
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

Third National Conference on Computational Intelligence (NCCI 2019)

Journal of Physics: Conference Series 1427 (2020) 012006

IOP Publishing

doi:10.1088/1742-6596/1427/1/012006

1

Artificial Intelligence Algorithms and Techniques in the computation of Player-

Adaptive Games

Dr.Ranjitha M

1
, Kazaka Nathan

2
 and Lincy Joseph

3

1,2,3

 Department of Computer Science, Kristu Jayanti
College(Autonomous), Bangalore ,India

Abstract. A game usually used as a synonym for entertainment also serves as an

educational tool . Originally targeting the enjoyment, the meaning of the game has

evolved to much greater conceptions and applications. Games require physical or

mental or sometimes both the simulation. Many games help develop practical skills,

serve as a form of exercise, or otherwise perform an educational, simulation, or

psychological role. Having to be built on some key elements, which are goals, rules,
challenge, and interaction. Various strategies and algorithms such as path finding and

decision trees, have been developed to simulate those interactions between the human

user and the computer in front of him. In video games, artificial intelligence (AI) is

used to generate responsive, adaptive or intelligent behaviours primarily in non-player

characters (NPCs) similar to human-like intelligence. This paper makes a short

analysis of those preferred techniques and suggest from the study and the outcomes,

the efficiency of each . The paper also focuses on the heuristic function,

implementation platforms and design guidelines of the various searching algorithms

used in adaptive games.

Keywords: Gaming Strategy; Gaming Algorithm; Artificial Intelligence; Player-Adaptive; Neural

Network

1. Introduction
Artificial intelligence involves two basic ideas[1]. First, it involves studying the thought processes of

human beings. Second, it deals with representing those processes via machines (like computers, robots,

etc.). The field of game with applied intelligence has been more and more in the center of interest for

multiple research. That is, machine learning techniques are employed in games with the aim of

providing an entertaining and satisfying gaming experience for the human player. Research work in

this area includes evolving racing tracks to suit a player [2], online driving adaptation in a racing game

[3] and playing an even game in role playing game [4]. This survey paper puts together on a

comparative goal numbers of games using an adaptive AI algorithm that can balance its level of

difficulty according to the human player’s level of reasoning. The various gaming algorithm to be

discussed in this paper are: Alpha Beta Search Algorithm, Minimax and alpha-beta pruning,

Evolutionary, Back Propagation (ANN), Monte Carlo Tree Search Algorithm and A* search

algorithm have been applied on a list of selected games. This area seems to be of much interest for

research as the games requires constant interaction, human intervention and quick decision making.

The above mentioned algorithm’s main goals are to identify all possible strategies and find the best
one accordingly. But as in the case of games, which are non - deterministic as the settlers of Catan, the

decision making becomes more difficult and cannot be chosen according to the probability as it

reduces the fun of the game.

Third National Conference on Computational Intelligence (NCCI 2019)

Journal of Physics: Conference Series 1427 (2020) 012006

IOP Publishing

doi:10.1088/1742-6596/1427/1/012006

2

2. Methodologies Used To Design Gaming Algorithms

2.1. AI Algorithm For GOMOKU

Gomoku, also called five in a Row or “the game k-in-a-row”, is an abstract strategy board game. It is
traditionally played with Go pieces (black and white stones) on a Go board, using 15×15 of the 19×19
grid intersections. Two players, represented as B and W, alternately place one stone, black and white
respectively, on one empty square (intersection) of an m by n board. B is assumed to play first. The
player who first obtains k consecutive stones of his own color wins the game. (Horizontally, vertically
or diagonally) [5]. The game is known to favour Black when played in the free style. Many variants of
Gomoku exists, restricting the players in some sense to reduce Black’s advantage [6].

2.1.1 GOMOKU-Design and Implementation

The details of the design of the Gomoku game and intelligence used will be discussed in this section.
The game has been implemented using C++ and the rules followed are as follows.
Gomoku game engine was at first, designed and implemented to allow a basic play where 2 human
players are involved to compete each, against the other. The illegal moves are defined under the
following conditions: whether the column entered is valid, whether the row entered is valid or if the

space is occupied. This game was implemented using a minimax search tree with alpha-beta pruning.
[7] .However, even with alpha-beta pruning, the search space during each move is still very big due to

the fact that players are allowed to play their stones on any unoccupied intersection on the board .To
improve the computational search time of the minimax search, the alpha-beta pruning algorithm was
implemented.

2.1.2 GOMOKU Activation Function

A heuristic function, inspired by the concept behind threat space search was developed for evaluating

the payoff of each move. The kzey to winning the game is to create at least a double, in general. A

heuristic value was assigned to one of each of the empty squares, stating how desirable and
advantageous it would be to place the next move in that location and is determined by the sum of the

value of all the threats created as a result of playing in that position. The heuristic function is therefore
used to evaluate the state at the leaf nodes of the minimax search tree. The operation of the evaluation

function is better illustrated using Figure 1 below. In the Figure I, a move at A result in only one four-
in a row, hence the heuristic function returns a value of 50, whereas a move at B results in two four-in-

a-row (i.e. a double threat), hence the heuristic function returns a value of 50+50=100. The values of
each threat is arbitrarily chosen and summarized in Figure I. [8].

Figure I: Evaluation Function

2.1.3. Results- GOMOKU

Third National Conference on Computational Intelligence (NCCI 2019)

Journal of Physics: Conference Series 1427 (2020) 012006

IOP Publishing

doi:10.1088/1742-6596/1427/1/012006

3

The AI game for Gomoku was developed based on the minimax search tree with alpha-beta pruning

algorithms, and on top of them was introduced an evaluation function discussed above inspired by the
threat space search. The resulting algorithm was tested on the Gomocup which is a Gomoku AI

tournament as well as by a group of human respondents to determine the effectiveness of the game AI.

One more factor based on an offensive capability was introduced into the program to improve the AI
performance and tested both on the Gomocup as well as on human players. The results provided some

guidelines to design 8 levels of difficulty for use in the adaptive version of the AI. The proposed
adaptive game AI was able to scale the level of difficulty and adapt its moves during the game based

on how good the human player performs against it. The adaptive AI was play tested by 50 human
respondents and they were each asked 3 questions after playing 5 games. The adaptive AI was able to

scale up as well as down the level of difficulty to match up with 38 of the human candidates within 3
games and 43 of the candidates through a question answer survey have admitted enjoyed playing

against the AI after it matched their own playing level.

2.2. AI Algorithm for OTHELLO

Reversi (marketed by Pressman under the trade name Othello) is a strategy board game for two players,
played upon an 8 x 8 squared board without checkers (uncheckered). Accompanying the board, there

should be 64 pieces, often called disks, each of which is dark on one side and light on the other.The
basic rule of Othello, is that, if there are player’s discs found in between opponent’s discs, then the

discs that belong to the player are taken off from him and become the opponent’s discs. Othello has 3
main type of mode game that can be the player versus player, player versus computer, or even

computer versus computer.

2.2.1. OTHELLO -Design and Implementation

The Othello game in this survey paper has been implemented using the C programming language

and Alpha Beta Search algorithm is used for searching. A Neural Network has also been developed

along with it. The rules for the game is that the Original Riversi stipulates that for the first four moves,

the players must play to one of the four squares in the middle of the board and no pieces are captured

or reversed. The objective of the game is to have the majority of disks turned to display your color

when the last playable empty square is filled. Each piece played must be laid adjacent to an opponent's

piece so that the opponent's piece or a row of opponent's pieces is flanked by the new piece and

another piece of the player's color. All of the opponent's pieces between these two pieces are 'captured'

and turned over to match the player's color. It can happen that a piece is played so that pieces or rows

of pieces in more than one direction are trapped between the new piece played and other pieces of the

same color. In this case, all the pieces in all viable directions are turned over. The game is over when

neither player has a legal move or when the board is full.

The Alpha-Beta algorithm is a method for speeding up the minimax searching routine by pruning off

cases that will not be used anyway. This method takes advantage of the knowledge that every other

level in the tree will maximize and every other level will minimize. It works as follows: start off with
α = -∞ and β = ∞ (alpha=-infinity and beta=infinity) ; traverse the tree until the depth limit is reached;

assign a value for alpha or beta based upon what level preceded the depth limit level. Whenever max is

called, it checks to see if the evaluation of the move it has been given is greater than or equal to beta. If

it is, then max returns the value that would not have been chosen by min anyway and neither would the

subtree that max would have created, as it is waste of time searching through them. The same logic is

applied with min except that, for min, it checks if the move it has been given is less than or equal to

alpha. The algorithm is given in Figure 2.

Third National Conference on Computational Intelligence (NCCI 2019)

Journal of Physics: Conference Series 1427 (2020) 012006

IOP Publishing

doi:10.1088/1742-6596/1427/1/012006

4

//board:current board boardition
//possibleMoves: search depth
//alpha:lower bound of expected value of the tree
//beta:upper bound of expected value of the tree
Int AlphaBeta(board,possibleMoves,alpha,beta)
{
If(possibleMoves=maxDepth||game is over) return Eval(board) // evaluate leaf board position from

current player’s standpoint
Result=-infinity;//present return value
possibleMoves=GeneratePossibleMoves(board);generate successor moves
for i=1 to count(possibleMoves) do //look over all the moves
{
 execute(possibleMoves[i]);//ecxecute current move
 value=_alphaBeta(board,possibleMoves+,-beta,-alpha);//call other player and switch sign of
returned value
if(value>result)result=value;// co pare returned value and result value, note new best result
 if necessary
 if(result>alpha)alpha=result;//adjust the search window
 Undo(possible_moves[i]);//retract current move
If(alpha>=beta)return alpha,// cuttoff
}
 return result
}

 Pseudo-Code for Othello [10]

2.2.2 OTHELLO-Activation Function

In Neural Network [9] a function that is used to calculate activation function is a Sigmoid Function,

the most commonly used one for calculating the Activation Function, where:

 ()

2.2.3. Results-OTHELLO

The algorithms and techniques used for the above Othello game has proved that Alpha-Beta algorithm

coupled with an evolutionary neural network can produce a better quality static board evaluation rather

than normal static board evaluation function. Moreover, from this, the testing proves that the produced

AI is good enough to defeat the classic static board evaluation function that is using Negamax

algorithm. [10]

2.3. AI Algorithm used in the SETTLERS OF CATAN

In this work, authors apply MCTS (Monte Carlo Tree Search) to the multi-player, non-deterministic

board game Settlers of Catan. An agent that is able to play against computer-controlled as well as

human Players is implemented here.
The Settlers of Catan, is a multiplayer board game designed by Klaus Teuber and first published in

1995 in Germany by Franckh-Kosmos Verlag (Kosmos). Players assume the roles of settlers, each

attempting to build and develop holdings while trading and acquiring resources. Players gain points as

their settlements grow; the first to reach a set number of points, typically 10, wins.

Third National Conference on Computational Intelligence (NCCI 2019)

Journal of Physics: Conference Series 1427 (2020) 012006

IOP Publishing

doi:10.1088/1742-6596/1427/1/012006

5

2.3.1. SETTLERS OF CATAN -Design and Implementation

It is implemented using Java software module named Smart Settlers. MCTS requires domain

knowledge and it uses the following two methods-using non-uniform sampling in the Monte-Carlo

simulation phase and modifying the statistics stored in the game tree. It takes the following into

consideration: The starting position, the domain knowledge of Monte-Carlo simulations and Monte-

Carlo tree search.

a. Effect of seating position: The results of their experiments were that the seating order effect

introduces an unknown bias to the performances of agents. In order to overcome that, the

seating order was randomized for all the next experiments where completely different agents

were compared.
b. Domain Knowledge in simulation strategy : A balance between exploitation and exploration

must be found in the simulation strategy and hence the weights were selected accordingly

because , if the selection strategy is too deterministic, then the exploration of the search space

becomes too selective, and the quality of the Monte-Carlo simulation suffers Hence the weights

are adjusted accordingly .Here the probability of choosing the subsequent action depends on

their weights however when this was done the actual performance of the agent dropped.
c. Domain Knowledge in tree search: Domain knowledge can be added to the tree aspects of

MCTS. Here virtual wins are given to preferred ones and non-virtual wins are given to the non-

preferred ones and here quite a limited amount of domain data was added. The addition of the

virtual wins increased the playing strength of the agent.

The test is been conducted against JSettlers and Human.
With JSettlers: Here it was tested with three different AI’s - a random player.
MCTS with 1000 simulated games per move and MCTS with 10000. For each AI 100 games are

played. From the experiment it is concluded that the random player is very weak, MCTS with 1000

simulated games wins 27% of the games and MCTS with 10000 simulated games wins 49% of the

games and has high score even when it does not win.
With Human: Against Human, the criteria is that the agent makes moves that must coincide with

moves that a human would take. To make the analysis easier there were 2 strategies taken into

consideration and it was found that the agent always followed only one strategy and the reason behind

it probably would be because of the drawback of MCTS of not looking forward in the game to a

sufficient depth. This drawback can be eliminated by increasing the number of games but that would

decrease the speed and an alternative is to improve the selection criteria.[11]

2.4. AI Algorithm used in SIMULATED MOTOR CROSS

The techniques used to ride a simulated motor bike in AI is to be improved by improving the

training given to AI using two algorithms -evolutionary and back propagation. To improve the back

propagation Algorithm in this paper, two optimization techniques for augmenting the training are used:

bagging [12] and boosting [13]. The Force is a motocross game featuring terrain rendering and rigid

body simulation applied to bikes and characters.

2.3.2. Results- SETTLERS OF CATAN

Third National Conference on Computational Intelligence (NCCI 2019)

Journal of Physics: Conference Series 1427 (2020) 012006

IOP Publishing

doi:10.1088/1742-6596/1427/1/012006

6

2.4.1. SIMULATED MOTOR CROSS -Design and Implementation

There are a set of procedural rules in motor cross where in AI can work on. This is done with the help

of Artificial Neural Networks. ANN’s can adapt to a new change and can explore the path when

presented with a new path. They are adaptable on their paths and can be evolved and trained. The

ANN requires the following inputs:
- Position of the bike in way point space
- Front and right directions of the bike in way point space.
- Velocity of the bike in way point space.
- Height of the ground, ground samples in front of the bike relative to bike height.
- Position of track center lane, track center lane samples in front of the bike in bike space.

The outputs of the ANN gives the output of controls a human can use
- Accelerate, decelerate.
- Turn left, right.
- Lean forward, backward

Artificial Neural Networks: ANN’s are software simulations that depicts human brain in some cases.

Here Multilayered perceptron(MLP) is being used.The input layer of MLP is where the neurons are

passive and hold the activation function to which the network must respond ie in this game the

information of the terrain, the player is meeting. The output layer corresponds to the actions here such

as turn left/right, accelerate/de-accelerate, and lean, forward/backward. Between these two is a hidden

layer .The MLP is used in two phases: activation passing and learning.

2.4.2. SIMULATED MOTOR CROSS -Activation Function

Activation is passed from inputs to hidden neurons through a set of weights, W. At the hidden neurons,

a nonlinear activation function is calculated; this is typically a sigmoid function The activation

function is given as:

 ∑

 ()

 Where hi is the firing of the hidden neuron . This is then transmitted to the output neurons through

a second set of weights , V so that:

 ∑

 ()

The activation function is passed from inputs to outputs and the whole machine tries to learn the
mapping from input to output. Back propagation algorithm is as follows,

Let the P

th
 input pattern be x

P
, which after passing through the network evokes a response o

P
 at

the output neurons. Let the target value associated with input pattern x
P
 be t

P
. Then the error at

the i
th

Third National Conference on Computational Intelligence (NCCI 2019)

Journal of Physics: Conference Series 1427 (2020) 012006

IOP Publishing

doi:10.1088/1742-6596/1427/1/012006

7

output is Ei
P
 = t

P
i −o

P
i which is then propagated backwards (hence the name) to determine

what proportion of this error is associated with each hidden neuron. The algorithm is:
1) Initialise the weights to small random numbers
2) Choose an input pattern, x

P
, and apply it to the input layer

3) Propagate the activation forward through the weights till the activation reaches the output
neurons

4) Calculate the δs for the output layer δi
P
 = (t

P
i − o

P
i)f

0
(Act

P
i) using the desired target values for

the selected input pattern.

5) Calculate theδ
P
 = PN δPδs for the hidden layer usingwji.f0(ActPi)

i j=1 j

6) Update all weights according to ∆Pwij = γ.δi
P
.o

P
j 7) Repeat steps 2 to 6 for all patterns.

An alternative technique for computing the error in the output layer while performing
backpropagation has been investigated. Instead of computing the error as (t

P
i − o

P
i), the error has been

computed as (t
P

i −o
P

i)|t
P

i −o
P

i |. This has for effect to train the ANN more when the error is large, and
allow the ANN to make more decisive decisions, with regard to turning left or right, accelerating or
braking and leaning forward/back.

2.4.3. Results- SIMULATED MOTOR CROSS

Here it is used for the creation of training data made from a recording of the game played by a good
human player. The targets are the data from the human player i.e. how much acceleration/deceleration,

left/right turning and front/back leaning was done by the human player at that point in the track. The
aim is to have the ANN reproduce what a good human player is doing. The human player’s responses

need not be the optimal solution but a good enough solution and, of course, the ANN will learn any
errors which the human makes. The system is implemented with Inputs-50,One hidden layer,

Neurons=80 in the hidden and three in the output layer,Weights=4240. The cuts for crossover has
been increased from one to ten.

Six bikes are racing along track L, and therefore six ANN’s are evaluated at any given time. The
evaluation time has been set to 10 minutes, which means 30 minutes per generation. The number of

generations has been set to 100, with a population of 18 ANN’s, elitism of 0 (number of the fittest
chromosomes being passed directly from the parent population to the child population), a mutation

rate of 0.001, a crossover rate of 0.8, a perturbation rate of 0.5, probability to select average crossover
over 10 cuts crossover set to 0.2.

The training can take a long time to perform; however there are big advantages in the evolutionary
algorithm approach. The artificial intelligence can adapt to new tracks and improve lap times with
time; it is also possible that it can eventually perform better than a good human player.
Using this technique, after 24 hours of training, ANN’s average lap time can go down from 2 minutes

45 seconds on the long track, to approximately 2 minutes 16 seconds. Not all individuals in the
population are performing equally well. For comparison a good human player’s lap time is 2 Minutes

10 seconds [14]. Genetic Algorithm[15] with alternative crossover methods and a population made of
mutated already trained ANN’s, is a technique investigated here that has proved to produce good

result. . Performance was as good as human player. One of the problem here was the acceleration with
respect to the input.

2.5. AI Algorithm for FIFA EA Sports Game

FIFA, also known as FIFA Football or FIFA Soccer, is a series of association football video games or

football simulator, released annually by Electronic Arts under the EA Sports label.

Third National Conference on Computational Intelligence (NCCI 2019)

Journal of Physics: Conference Series 1427 (2020) 012006

IOP Publishing

doi:10.1088/1742-6596/1427/1/012006

8

It’s a football simulator game that is played between human and human or between human and

computer AI. The AI is implemented as well as for the human team, in order to maintain the

consistency in the football team among all the eleven players, as well as in the computer side.

Typically for these games (Team Sport Related) they use a few basic AI algorithms, like A-Star search.

for working out how to get the players to the appropriate position; and enabling passing from one

player to another. These basic capabilities are then layered to create the higher level strategy.

Figure 2. Diagram showing the idea of layered capabilities typically used in these games

A* Search algorithm, also known as A-Star Search algorithm, is generally used in pathfinding and

graph traversal. It is widely used because of the high rate of performance and accuracy [16]. In sports

game like FIFA, this algorithm is used for a better experience of gaming for the human player.

A* (pronounced "A-star") is a graph traversal and path search algorithm, which is often used in

computer science due to its completeness, optimality, and optimal efficiency. One major practical

drawback is its () space complexity, as it stores all generated nodes in memory. Thus, in practical

travel-routing systems, it is generally outperformed by algorithms which can pre-process the graph to

attain better performance, as well as memory-bounded approaches; however, A* is still the best

solution in many cases.

A* is an informed search algorithm, or a best-first search, meaning that it is formulated in terms

of weig hted graphs: starting from a specific starting node of a graph, it aims to find a path to the

given goal node having the smallest cost (least distance travelled, shortest time, etc.) [17]. It does this

by maintaining a tree of paths originating at the start node and extending those paths one edge at a

time until its termination criterion is satisfied.

At each iteration of its main loop, A* needs to determine which of its paths to extend. It does so based

on the cost of the path and an estimate of the cost required to extend the path all the way to the goal.

Specifically, A* selects the path that minimizes

 () () ()

where n is the next node on the path, g(n) is the cost of the path from the start node to n, and h(n) is

a heuristic function that estimates the cost of the cheapest path from n to the goal.

A* terminates when the path it chooses to extend is a path from start to goal or if there are no paths

eligible to be extended. The heuristic function is problem-specific. If the heuristic function

is admissible, meaning that it never overestimates the actual cost to get to the goal, A* is guaranteed to

return a least-cost path from start to goal [17].

In FIFA game, the A* Search Algorithm will help to analyse the proximity of the opposition player

and space around them to identify the better passing opportunities. When the human player has the

Third National Conference on Computational Intelligence (NCCI 2019)

Journal of Physics: Conference Series 1427 (2020) 012006

IOP Publishing

doi:10.1088/1742-6596/1427/1/012006

9

ball, his teammates will understand if you have the chance to make the pass and move accordingly to

create the chance for you to pass or to take the shoot. The smarter players and increased activity off

the ball give the opportunity to open up the opposition for a better chance in the game. Other sports

games like NBL work on the same algorithm.

3. Short Analysis

A Short analysis for the various gaming algorithms discussed in the previous sessions. The
observations regarding each algorithm is also give in Table–I.

 Table I-Short Analysis of different Games

Game Algorithm Efficiency or

computing time

Observation Results

Gomoku MiniMax Search

Tree and Alpha

Beta Pruning

The first five AI

moves take 56

seconds to execute.

After implementation,

the same first five

moves only take 14

seconds.

The impact is

greater later on in

the game when the

space became

bigger, as the

search tree will

become bigger as

well.

The developed AI

played multiple sets of

games with different

rankings and has been

able to win overall

75% of all its games.

Othello

(Riversi)

Alpha Beta Search

Algorithm

Speed up the

calculation process

evaluation board in

the search tree.

Better than the

actual used AI

based on NegaMax

algorithm

For the first testing,

we get a 5 won in row

against Tournament

Reversi Program.

From the second

testing, we get 10 won

from 13 games against

a Negamax alpha beta

pruning algorithm.

Settlers of

Catan

Monte Carlo

Tree Search

The playing strength

of the agent is quite

notable it defeats the

hand-coded AI of

JSettlers, and is a

reasonably strong

opponent for humans.

Considered as the

best algorithm for

the game

A random game is

considered weak

With 1000 simulated

games an efficiency of

27%

 With 10000an

efficiency of 49% was

obtained

 Motor

Cross

Artificial Neural

networks, Back

Propagation

algorithm

Evolutionary

algorithm

With evolutionary

algorithm Artificial

intelligence can adapt

to new track and

improve lap times

with time; possibly it

can eventually

perform better than a

good human player

Performance is as

good as human

players

Generic algorithm was

found to improve the

performance

FIFA A* Search Optimal efficiency is

about the set of nodes

expanded, not the

number of node

expansions (the

In such

circumstances

(Worst Case)

Dijkstra's

algorithm could

The smarter players

and increased activity

off the ball give the

opportunity to open up

the opposition for a

Third National Conference on Computational Intelligence (NCCI 2019)

Journal of Physics: Conference Series 1427 (2020) 012006

IOP Publishing

doi:10.1088/1742-6596/1427/1/012006

10

number of iterations

of A*'s main loop).

When the heuristic

being used is

admissible but not

consistent, it is

possible for a node to

be expanded by A*

many times, an

exponential number of

times in the worst

case.

outperform A* by

a large margin.

better chance in the

game.

4. Conclusion

The above work was to compare different AI techniques used in gaming environment such as

Algorithms employing artificial neural network. In the case of algorithm driven AI games the

algorithm used were minimax search tree and Monte Carlo Tree Search. The adaptive techniques used

the Artificial Neural Network learning methods to determine the moves and the strategies. The

observation made from algorithm based technique was that, the algorithm based techniques needed a

clear domain knowledge to be effective and also, the larger the game develops, the algorithm was

found to be much effective as well. In neural network based techniques we found that the inputs taken

into consideration, decided the outputs thereby making the selection of inputs to be accurate and

precise to obtain the expected results. The overall speed of the games however increased and became

much more interactive.

References

[1]. K. Chitra, R. Alamelumangai, Artificial Intelligence, 2012.

[2]. Togelius, J., De Nardi, R. and Lucas, S. M., “Towards automatic personalized content
creation\ for racing games,” IEEE Symposium on Computational Intelligence and Games, pp. 252-259,
2007.

[3]. Tan, C. H., Ang, J. H., Tan, K. C. and Tay, A., “Online Adaptive Controller for Simulated Car
Racing,” Proceedings of IEEE Congress on Evolutionary Computation, pp. 2239-2245, 2008.

[4]. Spronck, P., Sprinkhuizen-Kuyper, I. and Postma, E., “Difficulty scaling of Game AI”, 5th
International Conference Intelligent Games and Simulation, pp. 33-37, 2004.

[5]. Wu, I-Chen, Huang, Dei-Yen and Chang, Hsiu-Chen, “Connect 6”, ICGA Journal (SCI), vol.
28, no. 4, pp. 234-241, December 2005.

[6]. Allis, L.V., Herik, H. J. van den and Huntjens, M. P. H, “Go-Moku Solved by New Search

Techniques”, Computational Intellig.

[7]. Moriarty, D. E. and Miikkulainen, R., “Improving Game-Tree Search With Evolutionary

Neural Networks”, IEEE World Congress on Computational Intelligence, vol. 1, pp. 496-501, June
1994.

[8] Kuan Liang Tan, Chin Hiong Tan, Kay Chen Tan and Arthur Tay, “Adaptive Game AI for
Gomoku”

Third National Conference on Computational Intelligence (NCCI 2019)

Journal of Physics: Conference Series 1427 (2020) 012006

IOP Publishing

doi:10.1088/1742-6596/1427/1/012006

11

[9] Alexander J. Pinkney, Development of an Artificial Neural Network to Play Othello, 2009.

[10] Gunawana, Hendrawan Armantoa, Joan Santosoa, Daniel Giovannia, Kurniawana, Ricky

Yudiantoa and Stevena, “Evolutionary Neural Network for Othello Game”

[11] Istv´an Szita, Guillaume Chaslot, and Pieter Spronck, “Monte Carlo Tree Searches in Settlers
of Catan”

[12] L. Breimen, “Bagging predictors,” Machine Learning, no. 24, pp. 123– 140, 1996.

[13] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a statistical view of
boosting,” Statistics Dept, Stanford University, Tech. Rep., 1998.

[14] Benoit Chaperot and Colin Fyfe,” Advanced Artificial Intelligence Techniques applied to a
Motocross Game”.

[15] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley Professional, 1989.

[16] Sultana, Najma & Chandra, Sourabh & Paira, Smita & Alam, Sk. (2017). A Brief Study and

Analysis of Different Searching Algorithms.

[17] Potdar, Girish & Thool, Ravindra. (2014). Comparison of Various Heuristic Search

Techniques for Finding Shortest Path. International Journal of Artificial Intelligence & Applications. 5.

63-74. 10.5121/ijaia.2014.5405.

