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Abstract. A game usually used as a synonym for entertainment also serves as an 

educational tool . Originally targeting the enjoyment, the meaning of the game has 

evolved to much greater conceptions and applications. Games require physical or 

mental or sometimes both the simulation. Many games help develop practical skills, 

serve as a form of exercise, or otherwise perform an educational, simulation, or 

psychological role. Having to be built on some key elements, which are goals, rules, 
challenge, and interaction. Various strategies and algorithms such as path finding and 

decision trees, have been developed to simulate those interactions between the human 

user and the computer in front of him. In video games, artificial intelligence (AI) is 

used to generate responsive, adaptive or intelligent behaviours primarily in non-player 

characters (NPCs) similar to human-like intelligence. This paper makes a short 

analysis of those preferred techniques and suggest from the study and the outcomes, 

the efficiency of each . The paper also focuses on the heuristic function, 

implementation platforms and design guidelines of the various searching algorithms 

used in adaptive games. 
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1. Introduction  
Artificial intelligence involves two basic ideas[1]. First, it involves studying the thought processes of 

human beings. Second, it deals with representing those processes via machines (like computers, robots, 

etc.). The field of game with applied intelligence has been more and more in the center of interest for 

multiple research. That is, machine learning techniques are employed in games with the aim of 

providing an entertaining and satisfying gaming experience for the human player. Research work in 

this area includes evolving racing tracks to suit a player [2], online driving adaptation in a racing game 

[3] and playing an even game in role playing game [4]. This survey paper puts together on a 

comparative goal numbers of games using an adaptive AI algorithm that can balance its level of 

difficulty according to the human player’s level of reasoning. The various gaming algorithm to be 

discussed in this paper are: Alpha Beta Search Algorithm, Minimax and alpha-beta pruning, 

Evolutionary, Back Propagation (ANN),  Monte Carlo Tree Search Algorithm and A* search 

algorithm have been applied on a list of selected games. This area seems to be of much interest for 

research as the games requires constant interaction, human intervention and quick decision making. 

The above mentioned algorithm’s main goals are to identify all possible strategies and find the best 
one accordingly. But as in the case of games, which are non - deterministic as the settlers of Catan, the 

decision making becomes more difficult and cannot be chosen according to the probability as it 

reduces the fun of the game. 
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2. Methodologies Used To Design Gaming Algorithms 
 
2.1. AI Algorithm For GOMOKU 

 
Gomoku, also called five in a Row or “the game k-in-a-row”, is an abstract strategy board game. It is 
traditionally played with Go pieces (black and white stones) on a Go board, using 15×15 of the 19×19 
grid intersections. Two players, represented as B and W, alternately place one stone, black and white 
respectively, on one empty square (intersection) of an m by n board. B is assumed to play first. The 
player who first obtains k consecutive stones of his own color wins the game. (Horizontally, vertically 
or diagonally) [5]. The game is known to favour Black when played in the free style. Many variants of 
Gomoku exists, restricting the players in some sense to reduce Black’s advantage [6]. 

 
2.1.1 GOMOKU-Design and Implementation 

 
The details of the design of the Gomoku game and intelligence used will be discussed in this section.  
The game has been implemented using C++  and the rules followed are as follows.  
Gomoku game engine was at first, designed and implemented to allow a basic play where 2 human 
players are involved to compete each, against the other. The illegal moves are defined under the 
following conditions: whether the column entered is valid, whether the row entered is valid or if the 

space is occupied. This game was implemented using a minimax search tree with alpha-beta pruning.  
[7] .However, even with alpha-beta pruning, the search space during each move is still very big due to 

the fact that players are allowed to play their stones on any unoccupied intersection on the board .To 
improve the computational search time of the minimax search, the alpha-beta pruning algorithm was 
implemented. 

 

2.1.2 GOMOKU Activation Function 

 
A heuristic function, inspired by the concept behind threat space search was developed for evaluating 

the payoff of each move. The kzey to winning the game is to create at least a double, in general. A 

heuristic value was assigned to one of each of the empty squares, stating how desirable and 
advantageous it would be to place the next move in that location and is determined by the sum of the 

value of all the threats created as a result of playing in that position. The heuristic function is therefore 
used to evaluate the state at the leaf nodes of the minimax search tree. The operation of the evaluation 

function is better illustrated using Figure 1 below. In the Figure I, a move at A result in only one four-
in a row, hence the heuristic function returns a value of 50, whereas a move at B results in two four-in-

a-row (i.e. a double threat), hence the heuristic function returns a value of 50+50=100. The values of 
each threat is arbitrarily chosen and summarized in Figure I. [8].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure I: Evaluation Function 

 
2.1.3. Results- GOMOKU 
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The AI game for Gomoku was developed based on the minimax search tree with alpha-beta pruning 

algorithms, and on top of them was introduced an evaluation function discussed above inspired by the 
threat space search. The resulting algorithm was tested on the Gomocup which is a Gomoku AI 

tournament as well as by a group of human respondents to determine the effectiveness of the game AI. 

One more factor based on an offensive capability was introduced into the program to improve the AI 
performance and tested both on the Gomocup as well as on human players. The results provided some 

guidelines to design 8 levels of difficulty for use in the adaptive version of the AI. The proposed 
adaptive game AI was able to scale the level of difficulty and adapt its moves during the game based 

on how good the human player performs against it. The adaptive AI was play tested by 50 human 
respondents and they were each asked 3 questions after playing 5 games. The adaptive AI was able to 

scale up as well as down the level of difficulty to match up with 38 of the human candidates within 3 
games and 43 of the candidates through a question answer survey have admitted enjoyed playing 

against the AI after it matched their own playing level. 
 
2.2. AI Algorithm for OTHELLO 
 

 

Reversi (marketed by Pressman under the trade name Othello) is a strategy board game for two players, 
played upon an 8 x 8 squared board without checkers (uncheckered). Accompanying the board, there 

should be 64 pieces, often called disks, each of which is dark on one side and light on the other.The 
basic rule of Othello, is that, if there are player’s discs found in between opponent’s discs, then the 

discs that belong to the player are taken off from him and become the opponent’s discs. Othello has 3 
main type of mode game that can be the player versus player, player versus computer, or even 

computer versus computer. 
 

 

2.2.1. OTHELLO -Design and Implementation 

  
The Othello game in this survey paper has been implemented using the C programming language 

and Alpha Beta Search algorithm is used for searching. A Neural Network has also been developed 

along with it. The rules for the game is that the Original Riversi stipulates that for the first four moves, 

the players must play to one of the four squares in the middle of the board and no pieces are captured 

or reversed. The objective of the game is to have the majority of disks turned to display your color 

when the last playable empty square is filled. Each piece played must be laid adjacent to an opponent's 

piece so that the opponent's piece or a row of opponent's pieces is flanked by the new piece and 

another piece of the player's color. All of the opponent's pieces between these two pieces are 'captured' 

and turned over to match the player's color. It can happen that a piece is played so that pieces or rows 

of pieces in more than one direction are trapped between the new piece played and other pieces of the 

same color. In this case, all the pieces in all viable directions are turned over. The game is over when 

neither player has a legal move or when the board is full. 

 

The Alpha-Beta algorithm is a method for speeding up the minimax searching routine by pruning off 

cases that will not be used anyway. This method takes advantage of the knowledge that every other 

level in the tree will maximize and every other level will minimize. It works as follows: start off with  
α = -∞ and β = ∞ (alpha=-infinity and beta=infinity) ; traverse the tree until the depth limit is reached; 

assign a value for alpha or beta based upon what level preceded the depth limit level. Whenever max is 

called, it checks to see if the evaluation of the move it has been given is greater than or equal to beta. If 

it is, then max returns the value that would not have been chosen by min anyway and neither would the 

subtree that max would have created, as it is waste of time searching through them. The same logic is 

applied with min except that, for min, it checks if the move it has been given is less than or equal to 

alpha. The algorithm is given in Figure 2. 
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//board:current board boardition 
//possibleMoves: search depth 
//alpha:lower bound of expected value of the tree 
//beta:upper bound of expected value of the tree 
Int AlphaBeta(board,possibleMoves,alpha,beta) 
{ 
If(possibleMoves=maxDepth||game is over) return Eval(board) // evaluate leaf board position from        

current player’s standpoint 
Result=-infinity;//present return value 
possibleMoves=GeneratePossibleMoves(board);generate successor moves 
for i=1 to count(possibleMoves) do //look over all the moves 
{ 
      execute(possibleMoves[i]);//ecxecute current move 
      value=_alphaBeta(board,possibleMoves+,-beta,-alpha);//call other player and switch sign of 
returned value 
if(value>result)result=value;// co pare returned value and result value, note new best result 
 if necessary 
     if(result>alpha)alpha=result;//adjust the search window 
     Undo(possible_moves[i]);//retract current move 
If(alpha>=beta)return alpha,// cuttoff 
} 
       return result 
} 
 
 

   Pseudo-Code for Othello [10] 
 
2.2.2 OTHELLO-Activation Function 
 

 

In Neural Network [9] a function that is used to calculate activation function is a Sigmoid Function, 

the most commonly used one for calculating the Activation Function, where: 

 ( )  
 

     
 

 

2.2.3. Results-OTHELLO 

  
The algorithms and techniques used for the above Othello game has proved that Alpha-Beta algorithm 

coupled with an evolutionary neural network can produce a better quality static board evaluation rather 

than normal static board evaluation function. Moreover, from this, the testing proves that the produced 

AI is good enough to defeat the classic static board evaluation function that is using Negamax 

algorithm. [10] 
 

 

2.3. AI Algorithm used in the SETTLERS OF CATAN 

 

In this work, authors apply MCTS (Monte Carlo Tree Search) to the multi-player, non-deterministic 

board game Settlers of Catan. An agent that is able to play against computer-controlled as well as 

human Players is implemented here.  
The Settlers of Catan, is a multiplayer board game designed by Klaus Teuber and first published in 

1995 in Germany by Franckh-Kosmos Verlag (Kosmos). Players assume the roles of settlers, each 

attempting to build and develop holdings while trading and acquiring resources. Players gain points as 

their settlements grow; the first to reach a set number of points, typically 10, wins. 
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2.3.1. SETTLERS OF CATAN -Design and Implementation 

 

  
It is implemented using Java software module named Smart Settlers. MCTS requires domain 

knowledge and it uses the following two methods-using non-uniform sampling in the Monte-Carlo 

simulation phase and modifying the statistics stored in the game tree. It takes the following into 

consideration: The starting position, the domain knowledge of Monte-Carlo simulations and Monte-

Carlo tree search. 

 

a. Effect of seating position: The results of their experiments were that the seating order effect 

introduces an unknown bias to the performances of agents. In order to overcome that, the 

seating order was randomized for all the next experiments where completely different agents 

were compared.  
b. Domain Knowledge in simulation strategy : A balance between exploitation and exploration 

must be found in the simulation strategy and hence the weights were selected accordingly 

because , if the selection strategy is too deterministic, then the exploration of the search space 

becomes too selective, and the quality of the Monte-Carlo simulation suffers Hence the weights 

are adjusted accordingly .Here the probability of choosing the subsequent action depends on 

their weights however when this was done the actual performance of the agent dropped.  
c. Domain Knowledge in tree search: Domain knowledge can be added to the tree aspects of 

MCTS. Here virtual wins are given to preferred ones and non-virtual wins are given to the non-

preferred ones and here quite a limited amount of domain data was added. The addition of the 

virtual wins increased the playing strength of the agent. 
 

 

 

 

The test is been conducted against JSettlers and Human.  
With JSettlers: Here it was tested with three different AI’s - a random player.  
MCTS with 1000 simulated games per move and MCTS with 10000. For each AI 100 games are 

played. From the experiment it is concluded that the random player is very weak, MCTS with 1000 

simulated games wins 27% of the games and MCTS with 10000 simulated games wins 49% of the 

games and has high score even when it does not win.  
With Human: Against Human, the criteria is that the agent makes moves that must coincide with 

moves that a human would take. To make the analysis easier there were 2 strategies taken into 

consideration and it was found that the agent always followed only one strategy and the reason behind 

it probably would be because of the drawback of MCTS of not looking forward in the game to a 

sufficient depth. This drawback can be eliminated by increasing the number of games but that would 

decrease the speed and an alternative is to improve the selection criteria.[11] 
 

 

2.4. AI Algorithm used in  SIMULATED MOTOR CROSS 
 

 

The techniques used to ride a simulated motor bike in AI is to be improved by improving the 

training given to AI using two algorithms -evolutionary and back propagation. To improve the back 

propagation Algorithm in this paper, two optimization techniques for augmenting the training are used: 

bagging [12] and boosting [13]. The Force is a motocross game featuring terrain rendering and rigid 

body simulation applied to bikes and characters. 

2.3.2.  Results- SETTLERS OF CATAN 
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2.4.1. SIMULATED MOTOR CROSS -Design and Implementation 

 

There are a set of procedural rules in motor cross where in AI can work on. This is done with the help 

of Artificial Neural Networks. ANN’s can adapt to a new change and can explore the path when 

presented with a new path. They are adaptable on their paths and can be evolved and trained. The 

ANN requires the following inputs:  
- Position of the bike in way point space  
- Front and right directions of the bike in way point space.  
- Velocity of the bike in way point space.  
- Height of the ground, ground samples in front of the bike relative to bike height.  
- Position of track center lane, track center lane samples in front of the bike in bike space. 

The outputs of the ANN gives the output of controls a human can use  
- Accelerate, decelerate.  
- Turn left, right.  
- Lean forward, backward 

 

Artificial Neural Networks: ANN’s are software simulations that depicts human brain in some cases. 

Here Multilayered perceptron(MLP) is being used.The input layer of MLP is where the neurons are 

passive and hold the activation function to which the network must respond ie in this game the 

information of the terrain, the player is meeting. The output layer corresponds to the actions here such 

as turn left/right, accelerate/de-accelerate, and lean, forward/backward. Between these two is a hidden 

layer .The MLP is used in two phases: activation passing and learning. 

 

2.4.2. SIMULATED MOTOR CROSS -Activation Function 

 

Activation is passed from inputs to hidden neurons through a set of weights, W. At the hidden neurons, 

a nonlinear activation function is calculated; this is typically a sigmoid function The activation 

function is given as:  
 

     ∑      

 

   

         

                                                                    
 

      (      )
 

 Where hi is the firing of the      hidden neuron . This is then transmitted to the output neurons through 

a second set of weights , V so that:  

     ∑      

 

   

         

 

                                                                    
 

      (      )
 

 
 
The activation function is passed from inputs to outputs and the whole machine tries to learn the 
mapping from input to output. Back propagation algorithm is as follows, 
 
Let the P

th
 input pattern be x

P
, which after passing through the network evokes a response o

P
 at 

the output neurons. Let the target value associated with input pattern x
P
 be t

P
. Then the error at 

the i
th
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output is Ei
P
 = t

P
i −o

P
i which is then propagated backwards (hence the name) to determine 

what proportion of this error is associated with each hidden neuron. The algorithm is:  
1) Initialise the weights to small random numbers  
2) Choose an input pattern, x

P
, and apply it to the input layer  

3) Propagate the activation forward through the weights till the activation reaches the output 
neurons 

4) Calculate the δs for the output layer δi
P
 = (t

P
i − o

P
i )f

0
(Act

P
i ) using the desired target values for 

the selected input pattern. 
 

5) Calculate theδ
P
 = PN   δPδs for the hidden layer usingwji.f0(ActPi ) 

 
i j=1 j 

6) Update all weights according to ∆Pwij = γ.δi
P
.o

P
j 7) Repeat steps 2 to 6 for all patterns. 

 
An alternative technique for computing the error in the output layer while performing 
backpropagation has been investigated. Instead of computing the error as (t

P
i − o

P
i ), the error has been 

computed as (t 
P

i −o
P

i )|t
P

i −o
P

i |. This has for effect to train the ANN more when the error is large, and 
allow the ANN to make more decisive decisions, with regard to turning left or right, accelerating or 
braking and leaning forward/back. 
 

2.4.3. Results- SIMULATED MOTOR CROSS 
 

 

Here it is used for the creation of training data made from a recording of the game played by a good 
human player. The targets are the data from the human player i.e. how much acceleration/deceleration, 

left/right turning and front/back leaning was done by the human player at that point in the track. The 
aim is to have the ANN reproduce what a good human player is doing. The human player’s responses 

need not be the optimal solution but a good enough solution and, of course, the ANN will learn any 
errors which the human makes. The system is implemented with Inputs-50,One hidden layer, 

Neurons=80 in the hidden and three in the output layer,Weights=4240. The cuts for crossover has 
been increased from one to ten. 

 

Six bikes are racing along track L, and therefore six ANN’s are evaluated at any given time. The 
evaluation time has been set to 10 minutes, which means 30 minutes per generation. The number of 

generations has been set to 100, with a population of 18 ANN’s, elitism of 0 (number of the fittest 
chromosomes being passed directly from the parent population to the child population), a mutation 

rate of 0.001, a crossover rate of 0.8, a perturbation rate of 0.5, probability to select average crossover 
over 10 cuts crossover set to 0.2. 

 
The training can take a long time to perform; however there are big advantages in the evolutionary 
algorithm approach. The artificial intelligence can adapt to new tracks and improve lap times with 
time; it is also possible that it can eventually perform better than a good human player.  
Using this technique, after 24 hours of training, ANN’s average lap time can go down from 2 minutes 

45 seconds on the long track, to approximately 2 minutes 16 seconds. Not all individuals in the 
population are performing equally well. For comparison a good human player’s lap time is 2 Minutes 

10 seconds [14]. Genetic Algorithm[15] with alternative crossover methods and a population made of 
mutated already trained ANN’s, is a technique investigated here that has proved to produce good 

result. . Performance was as good as human player. One of the problem here was the acceleration with 
respect to the input. 

 

 
 
2.5.  AI Algorithm for FIFA EA Sports Game 
 
FIFA, also known as FIFA Football or FIFA Soccer, is a series of association football video games or 

football simulator, released annually by Electronic Arts under the EA Sports label. 
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It’s a football simulator game that is played between human and human or between human and 

computer AI. The AI is implemented as well as for the human team, in order to maintain the 

consistency in the football team among all the eleven players, as well as in the computer side.  

Typically for these games (Team Sport Related) they use a few basic AI algorithms, like A-Star search. 

for working out how to get the players to the appropriate position; and enabling passing from one 

player to another. These basic capabilities are then layered to create the higher level strategy. 

 

Figure 2. Diagram showing the idea of layered capabilities typically used in these games 

 

A* Search algorithm, also known as A-Star Search algorithm, is generally used in pathfinding and 

graph traversal. It is widely used because of the high rate of performance and accuracy [16]. In sports 

game like FIFA, this algorithm is used for a better experience of gaming for the human player. 

A* (pronounced "A-star") is a graph traversal and path search algorithm, which is often used in 

computer science due to its completeness, optimality, and optimal efficiency. One major practical 

drawback is its  (  ) space complexity, as it stores all generated nodes in memory. Thus, in practical 

travel-routing systems, it is generally outperformed by algorithms which can pre-process the graph to 

attain better performance, as well as memory-bounded approaches; however, A* is still the best 

solution in many cases. 

A* is an informed search algorithm, or a best-first search, meaning that it is formulated in terms 

of weig  hted graphs: starting from a specific starting node of a graph, it aims to find a path to the 

given goal node having the smallest cost (least distance travelled, shortest time, etc.) [17]. It does this 

by maintaining a tree of paths originating at the start node and extending those paths one edge at a 

time until its termination criterion is satisfied. 

At each iteration of its main loop, A* needs to determine which of its paths to extend. It does so based 

on the cost of the path and an estimate of the cost required to extend the path all the way to the goal. 

Specifically, A* selects the path that minimizes 

 ( )   ( )   ( ) 

 
where n is the next node on the path, g(n) is the cost of the path from the start node to n, and h(n) is 

a heuristic function that estimates the cost of the cheapest path from n to the goal. 

A* terminates when the path it chooses to extend is a path from start to goal or if there are no paths 

eligible to be extended. The heuristic function is problem-specific. If the heuristic function 

is admissible, meaning that it never overestimates the actual cost to get to the goal, A* is guaranteed to 

return a least-cost path from start to goal [17]. 

In FIFA game, the A* Search Algorithm will help to analyse the proximity of the opposition player 

and space around them to identify the better passing opportunities. When the human player has the 
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ball, his teammates will understand if you have the chance to make the pass and move accordingly to 

create the chance for you to pass or to take the shoot. The smarter players and increased activity off 

the ball give the opportunity to open up the opposition for a better chance in the game. Other sports 

games like NBL work on the same algorithm. 

 

 

 

3. Short  Analysis 

  
A Short  analysis  for the various gaming algorithms discussed in the previous sessions. The 
observations regarding each algorithm is also give in Table–I. 

 Table I-Short Analysis of different Games 

 
Game Algorithm Efficiency or 

computing time 

Observation Results 

Gomoku MiniMax Search 

Tree and Alpha 

Beta Pruning 

The first five AI 

moves take 56 

seconds to execute. 

After implementation, 

the same first five 

moves only take 14 

seconds. 

The impact is 

greater later on in 

the game when the 

space became 

bigger, as the 

search tree will 

become bigger as 

well. 

The developed AI 

played multiple sets of 

games with different 

rankings and has been 

able to win overall 

75% of all its games. 

 

Othello 

(Riversi) 

Alpha Beta Search 

Algorithm 

Speed up the 

calculation process 

evaluation board in 

the search tree. 

Better than the 

actual used AI 

based on NegaMax 

algorithm 

For the first testing, 

we get a 5 won in row 

against Tournament 

Reversi Program. 

From the second 

testing, we get 10 won 

from 13 games against 

a Negamax alpha beta 

pruning algorithm. 

Settlers of 

Catan 

Monte Carlo  

Tree Search 

The playing strength 

of the agent is quite 

notable it defeats the 

hand-coded AI of 

JSettlers, and is a 

reasonably strong 

opponent for humans.  

Considered as the 

best algorithm for 

the game 

A random game is 

considered weak 

With 1000 simulated 

games an efficiency of 

27% 

 With 10000an 

efficiency of 49% was 

obtained  

 Motor 

Cross 

Artificial Neural 

networks, Back 

Propagation 

algorithm 

Evolutionary 

algorithm 

With evolutionary 

algorithm Artificial 

intelligence can adapt 

to new track and 

improve lap times 

with time; possibly it 

can eventually 

perform better than a 

good human player 

Performance is as 

good as human 

players 

Generic algorithm was 

found to improve the 

performance 

 

 

 

 

FIFA  A* Search Optimal efficiency is 

about the set of nodes 

expanded, not the 

number of node 

expansions (the 

In such 

circumstances 

(Worst Case) 

Dijkstra's 

algorithm could 

The smarter players 

and increased activity 

off the ball give the 

opportunity to open up 

the opposition for a 
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number of iterations 

of A*'s main loop). 

When the heuristic 

being used is 

admissible but not 

consistent, it is 

possible for a node to 

be expanded by A* 

many times, an 

exponential number of 

times in the worst 

case. 

outperform A* by 

a large margin. 

better chance in the 

game. 

 

 

4. Conclusion 
 

 

The above work was to compare different AI techniques used in gaming environment such as 

Algorithms employing artificial neural network. In the case of algorithm driven AI games the 

algorithm used were minimax search tree and Monte Carlo Tree Search. The adaptive techniques used 

the Artificial Neural Network learning methods to determine the moves and the strategies. The 

observation made from algorithm based technique was that, the algorithm based techniques needed a 

clear domain knowledge to be effective and also, the larger the game develops, the algorithm was 

found to be much effective as well. In neural network based techniques we found that the inputs taken 

into consideration, decided the outputs thereby making the selection of inputs to be accurate and 

precise to obtain the expected results. The overall speed of the games however increased and became 

much more interactive. 
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