
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

International Conference on Applied Sciences

Journal of Physics: Conference Series 1426 (2020) 012033

IOP Publishing

doi:10.1088/1742-6596/1426/1/012033

1

Principles of development of product lifecycle management

system for threaded connections based on the Python

programming language

V B Kopei, O R Onysko and V G Panchuk

Ivano-Frankivsk National Technical University of Oil and Gas, Department of

Computerized Mechanical Engineering, Karpatska str., no. 15, 76019 Ivano-

Frankivsk, Ukraine

E-mail: vkopey@gmail.com

Abstract. The principles of the development of PLM-system for threaded connections of oil

and gas equipment are described. In order to ensure efficiency, the PLM-system must be

isomorphic to other complex systems and have their laws, in particular, the emergence and

―requisite variety‖. The proposed system belongs to the class of hybrid multi-agent intelligent

systems that combine various methods of knowledge representation and decision making. The

system contains a knowledge base with inference rules, an inference engine, a code editor,

simulation models of threaded connections, the results of their simulations, and other

components. The knowledge base contains facts, in which the factors that affect the reliability

and durability of threaded connections, are connected by cause-effect relations "is the cause"

and "is the effect". Facts can have such properties as an information source, dependence of

quantities, a simulation model, etc. The rules of inference allow you to get new facts from the

knowledge base and simulation models. All system components or their software interfaces are

developed in a high-level general-purpose programming language Python, which simplifies the

implementation of the system and the integration of components with different types. In

particular, any Python package can be easily connected to the system. Classes and individuals

of ontology are declaratively described by Python classes and objects, attributes and

relationships are Python-attributes. For easy editing, the system code is divided into parts,

which are combined before execution.

1. Statement of the problem

PLM-systems are intended for informational support of all phases of the product life cycle (concept,

design, manufacturing and implementation) [1], [2]. Such systems should contain information

components for making optimal decisions at each phase. Modern products can combine thousands of

high-tech solutions that have been gradually developed and improved over the years. Due to the

complexity of the PLM domain knowledge, these information systems need to be classified as

complex systems [2]. In accordance with the principle of isomorphism [3], they must have all laws of

complex systems (emergence, ―requisite variety‖, nonlinearity, spontaneous order, feedback loops,

self-similarity, historicity, adaptation and others). Developers of PLM systems rarely focus on this [2].

Partially, these laws are used in systems engineering [4] and systems analysis techniques. In particular,

the laws of emergence, historicity, ―requisite variety‖ and spontaneous order are noticeable in the

systems analysis method "gradual formalization of the decision-making model" [5]. The authors of the

mailto:vkopey@gmail.com

International Conference on Applied Sciences

Journal of Physics: Conference Series 1426 (2020) 012033

IOP Publishing

doi:10.1088/1742-6596/1426/1/012033

2

method note that most of projects of complex systems need to be described by a class of self-

organizing systems, models of which must be constantly adjusted and developed. According to the

laws of emergence and ―requisite variety‖, PLM should be a hybrid intelligent system that combines

various models of intelligent systems that complement each other. A large list of such models is given

in [6].

To be isomorphic to complex systems, a PLM-system must have base properties: a large number of

heterogeneous elements (intellectual agents), autonomy of elements, decentralization, interactions

between elements, simple local rules (behavior) of an element. These requirements correspond to such

software systems as MAS (multi-agent system) [7], [8] and the AOP (agent-oriented programming)

approach [9] to their development. MAS can simplify the development and application of PLM [10]

and also, thanks to a systems approach, increase their efficiency. For a simple description of the

behavior of elements, the perspective is the integration of rule-based systems (rules engine) into the

PLM [11].

To simplify system design, we suggest using a high-level, general-purpose programming language

Python. It is a simple, popular, open-source language, which focused on the rapid development and

system integration of heterogeneous components and has a large number of packages, in particular:

pythonOCC [12] (a python wrapper for the Open Cascade Technology geometric modeling kernel),

NumPy (base N-dimensional array package), SciPy [13] (fundamental library for scientific

computing), Matplotlib [14] (comprehensive 2D Plotting), scikit-learn [15] (machine learning),

pyDatalog [16] (logic programming), pandas [17] (data analysis), NetworkX [18] (studying complex

networks). Other open-source software may be available through API: CalculiX [19] (finite-element

analysis), Gmsh [20] (3D finite element mesh generator). Such integration can provide emergence and

―requisite variety‖. Using Python can also significantly simplify the development of MAS [21].

Known general-purpose MAS for Python are osBrain [22] or PADE [23].

The aim of the work is to describe the principles of the development of PLM-system for threaded

connections of oil and gas equipment, which is based on the laws of complex systems and AOP/MAS,

focused on simple implementation and use, and created in Python 2.7 using the above-mentioned

open-source packages.

2. Description of the system and principles of its development

The proposed PLM-system is designed to make optimal decisions in the design, manufacture, repair

and operation of threaded connections. Optimal decisions can be made according to the criteria of

reliability and durability of threaded connections. An example of the system is available at GitHub

(https://github.com/vkopey/ThreadsPLM).

The system consists of objects (agents) whose classes inherit the Agent class. All objects are

stored in the dictionary KB, where the keys are the unique names of the objects — the values of their

__name__ attributes. The tools.py module contains the KB dictionary and utility functions that are

available for agents. Objects can be created dynamically during the user's dialogue with the system or

generated by other objects. In this regard, it is more convenient to describe each object in a separate

Python-module. The class name (ClassName) and the object name (AgentName) are automatically

detected from the file name of this module (ClassName_AgentName.py). You can prevent name

conflicts, for example, by using the find() function for searching names, the dictionary method

has_key, or the autoKey() function for generating unique names. The createKB() function for

each such file creates an obj object of the corresponding class, adds it to the KB dictionary using the
obj.__name__ key, and executes this file as Python code in the obj.__dict__ namespace using

execfile() (function for dynamic execution of Python code). This allows you to access the object

attributes in this file without using the object name and thus to shorten the code.

2.1. Description of the class Agent

The base class Agent describes objects with a rule() method, an active attribute (determines

whether the object is active) and a __name__ attribute (object name). All other classes described

International Conference on Applied Sciences

Journal of Physics: Conference Series 1426 (2020) 012033

IOP Publishing

doi:10.1088/1742-6596/1426/1/012033

3

below inherit the Agent class. The method rule() defines the rules of agent behavior. The method

should return True if it has made any attribute changes. Otherwise, the method should return False

or None.

In general, rules of active agents are applied as long as this leads to changes in the system. This

ensures the evolution of the system and is a prerequisite for self-organization. A single call of the

rule() method for each agent is called iteration. Iterations can be executed by the

applyRules(lst=KB, n=5) function. If necessary, the applyRules() function can apply rules

only to objects from list lst. The function parameter n determines the maximum number of iterations.

The saveKB() and loadKB() functions can be used to save and load agents from persistent

storage. They use the dill package [24] and the standard module shelve. These functions can be

useful in case of long iterations. In addition, the storage of attribute values in the source code of agents

can be performed by the user.

2.2. Description of the class Factor

The Factor class describes agents-factors that affect the reliability and durability of threaded

connections. Each factor has attributes isCause (is the cause of the factor), isEffect (is the effect

of the factor), subClassOf (is the subclass of the factor), isContraryOf (is the contrary of the

factor). These attributes may contain a set of factors names. Thus factors can be linked by relations

using these attributes. In particular, the isCause and isEffect attributes can create cause-effect

relations between factors. An example of the description of the "corrosion damage" factor in the

"Factor_corrosion damage.py" file:

#-*- coding: utf-8 -*-
"""Factor_corrosion damage"""
isCause={"stress concentration"}

where the first line defines the character encoding of the file, the second is the object documentation

(attribute __doc__), in the third, the isCause attribute is assigned a value, which indicates that the

factor is the cause of the "stress concentration" factor.

2.3. Description of the class Property

The Property class describes agents-properties that are used to create relations between ontology

objects. Properties have attributes that are similar to the properties of the Web Ontology Language

(OWL): inverseOf – inverse property name, domain – a set of classes that have this property,

range – a set of classes, which objects can be included in a set of property values,

FunctionalProperty – the property has only one value if FunctionalProperty=True and

others. For example, the isCause attribute of the Factor class is a property if the "isCause" agent

exists and described in the "Property_isCause.py" module:

"""Property_isCause"""
inverseOf="isEffect"
domain={"Factor"}
range={"Factor"}

Properties also have a datalogRules() method, which returns a set of pyDatalog-rules for

logical inference. For example, for the isCause property, the following rule allows to infer new facts

isEffect(X,Y) from facts isCause(Y,X) using an inference engine pyDatalog:

"isEffect(X,Y) <= isCause(Y,X)" (1)

International Conference on Applied Sciences

Journal of Physics: Conference Series 1426 (2020) 012033

IOP Publishing

doi:10.1088/1742-6596/1426/1/012033

4

here X, Y – the names of the factors.

2.4. Description of the class Datalog

The Datalog class is designed to create agents for logical inference using pyDatalog. The main part

of the rule() method is:

props=getClassObjects('Property')
facts=KBToFacts()
dfacts=self.getDatalogFacts(facts)
drules=self.getDatalogRules()
allFacts=runDatalog(dfacts, drules, props)
factsToKB(allFacts)

First, the rule() method using KBToFacts() retrieves the set of all facts from all property

values of all agents as triplets

(subject, predicate, object) (2)

where subject is an agent name, predicate is the name of its property, object is an element of

the set of property values. Then the getDatalogFacts() method converts set of facts into the list of

pyDatalog-facts with elements "+predicate ('subject', 'object')". The

getDatalogRules() method generates a set of pyDatalog-rules from the datalogRules()

methods of all agents. The logical inference of new facts with pyDatalog 0.17.1 is performed in the

runDatalog() function, which gets lists of all facts, rules and predicates. This function loads the

pyDatalog-code with the load() function and infers new facts by querying the knowledge base with

the ask() function for each predicate. New facts are returned in a set of triplets (2). After the logical

inference, the factsToKB() function returns these facts to the knowledge base KB by adding object

to the set of values of the predicate property of the subject agent. The rule() method is applied

until the difference in the sets of new facts and old facts (before rule is applied) is not empty. Inference

can also be implemented by other methods. For example, you can easily implement a naive forward

chaining algorithm for the rule (1) by adding the following code to the rule() method of the Factor

class:

for k in KB:
 if KB[k].__class__.__name__!='Factor': continue
 if k not in self.isCause: continue
 if self.__name__ not in KB[k].__dict__['isEffect']:
 KB[k].__dict__['isEffect'].add(self.__name__)
 return True

You can test this algorithm by disabling the Datalog agents (active = False). But using

pyDatalog is more productive.

2.5. Description of the class Fact

The Fact class describes the knowledge base fact as a triplet (2). The source attribute is the source

of the fact. The rule() method automatically creates values for agent properties that match this fact.

Agent example:

"""Fact_stress concentration is cause of fatigue strength decrease"""
subject="stress concentration"

International Conference on Applied Sciences

Journal of Physics: Conference Series 1426 (2020) 012033

IOP Publishing

doi:10.1088/1742-6596/1426/1/012033

5

predicate="isCause"
objecT="fatigue strength decrease"

2.6. Description of the class Model

The Model class describes a finite element model agent of a threaded connection of sucker rods

according to GOST 13877-96 (API Spec 11B equivalent). The paramsIn and paramsOut attributes

contain dictionaries with the names and values of the input and output parameters of the model. The

rule() method creates a new process for simulating a model, passes the paramsIn value to it using

command line arguments, waits for completion and reads the results from the standard output stream

into paramsOut using the parseOutput() method. If paramsIn is empty, the model will be

simulated with standard parameter values. The model will be simulated only when among the values

of paramsOut there is None. Agent example:

#-*- coding: utf-8 -*-
"""Model_3/4 API Spec 11B_r3n=2.5"""
paramsIn["radiuses on stress relief groove"]=2.5

2.7. Description of the program ThreadsOCC

For simulation the ThreadsOCC program is used, which is developed by the authors

(https://github.com/vkopey/ThreadsOCC). This program is created in the Python language, is a part of

the PLM-system and is designed to simulate threaded connections using the finite element method

(FEM). Using the program, we can create parametric geometric and axisymmetric finite element

models of threaded connections. The boundary representation method, which is implemented by the

pythonOCC 0.18.1, is used to create geometric models. CalculiX 2.15 is used to create models for

FEM. The program can be used to fully automated optimization of the threaded connection

parameters.

ThreadsOCC consists of modules gost13877_96params.py, main.py, ccx_inp.py, ccx_out.py. The

module gost13877_96params.py describes the main and additional parameters of threaded connections

of sucker rods. The main parameters are nominal values of dimensions with permissible deviations.

Additional parameters simplify the creation of the model and depend on the main ones (for example, a

point for identifying the edge of a geometric model). Actual values of the parameters are set using

setModelParams() function. In this module, you can set other model parameters such as material

and load parameters.

The main.py module is the main module of the program. It first builds a geometric model, then a

finite element model, then simulates and reads results. To simplify the creation of a planar geometric

model, functions such as poly() (creates a polygon with fillets or chamfers on the vertices),

cut_array() (creates an array of cuts on the face) and others are developed. Planar geometric

models of the nipple (pin), coupling and connection are created using the functions face1(),

face2() and mkCompaund(). The created model is saved in the BRep format.

The ccx_inp.py module contains functions for creating a mesh of the FEM-model and input-file for

CalculiX. Gmsh 4.4.0 is used to create a mesh from a BRep-file. In the input-file, the program needs

to specify the contact conditions, the external load and the boundary conditions on the specified mesh

lines. To find these lines in the mesh-file generated by Gmsh, it is parsed (the ccx_inp.parse()

function) and sets of nodes (nodes), lines (lines) and elements (elements) are obtained. It is also

necessary to find the matching between the edges of the geometric model and the mesh lines using

such functions as findEdge(), findContEdges(), ccx_inp.findLine(), etc. After that, the

final input-file is created and the simulation is executed in CalculiX. Simulation results CalculiX

writes to the frd-file.

The ccx_out.py module contains functions for the frd-file parsing, obtaining the stress components

at a specified node, calculating the principal stresses, equivalent stress and fatigue safety factor (FOS)

using the dependence of Sines [25].

International Conference on Applied Sciences

Journal of Physics: Conference Series 1426 (2020) 012033

IOP Publishing

doi:10.1088/1742-6596/1426/1/012033

6

The main.py program can read parameter values from command line arguments and write the

results to its standard output stream. An example of calculating the minimum FOS value in a 3/4 API

Spec 11B nipple with parameters r3n=2.5, d_n=13.12:

python main.py r3n=2.5 d_n=13.12
FOS= -13.6997873264

2.8. Description of the class Parameter

The Parameter class describes threaded connection parameters. Parameter objects have attributes-

factors factorHigh and factorLow, which allow to associate parameters with factors. Parameter

example:

"""radiuses on the stress relief groove_3/4 API Spec 11B"""
factorHigh="radiuses on the stress relief groove increase"
factorLow="radiuses on the stress relief groove decrease"

2.9. Description of the class Dependence

The Dependence class describes agents with statistical dependencies of one variable. The attribute

Xpar is the name of the independent variable, the attribute Ypar is the name of the dependent

variable. Values Xpar, Ypar are the keys of the Parameter class agents. Attributes X, Y contain a list

of values of independent and dependent variables. The source attribute indicates the source of the

dependence (reference or model). For example:

"""dependence1_3/4 API Spec 11B"""
Xpar="length of stress relief groove"
Ypar="logarithmic fatigue life"
X=[15.0, 25.0, 35.0, 45.0]
Y=[4.3, 5.4, 6.1, 7.0]
source="Kopey V. 2012 Technology audit and production reserves 6/2(8)"

X, Y data can be automatically obtained from a set of models (Model agents) using the

fromModels() method, if the source is a model and the elements of this set differ from the source

only by the value of one parameter from Xpar (this is verified by the isSibling() method from the

Model class.). The Dependence agent can also dynamically create models (agents of the Model

class) if there are X values, some Y values are None and such a model does not exist. At future

iterations, these models will be simulated and the Y data will be obtained using the fromModels()

method. The rule() method calls the fromModels() and toModels() methods and builds linear

regression using SciPy. If the value of the coefficient of determination R2 is high enough (R2>0.5),

then the rule() tries to create a new fact:

if slope>0: # if positive correlation
 KB[KB[self.Xpar].factorHigh].isCause.add(KB[self.Ypar].factorHigh)
else:
 KB[KB[self.Xpar].factorLow].isCause.add(KB[self.Ypar].factorHigh)

Thus, the high correlation between Xpar and Ypar allows automatically create causal relationships

between factors.

International Conference on Applied Sciences

Journal of Physics: Conference Series 1426 (2020) 012033

IOP Publishing

doi:10.1088/1742-6596/1426/1/012033

7

2.10. Description of the class DependenceMulti

The DependenceMulti class is similar to the Dependence class and describes the statistical

multivariate dependencies. The attributes Xpars and Ypars contain lists of the names of dependent

and independent parameters. Attributes X and Y contain their values. Agent description example:

"""dependence4_3/4 API Spec 11B"""
Xpars=["radiuses on stress relief groove",
 "major radius of nipple thread "]
X=[[00.5, 01.5, 02.5, 03.5, 00.50, 01.50, 02.50, 03.50],
 [12.7, 12.7, 12.7, 12.7, 13.26, 13.26, 13.26, 13.26]]
Ypars=["fatigue safety factor"]
Y=[[None,None,None,None,None,None,None,None]]
source="3/4 API Spec 11B"

For processing and analyzing X and Y data, you can use the pandas package and its DataFrame

data structure. For two-way conversion to DataFrame, the toDataFrame() and fromDataFrame()

methods are used. The linregress() method is used to build a linear regression using the scikit-

learn package and returns its coefficients and coefficient of determination. If the source is a model,

and some elements of Y are unknown (are None), then the byModels() method allows to

automatically obtain the Y values by creating temporary models and simulating them. The

optimize() method allows you to find the optimal values of X according to the specified criterion

yp by simulating models and applying algorithms for multi-variable function optimization from SciPy.

This method optimizes the values that the simModel(x, yp) method returns, where x is the

argument vector, yp is the name of the dependent parameter. The following example shows the use of

the optimize() method:

d=KB[dependence4]
d.optimize(yp="fatigue safety factor", bounds=[(2.5,3.5),(12.7, 13.26)],
maximize=True)

Unlike the Dependence class, automated creation of causal relationships between the factors from

the correlation of Xpars and Ypars is not implemented. This must be done by the user.

2.11. An example of interaction with the system

The system supports interactive work in Python or IPython shells. To simplify code editing, authors

recommend using a python-IDE with an integrated IPython-shell. To facilitate the work with the

system (creating and editing agents, creating queries and visualization) additional modules with GUI

can be developed. Below is an example of interaction with the system in Python-shell:

>>> from tools import * # import everything from the module
>>> files=getFiles() # get the list of modules from the current directory
>>> createClasses(files) # create agent classes
>>> createKB(files) # create agents
>>> applyRules() # apply the rules as long as there are changes
>>> saveKB() # save agents
>>> loadKB() # load agents

The following query prints all causes of the "stress concentration" factor:

>>> for v in KB["stress concentration"].isEffect:

International Conference on Applied Sciences

Journal of Physics: Conference Series 1426 (2020) 012033

IOP Publishing

doi:10.1088/1742-6596/1426/1/012033

8

... print v
corrosion damage
corrosion pit

The following query builds the "dependence2" dependence and its linear regression using

Matplotlib:

>>> import matplotlib.pyplot as plt
>>> d=KB["dependence2"]
>>> d.linregress()
LinregressResult(slope=9.59, intercept=-40.58, rvalue=0.9, pvalue=0.1,
stderr=3.35)
>>> d.plot(plt)

Dependencies in Figure 1 were obtained automatically from the Model agents (3/4 API Spec 11B

connections). According to the dependence in Figure 1(a), the system infers fact ("radiuses on
stress relief groove increase", "isCause", "fatigue strength increase").

Such inference from dependence in Figure 1(b) is not made due to the small value of R2.

a b

Figure 1. Dependences of FOS (Y) on geometric parameters (X), mm: radiuses on the stress relief

groove, R
2
=0.8 (а); major radius of the nipple thread, R

2
=0.19 (b)

The following query builds a directed graph using NetworkX with "isCause" edges and Factor

class vertices and calculates PageRank [26] values for them based on the structure of the incoming

links. These PageRank values can be used to evaluate the importance of a factor — the relative

number of factors causing this factor. A graph with PageRank values is visualized (Figure 2) using

Graphviz by converting it into the graph description language (DOT) [27].

import networkx as nx
G = nx.DiGraph()
for i in KB:
 if KB[i].__class__.__name__=="Factor":
 for j in KB[i].isCause:
 G.add_edge(i, j, label="isCause")
pr=nx.pagerank(G)

Figure 3 shows the graph that is the result of a query to the KB and contains vertices — agents of

the classes Factor, Fact, Parameter, Dependence, and edges — the properties isEffect,

International Conference on Applied Sciences

Journal of Physics: Conference Series 1426 (2020) 012033

IOP Publishing

doi:10.1088/1742-6596/1426/1/012033

9

subClassOf, isContraryOf, objecT, subject, factorHigh, factorLow, Xpar, Ypar,

source.

Figure 2. Directed graph of factors with

PageRank values (part of the graph is shown)

Figure 3. Visualization of the query to the knowledge base

The paper demonstrates examples for the design phase of a threaded connection, but the system can

also be completed with agents for other phases of the product life cycle. For example, you can

integrate a model for a geometric simulation of thread machining [28]. The issues of system

performance or building a distributed system were not considered, but this can be implemented in the

future using well-known methods and Python-packages [21-23].

3. Conclusions

The proposed principles for the development of PLM-systems create prerequisites for the appearance

of the properties of complex systems in them and, thus, increase their effectiveness. An example of a

PLM-system for threaded connections of oil and gas equipment is given, which:

 aims at simple and efficient integration of many heterogeneous components and belongs to the

class of multi-agent systems and hybrid intelligent systems;

International Conference on Applied Sciences

Journal of Physics: Conference Series 1426 (2020) 012033

IOP Publishing

doi:10.1088/1742-6596/1426/1/012033

10

 focuses on a simple description of agents, their behavior and interactions, the dynamic

creation and persistence of agents, the extension of the functionality of the system by creating

new classes and agents;

 developed by the popular Python language, allows you to work with the system in the Python-

shell, uses various open-source Python-packages and third-party software, including the

pyDatalog inference engine and a program developed by the authors for finite element

simulation of threaded connections.

References

[1] Saaksvuori A and Immonen A 2008 Product lifecycle management, Third Edition, Springer-

Verlag, Berlin, Heidelberg

[2] Kopey V B 2017 Abstract model of product lifecycle management system, Precarpathian

bulletin of the Shevchenko scientific society 2(38) 71-96 (in Ukrainian)

[3] Bertalanffy von L 1968 General system theory: foundations, development, applications, George

Braziller, Inc., New York

[4] Kossiakoff A, Sweet W N, Seymour S J and Biemer S M 2011 Systems engineering principles

and practice, Second Edition, A John Wiley & Sons, Hoboken, New Jersey

[5] Volkova V N 2006 Gradual formalization of decision-making models, Saint Petersburg State

Technical University, Saint Petersburg (in Russian)

[6] Gavrilov A V 2002 Hybrid intelligent systems, Novosibirsk State Technical University,

Novosibirsk (in Russian)

[7] Shoham Y and Leyton-Brown K 2008 Multiagent systems: algorithmic, game-theoretic, and

logical foundations, Cambridge University Press

[8] Kravari K and Bassiliades N 2015 A survey of agent platforms, Journal of Artificial Societies

and Social Simulation 18(1) 11

[9] Shoham Y 1993 Agent-oriented programming, Artificial Intelligence 60 51-92

[10] Karasev V O and Sukhanov V A 2017 Product lifecycle management using multi-agent systems

models, Procedia Computer Science 103 142-147

[11] Fortineau V, Paviot T and Lamouri S 2019 Automated business rules and requirements to enrich

product-centric information Computers in Industry 104 22-33

[12] Paviot T PythonOCC, 3D CAD/CAE/PLM development framework for the Python programming

language http://www.pythonocc.org (accessed 2019-05-01)

[13] Jones E, Oliphant E, Peterson P, et al. SciPy: open source scientific tools for Python

http://www.scipy.org (accessed 2019-05-01)

[14] Hunter J D 2007 Matplotlib: A 2D graphics environment, Computing in Science & Engineering

9(3) 90-95

[15] Pedregosa F, et al. 2011 Scikit-learn: machine learning in Python, JMLR 12 2825-2830

[16] pyDatalog https://sites.google.com/site/pydatalog (accessed 2019-05-01)

[17] McKinney W 2010 Data structures for statistical computing in Python, Proc. of the 9th Python

in Science Conf. ed S van der Walt and J Millman, pp 51-56

[18] Hagberg A A, Schult D A and Swart P J 2008 Exploring network structure, dynamics, and

function using NetworkX Proc. of the 7th Python in Science Conf. (SciPy2008) ed Gäel

Varoquaux, Travis Vaught et al., Pasadena, CA USA, Aug 2008, pp 11-15

[19] Dhondt G 2004 The finite element method for three-dimensional thermomechanical

applications, Wiley

[20] Geuzaine C and Remacle J F 2009 Gmsh: a three-dimensional finite element mesh generator

with built-in pre- and post-processing facilities, International Journal for Numerical

Methods in Engineering 79(11) 1309-1331

[21] Ettienne M B, Vester S and Villadsen J 2012 Implementing a multi-agent system in Python with

an auction-based agreement approach, Programming Multi-Agent Systems. ProMAS 2011.

Lecture Notes in Computer Science, ed Dennis L, Boissier O et al., 7217 Springer, Berlin

International Conference on Applied Sciences

Journal of Physics: Conference Series 1426 (2020) 012033

IOP Publishing

doi:10.1088/1742-6596/1426/1/012033

11

[22] ***osBrain – A general-purpose multi-agent system module written in Python

https://github.com/opensistemas-hub/osbrain (accessed 2019-05-01)

[23] ***Python Agent DEvelopment framework https://pade.readthedocs.io (accessed 2019-05-01)

[24] McKerns M M, Strand L, Sullivan T, Fang A and Aivazis M A G 2011 Building a framework

for predictive science, Proc. of the 10th Python in Science Conf.

http://arxiv.org/pdf/1202.1056

[25] Sines G 1959 Behavior of metals under complex static and alternating stresses, Metal Fatigue

eds G Sines and J L Waisman, McGraw-Hill, New York, pp 145-169

[26] Page L, Brin S, Motwani R and Winograd T 1999 The PageRank citation ranking: bringing

order to the Web

http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf

[27] Gansner E R and North S C 2000 An open graph visualization system and its applications to

software engineering Software-practice and experience 30(11) 1203-1233

[28] Kopei V B, Onysko O R and Panchuk V G 2019 Computerized system based on FreeCAD for

geometric simulation of the oil and gas equipment thread turning, IOP Conf. Ser.: Mater.

Sci. Eng. 477 012032

