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Abstract. We propose herein a mathematical relation to calculate the severity of transverse 

cracks which affect a prismatic beam. It is known that the damage severity depends on the 

depth of the crack located at the slice on which the biggest bending moment is achieved. The 

frequency drop due to this crack is proportional to the severity associated with it. For all other 

crack locations, the effect is diminished in relation to the curvature registered at the affected 

slice. It is essential to obtain a relationship to correctly express the severity with respect to the 

crack depth. To find it, we designed a model of a cantilever beam with cracks located near the 

fixed end. We observed that the deflection of the beam’s free end increases the closer the crack 

to the fixed end is, but after a certain limit, the deflection decreases. We concluded that the 

deflection decrease occurs because the deformation around the crack is restricted by the fixing 

condition. To find the true severity, we derived the pseudo-severity for six crack positions and 

estimate the severity using the linear and second-order polynomial regression curves. Next, we 

used twelve points for interpolation and found a very similar severity. Finally, we performed 

modal analysis for the beam with cracks at different positions and found the mathematical 

relation developed to predict frequency changes that involves the severity provides accurate 

results. 

1.  Introduction 

Due to geometrical discontinuities produced by cracks the structure’s global stiffness is modified and 

the mass can change too. Due to these changes, the modal parameters as the natural frequencies, 

damping ratios, modal shapes, and modal curvatures are altered. The main effect on the modal 

parameters is produced by the stiffness loss because it diminishes the capacity of the structure to store 

energy. This effect directly depends on the crack position [1-3], its shape [4], [5] and dimensions [6-

9]. It also depends on the number and type of fastening systems [10]. The literature contains many 

works that formalize the link between the characteristics of the crack and the modal parameter 

changes. In some approaches the damage severity is found by involving fracture mechanics theory, 

while others are based on energy methods. The theory was also developed for changing environment 

[11-13], variable beam cross-section [14] and multiple-cracked structures [15-17]. 

In previous research, we developed robust techniques for assessing cracks in beams [18] and plates 

[19], regardless of the structure’s boundary conditions. All these techniques are based on the natural 

frequency shifts and evaluate the severity by energetic methods.  
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A problem we face when we evaluate the damage severity is that the frequency drop for the 

transverse crack located at a fixed end of a beam is smaller than the drop if the crack is located at a 

certain distance from this end. This is in disagreement with the relationship we developed for the 

frequency shift curves [20], which represent the frequency of the damaged beam versus the crack 

position. In addition, for cracks that have a longitudinal extent [5], it is impossible to estimate the 

frequency that should be obtained if the crack is located at the fixed end.  

We investigate in this study, by involving simulation performed using the finite element method 

(FEM), how the frequency shift of beam-like structures can be estimated for the cracks located at the 

fixed end. These values should concord with those obtained from the theory. 

2.  A mathematical relation to calculate the damage severity from an energy method 

A beam with a crack has usually a model consisting of two segments linked by a massless torsion 

spring [21], as shown in Figure 1. In this case, resolving the equation of motion for each segment, the 

solution in terms of displacement results in two equations that are: 

               1 1 1 1 2 1 3 1 4 1( ) sin cos sinh coshx C x C x C x C x  (1) 

                2 2 5 2 6 2 7 2 8 2( ) sin cos sinh coshx C x C x C x C x   (2) 

where C1...C8 are eight coefficients and α is the dimensionless wavenumber to be derived. 

 

 

Figure 1. Model of a cracked beam 

 

Imposing four end conditions (two for each of the beam ends I and III) in respect to the support 

types and four continuity conditions applied for the joint between the two segments (point II), one 

obtain a system with eight equation and nine unknowns. To properly set the continuity conditions, it is 

necessary to correctly estimate the spring stiffness. This is usually made by means of the fracture 

mechanics approach, from the numerous empirically deduced relations being available in the literature 

see for instance [7-9], [21]. By eliminating the coefficients C1...C8 from the system results a 

transcendental equation in α, with infinite solutions that correspond with the vibration modes  1...i . 

Denoting  1 1L  and  2 2L  we obtain the eigenvalues for the two segments used to derive the 

natural frequencies and mode shapes of the beam. The frequency fiD of the i-th mode is: 

 
2 2
1 2
2 2
1 22 2
i i

iD
i i

EI EI
f

L A L A

 

   
   (3) 

where E is the Young’s modulus, ρ is the mass density, A is the cross-sectional area and I is the 

moment of inertia of the healthy beam, respectively. 

This approach is well-known and largely applied to estimate the frequencies of a damaged 

structure. However, it requests extensive time and computational resources since numerous 

experiments are necessary to find the spring stiffness for different crack depths and afterward solving 
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the transcendental equation for different crack positions. For three or more cracks the difficulty 

increases linearly with the number of cracks. 

A simpler approach is proposed by the authors [22]. We found a relation that expresses the natural 

frequencies of the damaged beam fiD according to the frequency of the intact beam fiU and the position 

and severity of the crack, as: 

  
      

2
( , ) 1 (0, ) ( )iD iU if x a f a x  (4) 

where ( )i x   is the normalized modal curvature at distance x from the fixed end that obviously take 

values between -1 and 1, and  (0, )a  is the damage severity due to a crack of depth a. 

It was shown in [4] that the damage severity is in direct relation with the energy loosed by the 

beam due to the crack. For a cantilever beam, the severity  (0, )a   is calculated for the damage located 

at the fixed end 0x , where the crack produces the highest effect (i.e. frequency drop). Since the 

energy los can be found from the free end deflection [2], the severity becomes: 

 max max

max

(0, )
(0, )

(0, )

D U

D

a
a

a

 





   (5) 

where U  is the deflection at the free end of the intact beam and  (0, )D a   is the deflection at the free 

end of the cantilever beam with a damage of depth a located at the fixed end. Similar to the torsion 

spring stiffness, the severity  (0, )a  is the same for any boundary conditions imposed to the beam [22]. 

For other boundary conditions as the cantilever beam has, the location of the crack must be taken at 

the slice where the bending moment achieves the biggest value. For example, the simply supported 

beam requires the crack positioned at the middle of the beam.  

Returning to the cantilever beam, we also noticed that a crack located elsewhere as the fixed end 

has a diminished effect and will produce a lower frequency drop. This fact is taken into account in 

relation (4) by using the term that is the square of the normalized modal curvature (SNMC). We can 

make the substitution: 

    
 

2
( , ) (0, ) ( )ix a a x  (6) 

in which case we speak about the pseudo-severity. From prior research [23] we found that the pseudo-

severity can be found from the deflections of the beam’s free end in damaged and healthy state, as: 

 
   

 
 

 
  
 
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max max
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i
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x a a
x a x

x a a
  (7) 

if the crack is located at distance x from the fixed end. The relations for the severity and the pseudo-

severity being obtained after formalizing physical phenomena and not using data achieved 

stochastically from experiments, conduct to precise results. Because of their simplicity and precise 

results ensured, the use of these relationships has a clear advantage over the approach that involves 

fracture mechanics. Therefore, the relative frequency shift (RFS) for a beam with known depth and 

position can be easily calculated with the mathematical relation:  

 
 

  



       
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iU D
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f x a x a a x a

f a
  (8) 

Since the damage severity is not dependent on the boundary conditions, relation (8) can be applied 

for all kind of the beam’s end supports by simply choosing the right SNMC. 
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3.  Deriving the exact damage severity from several pseudo-severities 

Tests made during prior research have shown that the severity calculated for the crack at the fixed end 

of the cantilever beam under-evaluates a little bit the frequency drops. This was found to happen 

because the beam can deform just on one side of the crack, the other side of the beam being fixed. The 

behavior of the beam under dead mass is shown in the figure below, which illustrates the deflection in 

the vertical direction of the beam with the crack at the fixed end (Figure 2.a) and near the fixed end 

(Figure 2.b), respectively. One can observe that the deflection is smaller if the crack is located in the 

fixture, depicted in Figure 2.a. 

 

 

Figure 2. Deflection of the beam’s segment near the fixed end, if the crack is located: a) at the fixed 

end; b) in the vicinity of the fixed end 

 

When extracting the vertical displacement produced due to dead mass, we found that the beam 

deflects stronger if the crack is not located exactly at the fixed end, as shown in Table 1. The locations 

where pointers are positioned to indicate the deflections are at the upper beam face at distances 6, 18, 

30 and 36 mm from the fixed end (fixture). The crack location, if not at the fixed end, is x=12 mm. 

 

Table 1. Vertical displacements for the beam with two damage cases 

Analysis case  Deflection (mm) 

Point A (6 mm)  Point B (18 mm) Point C (30 mm) Point D (36 mm) 

Healthy beam 0.0018755 0.015055 0.040329 0.057456 

Crack at the fixed end 0.0019633 0.020344 0.049073 0.067942 

Crack at 12 mm from the fixture 0.0018802 0.019074 0.052334 0.073454 

 

The study presented in this paper to find the damage severity is carried out on a cantilever beam 

with length L=1000 mm, width w=50 mm and a thickness h=5 mm. Both the beam and crack 

geometries were modeled using the computer-aided design software SolidWorks. The analysis is 

carried out using the engineering simulation software ANSYS. In order to obtain accurate results, for 

this study, we have defined a hexahedral mesh with the maximum element edge of 2 mm. The 

physical-mechanical properties for the structural steel assigned for the cantilever are extracted from 

the ANSYS Workbench library and are: Yield strength 250 MPa; Ultimate strength 460 MPa; Mass 

density ρ 7850 kg/mm3; Young modulus E 2•1011 N/m2 and Poisson ratio v 0.3. 

The damage considered here is a breathing crack, which has depth d=2 mm. A schematic of the 

beam, with a detailed view on the fixed end, and the crack positions is presented in Figure 2, the exact 

position of the cracks being specified in Table 2. Note that the step between two consecutive cracks is 

s=3 mm until the distance x12=36 mm is achieved. 



International Conference on Applied Sciences

Journal of Physics: Conference Series 1426 (2020) 012023

IOP Publishing

doi:10.1088/1742-6596/1426/1/012023

5

 

 

 

 

 

 

           

Figure 3. The position of the transverse cracks considered one-by-one in the FEM analysis 

 

The aim of this study is to find the correct severity by extending the regression curve plotted for the 

points indicated in Table 2. To this aim, we performed simulations by employing the static analysis 

module and found the deflections for all crack locations.  

 

Table 2. The location of the transverse cracks in the near-field of the fixed end and the 

resulted deflections 

Parameter  Crack 1 Crack 2 Crack 3 Crack 4 Crack 5 Crack 6 

Distance xk (mm) 3 6 9 12 15 18 

Deflection δk (mm) 23.63 23.62 23.615 23.608 23.606 23.593 

 

Table 3. The location of the transverse cracks in the far-field of the fixed end and the 

resulted deflections 

Parameter  Crack 7 Crack 8 Crack 9 Crack 10 Crack 11 Crack 12 

Distance xk (mm) 21 24 27 30 33 36 

Deflection δk (mm) 23.587 23.581 23.581 23.565 23.571 23.557 

 

With the results presented in Tables 2 and 3 we calculate the mathematical expression for the 

regression curve in two cases: linear and second order polynomial. The results are depicted in Figure 4 

for the deflections due to the crack in the near-field of the fixed end, respectively in Figure 5 for an 

extended domain. In these figures we also present the R-squared value, which indicates the close the 

estimated values are to the real one. 
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Figure 4. The extended regression curves plotted for the deflections of the 

damaged beam considering the first six cracks 
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Figure 5. The extended regression curves plotted for the deflections of the 

damaged beam considering twelve cracks 

 

One can observe from Figures 4 and 5 that the values for the free-end deflection estimated from the 

regression curves, regardless of the curve type (linear or second-order polynomial) and number of 

points used, are very close to 23.635 mm.  

Similar evolution of the deflection with the crack position was achieved, in prior research [23], for 

a crack with depth 1 mm. We can conclude that, to accurately find the damage severity of a transverse 

crack, it is enough to involve 6 cracks equidistantly distributed near the fixed end, with the distance 

between them 1/30 times the beam length.    

4.  Numerical validation 

We prove in this section that the severity calculated by using the procedure described above can be 

successfully used to estimate the frequencies of beams with cracks, irrespective to the boundary 

conditions. Hence, we perform modal analysis for several crack location on the beam with different 

supports and found the natural frequencies. The results are compared with those obtained by involving 

relation (4), where the severity is calculated with relation (5) first with the deflection obtained directly 

from simulation and afterward for the severity calculated from the regression curve.  

To this aim, we first find from FEM simulation the free-end deflection for the healthy beam, 

respectively the deflections for the crack at the fixed end and at several locations it its vicinity. From 

the latter we estimate the deflection by involving the regression curve. All results, along with the 

calculated severities are given in Table 4.  

 

Table 4. The severity calculated directly from simulation and involving the regression curve 

Analysis case  Deflection (mm) Severity (-) 

Healthy beam  22.948 - 

Values for the crack at the fixed end  23.243 0.006366 

Values from the regression curve  23.635 0.014641 
         

The values of the free-end deflections under dead mass for the healthy beam and the beam with a 

crack at the fixed end are found from FEM simulation in a similar way and beam configuration as all 

other values presented in the above tables. One can observe the big discrepancy between the severity 

γFEM found from simulation results directly and the severity γREG estimated using the regression curve. 
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4.1.  Cantilever beam 

The first tests are made for the cantilever beam, for which the severity was derived. The locations 

where randomly selected, and concern the distances 160, 250 and 570 mm from the left (fixed) end. 

The first 4 natural frequencies are calculated with relation (4) both for γFEM and γREG and the results 

compared with these directly obtained from simulation. The results are presented in Tables 5 to 7. 

 

Table 5. Frequencies calculated for the beam with fixed-free end conditions considering the severities 

derived in two ways and directly from FEM for the crack located at 160 mm from the fixed end 

Mode  

no. 

SNMC  

(-) 

Severity (-) Frequency  from calculus (Hz) Frequency from 

simulation (Hz) γFEM γREG Using γFEM Using γREG 

1  0.6136034 0.006366 0.014641 4.0741 4.0535 4.0538 

2 0.0624528 0.006366 0.014641 25.6165 25.6043 25.604 

3 0.0331268 0.006366 0.014641 71.7367 71.7143 71.727 

4 0.2660330 0.006366 0.014641 140.3793 140.0566 140.14 

 

Table 6. Frequencies calculated for the beam with fixed-free end conditions considering the severities 

derived in two ways and directly from FEM for the crack located at 250 mm from the fixed end 

Mode  

no. 

SNMC  

(-) 

Severity (-) Frequency  from calculus (Hz) Frequency from 

simulation (Hz) γFEM γREG Using γFEM Using γREG 

1  0.4362515 0.006366 0.014641 4.0787 4.0641 4.0641 

2 0.0187494 0.006366 0.014641 25.6229 25.6181 25.621 

3 0.3545076 0.006366 0.014641 71.5921 71.3748 71.409 

4 0.4130015 0.006366 0.014641 140.2578 139.792 139.85 

 

Table 7. Frequencies calculated for the beam with fixed-free end conditions considering the severities 

derived in two ways and directly from FEM for the crack located at 570 mm from the fixed end 

Mode  

no. 

SNMC  

(-) 

Severity (-) Frequency  from calculus (Hz) Frequency from 

simulation (Hz) γFEM γREG Using γFEM Using γREG 

1  0.068848 0.006366 0.014641 4.0883 4.0860 4.0859 

2 0.515644 0.006366 0.014641 25.5423 25.4336 25.442 

3 0.1610203 0.006366 0.014641 71.6749 71.5722 71.601 

4 0.2721607 0.006366 0.014641 140.3998 140.1037 140.11 

 

As it can be observed from Tables 5 to 7, the frequencies calculated using the severity γREG lead to 

much better results as these calculated with the severity γFEM if the frequencies obtained by simulation 

are taken as a reference. This shows that the use of the severity found from the regression curves 

should be considered in calculus. Else, an under-estimated frequency shift results. 

4.2.  Beam fixed at both ends 

Similar tests as in the previous sub-section are made for the beam fixed at both ends. Here, the 

severities are the same but the SNMC differs. The results are presented in the Tables 8 to 10.  
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Table 8. Frequencies calculated for the beam with fixed-fixed end conditions considering the 

severities derived in two ways and directly from FEM for the crack located at 160 mm from one end 

Mode  

no. 

SNMC  

(-) 

Severity (-) Frequency  from calculus (Hz) Frequency from 

simulation (Hz) γFEM γREG Using γFEM Using γREG 

1  0.071864 0.006366 0.014641 26.087 26.0715 26.071 

2 0.032262 0.006366 0.014641 71.912 71.893 71.896 

3 0.248691 0.006366 0.014641 140.767 140.4767 140.5 

4 0.424972 0.006366 0.014641 232.439 231.62 231.67 

 

Table 9. Frequencies calculated for the beam with fixed-fixed end conditions considering the 

severities derived in two ways and directly from FEM for the crack located at 250 mm from one end 

Mode  

no. 

SNMC  

(-) 

Severity (-) Frequency  from calculus (Hz) Frequency from 

simulation (Hz) γFEM γREG Using γFEM Using γREG 

1  0.009840 0.006366 0.014641 26.0974 26.0952 26.096 

2 0.341930 0.006366 0.014641 71.7704 71.5669 71.575 

3 0.385819 0.006366 0.014641 140.6437 140.1936 140.22 

4 0.065547 0.006366 0.014641 232.9727 232.8463 232.84 

 

Table 10. Frequencies calculated for the beam with fixed-fixed end conditions considering the 

severities derived in two ways and directly from FEM for the crack located at 570 mm from one end 

Mode  

no. 

SNMC  

(-) 

Severity (-) Frequency  from calculus (Hz) Frequency from 

simulation (Hz) γFEM γREG Using γFEM Using γREG 

1  0.318771 0.006366 0.014641 26.0460 25.9771 25.981 

2 0.128292 0.006366 0.014641 71.8683 71.7919 71.794 

3 0.263325 0.006366 0.014641 140.7536 140.4465 140.46 

4 0.350455 0.006366 0.014641 232.55 231.8741 231.92 

 

One can observe that the severity estimated for the cantilever beam applies in this case too. Again, 

the severity γREG lead to much better results as the severity γFEM. 

4.3.  Beam free at the two ends 

A last test is made for the beam with free ends. Again, the severities are these derived for the 

cantilever beam, but the SNMC is selected for the free-free ends case. The achieved results are 

presented in Tables 11 to 13.  

 

Table 11. Frequencies calculated for the beam with free-free end conditions considering severities 

derived in two ways and directly from FEM for the crack located at 160 mm from one end 

Mode  

no. 

SNMC  

(-) 

Severity (-) Frequency  from calculus (Hz) Frequency from 

simulation (Hz) γFEM γREG Using γFEM Using γREG 

1  0.073740 0.006366 0.014641 25.931821 25.915991 25.926 

2 0.376470 0.006366 0.014641 71.359561 71.136740 71.305 

3 0.787096 0.006366 0.014641 139.577076 138.663476 139.35 

4 0.999608 0.006366 0.014641 230.513669 228.594861 230.09 
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Table 12. Frequencies calculated for the beam with free-free end conditions considering severities 

derived in two ways and directly from FEM for the crack located at 250 mm from one end 

Mode  

no. 

SNMC  

(-) 

Severity (-) Frequency  from calculus (Hz) Frequency from 

simulation (Hz) γFEM γREG Using γFEM Using γREG 

1  0.295375 0.006366 0.014641 25.895214 25.831806 25.873 

2 0.916528 0.006366 0.014641 71.113627 70.571161 70.989 

3 0.821370 0.006366 0.014641 139.546468 138.593087 139.34 

4 0.142221 0.006366 0.014641 231.779952 231.506949 231.72 

 

Table 13. Frequencies calculated for the beam with free-free end conditions considering severities 

derived in two ways and directly from FEM for the crack located at 570 mm from one end 

Mode  

no. 

SNMC  

(-) 

Severity (-) Frequency  from calculus (Hz) Frequency from 

simulation (Hz) γFEM γREG Using γFEM Using γREG 

1  0.918802 0.006366 0.014641 25.792245 25.595007 25.727 

2 0.254877 0.006366 0.014641 71.414933 71.264078 71.382 

3 0.441335 0.006366 0.014641 139.885862 139.373596 139.77 

4 0.608796 0.006366 0.014641 231.090863 229.922243 230.84 

 

In this case, the frequencies calculated with γREG and γFEM lead to equally good. This show on one 

hand that the severity for the cantilever beam, which is the easiest to be found, can be employed for 

any other boundary conditions. In addition, we conclude that the severity γREG calculated from several 

cracks located near the fixed end, we recommend six, is accurate and permits a precise estimation of 

the frequencies of beams with known location and depth.  

5.  Conclusion 

The paper investigates the conditions in which the severity of a transverse crack can be estimated with 

accuracy from static measurements. We found that, when the energy method proposed by the authors 

is utilized, the result obtained by direct FEM simulation considering the crack located at the position 

where the beam achieves the biggest bending moment is not enough accurate. Important improvement 

is achieved if the severity is estimated using statistical dta processing after a method proposed by the 

authors in this paper.    

As a second finding of the study is the possibility of using the severity derived for a given 

boundary condition for all other boundary conditions imposed to the beam.   

In future research, we will tackle the problem of the severity estimation for complex-shaped cracks 

and beams with multiple supports. 
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