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Abstract. We propose in this paper a mathematical relationship to calculate the natural 

frequency shifts of beams due to multiple cracks. The relationship is based on the application 

of the superposition principle. A crack alters the frequencies for the bending vibration modes in 

a particular manner, with respect to the crack depth and location. We have shown that the 

affected beam have the same natural frequencies as a healthy beam with a smaller thickness; 

this thickness has to be calculated separately for each vibration mode. As a consequence, we 

can consider the next crack affects healthy beams, one different beam for each considered 

mode. Subsequent cracks affect a bigger number of beams. For the last crack, we have to 

calculate the frequencies for a number of beams that is the number of the considered vibration 

modes to the power equal with the number of cracks. To automate the process of calculating 

the resulted natural frequencies, we have written a program in Visual Basic for Excel 

Applications (VBEA), which permits finding the natural frequencies of a beam with up to nine 

cracks. This application can calculate the natural frequencies for four beam types: with fixed-

free, fixed-fixed, simply supported and free-free restraints. The results obtained by calculating 

the frequencies for several damage scenarios and boundary conditions fit those obtained from 

simulations by involving the finite element method.  

1.  Introduction 

In the last decades, structural integrity evaluation based on the analysis of vibration becomes an 

important concern of researchers and practitioners. As a consequence, numerous techniques that 

permit estimating the size and position of a crack in the beam are available [1]. These vibration-based 

assessment methods consider either the natural frequencies shifts or the changes of the mode shapes, 

the modal curvatures respectively the modal damping [2-5].  

The natural frequency is the most commonly used modal parameter because it can easily be 

measured and does not imply the use of complex or sensitive equipment. However, a high accuracy of 

the frequency estimate must be ensured by advanced signal processing methods [6] in order to observe 

the crack occurrence as early as possible [7], [8]. Mathematical relationships between the damage 

parameters (i.e. the location and severity) and the frequency decrease are available in the literature; see 

for instance references [9-12]. The methods can be employed as well for an instable environment, but 

corrections have to be applied for the frequencies to eliminate the environmental changes; see for 

instance references [13-15].  
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To find the crack location and severity, in most of the cases the frequency shift caused by cracks is 

compared with those achieved by using theoretical models. If more vibration modes are involved in 

the analysis, the comparison is made by using dissimilarity estimators that perform a mode-by-mode 

evaluation [16], [17]. Another option to assess damages from vibration measurement is the use of 

artificial intelligence and optimization techniques [18-20].  

If the structure is affected by one crack, it is possible to separate the problem of finding the crack 

location and severity by applying two consecutive normalizations [21]. Initially, the location is 

determined involving the Damage Location Coefficients (DLC) deduced from the Relative Frequency 

Shifts (RFS) found after a procedure described in [22]. Afterward, the severity is found for the crack 

for which the location is identified [23]. 

From our prior research, we found that for a beam with more cracks directly employing the DLCs 

is not possible since the cracks can achieve different severities and normalization is hence improper. 

Different approaches to detect multiple cracks are largely described in the literature [24-26]. The key 

finding is that the superposition principle generally applies, except the case if the damages are closely 

located each to the other [27]. We propose here an algorithm to find the DLCs for a beam with up to 

three cracks that we have implemented in VBEA. It ensures an automated generation of damage 

scenarios which is useful to easily create a database that can be used in the assessment of multiple 

damages. The algorithm’s efficiency is tested by comparing the results obtained from the VBEA with 

the frequencies obtained from the modal analysis performed using the finite element method (FEM) 

for a series of simulated damages. 

2.  The model of cracked beams 

Models used to investigate real systems should describe their behavior or at least the aspect of which 

the study is focused, as accurate as possible. In this paper, we analyze prismatic beams with transverse 

cracks and the phenomenon refers to the transverse vibration, more precisely to the frequencies of 

these modes of vibration. The dimensions of the intact beam considered in this work are: the length 

1000mmL  , the width 50mmB   and the thickness 5mmH  . The dimensions of the beam qualify it 

to be considered as an Euler-Bernoulli beam and It is made of steel, and has the mass density 
37850kg/m   and the longitudinal modulus of elasticity 11 22 10 N/mE   .  

We perform the study on a cantilever beam, i.e. with fixed-free boundary conditions, but in the 

paper we permanently demonstrate that the developed theory and the resulting mathematical 

relationships are valid for any other boundary conditions that can be applied to the beam.  

2.1.  The model of the beam with one crack 

The aim of this sub-section is to demonstrate the behavior in terms of frequencies of a prismatic beam 

with a crack of depth d and location c can be modeled employing a beam with a smaller but constant 

thickness or with a reduced density. We base this demonstration on the well-known fact that the ratio 

of the frequencies of two beams is proportional with the ratio of the energies stored in the two beams.  

Let us design the original beam with constant stiffness the Intact Beam (IB), the beam with a crack 

the Damaged Beam (DB) and the model of the DB, which has reduced but constant thickness or 

density, the Equivalent healthy Beam (EHB). The DB and the EHB are presumed to achieve under 

dead mass the same deflection at the free end. This, according to Castigliano’s second theorem 

indicates that these store the same amount of energy. Hence, based on the proportionality between 

frequencies and stored energies, the EHB will have the same frequency as the DB. Now, let’s see how 

the thickness or the density of the EHB can be deduced.  

The dimensions of the beam qualify it to be considered as an Euler-Bernoulli beam and in 

consequence, the frequency of the ith transverse vibration mode of the IB can be calculated as:  
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In equation (1), i  is the wavenumber for transverse vibration mode 1...i n , which depend on the 

boundary conditions [10]. In addition, we have in this equation the area A of the constant cross-section 

and the second moment of area I.  

The maximum deflection of the IB under dead mass can be calculated with the well-known 

equation: 

 
4

IB

g A L

E I






  
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 
 (2) 

where g is the gravitational acceleration and κ is a parameter who’s value depends on the boundary 

conditions. For the cantilever beam, which is our concern in this paper, 8  . Other examples are: 

384/5   for the simply supported beam and 384/2.08  for the fixed-hinged beam.  

One can observe that the mathematical relationships that express the frequency and the deflection 

contain similar terms. Hence, by a simple substitution, for the cantilever beam we can write: 
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The maximum deflection increases in the case a crack occurs in the beam, and becomes: 
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where eqA , eqI  respectively eq  represent the values found for the EHB to fit the deflection of the DB 

that has a crack, and the bracket (c,d) indicates the crack parameters. One can observe from equation 

(4) that ( , ) ( , )DB EHBc d c d   can be obtained either by changing the beam thickness, or its density. Note that 

the shape of the DB is similar to that of the IB, except an additional rotation in the damaged slice.  
From equation (1) and (4), we can obtain after performing a simple substitution: 
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Hence, the mathematical relationship to express the natural frequency of the damaged beam results, 

from equations (3) and (5), as: 

 ( , )
( , )

IB
i EHB i IB

EHB

f c d f
c d
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Now, we can estimate the RFS, denoted ( , )if c d , from the deflections of the IB and DB under 

static loads, given that i IBf   are known. The contrived relation is: 
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i

i IB EHB

c df f c d
f c d

f c d

 



 




    (7) 

One can observe in equations (6) and (7) that the parameter κ belongs both to the nominator as well 

as to the denominator, so it can be reduced by simplifying it in the ratios. This permits concluding that 

the square root in equation (6) is the same for any boundary conditions the beam gets assigned, so that 

the deflection for the cantilever beam can be used to quantify the damage irrespective to the beam end 

supports.  

It was shown in our prior research, see for instance [25], that the RFS achieves the biggest value if 

the crack is located on a slice where the bending moment or the modal curvature attains it highest 

value. This happens at the fixed end, which is 0mmc   for the cantilever beam.  
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For all other positions of the crack, the relation between the deflections and the curvature is [5]: 

 
2 2( , ) (0, )
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where 
2

( )i c   is the square of the normalized modal curvature (SNMC). We can denote  
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where (0, )d  is the damage severity. If due to the boundary conditions the curvature achieves maxima 

at other locations as the beam end, that crack location must be taken into consideration when deriving 

the maximum beam deflection. In a similar way, we can designate ( , ) ( , )if c d c d   the pseudo-

severity. The damage severity is the same for a given crack, irrespective to the boundary conditions, 

while the pseudo-severity depends on the crack location and the boundary conditions. 

From equations (9) we can find the frequency of the frequency shift: 

 (0, ) (0, )i i IBf d d f           or       (0, ) (0, )i IB i EHB i IBf f d d f      (10) 

hence 
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But, after replacing eqA  and eqI  with their explicate expressions in equation (7), we obtain 

 

2

2

(0, ) (0, )( , )

( , )

eq eqIBi EHB

i IB EHB

H d H df c d

f Hc d H









    (12) 

After making the substitutions in equations (11) and (12), we obtain the value of the EHB thickness  

  (0, ) 1 (0, )eqH d d H   (13) 

In a similar way we can find the density of the EHB as: 

  
2

(0, ) 1 (0, )eq d d  


   (14) 

Obviously, for other crack locations as the fixed end, the pseudo-severity should be involved, that 

mean equation (13) becomes: 

  2
( , ) 1 (0, ) ( )eq iH c d d c H       (15) 

and equation (14) becomes: 

  
2

2
( , ) 1 (0, ) ( )eq ic d d c   



      (16) 

From equation (8), after multiplying both sides with i IBf   and considering the equivalence in 

equation (9), we can deduce the frequency of the DB as: 

  2
( , ) ( , ) 1 (0, ) ( )i DB i EHB i IB if c d f c d f d c           (17) 
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This relation permits finding the frequency for a beam with a crack in a simple and reliable way, by 

simply involving the severity and SNMC calculated for the considered crack.   

2.2.  The EHB – poof of the concept 

We performed tests to show the EHB is a suitable model to predict frequencies for beams with one 

crack. To this aim, we performed simulations by means of the ANSYS software and derived the free-

end deflections under dead mass for the IB and DB with a crack at the fixed end that has the depth 

1mmd  . For these values we found the damage severity involving equation (9) and subsequently the 

equivalent thickness and density using relations (13) and (14). The severity is used to find the natural 

frequencies of the DB by calculus, with equation (17) and considering the SNMC = 1 because the 

crack is at the fixed end. The benchmark was the natural frequency of the IB found from simulation. 

The two other features, namely the (0, )eqH d  and the (0, )eq d , are used to find the natural frequencies 

of the EHB by simulation. We also performed a modal analysis to find the natural frequencies for the 

DB with a simulated crack. Finally, we compared the frequencies obtained from calculus with those 

achieved by simulation to find if the developed concept of the EHB and the contrived mathematical 

relations are suitable to predict frequency changes due to damage. The test was also made for a crack 

located at 160mmc   from the fixed end. 

The deflections of the IB and the DB are shown in Table 1. Here, also the equivalent thickness and 

the equivalent density calculated with the equations (13) respectively (14) are specified. 

 

Table 1. Equivalent healthy beam thickness and density calculated by employing the severity 

Mode 

no. 

Deflection at the free end  Severity  

 (0,1)   

Beam thickness Beam density 

[mm]i IB   (0,1)[mm]i DB   [mm]H   (0,1)[mm]eqH  3[ / ]kg m   3(0,1)[ / ]eq kg m  

1 22.948 23.092   0.00312 5 4.98435 7850 7899.259 

 

For the severity deduced for the EHB, we calculated the frequencies for the DB with the crack at 

0mmc  and found the results presented in the last column in Table 2. In this table is also indicated the 

frequency obtained from FEM simulation for the DB, the EHB with reduced thickness and the EHB 

with increased density. 

 

Table 2. Frequencies found from simulation and by calculus for the crack position 0mmc   

Mode 

no. 

Frequency from FEM simulation [Hz] Frequency from calculus [Hz] 

Original beam with 

the crack at 0c    

Reduced thickness 

(0,1)eqH  

Increased density 

(0,1)eq  

Using the damage severity 

(0,1)  

1 4.07720 4.07720 4.07723 4.07723 
2 25.54700 25.54708 25.54725 25.54597 
3 71.53300 71.53212 71.53261 71.52992 
4 140.20000 140.19151 140.19246 140.18843 
5 231.81000 231.79964 231.80122 231.79468 

 

After this test, we conclude that irrespective to the method the frequencies of the DB are found, i.e. by 

employing the severity, the equivalent thickness or the equivalent density respectively calculus or 

FEM simulation, we obtain accurate results. 

Our second approach was to test the method for a crack located at a certain distance from the fixed 

end. To this aim, we selected the crack position 160mmc   and performed modal analysis for the DB. 

Afterward, we calculated the values of the SNMC for the considered crack position and calculated the 

natural frequencies for the first five transverse vibration modes by involving equation (17). To do this, 
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we used the frequencies of the IB and the severity indicated in Table 1. All parameters used in the 

calculus are indicated in Table 3.  

 

Table 3. Frequencies found from simulation and by calculus for the crack position 160mmc   

Mode 

no. 

Frequency for the IB 

from simulation [Hz] 

Squared Normalized 

Modal Curvature 

Frequency for the EHB 

from calculus [Hz] 

Frequency for the DB 

from simulation [Hz] 

1 4.09000 0.60822 4.082231588 4.08227 
2 25.62600 0.05950 25.62123818 25.62226 
3 71.75400 0.03351 71.7464904 71.75043 
4 140.62759 0.25657 140.5149174 140.52670 
5 232.52081 0.43521 232.2047921 232.22581 

 

The second experiment has shown that the relation can be applied for crack locations that are not at the 

fixed end, or at the beam slice subjected to the most important curvature. These findings validate the 

deduced equations and the concept of the EHB and guarantee that the model can be used to predict the 

natural frequencies of cracked beams. 

2.3.  A predictive model for the behaviour of the beam with multiple cracks 

Knowing that the behavior of a beam with a crack can be described using an intact beam with changed 

mechanical or geometrical parameters, in fact the EHB, we can add to this beam a new crack with 

other location c2 and depth d2. The method described in sub-section 2.1 can be repeated, and natural 

frequencies are found for the beam with two cracks. Also, new equivalent thickness and equivalent 

density can be found to model the behavior, in terms of frequency response, of the beam with two 

cracks. Note, the procedure can be applied iteratively for any number of cracks, provided that the 

cracks are not close to each other.  

In the following, we present some relation to be applied for the case that multiple cracks affect a 

beam. The natural frequency of a beam with several cracks can be calculated with the mathematical 

relation: 

   2 2

1 1 2 2 1 1 2 2( , ; , ;...) 1 (0, ) ( ) 1 (0, ) ( ) ...i DB i IB i if c d c d f d c d c                (18) 

where for each new crack a new parenthesis is added to the left term of the equation. 

The equivalent thickness of the EHB that model an IB with several cracks is calculated with the 

mathematical relation: 

   2 2

1 1 2 2 1 1 2 2( , ; , ;...) 1 (0, ) ( ) 1 (0, ) ( ) ...eq i iH c d c d H d c d c              (19) 

The equivalent density of the EHB that model an IB with several cracks is calculated with the 

mathematical relation: 

    
2 2

2 2

1 1 2 2 1 1 2 2( , ; , ;...) 1 (0, ) ( ) 1 (0, ) ( ) ...eq i ic d c d d c d c     
 

           (20) 

The mathematical relation that is most often used in damage detection is equation (18), because it 

permits calculating the RFSs, which are directly used in vibration-based damage assessment as a 

benchmark. But, because of the huge number of possible scenarios, calculating all possible the RFSs is 

time and resource consuming. That is why it is necessary to automate the process of creating the RFSs.  

3.  Implementing the model in VBEA 

The algorithm implemented in VBEA use the equation (20) to calculate the natural frequencies of the 

cracked beam for the first nine weak-axis transverse vibration modes. The utilizer can define up to 

nine crack locations and has the possibility to ensure too every crack the desired depth. The interface 
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for introducing the data is presented in Fig. 1. The reference frequency values belonging to the IB 

must also be introduced as input data.  

Vibration mode 1 2 3 4 5 6 7 8 9

Intact beam 4.09 25.627 71.757 140.63 232.53 347.46 485.47 646.59 830.81
Crack1 Crack2 Crack3 Crack4 Crack5 Crack6 Crack7 Crack8 Crack9

Crack depth - d 1 1

Beam thickness - h 5

Relative crack depth - d/h 0.2 0.2

Severity 0.00312 0.00312

Crack location  - x 160 700

Beam length - L 1000

Relative crack location - x/L 0.16 0.7

Calculated frequencies for the 

multi-cracked beam
4.082 25.6 71.622 140.44 232.19 346.56 484.72 646.57 829.81

 

Figure 1. The interface for introducing the input data 

 

The IB is described in rows five (thickness) and nine (length) in Figure 1. The maximum nine 

cracks are described in absolute values at rows four (depth) and eight (location). The program 

automatically calculates the relative values, the damage severity and the SNMC. The relative values 

for the chosen cracks are displayed in the interface presented in Figure 1. Afterward, the program 

calculates the natural frequencies for the damaged beam if the frequencies of the IB are introduced 

(row two) and the support type is selected. This selection process can be made using a drop-down 

window, which permits choosing four beam types, as shown in Figure 2. The calculus is performed by 

pushing the button “Generate frequencies for the multi-cracked beam” also shown in Figure 2.   

 

Figure 2. The drop-down window with the 

options to be selected for the boundary condition 

and the “generate frequencies” button 

The program also calculates the RFSs, which are displayed as shown in Figure 3. These can be 

further used in the damage assessment process. 

RFS RFS RFS RFS RFS RFS RFS RFS RFS

Mod 1 Mod 2 Mod 3 Mod 4 Mod 5 Mod 6 Mod 7 Mod 8 Mod 9

0.002 0.0011 0.001883 0.0014 0.0015 0.0026 0.0016 3E-05 0.0012

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

Mod 1 Mod 2 Mod 3 Mod 4 Mod 5 Mod 6 Mod 7 Mod 8 Mod 9

 
Figure 3. The RFSs for the first nine modes displayed numerical and in form of a diagram 
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Another facility of the program is the calculus of as many damage scenarios the utilized ask for. 

This is made by selecting some possible severities, as shown in Figure 4 in the first row. Note that the 

number of severities is not limited, but the higher the number the longer the generation process is. The 

number of scenarios is also defined by the step with which the cracks are iteratively repositioned on 

the beam. In the analysis presented in Figure 4, the step is 0.005, meaning that the crack attain 200 

locations on the beam.  

 
Severity 0 0.0025 0.003 0.0035 0.004

Mode number 1 2 3 4 5 6 7 8 9

Frequencies for the IB 4.0899957 25.627281 71.75669 140.63163 232.52735 347.46291 485.47392 646.58675 830.8137
Frequencies for the DB 4.081992215 25.60029783 71.62157095 140.4399042 232.1866621 346.563875 484.7202725 646.5669397 829.8074619

Cantilever

x/L 1 2 3 4 5 6 7 8 9
0.0001 0.999724717861 0.999044072903 0.998430882894 0.997802027313 0.997174569089 0.996547233540 0.995920099520 0.995293162854 0.994666423281

0.005 0.986282315477 0.952763637840 0.923053571692 0.893064372520 0.863626904483 0.834680456031 0.806229215513 0.778273517874 0.750813932160

0.01 0.972659378169 0.906670400168 0.849189720281 0.792183425860 0.737270716824 0.684339676200 0.633402645769 0.584464728011 0.537531176942

0.015 0.959131210461 0.861721090089 0.778414215616 0.697377282511 0.620980990264 0.549076365747 0.481690180971 0.418835504038 0.360520514806

0.02 0.945697848926 0.817916948034 0.710735440654 0.608673005246 0.514818138560 0.428996139242 0.351242915087 0.281559968751 0.219920849198

Calculate table with defined scenarios 

 

Figure 4. The RFSs for the first nine modes displayed numerical and in form of a diagram 

 

For all single-crack scenarios the bracket in equation (17) is calculated, see as an exemplification the 

last rows in Figure 4. The brackets are used in equation (18) and frequencies that cover all possible 

defined scenarios are created. For these frequencies the RFSs are calculated and compared by 

employing one of following two metrics: Minkowski or Gillich. The selection of the metric is a choice 

of the utilizer. The “best” fit between the RFS belonging to the cracked beam found by fem simulation 

or experiment and the calculated table indicate the cracks’ location and severities. The result is 

displayed as shown in Figure 5.  

 

Severity 1 0.003 xpL1 0.16

Severity 2 0.0035 xpL2 0.7
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Figure 5. Crack assessment results 

indicating the estimated severities and 

locations and the RFSs found by calculus 

that fit the measurement results  

 

We made tests using the facility of the developed program in VBEA to find if the generated 

frequencies fit the simulations and if the damage assessment is accurate. So, we performed FEM 

simulations considering several scenarios, from which we present the beam with cracks at 1 160mmc   

and 2 700mmc  , both cracks having the depth 1mmd  . The frequencies for the IB and the DB 

obtained from simulation are presented in Table 4. In the last row in this table we also present the 

values calculate utilizing the VBEA program based on equation (18). Observe the accuracy of 

predicting the natural frequencies of the damaged beam, the errors being framed in the range ±0.2%. 
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Table 4. Frequencies found from simulation and by calculus for the cracks with depth 1mmd   

and the locations 160mmc  and 160mmc   

Mode 

no. 

Frequency for the IB 

from simulation [Hz] 

Frequency for the DB 

from simulation [Hz] 

Frequency for the EHB from 

calculus [Hz] 

Error 

[%] 

1 4.089996 4.081992 4.081  0.0243 
2 25.62728 25.6003 25.621 -0.0807 
3 71.75669 71.62157 71.747 -0.1751 
4 140.6316 140.4399 140.51336 -0.05232 
5 232.5274 232.1867 232.19236 -0.0024 

In addition, we exactly identified the crack locations and accurately found the severities, see for 

conformity Figure 5. Finer setting the targeted severities in the interface in Figure 4 lead to an 

improvement of the severity estimation and subsequently crack depth assessment. 

4.   Conclusion 

The paper presents the concept of the EHB model and demonstrates it can be used to predict the 

natural frequencies of beams with any cracks. We have developed a program written in VBEA which 

calculates the frequencies of the cracked beam in real-time. By employing this program we found very 

small errors, less than 0.25, if comparing the frequencies obtained by calculus and these obtained from 

FEM simulation.   

A second aspect approached in the paper is the assessment of multiple cracks, which is also 

performed by the program developed by the authors. It also bases on the EHB model and 

mathematical relations deduced by the authors. Again good results are obtained; exact crack locations 

and very accurate severities were found. Future research will focus on testing the program for 

experimental data. 
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