimation is undertaken considering 
temperature, humidity and moisture of soil as input parameters. By subjecting these parameters to 
fuzzy arithmetic, crisp value of yield is obtained. Trapezoidal membership function is considered
in the fuzzy modeling. The results are validated using available open source literature. It has been 
verified theoretically that air humidity 65%-75%, air temperature 18-290 C and soil moisture 60-
80% would give high yield.

1. Introduction

agriculture sector which accounts to one hundred times more than used for personal needs.  Irrigation 
requires 70% of the water, 20% industry and 10% domestic applications. To meet the food requirement of 

through irrigation. The United Nations Dept. of Economic and Social Affairs estimates global population 
to stretch between 8.4-8.6 billion by 2030. In future global water demand for agriculture is assessed to 
increase further 19% (See [1], [2] & Figure1.& Figure 2. ). Thus, in future competition for water 
resources is anticipated. Significant water saving support system is anticipated to support continued 
economic growth. 

Figure 1. Share of freshwater withdrawals by sector

world population (about 6 billion) water required is 6000km3. Most of this requirement is met through 
rainfall and through irrigation 15% is provided. Thus, per year 900 km3 of water is required for food crops 

Forecasting the crop yield would assist the strategies of farmers, industries and government. The potential

topography and irrigation management. Largest consumers of freshwater in the world is food and 
growth and yield is dependent on several production attributes  such as soil properties, weather, fertilizer, 
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                                           Figure 2.   Agricultural Production by region 

Fuzzy logic theory is extension of Boolean logic and it expedites logical values between true/false. In 
1963 Fuzzy logic theory was introduced and was implemented in Japan during 1998. Fuzzy logic theory 
facilitates the combination of multiple values of single parameters / multiple parameters together to 
construct a rational result. Thus, very helpful to operate and find accurate solution to the ambiguity of the 
real word problem in all the sectors such as artificial intelligence, biomedical, agriculture, environment, 
industrial control etc. Recently, Peng and Liu [3] designed water- saving irrigation model adopting 
wireless sensor network along with fuzzy control method considering soil and humidity information. 
Anand et al. [4] demonstrated automatic drip irrigation model with mobile technology and fuzzy logic 
considering input parameters such as soil humidity, air humidity, temperature and salinity. Bahat et al. [5] 
modeled fuzzy irrigation controller system considering input variables wind speed, temperature, air 
humidity, water budget. Paucar et al. [6] designed decision support by wireless distributed sensors for 
smart irrigation. Umair et al. [7] modeled ANN based controller for automation of irrigation system. Dela 
Cruz et al. [8] adapted Neural Network to optimize water usage in automated irrigation system. Jimenez 
et al. [9] by using devices raspberrypi and xbee, looking at the factors soil moisture, temperature, 
luminosity and rain data developed irrigation scheduling system. Karimah et al.[10] designed smart pot 
implantation considering internet of things. Related work regarding the water saving, smart irrigation 
management and estimation of yield by the implementation of various current technologies can be found 
in [11-25]. 
After tomatoes and peppers it is the green beans which is the third most popular vegetable grown in the 
home gardens this vegetable is belongs to leguminocae family.  It is cultivated for about more than 7000 
years worldwide. Loamy soil is ideal to grow green beans. Europe and Asia are the dominant producers of 
green beans with more than 30% and 50% of world production. Green beans is one of the most important 
vegetable it provides vitamins, protein, calories and minerals (calcium, iron and phosphorus).  
 

2. Problem Definition 

In this paper estimation of crop yield is undertaken using fuzzy inference system. Crop analyzed in this 
study is green beans.  
Three fuzzy input variables or factors have been considered, viz., 

a. Humidity 
b. Temperature 
c. Moisture of Soil 
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Figure 3. shows the basic approach to the problem. The fuzzy inference system takes linguistic inputs (as 
stated for simplification), processes the information and outputs the performance. The outputs are turned 
back to the real numbers using a defuzzification procedure.

Figure 3. Fuzzy Inference System

Before the details of the fuzzy system are dealt with, the range of possible values for the input and output 
variables are determined. These (in language of Fuzzy Set theory) are the membership functions (Input 
variable vs. the degree of membership function) used to map the real world measurement values to the 
fuzzy values, so that the operations can be applied on them. Fig. 4- 7 shows the labels of input and output 
variables and their associated membership functions i.e., trapezoidal membership functions using 
Mamdani method.
Values of input variables: (a) Humidity: Humidity input variable has three membership functions. Dry, 
Normal and Moist.
The functions used to map humidity inputs in terms of % into fuzzy sets are:
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2.1. Details about the Set Applied 
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Figure 4. Humidity membership function 

(b)Temperature in terms of Celsius (0 C) scale Low, Normal, High. The functions used to map   
Temperature inputs into fuzzy sets are: 
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Figure 5. Temperature membership function 

(c) Moisture of Soil: Moisture of Soil input variable has three membership functions: Low, Normal and 
High. The functions used to map Moisture of Soil inputs into fuzzy sets are: 
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Figure 6. Moisture of Soil membership function 

 

The value of the output variable i.e., crop yield has three membership functions: Low, Medium and High 

The functions used to map crop yield inputs into fuzzy sets are: 
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Figure 7. Output function 

3. Results and discussion 

By differing the scale values of all the input variables Humidity, Temperature and Moisture of Soil results 
are obtained according to the rules. Fig.8 portray rule editor which lets generating rules based on different 
combinations of input and output parameters. Fig.9 portray the rule viewer of fuzzy toolbox. Range 
membership functions, i.e., from ‘Low’ to ‘High’ varies from 0 to 100 via increasing the values of input 
variables. The estimated yield in percentage is shown in Table 1. The fuzzy toolbox of MATLAB 
software is used for obtaining the output value. Fig. 10 portray that when humidity is normal and soil 
moisture is medium yield is high. Fig. 11 shows when temperature is normal and humidity is high yield is 
not much. It has been verified theoretically that air humidity 65%-75%, air temperature around 18-290 C 
and soil moisture 60-80% would give high yield. The results almost coincide with the information 
available in the open literature (see, [26]). 
 

 

Figure 8. Rule Editor  
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Figure 9. Rule Viewer  

 

Table1. Yield of green beans for different input values. 

 

Humidity(%) Temperature (0C) Moisture of Soil(%) Yield(%) 

65 18 60 83 

75 29 80 75 

68 25 70 85 

40 40 50 18 

80 40 90 15 

95 45 90 16 

25 8 30 15 

50 50 80 50 

20 9 30 15 

10 10 35 19 

30 25 40 50 
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Figure 10. Humidity and Moisture vs Yield possibility 

 

 
 

Figure 11. Temperature and Humidity vs Yield possibility 

4. Conclusion 

By the use of fuzzy inference system in this study, possibility of growth of green beans for different 
parameters is analyzed. Green beans are warm season crop which can be grown once frost has passed in 
spring, full sunlight. It has been verified theoretically that air humidity 65%-75%, air temperature around 
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18-290 C and soil moisture 60-80% would give high yield. The purpose of this study was only analysis not 
recommending any counter scheme. This study might be useful for developing latest irrigation methods 
and optimal yield. 
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